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Abstract. The invariant classification of superintegrable systems is reviewed and utilized
to construct singular limits between the systems. It is shown, by construction, that all
superintegrable systems on conformally flat, 3D complex Riemannian manifolds can be
obtained from singular limits of a generic system on the sphere. By using the invariant
classification, the limits are geometrically motivated in terms of transformations of roots of
the classifying polynomials.
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1 Introduction

The discovery and classification of superintegrable systems is currently undergoing significant
activity, see [22] and citations within. Superintegrable systems are dynamical systems, for
example classical or quantum Hamiltonian systems, that have more conserved quantities than
degrees of freedom. One of the many active areas of research in superintegrable systems is in their
classification. On this front, there has been significant progress on maximally superintegrable
systems in 2 and 3-D complex Riemannian manifolds with constants of the motion that are
at most second-order in the momenta, a necessary condition for multi-separability. In two
dimensions, all such systems have been classified [12]. Somewhat surprisingly, all such systems
can be obtained through singular limits of a “generic” system defined on the sphere. This fact
was first recognized by Bôcher [1] in his search for metrics that admit the maximal number of
second-order Killing tensors. Again in the 2D case, the limits between such systems were recently
given explicitly in [19], where they were shown to induce contractions on the associated symmetry
algebras as well as limits in the representations of such algebras. These representations are given
in terms of classical hypergeometric orthogonal polynomials and the limits of the superintegrable
systems correspond to the limits within the Askey scheme.

The aim of this paper is to give the corresponding limits of superintegrable systems in 3D.
We will show explicitly that all such systems are limiting cases of a “generic” system defined
on S3 and give the coordinate transformation that generates each limit. In order to describe
the limits we discuss the classification theory of 3D second-order superintegrable systems [2, 3].
The classification makes use of classical invariant theory and associates to each superintegrable
system a 7-dimensional representation of the conformal group. By studying the action of the
conformal group on this representation, we can identify 10 equivalence classes each of which
corresponds to a class of superintegrable systems. From the invariant classification, the necessary
limits are abstractly motivated as opposed to the constructions of [19], which are given ad hoc.
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The structure of the paper is as follows. We begin in Section 2 with an overview of the results
in [2, 3] giving the invariant classification of nondegenerate second-order superintegrable systems
in 3D. Section 3 contains the results of the paper; namely we prove that all such superintegrable
systems are limits of a “generic” system by demonstrating the appropriate limits. Section 4
contains a brief discussion of the results and future applications of this research.

2 Invariant classif ication of superintegrable systems

In this section, we describe the invariant classification of nondegenerate second-order superin-
tegrable systems in 3D, where the metric is assumed to be conformally flat. The dynamics are
given by the following classical Hamiltonian on 6-dimensional phase space (p,x)

H(p,x) =
3∑

i,j=1

gij(x)pipj + V (x).

The conformally flat assumption implies that the metric tensor takes the form gij = λ(x)δij .
Any function on the phase space A(p,x) will transform in time as

dA
dt

= {A,H}+ ∂A

∂t
,

where { , } is the standard Poisson bracket

{A,B} ≡
3∑
i=1

∂A
∂xi

∂B
∂pi
− ∂B
∂xi

∂A
∂pi

.

Thus, a function on phase-space will be invariant under the Hamiltonian flow if and only if
it Poisson commutes with H, ({A,H} = 0) and is referred to as a constant of the motion.
Conversely, the Hamiltonian is also invariant under flow generated by the constant of the motion
and so the function A is also often referred to as a symmetry of the Hamiltonian.

A Hamiltonian on 2n-dimensional phase space is said to be Liouville integrable if there ex-
ist n mutually commuting constants of the motion that are functionally independent. We say
that a Hamiltonian is superintegrable if there exist more than n constants of the motion and
maximally superintegrable if there exist 2n− 1 such symmetries. Not all of the symmetries can
mutually commute and so we drop the requirement that the integrals commute among them-
selves. There is a close connection between superintegrability and noncommutative integrability,
notably that maximally superintegrable systems are noncommutatively integrable. Indeed, the
celebrated result of Nekhoroshev [23] concerning foliations of phase space for noncommutative
integrable systems includes, as a special case, the result that, generically, bounded trajectories
of superintegrable systems are closed.

