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Abstract. In the article, we describe three-phase finite-gap solutions of the focusing non-
linear Schrödinger equation and Kadomtsev–Petviashvili and Hirota equations that exhibit
the behavior of almost-periodic “freak waves”. We also study the dependency of the solution
parameters on the spectral curves.
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1 Introduction

This study was motivated by the intention to demonstrate the behavior of three-phase extreme
waves. Most recent scientific research shows that the simplest and most universal model for
such waves is the focusing nonlinear Schrödinger equation (NLS)

ipt + pxx + 2 |p|2 p = 0, i2 = −1, (1)

Since 1968 the equation (1) has been describing distribution on the surface of the ocean of weakly
nonlinear quasi-monochromatic wave packets with relatively steep fronts [44]. An application of
this equation to the problems of nonlinear optics was known earlier [7]. Since the equation (1) is
a model of first approximation, it appears in simulations of many weakly nonlinear phenomena.
This equation has a wide range of applications ranging from plasma physics [28] to financial
markets [43].

Among the properties of equation (1) there is a modulation instability that leads to the
appearance of the so-called “freak waves” (in hydrodynamics known as “rogue waves”) [2].
These waves represent amplitude peaks localized in space and time. In the last 20 years, first
in hydrodynamics and then in nonlinear optics, these waves have been the object of numerous
theoretical and experimental studies [3]. Such attention to the problem of the “freak waves” is
due to the losses at oil platforms, tankers, container ships and other large vessels caused by the
“rogue waves”.

There are many more precise and more complex models, which give a more exact description
of the “freak waves” [3]. These models can be divided into two classes. In the first class one can
solve them analyticaly while in the second class one can use numerical methods only. Analytical
methods include: inverse scattering transform method; finite-gap integration method; Bäcklund
transform method; Darboux transform method; Hirota method.

In the present work, we use a finite-gap integration method. The works of Dubrovin, Novikov,
Marchenko, Lax, McKean, van Moerbeke, Matveev, Its, Krichever [9, 10, 11, 12, 13, 21, 22, 26, 29,
31, 33, 35] give a description of this method (see also the review [32]). However, another method
of constructing finite-gap solutions of integrable nonlinear equations exists [23, 24, 34, 36]. Let
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us remark that first method is based on Baker–Akhiezer function but the second one is based
on some Fay’s identities [14]. In our paper, we use the first method and Its and Kotlyarov’s
classic formulas [18, 20] (see also [6]).

Our goal here is to show the behavior of three-phase algebro-geometric solutions of NLS, KP-I
and Hirota equations. Section 2 of this paper contains the basic notations and classic formulas
for algebro-geometric solutions of integrable nonlinear equations under consideration. Section 3
is devoted to the periodicity of three-phase solutions of NLS, KP-I and Hirota equations. In
Section 4 we consider an example of three-phase algebro-geometric solutions of KP-I and Hirota
equations for different values of parameters.

2 Finite-gap multi-phase solutions of the NLS equation

The nonlinear differential equations that are integrated by methods of the algebraic geome-
try, can be obtained as a compatibility condition of the system of ordinary linear differential
equations with a spectral parameter [6, 15, 16]. In particular, let us consider the following
equations [15, 19, 38]

Yx = UY, Yz = VY, Yt = WY, (2)

where

U = −λ
(
i 0
0 −i

)
+

(
0 iψ
−iφ 0

)
, V = 2λU + V0, W = 4λ2U + 2λW0 + W1,

λ is a spectral parameter. Using these equations and additional relations

(Yx)z = (Yz)x, (Yx)t = (Yt)x

one can easy obtain the so-called equations of zero curvature

Uz −Vx + UV−VU = 0 and Ut −Wx + UW−WU = 0, (3)

which should be valid for all values of spectral parameter λ. Respectively, it follows from
equations (3) that matrixes V0, W0, W1 take the forms

