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† Faculty of Physics, Division of Mathematical Physics, A. Mickiewicz University,
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Key words: Lax representation; Stäckel system; Benenti system; Hamiltonian mechanics

2010 Mathematics Subject Classification: 70H06; 37J35

1 Introduction

Classical Stäckel systems belong to important class of integrable and separable Hamiltonian
ODE’s. The constants of motion of these systems are quadratic in momenta and describe many
physical systems of classical mechanics. The Stäckel systems are defined by separation relations,
i.e., relations involving canonical variables (λi, µi)i=1,...,n in which the Hamilton–Jacobi equations
separate to a system of decoupled ordinary differential equations. The separation relations of
classical Stäckel system are represented by n algebraic equations of the form

σi(λi) +

n∑
k=1

HkSik(λi) =
1

2
fi(λi)µ

2
i , i = 1, 2, . . . , n, (1.1)

where n is the number of degrees of freedom of the system, i.e., 2n is the dimension of the
corresponding phase space on which the system is defined, H1, H2, . . . ,Hn are n Hamiltonians,
f , σ and S are arbitrary smooth functions. Solving the system (1.1), under assumption that
detS 6= 0, with respect to all Hi we get n Hamiltonians expressed in variables (λi, µi)i=1,...,n,
which from construction will be in involution, i.e., their Poisson brackets vanish {Hi, Hj} = 0,
and which Hamilton–Jacobi equations separate. In other words the system (1.1) describes
a Liouville-integrable and separable Hamiltonian system.

The special, but particularly important class of Stäckel systems is the Benenti class [1, 2, 3].
This class is described by the following separation relations

σi(λi) +H1λ
n−1
i +H2λ

n−2
i + · · ·+Hn =

1

2
fi(λi)µ

2
i , i = 1, 2, . . . , n. (1.2)

There is an extended literature on systems from class (1.2), however less can be found on
their Lax representation. A Lax representation of a Liouville integrable Hamiltonian system is
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a set of matrices L, Uk (k = 1, 2, . . . , n) which satisfy the system of Lax equations

dL

dtk
= [Uk, L], k = 1, 2, . . . , n, (1.3)

under the assumption that the time evolution with respect to tk is governed by the Hamiltonian
vector field XHk

.
In the paper we find an infinite family of Lax representations for an arbitrary Stäckel system

from the Benenti class generated by the following canonical form of separation curves

σ(λ) +
n∑
k=1

Hkλ
n−k =

1

2
f(λ)µ2, (1.4)

where the spectral parameter λ is real and the functions f(λ) and σ(λ) are smooth and real
valued. Separation relations (1.2) are reconstructed by n copies of (1.4) with (λi, µi)i=1,...,n.
In literature, the reader can find Lax representation for systems related to various subcases of
separation curves from the family (1.4). First constructions of Lax representation for separable
systems with separation curves of particular hyperelliptic form was constructed by Mumford [10].
For σ(λ) in polynomial form and f(λ) = λ2r, r ∈ N, Lax equations were constructed expli-
citly in [14] and analyzed in particular coordinate frames. In [8], using different technique,
Lax representation was constructed for the subclass of separation curves (1.4) with f(λ) being
polynomials of order n+ 1, n and n− 1, respectively, with distinct roots. Yet another subcases
of family (1.4) together with the construction of Lax representations by various techniques, the
reader can find in [11, 13].

Here we present the explicit form of infinite family of admissible Lax representations, for
systems generated by (1.4) with σ(λ) and f(λ) being arbitrary smooth real valued functions, in
separation coordinates and in so called Viète coordinates.

The paper is organized as follows. In Section 2 we present basic facts about Benenti sys-
tems. In Section 3 we present in explicit form the infinite family of Lax matrices L(λ) and Lax
equations (1.3) in separation coordinates and state that the characteristic equation of each Lax
matrix corresponds to the separation curve (1.4) of Benenti system. All results of this section
we gather in Theorem 3.2, which we prove in Section 4. Section 5 contains the particular Lax
representations in Viète coordinates in which many formulas simplify. Section 6 contains several
examples illustrating the theory. We end the article with some comments concerning the main
result and its further application.

2 Preliminaries

Let us consider separable systems generated by separation curves for canonical coordinates in
the form (1.4). The Poisson bracket in canonical coordinates (λi, µi)i=1,...,n takes the canonical
form

{f, g} =
n∑
i=1

(
∂f

∂λi

∂g

∂µi
− ∂f

∂µi

∂g

∂λi

)
.

In particular

{λi, µj} = δij , {λi, λj} = {µi, µj} = 0.

By taking n copies of (1.4) with (λ, µ) = (λi, µi), i = 1, . . . , n, we get a system of n linear
equations for Hk:

H1λ
n−1
1 +H2λ

n−2
1 + · · ·+Hn = F (λ1, µ1),



Lax Representations for Separable Systems from Benenti Class 3

H1λ
n−1
2 +H2λ

n−2
2 + · · ·+Hn = F (λ2, µ2),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
H1λ

n−1
n +H2λ

n−2
n + · · ·+Hn = F (λn, µn),

where F (x, y) = 1
2f(x)y2 − σ(x). Its solution gives us n real valued Hamiltonians

Hk(λ, µ) = Ek(λ, µ) + Vk(λ) = −
n∑
i=1

∂ρk
∂λi

F (λi, µi)

∆i
, (2.1)

and related evolution equations

dλi
dtk

= {λi, Hk},
dµi
dtk

= {µi, Hk}, i, k = 1, . . . , n, (2.2)

where

ρk = (−1)ksk, ∆i =
∏
k 6=i

(λi − λk),

and sk are elementary symmetric polynomials. From the linearity of (1.2), geodesic parts Ek
are defined by

n∑
j=1

Ejλ
n−j
i =

1

2
f(λi)µ

2
i , i = 1, . . . , n,

and in canonical coordinates (λi, µi)i=1,...,n take the form [4]

Ej(λ, µ) = −1

2

n∑
i=1

∂ρj
∂λi

f(λi)µ
2
i

∆i
=

1

2

n∑
i=1

(KjG)ii µ2i , (2.3)

where G is contravariant metric tensor defined by E1 and Kj are Killing tensors of G:

Grs =
f(λr)

∆r
δrs, (Kj)

r
s = −∂ρj

∂λr
δrs .

