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Abstract. This work finishes a classification of Uq(sl2)-symmetries on the Laurent extension
Cq

[
x±1, y±1

]
of the quantum plane. After reproducing the partial results of a previous

paper of the author related to symmetries with non-trivial action of the Cartan generator(s)
of Uq(sl2) and the generic symmetries, a complete collection of non-generic symmetries is
presented. Together, these collections constitute a complete list of Uq(sl2)-symmetries on
Cq

[
x±1, y±1

]
.
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1 Introduction

Quantum algebras are normally considered together with a distinguished collection (‘quantum
group’) of their symmetries that form a sort of quantum dynamical system (a precise definition
is given below). A good example in this context is the quantum plane Cq[x, y], which is among
the simplest quantum algebras. It is very well known that Cq[x, y] carries a Uq(sl2)-symmetry
(in other terms, a structure of Uq(sl2)-module algebra, see, e.g., [5]). During a long time it was
the only such symmetry considered in the literature.

The initial approach to considering different symmetries has been developed in the paper by
S. Duplij and S. Sinel’shchikov [4]. The authors produced a complete list of Uq(sl2)-symmetries
on Cq[x, y] and, in particular, demonstrated the existence of an uncountable collection of pairwise
non-isomorphic such symmetries.

The next and very natural step has been done in a work by S. Duplij, Y. Hong, and F. Li [3],
where the structures of Uq(slm)-module algebra on a generalized quantum plane, a polynomial
algebra in n quasi-commuting variables, m,n > 2, are considered. The authors apply, in the
above broader context, the methods of [4], together with more enhanced tools related to (gene-
ralized) Dynkin diagrams.

Another approach to generalizing the results of [4] and different from increasing the dimension
parameters as in [3], has been developed in [8]. The basic motive was in observing that a complete
list of symmetries on Cq[x, y] (as well as in [3] within fixed dimension(s)) is formed by only finitely
many series labelled by pairs of weight constants; the latter constitute invariants of isomorphism
of symmetries. This hints that the resulting amount of symmetries is rather low, and one may try
to embed everything into a more symmetric algebra, where restricting to the initial subalgebra
Cq[x, y] breaks the symmetry very essentially. Fortunately, the required embedding is readily
at a hand: the embedding to the algebra Cq

[
x±1, y±1

]
of Laurent polynomials on the quantum

plane. This, together with a bit surprising (but in fact completely straightforward) observation
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that every Uq(sl2)-symmetry of the subalgebra Cq[x, y] admits an extension to a symmetry
of the larger algebra Cq

[
x±1, y±1

]
, allows one to claim that, in view of the results presented

below, Cq
[
x±1, y±1

]
is much more symmetric than its subalgebra Cq[x, y]. Thus, studying

the symmetries of Cq
[
x±1, y±1

]
appears to be significant because it demonstrates where the

symmetries of the standard quantum plane Cq[x, y] come from. The extended algebra, while
retaining the polynomial nature (all the sums are finite), removes the effect of presence of the
‘lowest homogeneous component’, the principal obstacle for existence of a large collection of
symmetries.

The purpose of this work is to extend the list of Uq(sl2)-symmetries on Cq
[
x±1, y±1

]
presented

in [8] up to a complete list of symmetries. One might expect that a huge amount of additional
symmetries as compared to those coming from the subalgebra Cq[x, y], should be a consequence
of a larger group of automorphisms for Cq

[
x±1, y±1

]
than that of Cq[x, y]. However, it was

demonstrated in [8] that the collection of symmetries in which the action of Cartan generator
of Uq(sl2) (which anyway acts by an automorphism) does not reduce to multiplying the genera-
tors of quantum plane by (weight) constants, is rather poor. On the other hand, a collection of
generic symmetries [8] covers infinitely (in fact, uncountably) many admissible pairs of weight
constants, whence an uncountable family of non-isomorphic symmetries; this collection consti-
tutes a single series and is disjoint from the symmetries extended from Cq[x, y]. Another part of
the complete collection, which is presented in this work, the non-generic symmetries, although
covering only a countable family of weight constants, is much more extended in writing down
the specific series submitted to the parameters D, G, and L (see Section 4 for their definition);
this collection is presented below.

Let us describe the general classification of Uq(sl2)-symmetries on Cq
[
x±1, y±1

]
, which was

partially introduced in [8]. The entire collection of symmetries splits into 4 disjoint subcollections
as follows:

I The subcollection with the Cartan generator k of Uq(sl2) acting in a non-trivial way (its
action does not reduce to multiplying the generators x, y of quantum plane by constants).
This subcollection is rather poor and is described by Theorem 3.1 [8, Theorem 3.5].

II (Trivial collection with weight constants.) This subcollection is contained in the rest of
symmetries which are contrary to (I) in the sense that the Cartan generator k multiplies
the generators x, y of quantum plane by weight constants, and constitutes a trivial part
of the complement to type (I) symmetries. This part is formed by just 4 symmetries in
which the weight constants are ±1 and the generators e and f of Uq(sl2) act as identically
zero operators. See Theorem 3.3.

III (Generic symmetries.) A part of symmetries in which the Cartan generator k multiplies
x, y by weight constants but, on the contrary to (II), either e or f acts as a non-zero
operator. This part (subcollection) of symmetries, referred to as generic symmetries, is
distinguished by a special ‘rational independence’ assumption on the weight constants. It
constitutes the most massive collection of symmetries in the sense that the associated pairs
of weight constants cover all but a countable subset of possible values for such pairs. See
Theorem 3.4 [8, Theorem 4.1].

IV (Non-generic symmetries.) The rest of symmetries with either e or f acting as a non-
zero operator and whose weight constants break the ‘rational independence’ assumption
mentioned in (III), are referred to as non-generic symmetries and constitute the princi-
pal subjects of this work. See Main Theorem formulated below, along with the related
terminology and definitions in Sections 4 and 5.

The above classification is not intended to describe the isomorphism classes of Uq(sl2)-
symmetries on Cq

[
x±1, y±1

]
; it is much coarser. Instead, it focuses on the structure of sym-

metries which allows one to write down suitable general formulas for the symmetries in each of
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types (I)–(III) as well as within the specific series in type (IV) listed in Main Theorem. Both
isomorphism and non-isomorphism statements are formulated where they are easily available. In
particular, it is very well obvious to observe that any two symmetries of different types (I)–(IV)
are non-isomorphic. Another point worth mentioning is Proposition 3.6 where the existence of
uncountable family of non-isomorphic generic (type (III)) symmetries is established.

The following Theorem presents the list of series for non-generic (type (IV)) symmetries. The
names of series in the list reflect the associated values for the invariants D and G mentioned
above, together with the number of terms in the formulas involved. More details are to be found
in Sections 4 and 5.

Main Theorem. The collection of non-generic Uq(sl2)-symmetries on Cq
[
x±1, y±1

]
is given by

the series

D1G1E1F3, D1G1E2F4, D1G1E3F3, D1G1E2F2, D1G1E4F2, D1G1E3F1,

D2G1E1F3(a), D2G1E2F2(a), D2G1E3F1(a),

D2G1E1F3(b), D2G1E2F2(b), D2G1E3F1(b),

D2G2E1F3, D2G2E2F2, D2G2E3F1,

D4G1E1F2(a), D4G1E2F1(a),

D4G1E1F2(b), D4G1E2F1(b),

D4G2E1F2(a), D4G2E2F1(a), D4G2E1F2(b), D4G2E2F1(b),

described in Section 5. Any two symmetries contained in the series from different lines of this
table are non-isomorphic.

This collection, together with the symmetries described in Section 3 by Theorems 3.1, 3.3, 3.4
(types (I)–(III)), form a complete list of Uq(sl2)-symmetries on Cq

[
x±1, y±1

]
.

The outline of this paper is as follows. Section 2 (preliminaries) collects the basic definitions
and facts related to our subjects. Section 3 reproduces (the formulations of) the results of [8]
concerning the (type (I)) symmetries with non-trivial action of the Cartan generator, type (II)
(trivial) symmetries, and type (III) (generic) symmetries. Section 4 introduces and studies the
notion of extreme monomials for the weight polynomials related to symmetries. Certain integral
parameters of symmetries are considered; among those, the parameters D and G are proved
to be invariants of isomorphism of symmetries; these are to be used to label the series of non-
generic symmetries. Admissible values for D and G are clarified, along with a general form of
a symmetry up to complex coefficients and weight constants, to be computed later on.

Section 5 presents the final form of the series of non-generic (type (IV)) symmetries, preceded
by clarifying the associated pairs of weight constants.

2 Preliminaries

We start with recalling the general definition as follows. Let H be a Hopf algebra whose comul-
tiplication is ∆, counit is ε, and antipode is S [1]. Consider also a unital algebra A whose unit
is 1. The Sweedler sigma-notation related to the comultiplication ∆(h) =

∑
(h)

h(1)⊗h(2) as in [9]

is used below.

Definition 2.1. By a structure of H-module algebra on A (to be referred to as an H-symmetry
for the sake of brevity, or even merely a symmetry if H is completely determined by the context)
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we mean a homomorphism of algebras π : H → EndCA such that

(i) π(h)(ab) =
∑
(h)

π(h(1))(a) · π(h(2))(b) for all h ∈ H, a, b ∈ A;

(ii) π(h)(1) = ε(h)1 for all h ∈ H.

The structures π1, π2 are said to be isomorphic if there exists an automorphism Ψ of the
algebra A such that Ψπ1(h)Ψ−1 = π2(h) for all h ∈ H.

Throughout the paper we assume that q ∈ C\{0} is not a root of 1 (qn 6= 1 for all non-zero
integers n). Consider the quantum plane which is a unital algebra Cq[x, y] with two genera-
tors x, y and a single relation

yx = qxy. (2.1)

Let us complete the list of generators with two more elements x−1, y−1, and the list of
relations with

xx−1 = x−1x = yy−1 = y−1y = 1. (2.2)

The extended unital algebra Cq
[
x±1, y±1

]
defined this way is called the Laurent extension of the

quantum plane (more precisely, the algebra of Laurent polynomials over the quantum plane).
Given an integral matrix σ =

(
k m
l n

)
∈ SL(2,Z) and a pair of non-zero complex numbers

(µ, ν) ∈ (C\{0})2, we associate an automorphism ϕσ,µ,ν of Cq
[
x±1, y±1

]
determined on the

generators x and y by

ϕσ,µ,ν(x) = µxkym, ϕσ,µ,ν(y) = νxlyn. (2.3)

A well-known result claims that every automorphism of Cq
[
x±1, y±1

]
has the form (2.3), and

the group Aut
(
Cq
[
x±1, y±1

])
of automorphisms of Cq

[
x±1, y±1

]
is just the semidirect product

of its subgroups SL(2,Z) and (C\{0})2 determined by setting [6]

σ(µ, ν)σ−1 = (µ, ν)σ
def
=
(
µkνm, µlνn

)
.

(see also [2, 7]). We also rephrase this via introducing the associated action of SL(2,Z) by group
automorphisms of (C\{0})2(

k m
l n

)(
µ

ν

)
=

(
µkνm

µlνn

)
. (2.4)

The quantum universal enveloping algebra Uq(sl2) is a unital associative algebra defined by
its (Chevalley) generators k, k−1, e, f, and the relations

k−1k = 1, kk−1 = 1,

ke = q2ek, (2.5)

kf = q−2fk, (2.6)

ef − fe =
k− k−1

q − q−1
. (2.7)

The standard Hopf algebra structure on Uq(sl2) is determined by the comultiplication ∆, the
counit ε, and the antipode S as follows

∆(k) = k⊗ k, (2.8)
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∆(e) = 1⊗ e + e⊗ k, (2.9)

∆(f) = f ⊗ 1 + k−1 ⊗ f, (2.10)

S(k) = k−1, S(e) = −ek−1, S(f) = −kf,
ε(k) = 1, ε(e) = ε(f) = 0.

Given a Uq(sl2)-symmetry on Cq
[
x±1, y±1

]
, the generator k acts via an automorphism of

Cq
[
x±1, y±1

]
, as one can readily deduce from invertibility of k, Definition 2.1(i) and (2.8). In

particular, every symmetry determines uniquely a matrix σ ∈ SL(2,Z) as in (2.3).
There exists a one-to-one correspondence between the Uq(sl2)-symmetries of Cq

[
x±1, y±1

]
that leave invariant the subalgebra Cq[x, y] and the Uq(sl2)-symmetries on Cq[x, y]. One can
readily restrict such symmetry of Cq

[
x±1, y±1

]
to Cq[x, y].

On the other hand, suppose we are given an arbitrary symmetry π on Cq
[
x±1, y±1

]
(not

necessarily leaving invariant Cq[x, y]). One has the following relations:

π(k)
(
x−1

)
= (π(k)x)−1, π(k)

(
y−1
)

= (π(k)y)−1, (2.11)

π(e)
(
x−1

)
= −x−1(π(e)x)(π(k)x)−1, π(e)

(
y−1
)

= −y−1(π(e)y)(π(k)y)−1, (2.12)

π(f)
(
x−1

)
= −

(
π
(
k−1
)
x
)−1

(π(f)x)x−1, π(f)
(
y−1
)

= −
(
π
(
k−1
)
y
)−1

(π(f)y)y−1. (2.13)

Here (2.11) is straightforward since π(k) is an automorphism; (2.12) and (2.13) are derivable by
‘differentiating’ (i.e., applying e and f, respectively, to) (2.2). Certainly, these relations remain
true when x or y is replaced by an arbitrary invertible element.

Thus, given a symmetry on Cq[x, y], the relations (2.11)–(2.13) determine a well-defined
extension of it to the additional generators x−1, y−1, hence to Cq

[
x±1, y±1

]
.

3 The symmetries with non-trivial σ
and the generic symmetries

We first reproduce the results of [8] which present a partial list of Uq(sl2)-symmetries on
Cq
[
x±1, y±1

]
.