We would like to classify Hamiltonians H on a conformally flat 3D manifold with 5 con-
stants of motion that are second-order in the momentum, i.e., that there exist 5 (including the
Hamiltonian) functionally independent constants of the motion

A =

3∑
i,j=1

aij(x)pipj +W (x), aij = aji,

such that

{A,H} = 0.
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If such symmetries exist then a direct computation of the Poisson commutators leads to the
following set of differential equations: the Killing equations, which require the second-order
part of A to be a Killing tensor on the manifold, and the Bertrand–Darboux (BD) equations.
The BD equations are the compatibility conditions for the differential equations for W (x) and
comprises a set of four linear second-order PDEs for the potential V (x), one for each integral
that is not the Hamiltonian. Combining the equations into vector form gives

B
(
aij
)

V,22 − V,11
V,33 − V,11

V,12
V,13
V,23

 = C
(
λ, λ,k, a

ij , aij,k
)V,1V,2

V,3

 ,

where the subscript f,k denotes the partial derivative with respect to xk and B and C are
matrix functions of the given arguments of dimensions 12× 5 and 12× 3, respectively. Suppose
in addition that the constants of the motion are functionally, linearly independent. This implies
that the BD equations are of rank 5 and it is possible to solve for second-order derivatives of V
as in 

V,11
V,22
V,33
V,12
V,13
V,23

 =



1 −4S1 −R12
2 −R13

3 2S2 +R12
1 2S3 +R13

1

1 2S1 +R12
2 −4S2 −R12

1 −R23
3 2S3 +R23

2

1 2S1 +R13
3 2S2 +R23

3 −4S3 −R13
1 −R23

2

0 R12
1 − 3S2 R12

2 − 3S1 Q123

0 R13
1 − 3S3 Q123 R13

3 − 3S1

0 Q123 R23
2 − 3S3 R23

3 − 3S2

~v, (1)

~v ≡


V,ee
V,1
V,2
V,3

 , V,ee =
1

3
(V,11 + V,22 + V,33).

Here V,ee is not a second derivative, but a symmetry adapted variable. The use of V,ee introduces
redundancy in the equations (6 equations instead of 5), which is preserved for the sake of
symmetry in the variables. If the compatibility conditions of (1) are assumed to hold identically
then the potential depends on 5 parameters, the values of V,ee, V,1, V,2, V,3 and V at a generic
point, the last point coming from a trivial additive parameter. Such a system is said to be
non-degenerate. For a non-degenerate system, the potential is uniquely determined by the value
of the matrix in (1) at a given generic point x0. The values of V (x0), V,1(x0), V,2(x0), V,3(x0)
and V,11(x0) are the parameters in the potential. As is clear from the form of the matrix, it
depends on 10 functions{

Q123, S1, S2, S3, R12
1 , R

12
2 , R

13
1 , R

13
3 , R

23
2 , R

23
3

}
≡ {Q,S,R},

which are assumed to satisfy the compatibility conditions for (1) identically. The compatibility
conditions of (1) are first-order equations in the variables whose compatibility conditions are
themselves identically satisfied. Therefore, the values of functions {Q,S,R} at a generic point x0

are enough to uniquely determine the functions themselves along with a superintegrable system.

Example 1. The harmonic oscillator potential

VOO =
a

2

(
x21 + x22 + x23

)
+ bx1 + cx2 + dx3 + e
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is a non-degenerate second-order superintegrable system. The BD equations for the potential
are 

V,11
V,22
V,33
V,12
V,13
V,23

 =



1 0 0 0
1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



V,ee
V,1
V,2
V,3

 .

Taking the origin as a generic point, the coefficients are related to V as a = V,ee(0), b = V,1(0),
c = V,2(0), d = V,3(0), and e = V (0).

2.1 Equivalence classes

The next step in the classification is to identify the appropriate equivalence classes. Clearly, we
would like to consider two potentials as equivalent if they are related by a change of parameters.
This is accomplished in the previous section by making a canonical choice of parameters as the
value of ~v(x0). We would also like systems to be equivalent if they are related by translations
in the position variables; such a translation corresponds to moving the regular point. We would
also like systems to be equivalent if they are related by, possibly complex, rotations. This con-
dition will be studied extensively in this section. Finally, we would like the equivalence classes
to include systems that are related via the Stäckel transform or coupling constant metamor-
phosis [10, 11, 17, 24]. That is, suppose a Hamiltonian can be expressed as H = H0 + αU
then the Stäckel transformed Hamiltonians Ĥ = 1

UH will also be superintegrable, perhaps on
a different conformally flat manifold. Under this transformation, classical trajectories and quan-
tum wave functions as well as the corresponding symmetry algebras are essentially preserved, up
to a change of parameters. Thus, we would like to consider two such systems as being equivalent.
An analogous classification of equivalence classes for superintegrable systems in 2D has already
been performed [20].

In order to consider Stäckel equivalent systems, we focus our attention on conformally super-
integrable systems [13]. For conformal superintegrable systems, the Hamiltonian is identically 0
on trajectories. This can be accomplished mathematically by including the trivial added pa-
rameter to the system. Thus, along a trajectory the Hamilton–Jacobi equation is expressed as
H − E = 0 but with H − E being the Hamiltonian. A function on phase space will then be
a constant of the motion whenever its Poisson bracket is given by

{A,H} = f(p,x)H.