Potentials Vk, defined by

σ(λi) +

n∑
j=1

Vjλ
n−j
i = 0, i = 1, . . . , n (2.4)

take the form

Vk(λ) =
n∑
i=1

∂ρk
∂λi

σ(λi)

∆i
.

In particular, for σ(λ) = λγ , γ ∈ Z, the corresponding potentials V
(γ)
k , called basic potentials,

are constructed by the formula [7]

V (γ) = RγV (0), V (γ) =
(
V

(γ)
1 , . . . , V (γ)

n

)T
,

where

R =


−ρ1 1 0 0

... 0
. . . 0

... 0 0 1
−ρn 0 0 0

 , R−1 =


0 0 0 − 1

ρn

1 0 0
...

0
. . . 0

...
0 0 1 −ρn−1

ρn
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and V (0) = (0, . . . , 0,−1)T. Notice that for γ = 0, . . . , n− 1

V
(γ)
k = −δk,n−γ

that is

V (0) = (0, . . . , 0,−1)T, . . . , V (n−1) = (−1, 0, . . . , 0)T.

The first nontrivial positive potential is

V (n) = (ρ1, . . . , ρn)T

and the negative one

V (−1) =

(
1

ρn
, . . . ,

ρn−1
ρn

)T

.

3 Lax representation in separation coordinates

In what follows we will assume that the functions f(λ) and σ(λ) appearing in the separation
curve (1.4) are smooth, real valued and defined on an open subset U ⊂ R such that for any
phase space point (λ1, . . . , λn, µ1, . . . , µn) each λi ∈ U , i = 1, 2, . . . , n. Moreover, we will require
that f(λ) 6= 0 for every λ ∈ U . In order to describe the Lax representation let us investigate the
division of a smooth function on U by a polynomial.

Lemma 3.1. Let b(λ) be a smooth function on U and

a(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn) (3.1)

be a polynomial of order n whose roots λ1, λ2, . . . , λn ∈ U , then the fraction b(λ)
a(λ) can be uniquely

written as

b(λ)

a(λ)
= h(λ) +

r(λ)

a(λ)
, (3.2)

where h(λ) is a smooth function on U and r(λ) is a polynomial of order less than n.

Proof. We calculate that

b(λ)

a(λ)
=

h1(λ)

(λ− λ2)(λ− λ3) · · · (λ− λn)
+
h0(λ1)

a(λ)

=
h2(λ)

(λ− λ3)(λ− λ4) · · · (λ− λn)
+
h0(λ1) + h1(λ2)(λ− λ1)

a(λ)
= · · ·

= hn(λ) +
h0(λ1) + h1(λ2)(λ− λ1) + · · ·+ hn−1(λn)(λ− λ1) · · · (λ− λn−1)

a(λ)
,

where

h0(λ) = b(λ), hi(λ) =
hi−1(λ)− hi−1(λi)

λ− λi
, i = 1, 2, . . . , n.

From the Taylor theorem we can see that each function hi(λ) is smooth on U . In particular, we
have that

lim
λ→λi

dk

dλk
hi(λ) =

1

k + 1

dk+1

dλk+1
hi−1(λi).



Lax Representations for Separable Systems from Benenti Class 5

Putting h(λ) = hn(λ) and r(λ) = h0(λ1) +h1(λ2)(λ−λ1) + · · ·+hn−1(λn)(λ−λ1) · · · (λ−λn−1)
we get (3.2). The uniqueness of decomposition (3.2) follows from the fact that if

b(λ)

a(λ)
= h1(λ) +

r1(λ)

a(λ)
= h2(λ) +

r2(λ)

a(λ)
,

then

h1(λ)− h2(λ) =
r2(λ)− r1(λ)

a(λ)
,

where the left hand side is a smooth function on U and the right hand side is a rational function
with singularities at λ1, λ2, . . . , λn ∈ U . Therefore, h1(λ)−h2(λ) = 0 and r2(λ)− r1(λ) = 0. �

We will denote h(λ) in the decomposition (3.2) by
[ b(λ)
a(λ)

]
+

and r(λ) by b(λ) mod a(λ). In
practice both these functions can be calculated using the recursive formulas derived in the proof
of Lemma 3.1. In a particular case when b(λ) is a polynomial or a pure Laurent polynomial
we may equivalently use the division algorithms for the division of polynomial by polynomial

and the division of pure Laurent polynomial by polynomial. For example if b(λ) =
m∑
k=0

bkλ
k is

a polynomial of order m and a(λ) is a polynomial of order n given by (3.1), such that m ≥ n,[ b(λ)
a(λ)

]
+

is a polynomial part of b(λ)
a(λ) of order (m− n) and b(λ) mod a(λ) is the reminder of b(λ)

a(λ) ,
i.e.,

b(λ) mod a(λ) = rem

[
b(λ)

a(λ)

]
,

being a polynomial of order less than n. In the division algorithm we divide b(λ) by the highest

order term of a(λ). On the other hand if b(λ) = c
(
λ−1

)
=

m∑
k=1

ckλ
−k is a pure Laurent polynomial

of order m and a(λ) is a polynomial of order n given by (3.1),
[ c(λ−1)
a(λ)

]
+

is a pure Laurent

polynomial of order m and c
(
λ−1

)
mod a(λ) is the reminder of c(λ−1)

a(λ) being again a polynomial

of degree less than n. In the division algorithm we divide c
(
λ−1

)
by the lowest order term

of a(λ). In the case of arbitrary Laurent polynomial P
(
λ, λ−1

)
= b(λ) + c

(
λ−1

)
, the division by

polynomial a(λ) splits onto two parts described above. Note, that for a smooth function b(λ)
and a polynomial a(λ) there holds

b(λ) = b(λ) mod a(λ) + a(λ)

[
b(λ)

a(λ)

]
+

.

