On a Yang-Mills Type Functional

Cătălin GHERGHE

University of Bucharest, Faculty of Mathematics and Computer Science, Academiei 14, Bucharest, Romania
E-mail: catalinliviu.gherghe@gmail.com
Received November 13, 2018, in final form February 27, 2019; Published online March 21, 2019 https://doi.org/10.3842/SIGMA.2019.022

Abstract

We study a functional that derives from the classical Yang-Mills functional and Born-Infeld theory. We establish its first variation formula and prove the existence of critical points. We also obtain the second variation formula.

Key words: curvature; vector bundle; Yang-Mills connections; variations
2010 Mathematics Subject Classification: 58E15; 81T13; 53C07

1 Motivations

Let $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth function. Then the graph of u

$$
G_{u}=\left\{(x, z) \in \mathbb{R}^{n+1} \mid z=u(x), x \in \Omega\right\},
$$

is a minimal hypersurface if and only if satisfies the following differential equation

$$
\begin{equation*}
\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0 \tag{1.1}
\end{equation*}
$$

In 1970 Calabi, in a paper in which he studied examples of Bernstein problems, noticed that if $n=2, u$ is an F-harmonic map for the function $F(t)=\sqrt{1+2 t}-1$. We recall that u is an F-harmonic map if it is a critical point of the following functional

$$
E_{F}(u)=\int_{\mathbb{R}^{2}} F\left(\frac{\|d u\|^{2}}{2}\right) \vartheta_{g},
$$

with respect to any compactly supported variation, $\|d u\|^{2}$ being the Hilbert-Schmidt norm.
Following Calabi's ideas, Yang and then Sibner showed that for $n=3$, the equation (1.1) is equivalent, over a simply connected domain, to the vector equation

$$
\nabla \times\left(\frac{\nabla \times A}{\sqrt{1+|\nabla \times A|^{2}}}\right)=0
$$

which arises in the nonlinear electromagnetic theory of Born and Infeld. Here A is a vector field in \mathbb{R}^{3} and $\nabla \times(\cdot)$ is the curl of (\cdot). Born-Infeld theory is of contemporary interest due to its relevance in string theory.

This observation lead Yang to give a generalized treatment of equation (1.1), expressed in terms of differential forms, as follows:

$$
\begin{equation*}
\delta\left(\frac{d \omega}{\sqrt{1+\|d \omega\|^{2}}}\right)=0 \tag{1.2}
\end{equation*}
$$

for any $\omega \in A^{p}\left(\mathbb{R}^{4}\right)$. It is not very difficult to verify that the solution of equation (1.2) is a critical point of the following integral

$$
\int_{\mathbb{R}^{4}}\left(\sqrt{1+\|d \omega\|^{2}}-1\right) \vartheta_{g}
$$

These facts give us the motivation to study a similar functional, namely the Yang-Mills-Born-Infeld functional

$$
\mathrm{YM}_{\mathrm{BI}}(D)=\int_{M}\left(\sqrt{1+\left\|R^{D}\right\|^{2}}-1\right) \vartheta_{g}
$$

defined more generally on Riemannian manifolds. The definition of the above functional is similar to the definition of the well-known Yang-Mills functional (see also [3]).

The paper is organized as follows. In Section 2 we give some preliminaries and define the functional. In Section 3 we derive its Euler-Lagrange equations and we obtain the main result of the paper (Theorem 3.2). In dimension ≥ 5, we give criteria for which a metric is conformal to a metric with respect to which a G-connection is critical for $\mathrm{YM}_{\mathrm{BI}}$. Section 4 is devoted to a conservation law of the functional. Finally in Section 5 we derive the second variation formula.

2 The functional

Let E be a smooth real vector bundle over a compact n-dimensional Riemannian manifold $\left(M^{n}, g\right)$, such that its structure group G is a compact Lie subgroup of the orthogonal group $O(n)$.

For any vector bundle F over M we denote by $\Gamma(F)$ the space of smooth cross sections of F and for each $p \geq 0$ we denote by $\Omega^{p}(F)=\Gamma\left(\Lambda^{p} T^{*} M \otimes F\right)$ the space of all smooth p-forms on M with values in F. Note that $\Omega^{0}(F)=\Gamma(F)$.