It is a direct computation to verify (see, e.g., [2, Lemma 4.1.4]) that a conformal integral of
the motion A of H will be a conformal integral of the scaled Hamiltonian U(x)H. Thus it is
possible to transform any conformal superintegrable Hamiltonian on conformally flat space to
a conformally superintegrable Hamiltonian on Euclidean space. Furthermore, since the action
of the Stäckel transform corresponds to multiplying the Hamiltonian by a function, it is clear
that two Hamiltonians equivalent under this action will be equivalent conformal superintegrable
systems, from the perspective of their symmetry algebras.

Example 2. The Hamiltonian for the simple Harmonic oscillator p2−ω2x2 corresponds to the
following conformal Hamiltonian

H = p2 − ω2x2 − E.
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Dividing by x2 gives

Ĥ =
1

x2
p2 − ω2 − E

x2
.

Clearly, trajectories that satisfy H = 0 will also satisfy Ĥ = 0, however the “energy” of the new
Hamiltonian is given by the parameter ω2.

Conversely, any conformally superintegrable system that depends linearly on at least one arbi-
trary constant can be transformed, see, e.g., [2, Theorem 4.1.8], into a superintegrable system by
coupling constant metamorphosis. Therefore, classifying superintegrable systems on conformally
flat manifolds up to Stäckel transform is equivalent to classifying conformally superintegrable
systems on Euclidean space. The determining equations for an integral of a conformal system
are similar to (1) except that the additive constant is no longer trivial but instead essential for
specifying the Hamiltonian. The corresponding structure equations are then

V11
V,22
V,33
V,12
V,13
V,23

 = A


V,ee
V,1
V,2
V,3
V

 ,

with

A =



1 −4S1 −R12
2 −R13

3 2S2 +R12
1 2S3 +R13

1 A11
0

1 2S1 +R12
2 −4S2 −R12

1 −R23
3 2S3 +R23

2 A22
0

1 2S1 +R13
3 2S2 +R23

3 −4S3 −R13
1 −R23

2 A33
0

0 R12
1 − 3S2 R12

2 − 3S1 Q123 A12
0

0 R13
1 − 3S3 Q123 R13

3 − 3S1 A13
0

0 Q123 R23
2 − 3S3 R23

3 − 3S2 A23
0

 .

The functions Ajk0 are quadratic functions in the {Q,S,R} given in [2].

2.2 Action of the conformal group

So far, we have determined that superintegrable systems are uniquely determined by the value
of the 10 functions {Q,R,S} at a regular point. We are interested in determining equivalence
classes of systems that are stable under the action of the conformal group so we look at the
induced action of this group on these 10 functions. Again, the exact formulas and derivations
can be found in [2, 3] and here we state only the results necessary to understand the limits
obtained in Section 3.

A conformal change of variables can be generated by translations, which act trivially on the
functions {Q,R,S} and inversions in the spheres of varying radii, which decompose the functions
into a 7-dimensional representation {Q,R} and a 3-dimensional representation carried by {S}.
Significantly, we can use a group transformation to set the values of {S} to any desired value,
described in the following theorem.

Theorem 1 (re-statement of [2, Theorem 4.2.18]). Given a conformally superintegrable system
with function values {Q0,R0,S0} at a regular point x0, there exists a conformal group motion
that maps the function values to {Q0,R0,0} at the transformed regular point x̂0.
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This theorem allows us restrict our attention to the action of the conformal group on the
7-dimensional space {Q,R}. To understand the action, we consider the continuous generators
of the conformal group, namely translations, scaling, rotations and Möbius transformations.
As discussed before, translations act trivially on our representations. Scaling the coordinates
corresponds to a scaling of the functions. More interesting is the action of rotations. To represent
this action, we form weight vectors from the functions

Y±3 = R12
1 +

1

4
R23

3 ± i
(
R12

2 +
1

4
R13

3

)
, Y±2 =

1

4

√
6
(
i
(
R13

1 −R23
2

)
∓ 2Q123

)
,

Y±1 =
1

4

√
15
(
R23

3 ∓ iR13
3

)
, Y0 = −

1

2
i
√
5
(
R13

1 +R23
2

)
,

so that the action of rotations are given by the standard raising and lowering operators for so(3).
Using the isomorphism between so3(C) and sl2(C), we obtain a covariant representation of the
action via the polynomial

q(z) =
6∑
j=0

(−1)j
√(

6

j

)
Y3−jz

6−j .

Here the action of SO3(C) is represented, via the isomorphism, as the standard action of SL2(C)
as Möbius transformations

q̂(ẑ) = (cẑ + d)6q

(
aẑ + b

cẑ + d

)
. (2)

Thus, the action of the conformal group on the functions {Q,R} can be represented by the
action of GL2(C) = C × SL2(C) on the polynomials q(z) via scaling and (2). Furthermore,
the action of Möbius transformations on the coordinates can be represented locally as rotation
combined with a scaling and so, if we find invariants that are closed under translation, scaling
and rotations they will be automatically closed under the entire action of the conformal group.
Finally, we have the following theorem.