We will consider infinitely many non-equivalent Lax matrices L ∈ sl(2,R) parameterized by
smooth functions g(λ), everywhere non-zero on the same domain U as functions f(λ) and σ(λ).
The Lax matrices in the canonical representation (λ, µ), parameterized by g(λ), are taken in the
form

L(λ) =

(
v(λ) u(λ)
w(λ) −v(λ)

)
, (3.3)

where

u(λ) =
n∏
k=1

(λ− λk) =
n∑
k=0

ρkλ
n−k, ρ0 ≡ 1 (3.4)
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and

v(λ) =

n∑
i=1

g(λi)µi
∏
k 6=i

λ− λk
λi − λk

=

n∑
i=1

u(λ)

λ− λi
g(λi)µi

∆i

(3.6)
= −

n∑
k=1

[
n∑
i=1

∂ρk
∂λi

g(λi)µi
∆i

]
λn−k

= −
n−1∑
k=0

[
n∑
i=1

∂ρn−k
∂λi

g(λi)µi
∆i

]
λk. (3.5)

Notice that u(λi) = 0, v(λi) = g(λi)µi and

∆i = ui(λ), ui(λ) :=
u(λ)

λ− λi
= −∂u(λ)

∂λi
=
∏
k 6=i

(λ− λk) = −
n∑
k=1

∂ρk
∂λi

λn−k. (3.6)

Moreover,

w(λ) = −2
g2(λ)

f(λ)

[
F (λ, v(λ)/g(λ))

u(λ)

]
+

, (3.7)

where F (x, y) = 1
2f(x)y2−σ(x). The function w(λ) splits onto kinetic part wE(λ) and potential

part wV (λ) respectively:

w(λ) = wE(λ) + wV (λ) = −g
2(λ)

f(λ)

[
f(λ)v2(λ)/g2(λ)

u(λ)

]
+

+ 2
g2(λ)

f(λ)

[
σ(λ)

u(λ)

]
+

. (3.8)

The main result we state in the following theorem.

Theorem 3.2. For arbitrary everywhere non-zero smooth function g(λ), separation curve (1.4)
that generates dynamical systems (2.1), is reconstructed as follows

det [L(λ)− g(λ)µI] = 0 ⇐⇒ σ(λ) +

n∑
k=1

Hkλ
n−1 =

1

2
f(λ)µ2. (3.9)

Moreover, Lax equations for systems (2.2), parameterized by g(λ), take the form

d

dtk
L(λ) = [Uk(λ), L(λ)], (3.10)

where the Lax matrices L(λ) are defined by (3.3)–(3.7) and

Uk(λ) =

[
Bk(λ)

u(λ)

]
+

, Bk(λ) =
1

2

f(λ)

g(λ)

[
u(λ)

λn−k+1

]
+

L(λ). (3.11)

The proof of the above theorem is involved so we present it in the separate section.
As an example let us find explicit formulas for the matrices L(λ) and Uk(λ) written in

a coordinate independent way for a general Stäckel system from the Benenti class in the case of
two degrees of freedom, i.e., n = 2. A separation curve of that system has the form

σ(λ) +H1λ+H2 =
1

2
f(λ)µ2,

where f(λ) and σ(λ) are smooth functions. According to (2.1) the Hamiltonians in separation
coordinates are equal

H1(λ, µ) =
F (λ1, µ1)− F (λ2, µ2)

λ1 − λ2
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=
1

2

f(λ1)

λ1 − λ2
µ21 −

1

2

f(λ2)

λ1 − λ2
µ22 +

σ(λ2)− σ(λ1)

λ1 − λ2
,

H2(λ, µ) =
λ1F (λ2, µ2)− λ2F (λ1, µ1)

λ1 − λ2

=
1

2

λ1f(λ2)

λ1 − λ2
µ22 −

1

2

λ2f(λ1)

λ1 − λ2
µ21 +

λ2σ(λ1)− λ1σ(λ2)

λ1 − λ2
.

The Lax matrix L(λ) parameterized by a general everywhere non-zero smooth function g(λ) will
be equal

L(λ) =

(
v(λ) u(λ)
w(λ) −v(λ)

)
,

where in accordance to (3.4), (3.5), (3.7) and (4.1)

u(λ) = λ2 + ρ1λ+ ρ2,

v(λ) = v1λ+ v2,

w(λ) = −v
2(λ)

u(λ)
+

2g2(λ)σ(λ)

f(λ)u(λ)
+

2g2(λ)

f(λ)u(λ)
(H1λ+H2),

where in separation coordinates

ρ1 = −λ1 − λ2, ρ2 = λ1λ2,

v1 =
g(λ1)µ1 − g(λ2)µ2

λ1 − λ2
, v2 =

λ1g(λ2)µ2 − λ2g(λ1)µ1
λ1 − λ2

.

We find that

Uk(λ) =
1

2u(λ)

(
ak(λ) bk(λ)
ck(λ) −ak(λ)

)
, k = 1, 2,

where

a1(λ) =
f(λ)v(λ)

g(λ)
+ {u(λ), H1}, a2(λ) =

(λ+ ρ1)f(λ)v(λ)

g(λ)
+ {u(λ), H2},

b1(λ) =
f(λ)u(λ)

g(λ)
, b2(λ) =

(λ+ ρ1)f(λ)u(λ)

g(λ)
,

c1(λ) =
f(λ)w(λ)

g(λ)
− 2{v(λ), H1}, c2(λ) =

(λ+ ρ1)f(λ)w(λ)

g(λ)
− 2{v(λ), H2}.

Indeed, for a smooth function b(λ), with the use of the recursive formulas derived in the proof
of Lemma 3.1, we get that[

b(λ)

u(λ)

]
+

=

b(λ)−b(λ1)
λ−λ1 − b(λ2)−b(λ1)

λ2−λ1
λ− λ2

=
b(λ)

u(λ)
− 1

u(λ)

(
b(λ1)− b(λ2)
λ1 − λ2

λ+
λ1b(λ2)− λ2b(λ1)

λ1 − λ2

)
(3.12)

and [
b(λ)

u(λ)

]
+

∣∣∣∣
λ=λk

= (−1)k
(
− b′(λk)

λ1 − λ2
+
b(λ1)− b(λ2)

(λ1 − λ2)2

)
, k = 1, 2. (3.13)
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From (3.13), by putting b(λ) = F (λ, v(λ)/g(λ)), we can calculate w(λ1) and w(λ2) and then

f(λ1)w(λ1)

2(λ1 − λ2)g(λ1)
− f(λ2)w(λ2)

2(λ1 − λ2)g(λ2)
=
∂v1
∂λ1

∂H1

∂µ1
+
∂v1
∂λ2

∂H1

∂µ2
− ∂v1
∂µ1

∂H1

∂λ1
− ∂v1
∂µ2

∂H1

∂λ2

= {v1, H1}. (3.14)