W0 = V0 =

(
−iψφ −ψx
−φx iψφ

)
, W1 =

(
ψxφ− ψφx 2iψ2φ− iψxx
−2iψφ2 + iφxx ψφx − ψxφ

)
,

Also, W = 2λV + W1. Conditions (3) lead to additional system of equations (parities). The
first system is the coupled nonlinear Schrödinger equation

iψz + ψxx − 2ψ2φ = 0,

iφz − φxx + 2ψφ2 = 0,
(4)

and the second system is the coupled modified Korteweg–de Vries equation

ψt + ψxxx − 6ψφψx = 0,

φt + φxxx − 6ψφφx = 0.
(5)

These two systems of the nonlinear differential equations are closely related to two other
ones. Specifically, differentiating equations (4) with respect to x and substituting them in (5),
one obtains the coupled modified two-dimensional nonlinear Schrödinger equation in cone coor-
dinates [27]

iψt + ψxz + 2i(ψφx − φψx)ψ = 0,

iφt − φxz + 2i(φψx − ψφx)φ = 0,
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Also, the functions ψ(x, t,−αt) and φ(x, t,−αt) are solutions to the coupled integrable Hirota
equation (α ∈ R)

iψt + ψxx − 2ψ2φ− iα(ψxxx − 6ψφψx) = 0,

iφt − φxx + 2ψφ2 − iα(φxxx − 6ψφφx) = 0,
(6)

if ψ(x, z, t) and φ(x, z, t) are solutions of (4) and (5).
Systems of the nonlinear differential equations (4), (5) are the first two integrable systems

from the AKNS hierarchy [15]. One of the features of finite-gap multi-phase solutions of the
integrable nonlinear equations is that fact that in some sense they are the solutions of all
hierarchy. Particulary, our solutions can be used for constructing solutions of generalized non-
linear Schrödinger equation [42]. By substituting φ = ±ψ into equation (4) we get a standard
form of the nonlinear Schrödinger equation. Particularly, for φ = −ψ equations (4) transform
to (1) [11, 18, 19] and equations (6) transform to the integrable Hirota equation [4, 8, 17, 30]

iψt + ψxx + 2 |ψ|2 ψ − iα
(
ψxxx + 6 |ψ|2 ψx

)
= 0. (7)

It is also easy to check that for any ψ and φ, that satisfy both (4) and (5) simultaneously,
the function u(x, z, t) = −2ψφ is a solution of the Kadomtsev–Petviashvili-I equation (KP-I)

3uzz = (4ut + uxxx + 6uux)x. (8)

In case φ = ±ψ this solution is a real function.
Finite-gap solutions of systems (4), (5) are parameterized by the hyperelliptic curve Γ =

{(χ, λ)} of the genus g [15, 38]:

Γ : χ2 =

2g+2∏
j=1

(λ− λj),

The branch points (λ = λj , j = 1, . . . , 2g+ 2) of this curve are the endpoints of the spectral arcs
of continuous spectrum of Dirac operator (2). Infinitely far point of the spectrum corresponds
two different points P±∞ on the curve Γ. In case φ = −ψ the curve Γ has the form

Γ : χ2 =

g+1∏
j=1

(λ− λj)(λ− λj) = λ2g+2 +

2g+2∑
j=1

χjλ
2g+2−j , =χj = 0, =(λj) 6= 0. (9)

Following a standard procedure of constructing finite-gap solutions [6, 11, 38], for Γ let us
choose a canonical basis of cycles γt = (a1, . . . , ag, b1, . . . , bg) with matrix of intersection indices

C0 =

(
0 I
−I 0

)
.

To satisfy the condition φ = −ψ, it is necessary [6, 11] that this basis of cycles is transformed
according to the rules

τ̂1a = −a, τ̂1b = b +Ka, (10)

where τ1 is anti-holomorphic involution, τ1 : (χ, λ)→ (χ, λ).
Let us also consider normalized holomorphic differentials dUj :∮

ak

dUj = δkj , k, j = 1, . . . , g,
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and a matrix of periods B of the curve Γ:

Bkj =

∮
bk

dUj , k, j = 1, . . . , g.

