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Abstract. We present the explicit form of a family of Liouville integrable maps in 3 variab-
les, the so-called triad family of maps and we propose a multi-field generalisation of the latter.
We show that by imposing separability of variables to the invariants of this family of maps,
the HI, HII and HA

III Yang–Baxter maps in general position of singularities emerge. Two
different methods to obtain entwining Yang–Baxter maps are also presented. The outcomes
of the first method are entwining maps associated with the HI, HII and HA

III Yang–Baxter
maps, whereas by the second method we obtain non-periodic entwining maps associated
with the whole F and H-list of quadrirational Yang–Baxter maps. Finally, we show how
the transfer maps associated with the H-list of Yang–Baxter maps can be considered as the
(k− 1)-iteration of some maps of simpler form. We refer to these maps as extended transfer
maps and in turn they lead to k-point alternating recurrences which can be considered as
alternating versions of some hierarchies of discrete Painlevé equations.
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1 Introduction

The quantum Yang–Baxter equation originates from the theory of exactly solvable models in
statistical mechanics [11, 73]. It reads

R12R13R23 = R23R13R12, (1.1)

where R : V ⊗ V 7→ V ⊗ V a linear operator and Rlm, l 6= m ∈ {1, 2, 3} the operators that acts
as R on the l-th and m-th factors of the tensor product V ⊗ V ⊗ V . For the history of the
latter and for the early developments on the theory see [36]. Replacing the vector space V with
any set X and the tensor product with the cartesian product, Drinfeld [21] introduced the set
theoretical version of (1.1). Solutions of the latter appeared under the name of set theoretical
solutions of the quantum Yang–Baxter equation. The first instance of such solutions, appeared
in [24, 65]. The term Yang–Baxter maps was proposed by Veselov [69] as an alternative name to
the Drinfeld’s one. Early results on the context of Yang–Baxter maps were provided in [1, 40, 57].
In the recent years, many results arose in the interplay between studies on Yang–Baxter maps
and the theory of discrete integrable systems [8, 9, 10, 12, 18, 19, 20, 31].

In [23] it was considered a special type of set theoretical solutions of the quantum Yang–
Baxter equation, the so called non degenerate rational maps. Nowadays, this type of solutions
is referred to as quadrirational Yang–Baxter maps. Note that the notion of quadrirational
maps, was extended in [46] to the notion of 2n-rational maps, where highly symmetric higher
dimensional maps were considered. Under the assumption of quadrirationality and modulo
conjugation (see Definition 3.1), in [5, 59] a list of ten families of maps was obtained. Five
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of them were given in [5], which constitute the so-called F -list of quadrirational Yang–Baxter
maps and five more in [59], which constitute the so-called H-list of quadrirational Yang–Baxter
maps. For their explicit form see Appendix A. The Yang–Baxter maps of the F -list and the
H-list can also be obtained from some of the integrable lattice equations in the classification
scheme of [4], by using the invariants of the generators of the Lie point symmetry group of the
latter [60]. In the series of papers [44, 45, 56], from the Yang–Baxter maps of the F -list and
of the H-list, integrable lattice equations and correspondences (relations) were systematically
constructed. Invariant, under the maps, functions where the variables appeared in separated
form, played an important role to this construction. The cornerstone of this manuscript are
invariant functions where the variables appear in separated form.

In [3], it was introduced a family rational of maps in 3 variables that preserves two rational
functions the so-called the triad map. The triad map serves as a generalisation of the QRT
map [61] (cf. [22]). In Section 2 we present an explicit formula for Adler’s triad map as well as
we prove the Liouville integrability of the latter. We also propose an extension of the triad map
in k ≥ 3 number of variables. If one imposes separability to the variables of the invariants of the
triad map, the HI, the HII and the HA

III Yang–Baxter maps in general positions of singularities,
emerge. This is presented in Section 3 together with the explicit formulae for these maps.

In Section 4, we develop two methods to obtain non-equivalent entwining maps [51], i.e.,
maps R, S, T that satisfy the relation

R12S13T23 = T23S13R12.

The first method gives us entwining maps associated with the HI, HII and the HA
III members of

the H-list of Yang–Baxter maps. The second one produces entwining maps for the whole F -list
and the H-list. In this manuscript we present the entwining maps associated with the H-list of
quadrirational Yang–Baxter maps only.

In Section 5, we re-factorise the transfer maps [69] associated with the H-list of Yang–Baxter
maps. We show that the transfer maps coincide with the (k−1)-iteration of some maps of simpler
form that we refer to as extended transfer maps. Moreover, we show that the extended transfer
maps, after an integration followed by a change of variables, are written as k-point recurrences,
which some of them can be considered as alternating versions of discrete Painlevé hierarchies
[16, 32, 57]. In Section 6 we end this manuscript with some conclusions and perspectives.

2 The Adler’s triad family of maps

In [3], Adler proposed the so-called triad family of maps. The triad map is a family of maps in
3 variables that consists of the composition of involutions which preserve two rational invariants
of a specific form. In what follows we present the explicit form of the latter in terms of its
invariants.

Consider the polynomials

ni =

1∑
j,k,l=0

αij,k,lx
1−j
1 x1−k2 x1−l3 , di =

1∑
j,k,l=0

βij,k,lx
1−j
1 x1−k2 x1−l3 , i = 1, 2,

where x1, x2, x3 are considered as variables and αij,k,l, β
i
j,k,l as parameters. We consider also 3

maps Rij , i < j, i, j ∈ {1, 2, 3}. These maps can be build out of the polynomials ni, di and they
read Rij : (x1, x2, x3) 7→ (X1(x1, x2, x3), X2(x1, x2, x3), X3(x1, x2, x3)), where

Xi = xi − 2

∣∣∣∣Dxin
1 · d1 Dxin

2 · d2
Dxjn

1 · d1 Dxjn
2 · d2

∣∣∣∣∣∣∣∣ Dxin
1 · d1 Dxin

2 · d2
∂xiDxjn

1 · d1 + ∂xjDxin
1 · d1 ∂xiDxjn

2 · d2 + ∂xjDxin
2 · d2

∣∣∣∣ ,
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Xj = xj + 2

∣∣∣∣Dxin
1 · d1 Dxin

2 · d2
Dxjn

1 · d1 Dxjn
2 · d2

∣∣∣∣∣∣∣∣ Dxjn
1 · d1 Dxjn

2 · d2
∂xiDxjn

1 · d1 + ∂xjDxin
1 · d1 ∂xiDxjn

2 · d2 + ∂xjDxin
2 · d2

∣∣∣∣ ,
Xk = xk for k 6= i, j, (2.1)

with ∂z we denote the partial derivative operator w.r.t. to z, i.e., ∂zh = ∂h
∂z . Dz is the Hirota’s

bilinear operator, i.e., Dzh · k = (∂zh)k − h∂zk.

Proposition 2.1. The following holds:

1. Mappings Rij depend on 32 parameters αij,k,l, β
i
j,k,l, i = 1, 2, j, k, l ∈ {0, 1}. Only 15 of

them are essential.

2. The functions H1 = n1/d1, H2 = n2/d2 are invariant under the action of Rij, i.e., Hl ◦
Rij = Hl, l = 1, 2.

3. Mappings Rij are involutions, i.e., R2
ij = id.

4. Mappings Rij are anti-measure preserving1 with densities m1 = n1d2, m2 = n2d1.

5. Mappings Rij satisfy the relation R12R13R23 = R23R13R12.

Proof. 1. The invariants H1, H2 depend on 3 variables and they include 32 parameters. Acting
with a different Möbius transformation to each of the variables, 9 parameters can be removed.
A Möbius transformation of an invariant remains an invariant, since we have 2 invariants, 6 more
parameters can be removed. Finally, since any multiple of an invariant remains an invariant,
2 more parameters can be removed. That leaves us with 32−9−6−2 = 15 essential parameters
for the invariants H1, H2 and hence for the maps Rij .

2. The functions H1 = n1/d1, H2 = n2/d2, reads

H1(x1, x2, x3) =
ax1x2 + bx1 + cx2 + d

a1x1x2 + b1x1 + c1x2 + d1
,

H2(x1, x2, x3) =
kx1x2 + lx1 +mx2 + n

k1x1x2 + l1x1 +m1x2 + n1
,

where a, a1, b, b1, k, k1, . . . are linear functions of x3 (note we have suppressed the dependency
on x3 of the functions H1, H2). From the set of equations

H1(X1, X2, x3) = H1(x1, x2, x3), H2(X1, X2, x3) = H2(x1, x2, x3), (2.2)

by eliminating X2 or by eliminating X1 the resulting equations respectively factorize as

(X1 − x1)A = 0, (X2 − x2)B = 0.

The factor A is linear in X1 and the factor B is linear in X2. By solving these equations (we
omit the trivial solution X1 = x1, X2 = x2) we obtain

X1 =
γ3413x

2
2 +

(
γ3423 + γ3414

)
x2 + γ3424 +

(
γ1413x

2
2 +

(
γ2413 + γ1423

)
x2 + γ2423

)
x1

γ2313x
2
2 +

(
γ2413 + γ2314

)
x2 + γ2414 +

(
γ1312x

2
2 +

(
γ2312 + γ1412

)
x2 + γ2412

)
x1
,

X2 =
γ2412x

2
1 +

(
γ2324 + γ2414

)
x1 + γ2434 +

(
γ1412x

2
1 +

(
γ3412 + γ2314

)
x1 + γ2334

)
x2

γ1223x
2
1 +

(
γ3412 + γ1423

)
x1 + γ3414 +

(
γ1213x

2
1 +

(
γ1323 + γ1413

)
x1 + γ3413

)
x2
, (2.3)

1A map φ : (x, y) 7→ (X,Y ) is called measure preserving map with density m(x, y), if its Jacobian determinant
∂(X,Y )
∂(x,y)

equals to m(X,Y )
m(x,y)

. If the Jacobian determinant of the map φ equals to −m(X,Y )
m(x,y)

, then the map φ is called

anti-measure preserving map with density m(x, y).
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where γklij :=
∣∣ uij ukl
vij vkl

∣∣, with uij the determinants of a matrix generated by the ith and jth column
of the matrix

u =

(
a b c d
a1 b1 c1 d1

)
and vkl the determinants of a matrix generated by the kth and lth column of the matrix

v =

(
k l m n
k1 l1 m1 n1

)
.

Now it is a matter of long and tedious calculation to prove that the map φ : (x1, x2, x3) 7→
(X1, X2, x3), where X1, X2 are given by (2.3) coincides with the map R12 of (2.1). Similarly we
can work on R13 and R23.

3. Since the map R12 : (x1, x2, x3) 7→ (X1, X2, x3) satisfies (2.2), the proof of involutivity
follows.

4. It is enough to prove that the map R12 anti-preserves the measure with density m1 = n1d2,
i.e., the Jacobian determinant

∂(X1, X2)

∂(x1, x2)
:=

∣∣∣∣∣∣∣∣
∂X1

∂x1

∂X1

∂x2
∂X2

∂x1

∂X2

∂x2

∣∣∣∣∣∣∣∣
equals

∂(X1, X2)

∂(x1, x2)
= −n

1(X1, X2, x3)d
2(X1, X2, x3)

n1(x1, x2, x3)d2(x1, x2, x3)
.