Here and in what follows we describe the (series of) Uq(sl2)-symmetries on Cq
[
x±1, y±1

]
via

determining an action of the distinguished generators of Uq(sl2) on the generators of Cq
[
x±1,y±1

]
.

To derive the associated Uq(sl2)-symmetry, we first extend the action to monomials (both
in Uq(sl2) and Cq

[
x±1, y±1

]
) using

(ab)u
def
= a(bu), a, b ∈ Uq(sl2), u ∈ Cq

[
x±1, y±1

]
,

a(uv)
def
=
∑
(a)

(a(1)u) · (a(2)v), a ∈ Uq(sl2), u, v ∈ Cq
[
x±1, y±1

]
,

(the Sweedler sigma-notation is implicit here), and then extend by linearity to the entire algebras
Uq(sl2) and Cq

[
x±1, y±1

]
, using

a(u+ v) = au+ av, (a + b)u = au+ bu,

1u = u, a1 = ε(a)1, a, b ∈ Uq(sl2), u, v ∈ Cq
[
x±1, y±1

]
.

Such extension determines a well-defined action of Uq(sl2) on Cq
[
x±1, y±1

]
if and only if every-

thing passes through the relations in Uq(sl2) and Cq
[
x±1, y±1

]
. To verify this, one has to apply

every generator of Uq(sl2) to each relation in Cq
[
x±1, y±1

]
, and then every relation in Uq(sl2)

to each generator of Cq
[
x±1, y±1

]
. This is to be done in each specific case, and normally such

verification is left to the reader.
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It turns out that there exists a single rather poor family (series) of Uq(sl2)-symmetries on
Cq
[
x±1, y±1

]
that correspond to non-trivial matrices σ ∈ SL(2,Z) which determine the action

of Cartan generator. More precisely, the set of matrices σ 6= I which appear this way reduces
to a single matrix σ = −I, and one has

Theorem 3.1 ([8, Theorem 3.5, type (I)]). There exists a two-parameter (α, β ∈ C\{0}) family
of Uq(sl2)-symmetries on Cq

[
x±1, y±1

]
that correspond to σ = −I:

π(k)(x) = α−1x−1, π(k)(y) = β−1y−1,

π(e)(x) = 0, π(e)(y) = 0,

π(f)(x) = 0, π(f)(y) = 0.

These are all the symmetries with σ = −I (and also with σ 6= I). These symmetries are all
isomorphic, in particular to that with α = β = 1.

Now turn to the case σ = I and let π be a symmetry with this property. Then it follows
from (2.3) that the action of Cartan element k is given by multiplication of the generators x, y
by non-zero weight constants. We denote these weight constants by α and β, respectively:

π(k)(x) = αx, π(k)(y) = βy.

Certainly, monomials form a basis of weight vectors (eigenvectors for π(k)), and the associated
eigenvalues are called weights.

Let us start with the simplest case in which the operators π(e) and π(f) are identically zero.
This case has been disregarded in [8] due to its triviality, but should be considered now in order
to get a complete list of symmetries.

Lemma 3.2. Let π be a Uq(sl2)-symmetry on Cq
[
x±1, y±1

]
. The following properties of π are

equivalent:

(i) the weight constants α, β ∈ {−1; 1};
(ii) π(e) is the identically zero operator on Cq

[
x±1, y±1

]
;

(iii) π(f) is the identically zero operator on Cq
[
x±1, y±1

]
;

(iv) both π(e) and π(f) are the identically zero operators on Cq
[
x±1, y±1

]
.

Proof. Assume (i). Clearly the weight of any monomial is ±1. On the other hand, it follows
from (2.5) that π(e) takes x to a weight vector whose weight is ±q2 6= ±1. Hence π(e)(x) = 0,
and one has also π(e)

(
x−1

)
= 0 in view of (2.12). Similarly, π(e)

(
y±1
)

= 0 in view of (2.5)
and (2.12). Thus we conclude that π(e) ≡ 0, which is just (ii). The proof of (i)⇒ (iii) is similar.

Assume (ii). An application of (2.7) to x and y yields
(
π(k) − π

(
k−1
))

(x) =
(
π(k) −

π
(
k−1
))

(y) = 0, hence α = α−1, β = β−1, which is equivalent to (i). The proof of (iii) ⇒ (i) is
similar, and the rest of implications are clear. �

Theorem 3.3 (type (II)). Suppose that the weight constants α, β ∈ {−1; 1}. There exist 4
Uq(sl2)-symmetries on Cq

[
x±1, y±1

]
given by

π(k)(x) = ±x, π(k)(y) = ±y, (3.1)

π(e)(x) = π(e)(y) = π(f)(x) = π(f)(y) = 0. (3.2)

These are all the symmetries with α, β ∈ {−1; 1}. They split in 2 isomorphism classes: the
first one is just the symmetry with α = β = 1 and the second one is the (union of) 3 other
symmetries.
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Proof reduces to a (trivial) verification of the fact that (3.1) and (3.2) determine well-defined
Uq(sl2)-symmetries on Cq

[
x±1, y±1

]
, with a subsequent application of Lemma 3.2. The isomor-

phisms between the symmetries with
(
α
β

)
6=
(

1
1

)
are easily available. �

In the rest of our considerations we assume that either π(e) or π(f) is not identically zero.
A pair of non-zero complex constants α and β which could appear as weight constants for

some Uq(sl2)-symmetry of Cq
[
x±1, y±1

]
, can not be arbitrary. In fact, an obvious consequence

of (2.5) claims that π(e) sends a vector whose weight is γ to a vector whose weight is q2γ. In
particular, π(e)(x), if non-zero, is a sum of monomials with (the same) weight q2α. Since the
weight of the monomial axiyj (with a 6= 0) is αiβj , one has that αuβv = q2 for some integers u, v.
Of course similar conclusions can be also derived by applying (2.5), (2.6) to x and y. Under our
present assumptions (contrary to those of Lemma 3.2), this argument demonstrates that the
pair α and β of weight constants for a Uq(sl2)-symmetry of Cq

[
x±1, y±1

]
is subject to αuβv = q2

for some (in general, non-unique) integers u, v.
The following theorem covers all but a countable family of admissible pairs of weight con-

stants. The series of symmetries involved here have been called generic in [8].

Theorem 3.4 ([8, Theorem 4.1, type (III)]). Let a pair of constants α, β ∈ C\{0} be such that
αuβv = q2 for some u, v ∈ Z and αmβn 6= 1 for all integers m, n with (m,n) 6= (0, 0). Then
there exists a one-parameter (a ∈ C\{0}) family of Uq(sl2)-symmetries of Cq

[
x±1, y±1

]
:

π(k)(x) = αx, π(k)(y) = βy, (3.3)

π(e)(x) = aquv+3 1− αqv(
1− q2

)2xu+1yv, π(e)(y) = aquv+3 qu − β(
1− q2

)2xuyv+1, (3.4)

π(f)(x) = −
(
α−1 − q−v

)
a

x−u+1y−v, π(f)(y) = −
(
β−1q−u − 1

)
a

x−uy−v+1. (3.5)

There exist no other symmetries with the weight constants α and β. Two symmetries of this
form are isomorphic if and only if the associated pairs of weight constants are on the same orbit
of the SL(2,Z)-action (2.4) on (C\{0})2.

Proof. We restrict ourselves to proving the last claim (the isomorphism criterion) which was
absent in [8, Theorem 4.1].

The ‘only if’ part is obvious.
Assume that two symmetries π and π′ as in (3.3)–(3.5) have pairs of weight constants which

are on the same orbit of the SL(2,Z)-action. Let us replace one of these symmetries (let it be π)
with an isomorphic symmetry BπB−1, where B = ϕσ,1,1 ∈ Aut

(
Cq
[
x±1, y±1

])
is as in (2.3) for

a suitable matrix σ ∈ SL(2,Z). This replacement allows us to assume that π and π′ have the
same pair of weight constants and differ only in the complex constants a and a′, respectively,
in (3.4), (3.5). Now with A = ϕI,µ,ν ∈ Aut

(
Cq
[
x±1, y±1

])
one can arrange a routine computation

of Aπ(e)A−1(x), Aπ(e)A−1(y), Aπ(f)A−1(x), Aπ(f)A−1(y) based on (3.4), (3.5), and (2.3) (left
to the reader) and then equate these 4 elements of Cq

[
x±1, y±1

]
to π′(e)(x), π′(e)(y), π′(f)(x),

π′(f)(y), respectively. Using the fact that, under the assumptions of the Theorem, none of the
constant multipliers in (3.4), (3.5) can be zero, one concludes that each of the 4 relations is
equivalent to the same relation µuνv = a′

a . As one can readily deduce from the assumptions
on weight constants that (u, v) 6= (0, 0), a pair (µ, ν) satisfying the latter relation exists. This
proves our claim. �

Remark 3.5. The generic symmetries described by Theorem 3.4 constitute the most massive
part of the entire collection of Uq(sl2)-symmetries of Cq

[
x±1, y±1

]
, as compared with those given

by Theorems 3.1 and 3.3 where π(e) and π(f) are the identically zero operators on Cq
[
x±1, y±1

]
.

Even more, among the symmetries with σ = I where the pair of weight constants (α, β) is the
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most essential feature of a specific symmetry, the collection of generic symmetries covers all
but a countable family of admissible pairs of weight constants. This is contrary to non-generic
symmetries described below in this work, where the collection of pairs of weight constants
involved is only countable. This observation is completed by

Proposition 3.6. The collection of generic symmetries presented by Theorem 3.4 contains an
uncountable family of isomorphism classes of Uq(sl2)-symmetries on Cq

[
x±1, y±1

]
.

Proof. Let a generic symmetry π with weight constants (α, β) be given. Consider an isomorphic
symmetry π′ = A−1πA, where A = ϕσ,µ,ν ∈ Aut

(
Cq
[
x±1, y±1

])
is as in (2.3). A routine

verification demonstrates that the weight constants α′, β′ of π′ are given by
(
α′

β′

)
= σ

(
α
β

)
with

the action of σ being as in (2.4), while the parameters µ, ν do not affect the weight constants
of the isomorphic symmetry π′.

The first consequence of the above argument is that the weight constants α′, β′ of π′ are
again subject to the assumptions of Theorem 3.4, hence π′ is also generic. That is, the family
of generic symmetries is closed under passage to an isomorphic symmetry.

Another thing to be deduced is that every isomorphism class of generic symmetries is con-
tained in a certain class of symmetries whose pairs of weight constants are on the same orbit
of the action of (the countable group) SL(2,Z) on an uncountable invariant subset of (C\{0})2.
The latter subset is just the collection of (α, β) subject to the assumptions of Theorem 3.4. This
implies our claim. �

Remark 3.7. It has been mentioned in Section 2 that there exists a one-to-one correspon-
dence between the Uq(sl2)-symmetries on Cq[x, y] appearing in [4, Theorems 4.2–4.7] and those
of Cq

[
x±1, y±1

]
that leave invariant the subalgebra Cq[x, y], which is nothing more than the

restriction-extension procedures. In particular, every Uq(sl2)-symmetry on Cq[x, y] described
in [4] should have its counterpart in the list of symmetries we produce here. It is easily visible
that, in view of the above correspondence, the symmetries of [4, Theorem 4.2] are the same as
the symmetries in Theorem 3.3.

As for all other symmetries of [4], they do not extend to symmetries as in Theorems 3.1
and 3.4. In the first case, the symmetries with σ = −I do not leave Cq[x, y] invariant. As for
the generic symmetries, it should be noted that, under the assumptions of Theorem 3.4, the
constant multipliers in (3.4), (3.5) are all (including fractions) non-zero. On the other hand,
one can find in every non-trivial symmetry in the final table of [4], at least one identically zero
expression among the formulas for π(e)(x), π(e)(y), π(f)(x), π(f)(y).

Hence, the generic symmetries do not leave invariant the subalgebra Cq[x, y]. Another thing
to be deduced here is that the counterparts of non-trivial symmetries [4] are to be found among
the non-generic symmetries of Cq

[
x±1, y±1

]
described below.

4 Weight polynomials and extreme monomials

We start with defining the integral parameters of type (IV) (non-generic) Uq(sl2)-symmetries
on Cq

[
x±1, y±1

]
based on considering the properties of the associated pair of weight constants.

Although these parameters are not determined uniquely by a symmetry, they allow one to derive
two more parameters D and G. The subsequent exposition demonstrates that the latter para-
meters, while still admit certain ambiguities in their definition, work as isomorphism invariants
for type (IV) symmetries and allow the classification suggested in this work.

In what follows we make implicit the natural action of (the semigroup of) integral matrices
by endomorphisms of the multiplicative group (C\{0})2:(

a b
c d

)(
µ

ν

)
=

(
µaνb

µcνd

)
. (4.1)
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Integral parameters of a non-generic symmetry. Let π be a Uq(sl2)-symmetry on
Cq
[
x±1, y±1

]
with the associated matrix σ = I. Assume that π is type (IV), that is, the

associated pair of weight constants α, β satisfy αuβv = q2 for some u, v ∈ Z (just the assumption
on π being not type (II)), but, on the contrary to assumptions of Theorem 3.4, αrβs = 1 for
some integers r, s other than r = s = 0. Let us choose a pair (r, s) to be minimal in the following
sense.

Definition 4.1. Given a non-generic Uq(sl2)-symmetry π on Cq
[
x±1, y±1

]
with the associated

matrix σ = I and the weight constants α, β, the pair of integers (r, s) with αrβs = 1 is said to
be minimal if, under the assumption r = wr′, s = ws′ for some integers w, r′, s′, w 6= ±1, one
has αr

′
βs
′ 6= 1.

Clearly, under these settings the pair (r, s) is unique up to multiplying both r and s by −1,
and we assume this pair to be fixed while considering a specific type (IV) Uq(sl2)-symmetry π.