Using the fact that

∂v2
∂λ1

= −λ2
∂v1
∂λ1

,
∂v2
∂λ2

= −λ1
∂v1
∂λ2

,
∂v2
∂µ1

= −λ2
∂v1
∂µ1

,
∂v2
∂µ2

= −λ1
∂v1
∂µ2

,

∂H2

∂λ1
= −λ2

∂H1

∂λ1
,

∂H2

∂λ2
= −λ1

∂H1

∂λ2
,

∂H2

∂µ1
= −λ2

∂H1

∂µ1
,

∂H2

∂µ2
= −λ1

∂H1

∂µ2
,

we also get

− λ2f(λ1)w(λ1)

2(λ1 − λ2)g(λ1)
+

λ1f(λ2)w(λ2)

2(λ1 − λ2)g(λ2)
(3.15)

= −λ2
∂v1
∂λ1

∂H1

∂µ1
− λ1

∂v1
∂λ2

∂H1

∂µ2
+ λ2

∂v1
∂µ1

∂H1

∂λ1
+ λ1

∂v1
∂µ2

∂H1

∂λ2
= {v2, H1} = {v1, H2},

λ22f(λ1)w(λ1)

2(λ1 − λ2)g(λ1)
− λ21f(λ2)w(λ2)

2(λ1 − λ2)g(λ2)

= λ22
∂v1
∂λ1

∂H1

∂µ1
+ λ21

∂v1
∂λ2

∂H1

∂µ2
− λ22

∂v1
∂µ1

∂H1

∂λ1
− λ21

∂v1
∂µ2

∂H1

∂λ2
= {v2, H2}. (3.16)

From (3.12), by putting b(λ) = f(λ)w(λ)
2g(λ) and b(λ) = (λ+ρ1)f(λ)w(λ)

2g(λ) , and using (3.14), (3.15),

(3.16) and[
u(λ)

λ

]
+

= λ+ ρ1,

[
u(λ)

λ2

]
+

= 1,

we get formulas for c1(λ) and c2(λ). Similarly we calculate a1(λ), a2(λ), b1(λ) and b2(λ).
Let us notice that for a given Lax representation (L,U), with fixed g(λ), there exist infinitely

many gauge equivalent Lax representations (L′, U ′). Actually, let Ω be a 2 × 2 invertible ma-
trix, with matrix elements dependent on phase space coordinates but independent on spectral
parameter λ. Then, for

L′ = ΩLΩ−1, U ′ = ΩUΩ−1 + ΩtΩ
−1

one can show that

Lt = [U,L] ⇐⇒ L′t = [U ′, L′]

and

det(L− g(λ)µI) = det(L′ − g(λ)µI) = 0.

Hence, from the construction, such class of equivalent Lax representations has the same λ-struc-
ture.

4 Proof of Theorem 3.2

First, let us prove the following lemma.
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Lemma 4.1. The following equality holds

n∑
k=1

Hkλ
n−k = F (λ, v(λ)/g(λ)) mod u(λ) (4.1)

for F (x, y) = 1
2f(x)y2 − σ(x) and Hk defined by the linear system (1.2).

Proof. In the proof we will use the property that a polynomial of order less than n is uniquely
specified by its values at n distinct points. The functions Hk = Hk(λ1, . . . , λn, µ1, . . . , µn) satisfy
the equations (1.2)

n∑
k=1

Hk(λ1, . . . , λn, µ1, . . . , µn)λn−ki = F (λi, µi), i = 1, 2, . . . , n.

For fixed λ1, . . . , λn, µ1, . . . , µn such that λi 6= λj for i 6= j the expression

n∑
k=1

Hk(λ1, . . . , λn, µ1, . . . , µn)λn−k

is a polynomial in λ of order n− 1, which takes values F (λi, µi) at λ = λi. On the other hand

F (λ, v(λ)/g(λ)) mod u(λ) = F (λ, v(λ)/g(λ))− u(λ)

[
F (λ, v(λ)/g(λ))

u(λ)

]
+

is also a polynomial in λ of order n− 1, which takes the same values F (λi, µi) at λ = λi, since
u(λi) = 0 and v(λi) = g(λi)µi. This proves the equality (4.1). �

Now we can pass to the proof of formula (3.9).

Proof of (3.9). We calculate that

det[L(λ)− g(λ)µI] = det

(
v(λ)− g(λ)µ u(λ)

w(λ) −v(λ)− g(λ)µ

)
= −(v(λ)− g(λ)µ)(v(λ) + g(λ)µ)− u(λ)w(λ)

= −v2(λ) + g2(λ)µ2 + 2
g2(λ)

f(λ)
u(λ)

[
F (λ, v(λ)/g(λ))

u(λ)

]
+

= −2
g2(λ)

f(λ)

(
1

2
f(λ)v2(λ)/g2(λ)− σ(λ)− u(λ)

[
F (λ, v(λ)/g(λ))

u(λ)

]
+

)
− 2

g2(λ)

f(λ)
σ(λ) + g2(λ)µ2

= −2
g2(λ)

f(λ)

(
F (λ, v(λ)/g(λ)) mod u(λ)

)
+ 2

g2(λ)

f(λ)

(
1

2
f(λ)µ2 − σ(λ)

)
= 2

g2(λ)

f(λ)

(
−

n∑
k=1

Hkλ
n−k +

1

2
f(λ)µ2 − σ(λ)

)
,

where in the last equality we used Lemma 4.1. This proves (3.9). �

Now we will show that the Lax equations (3.10) hold. The proof is based on the following
lemmas.
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Lemma 4.2. The Poisson bracket of u(λ) and v(λ) is equal

{u(λ), u(λ′)} = 0, {v(λ), v(λ′)} = 0, (4.2a)

{u(λ), v(λ′)} = {u(λ′), v(λ)} = −
n∑
k=1

(
g(λ)

[
u(λ)

λn−k+1

]
+

mod u(λ)

)
λ′n−k. (4.2b)

Proof. In the proof we will use the property that a polynomial of order less than n is uniquely
specified by its values at n distinct points. The first equality in (4.2a) is straightforward. The
second equality follows from

{v(λi), v(λj)} = {g(λi)µi, g(λj)µj} = 0 for i, j = 1, 2, . . . , n.