Theorem 2 (Theorem 4.2.21 of [2] in non-homogeneous coordinates). Given a conformal super-
integrable system and a regular point, there is a local conformal transformation (i.e., excluding
translation of the regular point) taking it to the regular point of another superintegrable system
if and only if the roots of the corresponding covariant polynomial at the corresponding regular
points are equivalent up to a general linear transform.

Therefore, a key to understanding the classification of conformal superintegrable systems is
to understand the classification of invariants of the roots of degree 6 polynomials. Furthermore,
since we would like the equivalence classes to be stable under translation of the regular point, we
require that any invariants obtained be closed under derivations. This significantly reduces the
number of equivalence classes to 10, exactly the expected number of equivalent superintegrable
systems. For more details on the classification, we refer the reader to the original papers [2, 3].

3 Contractions

For each of the contractions, we need only record the following data. The initial regular point
x0, the rotation angles t1, t2, t3, the scaling parameter c and the final regular point y0. We
note that the rotations can be represented in SL2(C) by the following matrices:

ρ(R3) =

[
eit3/2 0

0 e−it3/2

]
, ρ(R2) =

[
cos(t2/2) − sin(t2/2)
sin(t2/2) cos(t2/2)

]
,
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ρ(R1) =

[
cos(t1/2) −i sin(t1/2)
−i sin(t1/2) cos(t1/2)

]
.

The scaling c can be encoded in the same manner by the matrix

ρ(c) =

[
c−1/6 0

0 c−1/6

]
.

In the following sections, unless otherwise mentioned, the angles are assumed to be set to 0 and
the scale factor c to be set to 1. The action of the matrices on the polynomials are given by

ρ(A) ◦ q(z) = q̂(ẑ), ρ(A) =

[
a b
c d

]
,

as in (2), which transform the roots as

â =
da− b
−ca+ a

.

To emphasize the dependence of the polynomials on the regular point, we write q(x1, x2, x3)(z)
where necessary.

The action of the SL2(C) matrices can also be interpreted in terms of their action on a ste-
reographic projection of the complex plane onto the unit sphere using the formula

(X,Y, Z) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
−1 + x2 + y2

1 + x2 + y2

)
.

For real t1, the action of R1(t1) is to rotate the roots around the X axis by an angle t1 counter-
clockwise (i.e., from Y to Z). Similarly, the action of R2(t2) is to rotate the roots around the Y
axis clockwise (i.e., from X to Z). Finally, the action of R3(t3) is to rotate the roots around
the Z axis clockwise (i.e., from Y to X).

The action of these rotations on R3 can be recovered as

R1 =

1 0 0
0 cos(t1) − sin(t1)
0 sin(t1) cos(t1)

 , R2 =

 cos(t2) 0 sin(t2)
0 1 0

− sin(t2) 0 cos(t2)

 ,
R3 =

cos(t3) − sin(t3) 0
sin(t3) cos(t3) 0

0 0 1

 .
In total, the change of coordinates for the potential is given by

y = cR3(t3)R2(t2)R1(t1)(x− x0) + y0.

Notice that moving the regular point corresponds to translating the coordinates.

For the remainder of this section, we give the limits between the systems. The first few case
involve three or fewer roots, or (as in the case of [3111b]) four roots with a fixed cross ratio. The
limits between these cases can be achieved solely with the action of GL2(C), that is, without
appealing to translation the regular point. For most of these case the limits can be achieved by
fixing one root and collapsing the rest together at infinity (or another prescribed point in C∗).
Several of the limits are elaborated to give a more complete understanding of the process.
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3.1 [6] VA to [0] VO

The covariant polynomial for the [0] equivalence class is simply 0, so to contract down to this
equivalence class, we need only scale by a factor of ε−1 and move the regular point appropriately.
For VA, the regular point is already x0 = (0, 0, 0) so it is unaffected by the scaling. The
contraction is then

t1 = t2 = t3 = 0, c = ε−1, x0 = (0, 0, 0), y0 = (0, 0, 0),

qA(0, 0, 0)(z) = −iz6 → qO(0, 0, 0)(z) = 0.

We start with the potential

VA = a

(
1

2

(
x1

2 + x2
2 + x3

2
)
+

1

12
(x1 − ix2)3

)
+ b

(
x1 +

1

4
(x1 − ix2)2

)
+ c

(
x2 −

i

4
(x1 − ix2)2

)
+ dx3 + e.