A connection D on the vector bundle E is defined by specifying a covariant derivative, that is a linear map

$$
D: \quad \Omega^{0}(E) \rightarrow \Omega^{1}(E)
$$

such that $D(f s)=d f \otimes s+f D s$, for any section $s \in \Omega^{0}(E)$ and any smooth function $f \in C^{\infty}(M)$.
A connection D is called a G-connection if the natural extension of D to tensor bundles of E annihilates the tensors which define the G-structure. We denote by $\mathcal{C}(E)$ the space of all smooth G-connections D on E.

Given a connection on E, the map $D: \Omega^{0}(E) \rightarrow \Omega^{1}(E)$ can be extended to a generalized de Rham sequence

$$
\Omega^{0}(E) \xrightarrow{d^{D}=D} \Omega^{1}(E) \xrightarrow{d^{D}} \Omega^{2}(E) \xrightarrow{d^{D}} \cdots
$$

For each G-connection D of the vector bundle E, the curvature tensor of D, denoted by R^{D}, is determined by $\left(d^{D}\right)^{2}: \Omega^{0}(E) \rightarrow \Omega^{2}(E)$. If we suppose that E carries an inner product compatible with G, it is easy to see that $R^{D} \in \Omega^{2}\left(g_{E}\right)$, where $g_{E} \subset \operatorname{End}(E)$ is the subbundle of skew-symmetric endomorphisms of E.

Given metrics on M and E, there are naturally induced metrics on all associated bundles, such as $\Lambda^{p} T^{*} M \otimes \operatorname{End}(E)$:

$$
\langle\varphi, \psi\rangle_{x}=\sum_{1<i_{1}<\cdots<i_{p}<n}\left\langle\varphi^{t}\left(e_{i_{1}}, \ldots, e_{i_{p}}\right), \psi\left(e_{i_{1}}, \ldots, e_{i_{p}}\right)\right\rangle
$$

where, for any point $x \in M,\left\{e_{i}\right\}_{i=1}^{n}$ is an orthonormal basis of $T_{x} M$ with respect to the metric g. The pointwise inner product gives an L^{2}-norm on $\Omega^{p}(E)$ by setting

$$
(\varphi, \psi)=\int_{M}\langle\varphi, \psi\rangle \vartheta_{g}
$$

With respect to this norm, the formal adjoint of d^{D} it is denoted by δ^{D} (the coderivative) and satisfies

$$
\left(d^{D} \varphi, \psi\right)=\left(\varphi, \delta^{D} \psi\right)
$$

In particular, for any G-connection D, the norm of the curvature R^{D} is defined by

$$
\left\|R^{D}\right\|_{x}^{2}=\sum_{i<j}\left\|R_{e_{i}, e_{j}}^{D}\right\|_{x}^{2}
$$

for any point $x \in M$ and any orthonormal basis $\left\{e_{i}\right\}_{i=\overline{1, n}}$ on $T_{x} M$. The norm of $R_{e_{i}, e_{j}}^{D}$ is the usual one on $\operatorname{End}(E)$, namely $\langle A, B\rangle=\frac{1}{2} \operatorname{tr}\left(A^{t} \circ B\right)$.

We are able to define the Yang-Mills-Born-Infeld functional $\mathrm{YM}_{\mathrm{BI}}: \mathcal{C}(E) \rightarrow \mathbb{R}$ (see also [3]) by

$$
\mathrm{YM}_{\mathrm{BI}}(D)=\int_{M}\left(\sqrt{1+\left\|R^{D}\right\|^{2}}-1\right) \vartheta_{g} .
$$

3 The first variation formula. Existence result

In the following we shall derive the Euler-Lagrange equations of the functional $\mathrm{YM}_{\mathrm{BI}}$. These equations were also obtained in [3] for the F-Yang-Mills functional.