It is well known (see, for example, [5, 11]) that the matrix B is a symmetric matrix with positively
defined imaginary part.

Let us introduce g-dimensional Riemann theta function with characteristics η, ζ ∈ Rg [5, 11,
14]:

Θ
[
ηt; ζt

]
(p|B) =

∑
m∈Zg

exp
{
πi(m + η)tB(m + η) + 2πi(m + η)t(p + ζ)

}
,

Θ
[
0t; 0t

]
(p|B) ≡ Θ(p|B),

where B is a matrix of periods, p ∈ Cg and summation passes over an integer g-dimensional
lattice.

Let us also define on Γ normalized Abelian integrals of the second kind (Ωj(P), j = 1, 2, 3)
and the third kind (ω0(P)) with the following asymptotic at infinitely distant points P±∞:∮

ak

dΩ1 =

∮
ak

dΩ2 =

∮
ak

dΩ3 =

∮
ak

dω0 = 0, k = 1, . . . , g,

Ω1(P) = ∓i
(
λ−K1 +O

(
λ−1

))
, P → P±∞,

Ω2(P) = ∓i
(
2λ2 −K2 +O

(
λ−1

))
, P → P±∞,

Ω3(P) = ∓i
(
4λ3 −K3 +O

(
λ−1

))
, P → P±∞,

ω0(P) = ∓
(
lnλ− lnK0 +O

(
λ−1

))
, P → P±∞,

χ = ±
(
λg+1 +O (λg)

)
, P → P±∞.

Let us denote the vectors of b-periods of Abelian integrals of the second kind Ω1(P), Ω2(P),
Ω3(P) by 2πiU, 2πiV, 2πiW respectively.

Theorem 1 ([6, 38]). Function

Y (P, x, z, t) =

(
y1(P, x, z, t) y1(τ0P, x, z, t)
y2(P, x, z, t) y2(τ0P, x, z, t)

)
,

where τ0 is hyperelliptic involution, τ0 : (χ, λ)→ (−χ, λ),

y1(P, x, z, t) =
Θ(U(P) + Ux+ Vz + Wt−X)Θ(Z)

Θ(U(P)−X)Θ(Ux+ Vz + Wt+ Z)

× exp{Ω1(P)x+ Ω2(P)z + Ω3(P)t+ iΦ(x, z, t)},

y2(P, x, z, t) = ρ
Θ(U(P) + Ux+ Vz + Wt+ ∆−X)Θ(Z−∆)

Θ(U(P)−X)Θ(Ux+ Vz + Wt+ Z)

× exp{Ω1(P)x+ Ω2(P)z + Ω3(P)t− iΦ(x, z, t) + ω0(P)},

is the eigenfunction of the Dirac operator (2) with functions

ψ(x, z, t) =
2K0

ρ

Θ(Z)Θ(Ux+ Vz + Wt+ Z−∆)

Θ(Z−∆)Θ(Ux+ Vz + Wt+ Z)
exp{2iΦ(x, z, t)},

φ(x, z, t) = 2ρK0
Θ(Z−∆)Θ(Ux+ Vz + Wt+ Z + ∆)

Θ(Z)Θ(Ux+ Vz + Wt+ Z)
exp{−2iΦ(x, z, t)}, (11)
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for any z, t and ρ 6= 0. The functions (11) satisfy the equations (4) and (5). Here ∆ is the
vector of holomorphic Abelian integrals, calculated along a path connecting P−∞ and P+

∞ without
crossing any of the basic cycles,

∆ = U(P+
∞)− U(P−∞), Φ(x, z, t) = K1x+K2z +K3t,

X = K +

g∑
j=1

U(Pj), Z = U(P+
∞)−X,

K is a vector of Riemann constants [5, 11, 14, 25]; Pj, j = 1, . . . , g is a non-special divisor. If
the spectral curve Γ satisfies the condition (9), then the following equalities hold

|ψ|2 = −4K2
0

Θ(Ux+ Vz + Wt+ Z−∆)Θ(Ux+ Vz + Wt+ Z + ∆)

Θ2(Ux+ Vz + Wt+ Z)
, (12)

=U = =V = =W = =Z = 0, K2
0 < 0.