The conformal change of coordinates y = ε−1x introduces a factor of ε−2 to the second order
terms in the Hamiltonian (due to the conformal scaling of the metric) and so we consider the
rescaled potential V̂A = ε2VA. Adjusting the parameters to be

â = V̂A,ee(y0) = ε4VA,ee(x0) = ε4a, b̂ = V̂A,1(y0) = ε3VA,1(x0) = ε3b,

ĉ = V̂A,2(y0) = ε3VA,2(x0) = ε3c, d̂ = V̂A,3(y0) = ε3VA,3(x0) = ε3d,

ê = V̂A(y0) = ε2VA(x0) = ε2e,

gives the potential

V̂A = ε2VA = â

(
1

2

(
y1

2 + y2
2 + y3

2
)
+

ε

12
(y1 − iy2)3

)
+ b̂

(
y1 +

ε

4
(y1 − iy2)2

)
+ ĉ

(
y2 −

iε

4
(y1 − iy2)2

)
+ d̂y3 + ê,

which tends in the ε→ 0 limit to the potential

VO =
â

2

(
y21 + y22 + y23

)
+ b̂y1 + ĉy2 + d̂y3 + ê.

3.2 [51] VVII to [6] VA

The regular points for VVII and VA are the origins, x0 = 0 and y0 = 0. The change of variables
is given by

c = 9/2ε−3, t1 = 0, t2 =
π

2
, t3 = i ln (ε) ,

which transforms the polynomial

qVII(0, 0, 0)(z) = −36iz → qA(0, 0, 0)(z) = −iz6.

Consider first the roots of the (projective) sextic qVII(0, 0, 0) = −36iz. There are five at
z =∞ and one at z = 0.

-

&%
'$r

r
∞

0

Re(z)
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In terms of a stereographic projection of the complex plane z = x + iy (with the plane of
projection intersecting the equator) the action of R2(t2) is to rotate the sphere around the y-
axis (i.e., the imaginary axis which is directed into the plane) by the angle t2. So consider

ρ(R2(
π
2 )) =

( 1√
2
− 1√

2
1√
2

1√
2

)
.

Under the action described above the covariant polynomial becomes

ρ(R2(
π
2 )) ◦ qVII = −

9

2
i(z + 1)5(z − 1),

which has brought the fifth root down from infinity down to z = −1 and moved the root at zero
up to z = 1.

-

&%
'$r r∞̂ 0̂

Re(z)

Setting t3 = i ln(ε) gives the matrix

ρ(R3(i ln (ε))) =

(
ε−1/2 0

0 ε1/2

)
.

On the polynomial this induces the change(
ρ(R2(

π
2 ))ρ(R3(i ln ε))

)
◦ qVII = −

9

2
iε−3(z + ε)5(z − ε).

So finally, scaling by c = 9
2ε
−3 gives(

cρ(R2(
π
2 ))ρ(R3(i ln ε))

)
◦ qVII = −i(z + ε)5(z − ε) → qA = −iz6 as ε→ 0.

This limit can be visualized as all the points on the sphere (except∞) being drawn down towards
the origin.

-
D
D
D
D
D
D

�
�
�
�
�
�

&%
'$

r r∞̂ 0̂

Re(z)

Or equivalently the roots can remain stationary while the sphere descends into the plane of
projection. From this point of view, the image of any point on the sphere (expect ∞) end
up eventually being projected inside the circle where the plane and sphere intersect, which is
shrinking to the origin in the limit.

-@
@
@
@@

�
�

�
�� &%

'$r r∞∗ 0∗
Re(z)
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3.3 [33] VOO to [6] VA

Here, we would like to take the two roots of qOO, namely 0 and ∞, and move them both to 0.
This is going to be essentially the same contraction as the previous one. The contraction is

c = 3/4ε−3, t1 = i ln (ε) , t2 = −
π

2
, t3 = 0.

The regular points are

x0 = (0, 0, 1), y0 = (0, 0, 0).

The covariant polynomial is transformed as

qOO(0, 0, 1)(z) = 6iz3 → qA(0, 0, 0)(z) = −iz6.

3.4 [411] VIII to [51] VVII

The covariant polynomial for VIII is given by qIII = −3(1 + 3z2). In order to transform this
polynomial into qVII = −36iz we need to take one of the finite roots and send it to zero and the
other to infinity. The contraction that accomplishes this is

c =
−9

32
√
3
ε−2, t1 = −

2

3
π, t2 = π, t3 = −i ln(ε).

The regular points for each system do not move and they are

x0 = (0, 1, 0), y0 = (0, 0, 0).

The limit of the polynomial is then

qIII(0, 1, 0)(z) = −9z2 − 3 → qVII(0, 0, 0)(z) = −36iz.

3.5 [3111b] VVI to [51] VVII

The necessary contraction is given by

c =
i

16
ε−1, t1 =

π

2
, t2 = 0, t3 = −

i

2
ln(ε),

x0 = (0, 0, 2i), y0 = (0, 0, 0).

In this limit, all of the roots coalesce to infinity except for a single root at zero. The limit of
the polynomial is then

qVI(0, 0, 2i)(z) = 3iz6 + 3z3 → qVII(0, 0, 0)(z) = −36iz.