Also, the pair (u, v) is not unique for the given π, as with u′ = u+ wr, v′ = v + ws, w ∈ Z,
one has αu

′
βv
′

= q2.
Let us associate to a type (IV) symmetry π the matrix Φ = ( r su v ), then the weight constants

α, β satisfy

Φ

(
α

β

)
=

(
1

q2

)
. (4.2)

The entries u, v, r, s of Φ will be referred to as integral parameters of a type (IV) symmetry π,
with the minimality for the pair (r, s) being implicit. Now (4.2) may be treated as a definition
(although ambiguous in view of the above discussion) of integral parameters of π.

One may ask if an arbitrary integral matrix corresponds in a manner described above to
a non-generic Uq(sl2)-symmetry π on Cq

[
x±1, y±1

]
. Our subsequent observations demonstrate

that this conjecture fails.
One more trivial consequence of our choices is in observing that for any integers m, n, the

subspace of weight polynomials with the same weight as xmyn is just the linear span of the
monomials xm+wryn+ws, w ∈ Z.

Let us introduce the discriminant D = rv− su of a non-generic symmetry π. It follows from
our assumptions that D 6= 0. The above ambiguities in the choice of u, v, r, s, given π, could
at most affect D in multiplication by −1. This corresponds to the context of

Proposition 4.2. |D| is an invariant of isomorphism class of non-generic Uq(sl2)-symmetries
on Cq

[
x±1, y±1

]
.

Proof. Let a non-generic symmetry π be given. Let us consider an isomorphic symmetry
π′ = Ψ−1πΨ, with an automorphism Ψ ∈ Aut

(
Cq
[
x±1, y±1

])
, Ψ = ϕσ,µ,ν as in (2.3), whose

associated matrix is σ =
(
k m
l n

)
∈ SL(2,Z). Clearly, the weight constants of π′ are α′ = αkβm,

β′ = αlβn, that is σ
(
α
β

)
=
(
α′

β′

)
.

With the matrix Φ = ( r su v ) of integral parameters of π one has

Φσ−1

(
α′

β′

)
= Φ

(
α

β

)
=

(
1

q2

)
.

This implies that the integral matrix Φ′
def
= Φσ−1 =

(
r′ s′

u′ v′

)
is formed by the integral parameters

of the symmetry π′ subject to all the necessary relations. Among those, the only item to be
verified is the minimality condition for r′, s′.

Assume the contrary, that is r′ = wr′′, s′ = ws′′ for some non-zero integer w 6= ±1, but

αr
′′
βs
′′

= 1. Consider the matrix Φ′′
def
=
(
r′′ s′′

u′ v′

)
, then one has

Φ′′
(
α′

β′

)
=

(
1

q2

)
and Φ′ = Φσ−1 =

(
w 0
0 1

)
Φ′′.
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It follows that
(
w−1 0

0 1

)
Φ = Φ′′σ is an integral matrix, and the latter relation being applied to(

α
β

)
yields(

w−1 0
0 1

)
Φ

(
α

β

)
= Φ′′σ

(
α

β

)
= Φ′′

(
α′

β′

)
=

(
1

q2

)
.

This contradicts to the minimality assumption on r, s, as the latter are just the entries of the
first line of Φ. The contradiction we get this way proves the minimality assumption on r′, s′.

Clearly, det Φ′ = det Φ, which implies the claim of our proposition. �

Remark 4.3. The proof of Proposition 4.2 could persuade the reader that the discriminant
D = det Φ = rv − su is a more reasonable and subtle invariant than |D|, which might possibly
separate more isomorphism classes of non-generic symmetries. However, it will become clear
later that (simultaneous) multiplying r and s (hence also det Φ) by −1 produces a sort of
reparametrization of the same symmetry, thus remaining intact its isomorphism class.

There exists one more invariant, to be used later in classifying the symmetries. Let gcd(r, s)
stand for the greatest common divisor for integers r, s.

Proposition 4.4. G = gcd(r, s) is an invariant of isomorphism class of non-generic Uq(sl2)-
symmetries on Cq

[
x±1, y±1

]
, with r, s being the matrix elements of the first line of Φ, the matrix

of integral parameters of a symmetry.

Proof. We need to reproduce the beginning of proof of Proposition 4.2. Let us consider again
two isomorphic symmetries π and π′ = Ψ−1πΨ, with Ψ ∈ Aut

(
Cq
[
x±1, y±1

])
, Ψ = ϕσ,µ,ν , with

the associated matrix σ =
(
k m
l n

)
∈ SL(2,Z), so that σ

(
α
β

)
=
(
α′

β′

)
, with

(
α
β

)
, (respectively,

(
α′

β′

)
)

being the weight constants of π (respectively, π′).

Let Φ = ( r su v ) be the matrix of integral parameters for π. One has

Φσ−1

(
α′

β′

)
= Φ

(
α

β

)
=

(
1

q2

)
.

That is, the integral matrix Φ′
def
= Φσ−1 =

(
r′ s′

u′ v′

)
is formed by the integral parameters of the

symmetry π′ subject to all the necessary relations. One can now verify the minimality condition
for r′, s′ exactly as it was done in the proof of Proposition 4.2.

Let w = gcd(r, s), then r = wr1, s = ws1, with r1, s1 being coprime. One has Φ = (w 0
0 1 ) Φ′1,

where Φ′1 = ( r1 s1u v ).

It follows that

Φ′ = Φσ−1 =

(
w 0
0 1

)
Φ′1σ

−1,

whence gcd(r′, s′) ≥ w = gcd(r, s).

One can readily get the opposite inequality via applying this argument to the reverse passage
from π′ to π. Thus, we finally conclude that gcd(r′, s′) = gcd(r, s). �

Proposition 4.5. A (non-degenerate) integral matrix Φ = ( r su v ) of integral parameters for
a type (IV ) symmetry π determines (via (4.1)) an onto endomorphism of the multiplicative
group (C\{0})2. The equation (4.2) has finitely many solutions. Every solution

(
α
β

)
, in terms

of the matrix elements u, v, r, s and the discriminant D = det Φ, is subject to

αD = q−2s, βD = q2r. (4.3)
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Proof. The Cramer theorem allows one to form an integral matrix Φ′ such that ΦΦ′ = Φ′Φ =(
D 0
0 D

)
, where D = det Φ = rv − su 6= 0. Explicitly Φ′ =

(
v −s
−u r

)
. Given arbitrary

(
µ
ν

)
∈

(C\{0})2, one chooses µ′, ν ′ with µ′D = µ, ν ′D = ν. Then Φ′
(
µ′

ν′

)
is a preimage for

(
µ
ν

)
with

respect to the endomorphism determined by Φ, because

ΦΦ′
(
µ′

ν ′

)
=

(
D 0
0 D

)(
µ′

ν ′

)
=

(
µ

ν

)
.

Hence the endomorphism in question is onto. Also, a routine argument establishes that the
kernel of this map is contained in Γ2 ⊂ (C\{0})2, the Cartesian square of the group Γ of D-th
roots of 1, hence finite.

An application of Φ′ to (4.2) produces (4.3). �

Let us consider a non-zero weight polynomial p ∈ Cq
[
x±1, y±1

]
with respect to a symmetry π,

whose integral parameters are r, s, u, v. Due to the above observations, p is a finite sum of
the form p =

∑
w∈Z

dwx
m+wryn+ws, so that the weight of p is αmβn. We need to consider its

extreme monomials, namely the maximum and minimum ones, which correspond, respectively,
to max{w : dw 6= 0} and min{w : dw 6= 0}. The associated values of w will be denoted by
maxindm,n(p) and minindm,n(p). This certainly assumes that the pair (m,n) is fixed.

Consider the polynomials π(e)(x), π(e)(y), π(f)(x), π(f)(y), related to the symmetry π. It
follows from the commutation relations (2.5), (2.6) that these are weight polynomials with
weights q2α, q2β, q−2α, q−2β, respectively. Furthermore, the discussion at the beginning of this
Section allows one to conclude that these should be finite sums of the form

π(e)(x) =
∑
w∈Z

a′wx
u+1+wryv+ws, π(e)(y) =

∑
w∈Z

a′′wx
u+wryv+1+ws, (4.4)

π(f)(x) =
∑
t∈Z

c′tx
−u+1+try−v+ts, π(f)(y) =

∑
t∈Z

c′′t x
−u+try−v+1+ts. (4.5)

It should be emphasized that the above notions of extreme monomials and the values
maxindm,n(p) and minindm,n(p) are well defined only for non-zero polynomials p. We need
to consider similar notions in a way more closely related to a (non-generic) Uq(sl2)-symmetry π
on Cq

[
x±1, y±1

]
. Namely, given such symmetry π, we consider the double (pair of) polynomial(s)

(π(e)(x), π(e)(y)) ∈ Cq
[
x±1, y±1

]
⊕ Cq

[
x±1, y±1

]
. This may be treated as a (finite) sum

(π(e)(x), π(e)(y)) =
∑
w∈Z

(
a′wx

u+1+wryv+ws, a′′wx
u+wryv+1+ws

)
of double monomials with the coefficients a′w, a′′w as in (4.4), (4.5).

Let us introduce the notation

mininde(π) = min{w ∈ Z | (a′w, a′′w) 6= (0, 0)},
maxinde(π) = max{w ∈ Z | (a′w, a′′w) 6= (0, 0)}.

In a similar way we consider the double polynomial (π(f)(x), π(f)(y)) ∈ Cq
[
x±1, y±1

]
⊕

Cq
[
x±1, y±1

]
and introduce

minindf(π) = min{t ∈ Z | (c′t, c′′t ) 6= (0, 0)},
maxindf(π) = max{t ∈ Z | (c′t, c′′t ) 6= (0, 0)}.

The four values mininde(π), maxinde(π), minindf(π), maxindf(π) are well defined when we
are in the context of non-generic symmetries.

There exist certain dependencies between the constant coefficients in (4.4), (4.5). To clarify
them, we need the following lemma based on (2.1).
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Lemma 4.6 ([8, Lemma 4.2]). Let π be a Uq(sl2)-symmetry on Cq
[
x±1, y±1

]
such that

π(k)(x) = αx, π(k)(y) = βy,

π(e)(x) =
∑
i,j

ai,jx
iyj , π(e)(y) =

∑
i,j

bi,jx
iyj , (4.6)

π(f)(x) =
∑
i,j

ci,jx
iyj , π(f)(y) =

∑
i,j

di,jx
iyj , (4.7)

with α, β ∈ C\{0}, ai,j , bi,j , ci,j , di,j ∈ C, and the above sums being finite. Then

ai+1,j

(
qi − β

)
= bi,j+1

(
1− αqj

)
,

ci+1,j

(
1− β−1qi

)
= di,j+1

(
qj − α−1

)
.

An application of Lemma 4.6 allows one to establish the relations between a′w, a′′w and
between c′w, c′′w. Namely, we substitute a′w = aw(1 − αqv+ws), a′′w = aw(qu+wr − β) and
rewrite (4.4), (4.5) in the form

π(e)(x) =
∑
w∈Z

aw
(
1− αqv+ws

)
xu+1+wryv+ws, (4.8)

π(e)(y) =
∑
w∈Z

aw
(
qu+wr − β

)
xu+wryv+1+ws, (4.9)

π(f)(x) =
∑
t∈Z

ct
(
α−1 − q−v+ts

)
x−u+1+try−v+ts, (4.10)

π(f)(y) =
∑
t∈Z

ct
(
β−1q−u+tr − 1

)
x−u+try−v+1+ts. (4.11)

To clarify the relations between aw and ct required to write down the existing series of non-
generic symmetries, we need to collect several properties of extreme monomials of the weight
polynomials (4.8)–(4.11).

Lemma 4.7.

aw = 0 for w > maxinde(π), (4.12)

aw = 0 for w < mininde(π), (4.13)

ct = 0 for t > maxindf(π), (4.14)

ct = 0 for t < minindf(π). (4.15)

Proof. To prove (4.12) and (4.13), it suffices, in view of our definitions, to verify that the
multipliers 1− αqv+ws in (4.8) and qu+wr − β in (4.9) can not be zero simultaneously (with the
same w).

Assuming the contrary, we get α = q−v−ws, β = qu+wr for some w. Under our assumption
on q, this, being substituted into (4.3), implies

D(u+ wr) = 2r, D(v + ws) = 2s.

This can be readily rewritten in the form

Du = (2− wD)r, Dv = (2− wD)s,

and since the discriminant D 6= 0, this implies D = det Φ = 0. The contradiction we get this
way proves our claim.

(4.14), (4.15) can be proved in a similar way. �
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One more application of the argument, used in the proof of Lemma 4.7, together with our
definitions, yields

Lemma 4.8. In (4.8), (4.9) one has

amaxinde(π) 6= 0, amininde(π) 6= 0.

In (4.10), (4.11) one has

cmaxindf(π) 6= 0, cminindf(π) 6= 0.

We also need the following relations valid in our present context (σ = I):

π(e)(xp) =
∑
i,j

ai,j
αpqjp − 1

αqj − 1
xp−1+iyj , (4.16)

π(e)(yp) =
∑
i,j

bi,j
βp − qip

β − qi
xiyp−1+j , (4.17)

π(f)(xp) =
∑
i,j

ci,j
α−p − qjp

α−1 − qj
xp−1+iyj , (4.18)

π(f)(yp) =
∑
i,j

di,j
β−pqip − 1

β−1qi − 1
xiyp−1+j , (4.19)

where p ∈ Z, ai,j , bi,j , ci,j , di,j ∈ C are as in (4.6), (4.7). These relations are due to a straightfor-
ward induction argument, together with (2.12), (2.13). Of course, these are valid unless some
special values for the weight constants α and/or β make the denominators of fractions involved
to be zero. In fact we will not encounter such special cases in what follows, so we need not take
care about replacing these fractions (which are just sums of certain progressions) to attain more
generality in (4.16)–(4.19).

We demonstrate here (4.16) for the reader’s convenience, assuming αqj −1 6= 0. Clearly with
p = 0 we get π(e)(1) = 0 as one should expect. Substituting p = 1, we get just (4.6). With
p > 0, let us perform the induction step.