Since the functions Hi = ni/di, i = 1, 2 are invariant under the action of the map R12, it holds

n1(X1, X2, x3) = κ(x1, x2, x3)n
1(x1, x2, x3),

d1(X1, X2, x3) = κ(x1, x2, x3)d
1(x1, x2, x3),

n2(X1, X2, x3) = λ(x1, x2, x3)n
2(x1, x2, x3),

d2(X1, X2, x3) = λ(x1, x2, x3)d
2(x1, x2, x3), (2.4)

where κ, λ are rational functions of x1, x2, x3. So,

n1(X1, X2, x3)d
2(X1, X2, x3)

n1(x1, x2, x3)d2(x1, x2, x3)
= κ(x1, x2, x3)λ(x1, x2, x3). (2.5)

We differentiate equations (2.4) with respect to x1 and we eliminate ∂κ(x1,x2,x3)
∂x1

and ∂λ(x1,x2,x3)
∂x1

to obtain

1

n1

(
∂ñ1

∂x1
− κ∂n

1

∂x1

)
=

1

d1

(
∂d̃1

∂x1
− κ∂d

1

∂x1

)
,

1

n2

(
∂ñ2

∂x1
− λ∂n

2

∂x1

)
=

1

d2

(
∂d̃2

∂x1
− λ∂d

2

∂x1

)
, (2.6)

here we have suppressed the dependency of κ, λ, ni, di on x1, x2, x3. By ñi we denote ñi :=
ni(X1, X2, x3), i = 1, 2, and similarly for d̃i. Also if we differentiate the equations (2.4) with
respect to x2 and eliminate ∂κ

∂x2
and ∂λ

∂x2
we obtain

1

n1

(
∂ñ1

∂x2
− κ∂n

1

∂x2

)
=

1

d1

(
∂d̃1

∂x2
− κ∂d

1

∂x2

)
,
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1

n2

(
∂ñ2

∂x2
− λ∂n

2

∂x2

)
=

1

d2

(
∂d̃2

∂x2
− λ∂d

2

∂x2

)
. (2.7)

Due to the form of ni, di, i = 1, 2, equations (2.6), (2.7) are linear in ∂X1
∂xi

, ∂X2
∂xi

, i = 1, 2. Hence

we obtain ∂X1
∂xi

, ∂X2
∂xi

, i = 1, 2, in terms of X1, X2, x1, x2, x3, κ, λ and by using (2.3), the Jacobian

determinant reads ∂(X1,X2)
∂(x1,x2)

= −κλ. Using (2.5) we have

∂(X1, X2)

∂(x1, x2)
= −κλ = − ñ

1d̃2

n1d2
,

that completes the proof. Note that the same holds true for the remaining maps Rij .
5. In [3] Adler presented a computational proof based on the fact that the maps Rij map

points that lie on the invariant curve

n1(x1, x2, x3)− C1d
1(x1, x2, x3) = 0, n2(x1, x2, x3)− C2d

2(x1, x2, x3) = 0, (2.8)

that is the intersection of two surfaces of the form A : N(x1, x2, x3) = 0, where N is polynomial
with degree at most one on each variable x1, x2 and x3. In [3], it was proven that any surface
of the form A that passes through the following five points(

x̂1, x̃2, ˆ̃x3
) R13←−−

(
x1, x̃2, x̃3

) R23←−− (x1, x2, x3)
R12−−→ (x̄1, x̄2, x3)

R13−−→ (ˆ̄x1, x̄2, x̂3)

passes as well through the point
(
ˆ̄x1, Y, ˜̂x3

)
, that is the point of intersection of the straight line

L : (X,Z) =
(
ˆ̄x1, ˜̂x3

)
and the surface A, i.e., L∩A =

(
ˆ̄x1, Y, ˜̂x3

)
. Since the invariant curve (2.8)

is the intersection of two surfaces of the form A, it also passes through the point
(
ˆ̄x1, Y, ˜̂x3

)
and

there is ˜̄x2 = Y . So the values of ˜̄x2 obtained in two different ways coincide and this is sufficient
for the proof.

Alternatively, one can show by direct computation that the maps T1 = R13R12 and T2 =
R12R23, commute, i.e., T1T2 = T2T1. So there is

R13R23 = R12R23R13R12

and due to the fact that the maps Rij are involutions, R2
ij = id, from the equation above we

obtain

R12R13R23 = R23R13R12. �

Among all the maps that can be constructed by the involutions Rij , the following maps

T1 = R13R12, T2 = R12R23, T3 = R23R13

are of special interest since they are not periodic and moreover they satisfy [3]

T1T2T3 = id, TiTj = TjTi, i, j ∈ {1, 2, 3}.

Proposition 2.2. For the maps Ti, i = 1, 2, 3 it holds:

1) they preserve the functions H1, H2,

2) they are measure-preserving with densities m1, m2,

3) they preserve the following degenerate Poisson tensors,

Ωj
i = mj

(
∂Hi

∂x3

∂

∂x1
∧ ∂

∂x2
− ∂Hi

∂x2

∂

∂x1
∧ ∂

∂x3
+
∂Hi

∂x1

∂

∂x2
∧ ∂

∂x3

)
, i, j ∈ {1, 2},

where it holds

0 = Ωj
1∇H1, Ωj

1∇H2 = −Ωj
2∇H1, Ωj

2∇H2 = 0, j = 1, 2,
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4) they are Liouville integrable maps.

Proof. The statements (1), (2) follows from Proposition 2.1. To prove the statement (3), (4),
first note that since the maps Ti are measure preserving, they preserve the following polyvector
fields

V j = mj
∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x3
.

Hence, the contractions V jcdHi, i, j ∈ {1, 2} (see [29, 55]) are degenerate Poisson tensors.
Namely,

Ωj
i =

(
mj

∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x3

)
cdHi

= mj

(
∂Hi

∂x3

∂

∂x1
∧ ∂

∂x2
− ∂Hi

∂x2

∂

∂x1
∧ ∂

∂x3
+
∂Hi

∂x1

∂

∂x2
∧ ∂

∂x3

)
,

where i, j ∈ {1, 2}.
(5) The maps Ti preserve the Poisson tensors Ωj

i and the 2 invariants H1, H2, so they are
Liouville integrable maps [14, 52, 68]. �

Note that on the level surfaces H2(x1, x2, x3) = c, maps T1, T2, T3 reduce to pair-wise
commuting maps on the plane which preserve the function Ĥ1(x1, x2; c). One of these reduced
maps is the associated with the invariant Ĥ1(x1, x2; c) QRT map. Examples of commuting maps
with specific members of the QRT family of maps were also constructed in [30].

The involution R12 under the reduction x2 = x1, H2 = H1 = H, so H = n
d =

ax21+bx1+c

kx21+lx1+m
,

reads

R12 : (x1, x3) 7→
(
x1 − 2

Dx1n · d
∂x1Dx1n · d

, x3

)
,

that coincides with the QRT involution ix that preserves the invariant H. This formulae for the
QRT involution ix was firstly given in [37], where an elegant presentation of the QRT map was
considered.

2.1 A generalisation of the triad family of maps

Following the same generalisation procedures introduced for the QRT family of maps [15, 29,
35, 62, 67], the triad family of maps can be generalised in similar manners. Here, in order to
generalise the triad family of maps, we mimic the generalisation of the QRT family of maps
introduced in [67].

Consider the following polynomials

ni =

1∑
j1,j2,...,jk=0

αij1,j2,...,jkx
1−j1
1 x1−j22 · · ·x1−jkk ,

di =

1∑
j1,j2,...,jk=0

βij1,j2,...,jkx
1−j1
1 x1−j22 · · ·x1−jkk , i = 1, 2k ≥ 3, (2.9)

where x1, x2, . . . , xk are considered as variables and αij1,j2,...,jk , βij1,j2,...,jk as parameters. We

consider the
(
k
2

)
maps Rij , i < j, i, j ∈ {1, 2, . . . , k}. These maps can be build out of the

polynomials ni, di and they read: Rij : (x1, x2, . . . , xk) 7→ (X1, X2, . . . , Xk), where Xl = xl
∀ l 6= i, j and Xi, Xj are given by the formulae (2.1), where ni, di, i = 1, 2 are given by (2.9).

Proposition 2.1 is straight forward extended to the k-variables case.
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Proposition 2.3. The following holds:

1. Mappings Rij depend on 4 · 2k parameters αij1,j2,...,jk , βij1,j2,...,jk , i = 1, 2, j1, j2, . . . , jk ∈
{0, 1}. Only 4 · 2k − 3k − 8 of them are essential.

2. The functions H1 = n1/d1, H2 = n2/d2 are invariant under the action of Rij, i.e., Hl ◦
Rij = Hl, l = 1, 2.

3. Mappings Rij are involutions, i.e., R2
ij = id.

4. Mappings Rij are anti-measure preserving with densities m1 = n1d2, m2 = n2d1.

5. Mappings Rmn, m < n, m,n ∈ {1, 2, . . . , k} satisfy the relations RijRilRjl = RjlRilRij.

Proof. 1. The invariants H1, H2 depend on k ≥ 3 variables and they include 4 ·2k parameters.
Acting with a different Möbius transformation to each of the variables, 3k parameters can
be removed. A Möbius transformation of an invariant remains an invariant, since we have
2 invariants, 6 more parameters can be removed. Finally, since any multiple of an invariant
remains an invariant, 2 more parameters can be removed. That leaves us with 4·2k−3k−6−2 =
4 · 2k − 3k − 8 essential parameters for the invariants H1, H2 and hence for the maps Rij .

The proof of the remaining statements of this Proposition follows directly from the fact that
for any 3 indices p < q < r ∈ {1, 2, . . . , k}, the maps Rpq, Rpr and Rqr, coincide with the maps
R12, R13 and R23 respectively of Proposition 2.1. �

We take a stand here to comment that for k = 3 the construction above coincides with
the Adler’s triad family of maps hence we have Liouville integrability. For k > 3 we have
a generalisation of the latter and since always we will have maps in k variables with 2 invariants,
Liouville integrability is not expected for generic choice of the parameters αij1,j2,...,jk , βij1,j2,...,jk .
For a specific but quite general choice of the parameters though, one can associate a Lax pair to
these maps and recover the additional integrals which are required for the Liouville integrability
to emerge.

We also have to note that the case k = 4 was firstly introduced in [43]. Although for k = 4
we have mappings in 4 variables with 2 invariants, Liouville integrability is not apparent unless
we specify the parameters. A specific choice of the parameters which leads to integrability is
presented to the following example.

Example 2.4 (the Adler–Yamilov map [7]). Consider the following special form of the func-
tions ni, di

d1 = d2 = 1, n1 = x1x2 + x3x4, n2 = x1x2x3x4 + x1x4 + x2x3 + ax1x2 + bx3x4.

Then the functions Hi = ni/di, i = 1, 2 are preserved by construction by the maps Rij as well
as by the following elementary involutions

i : (x1, x2, x3, x4) 7→ (x2, x1, x4, x3), φ : (x1, x2, x3, x4) 7→ (x1x2/x3, x3, x2, x3x4/x2).

The Adler–Yamilov map (ξ) is considered by the following composition

ξ := R14φi : (x1, x2, x3, x4) 7→
(
x3 −

(a− b)x1
1 + x1x4

, x4, x1, x2 +
(a− b)x4
1 + x1x4

)
.

The Adler–Yamilov map is Liouville integrable since it preserves, and the invariants H1, H2

are in involution with respect to the canonical Poisson bracket. For further discussions on the
Adler–Yamilov map see [30, 48].
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3 Invariants in separated variables and Yang–Baxter maps

Mappings Rmn, m < n ∈ {1, 2, . . . , k}, presented in Section 2.1, satisfy the identities RijRilRjl =
RjlRilRij , nevertheless as they stand they are not Yang–Baxter. Take for example the map
R12 : (x1, x2, x3, . . . , xk) 7→ (X1, X2, x3, . . . , xk). The formulae for X1 is fraction linear in x1
with coefficients that depend on all the remaining variables and X2 is fraction linear in x2 with
coefficients that depend on all the remaining variables. In order for R12 to be a Yang–Baxter
map the coefficients of x1 in the formulae of X1 should depend only on x2 and the coefficients
of x2 in the formulae of X2 should depend only on x1. This “separability” requirement can
be easily achieved by requiring separability of variables on the level of the invariants of the
map R12. We have two invariants H1 = n1/d1, H2 = n2/d2, so we can have three different kinds
of separability. (I) Both H1 and H2 to be multiplicative separable on the variables x1 and x2.
(II) H1 to be multiplicative and H2 to be additive separable and finally (III) both H1 and H2

to be additive separable on the variables x1 and x2. In what follows we explicitly present these
three different kinds of separability in all variables of the invariants H1 and H2.

(I) Multiplicative/multiplicative separability of variables:

H1 =

k∏
i=1

ai − bixi
ci − dixi

, H2 =

k∏
i=1

Ai −Bixi
Ci −Dixi

. (3.1)

(II) Multiplicative/additive separability of variables:

H1 =

k∏
i=1

ai − bixi
ci − dixi

, H2 =

k∑
i=1

Ai −Bixi
Ci −Dixi

. (3.2)

(III) Additive/additive separability of variables:

H1 =
k∑
i=1

ai − bixi
ci − dixi

, H2 =
k∑
i=1

Ai −Bixi
Ci −Dixi

. (3.3)

In the formulas above, ai, bi, ci, di, Ai, Bi, Ci, Di, i = 1, . . . , k are parameters, 8k in total.
In all three cases above, the number of essential parameters is 3k − 6. This argument can be
proven by the following reasoning. Since the invariants H1, H2 depends on k variables, by
a Möbius transformation on each of the k variables 3k parameters can be removed. Also any
Möbius transformation of an invariant remains an invariant so since we have two invariants 2×3
more parameters can be removed. Finally, for each one of the 2k functions ai−bixi

ci−dixi ,
Ai−Bixi
Ci−Dixi

, i =
1, . . . , k, one non-zero parameter can be absorbed simply by dividing with it (and reparametrise),
so 2k more parameters can be removed. In total we have 8k− 3k− 2× 3− 2k = 3k− 6 essential
parameters.