It is easy to see that the corresponding solution of KP-I equation (8) has the form

u(x, z, t) = −8K2
0

Θ(Ux+ Vz + Wt+ Z−∆)Θ(Ux+ Vz + Wt+ Z + ∆)

Θ2(Ux+ Vz + Wt+ Z)
, (13)

and that the square of amplitude of solution of Hirota equation (7) equals

|ψH |2 (x, t) = −4K2
0

Θ(Ux+ (V − αW)t+ Z−∆)Θ(Ux+ (V − αW)t+ Z + ∆)

Θ2(Ux+ (V − αW)t+ Z)
.

3 Features of three-phase solutions

In case g = 3, the basis of normalized holomorphic differentials is defined by the formula [6, 11]:

dUk =
(
ck1λ

2 + ck2λ+ ck3
)dλ
χ
,

where

C =
(
At
)−1

, Ajm =

∮
aj

λ3−m
dλ

χ
.

It follows from equation (` is an arbitrary path on Γ)∫
τ̂ `
dω =

∫
`
τ∗dω,

that

Ajm =

∮
aj

λ3−m
dλ

χ
=

∮
aj

τ∗1

(
λ3−m

dλ

χ

)
=

∮
τ̂1aj

λ3−m
dλ

χ
= −

∮
aj

λ3−m
dλ

χ
= −Ajm.

Therefore A = −A and C = −C. Similarly, with integrals on b-cycles, we obtain

B = −B −K or <B = −1

2
K.

It follows from bilinear relations of Riemann (see, for example, [5, 6, 11]) that the coordinates
of the vectors U, V, W can be written as

Um = −i

(
dUm
dξ−

∣∣∣∣
ξ−=0

− dUm
dξ+

∣∣∣∣
ξ+=0

)
, Vm = −2i

(
d2Um
dξ2−

∣∣∣∣
ξ−=0

− d2Um
dξ2+

∣∣∣∣
ξ+=0

)
,



6 A.O. Smirnov, S.G. Matveenko, S.K. Semenov and E.G. Semenova

Wm = −2i

(
d3Um
dξ3−

∣∣∣∣
ξ−=0

− d3Um
dξ3+

∣∣∣∣
ξ+=0

)
,

where ξ± = 1/λ are local parameters in the neighborhood of infinitely distant points P±∞.
Calculating the derivatives we obtain the relations

Um = −2icm1, Vm = 2iχ1cm1 − 4icm2, Wm = i
(
4χ2 − 3χ2

1

)
cm1 + 4iχ1cm2 − 8icm3,

or

(U,V,W) = iC

−2 2χ1 4χ2 − 3χ2
1

0 −4 4χ1

0 0 −8

 . (14)

It follows from (14) that the vectors U, V, W are real and linearly independent. Therefore,
U, V, W are the basis vectors in R3. Hence, any vector from R3 can be presented in the form
of the linear combinations of these vectors. In particular, for the vectors of the periods of the
three-dimensional theta-functions et1 = (1, 0, 0), et2 = (0, 1, 0), et3 = (0, 0, 1) we can write the
following relations

ek = XkU + ZkV + TkW.

Therefore, three-phase solutions (13) of equation KP-I (8) are the periodic functions in a three-
dimensional space

u(x+ Xk, z + Zk, t+ Tk) = u(x, z, t).