π(e)
(
xp+1

)
= xpπ(e)(x) + π(e)

(
xp
)
π(k)(x)

= xp
∑
i,j

ai,jx
iyj +

∑
i,j

ai,j
αpqjp − 1

αqj − 1
xp−1+iyjαx

=
∑
i,j

ai,j

(
1 +

αpqjp − 1

αqj − 1
αqj
)
xp+iyj =

∑
i,j

ai,j
αp+1qj(p+1) − 1

αqj − 1
xp+iyj .

This proves (4.16) for p ≥ 0. To cover the negative powers, we set p > 0 and apply (2.12) as
follows

π(e)
(
x−p

)
= −x−pπ(e)(xp)π(k)

(
xp
)−1

= −x−p
∑
i,j

ai,j
αpqjp − 1

αqj − 1
xp−1+iyjα−px−p

= −
∑
i,j

ai,j
αpqjp − 1

αqj − 1
α−pq−jpx−p−1+iyj =

∑
i,j

ai,j
α−pq−jp − 1

αqj − 1
x−p−1+iyj ,

which finishes the proof of (4.16).
To use the relation (2.7) for computing non-generic symmetries, we need certain estimates

for extreme monomials of the polynomials produced by composed operators like π(ef) applied
to the generators x and y. The estimates presented in the next two lemmas, of course, do not
involve (the r.h.s. of) (2.7) itself.
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Lemma 4.9. In our previous notation

π(ef − fe)(x) =
∑
i

∑
w+t=i

awctq
(u+wr)(−v+ts)

(
αqis − α−1

)(
q−2+iD − 1

)
x1+iryis, (4.20)

π(ef − fe)(y) =
∑
i

∑
w+t=i

awctq
(u+wr)(−v+ts)

(
β−1qir − β

)(
1− q−2+iD

)
xiry1+is. (4.21)

Proof. Let us start with computing the polynomial π(ef)(x). This involves (4.4), (4.5), (2.9),
(2.10), and the notion of weight constants.

π(ef)(x) =
∑
t

c′tπ(e)
(
x−u+1+try−v+ts

)
=
∑
t

c′t
(
x−u+1+trπ(e)

(
y−v+ts

)
+ π(e)

(
x−u+1+tr

)
π(k
(
y−v+ts

))
.

One has to observe at this point that the replacement here of π(e)
(
y−v+ts

)
and π(e)

(
x−u+1+tr

)
with sums like (4.16), (4.17) involves the coefficients a′w, a′′w as in (4.4). The specific form of
the latter coefficients as in (4.8), (4.9), respectively, implies that a′w (a′′w) appears to be zero
when the associated denominator in (4.16) ((4.17)) is zero. This special case would require
rewriting (4.16) ((4.17)) in a different form (sum of finitely many identical constants). This
rewriting appears to be redundant since the corresponding terms in the sums to be substituted
are totally absent, thus leaving only terms as in (4.16) ((4.17)) with non-zero denominators.

Now we proceed with computing π(ef)(x),

π(ef)(x) =
∑
t

c′t

(
x−u+1+tr

∑
w

a′′w
β−v+ts − q(u+wr)(−v+ts)

β − q(u+wr)
xu+wry(w+t)s

+
∑
w

a′w
α−u+1+trq(v+ws)(−u+1+tr) − 1

αqv+ws − 1
x1+(w+t)ryv+wsβ−v+tsy−v+ts

)

=
∑
w

∑
t

c′t

(
a′wβ

−v+tsα
−u+1+trq(v+ws)(−u+1+tr) − 1

αqv+ws − 1

+ a′′w
β−v+ts − q(u+wr)(−v+ts)

β − qu+wr

)
x1+(w+t)ry(w+t)s.

Let us substitute a′w = aw
(
1− αqv+ws

)
, a′′w = aw

(
qu+wr − β

)
to get

π(ef)(x) =
∑
w

∑
t

awc
′
t

(
β−v+ts

(
1− α−u+1+trq(v+ws)(−u+1+tr)

)
+ q(u+wr)(−v+ts) − β−v+ts

)
x1+(w+t)ry(w+t)s

=
∑
w

∑
t

awc
′
tq

(u+wr)(−v+ts)
(
1− q−2+v+(w+t)D+wsα

)
x1+(w+t)ry(w+t)s.

A similar calculation yields

π(fe)(x) =
∑
w

∑
t

a′wctq
(u+wr)(−v+ts)

(
α−1q−2+(w+t)D − q−v+ts

)
x1+(w+t)ry(w+t)s.

Finally we obtain, using c′t = ct(α
−1 − q−v+ts) as in (4.10):

π(ef − fe)(x) =
∑
w

∑
t

awctq
(u+wr)(−v+ts)

((
α−1 − q−v+ts

)(
1− q−2+v+(w+t)D+wsα

)
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−
(
1− αqv+ws

)(
α−1q−2+(w+t)D − q−v+ts

))
x1+(w+t)ry(w+t)s

=
∑
w

∑
t

awctq
(u+wr)(−v+ts)

(
q−2+(w+t)D

(
αq(w+t)s − α−1

)
+
(
α−1 − αq(w+t)s

))
x1+(w+t)ry(w+t)s

=
∑
w

∑
t

awctq
(u+wr)(−v+ts)

(
αq(w+t)s − α−1

)
×
(
q−2+(w+t)D − 1

)
x1+(w+t)ry(w+t)s,

which is equivalent to (4.20). The proof of (4.21) goes in a similar way. �

Lemma 4.10.

minind1,0(π(ef − fe)(x)) ≥ mininde(π) + minindf(π),

minind0,1(π(ef − fe)(y)) ≥ mininde(π) + minindf(π),

maxind1,0(π(ef − fe)(x)) ≤ maxinde(π) + maxindf(π),

maxind0,1(π(ef − fe)(y)) ≤ maxinde(π) + maxindf(π).

Proof. An obvious consequence of Lemmas 4.7 and 4.9. �

It follows from Lemma 4.10 that all the non-zero monomials of the (weight) polynomials
π(ef − fe)(x) (4.20) and π(ef − fe)(y) (4.21) should be among those with indices i subject to

mininde(π) + minindf(π) ≤ i ≤ maxinde(π) + maxindf(π).

In fact, this admits a further adjustment.

Lemma 4.11. Either

mininde(π) + minindf(π) = 0 or maxinde(π) + maxindf(π) = 0.

Proof. To clarify the position of 0 with respect to the interval of integers

[mininde(π) + minindf(π); maxinde(π) + maxindf(π)], (4.22)

let us first assume that 0 is outside of this interval. In this case the monomial corresponding to
i = 0 in both π(ef − fe)(x) and π(ef − fe)(y) (which is just x in the r.h.s. of (4.20) and y in the
r.h.s. of (4.21)) is zero. This is because every term of the coefficient at this monomial involves
products like awct with w + t = 0. It follows from Lemma 4.7 that under our assumption every
such product is zero. Thus, looking at (2.7), we conclude that both weight constants α and β
are 1 or −1. This contradicts to our assumption on π being non-generic, which implies that we
are not in the context of Lemma 3.2.

Next assume that 0 is inside the interval of integers (4.22) (not at an endpoint). Ob-
serve that the monomial in (4.20) corresponding to i being equal to one of the endpoints
mininde(π) + minindf(π) or maxinde(π) + maxindf(π) has a constant coefficient which is just
the (single) product awctq

(u+wr)(−v+ts)
(
αqis − α−1

)(
q−2+iD − 1

)
where w = mininde(π), t =

minindf(π) (respectively w = maxinde(π), t = maxindf(π)). In both cases neither aw nor ct
could be zero by Lemma 4.8. On the other hand, one deduces from (2.7) that the entire product
awctq

(u+wr)(−v+ts)
(
αqis − α−1

)(
q−2+iD − 1

)
should be zero with i at each endpoint. It follows

that at each endpoint one should have either αqis − α−1 = 0 or q−2+iD − 1 = 0.
The relation q−2+iD − 1 = 0, due to our assumption on q, is equivalent to iD = 2.
As for αqis − α−1 = 0, one can apply additionally (4.3) to exclude α and obtain, under the

additional assumption s 6= 0, that iD = 4.



16 S. Sinel’shchikov

One can also reproduce the above argument with respect to (4.21) in order to conclude that,
with i being at an endpoint (other than that with iD = 2), under the additional assumption
r 6= 0, that iD = 4.

As it can not happen that r = s = 0 simultaneously (this is just our present assumption on π
being non-generic), we deduce that at this endpoint iD = 4 with no additional assumptions.

Since D is fixed, we conclude that the integer index i at both endpoints of (4.22) should have
the same sign, which contradicts to our assumption on 0 being inside the interval (4.22). This
completes the proof of lemma. �

Lemma 4.12. The extreme monomials in (4.20) and (4.21), which correspond to i 6= 0, are
subject to either iD = 4 or iD = 2.

Proof. By Lemma 4.11 we need to prove our claim in two separate cases. Let us stick to the
case mininde(π) + minindf(π) = 0. The opposite case maxinde(π) + maxindf(π) = 0 can be
considered similarly.

So, we assume mininde(π) + minindf(π) = 0, hence by the assumption of our lemma
maxinde(π) + maxindf(π) > 0. The monomial in (4.20) corresponding to i = maxinde(π) +
maxindf(π) has a constant coefficient which is just the (single) product awctq

(u+wr)(−v+ts)
(
αqis−

α−1
)(
q−2+iD−1

)
where w = maxinde(π), t = maxindf(π). Neither aw nor ct in the latter product

could be zero by Lemma 4.8. On the other hand, one deduces from (2.7) that the entire product
awctq

(u+wr)(−v+ts)
(
αqis − α−1

)(
q−2+iD − 1

)
should be zero since i > 0 (while (r, s) 6= (0, 0), as

we are in type (IV)). It follows that one should have either αqis − α−1 = 0 or q−2+iD − 1 = 0.

The relation q−2+iD − 1 = 0, due to our assumption on q, is equivalent to iD = 2.

As for αqis − α−1 = 0, one can apply additionally (4.3) to exclude α and obtain, under the
additional assumption s 6= 0, that iD = 4.

One can also reproduce the above argument with respect to (4.21) in order to conclude that,
with i other than that with iD = 2, under the additional assumption r 6= 0, that iD = 4.

As it can not happen that r = s = 0 simultaneously (since π is type (IV)), we deduce that
iD = 4 with no additional assumptions. �

Corollary 4.13. The sums in (4.8)–(4.11) can have at most 5 (non-zero) terms.

Remark 4.14. In fact, the number of terms in the sums in (4.8)–(4.11) appears to be even
lower, namely at most 4. This will become clear below, after final computing of the coefficients.

In view of Lemmas 4.7, 4.8, 4.11, and Corollary 4.13, we can now arrange one more adjustment
of (4.8)–(4.11). For that, let us introduce three more parameters M,L,N ∈ Z. Looking at
Lemma 4.11, we consider first the case mininde(π) + minindf(π) = 0. Then with 0 ≤ L ≤
maxinde(π) + maxindf(π) = N , one can rewrite (4.8)–(4.11) as follows

π(e)(x) =
L∑

w=0

aM+w

(
1− αqv+(M+w)s

)
xu+1+(M+w)ryv+(M+w)s, (4.23)

π(e)(y) =

L∑
w=0

aM+w

(
qu+(M+w)r − β

)
xu+(M+w)ryv+1+(M+w)s, (4.24)

π(f)(x) =

N−L∑
t=0

c−M+t

(
α−1 − q−v+(−M+t)s

)
x−u+1+(−M+t)ry−v+(−M+t)s, (4.25)

π(f)(y) =
N−L∑
t=0

c−M+t

(
β−1q−u+(−M+t)r − 1

)
x−u+(−M+t)ry−v+1+(−M+t)s. (4.26)
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Note that by Lemma 4.12 |N | ∈ {1, 2, 4}, and there must be certain dependencies between aM+w

and c−M+t.

In the case maxinde(π) + maxindf(π) = 0, with N = mininde(π) + minindf(π) ≤ L ≤ 0, one
has

π(e)(x) =
0∑

w=L

aM+w

(
1− αqv+(M+w)s

)
xu+1+(M+w)ryv+(M+w)s, (4.27)

π(e)(y) =
0∑

w=L

aM+w

(
qu+(M+w)r − β

)
xu+(M+w)ryv+1+(M+w)s, (4.28)

π(f)(x) =
0∑

t=N−L
c−M+t

(
α−1 − q−v+(−M+t)s

)
x−u+1+(−M+t)ry−v+(−M+t)s, (4.29)

π(f)(y) =

0∑
t=N−L

c−M+t

(
β−1q−u+(−M+t)r − 1

)
x−u+(−M+t)ry−v+1+(−M+t)s. (4.30)

Lemma 4.15. The collection of (non-generic) symmetries corresponding to maxinde(π)+
maxindf(π) = 0 coincides with the collection of symmetries with mininde(π) + minindf(π) = 0.
More precisely, each symmetry from the first collection becomes a symmetry from the second
collection after a suitable change of parameters, and vice versa.

Proof. The symmetries with maxinde(π) + maxindf(π) = 0 are described by (4.27)–(4.30),
together with π(k)(x) = αx, π(k)(y) = βy, where the pair of weight constants

(
α
β

)
is a (minimal)

solution of (4.2). This description is certainly modulo some dependencies between aM+w and
c−M+t.