3.1 Multiplicative/multiplicative separability of variables

Let us first introduce some definitions.

Definition 3.1. The maps R, R̃ : CP1×CP1 7→ CP1×CP1 are (Möb)2 equivalent if there exists
bijections φ, ψ : CP1 7→ CP1 such that the following conjugation relation holds

R̃ = φ−1 × ψ−1Rφ× ψ.
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Definition 3.2. The map R : CP1 × CP1 3 (u, v) 7→ (U, V ) ∈ CP1 × CP1, where

U =
a1 + a2u

a3 + a4u
, V =

b1 + b2v

b3 + b4v
,

with ai, bi, i = 1, . . . , 4 known polynomials of v and u respectively, will be said to be of subclass
[γ : δ], if the highest degree that appears in the polynomials ai is γ and the higher degree that
appears in the polynomials bi is δ.

Clearly, maps that belong to different subclasses are not (Möb)2 equivalent.

Proposition 3.3. Consider the multiplicative/multiplicative separability of variables of the in-
variants H1 and H2 (see (3.1)). Consider also the following sets of parameters

pij := pi ∪ pj where pi := {ai, bi, ci, di, Ai, Bi, Ci, Di}, i < j ∈ {1, 2, . . . , k}

and the functions

fi :=
ai − bixi
ci − dixi

, gi :=
Ai −Bixi
Ci −Dixi

, i = 1, . . . , k.

The following holds:

1. The invariants H1 =
k∏
i=1

fi, H2 =
k∏
i=1

gi depend on 8k parameters. Only 3k − 6 of them

are essential.

2. Mappings Rij explicitly read

Rij : (x1, x2, . . . , xk) 7→ (X1, X2, . . . , Xk),

where Xl = xl ∀ l 6= i, j and Xi, Xj are given by the formulae

Xi = xi − 2

∣∣∣∣f ′ifj fif
′
j

g′igj gig
′
j

∣∣∣∣
g′igj

(
f ′i
f ′j

∣∣∣∣fj f ′j
f ′j f ′′j

∣∣∣∣+
f ′j
f ′i

∣∣∣∣fi f ′i
f ′i f ′′i

∣∣∣∣
)
− f ′ifj

(
g′i
g′j

∣∣∣∣gj g′j
g′j g′′j

∣∣∣∣+
g′j
g′i

∣∣∣∣gi g′i
g′i g′′i

∣∣∣∣
) ,

Xj = xj + 2

∣∣∣∣f ′ifj fif
′
j

g′igj gig
′
j

∣∣∣∣
g′jgi

(
f ′i
f ′j

∣∣∣∣fj f ′j
f ′j f ′′j

∣∣∣∣+
f ′j
f ′i

∣∣∣∣fi f ′i
f ′i f ′′i

∣∣∣∣
)
− f ′jfi

(
g′i
g′j

∣∣∣∣gj g′j
g′j g′′j

∣∣∣∣+
g′j
g′i

∣∣∣∣gi g′i
g′i g′′i

∣∣∣∣
) ,

where f ′l ≡
∂fl
∂xl

, g′l ≡
∂gl
∂xl

, g′′l ≡
∂2gl
∂x2l

, etc. Note that in the expressions of Xi, Xj appears

only the coordinates xi, xj and the parameters pij. From further on we denote the maps Rij
as R

pij

ij , in order to stress this separability feature.

3. Mappings R
pij

ij are anti-measure preserving with densities m1 = n1d2, m2 = n2d1, where

ni, di the numerators and the denominators respectively, of the invariants Hi, i = 1, 2.

4. Mappings R
pij

ij satisfy the Yang–Baxter identity

R
pij

ij R
pik
ik R

pjk

jk = R
pjk

jk R
pij

ij R
pij

ij .
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5. Mappings R
pij

ij are involutions with the sets of singularities

Σij =
{
P 1
ij , P

2
ij , P

3
ij , P

4
ij

}
=

{(
ai
bi
,
cj
dj

)
,

(
ci
di
,
aj
bj

)
,

(
Ai
Bi
,
Cj
Dj

)
,

(
Ci
Di
,
Aj
Bj

)}
,

and the sets of fixed points

Φij =
{
Q1
ij , Q

2
ij , Q

3
ij , Q

4
ij

}
=

{(
ai
bi
,
aj
bj

)
,

(
ci
di
,
cj
dj

)
,

(
Ai
Bi
,
Aj
Bj

)
,

(
Ci
Di
,
Cj
Dj

)}
,

where in the formulae for Pmij and Qmij , m = 1, . . . , 4, we have suppressed the dependency on

the remaining variables. For example, with P 1
ij =

(
ai
bi
,
cj
dj

)
we denote

(
x1, . . . , xi−1,

ai
bi
, xi+1,

. . . , xj−1,
cj
dj
, xj+1, . . . , xk

)
and similarly for the remaining Pmij and Qmij .

6. Each one of the maps R
pij

ij is (Möb)2 equivalent to the HI Yang–Baxter map.

Proof. (1) See at the end of the previous subsection.
(2) Mappings (2.1) written in terms of the functions fi, gi get exactly the desired form.
(3) See Proposition 2.1.
(4) See Proposition 2.1.
(5) Because mappings R

pij

ij , for generic parameter sets pij , belong to the [2 : 2] subclass, we
expect at most 8 singular points, 4 singular points from the first fraction of the map and 4 from
the second. By direct calculation we show that the singular points of the first and the second
fraction of R

pij

ij coincide. Moreover, Pmij , m = 1, . . . , 4 are the singular points of the maps R
pij

ij ,
i.e.,

R
pij

ij : Pmij 7→
(
x1, . . . , xi−1,

0

0
, xi+1, . . . , xj−1,

0

0
, xj+1, . . . , xk

)
.

Note that the values of the invariants Hi at the singular points Pmij are undetermined, i.e.,

H1

(
Pmij
)

= 0
0 , m = 1, 2, H2

(
Pmij
)

= 0
0 , m = 3, 4. For the fixed points Qmij , m = 1, . . . , 4 it holds

R
pij

ij : Qmij 7→ Qmij . Note also that H1

(
Q1
ij

)
= 0, H1

(
Q2
ij

)
=∞, H2

(
Q3
ij

)
= 0, H2

(
Q4
ij

)
=∞.

(6) Introducing the new variables yi, yj , i 6= j = 1, . . . , k though

CR[xi, ai/bi, ci/di, Ai/Bi] = CR[yi, 0, 1,∞],

CR[xj , cj/dj , aj/bj , Cj/Dj ] = CR[yj ,∞, 1, 0],

after a re-parametrization mappings Rij gets exactly the form of the HI map. Here, with
CR[a, b, c, d] we denote the cross-ratio of 4 points, namely

CR[a, b, c, d] :=
(a− c)(b− d)

(a− d)(b− c)
. �

Each one of the maps Rij has a set of singularities which consists of 4 distinct points. With
appropriate limits we are allowed to merge some of the singularities and obtain Yang–Baxter
maps which are not (Möb)2 equivalent with the original one.

By setting Ci = εAi, Di = εBi, Aj = εCj , Bj = εDj and letting ε→ 0 the singular points P 4
ij

and P 3
ij merge. The resulting maps, under a re-parametrization, coincide with the ones obtained

in the multiplicative/additive case (see Section 3.2), hence are (Möb)2 equivalent with the HII

Yang–Baxter map. The same result can be obtained by merging P 2
ij and P 1

ij . Note that mer-

ging P 4
ij with P 2

ij or P 4
ij with P 1

ij is not of interest since the resulting maps are trivial.
By further setting ci = εai, di = εbi, aj = εcj , bj = εdj and letting ε → 0 the singular

points P 2
ij and P 1

ij merge as well. The resulting maps, under a re-parametrization, coincide with

the ones obtained in the additive/additive case (see Section 3.3), hence are (Möb)2 equivalent
with the HA

III Yang–Baxter map. Any further merging of singularities leads to trivial maps.
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Remark 3.4. An interesting observation is that if we impose that the fixed points Q4
ij of the

maps Rij coincide with the singular points P 2
ij or the fixed points Q4

ij coincide with P 1
ij , we

obtain maps which belong to the [1 : 1] subclass of maps. The same is true if we demand that
the fixed points Q1

ij coincide with the singular points P 3
ij or if the fixed points Q1

ij coincide with

the singular points P 4
ij ,

Remark 3.5. For generic sets of parameters pij , each one of the
(
k
2

)
maps R

pij

ij , is (Möb)2

equivalent to the HI Yang–Baxter map. For degenerate choices of the sets pij , this is no longer
the case. Hence, in that respect, mappings R

pij

ij are more general than the HI map since they
include degenerate cases as well. In the same respect QV [72], the rational version of the discrete
Krichever–Novikov equation Q4 [2], is more general.

Example 3.6 (k = 3). For k = 3, the invariants H1 = f1f2f3, H2 = g1g2g3 are functions of 3
variables with 24 parameters, 3 of them are essential. Without loss of generality, after removing
the redundancy of the parameters, the invariants H1, H2 can be cast into the form

H1 = x1x2x3, H2 =
x1 − p1
x1 − 1

x2 − p2
x2 − 1

x3 − p3
x3 − 1

.

Then each of the mappings Rij , i 6= j ∈ {1, 2, 3} is exactly the HI Yang–Baxter map. The HI

Yang–Baxter map explicitly reads HI : (u, v) 7→ (U, V ) where

U = vQ, V = uQ−1, Q =
(α− 1)uv + (β − α)u+ α(1− β)

(β − 1)uv + (α− β)v + β(1− α)
. (3.4)

By the identifications u ≡ xi, u ≡ xj , α ≡ pi and β ≡ pj , from (3.4) we recover the maps Rij .
The maps φi : (x1, x2, x3) 7→ (X1, X2, X3) where Xl = xl ∀ l 6= i and Xi = pi

xi
, i = 1, 2, 3 and

the maps ψi : (x1, x2, x3) 7→ (X1, X2, X3) where Xl = xl ∀ l 6= i and Xi = xi−pi
xi−1 , i = 1, 2, 3 satisfy

H1φ1φ2φ3 =
p1p2p3
H1

, H2φ1φ2φ3 =
p1p2p3
H2

, H1ψ1ψ2ψ3 = H2, H2ψ1ψ2ψ3 = H1.

The maps φi and ψi have a special role in [59] since though them the HI map was derived out
of the FI Yang–Baxter map. We will discuss more about these maps in the next Section. We
just quickly recall that φ1R12φ2 is exactly the FI Yang–Baxter map.

Remark 3.7. We have to remark that with loss of generality, mappings Rij can belong on
a different subclasses than the [2 : 2] subclass of maps that the HI map belongs to. For example,
for

H1 = (x1 − p1)(x2 − p2)(x3 − p3), H2 =
x1 − p1
x1

x2
x2 − p2

x3
x3 − 1

,

R12 is the Hirota’s KdV map (see [44]) that belongs on the subclass [1 : 1] and R13, R23 are
maps which belong to the subclass [2 : 1]. Explicitly the maps read

R12 : (x1, x2, x3) 7→
(
p1(p2x1 + p1x2 − x1x2)

p2x1
,
p2(p2x1 + p1x2 − x1x2)

p1x2
, x3

)
,

R13 ≡ S13 : (x1, x2, x3) 7→
(
p1(−1 + x3)(p3x1 + p1x3 − x1x3)
−p3x1 − p1x3 + p1p3x3 + x1x3

, x2,
p3x1 + p1x3 − x1x3

p1x3

)
,

R23 ≡ T23 : (x1, x2, x3) 7→
(
x1,

p2x3(−p2 + p3x2 + p2x3 − x2x3)
−p2p3 + p3x2 + p2p3x3 − x2x3

,
x2(−p3 + x3)

p2(−1 + x3)

)
.

The Hirota’s KdV map entwines with S13 and T23, since R12S13T23 = T23S13R12 holds.
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Example 3.8 (k ≥ 4). For k = 4 the invariants depend on 32 parameters and only 6 of them
are essential. Without loss of generality they can be cast into the form

H1 = x1x2x3x4, H2 =
x1 − p1
x1 − 1

x2 − p2
x2 − 1

x3 − p3
x3 − 1

α4 − β4x4
β4 − γ4x4

.

For k > 4 the invariants depend on 8k parameters and only 3k−6 of them are essential. Without
loss of generality they can be cast into the form

H1 =
k∏
i=1

xi, H2 =
x1 − p1
x1 − 1

x2 − p2
x2 − 1

x3 − p3
x3 − 1

k∏
i=4

αi − βixi
βi − γixi

.