Theorem 3.1. The first variation formula of the functional $\mathrm{YM}_{\mathrm{BI}}$ is given by

$$
\left.\frac{d}{d t}\right|_{t=0} \mathrm{YM}_{\mathrm{BI}}\left(D^{t}\right)=\int_{M}\left\langle B, \delta^{D}\left(\frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}} R^{D}\right)\right\rangle \vartheta_{g},
$$

where

$$
B=\left.\frac{d}{d t}\right|_{t=0} D^{t}
$$

Consequently, D is a critical point of $\mathrm{YM}_{\mathrm{BI}}$ if and only if

$$
\delta^{D}\left(\frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}} R^{D}\right)=0
$$

which are the Euler-Lagrange equations of $\mathrm{YM}_{\mathrm{BI}}$.
Proof. Let D a G-connection $D \in \mathcal{C}(E)$ and consider a smooth curve $D^{t}=D+\alpha^{t}$ on $\mathcal{C}(E)$, $t \in(-\epsilon, \epsilon)$, such that $\alpha^{0}=0$, where $\alpha^{t} \in \Omega^{1}\left(g_{E}\right)$. The corresponding curvature is given by

$$
R^{D^{t}}=R^{D}+d^{D} \alpha^{t}+\frac{1}{2}\left[\alpha^{t} \wedge \alpha^{t}\right]
$$

where we define the bracket of g_{E}-valued 1 forms φ and ψ by the formula $[\varphi \wedge \psi](X, Y)=$ $[\varphi(X), \psi(Y)]-[\varphi(Y), \psi(X)]$ for any vector fields $X, Y \in \Gamma(T M)$. Indeed for any vector fields $X, Y \in \Gamma(T M)$ and $u \in \Gamma(E)$ we have

$$
\begin{aligned}
R^{D^{t}}(X, Y)(u)= & D_{X}^{t}\left(D_{Y}^{t} u\right)-D_{Y}^{t}\left(D_{X}^{t} u\right)-D_{[X, Y]}^{t} u \\
= & D_{X}^{t}\left(D_{Y} u+\alpha^{t}(Y)(u)\right)-D_{Y}^{t}\left(D_{X} u+\alpha^{t}(X)(u)\right) \\
& -D_{X}^{t}\left(D_{[X, Y]} u+\alpha^{t}([X, Y])(u)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & D_{X}\left(D_{Y} u+\alpha^{t}(Y)(u)\right)+\alpha^{t}(X)\left(D_{Y} u+\alpha^{t}(Y)(u)\right) \\
& -D_{Y}\left(D_{X} u+\alpha^{t}(X)(u)\right)-\alpha^{t}(Y)\left(D_{X} u+\alpha^{t}(X)(u)\right) \\
& -D_{[X, Y]} u-\alpha([X, Y])(u) \\
= & R^{D}(X, Y)(u)+D_{X}\left(\alpha^{t}(Y)(u)\right)-\alpha^{t}(Y)\left(D_{X} u\right) \\
& -\left(D_{Y}\left(\alpha^{t}(X)(u)\right)-\alpha^{t}(X)\left(D_{Y} u\right)\right)-\alpha^{t}([X, Y])(u) \\
& +\alpha^{t}(X)\left(\alpha^{t}(Y)(u)\right)-\alpha^{t}(Y)\left(\alpha^{t}(X)(u)\right) \\
= & R^{D}(X, Y)(u)+\left(D_{X}\left(\alpha^{t}(Y)\right)(u)\right)-\left(D_{Y}\left(\alpha^{t}(X)\right)(u)\right) \\
& -\alpha^{t}([X, Y])(u)+\frac{1}{2}\left[\alpha^{t} \wedge \alpha^{t}\right](X, Y)(u) \\
= & R^{D}(X, Y)(u)+\left(d^{D} \alpha^{t}\right)(X, Y)(u)+\frac{1}{2}\left[\alpha^{t} \wedge \alpha^{t}\right](X, Y)(u) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0}\left(\sqrt{1+\left\|R^{D^{t}}\right\|^{2}}-1\right) & =\left.\frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}} \frac{d}{d t}\right|_{t=0} \frac{1}{2}\left\|R^{D^{t}}\right\|^{2} \\
& =\left.\frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}}\left\langle\frac{d}{d t} R^{D^{t}}, R^{D}\right\rangle\right|_{t=0} \\
& =\frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}}\left\langle d^{D} B, R^{D}\right\rangle
\end{aligned}
$$

where $B=\left.\frac{d}{d t}\right|_{t=0} D^{t} \in \Omega^{1}\left(g_{E}\right)$.
Thus we obtain

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} \mathrm{YM}_{\mathrm{BI}}\left(D^{t}\right) & =\int_{M} \frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}}\left\langle d^{D} B, R^{D}\right\rangle \vartheta_{g} \\
& =\int_{M}\left\langle B, \delta^{D}\left(\frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}} R^{D}\right)\right\rangle \vartheta_{g} .
\end{aligned}
$$

After deriving the Euler-Lagrange equations, we look for their solutions. We next prove an existence result for the critical points of the functional $\mathrm{YM}_{\mathrm{BI}}$.