If a three-phase solution of (8) has a form of freak waves, then the maxima of its amplitude
are located in nodes of a three-dimensional lattice with edges (Xk,Zk, Tk). These edges can be
found by an inversion of the matrix (U,V,W):X1 X2 X3

Z1 Z2 Z3

T1 T2 T3

 = (U,V,W)−1 = i

1/2 χ1/4 χ2/4− χ2
1/16

0 1/4 χ1/8
0 0 1/8

At.

Therefore, for three-phases solutions of equation KP-I (8) it is possible to describe their behavior
in the following way: after a time interval ∆t = Tk a surface of solution u(x, z) reproduces itself
with a shift on the XOZ plane by the (Xk,Zk) vector.

As the three-phase solution of the equations (1) depends on two coordinates, x and z, and
the third coordinate t is considered to be a parameter, the value of amplitude of this solution
depends on the distance between the nodes of the given three-dimensional lattice and a plane
t = t0. Hence, in contrast to the case of the two-phase solution [39, 40, 41], where the change of
initial phase Z led to trivial shift of the solution on XOZ plane, the amplitude of the three-phase
solution (11) of equations (1) depends on a choice of initial phase Wt0 + Z in a slightly more
complicated fashion.

4 An example of three-phase solution

Let us consider a spectral curve Γ3 = {χ, λ} of genus g = 3:

Γ3 : χ2 =
(
(λ− λ0)4 − 2a2(λ− λ0)2 cos 2ϕ+ a4

)(
(λ− λ0)4 − 2b2(λ− λ0)2 cos 2ϕ+ b4

)
,

where 0 < a < b, π/4 < ϕ < π/2.
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Figure 1. Canonical basis of cycles on Γ3.

Let us choose the basis of cycles on Γ3 as it is shown on Fig. 1.

It is easy to check that the anti-holomorphic involution τ1 transforms the canonical basis of
cycles using the rule (10) with the matrix

K =

0 1 1
1 0 1
1 1 0

 .

There are also three holomorphic involutions on Γ3:

τ0 : (χ, λ)→ (−χ, λ),

τ2 : (χ, λ)→ (χ, 2λ0 − λ),

τ3 : (χ, λ)→
(
a2b2(λ− λ0)−4χ, λ0 + ab(λ− λ0)−1

)
.

As a corollary, the curve Γ3 covers the following two curves:

1) Γ1 = Γ3/τ2 of genus g = 1

Γ1 : χ2
+ =

(
t2 − 2a2t cos 2ϕ+ a4

)(
t2 − 2b2t cos 2ϕ+ b4

)
,

2) Γ2 = Γ3/(τ0τ2) of genus g = 2

Γ2 : χ2
− = t

(
t2 − 2a2t cos 2ϕ+ a4

)(
t2 − 2b2t cos 2ϕ+ b4

)
,

where t = (λ− λ0)2, χ+ = χ, χ− = (λ− λ0)χ, and

dt

χ+
=

2(λ− λ0)dλ
χ

,
tdt

χ−
=

2(λ− λ0)2dλ
χ

,
dt

χ−
=

2dλ

χ
.

The curves Γ1 and Γ2 are shown on Figs. 2 and 3, where t1 = b2e2iϕ, t2 = a2e2iϕ.

The coverings generate the following transformations of cycles:a1a2
a3

→ S

a1a21
a22

+ P

b1b21
b22

 ,

b1b2
b3

→ Q

a1a21
a22

+R

b1b21
b22

 ,
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Figure 2. The curve Γ1. Figure 3. The curve Γ2.

where

S =

−1 1 0
1 0 −1
1 0 1

 , P =

0 −2 0
0 0 2
0 0 −2

 ,

Q =

−1 1 0
0 0 −1
0 0 1

 , R =

0 0 0
1 1 1
1 1 −1

 .