3.2 Multiplicative/additive separability of variables

Proposition 3.9. Consider the multiplicative/additive separability of variables of the inva-
riants H1 and H2 (see (3.2)). Consider also the following sets of parameters

pij := pi ∪ pj , where pi := {ai, bi, ci, di, Ai, Bi, Ci, Di} , i < j ∈ {1, 2, . . . , k}

and the functions

fi :=
ai − bixi
ci − dixi

, gi :=
Ai −Bixi
Ci −Dixi

, i = 1, . . . , k.

The following holds:

1. The invariants H1 =
k∏
i=1

fi, H2 =
k∑
i=1

gi depend on 8k parameters. Only 3k − 6 of them

are essential.

2. Mappings Rij explicitly read

Rij : (x1, x2, . . . , xk) 7→ (X1, X2, . . . , Xk),

where Xl = xl ∀ l 6= i, j and Xi, Xj are given by the formulae

Xi = xi − 2

∣∣∣∣fif ′j f ′ifj
g′j g′i

∣∣∣∣∣∣∣∣∣∣
f ′ifj g′i

f ′j
f ′i
fif
′′
i +

f ′i
f ′j
fjf
′′
j − 2f ′if

′
j

g′j
g′i
g′′i +

g′i
g′j
g′′j

∣∣∣∣∣∣
,

Xj = xj + 2

∣∣∣∣fif ′j f ′ifj
g′j g′i

∣∣∣∣∣∣∣∣∣∣∣
f ′jfi g′j

f ′j
f ′i
fif
′′
i +

f ′i
f ′j
fjf
′′
j − 2f ′if

′
j

g′j
g′i
g′′i +

g′i
g′j
g′′j

∣∣∣∣∣∣∣
,

where f ′l ≡
∂fl
∂xl

, g′l ≡
∂gl
∂xl

, g′′l ≡
∂2gl
∂x2l

, etc. Note that in the expressions of Xi, Xj appears

only the coordinates xi, xj and the parameters pij. From further on we denote the maps Rij
as R

pij

ij , in order to stress this separability feature.

3. Mappings R
pij

ij are anti-measure preserving with densities m1 = n1d2, m2 = n2d1, where

ni, di the numerators and the denominators respectively, of the invariants Hi, i = 1, 2.
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4. Mappings R
pij

ij satisfy the Yang–Baxter identity

R
pij

ij R
pik
ik R

pjk

jk = R
pjk

jk R
pij

ij R
pij

ij .

5. Mappings R
pij

ij are involutions with the sets of singularities

Σij =
{
P 1
ij , P

2
ij , P

3
ij

}
=

{(
ai
bi
,
cj
dj

)
,

(
ci
di
,
aj
bj

)
,

(
Ci
Di
,
Cj
Dj

)2
}
,

where the superscript 2 in P 3
ij denotes that these singular points appears with multiplicity 2.

In the formulae for Pmij , m = 1, . . . , 3, we have suppressed the dependency on the remaining

variables. For example, with P 1
ij =

(
ai
bi
,
cj
dj

)
we denote

(
x1, . . . , xi−1,

ai
bi
, xi+1, . . . , xj−1,

cj
dj
,

xj+1, . . . , xk
)

and similarly for the remaining Pmij .

6. Each one of the maps R
pij

ij is (Möb)2 equivalent to the HII Yang–Baxter map.

Proof. The proof follows similarly to the proof of Proposition 3.3. �

Example 3.10 (k ≥ 3). For k = 3, the invariants H1 = f1f2f3, H2 = g1 + g2 + g3 are functions
of 3 variables with 24 parameters, 3 of them are essential. Without loss of generality, after
removing the redundancy of the parameters, the invariants H1, H2 can be cast into the form

H1 =
x1 − p1
x1

x2 − p2
x2

x3 − p3
x3

, H2 = x1 + x2 + x3.

Then each of the mappings Rij , i 6= j ∈ {1, 2, 3} is exactly the HII Yang–Baxter map.

For k > 3 the invariants depend on 8k parameters and only 3k − 6 of them are essential.
Without loss of generality they can be cast into the form

H1 =
x1 − p1
x1

x2 − p2
x2

x3 − p3
x3

k∏
i=4

αi − βixi
βi − γixi

, H2 =

k∑
i=1

xi.

3.3 Additive/additive separability of variables

Proposition 3.11. Consider the additive/additive separability of variables of the invariants H1

and H2 (see (3.3)). Consider also the following sets of parameters

pij := pi ∪ pj , where pi := {ai, bi, ci, di, Ai, Bi, Ci, Di} , i 6= j < j ∈ {1, 2, . . . , k}

and the functions

fi :=
ai − bixi
ci − dixi

, gi :=
Ai −Bixi
Ci −Dixi

, i = 1, . . . , k.

The following holds:

1. The invariants H1 =
k∏
i=1

fi, H2 =
k∑
i=1

gi depend on 8k parameters. Only 3k − 6 of them

are essential.

2. Mappings Rij explicitly read

Rij : (x1, x2, . . . , xk) 7→ (X1, X2, . . . , Xk),
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where Xl = xl ∀ l 6= i, j and Xi, Xj are given by the formulae

Xi = xi − 2

∣∣∣∣f ′j f ′i
g′j g′i

∣∣∣∣∣∣∣∣∣∣
f ′i g′i

f ′j
f ′i
f ′′i +

f ′i
f ′j
f ′′j

g′j
g′i
g′′i +

g′i
g′j
g′′j

∣∣∣∣∣∣
,

Xj = xj + 2

∣∣∣∣f ′j f ′i
g′j g′i

∣∣∣∣∣∣∣∣∣∣∣
f ′j g′j

f ′j
f ′i
f ′′i +

f ′i
f ′j
f ′′j

g′j
g′i
g′′i +

g′i
g′j
g′′j

∣∣∣∣∣∣∣
,

where f ′l ≡
∂fl
∂xl

, g′l ≡
∂gl
∂xl

, g′′l ≡
∂2gl
∂x2l

, etc. Note that in the expressions of Xi, Xj appears

only the coordinates xi, xj and the parameters pij. From further on we denote the maps Rij
as R

pij

ij , in order to stress this separability feature.

3. Mappings R
pij

ij are anti-measure preserving with densities m1 = n1d2, m2 = n2d1, where

ni, di the numerators and the denominators respectively, of the invariants Hi, i = 1, 2.

4. Mappings R
pij

ij satisfy the Yang–Baxter identity

R
pij

ij R
pik
ik R

pjk

jk = R
pjk

jk R
pij

ij R
pij

ij .

5. Mappings R
pij

ij are involutions with the sets of singularities

Σij =
{
P 1
ij , P

2
ij

}
=

{(
ci
di
,
cj
dj

)2

,

(
Ci
Di
,
Cj
Dj

)2
}
,

where the superscript 2 in P 1
ij and P 2

ij denotes that these singular points appears with multi-
plicity 2. In the formulae for Pmij , m = 1, . . . , 2, we have suppressed the dependency on the

remaining variables. For example, with P 1
ij =

(
ci
di
,
cj
dj

)
we denote

(
x1, . . . , xi−1,

ci
di
, xi+1, . . . ,

xj−1,
cj
dj
, xj+1, . . . , xk

)
and similarly for P 2

ij.

6. Each one of the maps R
pij

ij is (Möb)2 equivalent to the HA
III Yang–Baxter map.

Proof. The proof follows similarly to the proof of Proposition 3.3. �

Example 3.12 (k ≥ 3). For k = 3, the invariants H1 = f1 + f2 + f3, H2 = g1 + g2 + g3 are
functions of 3 variables with 24 parameters, 3 of them are essential. Without loss of generality,
after removing the redundancy of the parameters, the invariants H1, H2 can be cast into the
form:

H1 =
1

x1
+

1

x2
+

1

x3
, H2 = p1x1 + p2x2 + p3x3.

Then each of the mappings Rij , i 6= j ∈ {1, 2, 3} is exactly the HA
III Yang–Baxter map.

For k > 3 the invariants depend on 8k parameters and only 3k − 6 of them are essential.
Without loss of generality they can be cast into the form

H1 =
k∑
i=1

1

xi
, H2 = p1x1 + p2x2 + p3x3 +

k∑
i=4

αi − βixi
βi − γixi

.
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4 Entwining Yang–Baxter maps

Following [51], three different maps S, T , U are called entwining Yang–Baxter maps if they
satisfy

S12T13U23 = U23T13S12.

We consider two maps to be different if they are not (Möb)2 equivalent. Hence, in order to
ensure that we have different maps we require that at least one of the maps S, T , U either
belongs to a different subclass than the remaining ones or it has different singularity pattern
(even if it belongs to the same subclass with the remaining ones) or it has different periodicity.
In what follows we present two methods to obtain entwining maps. The first one is based on
degeneracy, i.e., we construct maps which belong to different subclasses and we obtain entwining
maps associated with the HI, HII and HA

III families of maps. The second one is based on the
symmetries of the H-list of Yang–Baxter maps and we obtain entwining maps for all members
of the H-list.

4.1 Degeneracy and entwining Yang–Baxter maps

In Section 3.1 it was shown that for k = 3 and for the multiplicative/multiplicative case, the
invariants H1, H2 depend on 3 essential parameters. Without loss of generality they read

H1 = x1x2x3, H2 =
x1 − p1
x1 − 1

x2 − p2
x2 − 1

x3 − p3
x3 − 1

.

The associated maps R12, R13 and R23 which preserve the invariants have exactly the form of
the HI map. In order to obtain entwining maps associated with the HI map, we consider

H1 = x1x2x3, H2 =
x1 − p1
x1 − 1

x2 − p2
x2 − 1

α3 − β3x3
β3 − γ3x3

.

For these invariants, R12 is exactly the HI map and for generic α3, β3, γ3 mappings R13

and R23 are (Möb)2 equivalent to the HI. In order to obtain entwining maps we need to
violate this (Möb)2 equivalency of the maps R13 and R23 with the HI map. This is achieved
by violating the generality, e.g., setting α3 = 0 or β3 = 0, the maps R13 and R23, belongs to
different subclasses than the HI map does. Working similarly for the HII map we find 1 family
of maps which entwine with the latter without being (Möb)2 equivalent. Finally, for HA

III we find
also 1 family of entwining maps which are not (Möb)2 equivalent with the latter. Our results
are presented in Propositions 4.1–4.3.

Table 1. Entwining maps associated with the HI Yang–Baxter map through degeneracy.

map (u, v) 7→ (U, V ) subclass

eaHI U =
α(1− u) + β(α− 1)uv

α− u
, V =

uv(α− u)

α(1− u) + β(α− 1)uv
[1 : 2]

ebHI U =
u− α
u− 1

, V =
uv(u− 1)

u− α
[0 : 2]

Proposition 4.1. The HI Yang–Baxter map entwines with the maps eaHI and ebHI of Table 1
according to the entwining relation

S12T13T23 = T23T13S12,

where S12 is the HI map acting on the (1, 2)-coordinates, T13 and T23 are eaHI acting on (1, 3)
and (2, 3) coordinates respectively, or ebHI acting on (1, 3) and (2, 3) coordinates respectively.
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Proof. Starting with the invariants

H1 = x1x2x3, H2 =
x1 − p1
x1 − 1

x2 − p2
x2 − 1

a− bx3
b− cx3

,

the map R12 is exactly the HI map. By setting a = 0, R13 and R23 takes the form of eaHI of
Table 1 (where β ≡ c/b). The map eaHI is of subclass [1 : 2] so clearly non-(Möb)2 equivalent
to HI. By setting b = 0, R13 and R23 takes the form of ebHI of Table 1 (where β ≡ a/c). The
map ebHI is of subclass [0 : 1] so clearly non-(Möb)2 equivalent to HI or to eaHI. Finally, by
setting c = 0, mappings R13 and R23 are (Möb)2 equivalent to eaHI. �

Proposition 4.2. The HII Yang–Baxter map entwines with the map of Table 2 according to the
entwining relation

S12T13T23 = T23T13S12,

where S12 is the HII map acting on the (1, 2)-coordinates, T13 and T23 are ebHII acting on (1, 3)
and (2, 3) coordinates respectively.

Table 2. Entwining maps associated with the HII Yang–Baxter map though degeneracy.

map (u, v) 7→ (U, V ) subclass

ebHII U =
αv

α− u
, V = u

α− u− v
α− u

[1 : 1]

Proof. Starting with the invariants

H1 = x1 + x2 + x3, H2 =
x1 − p1
x1

x2 − p2
x2

a− bx3
b− cx3

,

the map R12 is exactly the HII map. By setting a = 0, R13 and R23 are (Möb)2 equivalent to
the HII map. By setting b = 0, R13 and R23 takes the form of ebHII of Table 2. The map ebHII

is of subclass [1 : 1] so clearly non-(Möb)2 equivalent to the HII map. Finally, by setting c = 0,
mappings R13 and R23 are (Möb)2 equivalent to ebHII. �

Proposition 4.3. The HA
III Yang–Baxter map entwines with the map of Table 3 according to

the entwining relation

S12T13T23 = T23T13S12,

where S12 is the HA
III map acting on the (1, 2)-coordinates, T13 and T23 are ebHA

III acting on (1, 3)
and (2, 3) coordinates respectively.