3.6 [3111b] VVI to [33] VOO

For this contraction, we would like to move the roots of the polynomial qVI by sending the three
non-zero roots to infinity and leaving the 0 root fixed. This can be accomplished by choosing
an imaginary, singular value for t3 which has the effect of scaling the variable z. The required
contraction is then

t3 = −i ln(ε), c =
1

2
, x0 = (0, 0, 2), y0 = (0, 0, 1).

The polynomials transform as

qVI(0, 0, 2)(z) = 3iz3
(
1 + z3

)
→ qOO(0, 0, 1)(z) = 6iz3.
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3.7 [3111a] VII to [411] VV

From this case onward the polynomials involve four or more roots and require additional infor-
mation about the cross ratios of the roots in order to differentiate between equivalence classes.
Translation of the regular point allows the cross ratios of these roots to change. Without transla-
tion of the regular point the only way singular limits could be taken is by collapsing all, save one,
of the roots together. This means that, starting at a point which has represents root multiplic-
ities [3111] the only possible limits without translation of the regular point are [51],[33] or their
degenerations. In all of the examples that follow, translation of the regular point will be neces-
sary to modify the cross ratios (i.e., move the roots in a way which the Möbius transformations
cannot) and, in effect, rescue some of the roots in the singular limit.

To contract the covariant polynomial of VII, we observe that the polynomial evaluated at
(x1, x2, x3) is

qII(x1, x2, x3)(z) = 3i

(
2

x3
z3 +

3

x1 + ix2
z2 +

x1 − ix2
(x1 + ix2)2

)
.

Specializing the first two coordinates to (x1, x2) = (0,−i) gives

qII(0,−i, x3)(z) = 3i

(
2

x3
z3 + 3z2 − 1

)
,

and so by moving the regular point to∞, we obtain the desired contraction. The regular points
and scaling parameter is then chosen as

c = i, x0 =
(
0,−i, ε−1

)
, y0 = (0, 1, 0).

This contraction gives the required limits of the polynomial,

qII(0,−i, 1)(z) = 3i
(
2z3 + 3z2 − 1

)
→ qV(0, 1, 0)(z) = 9z2 − 3.

3.8 [3111a] VII to [3111b] VVI

There are two distinct equivalence classes of systems whose covariant polynomials have the root
structure [311]; these equivalence classes are distinguished by the characteristic that the cross
ratio of the root be exp(iπ/3) (case [3111b]) or not (case [311a]) [2, 3]. For the limit between
these two systems, we begin with a polynomial with a triple root and three simple roots with
a cross ratio of the roots away from 0, 1, ∞ or exp(±iπ/3). We would like to find a limit
that will contract this polynomial to one with the same root structure but with a cross ratio of
exp(iπ/3). We begin with the covariant polynomial for VII which has a triple root at infinity
and move this root to 0 by rotating around the x2 axis by π. We then move the x1 coordinate
of the regular point to infinity and perform a singular rotation about x3 via

t2 = π, t3 =
i

3
ln(ε), x0 =

(
ε−1, 0, 3ε− 2

)
, y0 = (0, 0, 2).

This limit transforms the polynomials as (from ε = 1 to ε = 0)

qII(1, 0, 1)(z) = 3i
(
1 + 3z2 + 2z3

)
→ qVI(0, 0, 2)(z) = 3iz3

(
z3 + 1

)
.

3.9 [111111c] VIV to [411] VV

For this contraction, we take the equivalence class described by a polynomial with 6 simple roots
satisfying the multi-ratio condition, a discriminating condition for the [111111] root structu-
re [2, 3], to one with two simple finite roots and the remaining at infinity. The coordinate limit
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is given by

c =
−1
2ε
, t1 = 0, t2 = −

π

2
, t3 = −i ln(ε).

x0 =

(
0,

1

ε2 − 1
,

i

ε2 + 1

)
, y0 = (0, 1, 0).

The covariant polynomial contracts as

qIV(x1, x2, x3)(z) =
6iz3

x3
+

3(z2 + 1)3

4x2
→ qV(0, 1, 0)(z) = 9z2 − 3.

3.10 [111111c] VIV to [3111b] VVI

As seen above, the covariant polynomial for the potential VIV is given by

qIV(x1, x2, x3)(z) =
6i

x3
z3 +

3

4x2

(
z2 + 1

)3
.

An obvious easy way to achieve a triple root is to let the second coordinate x2 tend to infinity.
However this has the unintended side effect of collapsing the other three roots at infinity. The
singular rotation R3(i ln(ε)) can be used to counteract this growth, provided the parameter ε
correctly balances the growth of x2. This action only serves to accelerate the roots tending to
zero, and hence gives us the limit we require.

This contraction is accomplished by a singular rotation in around the x3-axis and a singular
translation of the regular point. The contraction is

t3 = i ln ε, x0 =

(
0,
−i
4ε3

, 2

)
, y0 = (0, 0, 2).