Recall that these matrices should satisfy the relations

StQ = QtS, RtP = P tR, StR−QtP = nI,

where I is identity matrix, n = 2 is the number of covering sheets.

Due to involution τ3, the curve Γ2 covers two elliptic curves Γ± (Figs. 4 and 5):

Γ± : ν2± = (s± 2ab)
(
s2 − 2

(
a2 + b2

)
s cos 2ϕ+ a4 + b4 + 2a2b2 cos 4ϕ

)
,

where

s = t+
a2b2

t
, ν± =

t± ab
t2

χ−,
ds

ν±
=

(t∓ ab)dt
χ−

.

The coverings of Γ2 on Γ± generate the following cycles mappings(
a21
a22

)
→
(

1 1
−1 1

)(
a+
a−

)
,

(
b21
b22

)
→
(

1 1
−1 1

)(
b+
b−

)
,

As a result, we havea1a2
a3

→
−1 1 1

1 1 −1
1 −1 1

a1a+
a−

+

0 −2 −2
0 −2 2
0 2 −2

b1b+
b−

 , (15)

b1b2
b3

→
−1 1 1

0 1 −1
0 −1 1

a1a+
a−

+

0 0 0
1 0 2
1 2 0

b1b+
b−

 . (16)
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Figure 4. The curve Γ+. Figure 5. The curve Γ−.

From (15), (16) and relations

dλ

χ
=

1

4ab

ds

ν−
− 1

4ab

ds

ν+
,

λdλ

χ
=

1

2

dt

χ+
+

λ0
4ab

ds

ν−
− λ0

4ab

ds

ν+
,

λ2dλ

χ
= λ0

dt

χ+
+
λ20 + ab

4ab

ds

ν−
− λ20 − ab

4ab

ds

ν+

it follows that

C =

c1 + c3 −2λ0(c1 + c3) (λ20 − ab)c1 + (λ20 + ab)c3
c1 c2 − 2λ0c1 (λ20 − ab)c1 − λ0c2
c3 c2 − 2λ0c3 (λ20 + ab)c3 − λ0c2

 ,

B =

i(b1 + b3) ib1 − 1/2 ib3 − 1/2
ib1 − 1/2 i(b1 + b2) ib2 − 1/2
ib3 − 1/2 ib2 − 1/2 i(b2 + b3)

 ,

where

c1 =
1

2(α1 − 2β1)
, c2 =

1

2α2
, c3 =

1

2(α3 − 2β3)
,

ib1 =
α1

2(α1 − 2β1)
, ib2 =

β2
2α2

, ib3 =
α3

2(α3 − 2β3)
,

α1 =
1

2

∮
a+

ds

ν+
, α2 =

1

2

∮
a1

dt

χ+
, α3 =

1

2

∮
a−

ds

ν−
,

β1 =
1

2

∮
b+

ds

ν+
, β2 =

1

2

∮
b1

dt

χ+
, β3 =

1

2

∮
b−

ds

ν−
.

From the structure of the matrix B and from the matrix version of Appel’s theorem [37] it
follows that the Riemann theta function of curve Γ3 equals:

Θ(p|B) = f(p̃1, p̃2, p̃3) = ϑ3(p̃1|h1)ϑ3(p̃2|h2)ϑ3(p̃3|h3) + ϑ4(p̃1|h1)ϑ1(p̃2|h2)ϑ1(p̃3|h3)
+ ϑ1(p̃1|h1)ϑ4(p̃2|h2)ϑ1(p̃3|h3) + ϑ1(p̃1|h1)ϑ1(p̃2|h2)ϑ4(p̃3|h3), (17)

where p̃j = pj + pj+1 − pj+2, pj+3 ≡ pj , hj = exp(−4bj).
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Figure 6. Three-phase solution of KP-I equa-

tion for λ0 = 0, t = 0.

Figure 7. Three-phase solution of KP-I equa-

tion for λ0 = 0, t = 0.1.