Table 3. Entwining maps associated with the HA
III Yang–Baxter map though degeneracy.

map (u, v) 7→ (U, V ) subclass

ebHA
III U =

β

α
u, V =

βuv

β(u+ v)− αu2v
[0 : 2]
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Proof. Starting with the invariants

H1 = x1 + x2 + x3, H2 = p1x1 + p2x2 +
a− bx3
b− cx3

,

the map R12 is exactly the HA
III map. By setting a = 0, R13 and R23 are (Möb)2 equivalent to

the HA
III map. By setting b = 0 and R13 and R23 takes the form of ebHA

III of Table 3 (where
β = a/c). The map ebHA

III is of subclass [0 : 2] so clearly non-(Möb)2 equivalent to the HA
III map.

Finally, by setting c = 0, mappings R13 and R23 are (Möb)2 equivalent to the HA
III map. �

In the following subsection we are using the notion of symmetry of Yang–Baxter maps in
order to generate entwining maps

4.2 Symmetries of Yang–Baxter maps and the entwining property

The notion of symmetry in the context of Yang–Baxter maps was introduced in [59].

Definition 4.4. An involution φ : CP1 7→ CP1 is a symmetry of the Yang–Baxter map R : CP1×
CP1 7→ CP1 × CP1 if it holds

φ1φ2R12 = R12φ1φ2,

where φ1 is the involution that acts as φ to the first factor of the cartesian product CP1 × CP1

and φ2 is the involution that acts as φ to the second factor of the cartesian product.

Let m < n ∈ {1, . . . , k}, k ≥ 3 fixed. A direct consequence of the previous definition is that
if φ is a symmetry of the Yang–Baxter map R, then the map φmRmnφn is a new Yang–Baxter
map since it is not (Möb)2 equivalent with Rmn. By finding the symmetries of the F -list of
Yang–Baxter maps, the authors of [59] derived the H-list of Yang–Baxter maps. Clearly the
symmetries of the F -list are symmetries of the H-list and vice versa.

Theorem 4.5. Let φ a symmetry of a Yang–Baxter map R and let φ0 the identity map, i.e.,
φ0 : (x1, . . . , xk) 7→ (x1, . . . , xk). Out of the possible 43 entwining relations of the form

R12φiR13φjR23φk = R23φkR13φjR12φi, i, j, k ∈ {0, 1, 2, 3}, (4.1)

apart the Yang–Baxter relation that holds, only the following three entwining relations holds

R12R13φ1R23φ2 = R23φ2R13φ1R12, (4.2)

R12φ2R13φ3R23 = R23R13φ3R12φ2, (4.3)

R12φ2R13φ2R23φ2 = R23φ2R13φ2R12φ2. (4.4)

Proof. To show that only the entwining relations (4.2), (4.3), (4.4) holds, we start with

R12φiR13φjR23φk = R23φkR13φjR12φi, i, j, k ∈ {0, 1, 2, 3}.

By direct calculations, we prove that if the Yang–Baxter relation holds out of the 43 different
relations (4.1), only (4.2), (4.3), (4.4) holds.

For example let us show that (4.2) holds. We have

R12R13φ1R23φ2 = R12R13R23φ1φ2 = R23R13R12φ1φ2, (4.5)

since φ1 commutes with R23 and the Yang–Baxter relation R12R13R23 = R23R13R12 holds. But
due to the symmetry we have R12φ1φ2 = φ1φ2R12 so (4.5) reads

R23R13R12φ1φ2 = R23R13φ1φ2R12 = R23φ2R13φ1R12

and that completes the proof that (4.2) holds. For the remaining relations we work similarly for
their proof. �
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Note that any of the entwining relations (4.2), (4.3) and (4.4), is uniquely described by the
symmetries φi, φj , φk that take part in this relation. For example in (4.2) the symmetries φ0,
φ1, φ2 appear in this order, hence we refer to (4.2) as relation of entwining type (φ0, φ1, φ2) or
by using just the subscripts, relation of entwining type (0, 1, 2).

In Table 4, we present the entwining maps S, T , U that correspond to the entwining relations
(4.2)–(4.4), where R is any Yang–Baxter map. In what follows, we specify R to be any member
of the H-list2 of quadrirational Yang–Baxter maps.

Table 4. Entwining maps S, T , U associated with a Yang–Baxter map R.

entwining type S12 T13 U23

(0, 1, 2) R12 R13φ1 R23φ2
(2, 3, 0) R12φ2 R13φ3 R23

(2, 2, 2) R12φ2 R13 φ2R23φ2

4.2.1 Entwining maps associated with the HI Yang–Baxter map

The involutions φ, ψ

φ : u 7→ α

u
, ψ : u 7→ u− α

u− 1
,

where α a complex parameter, are symmetries for the HI map (see [59]), since it holds

φ1φ2R12 = R12φ1φ2, ψ1ψ2R12 = R12ψ1ψ2,

where R12 is the HI map acting on the 12-coordinates and

φ1 : (x1, x2) 7→ (p1/x1, x2), φ2 : (x1, x2) 7→ (x1, p2/x2),

ψ1 : (x1, x2) 7→ ((x1 − p1)/(x1 − 1), x2), ψ2 : (x1, x2) 7→ (x1, (x2 − p2)/(x2 − 1)).

Note that the symmetries φ and τ can be derived from our considerations (see Example 3.6)
since for k = 3 it holds

H1φ1φ2φ3 =
p1p2p3
H1

, H2φ1φ2φ3 =
1

H2
,

H1ψ1ψ2ψ3 = H2, H2ψ1ψ2ψ3 = H1.

Remark 4.6. By using similar arguments as in the proof of the Theorem 4.5, entwining relations
where the symmetries φ and ψ of the HI map interlace do not exist, i.e., it does not exists for
example any relation of entwining type (φi, φj , ψk).

In Table 5 we present the entwining maps associated with the HI map which are generated
by using the symmetries φ and ψ. In Table 5 it appears the HI map, the companion of the HI

map that is denoted as cHI, as well as c̃FI which is the companion map of the map F̃I that was
derived in [59]. We also have four novel maps which are not (Möb)2 equivalent to HI, which we
refer to as Φa

I , Φb
I , Ψa

I and Ψb
I . In the proposition that follows we present their explicit form.

2It is easy to show that the entwining maps associated with the F -list of quadrirational Yang–Baxter maps
are (Möb)2 equivalent to the corresponding to the H-list entwining maps. This is the reason that we present the
entwining maps associated with the H-list only.
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Table 5. Left table: Entwining maps S, T , U associated with HI Yang–Baxter map using the symmet-

ry φ. Right table: Entwining maps S, T , U associated with HI Yang–Baxter map using the symmetry ψ.

entwining type S12 T13 U23

(0, 1, 2) HI Φa
I Φa

I

(2, 3, 0) Φb
I Φb

I HI

(2, 2, 2) Φb
I HI cHI

entwining type S12 T13 U23

(0, 1, 2) HI Ψa
I Ψa

I

(2, 3, 0) Ψb
I Ψb

I HI

(2, 2, 2) Ψb
I HI cF̃I

Proposition 4.7. The following non-periodic3 maps (u, v) 7→ (U, V ), where

U = αvQ, V =
1

u
Q−1, Q =

β − α+ u(1− β) + v(α− 1)

β(1− α)u− α(1− β)v + (α− β)uv
, (Φa

I )

U =
1

v
Q−1, V = βuQ, Q =

β − α+ u(1− β) + v(α− 1)

β(1− α)u− α(1− β)v + (α− β)uv
, (Φb

I)

U = vQ, V =
u− α
u− 1

Q−1, Q =
α(1− v)− βu+ uv

β(1− u)− βv + uv
, (Ψa

I )

U =
v − β
v − 1

Q, V = uQ−1, Q =
α(1− u− v) + uv

β(1− u)− αv + uv
, (Ψb

I)

entwine with the HI Yang–Baxter map according to the entwining relations of Table 5.

4.2.2 Entwining maps associated with the HII Yang–Baxter map

The invariants

H1 = x1 + x2 + x3, H2 =
x1 − p1
x1

x2 − p2
x2

x3 − p3
x3

,

generate the maps Rij , i < j ∈ {1, 2, 3} which are exactly the HII map acting on the (ij)-
coordinates. Explicitly the HII map reads

U = v +
(α− β)uv

βu+ αv − αβ
, V = u− (α− β)uv

βu+ αv − αβ
. (HII)

A symmetry of the HII map is φ : u 7→ α − u, since it holds φ1φ2R12 = R12φ1φ2, where R12 is
the HII map acting on the (12)-coordinates and

φ1 : (x1, x2) 7→ (p1 − x1, x2), φ2 : (x1, x2) 7→ (x1, p2 − x2).

Table 6. Entwining maps S, T , U associated with HII Yang–Baxter map using the symmetry φ.

entwining type S12 T13 U23

(0, 1, 2) HII Φa
II Φa

II

(2, 3, 0) Φb
II Φb

II HII

(2, 2, 2) Φb
II HII cHII

3A non-periodic map cannot be equivalent by conjugation ((Möb)2 equivalent) to a periodic map. Since the HI

map is involutive, the maps presented in this proposition are not (Möb)2 to the HI map.
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Proposition 4.8. The following non-periodic maps (u, v) 7→ (U, V ), where

U = αv
u− v + β − α
βu− αv

, V = β
(α− u)(u− v)

βu− αv
, (Φa

II)

U = α
(β − v)(u− v)

βu− αv
, V = βu

u− v + β − α
βu− αv

, (Φb
II)

entwine with the HII Yang–Baxter map according to the entwining relations of Table 6.

The map cHII denotes the companion map of the HII map.

4.2.3 Entwining maps associated with the HA
III Yang–Baxter map

The invariants

H1 =
1

x1
+

1

x2
+

1

x3
, H2 = p1x1 + p2x2 + p3x3,

generate the maps Rij , i < j ∈ {1, 2, 3} which are exactly the HA
III map acting on the (ij)-

coordinates. Explicitly the HA
III map reads

U =
v

α

αu+ βv

u+ v
, V =

u

β

αu+ βv

u+ v
. (HA

III)

Two symmetries of the HA
III map are

φ : u 7→ 1

αu
, ψ : u 7→ −u

since it holds

φ1φ2R12 = R12φ1φ2, ψ1ψ2R12 = R12ψ1ψ2,

where R12 is the HA
III map acting on the (12)-coordinates and

φ1 : (x1, x2) 7→
(

1

p1x1
, x2

)
, φ2 : (x1, x2) 7→

(
x1,

1

p2x2

)
,

ψ1 : (x1, x2) 7→ (−x1, x2), ψ2 : (x1, x2) 7→ (x1,−x2).

Note that the map φ1R12φ2 is exactly the HB
III Yang–Baxter map.

Proposition 4.9. The following non-periodic maps (u, v) 7→ (U, V ) where

U = v
1 + βuv

1 + αuv
, V =

1

βu

1 + βuv

1 + αuv
,

(
Φa
IIIA

)
U =

1

αv

1 + αuv

1 + βuv
, V = u

1 + αuv

1 + βuv
,

(
Φb
IIIA

)
U =

v

α

αu− βv
u− v

, V =
u

β

αu− βv
v − u

,
(
Ψa

IIIA

)
U =

v

α

αu− βv
v − u

, V =
u

β

αu− βv
u− v

,
(
Ψb

IIIA

)
entwine with the HA

III Yang–Baxter map according to the entwining relations of Table 7.

The map cHA
III denotes the companion map of the HA

III map and with ĤA
III we denote a (Möb)2

equivalent map to the HA
III.
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Table 7. Left table: Entwining maps S, T , U associated with HA
III Yang–Baxter map using the symmet-

ry φ. Right table: Entwining maps S, T , U associated with HA
III Yang–Baxter map using the symmetry ψ.

entwining type S12 T13 U23

(0, 1, 2) HA
III Φa

IIIA
Φa
IIIA

(2, 3, 0) Φb
IIIA

Φb
IIIA

HA
III

(2, 2, 2) Φb
IIIA

HA
III ĤA

III

entwining type S12 T13 U23

(0, 1, 2) HA
III Ψa

IIIA
Ψa

IIIA

(2, 3, 0) Ψb
IIIA

Ψb
IIIA

HA
III

(2, 2, 2) Ψb
IIIA

HA
III cHA

III

4.2.4 Entwining maps associated with the HB
III Yang–Baxter map

The invariants that were derived in [44, 45, 47, 56],

H1 = x1x2x3, H2 = p1x1 + p2x2 + p3x3 +
1

x1
+

1

x2
+

1

x3
,

generate the maps Rij , i < j ∈ {1, 2, 3} which are exactly the HB
III map acting on the (ij)-

coordinates. Explicitly the HB
III map reads

U = v
1 + βuv

1 + αuv
, V = u

1 + αuv

1 + βuv
,

(
HB

III

)
The symmetries φ, ψ of the HA

III map are symmetries of HB
III as well.