Let us substitute M = −M ′, r = −r′, s = −s′, w = −w′, t = −t′. The latter two changes
of indices in sums forces also change of the parameters N and L. Now (4.27)–(4.30) acquire the
form

π(e)(x) =
−L∑
w′=0

a−M ′−w′
(
1− αqv+(M ′+w′)s′

)
xu+1+(M ′+w′)r′yv+(M ′+w′)s′ ,

π(e)(y) =

−L∑
w′=0

a−M ′−w′
(
qu+(M ′+w′)r′ − β

)
xu+(M ′+w′)r′yv+1+(M ′+w′)s′ ,

π(f)(x) =

−N+L∑
t′=0

cM ′−t′
(
α−1 − q−v+(−M ′+t′)s′)x−u+1+(−M ′+t′)r′y−v+(−M ′+t′)s′ ,

π(f)(y) =
−N+L∑
t′=0

cM ′−t′
(
β−1q−u+(−M ′+t′)r′ − 1

)
x−u+(−M ′+t′)r′y−v+1+(−M ′+t′)s′ .

Clearly, this is the same as (4.23)–(4.26) up to replacement of (in fact, reindexing) the parame-
ters ai, cj . The set of minimal solutions of (4.2) (weight constants) obviously remains intact
under the above reindexing, hence the operator π(k) remains the same. Another obvious obser-
vation is that this reindexing also remains intact the elements π(e)(x), π(e)(y), π(f)(x), π(f)(y)
of Cq

[
x±1, y±1

]
under a fixed set of ai, cj before reindexing, since each of those complex constants

remains the same after reindexing. It follows that the operators π(e), π(f) remain the same after
the above reindexing, as this is first an application of the coproduct in Uq(sl2) (via using the
Sweedler sigma-notation) while extending to monomials, and then extending by linearity to the
entire Cq

[
x±1, y±1

]
. Both procedures are independent of the parameters of symmetries.
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Thus, the symmetry (under a fixed set of complex parameters) appears to be the same after
reindexing, but now it possesses the property mininde(π) + minindf(π) = 0 with respect to the
new integral parameters. �

Remark 4.16. Lemma 4.15 implies that, in writing down a complete list of non-generic Uq(sl2)-
symmetries on Cq

[
x±1, y±1

]
, it suffices to restrict oneself to the symmetries with mininde(π) +

minindf(π) = 0.

Remark 4.17. In the context of Lemma 4.15 and Remark 4.16, it is useful to reindex the (non-
zero) complex constants ai, cj in such a way that aM+w as in (4.23)–(4.24) becomes aw and
c−M+t as in (4.25)–(4.26) becomes ct. This allows one to simplify the notation and to rewrite
(4.23)–(4.26) and (4.20)–(4.21) in the form as follows, suitable for subsequent applications:

π(e)(x) =

L∑
w=0

aw
(
1− αqv+(M+w)s

)
xu+1+(M+w)ryv+(M+w)s, (4.31)

π(e)(y) =

L∑
w=0

aw
(
qu+(M+w)r − β

)
xu+(M+w)ryv+1+(M+w)s, (4.32)

π(f)(x) =

N−L∑
t=0

ct
(
α−1 − q−v+(−M+t)s

)
x−u+1+(−M+t)ry−v+(−M+t)s, (4.33)

π(f)(y) =
N−L∑
t=0

ct
(
β−1q−u+(−M+t)r − 1

)
x−u+(−M+t)ry−v+1+(−M+t)s, (4.34)

π(ef − fe)(x) =
∑
i

∑
0≤w≤L

0≤t≤N−L
w+t=i

awctq
(u+(M+w)r)(−v+(−M+t)s)

(
αqis − α−1

)

×
(
q−2+iD − 1

)
x1+iryis, (4.35)

π(ef − fe)(y) =
∑
i

∑
0≤w≤L

0≤t≤N−L
w+t=i

awctq
(u+(M+w)r)(−v+(−M+t)s)

(
β−1qir − β

)

×
(
1− q−2+iD

)
xiry1+is. (4.36)

5 A complete list of non-generic symmetries

The discussion of Section 4 indicates that non-generic symmetries are to be searched for in the
form (4.31)–(4.34), together with

π(k)(x) = αx, π(k)(y) = βy,

where the pair of weight constants
(
α
β

)
is such a solution of (4.2) that the pair (r, s) is minimal

with respect to
(
α
β

)
.

Now we are in a position to write down an explicit form of non-generic Uq(sl2)-symmetries
on Cq

[
x±1, y±1

]
. The last step in doing this is in computing relations between (and, possibly,

excluding some of) the constant coefficients aw, ct at monomials in (4.31)–(4.34). This is to be
done (after explicit calculation of weight constants) via an application of (2.7) to (4.35), (4.36),
where all the monomials should be zero except those with i = 0; the latter must have coefficients
deduced from (2.7).

We keep the notation of Section 4 concerning the integral parameters r, s, u, v, D, N , L
of non-generic symmetries. It follows from Proposition 4.2 and Lemma 4.12 that we have to
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distinguish the 3 classes of symmetries with |D| = 1, 2, or 4. Also, in view of Lemma 4.15, we
restrict our considerations to the case mininde(π)+minindf(π) = 0. It follows that maxinde(π)+
maxindf(π) > 0, hence, in view of Lemma 4.12, D = 1, 2, or 4. However, it will become clear
below that the explicit form of relationship between the coefficients aw, ct depends on L, so we
need to partition the class of symmetries into finer series corresponding to specific values of L.
In fact, the values of L involved here determine the number of terms (utmost, with all aw, ct
non-zero, 0 ≤ w ≤ L, 0 ≤ t ≤ N − L) at π(e)(x), π(e)(y), π(f)(x), π(f)(y).

The names of series of symmetries to be used below are of the form DiGjEL+1FN−L+1,
where i is the value of D within the series (see also Proposition 4.2 and the subsequent remark),
j is the value of the invariant G = gcd(r, s), L + 1 the utmost number of terms at π(e)(x),
π(e)(y), N − L+ 1 the utmost number of terms at π(f)(x), π(f)(y).

In what follows we restrict ourselves to writing down the final form of the series of non-generic
Uq(sl2)-symmetries on Cq

[
x±1, y±1

]
. The related calculation of the coefficients is completely

routine and thus omitted.

5.1 The case D = 1

With D = 1, the weight constants α, β are determined by (4.3) unambiguously, once the integral
parameters r, s, u, v are given. The corresponding values for the weight constants are assumed
to be substituted to (4.31)–(4.36) prior to final calculations. The minimality condition for (r, s)
here is an immediate consequence of D = rv− su = 1, as r, s are coprime. Hence in the present
case G = gcd(r, s) = 1.

D1G1E1F3

π(k)(x) = q−2sx, π(k)(y) = q2ry,

π(e)(x) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
1− qv+(M−2)s

)
xu+1+Mryv+Ms,

π(e)(y) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
qu+Mr − q2r

)
xu+Mryv+1+Ms,

π(f)(x) = c0

(
q2s − q−v−Ms

)
x−u+1−Mry−v−Ms

+ c2

(
q2s − q−v+(−M+2)s

)
x−u+1+(−M+2)ry−v+(−M+2)s

+ c4

(
q2s − q−v+(−M+4)s

)
x−u+1+(−M+4)ry−v+(−M+4)s,

π(f)(y) = c0

(
q−u+(−M−2)r − 1

)
x−u−Mry−v+1−Ms

+ c2

(
q−u−Mr − 1

)
x−u+(−M+2)ry−v+1+(−M+2)s

+ c4

(
q−u+(−M+2)r − 1

)
x−u+(−M+4)ry−v+1+(−M+4)s.

Here r, s, u, v,M ∈ Z, D = rv − su = 1, G = gcd(r, s) = 1, c0, c2, c4 ∈ C, c0 6= 0. The name of
series is due to the real number of terms, unlike D1G1E1F5 (as it might be in correspondence
with the value L = 0). This is because the calculation of coefficients in (4.33), (4.34) with L = 0
yields c1 = c3 = 0.

D1G1E2F4

π(k)(x) = q−2sx, π(k)(y) = q2ry,

π(e)(x) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
1− qv+(M−2)s

)
xu+1+Mryv+Ms

+ c−2
0 c1q

(u+Mr)(v+Ms)+2su+4+2Mrs
(
1− q2

)−2(
1− qv+(M−1)s

)
× xu+1+(M+1)ryv+(M+1)Ms,
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π(e)(y) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
qu+Mr − q2r

)
xu+1+(M+1)ryv+(M+1)s

+ c−2
0 c1q

(u+Mr)(v+Ms)+2su+4+2Mrs
(
1− q2

)−2(
qu+(M+1)r − q2r

)
× xu+(M+1)ryv+1+(M+1)Ms,

π(f)(x) = c0

(
q2s − q−v−Ms

)
x−u+1−Mry−v−Ms

+ c1

(
q2s − q−v+(−M+1)s

)
x−u+1+(−M+1)ry−v+(−M+1)s

+ c2

(
q2s − q−v+(−M+2)s

)
x−u+1+(−M+2)ry−v+(−M+2)s

+ c−1
0 c1c2q

4Mrs−Mrv−M2rs−Mr+2rs
(
q2s − q−v+(−M+3)s

)
× x−u+1+(−M+3)ry−v+(−M+3)s,

π(f)(y) = c0

(
q−u+(−M−2)r − 1

)
x−u−Mry−v+1−Ms

+ c1

(
q−u+(−M−1)r − 1

)
x−u+(−M+1)ry−v+1+(−M+1)s

+ c2

(
q−u−Mr − 1

)
x−u+(−M+2)ry−v+1+(−M+2)s

+ c−1
0 c1c2q

4Mrs−Mrv−M2rs−Mr+2rs
(
q−u+(−M+1)r − 1

)
× x−u+(−M+3)ry−v+1+(−M+3)s.

Here r, s, u, v,M ∈ Z, D = rv − su = 1, G = gcd(r, s) = 1, c0, c1, c2 ∈ C, c0 6= 0. This
corresponds to L = 1.

D1G1E3F3

π(k)(x) = q−2sx, π(k)(y) = q2ry,

π(e)(x) = a0

(
1− qv+(M−2)s

)
xu+1+Mryv+Ms + a1

(
1− qv+(M−1)s

)
xu+1+(M+1)ryv+(M+1)Ms

+ a2

(
1− qv+Ms

)
xu+1+(M+2)ryv+(M+2)s,

π(e)(y) = a0

(
qu+Mr − q2r

)
xu+Mryv+1+Ms + a1

(
qu+(M+1)r − q2r

)
xu+(M+1)ryv+1+(M+1)Ms

+ a2

(
qu+(M+2)r − q2r

)
xu+(M+2)ryv+1+(M+2)s,

π(f)(x) = −a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
q2s − q−v−Ms

)
x−u+1−Mry−v−Ms

+ a−2
0 a1q

(u+Mr)(v+Ms)+2−2su−2Mrs
(
1− q2

)−2(
q2s − q−v+(−M+1)s

)
× x−u+1+(−M+1)ry−v+(−M+1)s

− a−2
0 a2q

(u+Mr)(v+Ms)+1−4su−4Mrs
(
1− q2

)−2(
q2s − q−v+(−M+2)s

)
× x−u+1+(−M+2)ry−v+(−M+2)s,

π(f)(y) = −a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
q−u+(−M−2)r − 1

)
x−u−Mry−v+1−Ms

+ a−2
0 a1q

(u+Mr)(v+Ms)+2−2su−2Mrs
(
1− q2

)−2(
q−u+(−M−1)r − 1

)
× x−u+(−M+1)ry−v+1+(−M+1)s

− a−2
0 a2q

(u+Mr)(v+Ms)+1−4su−4Mrs
(
1− q2

)−2(
q−u−Mr − 1

)
× x−u+(−M+2)ry−v+1+(−M+2)s.

Here r, s, u, v,M ∈ Z, D = rv − su = 1, G = gcd(r, s) = 1, a0, a1, a2 ∈ C, a0, a1 6= 0. This
corresponds to L = 2.

In the case a1 = 0 the last terms at π(f)(x), π(f)(y) appear to be different and we obtain the
series
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D1G1E2F2

π(k)(x) = q−2sx, π(k)(y) = q2ry,

π(e)(x) = a0

(
1− qv+(M−2)s

)
xu+1+Mryv+Ms + a2

(
1− qv+Ms

)
xu+1+(M+2)ryv+(M+2)s,

π(e)(y) = a0

(
qu+Mr − q2r

)
xu+Mryv+1+Ms + a2

(
qu+(M+2)r − q2r

)
xu+(M+2)ryv+1+(M+2)s,

π(f)(x) = −a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
q2s − q−v−Ms

)
x−u+1−Mry−v−Ms

+ c2

(
q2s − q−v+(−M+2)s

)
x−u+1+(−M+2)ry−v+(−M+2)s,

π(f)(y) = −a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
q−u+(−M−2)r − 1

)
x−u−Mry−v+1−Ms

+ c2

(
q−u−Mr − 1

)
x−u+(−M+2)ry−v+1+(−M+2)s.

Here r, s, u, v,M ∈ Z, D = rv−su = 1, G = gcd(r, s) = 1, a0, a2, c2 ∈ C, a0 6= 0. This is just the
case L = 2, a1 = 0 in (4.31), (4.32), hence the name of series corresponding to the real number
of terms.

D1G1E4F2

π(k)(x) = q−2sx, π(k)(y) = q2ry,

π(e)(x) = a0

(
1− qv+(M−2)s

)
xu+1+Mryv+Ms + a1

(
1− qv+(M−1)s

)
xu+1+(M+1)ryv+(M+1)Ms

+ a2

(
1− qv+Ms

)
xu+1+(M+2)ryv+(M+2)s

+ a−1
0 a1a2q

2rs
(
1− qv+(M+1)s

)
xu+1+(M+3)ryv+(M+3)s,

π(e)(y) = a0

(
qu+Mr − q2r

)
xu+Mryv+1+Ms + a1

(
qu+(M+1)r − q2r

)
xu+(M+1)ryv+1+(M+1)s

+ a2

(
qu+(M+2)r − q2r

)
xu+(M+2)ryv+1+(M+2)s

+ a−1
0 a1a2q

2rs
(
qu+(M+3)r − 1

)
xu+(M+3)ryv+1+(M+3)s,

π(f)(x) = −a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
q2s − q−v−Ms

)
x−u+1−Mry−v−Ms

+ a−2
0 a1q

(u+Mr)(v+Ms)+2−2su−2Mrs
(
1− q2

)−2(
q2s − q−v+(−M+1)s

)
× x−u+1+(−M+1)ry−v+(−M+1)s,

π(f)(y) = −a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
q−u+(−M−2)r − 1

)
x−u−Mry−v+1−Ms

+ a−2
0 a1q

(u+Mr)(v+Ms)+2−2su−2Mrs
(
1− q2

)−2(
q−u+(−M−1)r − 1

)
× x−u+(−M+1)ry−v+1+(−M+1)s.