Theorem 3.2. Let (M, g) be an n-dimensional compact Riemannian manifold with $n \geq 5$, G a compact Lie group, and E a smooth G-vector bundle over M. Then there exists a Riemannian metric \tilde{g} on M in the conformal class of g, and a G-connection D on E such that D is a critical point of the functional $\mathrm{YM}_{\mathrm{BI}}$.

Proof. We prove the theorem in two steps.
Step 1. Consider the functional $F_{p}: \mathcal{C}(E) \rightarrow \mathbb{R}$, defined by

$$
F_{p}(D)=\frac{1}{2} \int_{M}\left(1+\left\|R^{D}\right\|_{g}^{2}\right)^{(p-2) / 2} \vartheta_{g}
$$

By [4] this functional satisfies the Palais-Smale conditions and attains the minimum if $2 p>n$. The Euler-Lagrange equation associated to $F_{p}(D)$ is

$$
\delta_{g}^{D}\left(\left(1+\left\|R^{D}\right\|_{g}^{2}\right)^{(p-2) / 2} R^{D}\right)=0
$$

This equation has a solution D for $2 p>n$. Define the function $f: M \rightarrow \mathbb{R}$ by $f=(1+$ $\left.\left\|R^{D}\right\|_{g}^{2}\right)^{(p-2) / n-4}$ and the metric $\bar{g}=f g$, conformally equivalent to g. As $\delta_{g}^{D}\left(f^{(n-4) / 2} R^{D}\right)=0$,
it is easy to see that $\delta \bar{D}\left(R^{D}\right)=0$. Hence there exists a Riemannian metric \bar{g} on M, conformaly equivalent to g, and a G-connection D on E such that D is a Yang-Mills connection with respect to \bar{g}.

Step 2. Now we look for a "good" function σ such that $\tilde{g}=\sigma^{-1} g$. Taking into account the first step, we can start with an Yang-Mills connection D with respect to the metric g. It is clear that

$$
\delta_{g}^{D} R^{D}=0 \quad \text { if and only if } \quad \delta_{\tilde{g}}^{D}\left(\sigma^{\frac{n-4}{2}} R^{D}\right)=0
$$

for any G-connection.
The function σ is good if it satisfies the following functional equation

$$
\sigma^{\frac{n-4}{2}}=\frac{1}{\sqrt{1+\sigma^{2}\left\|R^{D}\right\|_{g}^{2}}}\left(=\frac{1}{\sqrt{1+\left\|R^{D}\right\|_{\tilde{g}}^{2}}}\right) .
$$

So, what we have to do next is to solve the above functional equation.
Let $h:[0, \infty) \rightarrow[0, \infty)$ given by $h(t)=\sqrt{1+2 t}-1$. It is clear that its derivative is a strictly decreasing function and let $H:(0,1] \rightarrow[0, \infty)$ be its smooth inverse. Consider the smooth function $F:(0,1] \rightarrow[0, \infty)$ given by

$$
F(y)=\frac{H\left(y^{(n-4) / 2}\right)}{y^{2}} .
$$

It is not difficult to prove that F is invertible. Denote by $\Phi:[0, \infty) \rightarrow(0,1]$ the smooth inverse of F. We define the positive smooth function σ by

$$
\sigma=\Phi\left(\frac{1}{2}\left\|R^{D}\right\|_{g}^{2}\right)
$$

We then have

$$
\begin{aligned}
0 & =\delta_{\tilde{g}}^{D}\left(\sigma^{(n-4) / 2} R^{D}\right)=\delta_{\tilde{g}}^{D}\left(\left(\Phi\left(\frac{1}{2}\left\|R^{D}\right\|_{g}^{2}\right)\right)^{(n-4) / 2} R^{D}\right) \\
& =\delta_{\tilde{g}}^{D}\left(\frac{1}{\sqrt{1+\sigma^{2}\left\|R^{D}\right\|_{g}^{2}}} R^{D}\right)=\delta_{\tilde{g}}^{D}\left(\frac{1}{\sqrt{1+\left\|R^{D}\right\|_{\tilde{g}}^{2}}} R^{D}\right),
\end{aligned}
$$

which proves that the Yang-Mills connection D is also a critical point of the functional $\mathrm{YM}_{\mathrm{BI}}$ with respect to the metric \tilde{g}.