Proposition 4.10. The following non-periodic maps (u, v) 7→ (U, V ), where

U =
v

α

αu+ βv

u+ v
, V =

1

u

u+ v

αu+ βv
,

(
Φa
IIIB

)
U =

1

v

u+ v

αu+ βv
, V =

u

β

αu+ βv

u+ v
,

(
Φb
IIIB

)
U = v

1− βuv
1− αuv

, V = u
1− αuv
−1 + βuv

,
(
Ψa

IIIB

)
U = v

1− βuv
−1 + αuv

, V = u
1− αuv
1− βuv

,
(
Ψb

IIIB

)
entwine with the HB

III Yang–Baxter map according to the entwining relations of Table 8.

Table 8. Left table: Entwining maps S, T , U associated with HB
III Yang–Baxter map using the symmet-

ry φ. Right table: Entwining maps S, T , U associated with HB
III Yang–Baxter map using the symmetry ψ.

entwining type S12 T13 U23

(0, 1, 2) HB
III Φa

IIIB
Φa
IIIB

(2, 3, 0) Φb
IIIB

Φb
IIIB

HB
III

(2, 2, 2) Φb
IIIB

HB
III ĤB

III

entwining type S12 T13 U23

(0, 1, 2) HB
III Ψa

IIIB
Ψa

IIIB

(2, 3, 0) Ψb
IIIB

Ψb
IIIB

HB
III

(2, 2, 2) Ψb
IIIB

HB
III H̃B

III

The maps ĤB
III, H̃

B
III that appear in Table 8, are (Möb)2 equivalent to the map HB

III. The
map cHB

III denotes the companion map of the HB
III map.

4.2.5 Entwining maps associated with the HV Yang–Baxter map

The invariants that were derived in [44, 45, 47, 56],

H1 = x1 + x2 + x3, H2 = x31 + 3p1x1 + x32 + 3p2x2 + x33 + 3p3x3,
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generate the maps Rij , i < j ∈ {1, 2, 3} which are exactly the HV map acting on the (ij)-
coordinates. Explicitly the HV map reads

U = v − α− β
u+ v

, V = u+
α− β
u+ v

. (HV)

The involution ψ : u 7→ −u is a symmetry of the HV map.

Proposition 4.11. The following non-periodic maps (u, v) 7→ (U, V ), where

U = v +
α− β
u− v

, V = −u− α− β
u− v

,
(
Ψa

V

)
U = −v − α− β

u− v
, V = u+

α− β
u− v

,
(
Ψb

V

)
entwine with the HV Yang–Baxter map according to the entwining relations of Table 9.

Table 9. Entwining maps S, T , U associated with HV Yang–Baxter map using the symmetry ψ.

entwining type S12 T13 U23

(0, 1, 2) HV Ψa
V Ψa

V

(2, 3, 0) Ψb
V Ψb

V HV

(2, 2, 2) Ψb
V HV cHV

The map cHV denotes the companion map of the HV map.

5 Transfer maps

The notion of transfer maps associated with Yang–Baxter maps was introduced by Veselov
in [69]. In [70] dynamical aspects of the latter were discussed. The transfer maps associated
with any reversible Yang–Baxter map are defined as

T
(k)
i = Rii+k−1Rii+k−2 · · ·Rii+1, i ∈ {1, . . . , k},

where the indices are considered modulo k. There is:

T
(k)
i T

(k)
j = T

(k)
j T

(k)
i , T

(k)
1 T

(k)
2 · · ·T (k)

k = id.

For example for k = 4 we have T
(4)
1 = R14R13R12, T

(4)
2 = R12R24R23, T

(4)
3 = R23R13R34 and

T
(4)
4 = R34R24R14.

Proposition 5.1. For the transfer maps T
(k)
i associated with the maps R

pij

ij of the Proposi-
tions 3.3, 3.9, 3.11, it holds:

1) they preserve the invariants H1, H2, presented in the Propositions 3.3, 3.9, 3.11,

2) for k = 2n+ 1 they preserve the measures given in the Propositions 3.3, 3.9, 3.11,

3) for k = 2n they anti-preserve the measures given in the Propositions 3.3, 3.9, 3.11,

4) they possess Lax pairs,

5) for generic values of the parameter sets pij, are equivalent by conjugation to the transfer
maps associated with HI, HII and HA

III Yang–Baxter maps respectively,
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6) for non-generic values of the parameter sets pij, we have novel transfer maps.

Proof. The statements (1)–(3) have already been proven (see Propositions 2.1, 3.3, 3.9, 3.11).
As for the statement (4), one can construct a Lax matrix for the Yang–Baxter map R follo-

wing [66]. Then the Lax equations associated with the transfer maps T
(k)
i , correspond to certain

factorizations of the monodromy matrix (see [69]).
We will show the statement (5) for the transfer maps associated with R

pij

ij of Proposition 3.3
and for k = 4. The proof for arbitrary k follows by induction. In Proposition 3.3 it was shown
that these maps are (Möb)2 equivalent to the HI map. Let us denote as νl the maps defined by
the cross-ratios

CR[xl, al/bl, cl/dl, Al/Bl] = CR[yl, 0, 1,∞], l = 1, . . . , 4,

and as µl the maps defined by

CR[xl, cl/dl, al/bl, Cl/Dl] = CR[yl,∞, 1, 0], l = 1, . . . , 4.

Then the maps R̃
pij

ij , where R̃
pij

ij = µ−1j µ−1i R
pij

ij µiµj are exactly the HI map acting on the

(ij)-coordinates (see Proposition 3.3). For the transfer map T̃
(4)
1 associated with R̃

pij

ij , there is

T̃
(4)
1 = R̃14R̃13R̃12 =

(
ν−11 µ−14 R14ν1µ4

)(
ν−11 µ−13 R13ν1µ3

)(
ν−11 µ−13 R13ν1µ2

)
= µ−14 µ−13 µ−12 ν−11 R14R13R12ν1µ2µ3µ4 = µ−14 µ−13 µ−12 ν−11 T

(4)
1 ν1µ2µ3µ4. (5.1)

Note that we have omitted the parameter sets pij that the maps depends on for simplicity.
(6). For non-generic choice of the parameter sets pij , the conjugation equivalence (5.1) does

not holds. �

5.1 On a re-factorisation of the transfer maps

First, let us introduce some maps. With πij we denote the transpositions

πij : (x1, . . . , xk; p1, . . . ,pk) 7→ (X1, . . . , Xk; P1, . . . ,Pk),

Xl = xl, Pl = pl ∀ l 6= i, j, Xi = xj , Xj = xi, Pi = pj , Pj = pi.

and with π0 we denote the following k-periodic map

π0 : (x1, . . . , xk; p1, . . . ,pk) 7→ (X1, . . . , Xk; P1, . . . ,Pk),

Xl = xl+1, Pl = pl+1, ∀ l ∈ {1, . . . , k}, modulo k.

Remark 5.2. Note that π0 = π12π13 · · ·π1k and the maps π0, πij ∀ i, j ∈ {1, . . . , k}, preserve
the invariants H1, H2 of the Propositions 3.3, 3.9, 3.11. Moreover, the maps Si := πii+1Rii+1,
i ∈ {1, . . . , k}, also preserve the invariants H1, H2. The following relations holds

S2
i = (SiSi+1)

3 = πk0 = id, (SiSj)
2 = id, |i− j| > 1, Siπ0 = π0Si+1.

The group g = 〈π0, S1, S2, . . . , Sk〉 generated by these maps provides a bi-rational realization of

the extended Weyl group of type A
(1)
k−1.

Proposition 5.3. The transfer maps T
(k)
i of a Yang–Baxter map R, coincide with the (k− 1)-

iteration of the maps

t
(k)
i := π0πii+1R

pii+1

ii+1 = π0Si.

We refer to the maps t
(k)
i as the extended transfer maps associated with the Yang–Baxter map R.
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Proof. It is enough to show that the (k − 1)-iteration of the map t
(k)
1 coincides with T

(k)
1 . For

small values of k, this can be proven by direct calculation. In-order to complete the proof, it is

enough to show that for arbitrary k the maps T
(k)
1 and

(
t
(k)
1

)k−1
share the same Lax equation.

Let L(x,p;λ) the Lax matrix associated with the Yang–Baxter map R. The Lax equation

associated with the transfer map T
(k)
1 = Rp1k

1k R
p1k−1

1k−1 · · ·R
p12
12 reads

L(xk,pk;λ)L(xk−1,pk−1;λ) · · ·L(x2,p2;λ)L(x1,p1;λ)

= L(X1,p1;λ)L(Xk,pk;λ)L(Xk−1,pk−1;λ) · · ·L(X2,p2;λ). (5.2)

Since

π12R
p12
12 : L(xk,pk;λ)L(xk−1,pk−1;λ) · · ·L(x2,p2;λ)L(x1,p1;λ)

7→ L(xk,pk;λ)L(xk−1,pk−1;λ) · · ·L(x2,p2;λ)L(x1,p1;λ),

and

π0 : L(xk,pk;λ)L(xk−1,pk−1;λ) · · ·L(x2,p2;λ)L(x1,p1;λ)

7→ L(x1,p1;λ)L(xk,pk;λ) · · ·L(x3,p3;λ)L(x2,p2;λ),

there is

t
(k)
1 : L(xk,pk;λ)L(xk−1,pk−1;λ) · · ·L(x2,p2;λ)L(x1,p1;λ)

7→ L(x1,p1;λ)L(xk,pk;λ) · · ·L(x3,p3;λ)L(x2,p2;λ).

So the map t
(k)
1 has the following Lax equation

L(xk,pk;λ)L(xk−1,pk−1;λ) · · ·L(x2,p2;λ)L(x1,p1;λ)

= L(X1,P1;λ)L(Xk,Pk;λ)L(Xk−1,Pk−1;λ) · · ·L(X2,P2;λ).

But the map t
(k)
1 acts on the parameter sets pi as follows

t
(k)
1 : (p1, . . . ,pk) 7→ (P1, . . . ,Pk),

where

P1 = p1, Pk = p2 and ∀ i 6= 1, k Pi = pi+1,

that is periodic with period k− 1, so the Lax equation of the map
(
t
(k)
1

)k−1
is exactly (5.2), i.e.,

the Lax equation of T
(k)
1 . �

Theorem 5.4. The maps t
(k)
i satisfy the relations(

t
(k)
i t

(k)
i+1

)k/2
= id, t

(k)
1 t

(k)
2 · · · t

(k)
k = id, k even,(

t
(k)
i t

(k)
i+i

)k
= id,

(
t
(k)
1 t

(k)
2 · · · t

(k)
k

)2
= id, k odd.

Proof. Let us first prove that t
(k)
1 t

(k)
2 · · · t

(k)
k = id for k = 2m even. There is

t
(2m)
1 t

(2m)
2 · · · t(2m)

2m = π0S1π0S2 · · ·π0S2m,
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where we have the composition of m expressions of the form π0Siπ0Si+1, and for each one of
them (using Remark 5.2) it holds π0Siπ0Si+1 = π0S

2
i π0 = π20. So

t
(2m)
1 t

(2m)
2 · · · t(2m)

2m = π20π
2
0 · · ·π20︸ ︷︷ ︸

m-times

= π2m0 = id.

Let us now prove that
(
t
(k)
i t

(k)
i+1

)k/2
= id. We have(

t
(k)
i t

(k)
i+1

)k/2
=
(
t
(k)
i t

(k)
i+1

)m
=
(
π0Siπ0Si+1

)m
=
(
π20S

2
i+1

)m
= π2m0 = id.

For k = 2m+ 1 odd, we have(
t
(k)
i t

(k)
i+1

)k
= (t

(k)
i t

(k)
i+1)

2m+1 =
(
π20S

2
i+1

)2m+1
=
(
π2m+1
0

)2
= id.