For the proof of (4.2b) note that

{ρk, v(λj)} = {ρk, g(λj)µj} = (−1)k
∑

1≤l1<l2<···<lk≤n
{λl1λl2 · · ·λlk , g(λj)µj}

= −g(λj)
k−1∑
m=0

λmj ρk−m−1{λj , µj} = −g(λj)

k−1∑
m=0

λmj ρk−m−1

is a value of the polynomial(
−g(λ)

k−1∑
m=0

λmρk−m−1

)
mod u(λ) at λ = λj ,

since u(λj) = 0. Because this polynomial is of order less than n we can write

{ρk, v(λ)} =

(
−g(λ)

k−1∑
m=0

λmρk−m−1

)
mod u(λ) = −g(λ)

[
u(λ)

λn−k+1

]
+

mod u(λ).

Thus

{u(λ′), v(λ)} =
n∑
k=1

{ρk, v(λ)}λ′n−k = −
n∑
k=1

(
g(λ)

[
u(λ)

λn−k+1

]
+

mod u(λ)

)
λ′n−k,

which proves the second equality in (4.2b). For the proof of the first equality in (4.2b) we
calculate that

{u(λ′), v(λ)} =

{
n∏
i=1

(λ′ − λi),
n∑
l=1

g(λl)µl
∏
j 6=l

λ− λj
λl − λj

}

=
n∑
l=1

g(λl)

{
n∏
i=1

(λ′ − λi), µl

}∏
j 6=l

λ− λj
λl − λj

= −
n∑
l=1

g(λl){λl, µl}
∏
j 6=l

(λ′ − λj)(λ− λj)
λl − λj

= {u(λ), v(λ′)}. �

Lemma 4.3. Let q(λ) be a polynomial of order n and p(λ) a smooth function defined on a domain
containing all roots of q(λ), then

n∑
k=1

λ′n−kp(λ)
[
λ−n+k−1q(λ)

]
+

mod q(λ) =

n∑
k=1

λn−kp(λ′)
[
λ′−n+k−1q(λ′)

]
+

mod q(λ′).
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Proof. We have that

p(λ)
[
λ−n+k−1q(λ)

]
+

mod q(λ) = r(λ)
[
λ−n+k−1q(λ)

]
+

mod q(λ),

where r(λ) = p(λ) mod q(λ). Since
[ r(λ)
q(λ)

]
+

= 0 it further follows that

p(λ)
[
λ−n+k−1q(λ)

]
+

mod q(λ) = r(λ)
[
λ−n+k−1q(λ)

]
+
− q(λ)

[
r(λ)

q(λ)

[
λ−n+k−1q(λ)

]
+

]
+

= r(λ)
[
λ−n+k−1q(λ)

]
+
− q(λ)

[
r(λ)

q(λ)
λ−n+k−1q(λ)

]
+

= r(λ)
[
λ−n+k−1q(λ)

]
+
− q(λ)

[
λ−n+k−1r(λ)

]
+
.

Using this equality we get

n∑
k=1

λ′n−kp(λ)
[
λ−n+k−1q(λ)

]
+

mod q(λ)

=
n∑
k=1

λ′n−k
(
r(λ)

[
λ−n+k−1q(λ)

]
+
− q(λ)

[
λ−n+k−1r(λ)

]
+

)
=

n∑
k=1

λn−k
(
r(λ′)

[
λ′−n+k−1q(λ′)

]
+
− q(λ′)

[
λ′−n+k−1r(λ′)

]
+

)
=

n∑
k=1

λn−kp(λ′)
[
λ′−n+k−1q(λ′)

]
+

mod q(λ′),

where the second equality is easily proven by expanding the polynomials. �

Lemma 4.4. The action of Hamiltonian vector fields Xk = { · , Hk} on u(λ) and v(λ) is equal

Xku(λ) = −∂F
∂y

(λ, v(λ)/g(λ))

[
u(λ)

λn−k+1

]
+

mod u(λ), (4.3a)

Xkv(λ) = −g(λ)

[
F (λ, v(λ)/g(λ))

u(λ)

]
+

[
u(λ)

λn−k+1

]
+

mod u(λ), (4.3b)

where F (x, y) = 1
2f(x)y2 − σ(x).

Proof. Using Lemmas 4.1, 4.2 and 4.3 we calculate that

n∑
k=1

{u(λ′), Hk}λn−k = {u(λ′), F (λ, v(λ)/g(λ)) mod u(λ)}

=

n∑
i=1

∂u(λ′)

∂λi

∂F

∂y
(λ, v(λ)/g(λ))

1

g(λ)

∂v(λ)

∂µi
mod u(λ)

= {u(λ′), v(λ)} 1

g(λ)

∂F

∂y
(λ, v(λ)/g(λ)) mod u(λ)

= −
n∑
k=1

(
∂F

∂y
(λ, v(λ)/g(λ))

[
u(λ)

λn−k+1

]
+

mod u(λ)

)
λ′n−k

= −
n∑
k=1

(
∂F

∂y
(λ′, v(λ′)/g(λ′))

[
u(λ′)

λ′n−k+1

]
+

mod u(λ′)

)
λn−k.
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By comparing the coefficients of λn−k on the left and right hand side of the above equality we
get equation (4.3a). For the proof of (4.3b) we first calculate

∂

∂λi

(
F (λ, v(λ)/g(λ)) mod u(λ)

)
=

∂

∂λi

(
F (λ, v(λ)/g(λ))− u(λ)

[
F (λ, v(λ)/g(λ))

u(λ)

]
+

)
=

1

g(λ)

∂F

∂y
(λ, v(λ)/g(λ))

∂v(λ)

∂λi
− ∂u(λ)

∂λi

[
F (λ, v(λ)/g(λ))

u(λ)

]
+

− u(λ)

[
1

g(λ)u(λ)

∂F

∂y
(λ, v(λ)/g(λ))

∂v(λ)

∂λi
− F (λ, v(λ)/g(λ))

u2(λ)

∂u(λ)

∂λi

]
+

=
1

g(λ)

∂F

∂y
(λ, v(λ)/g(λ))

∂v(λ)

∂λi
mod u(λ)− ∂u(λ)

∂λi

[
F (λ, v(λ)/g(λ))

u(λ)

]
+

+ u(λ)

[
F (λ, v(λ)/g(λ))

u2(λ)

∂u(λ)

∂λi

]
+

.