Here r, s, u, v,M ∈ Z, D = rv − su = 1, G = gcd(r, s) = 1, a0, a1, a2 ∈ C, a0 6= 0. This
corresponds to L = 3.

D1G1E3F1

π(k)(x) = q−2sx, π(k)(y) = q2ry,

π(e)(x) = a0

(
1− qv+(M−2)s

)
xu+1+Mryv+Ms + a2

(
1− qv+Ms

)
xu+1+(M+2)ryv+(M+2)s

+ a4

(
1− qv+(M+2)s

)
xu+1+(M+4)ryv+(M+4)s,

π(e)(y) = a0

(
qu+Mr − q2r

)
xu+Mryv+1+Ms + a2

(
qu+(M+2)r − q2r

)
xu+(M+2)ryv+1+(M+2)s

+ a4

(
qu+(M+4)r − q2r

)
xu+(M+4)ryv+1+(M+4)s,

π(f)(x) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
q2s − q−v−Ms

)
x−u+1−Mry−v−Ms,
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π(f)(y) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
q−u+(−M−2)r − 1

)
x−u−Mry−v+1−Ms.

Here r, s, u, v,M ∈ Z, D = rv − su = 1, G = gcd(r, s) = 1, a0, a2, a4 ∈ C, a0 6= 0. The name of
series is due to the real number of terms, unlike D1G1E5F1 (as it might be in correspondence
with the value L = 4). This is because the calculation of coefficients in (4.31), (4.32) with L = 4
yields a1 = a3 = 0.

The case D = 1, N = 2

Under the assumption D = 1, by Lemma 4.12 we have also to consider the case N = 2. It
turns out that this way we find no additional symmetries. To verify this, we apply the above
procedure of computing coefficients just to write down the corresponding series. We refrain from
setting names to these series, because they are all embeddable to the above series with N = 4.

L = 0

π(k)(x) = q−2sx, π(k)(y) = q2ry,

π(e)(x) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
1− qv+(M−2)s

)
xu+1+Mryv+Ms,

π(e)(y) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
qu+Mr − q2r

)
xu+Mryv+1+Ms,

π(f)(x) = c0

(
q2s − q−v−Ms

)
x−u+1−Mry−v−Ms

+ c2

(
q2s − q−v+(−M+2)s

)
x−u+1+(−M+2)ry−v+(−M+2)s,

π(f)(y) = c0

(
q−u+(−M−2)r − 1

)
x−u−Mry−v+1−Ms

+ c2

(
q−u−Mr − 1

)
x−u+(−M+2)ry−v+1+(−M+2)s.

Here r, s, u, v,M ∈ Z, D = rv−su = 1, G = gcd(r, s) = 1, c0, c2 ∈ C, c0 6= 0. This is embeddable
into D1G1E1F3 by setting there c4 = 0.

L = 1

π(k)(x) = q−2sx, π(k)(y) = q2ry,

π(e)(x) = a0

(
1− qv+(M−2)s

)
xu+1+Mryv+Ms+ a1

(
1− qv+(M−1)s

)
xu+1+(M+1)ryv+(M+1)Ms,

π(e)(y) = a0

(
qu+Mr − q2r

)
xu+Mryv+1+Ms+ a1

(
qu+(M+1)r − q2r

)
xu+(M+1)ryv+1+(M+1)Ms,

π(f)(x) = −a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
q2s − q−v−Ms

)
x−u+1−Mry−v−Ms

+ a−2
0 a1q

(u+Mr)(v+Ms)+2−2su−2Mrs
(
1− q2

)−2(
q2s − q−v+(−M+1)s

)
× x−u+1+(−M+1)ry−v+(−M+1)s,

π(f)(y) = −a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
q−u+(−M−2)r − 1

)
x−u−Mry−v+1−Ms

+ a−2
0 a1q

(u+Mr)(v+Ms)+2−2su−2Mrs
(
1− q2

)−2(
q−u+(−M−1)r − 1

)
× x−u+(−M+1)ry−v+1+(−M+1)s.

Here r, s, u, v,M ∈ Z, D = rv − su = 1, G = gcd(r, s) = 1, a0, a1 ∈ C, a0 6= 0. This is
embeddable into D1G1E4F2 by setting there a2 = 0.

L = 2

π(k)(x) = q−2sx, π(k)(y) = q2ry,

π(e)(x) = a0

(
1− qv+(M−2)s

)
xu+1+Mryv+Ms + a2

(
1− qv+Ms

)
xu+1+(M+2)ryv+(M+2)s,

π(e)(y) = a0

(
qu+Mr − q2r

)
xu+Mryv+1+Ms + a2

(
qu+(M+2)r − q2r

)
xu+(M+2)ryv+1+(M+2)s,

π(f)(x) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
q2s − q−v−Ms

)
x−u+1−Mry−v−Ms,
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π(f)(y) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
q−u+(−M−2)r − 1

)
x−u−Mry−v+1−Ms.

Here r, s, u, v,M ∈ Z, D = rv − su = 1, G = gcd(r, s) = 1, a0, a2 ∈ C, a0 6= 0. This is
embeddable into D1G1E3F1 by setting there a4 = 0.

5.2 The case D = 2

With D = 2, (4.3) is only a property for a pair
(
α
β

)
of weight constants as a solution of (4.2),

corresponding to a non-generic symmetry π under consideration. Namely, one has α2 = q−2s,

β2 = q2r. The minimality assumption on (r, s) is essential here. For example,
(
α
β

)
=
(q−2

−q2
)

is

a solution of (4.2) with Φ = ( r su v ) = ( 2 2
1 2 ). The pair (r, s) is minimal with respect to

(
α
β

)
, as

αβ = −1 6= 1, and the associated symmetries are among those with D = 2.

However, with another solution
(
α
β

)
=
(q−2

q2

)
of (4.2) corresponding to the same Φ, the pair

(r, s) fails to be minimal. Dividing both r and s (respectively, the first line of Φ) by 2, we come
back to the above picture with D = 1.

Clearly, with D = 2, the invariant G can take only two values 1 or 2.
The following lemma clarifies the existence of pairs of weight constants providing the necessary

minimality condition, hence the existence of series of symmetries written below derived by
a routine computing the coefficients.

Lemma 5.1. Let Φ = ( r su v ) be an arbitrary integral matrix with D = det Φ = 2.

1. With G = gcd(r, s) = 1, there exist two pairs of weight constants
(
α
β

)
∈
{(

q−s

qr

)
;
((−1)−sq−s

(−1)rqr

)}
,

which are solutions of (4.2), along with the associated collections of symmetries. Such
symmetries corresponding to different pairs of weight constants are non-isomorphic.

2. With G = gcd(r, s) = 2, there exists a single pair of weight constants
(
α
β

)
=
((−1)vq−s

(−1)−uqr

)
,

which is a solution of (4.2) such that the pair (r, s) is minimal with respect to
(
α
β

)
, along

with the associated collection of symmetries.

Proof. Let us treat Φ as an endomorphism of the multiplicative group (C\{0})2. Consider the

pair
(
α
β

)
=
(
q−s

qr

)
. One can readily verify that this pair is a solution of (4.2). To get a complete

list of solutions, we need a description of Ker Φ.

We start with the trivial purely computational observation that Ker Φ ⊂ Γ
def
= {−1; 1}2.

Use Cramer’s rule to derive explicitly the integral matrix Φ′ =
(
v −s
−u r

)
such that Φ′Φ =

ΦΦ′ = ( 2 0
0 2 ). The above inclusion property is certainly valid for Ker Φ′ as well, and Γ is invariant

with respect to actions of both matrices. As an immediate consequence of the definition of Φ′

we deduce that

Φ′Γ ⊂ Ker Φ. (5.1)

Note that Γ is a 4-element group, and every its non-trivial proper subgroup is 2-element.
Since det Φ = 2, at least one of the matrix elements r, s, u, v is odd (otherwise det Φ would

be divisible by 4). Let it be r, then

Φ′
(

1

−1

)
=

(
v −s
−u r

)(
1

−1

)
=

(
(−1)−s

(−1)r

)
6=
(

1

1

)
,

and a similar argument works for the rest of the matrix elements. It follows that #Φ′Γ ≥ 2.
This argument is also applicable to Φ, that yields #ΦΓ ≥ 2, and hence # Ker Φ = 4

#ΦΓ ≤ 2.
The latter inequalities, together with (5.1), allow one to obtain

2 ≤ #Φ′Γ ≤ # Ker Φ ≤ 2,
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whence

Φ′Γ = Ker Φ,

and this subgroup is 2-element.
1. Let G = gcd(r, s) = 1. In this case at least one of the integers r, s is odd, hence, in view

of the above observations,
((−1)−s

(−1)r

)
6=
(

1
1

)
generates Φ′Γ = Ker Φ. Therefore in this case (4.2)

has two solutions
(
q−s

qr

)
,
((−1)−sq−s

(−1)rqr

)
.

To see that the associated symmetries are non-isomorphic, it suffices to prove that the above
two pairs of weight constants are not on the same SL(2,Z)-orbit. Assuming the contrary, we

deduce the existence of a matrix
(
k m
l n

)
∈ SL(2,Z) with

(
k m
l n

) (
q−s

qr

)
=
((−1)−sq−s

(−1)rqr

)
, which is

equivalent to

q−ks+mr+s = (−1)−s, q−ls+nr−r = (−1)r.

It follows that q2(−ks+mr+s) = q2(−ls+nr−r) = 1, and since q is not a root of 1, one also has
−ks +mr + s = −ls+ nr − r = 0. Thus we conclude that (−1)−s = (−1)r = 1, that is both r
and s are even, which contradicts to our assumption G = 1.

2. Let G = gcd(r, s) = 2, that is r = 2r′, s = 2s′. It follows that u, v are coprime, in
particular, at least one of them is odd. We thus deduce two solutions of (4.2):(

α1

β1

)
=

(
q−s

qr

)
,

(
α2

β2

)
=

(
(−1)vq−s

(−1)−uqr

)
.

One has

αr
′

1 β
s′
1 = q−sr

′+rs′ = q2(−s′r′+r′s′) = 1,

αr
′

2 β
s′
2 = (−1)r

′v−s′uq−sr
′+rs′ = −1,

hence only the solution
(
α2

β2

)
=
((−1)vq−s

(−1)−uqr

)
makes the pair (r, s) minimal. �

Here is the final list of non-generic symmetries with D = 2, coming from adjusting the
coefficients in (4.31)–(4.34) via applying (2.7) together with (4.35)–(4.36).

D2G1E1F3(a)

π(k)(x) = q−sx, π(k)(y) = qry,

π(e)(x) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
1− qv+(M−1)s

)
xu+1+Mryv+Ms,

π(e)(y) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
qu+Mr − qr

)
xu+Mryv+1+Ms,

π(f)(x) = c0

(
qs − q−v−Ms

)
x−u+1−Mry−v−Ms

+ c1

(
qs − q−v+(−M+1)s

)
x−u+1+(−M+1)ry−v+(−M+1)s

+ c2

(
qs − q−v+(−M+2)s

)
x−u+1+(−M+2)ry−v+(−M+2)s,

π(f)(y) = c0

(
q−u+(−M−1)r − 1

)
x−u−Mry−v+1−Ms

+ c1

(
q−u−Mr − 1

)
x−u+(−M+1)ry−v+1+(−M+1)s

+ c2

(
q−u+(−M+1)r − 1

)
x−u+(−M+2)ry−v+1+(−M+2)s.

Here r, s, u, v,M ∈ Z, D = rv − su = 2, G = gcd(r, s) = 1; c0, c1, c2 ∈ C, c0 6= 0. This
corresponds to L = 0.
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D2G1E2F2(a)

π(k)(x) = q−sx, π(k)(y) = qry,

π(e)(x) = a0

(
1− qv+(M−1)s

)
xu+1+Mryv+Ms + a1

(
1− qv+Ms

)
xu+1+(M+1)ryv+(M+1)s,

π(e)(y) = a0

(
qu+Mr − qr

)
xu+Mryv+1+Ms + a1

(
qu+(M+1)r − qr

)
xu+(M+1)ryv+1+(M+1)s,

π(f)(x) = −a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
qs − q−v−Ms

)
x−u+1−Mry−v−Ms

+ c1

(
qs − q−v+(−M+1)s

)
x−u+1+(−M+1)ry−v+(−M+1)s,

π(f)(y) = −a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
q−u+(−M−1)r − 1

)
x−u−Mry−v+1−Ms

+ c1

(
q−u−Mr − 1

)
x−u+(−M+1)ry−v+1+(−M+1)s.

Here r, s, u, v,M ∈ Z, D = rv − su = 2, G = gcd(r, s) = 1; a0, a1, c1 ∈ C, a0 6= 0. This
corresponds to L = 1.

D2G1E3F1(a)

π(k)(x) = q−sx, π(k)(y) = qry,

π(e)(x) = a0

(
1− qv+(M−1)s

)
xu+1+Mryv+Ms + a1

(
1− qv+Ms

)
xu+1+(M+1)ryv+(M+1)s

+ a2

(
1− qv+(M+1)s

)
xu+1+(M+2)ryv+(M+2)s,

π(e)(y) = a0

(
qu+Mr − qr

)
xu+Mryv+1+Ms + a1

(
qu+(M+1)r − qr

)
xu+(M+1)ryv+1+(M+1)s

+ a2

(
qu+(M+2)r − qr

)
xu+(M+2)ryv+1+(M+2)s,

π(f)(x) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
qs − q−v−Ms

)
x−u+1−Mry−v−Ms,

π(f)(y) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
q−u+(−M−1)r − 1

)
x−u−Mry−v+1−Ms.