Remark 3.3. The condition $n \geq 5$ is crucial in the previous proof because the Euler-Lagrange equations are conformally invariant in dimension $n=4$.

4 The stress-energy tensor. Conservation law

Motivated by Feynman's ideas on stationary electromagnetic field, in 1982 Baird and Eells introduced the stress-energy tensor associated to any smooth map $f:(M, g) \rightarrow(N, h)$ between two Riemannian manifolds, The stress-energy tensor is $S_{f}:=e(f) g-f^{*} h$, where $e(f)$ is the energy density of f. In the same spirit, to any G-connection D one associates an analouguous 2-tensor (related to the Yang-Mills-Born-Infeld functional) by (see also [3])

$$
S_{D}=\left(\sqrt{1+\left\|R^{D}\right\|^{2}}-1\right) g-\frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}} R^{D} \odot R^{D}
$$

where $R^{D} \odot R^{D}$ is the symmetric product defined by $R^{D} \odot R^{D}=\left\langle i_{X} R^{D}, i_{Y} R^{D}\right\rangle$.

It is natural to look for the geometric interpretation of this tensor. There exists a variational interpretation which we shall explain in the following. Consider the following functional

$$
\mathcal{E}_{D}(g)=\int_{M}\left(\sqrt{1+\left\|R^{D}\right\|^{2}}-1\right) \vartheta_{g}
$$

The difference between this functional and $\mathrm{YM}_{\mathrm{BI}}$ is that \mathcal{E}_{D} is defined on the space of smooth Riemannian metrics on the base manifold M and the connection D is fixed. In order to compute the rate of change of $\mathcal{E}_{D}(g)$ when the metric on the base manifold is changed, we consider a smooth family of metrics g_{s} with $s \in(-\varepsilon,+\varepsilon)$, such that $g_{0}=g$. The "tangent" vector at g to the curve of metrics g_{s} is denoted by $\delta g=\left.\frac{d g_{s}}{d s}\right|_{s=0}$ and can be viewed as a smooth 2-covariant symmetric tensor field on M. Using the formulae obtained by Baird (see [1])

$$
\left.\frac{d\left\|R^{D}\right\|_{g_{s}}}{d s}\right|_{s=0}=-\left\langle R^{D} \odot R^{D}, \delta g\right\rangle
$$

and

$$
\left.\frac{d}{d s} \vartheta_{g_{s}}\right|_{s=0}=\frac{1}{2}\langle g, \delta g\rangle \vartheta_{g}
$$

we obtain

$$
\begin{aligned}
\left.\frac{d \mathcal{E}_{D}\left(g_{s}\right)}{d s}\right|_{s=0}= & \left.\int_{M} \frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}} \frac{d}{d s}\left(\frac{1}{2}\left\|R^{D}\right\|^{2}\right)\right|_{s=0} \vartheta_{g} \\
& +\left.\int_{M}\left(\sqrt{1+\left\|R^{D}\right\|^{2}}-1\right) \frac{d}{d s} \vartheta_{g_{s}}\right|_{s=0} \\
= & \frac{1}{2} \int_{M}\left\langle\left(\sqrt{1+\left\|R^{D}\right\|^{2}}-1\right) g-\frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}} R^{D} \odot R^{D}, \delta g\right\rangle \vartheta_{g} \\
= & \frac{1}{2} \int_{M}\left\langle S_{D}, g\right\rangle \vartheta_{g}
\end{aligned}
$$

Recall now
Definition 4.1. A G-connection D is said to satisfy a conservation law if S_{D} is divergence free.
Concerning this notion we obtain the following result (see [3] for the general case of F-YangMills fields).