Since
[

1
u(λ)

∂u(λ)
∂λi

]
+

= 0 we can write[
1

u(λ)

∂u(λ)

∂λi

F (λ, v(λ)/g(λ))

u(λ)

]
+

=

[
1

u(λ)

∂u(λ)

∂λi

[
F (λ, v(λ)/g(λ))

u(λ)

]
+

]
+

=
∂u(λ)

∂λi

[
1

u(λ)

[
F (λ, v(λ)/g(λ))

u(λ)

]
+

]
+

and we get

∂

∂λi

(
F (λ, v(λ)/g(λ)) mod u(λ)

)
=

1

g(λ)

∂v(λ)

∂λi

∂F

∂y
(λ, v(λ)/g(λ)) mod u(λ)

− ∂u(λ)

∂λi

[
F (λ, v(λ)/g(λ))

u(λ)

]
+

mod u(λ).

Using this equality and Lemmas 4.1, 4.2 and 4.3 we have

n∑
k=1

{v(λ′), Hk}λn−k = {v(λ′), F (λ, v(λ)/g(λ)) mod u(λ)}

=
n∑
i=1

(
∂v(λ′)

∂λi

∂v(λ)

∂µi

1

g(λ)

∂F

∂y
(λ, v(λ)/g(λ)) mod u(λ)

− ∂v(λ′)

∂µi

∂v(λ)

∂λi

1

g(λ)

∂F

∂y
(λ, v(λ)/g(λ)) mod u(λ)

+
∂v(λ′)

∂µi

∂u(λ)

∂λi

[
F (λ, v(λ)/g(λ))

u(λ)

]
+

mod u(λ)

)

= {v(λ′), v(λ)} 1

g(λ)

∂F

∂y
(λ, v(λ)/g(λ)) mod u(λ)

+ {u(λ), v(λ′)}
[
F (λ, v(λ)/g(λ))

u(λ)

]
+

mod u(λ)

= −
n∑
k=1

(
g(λ)

[
F (λ, v(λ)/g(λ))

u(λ)

]
+

[
u(λ)

λn−k+1

]
+

mod u(λ)

)
λ′n−k

= −
n∑
k=1

(
g(λ′)

[
F (λ′, v(λ′)/g(λ′))

u(λ′)

]
+

[
u(λ′)

λ′n−k+1

]
+

mod u(λ′)

)
λn−k.

This proves equation (4.3b). �
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Proof of (3.10). The equations (4.3) can be rewritten in the form

Xku(λ) = −f(λ)

g(λ)
v(λ)

[
u(λ)

λn−k+1

]
+

+ u(λ)

[
f(λ)

g(λ)

v(λ)

u(λ)

[
u(λ)

λn−k+1

]
+

]
+

, (4.4a)

Xkv(λ) =
1

2

f(λ)

g(λ)
w(λ)

[
u(λ)

λn−k+1

]
+

− 1

2
u(λ)

[
f(λ)

g(λ)

w(λ)

u(λ)

[
u(λ)

λn−k+1

]
+

]
+

. (4.4b)

We can now compute Xkw(λ)

Xkw(λ) = −2
g2(λ)

f(λ)
Xk

[
F (λ, v(λ)/g(λ))

u(λ)

]
+

= −2
g2(λ)

f(λ)

[
f(λ)

g2(λ)

v(λ)

u(λ)
Xkv(λ)

]
+

+ 2
g2(λ)

f(λ)

[
F (λ, v(λ)/g(λ))

u(λ)

Xku(λ)

u(λ)

]
+

.

Since
[Xku(λ)

u(λ)

]
+

= 0 we can write[
F (λ, v(λ)/g(λ))

u(λ)

Xku(λ)

u(λ)

]
+

=

[[
F (λ, v(λ)/g(λ))

u(λ)

]
+

Xku(λ)

u(λ)

]
+

= −1

2

[
f(λ)

g2(λ)

w(λ)

u(λ)
Xku(λ)

]
+

. (4.5)

By (4.4) and (4.5) we have

Xkw(λ) = − 2
g2(λ)

f(λ)

[
f(λ)

g2(λ)

v(λ)

u(λ)
Xkv(λ)

]
+

− g2(λ)

f(λ)

[
f(λ)

g2(λ)

w(λ)

u(λ)
Xku(λ)

]
+

=
g2(λ)

f(λ)

[
f(λ)

g2(λ)
v(λ)

[
f(λ)

g(λ)

w(λ)

u(λ)

[
u(λ)

λn−k+1

]
+

]
+

]
+

− g2(λ)

f(λ)

[
f(λ)

g2(λ)
w(λ)

[
f(λ)

g(λ)

v(λ)

u(λ)

[
u(λ)

λn−k+1

]
+

]
+

]
+

= − w(λ)

[
f(λ)

g(λ)

v(λ)

u(λ)

[
u(λ)

λn−k+1

]
+

]
+

+ v(λ)

[
f(λ)

g(λ)

w(λ)

u(λ)

[
u(λ)

λn−k+1

]
+

]
+

. (4.6)

From (4.4) and (4.6) we get

d

dtk
L(λ) = XkL(λ) = [Uk(λ), L(λ)]. �

5 Lax representation in Viète coordinates

Separation coordinates (λi, µi)i=1,...,n are important from the point of view of integrability of
considered systems, but not practical for our purpose, as for n > 2, matrix elements of any Lax
pair (L,Uk) contain in any case a complicated rational functions. So, let us express considered
systems and their Lax representations in so called Viète coordinates

qi = ρi(λ), pi = −
n∑
k=1

λn−ik µk
∆k

, i = 1, . . . , n. (5.1)

The advantage of such coordinates relies on the fact that for σ(λ), f(λ) and g(λ) of polynomial
form, all Hamiltonians and Lax matrix elements are polynomial functions of Viète coordinates
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as well. Here, just for the simplicity of formulas, we will consider the particular class of systems
where f(λ) = λm, g(λ) = λr and σ(λ) = λγ , m, r, γ ∈ Z.

The Hamiltonians (2.1) take the form

Hj =
∑
i,k

(KjGm)ikpjpk + V
(γ)
j (q),

where

(Gm)ik = −
k−1∑
l=0

qk−l−1V
(m+l)
i (q), (Kj)

i
k = −

j−1∑
l=0

ql−j−1V
(n+l−k)
i (q)

and basic potentials V (γ) in q coordinates are generated by the recursion matrix

R =


−q1 1 0 0

... 0
. . . 0

... 0 0 1
−qn 0 0 0

 , R−1 =


0 0 0 − 1

qn

1 0 0
...