Figure 8. Three-phase solution of KP-I equa-

tion for λ0 = 0, t = 0.2.

Figure 9. Three-phase solution of KP-I equa-

tion for λ0 = 0, t = 0.3.

The functions ϑj(p|h) are Jacoby elliptic theta functions [1]:

ϑ1(p|h) = 2
∞∑
m=1

(−1)m−1h(m−1/2)
2

sin[(2m− 1)πp],

ϑ2(p|h) = 2

∞∑
m=1

h(m−1/2)
2

cos[(2m− 1)πp],

ϑ3(p|h) = 1 + 2

∞∑
m=1

hm
2

cos(2mπp),

ϑ4(p|h) = 1 + 2
∞∑
m=1

(−1)mhm
2

cos(2mπp).

Using the reduced form of theta function (17) and values for the vectors of periods, one
obtains the following formula for a squared absolute value of the three-phase solution (12) of
the focusing NLS equation (1)

|ψ|2 = −4K2
0f(k1x+ κ1t+ δ1, k2z + δ2, k3x+ κ3t+ δ3) (18)

× f(k1x+ κ1t− δ1, k2z − δ2, k3x+ κ3t− δ3)× {f(k1x+ κ1t, k2z, k3x+ κ3t)}−2,
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Figure 10. Three-phase solution of KP-I equa-

tion for λ0 = k2/(4k1), t = 0.

Figure 11. Three-phase solution of KP-I equa-

tion for λ0 = k2/(4k1), t = 0.1.

Figure 12. Three-phase solution of KP-I equa-

tion for λ0 = k2/(4k1), t = 0.2.

Figure 13. Three-phase solution of KP-I equa-

tion for λ0 = k2/(4k1), t = 0.3.

where the function f(p̃1, p̃2, p̃3) is defined by equation (17), and

k1 = −4ic1, k2 = −8ic2, k3 = −4ic3,

κ1 = 4k1
(
3λ20 − ab+

(
a2 + b2

)
cos(2ϕ)

)
, κ3 = 4k3

(
3λ20 + ab+

(
a2 + b2

)
cos(2ϕ)

)
.

(17), (18) imply that for λ0 = 0 the amplitude of the constructed solution of NLS equation (1)
is a periodic function of z, and for λ0 = 0, ϕ = 1

2 arccos
( ±ab
a2+b2

)
it is a periodic function of z

and t.
Recall that the three-phase solution u(x, z, t) of the KP-I equation (8) and the square of am-

plitude of three-phase solution of Hirota equation (7), |ψH(x, t)|2, can be constructed from (18)
by using relations u(x, z, t) = 2 |ψ(x, z, t)|2 and |ψH(x, t)|2 = |ψ(x, t,−αt)|2.

The three-phase solution of KP-I equation for ab = 1,
√
b/a = 1.3, ϕ = 0.3π at the different

moment of time t and for λ0 = 0 is presented on the Figs. 6–9. One can see the same solution
for λ0 = k2/(4k1) on the Figs. 10–13. It is easy to see all three phases of solution on Figs. 6–13.
Two phases are shortwaves and the third phase is a long-wave envelope. One can see also on
Figs. 6–9 that the solution for λ0 = 0 is periodic in z, and that the long-wave envelope moves
to the right side.

The three-phase solution of Hirota equation for ab = 1,
√
b/a = 1.3, ϕ = 0.3π, α = 0.1 and

for different values of λ0 is presented in Figs. 14–17. It is easy to see all three phases of solution
only in Fig. 15.
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Figure 14. Amplitude of three-phase solution

of Hirota equation for λ0 = 0.

Figure 15. Amplitude of three-phase solution

of Hirota equation for λ0 = 4.

Figure 16. Amplitude of three-phase solution

of Hirota equation for λ0 = k2/(4k1).

Figure 17. Amplitude of three-phase solution

of Hirota equation for λ0 = k2/(4k3).
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