Also, (
t
(2m+1)
1 t

(2m+1)
2 · · · t(2m+1)

2m+1

)2
=
(
t
(2m+1)
1 t

(2m+1)
2 · · · t(2m+1)

2m π0S2m+1

)2
=
(
π2m+1
0 S2m+1

)2
= S2

2m+1 = id,

where we have used the fact that

t
(2m+1)
1 t

(2m+1)
2 · · · t(2m+1)

2m = π20π
2
0 · · ·π20︸ ︷︷ ︸

m-times

= π2m0 . �

Remark 5.5. Note that for k odd, it holds the more general condition(
t
(k)
i t

(k)
j

)k
= id, i 6= j.

5.2 k-point recurrences associated with the transfer maps
of the H-list of quadrirational Yang–Baxter maps

We refer to the extended transfer maps t
(k)
i that correspond to the HI, HII, H

A
III, H

B
III and HV

Yang–Baxter maps respectively as t
HI(k)
i , t

HII(k)
i , t

HA
III(k)

i , t
HB

III(k)
i and t

HV(k)
i .

Here, we associate k-point recurrences with the maps t
HI(k)
i , t

HII(k)
i , t

HA
III(k)

i , t
HB

III(k)
i and t

HV(k)
i .

Let us first introduce the shift operator T as follows

T 0 : x(n) 7→ x(n), T 1 : x(n) 7→ x(n+ 1), T l : x(n) 7→ x(n+ l),

T−l : x(n) 7→ x(n− l), n, l ∈ Z.

The maps t
HI(k)
2 , t

HII(k)
2 , t

HA
III(k)

2 , t
HB

III(k)
2 and t

HV(k)
2 , explicitly read

(x1, . . . , xk; p1, . . . , pk) 7→ (Tx1, . . . , Txk;Tp1, . . . , Tpk),

where

Tx1 = x2
p3(1− p2) + (p2 − p3)x3 + (p3 − 1)x2x3
p2(1− p3) + (p3 − p2)x2 + (p2 − 1)x2x3

, Tp1 = p3, Txi = xi+1,

Tx2 = x3
p2(1− p3) + (p3 − p2)x2 + (p2 − 1)x2x3
p3(1− p2) + (p2 − p3)x3 + (p3 − 1)x2x3

, Tp2 = p2, Tpi = pi+1,
(
t
HI(k)
2

)
Tx1 = p3x2

x2 + x3 − p2
p3x2 + p2x3 − p2p3

, Tp1 = p3, Txi = xi+1,
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Tx2 = p2x3
x2 + x3 − p3

p3x2 + p2x3 − p2p3
, Tp2 = p2, Tpi = pi+1,

(
t
HII(k)
2

)
Tx1 =

x2
p3

p2x2 + p3x3
x2 + x3

, Tp1 = p3, Txi = xi+1,

Tx2 =
x3
p2

p2x2 + p3x3
x2 + x3

, Tp2 = p2, Tpi = pi+1,
(
t
HA

III(k)
2

)
Tx1 = x2

1 + p2x2x3
1 + p3x2x3

, Tp1 = p3, Txi = xi+1,

Tx2 = x3
1 + p3x2x3
1 + p2x2x3

, Tp2 = p2, Tpi = pi+1,
(
t
HB

III(k)
2

)
Tx1 = x2 −

p3 − p2
x2 + x3

, Tp1 = p3, Txi = xi+1,

Tx2 = x3 +
p3 − p2
x2 + x3

, Tp2 = p2, Tpi = pi+1,
(
t
HV(k)
2

)
with i = 3, 4, . . . , k and Txk = x1, Tpk = p1. Moreover, not just t

(k)
2 , but all the maps t

(k)
i , i =

1, 2, . . . , k, preserve the invariants in separated variables (see Table 10)4 and they anti-preserve
the measures mi = nidi+1 where ni, di the numerator and the denominator respectively of the
invariants Hi, i = 1, 2. Additional invariant can be constructed though the Lax formulation (see
the proof of Proposition 5.3).

Table 10. Invariants in separated variables for the maps t
HI(k)
i , t

HII(k)
i , t

HA
III(k)

i , t
HB

III(k)
i and t

HV(k)
i .

map H1 H2

t
HI(k)
i

k∏
i=1

pixi

k∏
i=1

xi − pi
xi − 1

1

pi − 1

t
HII(k)
i

k∑
i=1

xi + pi

k∏
i=1

xi − pi
pixi

t
HA

III(k)
i

k∑
i=1

1

xi
+

1

pi

k∑
i=1

pixi

t
HB

III(k)
i

k∏
i=1

pixi

k∑
i=1

1

xi
+ pixi +

1

pi

t
HV(k)
i

k∑
i=1

xi + pi

k∑
i=1

x3i + 3pixi + p3i

Now we show how a k-point recurrence can be associated with the map t
HV(k)
2 . Recall that

the map t
HV(k)
2 reads

t
HV(k)
2 : (x1, . . . , xk; p1, . . . , pk) 7→ (Tx1, . . . , Txk;Tp1, . . . , Tpk),

where

Tx1 = x2 −
p3 − p2
x2 + x3

, Tx2 = x3 +
p3 − p2
x2 + x3

, Txi = xi+1,

Tp1 = p3, Tp2 = p2, Tpi = pi+1, i = 3, . . . , k,

4The invariants in separated variables that appear in Table 10, were firstly introduced, in a different context,

in [44, 45, 47, 56]. Note that the invariants H1, H2 for t
HA

III(k)

i were also given in [50].
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and the indices are considered modulo k. Clearly we have, x3 = T 2−kx1, p3 = T 2−kp1. So we
obtain

Tx1 = x2 −
T 2−kp1 − p2
x2 + T 2−kx1

, Tx2 = T 2−kx1 +
T 2−kp1 − p2
x2 + T 2−kx1

,

T k−1p1 = p1, Tp2 = p2. (5.3)

Adding the first two equations from above we get the following invariance condition5

(
T 1 − T 2−k)x1 =

(
T 0 − T 1

)
x2. (5.4)

So it is guaranteed the existence of a potential function f such that

x1 = c+
(
T 0 − T 1

)
f, x2 = c+

(
T 1 − T 2−k)f, where c = const.

In terms of f , (5.3) becomes the following (k + 1)-point recurrence

(
T 2 − T 2−k)f =

−p2 + T 2−kp1

2c+
(
T − T 3−k

)
f
, T k−1p1 = p1, Tp2 = p2. (5.5)

In terms of a new variable h defined as h := λ+
(
T 1 − T 0

)
f , there is,

(
T 2 − T 2−k)f = −λk +

1∑
i=2−k

T ih,
(
T − T 3−k)f = λ(2− k) +

0∑
i=3−k

T ih,

so (5.5) becomes the k-point recurrence

2ck

2− k
+

1∑
i=2−k

T ih =
−p2 + T 2−kp1

0∑
i=3−k

T ih

, T k−1p1 = p1, Tp2 = p2,

where we chose λ = 2c
k−2 to simplify the formulae.

Table 11. The invariance conditions (5.4) and the potential functions f for the maps t
HI(k)
2 , t

HII(k)
2 ,

t
HA

III(k)
2 , t

HB
III(k)

2 and t
HV(k)
2 .

map invariance condition potential function f

t
HI(k)
2

Tx1
T 2−kx1

=
T 0x2
Tx2

x1 = c
T 0f

Tf
, x2 = c

Tf

T 2−kf

t
HII(k)
2

(
T − T 2−k)x1 =

(
T 0 − T

)
x2 x1 = c+

(
T 0 − T

)
f , x2 = c+

(
T − T 2−k)f

t
HA

III(k)
2

(
T − T 2−k) 1

x1
=
(
T 0 − T

) 1

x2

1

x1
=

1

c
+
(
T 0 − T

)
f ,

1

x2
=

1

c
+
(
T − T 2−k)f

t
HB

III(k)
2

Tx1
T 2−kx1

=
T 0x2
Tx2

x1 = c
T 0f

Tf
, x2 = c

Tf

T 2−kf

t
HV(k)
2

(
T − T 2−k)x1 =

(
T 0 − T

)
x2 x1 = c+

(
T 0 − T

)
f , x2 = c+

(
T − T 2−k)f

5This condition is a consequence of the fact that the t
HV(k)
i preserves the invariantH1 =

k∑
i=1

xi. Such a condition

exists for the remaining extended transfer maps associated with the Yang–Baxter maps of the H-list. The latter
enable us to write t

(k)
2 maps as k-point recurrences.
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Proposition 5.6. The following (k + 1)-point recurrences corresponds to the extended transfer

map t
(k)
2 associated with HI, HII, H

A
III, H

B
III and HV Yang–Baxter maps respectively. We refer

to these (k + 1)-point recurrences respectively as rt
HI(k)
2 , rt

HI(k)
2 , rt

HA
III(k)

2 , rt
HB

III(k)
2 and rt

HV(k)
2

T 2f

T 2−kf
=

p2
(
−1 + T 2−kp1

)
+ c
(
p2 − T 2−kp1

) T 1f

T 2−kf
+ c2(1− p2)

T 1f

T 3−kf(
T 2−kp1

)
(p2 − 1) + c

(
−p2 + T 2−kp1

)T 2−kf

T 3−kf
+ c2

(
1− T 2−kp1

) T 1f

T 3−kf

,
(
rt
HI(k)
2

)
c+

(
T 1 − T 2

)
f

c+
(
T 1 − T 2−k

)
f

=

(
2c− p2 +

(
T 1 − T 3−k)f)T 2−kp1

−p2T 2−kp1 + c
(
p2 + T 2−kp1

)
+
(
T 2−kp1

)(
T 1 − T 2−k

)
f + p2

(
T 2−k − T 3−k

)
f
,
(
rt
HII(k)
2

)
c+

(
T 1 − T 2

)
f

c+
(
T 1 − T 2−k

)
f

=
2c+

(
T 1 − T 3−k)f

c+
(
T 1 − T 2−k

)
f +

p2
T 2−kp1

(
c+

(
T 2−k − T 3−k

)
f
) , (

rt
HA

III(k)
2

)
T 2f

T 2−kf
=
T 3−kf + c2

(
T 2−kp1

)
T 1f

T 3−kf + c2p2T 1f
,

(
rt
HB

III(k)
2

)
(T 2 − T 2−k)f =

−p2 + T 2−kp1

2c+
(
T − T 3−kf

) . (
rt
HV(k)
2

)
For each recurrence presented above we have that the parameters vary as follows: Tp2 = p2,
T k−1p1 = p1. So p2 is constant and p1 is periodic with period k − 1.

Note that the recurrences rt
HI(k)
2 and rt

HB
III(k)

2 are bilinear. Some members of rt
HI(k)
2 and

rt
HB

III(k)
2 , for specific choices of the parameters c, p2 and of the function p1, are expected to

exhibit the Laurent property [26, 27, 28].

Table 12. Definition of the variables h associated with the recurrences of Proposition 5.6.

recurrence variable h a choice for λ

rt
HI(k)
2 h := λ

Tf

T 0f
λ =

1

c

rt
HII(k)
2 h := λ+

(
T − T 0

)
f λ =

2c

k − 2

rt
HA

III(k)
2 h := λ+

(
T − T 0

)
f λ =

2c

k − 2

rt
HB

III(k)
2 h := λ

Tf

T 0f
λ =

1

c

rt
HV(k)
2 h := λ+

(
T − T 0

)
f λ =

2c

k − 2

Corollary 5.7. The (k+1)-point recurrences rt
HI(k)
2 , rt

HII(k)
2 , rt

HA
III(k)

2 , rt
HB

III(k)
2 and rt

HV(k)
2 , in

terms of the corresponding variables h defined in Table 12, get the form of the following k-point
recurrences

1∏
i=3−k

T ih =

c−kp2
(
T 2−kp1 − 1

)
+
(
p2 − T 2−kp1

) 0∏
i=2−k

T ih+ (1− p2)
0∏

i=3−k
T ih

T 2−kp1 − p2 + T 2−kp1(p2 − 1)T 2−kh+ ck
(
1− T 2−kp1

) 0∏
i=3−k

T ih

,
(
r̂t
HI(k)
2

)
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p2

(
ck

k − 2
− Th

)(
ck

k − 2
− T 2−kp1 − T 2−kh

)
= T 2−kp1

(
ck

k − 2
−

0∑
i=2−k

T ih

)(
ck

k − 2
+ p2 −

1∑
i=3−k

T ih

)
,

(
r̂t
HII(k)
2

)
p2

(
ck

k − 2
− Th

)(
ck

k − 2
− T 2−kh

)
= T 2−kp1

(
ck

k − 2
−

0∑
i=2−k

T ih

)(
ck

k − 2
−

1∑
i=3−k

T ih

)
,

(
r̂t
HA

III(k)
2

)

1∏
i=2−k

T ih =

c−k + T 2−kp1

0∏
i=3−k

T ih

1 + ckp2

0∏
i=3−k

T ih

,
(
r̂t
HB

III(k)
2

)

− 2ck

k − 2
+

1∑
i=2−k

T ih =
−p2 + T 2−kp1

0∑
i=3−k

T ih

(
r̂t
HV(k)
2

)

and for each recurrence presented above we have that the parameters vary as follows: Tp2 = p2,
T k−1p1 = p1. So p2 is constant and p1 is periodic with period k − 1.