0
. . . 0

...
0 0 1 − qn−1

qn

 .

For Lax representation, we get immediately

u(λ; q) =
n∑
k=0

qkλ
n−k, q0 ≡ 1. (5.2)

From (2.4) and (5.1) it follows that

n∑
k=1

λn+r−ik µk
∆k

= −
n∑
j=1

V
(n+r−i)
j

n∑
k=1

λn−jk µk
∆k

=
n∑
j=1

V
(n+r−i)
j pj .

So,

v(λ; q, p) = −
n∑
k=1

(
n∑
i=1

∂ρk
∂λi

λriµi
∆i

)
λn−k =

n∑
k=1

[
n∑
i=1

(
k−1∑
s=0

ρs
λr+k−s−1i µi

∆i

)]
λn−k

=
n∑
k=1

k−1∑
s=0

qs

 n∑
j=1

V
(r+k−s−1)
j pj

λn−k, (5.3)

where we used the identity

∂ρk
∂λi

= −
k−1∑
s=0

ρsλ
k−s−1
i .

Notice that in particular for r = 0

v(λ; q, p) = −
n∑
k=1

k−1∑
j=0

qk−j−1pn−j

λn−k.
Thus, the substitutions (5.2), (5.3), (3.8) and (3.11) in L(λ; q, p) and Uk(λ; q, p) lead to Lax

equations (3.10), for f(λ) = λm, g(λ) = λr, written in canonical (q, p) coordinates.
Besides, when f(λ) is a polynomial of order less or equal n, the contravariant metric tensor

G = diag

(
f(λ1)

∆1
, . . . ,

f(λn)

∆n

)
defined by E1 in (2.3) is flat, so one can pass from Viète coordinates to various admissible flat
coordinates [9].
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6 Examples

Example 6.1. Our first example is a system described by a separation curve of the canonical
form

λ5 +H1λ
2 +H2λ+H3 =

1

2
µ2,

i.e., n = 3 and f(λ) = 1. This is the case for which there exist flat coordinates [6], related to
Viète coordinates by

q1 = x1, q2 = x2 +
1

4
x21, q3 = x3 +

1

2
x1x2,

p1 = y1 −
1

2
x1y2 +

(
1

4
x21 −

1

2
x2

)
y3, p2 = y2 −

1

2
x1y3, p3 = y3.

In flat coordinates Hamiltonians are

H1 =
1

2
y22 + y1y3 +

1

2
x31 −

3

2
x1x2 + x3,

H2 = y1y2 +
1

2
x1y

2
2 −

1

2
x3y

2
3 +

1

2
x1y1y3 −

1

2
x2y2y3 +

3

16
x41 − x1x3 − x22,

H3 =
1

2
y21 +

1

8
x21y

2
2 +

1

8
x22y

2
3 +

1

2
x1y1y2 +

1

2
x2y1y3 −

(
1

4
x1x2 + x3

)
y2y3

+
3

4
x21x3 +

3

8
x31x2 − x2x3 −

1

2
x1x

2
2

and Lax representation for g(λ) = 1 takes the form

L =


−y3λ2 −

(
y2 + 1

2x1y3
)
λ

− y1 − 1
2x1y2 −

1
2x2y3

λ3 + x1λ
2 +

(
1
4x

2
1 + x2

)
λ

+ x3 + 1
2x1x2

2λ2 −
(
y23 + 2x1

)
λ

− 2y2y3 + 3
2x

2
1 − 2x2

y3λ
2 +

(
y2 + 1

2x1y3
)
λ

+ y1 + 1
2x1y2 + 1

2x2y3

 ,

U1 =

(
0 1

2

0 0

)
, U2 =

(
−1

2y3
1
2λ+ 1

2x1

1 1
2y3

)
,

U3 =

(
−1

2y3λ−
1
2y2 −

1
4x1y3

1
2λ

2 + 1
2x1λ+ 1

8x
2
1 + 1

2x2

λ− 1
2y

2
3 − x1 1

2y3λ+ 1
2y2 + 1

4x1y3

)
.

Example 6.2. Our second example is a system described by a separation curve of the canonical
form

H1λ+H2 =
1

2
λµ2 + λ4,

i.e., n = 2 and f(λ) = λ. This is one of the integrable cases of the Hènon–Heiles system.
Actually, in Cartesian coordinates, related to Viète coordinates by

q1 = −x1, q2 = −1

4
x22, p1 = −y1, p2 = −2y2

x2
,

both Hamiltonians are

H1 =
1

2
y21 +

1

2
y22 + x31 +

1

2
x1x

2
2,
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H2 =
1

2
x2y1y2 −

1

2
x1y

2
2 +

1

4
x21x

2
2 +

1

16
x42.

Lax representation for g(λ) = 1 takes the form

L =

 2y2
x2
λ+ y1 − 2x1y2

x2
λ2 − x1λ− 1

4x
2
2

−2λ−
(
4y22
x22

+ 2x1

)
+
(
4x1y22
x22
− 4y1y2

x2
− 2x21 − 1

2x
2
2

)
λ−1 −2y2

x2
λ− y1 + 2x1y2

x2

 ,

U1 =

(
y2
x2

1
2λ

−1 − y2
x2

)
, U2 =

 y2
x2
λ− x1y2

x2
+ 1

2y1
1
2λ

2 − 1
2x1λ

−λ− 2y22
x22
− x1 − y2

x2
λ+ x1y2

x2
− 1

2y1

 .

Lax representation for g(λ) = λ is

L =

(
y1λ+ 1

2x2y2 λ2 − x1λ− 1
4x

2
2

−2λ3 − 2x1λ
2 −

(
2x21 + 1

2x
2
2

)
λ+ y22 −y1λ− 1

2x2y2

)
,

U1 =

(
0 1

2

−λ− 2x1 0

)
, U2 =

(
1
2y1

1
2λ−

1
2x1

−λ2 − x1λ− x21 − 1
2x

2
2 −1

2y1

)
,

while Lax representation for g(λ) = λ2 is of the form

L =


(
x1y1 + 1

2x2y2
)
λ+ 1

4x
2
2y1 λ2 − x1λ− 1

4x
2
2

−2λ5 − 2x1λ
4 −

(
2x21 + 1

2x
2
2

)
λ3 +

(
y21 + y22

)
λ2

+ y1(x1y1 + x2y2)λ+ 1
2x1y

2
1

−
(
x1y1 + 1

2x2y2
)
λ− 1

4x
2
2y1

 ,

U1 =

(
−1

2y1λ
−1 1

2λ
−1

−λ2 − 2x1λ−
(
3x21 + 1

2x
2
2

)
− 1

2y
2
1λ
−1 1

2y1λ
−1

)
,

U2 =

(
1
2x1y1λ

−1 1
2 −

1
2x1λ

−1

λ3 − x1λ2 −
(
x21 + 1

2x
2
2

)
λ+ 1

2

(
y21 + y22 − x1x22

)
+ 1

2x1y
2
1λ
−1 −1

2x1y1λ
−1

)
.