Proposition 4.2. Any critical point of the functional $\mathrm{YM}_{\mathrm{BI}}$ is conservative.
Proof. The following formula for the divergence of the stress-energy tensor is true (see [3])

$$
\begin{aligned}
\operatorname{div} S_{D}(X)= & \left\langle\frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}} \delta^{D} R^{D}-i_{\operatorname{grad}\left(\frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}}\right)} R^{D}, i_{X} R^{D}\right\rangle \\
& +\frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}}\left\langle i_{X} d^{D} R^{D}, R^{D}\right\rangle
\end{aligned}
$$

for any vector field X on M. Using the Bianchi identity and the Euler-Lagrange equation of the functional $\mathrm{YM}_{\mathrm{BI}}$, we derive $\operatorname{div} S_{D}=0$.

5 The second variation formula

In this section we obtain the second variation formula of the functional $\mathrm{YM}_{\mathrm{BI}}$. Let (M, g) be an n-dimensional compact Riemannian manifold, G a compact Lie group and E a G-vector bundle over M. Let D be a critical point of the functional $\mathrm{YM}_{\mathrm{BI}}$ and D^{t} a smooth curve on $\mathcal{C}(E)$ such that $D^{t}=D+\alpha^{t}$, where $\alpha^{t} \in \Omega^{1}\left(g_{E}\right)$ for all $t \in(-\varepsilon, \varepsilon)$, and $\alpha^{0}=0$. The infinitesimal variation of the connection associated to D^{t} at $t=0$ is

$$
B:=\left.\frac{d \alpha^{t}}{d t}\right|_{t=0} \in \Omega\left(g_{E}\right)
$$

According to [2], we define the endomorphism \mathcal{R}^{D} of $\Omega^{1}\left(g_{E}\right)$ by

$$
\mathcal{R}^{D}(\varphi)(X):=\sum_{i=1}^{n}\left[R^{D}\left(e_{i}, X\right), \varphi\left(e_{i}\right)\right],
$$

for $\varphi \in \Omega\left(g_{E}\right)$ and $X \in \Gamma(T M)$, where $\left\{e_{i}\right\}_{i=1}^{n}$ is a local orthonormal frame field on (M, g). With these notations we have

Theorem 5.1. Let (M, g) be an n-dimensional compact Riemannian manifold, G a compact Lie group and E a G-vector bundle over M. Let D be a critical point of $\mathrm{YM}_{\mathrm{BI}}$. The second variation of the functional $\mathrm{YM}_{\mathrm{BI}}$ is given by

$$
\begin{aligned}
\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} \mathrm{YM}_{\mathrm{BI}}\left(D^{t}\right)= & -\int_{M} \frac{1}{\left(1+\left\|R^{D}\right\|^{2}\right)^{3 / 2}}\left\langle d^{D} B, R^{D}\right\rangle^{2} \vartheta_{g} \\
& +\int_{M} \frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}}\left(\left\langle d^{D} B, d^{D} B\right\rangle+\left\langle B, \mathcal{R}^{D}(B)\right\rangle\right) \vartheta_{g} \\
= & \int_{M}\left\langle B, \mathcal{S}^{D}(B)\right\rangle \vartheta_{g}
\end{aligned}
$$

where \mathcal{S}^{D} is a differential operator acting on $\Omega\left(g_{E}\right)$ defined by

$$
\begin{aligned}
\mathcal{S}^{D}(B)= & -\delta^{D}\left(\frac{1}{\left(1+\left\|R^{D}\right\|^{2}\right)^{3 / 2}}\left\langle d^{D} B, R^{D}\right\rangle^{2}\right) \\
& +\delta^{D}\left(\frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}} d^{D} B\right)++\frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}} \mathcal{R}^{D}(B) .
\end{aligned}
$$

Proof. As $R^{D^{t}}=R^{D}+d^{D} \alpha^{t}+\frac{1}{2}\left[\alpha^{t} \wedge \alpha^{t}\right]$ and $\alpha^{0}=0$ we obtain that

$$
\left.\frac{d^{2}}{d t^{2}}\right|_{t=0}\left(\frac{1}{2}\left\|R^{D^{t}}\right\|^{2}\right)=\left\langle d^{D} C+[B, B], R^{D}\right\rangle+\left\langle d^{D} B, d^{D} B\right\rangle
$$

where $C:=\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} \alpha^{t}$. Thus we obtain