The covariant polynomials contract as

qIV(x1, x2, x3)(z) =
6iz3

x3
+

3(z2 + 1)3

4x2
→ qVI(0, 0, 2)(z) = 3iz3

(
z3 + 1

)
.

3.11 [111111b] VI to [3111a] VII

Here we would like to send 3 of the finite roots to infinity. The covariant polynomial for VI is

qI(x1, x2, x3)(z) =
3 (x1 + ix2) z

6

4x1x2
+

9 (x1 − ix2) z4

4x1x2
+

6iz3

x3
+

9 (x1 + ix2) z
2

4x1x2
+

3(x1 − ix2)
4x1x2

=
3i

4x1

(
z2 − 1

)3
+

3

4x2

(
z2 + 1

)3
+

6i

x3
z3.

Rotations around the z axis have the effect of multiplying the variable z by e−2it3 and the entire
polynomial by a factor of e6it3 . Thus if we take a purely imaginary angle, the z3 variable will
be unchanged and it will be possible to send the coefficient of z4 and z6 to 0. In order to retain
the lower order terms, it is necessary to move the regular point so as to offset the singular limit.
The required contraction is

t3 = −i ln ε, x0 =

(
ε2 + 1

2ε
,
i
(
ε2 − 1

)
2ε

, 1

)
, y0 = (1, 0, 1).

The polynomials transform as

qI(x1, x2, x3)(z) =
3i

4x1

(
z2 − 1

)3
+

3

4x2

(
z2 + 1

)3
+

6i

x3
z3 →

qII(1, 0, 1)(z) = 3i
(
1 + 2z3 + 3z2

)
.
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3.11.1 “Geometric inspired limit”

This contraction can be carried out in a manner similar to the previous one. By moving the
regular point correctly we can collapse three roots at z = 0 and three roots are z = ∞. Using
the same singular rotation as before, the collapse of one of these triplets of roots can halted,
and the other accelerated.

The covariant polynomial for VI is given by

qI(x1, x2, x3)(z) =
3i

4x1

(
z2 − 1

)3
+

3

4x2

(
z2 + 1

)3
+

6i

x3
z3.

By choosing to work on the hypersurface x2 = −ix1 we ensure that qI has a double root at
z = 0. The choice x1 = η, x = −iη gives

qI(η,−iη, x3)(z) =
3i

2
z2
(
z4

η
+

4z

x3
+

3

η

)
.

Sending η to infinity gives the limit collapses a single root to join the double root at zero, and
sends the other three roots to infinity. Using a singular rotation around the x3 axis the root
tending to zero can be saved, and the roots tending infinity accelerated.

The required contraction is therefore

c =
1

2
, t3 = −i ln ε, x0 =

(
ε−1,−iε−1, 4

)
, y0 =

(
1
2 ,
−i
2 , 2

)
.

The polynomials transform as

qI(x1, x2, x3)(z) =
3i

4x1

(
z2 − 1

)3
+

3

4x2

(
z2 + 1

)3
+

6i

x3
z3 →

qII

(
1

2
,
−i
2
, 2

)
(z) = 3iz3 + 9iz2.

3.12 [111111b] VI to [111111c] VIV

To obtain this contraction, we move the regular point and scale the potential. The required
contraction is

c =
1

ε
, x0 = (1, ε, ε), y0 = (0, 1, 1).

This transforms the covariant polynomials as

qI(x1, x2, x3)(z) =
3i

4x1

(
z2 − 1

)3
+

3

4x2

(
z2 + 1

)3
+

6i

x3
z3 →

qIV(0, 1, 1)(z) = 6iz3 +
3

4

(
z2 + 1

)3
.

3.13 [111111a] VSW to [111111b] VI

The case [111111a] covers the most generic forms for the covariant polynomials. A particularly
nice example of the polynomials in this class is

qSW(x0)(z) =
9

2
z(z − 1)(z + 1)(z − i)(z + i), x0 = (1, 1, 1).

However, this polynomial doesn’t show the full regular point dependence of qSW(z)
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One possible contraction is given by a scaling by ε−1 and translation of the regular point to
the origin

c =
1

ε
, x0 = (ε, ε, ε), y0 = (1, 1, 1).

Following the regular point (ε, ε, ε) the covariant polynomial for the is given by

qSW(ε, ε, ε)(z) =
3i(1− ε4)(1 + i)

4(1− 9ε4)
+

36ε4z

(1− 9ε4)
− 9(1− ε4)(1 + i)z2

4(1− 9ε4)
− 6i(1− ε4)z3

(1− 9ε4)

+
9i(1− ε4)(1 + i)z4

4(1− 9ε4)
− 36ε4z5

(1− 9ε4)
− 3(1− ε4)(1 + i)z6

4(1− 9ε4)
.

Here ε must follow a path from 1 to 0 in the complex plane, avoiding points where ε4 = 1
9 .