Here r, s, u, v,M ∈ Z, D = rv − su = 2, G = gcd(r, s) = 1; a0, a1, a2 ∈ C, a0 6= 0. This
corresponds to L = 2.

D2G1E1F3(b)

π(k)(x) = (−1)−sq−sx, π(k)(y) = (−1)rqry,

π(e)(x) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
1− (−1)−sqv+(M−1)s

)
xu+1+Mryv+Ms,

π(e)(y) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
qu+Mr − (−1)rqr

)
xu+Mryv+1+Ms,

π(f)(x) = c0

(
(−1)sqs − q−v−Ms

)
x−u+1−Mry−v−Ms

+ c1

(
(−1)sqs − q−v+(−M+1)s

)
x−u+1+(−M+1)ry−v+(−M+1)s

+ c2

(
(−1)sqs − q−v+(−M+2)s

)
x−u+1+(−M+2)ry−v+(−M+2)s,

π(f)(y) = c0

(
(−1)−rq−u+(−M−1)r − 1

)
x−u−Mry−v+1−Ms

+ c1

(
(−1)−rq−u−Mr − 1

)
x−u+(−M+1)ry−v+1+(−M+1)s

+ c2

(
(−1)−rq−u+(−M+1)r − 1

)
x−u+(−M+2)ry−v+1+(−M+2)s.

Here r, s, u, v,M ∈ Z, D = rv − su = 2, G = gcd(r, s) = 1; c0, c1, c2 ∈ C, c0 6= 0. This
corresponds to L = 0.
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D2G1E2F2(b)

π(k)(x) = (−1)−sq−sx, π(k)(y) = (−1)rqry,

π(e)(x) = a0

(
1− (−1)−sqv+(M−1)s

)
xu+1+Mryv+Ms

+ a1

(
1− (−1)−sqv+Ms

)
xu+1+(M+1)ryv+(M+1)s,

π(e)(y) = a0

(
qu+Mr − (−1)rqr

)
xu+Mryv+1+Ms

+ a1

(
qu+(M+1)r − (−1)rqr

)
xu+(M+1)ryv+1+(M+1)s,

π(f)(x) = −a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
(−1)sqs − q−v−Ms

)
x−u+1−Mry−v−Ms

+ c1

(
(−1)sqs − q−v+(−M+1)s

)
x−u+1+(−M+1)ry−v+(−M+1)s,

π(f)(y) = −a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
(−1)−rq−u+(−M−1)r − 1

)
x−u−Mry−v+1−Ms

+ c1

(
(−1)−rq−u−Mr − 1

)
x−u+(−M+1)ry−v+1+(−M+1)s.

Here r, s, u, v,M ∈ Z, D = rv − su = 2, G = gcd(r, s) = 1; a0, a1, c1 ∈ C, a0 6= 0. This
corresponds to L = 1.

D2G1E3F1(b)

π(k)(x) = (−1)−sq−sx, π(k)(y) = (−1)rqry,

π(e)(x) = a0

(
1− (−1)−sqv+(M−1)s

)
xu+1+Mryv+Ms

+ a1

(
1− (−1)−sqv+Ms

)
xu+1+(M+1)ryv+(M+1)s

+ a2

(
1− (−1)−sqv+(M+1)s

)
xu+1+(M+2)ryv+(M+2)s,

π(e)(y) = a0

(
qu+Mr − (−1)rqr

)
xu+Mryv+1+Ms

+ a1

(
qu+(M+1)r − (−1)rqr

)
xu+(M+1)ryv+1+(M+1)s

+ a2

(
qu+(M+2)r − (−1)rqr

)
xu+(M+2)ryv+1+(M+2)s,

π(f)(x) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
(−1)sqs − q−v−Ms

)
x−u+1−Mry−v−Ms,

π(f)(y) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
(−1)−rq−u+(−M−1)r − 1

)
x−u−Mry−v+1−Ms.

Here r, s, u, v,M ∈ Z, D = rv − su = 2, G = gcd(r, s) = 1; a0, a1, a2 ∈ C, a0 6= 0. This
corresponds to L = 2.

D2G2E1F3

π(k)(x) = (−1)vq−sx, π(k)(y) = (−1)−uqry,

π(e)(x) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
1− (−1)vqv+(M−1)s

)
xu+1+Mryv+Ms,

π(e)(y) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
qu+Mr − (−1)−uqr

)
xu+Mryv+1+Ms,

π(f)(x) = c0

(
(−1)−vqs − q−v−Ms

)
x−u+1−Mry−v−Ms

+ c1

(
(−1)−vqs − q−v+(−M+1)s

)
x−u+1+(−M+1)ry−v+(−M+1)s

+ c2

(
(−1)−vqs − q−v+(−M+2)s

)
x−u+1+(−M+2)ry−v+(−M+2)s,

π(f)(y) = c0

(
(−1)uq−u+(−M−1)r − 1

)
x−u−Mry−v+1−Ms

+ c1

(
(−1)uq−u−Mr − 1

)
x−u+(−M+1)ry−v+1+(−M+1)s

+ c2

(
(−1)uq−u+(−M+1)r − 1

)
x−u+(−M+2)ry−v+1+(−M+2)s.
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Here r, s, u, v,M ∈ Z, D = rv − su = 2, G = gcd(r, s) = 2; c0, c1, c2 ∈ C, c0 6= 0. This
corresponds to L = 0.

D2G2E2F2

π(k)(x) = (−1)vq−sx, π(k)(y) = (−1)−uqry,

π(e)(x) = a0

(
1− (−1)vqv+(M−1)s

)
xu+1+Mryv+Ms

+ a1

(
1− (−1)vqv+Ms

)
xu+1+(M+1)ryv+(M+1)s,

π(e)(y) = a0

(
qu+Mr − (−1)−uqr

)
xu+Mryv+1+Ms

+ a1

(
qu+(M+1)r − (−1)−uqr

)
xu+(M+1)ryv+1+(M+1)s,

π(f)(x) = −a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
(−1)−vqs − q−v−Ms

)
x−u+1−Mry−v−Ms

+ c1

(
(−1)−vqs − q−v+(−M+1)s

)
x−u+1+(−M+1)ry−v+(−M+1)s,

π(f)(y) = −a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
(−1)uq−u+(−M−1)r − 1

)
x−u−Mry−v+1−Ms

+ c1

(
(−1)uq−u−Mr − 1

)
x−u+(−M+1)ry−v+1+(−M+1)s.

Here r, s, u, v,M ∈ Z, D = rv − su = 2, G = gcd(r, s) = 2; a0, a1, c1 ∈ C, a0 6= 0. This
corresponds to L = 1.

D2G2E3F1

π(k)(x) = (−1)vq−sx, π(k)(y) = (−1)−uqry,

π(e)(x) = a0

(
1− (−1)vqv+(M−1)s

)
xu+1+Mryv+Ms

+ a1

(
1− (−1)vqv+Ms

)
xu+1+(M+1)ryv+(M+1)s

+ a2

(
1− (−1)vqv+(M+1)s

)
xu+1+(M+2)ryv+(M+2)s,

π(e)(y) = a0

(
qu+Mr − (−1)−uqr

)
xu+Mryv+1+Ms

+ a1

(
qu+(M+1)r − (−1)−uqr

)
xu+(M+1)ryv+1+(M+1)s

+ a2

(
qu+(M+2)r − (−1)−uqr

)
xu+(M+2)ryv+1+(M+2)s,

π(f)(x) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
(−1)−vqs − q−v−Ms

)
x−u+1−Mry−v−Ms,

π(f)(y) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
(−1)uq−u+(−M−1)r − 1

)
x−u−Mry−v+1−Ms.

Here r, s, u, v,M ∈ Z, D = rv − su = 2, G = gcd(r, s) = 2; a0, a1, a2 ∈ C, a0 6= 0. This
corresponds to L = 2.

The case D = 2, N = 1

Under the assumption D = 2, by Lemma 4.12 we have also to consider the case N = 1. To
see that this way no additional symmetries occur, one has to compute coefficients just to write
down the corresponding series. We stick here to the case G = 1, α = q−s, β = qr; the rest of
cases are to be considered in a similar way. No names are given to these series, because they
are all embeddable to the above series with N = 2.

L = 0

π(k)(x) = q−sx, π(k)(y) = qry,

π(e)(x) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
1− qv+(M−1)s

)
xu+1+Mryv+Ms,
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π(e)(y) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
qu+Mr − qr

)
xu+Mryv+1+Ms,

π(f)(x) = c0

(
qs − q−v−Ms

)
x−u+1−Mry−v−Ms

+ c1

(
qs − q−v+(−M+1)s

)
x−u+1+(−M+1)ry−v+(−M+1)s,

π(f)(y) = c0

(
q−u+(−M−1)r − 1

)
x−u−Mry−v+1−Ms

+ c1

(
q−u−Mr − 1

)
x−u+(−M+1)ry−v+1+(−M+1)s.

Here r, s, u, v,M ∈ Z, D = rv−su = 2, G = gcd(r, s) = 1; c0, c1 ∈ C, c0 6= 0. This is embeddable
into D2G1E1F3(a) by setting there c2 = 0.

L = 1

π(k)(x) = q−sx, π(k)(y) = qry,

π(e)(x) = a0

(
1− qv+(M−1)s

)
xu+1+Mryv+Ms+

a1

(
1− qv+Ms

)
xu+1+(M+1)ryv+(M+1)s,

π(e)(y) = a0

(
qu+Mr − qr

)
xu+Mryv+1+Ms + a1

(
qu+(M+1)r − qr

)
xu+(M+1)ryv+1+(M+1)s,

π(f)(x) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
qs − q−v−Ms

)
x−u+1−Mry−v−Ms,

π(f)(y) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
q−u+(−M−1)r − 1

)
x−u−Mry−v+1−Ms.

Here r, s, u, v,M ∈ Z, D = rv − su = 2, G = gcd(r, s) = 1; a0, a1 ∈ C, a0 6= 0. This is
embeddable into D2G1E3F1(a) by setting there a2 = 0.

5.3 The case D = 4

With D = 4, Lemma 4.12 implies that the only possible value for N is N = 1. Thus, the
multiplier(s) q−2+iD − 1 in (4.35), (4.36) at the extreme monomials corresponding to i = N = 1
are non-zero. It follows that αqs − α−1 = β−1qr − β = 0, that is, the weight constants are
subject to

α2 = q−s, β2 = qr, (5.2)

which is a more subtle condition than α4 = q−2s, β4 = q2r coming from (4.3). The existence of
solutions of (4.2) compatible to (5.2) with the minimality property for (r, s) (hence the existence
of symmetries) is described by

Lemma 5.2. Let the integral matrix (of integral parameters of symmetries) Φ = ( r su v ) be such
that D = det Φ = 4. Then

1. Let G = gcd(r, s) = 1 and ζ be a fixed square root of q (ζ2 = q), then there exist exactly
two solutions

(
α
β

)
of (4.2) compatible with (5.2)

(
ζ−s

ζr

)
,

(
(−1)sζ−s

(−1)rζr

)
(the latter pair is nothing more than the solution corresponding to −ζ, another square
root of q). Hence the existence of symmetries listed below by calculation of coefficients.
Any two symmetries corresponding to different pairs of weight constants as above are non-
isomorphic.
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2. With G = gcd(r, s) = 2, the solutions
(
α
β

)
of (4.2) compatible with (5.2) with the minima-

lity property for (r, s) exist if and only if both u and v are even. In this case there exist
two such distinct solutions as follows(

−q−s′

(−1)r′+1qr′

)
,

(
(−1)s

′+1q−s
′

−qr′
)
,

where r = 2r′, s = 2s′. Hence the existence of symmetries listed below.

3. In the case G = gcd(r, s) = 4, there exist no solutions
(
α
β

)
of (4.2) compatible with (5.2)

with the minimality property for (r, s). Hence no associated symmetries.

Proof. 1. Let G = gcd(r, s) = 1. Since r and s are coprime, there exist u′, v′ ∈ Z such that
v′r − u′s = 1. This, together with rv − su = 4, implies

r(v − 4v′) = s(u− 4u′).

One more application of the fact that r and s are coprime allows one to deduce the existence
of t ∈ Z with u − 4u′ = tr, v − 4v′ = ts. It has been mentioned in Section 4 that (obviously)
a replacement of u and v by u− tr and v − ts, respectively, does not affect the set of solutions
(hence the set of solutions with the minimality property for (r, s))

(
α
β

)
of (4.2). So we may

assume that u = 4u′, v = 4v′.

Let us fix a square root ζ of q (ζ2 = q), and consider the pair
(
α
β

)
=
(
ζ−s

ζr

)
. An easy

verification shows that this pair is a solution of (4.2) compatible with (5.2). Observe that any

pair of constants subject to (5.2) differs from
(
ζ−s

ζr

)
by changing signs of the components, and

there exist exactly 4 such pairs. Let us present a list of those as follows(
ζ−s

ζr

)
,

(
(−1)sζ−s

(−1)rζr

)
,

(
−ζ−s

(−1)r+1ζr

)
,

(
(−1)s+1ζ−s

−ζr

)
.

A routine verification demonstrates that for any coprime r, s the elements of this list are pairwise
distinct. Another simple calculation shows that the initial two pairs are solutions of (4.2), while
the latter two pairs are subject to αrβs = −1. The last claim is due to our assumption that r, s
are coprime, so that r + rs+ s cannot be even. That is, only the initial two pairs are solutions
of (4.2).