Note that the (k+1)-point recurrences of Proposition 5.6, as well as the corresponding k-point
ones introduced in Corollary 5.7 are non-autonomous. This is due to the fact that p1 varies pe-
riodically (T k−1p1 = p1). The non-autonomous terms that will be introduced by integrating the

relation T k−1p1 = p1 are periodic though. Proper de-autonomization for the recurrences r̂t
HV(k)
2

and r̂t
HB

III(k)
2 will be introduced in what follows.

5.2.1 The recurrences r̂t
HV(k)
i and discrete Painlevé equations

The dressing chain for the KdV equation [71], reads

(gi+1 + gi)t = g2i+1 − g2i + pi+1 − pi. (5.6)

The recurrences r̂t
HV(k)
i , serve as its discretisations. Actually they are exactly the (k− 1)-roots

of the discretisations presented in [1]. So, r̂t
HV(k)
i corresponds to Liouville integrable maps.

Since the dressing chain (5.6) leads to Painlevé equations PIV and PV and their higher order

analogues [71], the recurrences r̂t
HV(k)
i (after proper de-autonomisation) can be considered as

their discrete counter-parts and/or the Bäcklund transformations of the higher order PIV and PV

Painlevé equations.

A proper de-autonomisation of r̂t
HV(k)
2 is achieved by breaking the periodicity of the p1

assuming that T k−1p1 = p1 + (k − 1)a, where a constant. This de-autonomisation is proper
since the resulting non-autonomous discrete system preserves the same Poisson structure6 as
the autonomous one. So we obtain the following hierarchy of discrete Painlevé equations

− 2ck

k − 2
+

1∑
i=2−k

T ih =
−p2 + T 2−kp1

0∑
i=3−k

T ih

, Tp2 = p2, T k−1p1 = p1 + (k − 1)a. (5.7)

6The Poisson structures associated with the dressing chain for the KdV equation were first derived in [71], see
also [25].
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For k = 3, (5.7) reads

−6c+ Th+ h+ T−1h =
−p2 + T−1p1

h
, Tp2 = p2, T 2p1 = p1 + 2a.

So p2 is constant and p1 = b0+b1(−1)n+an, with b0, b1, a constants. We can choose −p2+b0 = b
constant, hence we obtain the following discrete Painlevé equation which serves as Bäcklund
transformation of PIV [57]

−6c+ Th+ h+ T−1h =
b+ b1(−1)n + an

h
, n ∈ Z. (5.8)

For k = 4, (5.7) reads

−4c+ T−2h+ h+ T−1h+ h+ Th =
−p2 + T−2p1
h+ T−1h

, Tp2 = p2, T 3p1 = p1 + 3a.

If we define a new variable w as w := h+ T−1h, then we obtain the following discrete Painlevé
equation which serves as Bäcklund transformation of PV

−4c+ T−1w + Tw =
−p2 + T−2p1

w
, Tp2 = p2, T 3p1 = p1 + 3a.

So for k odd (5.7) serves as Bäcklund transformation for the higher order analogues of PIV and
for k even (5.7) serves as Bäcklund transformation for the higher order analogues of PV. Note
that in [57], Bäcklund transformation for the higher order analogues of PIV and PV were given in
terms of continued fractions. We can recover the form of discrete Painlevé equations introduced
in [57] by making use of the alternating terms that appear in (5.7). For example for k = 3,
the term (1)n that appears in (5.8), suggests the introduction of the variables y(m) := h(2n),
z(m) := h(2n+ 1). Then (5.8) takes to form of the second discrete Painlevé equation dPII

y + z + T−1z =
b0 + b1 + am

y
, Ty + y + z =

b0 − b1 + am

z
, m ∈ Z.

5.2.2 The recurrences r̂t
HB

III(k)

i and discrete Painlevé equations

As we plan to show in our future work, the recurrences r̂t
HB

III(k)
i serves as Liouville integrable

discretisations of the following chain introduced in [6]

(gi + gi+1)t = 2(pi cosh gi − pi+1 cosh gi+1).

A proper de-autonomisation of r̂t
HB

III(k)
2 is achieved by breaking the periodicity of the p1 in

a way that the non-autonomous system preserves the same Poisson structure as the autonomous
one. This is achieved by imposing that T k−1p1 = p1a

k−1, where a constant. So we obtain the
following hierarchy of discrete Painlevé equations

1∏
i=2−k

T ih =

c−k + T 2−kp1

0∏
i=3−k

T ih

1 + ckp2

0∏
i=3−k

T ih

, Tp2 = p2, T k−1p1 = p1a
k−1. (5.9)

For k = 3, (5.9) reads

ThT−1h =
1

h

c−3 + hT−1p1
1 + c3p2h

, Tp2 = p2, T 2p1 = p1a
2.
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So p2 is constant and p1 = b0a
n + b1(−a)n, with b0, b1, a constants. Hence we obtain the

q − PI

(
A

(1)
6

)
discrete Painlevé equation (see [63]). For k = 4, (5.9) reads

ThT 0hT−1hT−2h =
c−4 + hT−1hT−2p1

1 + c4p2hT−1h
, Tp2 = p2, T 3p1 = p1a

3.

If we define a new variable w as w := hT−1h, then we obtain the q−PII

(
A

(1)
5

)
discrete Painlevé

equation (see [63])

TwT−1w =
c−4 + wT−2p1

1 + c4p2w
, Tp2 = p2, T 3p1 = p1a

3.

The Lax pair associated with the hierarchy (5.9) first appeared in [32].

Remark 5.8. As for the recurrences r̂t
HA

III(k)
i , r̂t

HII(k)
i , one could consider T k−1p1 = p1+(k−1)a

and for r̂t
HI(k)
i T k−1p1 = p1a

k−1, in order to de-autonomise them. We anticipate that this is
a proper de-autonomisation, although we have no proof yet. The finding of the Poisson structures
that the latter recurrences we anticipate that preserve, will sort this issue out.

Remark 5.9. As a final remark, we note that the k-point recurrences associated with the
extended transfer maps of the Yang–Baxter map FV, are exactly the same as the k-point recur-
rences associated with the extended transfer maps of the Yang–Baxter map HV which (one of
them) were presented in Corollary 5.7. Since the (k−1)-iteration of the extended transfer maps
of any Yang–Baxter map coincides with its transfer maps, we conclude that the dynamics of
the transfer maps of the Yang–Baxter maps FV and HV, are the same. The same holds true for
the transfer maps associated with the Yang–Baxter maps FIII and HA

III. As for the remaining
members of the F and the H lists of Yang–Baxter maps, further investigation is required in
order to prove the equivalence of their transfer dynamics.

6 Conclusions

In Section 2 we have presented a family of maps in k variables which preserve 2 rational invariants
of a specific form. One could mimic the procedures introduced in [29] to obtain rational maps
in k variables which preserve m rational invariants where m < k. For example, there are

(
2k
k

)
rational maps (x1, . . . , xk, y1, . . . , yk) 7→ (X1, . . . , Xk, Y1, . . . , Yk) which preserve k invariants of
the form:

Hi =
αixixi+1 + βixi + γixi+1 + δi
κixixi+1 + λixi + µixi+1 + νi

, i = 1, 2, . . . , k, (6.1)

where the indices are considered modulo k and αi, βi, κi, λi, etc. are given functions of the
variables yi, yi+1.

If separability of variables on the invariants is imposed, then higher rank analogues of the
Yang–Baxter maps of Propositions 3.3, 3.9 and 3.11 are expected. Moreover, solutions of the
functional tetrahedron equation [41, 42, 49, 64], or even of higher simplex equations [17, 53,
54] are anticipated. For example if we consider the following, different than (6.1), choice of
invariants:

H1 =
6∑
i=1

xi, H2 =
x1x4x6
x3

, H3 = x2x3x4x5,
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then the involutions R123, R145, R246, and R356, preserve Hi, i = 1, 2, 3 and satisfy the functional
tetrahedron equation

R123R145R246R356 = R356R246R145R123.

They are exactly the Hirota’s map [41, 42, 64], i.e., the map R : (u, v, w) 7→ (U, V,W ), where

U =
uv

u+ w
, V = u+ w, W =

vw

u+ w
,

acting on (123), (145), (246) and (356) coordinates respectively. For the involution φ : u 7→ −u,
it holds φ1φ2φ3R123 = R123φ1φ2φ3. So φ is a symmetry of the Hirota’s map R and it can be
easily proven that the following entwining relation holds

R123φ3R145φ5R246φ6R356 = R356R246φ6R145φ5R123φ3.

Hence we have obtained a solution of the following entwining functional tetrahedron relation

S123S145S246T356 = T356S246S145S123,

where T is the Hirota’s map acting on the (356) coordinates and S : (u, v, w) 7→ (U, V,W )
a non-periodic map where

U =
uv

u− w
, V = u− w, W = − vw

u− w
.

The complete set of entwining relations and maps associated with the Hirota’s map as well as
with the Hirota–Miwa’s map, will be considered elsewhere.

In Section 4, we considered two methods to obtain entwining maps. The first method uses
degeneracy arguments and produces entwining maps associated with the HI, HII and HA

III Yang–
Baxter maps. The entwining maps of this method belongs to different subclasses than the [2 : 2]
subclass of maps that the HI, HII and HA

III Yang–Baxter maps belongs to so they are not (Möb)2

equivalent to the latter. The outcomes of the second method are non-periodic7 entwining maps
of subclass [2 : 2] associated with the whole H-list. The fact that the entwining maps which were
presented in this Section preserve two invariants in separated variables, enable us to introduce
appropriate potentials (as shown in [44, 45, 56]) to obtain integrable lattice equations. Actually
we obtain integrable triplets of lattice equations (in some cases even correspondences). Note
that integrable triplets of lattice equations were systematically derived in [13] and more recently
in [33]. We plan to consider the integrable triplets of lattice equations derived from entwining
maps, elsewhere.

In Section 6, we have proved that the transfer maps associated with the H list of Yang–
Baxter maps can be considered as the (k − 1)-iteration of some maps of simpler form. As
a consequence of this re-factorisation we have obtained (k+1)-point (see Proposition 5.6) and k-
point (see Corollary 5.7) alternating recurrences which can be considered as alternating versions
of some hierarchies of discrete Painlevé equations. Moreover, the autonomous versions of some
of the k-point recurrences presented in Corollary 5.7, can be obtained by periodic reductions [58]
(cf. [34]) of integrable lattice equations. Here we have obtained alternating k-point recurrences
from Yang–Baxter maps without performing periodic reductions. Hence, our results might be
compared/extended to the novel and independent frameworks introduced in [8, 10] and [38, 39],
where by using symmetry arguments, integrable lattice equations and discrete Painlevé equations
of 2nd order were linked.

7The non-periodicity assures that these entwining maps are not (Möb)2 equivalent with the corresponding
maps of the H-list.
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A The F -list and the H-list
of quadrirational Yang–Baxter maps

The Yang–Baxter maps R of the F and the H-list, explicitly read

R : CP1 × CP1 3 (u, v) 7→ (U, V ) ∈ CP1 × CP1,

U = αvP, V = βuP, P =
(1− β)u+ β − α+ (α− 1)v

β(1− α)u+ (α− β)uv + α(β − 1)v
, (FI)

U = αvP, V = βuP, P =
u− v + β − α
βu− αv

, (FII)

U =
v

α
P, V =

u

β
P, P =

αu− βv
u− v

, (FIII)

U = vP, V = uP, P = 1 +
β − α
u− v

, (FIV)

U = v + P, V = u+ P, P =
α− β
u− v

, (FV)

U = vQ, V = uQ−1, Q =
(α− 1)uv + (β − α)u+ α(1− β)

(β − 1)uv + (α− β)v + β(1− α)
, (HI)

U = v +Q, V = u−Q, Q =
(α− β)uv

βu+ αv − αβ
, (HII)

U =
v

α
Q, V =

u

β
Q, Q =

αu+ βv

u+ v
,

(
HA

III

)
U = vQ, V = uQ−1, Q =

1 + βuv

1 + αuv
,

(
HB

III

)
U = v −Q, V = u+Q, Q =

α− β
u+ v

. (HV)

The maps above are depending on 2 complex parameters α, β. The parameter α is associated
with the first factor of the cartesian product CP1×CP1, whereas the parameter β with the second
factor.
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