$$
\begin{aligned}
\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} \mathrm{YM}_{\mathrm{BI}}\left(D^{t}\right) & =\left.\frac{d}{d t}\right|_{t=0} \int_{M} \frac{1}{2} \frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}} \frac{d}{d t}\left\|R^{D^{t}}\right\|^{2} \vartheta_{g} \\
& =-\frac{1}{4} \int_{M} \frac{1}{\left(1+\left\|R^{D}\right\|^{2}\right)^{3 / 2}}\left(\left.\frac{d}{d t}\right|_{t=0}\left\|R^{D^{t}}\right\|^{2}\right)^{2} \vartheta_{g}
\end{aligned}
$$

$$
\begin{aligned}
& +\left.\frac{1}{2} \int_{M} \frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}} \frac{d^{2}}{d t^{2}}\right|_{t=0}\left\|R^{D^{t}}\right\|^{2} \vartheta_{g} \\
= & -\int_{M} \frac{1}{\left(1+\left\|R^{D}\right\|^{2}\right)^{3 / 2}}\left\langle d^{D} B, R^{D}\right\rangle^{2} \vartheta_{g} \\
& +\int_{M} \frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}}\left(\left\langle d^{D} C+[B, B], R^{D}\right\rangle+\left\langle d^{D} B, d^{D} B\right\rangle\right) \vartheta_{g}
\end{aligned}
$$

On the other hand, since D is a critical point of the functional $\mathrm{YM}_{\mathrm{BI}}$, we have

$$
\int_{M} \frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}}\left\langle d^{D} C, R^{D}\right\rangle \vartheta_{g}=\int_{M}\left\langle C, \delta^{D}\left(\frac{1}{\sqrt{1+\left\|R^{D}\right\|^{2}}} R^{D}\right)\right\rangle \vartheta_{g}=0
$$

Finally, one can prove that

$$
\left\langle[B \wedge B], R^{D}\right\rangle=\left\langle B, \mathcal{R}^{D}(B)\right\rangle
$$

Indeed

$$
\begin{aligned}
\left\langle[B \wedge B], R^{D}\right\rangle & =\sum_{i<j}\left\langle[B \wedge B]\left(e_{i}, e_{j}\right), R^{D}\left(e_{i}, e_{j}\right)\right\rangle \\
& =\sum_{i<j}\left\langle\left[B\left(e_{i}\right), B\left(e_{j}\right)\right]-\left[B\left(e_{j}\right), B\left(e_{i}\right)\right], R^{D}\left(e_{i}, e_{j}\right)\right\rangle \\
& =2 \sum_{i<j}\left\langle\left[B\left(e_{i}\right), B\left(e_{j}\right)\right], R^{D}\left(e_{i}, e_{j}\right)\right\rangle=\sum_{i, j=1}^{n}\left\langle B\left(e_{i}\right),\left[B\left(e_{j}\right), R^{D}\left(e_{i}, e_{j}\right)\right]\right\rangle \\
& =\sum_{i=1}^{n}\left\langle B\left(e_{i}\right), \mathcal{R}^{D}\left(e_{i}\right)\right\rangle=\left\langle B, \mathcal{R}^{D}(B)\right\rangle
\end{aligned}
$$

and thus we obtain the second variation formula.
The index, nullity and stability of a critical point of $\mathrm{YM}_{\mathrm{BI}}$ can be defined in the same way as in the case of Yang-Mills connection (see [2]) but is rather difficult to analyse them because the form of \mathcal{S}^{D} is much more complicated compared with the case of Yang-Mills connections.

Acknowledgements

The author thank the referees for very carefully reading a first version of the paper and for their useful suggestions. This work is partially supported by a Grant of Ministry of Research and Innovation, CNCS - UEFISCDI, Project Number PN-III-P4-ID-PCE-2016-0065, within PNCDI III.

References

[1] Baird P., Stress-energy tensors and the Lichnerowicz Laplacian, J. Geom. Phys. 58 (2008), 1329-1342.
[2] Bourguignon J.P., Lawson Jr. H.B., Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys. 79 (1981), 189-230.
[3] Dong Y., Wei S.W., On vanishing theorems for vector bundle valued p-forms and their applications, Comm. Math. Phys. 304 (2011), 329-368, arXiv:1003.3777.
[4] Uhlenbeck K.K., Connections with L^{p} bounds on curvature, Comm. Math. Phys. 83 (1982), 31-42.