To prove that any two symmetries corresponding to different pairs of weight constants
(
ζ−s

ζr

)
,((−1)sζ−s

(−1)rζr

)
are non-isomorphic, it suffices to demonstrate that these pairs of constants are not

on the same SL(2,Z)-orbit. To see this, let us observe first that ζ is obviously not a root of 1,
together with q. If one replaces here ζ with q, we get the two pairs considered in the proof
of Lemma 5.1. These pairs are proved there to be not on the same SL(2,Z)-orbit, and the
argument used works also in our present case.

2. Let G = gcd(r, s) = 2. Then r = 2r′, s = 2s′, and (in our context) r′ and s′ are coprime.
Any pair of weight constants α, β subject to (5.2) has the form α = εαq

−s′ , β = εβq
r′ , with

εα, εβ = ±1.
Suppose that both u and v are even. Then for any choice of εα, εβ one has

αrβs = εrαε
s
βq
−s′r+r′s = ε2r′

α ε2s′
β q−2s′r′+2r′s′ = 1,

αuβv = εuαε
v
βq
−s′u+r′v = q2.

This means that
(
α
β

)
is a solution of (4.2) for any εα, εβ, and one has 4 such solutions. We need

only to distinguish those making (r, s) minimal. For that, we reproduce the idea used in the
previous case with G = 1 in writing down the 4 pairs of constants as follows(

q−s
′

qr′

)
,

(
(−1)s

′
q−s

′

(−1)r′qr′

)
,

(
−q−s′

(−1)r′+1qr′

)
,

(
(−1)s

′+1q−s
′

−qr′
)
.
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It turns out that, given any coprime r′, s′ (as in our case), the elements of this list are pairwise
distinct, which is a matter of routine verification. Also, the above discussion demonstrates that
these pairs of constants are solutions of (4.2) subject to (5.2).

As for minimality for (r, s), an easy calculation with
(
α
β

)
standing for initial two pairs of

constants establishes that αr
′
βs
′

= 1, thus minimality condition fails. However, a similar simple
calculation based on r′, s′ being coprime in the case of the last two pairs of constants

(
α
β

)
shows

that αr
′
βs
′

= −1, hence our claim.
Conversely, suppose that there exists a solution

(
α
β

)
of (4.2) compatible with (5.2), with the

pair (r, s) being minimal. In view of the above observations, α = εαq
−s′ , β = εβq

r′ for some
εα, εβ ∈ {−1; 1}, αuβv = εuαε

v
βq

2, αr
′
βs
′

= εr
′
α ε

s′
β . Our current assumption on α, β allows one to

conclude that, with Φ′ =
(
r′ s′
u v

)
, one has(

−1

q2

)
= Φ′

(
α

β

)
= Φ′

(
εα
εβ

)
Φ′
(
q−s

′

qr′

)
= Φ′

(
εα
εβ

)
·
(

1

q2

)
,

whence

Φ′
(
εα
εβ

)
=

(
−1

1

)
. (5.3)

As det Φ′ = 2, an application of Cramer’s rule produces an integral matrix Φ′′ such that
Φ′′Φ′ = ( 2 0

0 2 ). With Φ′′ being applied to (5.3), one has ( 2 0
0 2 )

(
εα
εβ

)
= Φ′′

(−1
1

)
. This relation, using

the explicit form of Φ′′ =
(

v −s′
−u r′

)
, becomes

(
1
1

)
=
( (−1)v

(−1)−u

)
, which implies that both u and v

are even.
3. Let G = gcd(r, s) = 4, in particular r = 4r′, s = 4s′. Suppose

(
α
β

)
is a solution of (4.2)

compatible with (5.2). Then one has

α2r′β2s′ = q−sr
′+rs′ = q4(−s′r′+r′s′) = 1,

which implies that the pair (r, s) is not minimal. �

Remark 5.3. It should be noted that in Lemma 5.2(2), the choice between the two distinct
pairs of weight constants in general does not lead to non-isomorphic symmetries, as it was the
case in Lemmas 5.1(1) and 5.2(1). For example, substituting there r′ = 0, s′ = 1 one observes
that the distinct pairs of weight constants mentioned in the statement of (2) are on the same
SL(2,Z)-orbit:(

1 1
0 1

)(
−q−1

−1

)
=

(
q−1

−1

)
.

Hence an application of the isomorphism ϕσ,1,1 with σ = ( 1 1
0 1 ) intertwines the associated sym-

metries.

Here is the final list of non-generic symmetries with D = 4, coming from adjusting the
coefficients in (4.31)–(4.34) via applying (2.7) together with (4.35)–(4.36).

The initial 4 series assume a square root ζ of q (ζ2 = q) being fixed.

D4G1E1F2(a)

π(k)(x) = ζ−sx, π(k)(y) = ζry,

π(e)(x) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
1− ζ−sqv+Ms

)
xu+1+Mryv+Ms,
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π(e)(y) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
qu+Mr − ζr

)
xu+Mryv+1+Ms,

π(f)(x) = c0

(
ζs − q−v−Ms

)
x−u+1−Mry−v−Ms

+ c1

(
ζs − q−v+(−M+1)s

)
x−u+1+(−M+1)ry−v+(−M+1)s,

π(f)(y) = c0

(
ζ−rq−u−Mr − 1

)
x−u−Mry−v+1−Ms

+ c1

(
ζ−rq−u+(−M+1)r − 1

)
x−u+(−M+1)ry−v+1+(−M+1)s.

Here r, s, u, v,M ∈ Z, D = rv − su = 4; G = gcd(r, s) = 1; c0, c1 ∈ C, c0 6= 0. This corresponds
to L = 0.

D4G1E2F1(a)

π(k)(x) = ζ−sx, π(k)(y) = ζry,

π(e)(x) = a0

(
1− ζ−sqv+Ms

)
xu+1+Mryv+Ms

+ a1

(
1− ζ−sqv+(M+1)s

)
xu+1+(M+1)ryv+(M+1)s,

π(e)(y) = a0

(
qu+Mr − ζr

)
xu+Mryv+1+Ms + a1

(
qu+(M+1)r − ζr

)
xu+(M+1)ryv+1+(M+1)s,

π(f)(x) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
ζs − q−v−Ms

)
x−u+1−Mry−v−Ms,

π(f)(y) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
ζ−rq−u−Mr − 1

)
x−u−Mry−v+1−Ms.

Here r, s, u, v,M ∈ Z, D = rv − su = 4; G = gcd(r, s) = 1; a0, a1 ∈ C, a0 6= 0. This corresponds
to L = 1.

D4G1E1F2(b)

π(k)(x) = (−1)sζ−sx, π(k)(y) = (−1)rζry,

π(e)(x) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
1− (−1)sζ−sqv+Ms

)
xu+1+Mryv+Ms,

π(e)(y) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
qu+Mr − (−1)rζr

)
xu+Mryv+1+Ms,

π(f)(x) = c0

(
(−1)sζs − q−v−Ms

)
x−u+1−Mry−v−Ms

+ c1

(
(−1)sζs − q−v+(−M+1)s

)
x−u+1+(−M+1)ry−v+(−M+1)s,

π(f)(y) = c0

(
(−1)rζ−rq−u−Mr − 1

)
x−u−Mry−v+1−Ms

+ c1

(
(−1)rζ−rq−u+(−M+1)r − 1

)
x−u+(−M+1)ry−v+1+(−M+1)s.

Here r, s, u, v,M ∈ Z, D = rv − su = 4; G = gcd(r, s) = 1; c0, c1 ∈ C, c0 6= 0. This corresponds
to L = 0.

D4G1E2F1(b)

π(k)(x) = (−1)sζ−sx, π(k)(y) = (−1)rζry,

π(e)(x) = a0

(
1− (−1)sζ−sqv+Ms

)
xu+1+Mryv+Ms

+ a1

(
1− (−1)sζ−sqv+(M+1)s

)
xu+1+(M+1)ryv+(M+1)s,

π(e)(y) = a0

(
qu+Mr − (−1)rζr

)
xu+Mryv+1+Ms

+ a1

(
qu+(M+1)r − (−1)rζr

)
xu+(M+1)ryv+1+(M+1)s,

π(f)(x) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
(−1)sζs − q−v−Ms

)
x−u+1−Mry−v−Ms,
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π(f)(y) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
(−1)rζ−rq−u−Mr − 1

)
x−u−Mry−v+1−Ms.

Here r, s, u, v,M ∈ Z, D = rv − su = 4; G = gcd(r, s) = 1; a0, a1 ∈ C, a0 6= 0. This corresponds
to L = 1.

The final 4 series assume even integral parameters r = 2r′, s = 2s′.

D4G2E1F2(a)

π(k)(x) = −q−s′x, π(k)(y) = (−1)r
′+1qr

′
y,

π(e)(x) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
1 + q−s

′+v+Ms
)
xu+1+Mryv+Ms,

π(e)(y) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
qu+Mr + (−1)r

′
qr
′)
xu+Mryv+1+Ms,

π(f)(x) = c0

(
−qs′ − q−v−Ms

)
x−u+1−Mry−v−Ms

+ c1

(
−qs′ − q−v+(−M+1)s

)
x−u+1+(−M+1)ry−v+(−M+1)s,

π(f)(y) = c0

(
(−1)r

′+1q−r
′−u−Mr − 1

)
x−u−Mry−v+1−Ms

+ c1

(
(−1)r

′+1q−r
′−u+(−M+1)r − 1

)
x−u+(−M+1)ry−v+1+(−M+1)s.

Here r, s, u, v,M ∈ Z, D = rv − su = 4; G = gcd(r, s) = 2; r = 2r′, s = 2s′; c0, c1 ∈ C, c0 6= 0.
This corresponds to L = 0.

D4G2E2F1(a)

π(k)(x) = −q−s′x, π(k)(y) = (−1)r
′+1qr

′
y,

π(e)(x) = a0

(
1 + q−s

′+v+Ms
)
xu+1+Mryv+Ms

+ a1

(
1 + q−s

′+v+(M+1)s
)
xu+1+(M+1)ryv+(M+1)s,

π(e)(y) = a0

(
qu+Mr + (−1)r

′
qr
′)
xu+Mryv+1+Ms

+ a1

(
qu+(M+1)r + (−1)r

′
qr
′)
xu+(M+1)ryv+1+(M+1)s,

π(f)(x) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(−qs′ − q−v−Ms
)
x−u+1−Mry−v−Ms,

π(f)(y) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
(−1)r

′+1q−r
′−u−Mr − 1

)
x−u−Mry−v+1−Ms.

Here r, s, u, v,M ∈ Z, D = rv − su = 4; G = gcd(r, s) = 2; r = 2r′, s = 2s′; a0, a1 ∈ C, a0 6= 0.
This corresponds to L = 1.

D4G2E1F2(b)

π(k)(x) = (−1)s
′+1q−s

′
x, π(k)(y) = −qr′y,

π(e)(x) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
1 + (−1)s

′
q−s

′+v+Ms
)
xu+1+Mryv+Ms,

π(e)(y) = −c−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
qu+Mr + qr

′)
xu+Mryv+1+Ms,

π(f)(x) = c0

(
(−1)s

′+1qs
′ − q−v−Ms

)
x−u+1−Mry−v−Ms

+ c1

(
(−1)s

′+1qs
′ − q−v+(−M+1)s

)
x−u+1+(−M+1)ry−v+(−M+1)s,

π(f)(y) = c0

(
−q−r′−u−Mr − 1

)
x−u−Mry−v+1−Ms

+ c1

(
−q−r′−u+(−M+1)r − 1

)
x−u+(−M+1)ry−v+1+(−M+1)s.

Here r, s, u, v,M ∈ Z, D = rv − su = 4; G = gcd(r, s) = 2; r = 2r′, s = 2s′; c0, c1 ∈ C, c0 6= 0.
This corresponds to L = 0.
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D4G2E2F1(b)

π(k)(x) = (−1)s
′+1q−s

′
x, π(k)(y) = −qr′y,

π(e)(x) = a0

(
1 + (−1)s

′
q−s

′+v+Ms
)
xu+1+Mryv+Ms

+ a1

(
1 + (−1)s

′
q−s

′+v+(M+1)s
)
xu+1+(M+1)ryv+(M+1)s,

π(e)(y) = a0

(
qu+Mr + qr

′)
xu+Mryv+1+Ms

+ a1

(
qu+(M+1)r + qr

′)
xu+(M+1)ryv+1+(M+1)s,

π(f)(x) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(
(−1)s

′+1q−s
′ − q−v−Ms

)
x−u+1−Mry−v−Ms,

π(f)(y) = a−1
0 q(u+Mr)(v+Ms)+3

(
1− q2

)−2(−qr′−u−Mr − 1
)
x−u−Mry−v+1−Ms.

Here r, s, u, v,M ∈ Z, D = rv − su = 4; G = gcd(r, s) = 2; r = 2r′, s = 2s′; a0, a1 ∈ C, a0 6= 0.
This corresponds to L = 1.

We conclude our list of symmetries with the following

Proof of Main Theorem. The completeness of list of symmetries with σ 6= I and the list
of generic symmetries (those with the weight constants being subject to the assumptions of
Theorem 3.4) has been established in [8].

As for the non-generic symmetries listed in this Section, these are determined by setting
the action of generators of Uq(sl2) on the generators of Cq

[
x±1, y±1

]
. To see that such an

action extends to a well-defined Uq(sl2)-symmetry on Cq
[
x±1, y±1

]
, one needs only to verify

that everything passes through the relations in Uq(sl2) and in Cq
[
x±1, y±1

]
. This is a matter of

routine calculations.
To see that the list of non-generic symmetries is complete, one has to observe that our

exposition first separates out all the admissible collections of parameters for such symmetries
(Section 4), and then exhaust these collections in writing down the associated symmetries in
Section 5. �

Acknowledgements

The author would like to thank the anonymous referees for a large number of comments and
suggestions that substantially improved the initial version of this paper.

References

[1] Abe E., Hopf algebras, Cambridge Tracts in Mathematics, Vol. 74, Cambridge University Press, Cambridge –
New York, 1980.
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