Lax representations for g(λ) = 1 and g(λ) = λ2 are new one, at least to the knowledge of
authors, while that for g(λ) = λ is well known (see for example [12] or [11]).

Example 6.3. Our last example is a system described by a separation curve of the canonical
form

λ−2 +H1λ+H2 =
1

2
λ−1µ2,

i.e., n = 2 and f(λ) = λ−1. Contrary to the previous cases the metric defined by H1 is non-flat.
In Viète coordinates

H1 = −1

2

p21
q2
− q1p1p2

q2
+

1

2

(
1− q21

q2

)
p22 −

q1
q22
,

H2 = −1

2

q1p
2
1

q2
+

(
1− q21

q2

)
p1p2 +

(
q1 −

1

2

q31
q2

)
p22 +

1

q2
− q21
q22
.

Then, the Lax representation for g(λ) = 1 takes the form

L =

(
−p2λ− p1 − q1p2 λ2 + q1λ+ q2

− (p1+q1p2)2

q2
− 2q1

q22
+ 2

q2
λ−1 p2λ+ p1 + q1p2

)
,



Lax Representations for Separable Systems from Benenti Class 17

U1 =

 −1
2
p1+q1p2

q2
λ−1 1

2 + 1
2q1λ

−1

−
(
1
2
(p1+q1p2)2

q22
+ 2q1

q32

)
λ−1 + 1

q22
λ−2 1

2
p1+q1p2

q2
λ−1

 ,

U2 =

 −1
2
q1(p1+q1p2)

q2
λ−1 1

2λ
−1

−
(
1
2
(p1+q1p2)2−2

q22
+

2q21
q32

)
λ−1 + q1

q22
λ−2 1

2
q1(p1+q1p2)

q2
λ−1

 ,

for g(λ) = λ−1 we have

L =


p1+q1p2

q2
λ+ q1(p1+q1p2)

q2
− p2 λ2 + q1λ+ q2

− (p1+q1p2)2

q22
−
(
q1(p1+q1p2)2

q22
− 2(p1p2+q1p22)

q2

)
λ−1

− 2q1
q22
λ−2 + 2

q2
λ−3

−p1+q1p2
q2

λ− q1(p1+q1p2)
q2

+ p2

 ,

U1 =

(
0 1

2(
p1p2+q1p22

q22
− 1

2
q1(p1+q1p2)2+2

q32
+

2q21
q42

)
λ−1 − 2q1

q32
λ−2 + 1

q22
λ−3 0

)
,

U2 =


1
2
p1+q1p2

q2
1
2λ+ 1

2q1(
q1p2(p1+q1p2)

q22
− 1

2
q21(p1+q1p2)

2+6q1
q32

+
2q31
q42

)
λ−1

+
(

1
q22
− 2q21

q32

)
λ−2 + q1

q22
λ−3

−1
2
p1+q1p2

q2

 ,

and for g(λ) = λ

L =

( −p1λ+ q2p2 λ2 + q1λ+ q2

−
(
(p1+q1p2)2

q2
− p22 + 2q1

q22

)
λ2 +

(
2p1p2 + q1p

2
2 + 2

q2

)
λ− q2p22 p1λ− q2p2

)
,

U1 =

 1
2p2λ

−2 − 1
2
p1+q1p2

q2
λ−1 1

2q1λ
−2 + 1

2λ
−1(

p1p2+q1p22
q2

+ 1
q22

)
λ−1 − 1

2p
2
2λ
−2 −1

2p2λ
−2 + 1

2
p1+q1p2

q2
λ−1

 ,

U2 =

 1
2q2p2λ

−2 − 1
2
q1p1−q2p2+q21p2

q2
λ−1 1

2λ
−2(

1
2
p2(2q1p1+2q21p2−q2p2)

q2
+ q1

q22

)
λ−1 − 1

2q1p
2
2λ
−2 −1

2q2p2λ
−2 + 1

2
q1p1−q2p2+q21p2

q2
λ−1

 .

7 Final comments

The main result of the article is a systematic construction of a family of non-equivalent Lax
representations, parameterized by smooth functions g(λ) of spectral parameter, for arbitrary
Liouville integrable system defined by separation curve from the class (1.4). We presented in
explicit form the Lax matrices (L,U) in separation coordinates (λ, µ) for arbitrary g(λ) and in
so called Viète coordinates for g(λ) = λr. It is really astonishing result that any dynamical
system (2.2) has so large set of non-equivalent Lax representations. It is still not clear for us
what is the geometric meaning of such freedom for the Lax pairs.

In all presented examples, our choice of g(λ) was determined only by the simplicity of formu-
las. In principle there is no obstacles to apply more complex form of g(λ), but then all formulas
extremely complicate. We did it for the case of two degrees of freedom in Section 3.

It is well known that the knowledge of Lax representation for a given dynamical system allows
to construct constants of motion and separation coordinates. So why to study Lax pairs when
we start from Liouville integrable and separable system? We were motivated by at least two
important reasons. The first one was related with the investigation of the problem of admissible
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structure of Lax pairs. It can be done in a systematic way just in a separation coordinates and
led us to the large family of non-equivalent Lax representations. The second one is closely related
with our further research program. Actually, it relies on deformation of autonomous Liouville
integrable systems, with isospectral Lax representation, to non-autonomous Frobenius integrable
systems (Painlevé systems in particular), with respective isomonodromic Lax representation [5].
In order to construct the isomonodromic Lax representation of deformed system the complete
knowledge on related isospectral Lax representation is necessary. The work is in progress.
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(1993), 2385–2393.
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