The limit of this contraction transforms the covariant polynomial to

qI(1, 1, 1)(z) =
3i

4

(
z2 − 1

)3
+

3

4

(
z2 + 1

)3
+ 6iz3.

4 Conclusion

By using the invariant classification of conformally superintegrable systems on conformally flat
3D manifolds, we have been able to give explicitly the coordinate limits between the 10 equiv-
alence classes. We have therefore proven that all such systems are limits of the generic sys-
tem, VSW. We would like to point out that this analysis relied on the potentials begin complex,
beginning with the fact that we are determining only equivalence classes under the Stäckel
transform which does not necessarily preserve real forms and continuing into the classification
using the action of the conformal group. It would therefore be interesting to understand the
classification of the real forms of these potentials and their corresponding limits, which would
be non-trivial applications of the complex theory.

One of the most interesting avenues of this research is the connection between superintegrable
systems, orthogonal polynomials (OPs) and special functions. From the beginning of the study
of superintegrable systems, going back to the harmonic oscillator, Kepler Coulomb system and
the discovery in ’65 of multiseparable systems by Smorodinsky, Winternitz and collaborators [4,
21, 27], there has been a clear connection between superintegrable systems and the special
functions of mathematical physics. In particular, the wave functions of superintegrable systems
have been expressed in terms of OPs [15] and all superintegrable systems are conjectured to have
this exactly-solvable nature [26]. More recently, this connection has been extended by studying
the representation theory of the symmetry algebras associated with superintegrable systems and
interbasis expansion coefficients [5, 6, 7, 8, 9, 16, 18, 25]. In [19], the Askey scheme of classical
hypergeometric OPs in one variable as well as their limits were related to superintegrable systems
in 2D and the contractions of their symmetry algebras. Work is currently ongoing to apply the
limits obtained in this paper to find contractions of the associated quadratic algebras and their
polynomial representations.

Finally, we would like to mention that as is evident from the classification theory, the su-
perintegrable systems are uniquely determined by the functionally linearly independent set of
second-order Killing tensors. Therefore we expect, as in the 2D case [14], that the quadratic
algebras and their contractions will be completely determined by contractions of the underlying
Lie algebra. However, this is still an open question and one which we anticipate will be aided by
understanding the connection between the invariant classification and the quadratic algebras.
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Figure 1. Limiting diagram.

A Potentials

Here we list the potentials discussed above. Each of the limits above has been chosen so that the
limit potential is in the form given below. Note that the parameters are chosen is for aesthetic
reasons, to give the potentials in the most simple form. They are related by a linear transforma-
tion to the parameters {V (x0), V1(x0), V2(x0), V3(x0), Vee(x0)}, which of course depend on the
regular point x0.

Note that VV is Stäckel equivalent to VIII by choice of the Stäckel multiplier U = (x1+ix2)
−2:

VO =
a

2

(
x21 + x22 + x23

)
+ bx1 + cx2 + dx3 + e,

VA = a

(
1

2

(
x1

2 + x2
2 + x3

2
)
+

1

12
(x1 − ix2)3

)
+ b

(
x1 +

1

4
(x1 − ix2)2

)
+ c

(
x2 −

i

4
(x1 − ix2)2

)
+ dx3 + e,

VOO = a
(
4x21 + 4x22 + x23

)
+ bx1 + cx2 +

d

x23
+ e,
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VVII = a(x1 + ix2) + b
(
3(x1 + ix2)

2 + x3
)

+ c
(
16(x1 + ix2)

3 + (x1 − ix2) + 12x3(x1 + ix2)
)

+ d
(
5(x1 + ix2)

4 + x21 + x22 + x23
)
+ 6
(
(x1 + ix2)

2x3
)
+ e,

VVI = a
(
x23 − 2(x1 − ix2)3 + 4

(
x21 + x22

))
+ b
(
2x1 + 2ix2 − 3(x1 − ix2)2

)
+ c(x1 − ix2) +

d

x23
+ e,

VV = a
(
x21 + x22 + 4x23

)
+ bx3 +

c

(x1 + ix2)2
+ d

x1 − ix2
(x1 + ix2)3

+ e,

VIV = a
(
4x21 + x22 + x23

)
+ bx1 +

c

x22
+

d

x23
+ e,

VIII = a
(
x21 + x22 + x23

)
+

b

(x1 + ix2)2
+

cx3
(x1 + ix2)3

+ d
x21 + x22 − 3x23
(x1 + ix2)4

+ e,

VII = a
(
x1

2 + x2
2 + x3

2
)
+ b

(x1 − ix2)
(x1 + ix2)3

+ c
1

(x1 + ix2)2
+ d

1

x32
+ e,

VI = a
(
x21 + x22 + x23

)
+

b

x21
+

c

x22
+

d

x23
+ e,

VSW =
a(

1 + x21 + x22 + x23
)2 +

b

x21
+

c

x22
+

d

x23
+

e(
−1 + x21 + x22 + x23

)2 .
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