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Abstract. With respect to any special boundary defining function, a conformally compact
asymptotically hyperbolic metric has an asymptotic expansion near its conformal infinity. If
this expansion is even to a certain order and satisfies one extra condition, then it is possible
to define its renormalized volume and show that it is independent of choices that preserve
this evenness structure. We prove that such expansions are preserved under normalized
Ricci flow. We also study the variation of curvature functionals in this setting, and as one
application, obtain the variation formula

d

dt
RenV

(
Mn, g(t)

)
= −

R
∫
Mn

(S(g(t)) + n(n− 1))dVg(t),

where S(g(t)) is the scalar curvature for the evolving metric g(t), and R
∫

(·)dVg is Riesz
renormalization. This extends our earlier work to a broader class of metrics.
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1 Introduction

A basic invariant of a compact Riemannian manifold is its volume. Remarkably, certain confor-
mally compact asymptotically hyperbolic metrics, including Poincaré–Einstein metrics in even
dimensions, have a well-defined, finite renormalized volume. In this paper we study the behavior
of this quantity under normalized Ricci flow.

Conformally compact asymptotically hyperbolic (AH) spaces (Mn, g) are a class of complete
Riemannian manifolds modeled on the Poincaré disk model of hyperbolic space. Any such metric
is defined and complete on the interior of a compact manifold with boundary M = M ∪ ∂M ,
and takes the form g = ρ−2g where g is some smooth metric on M and where ρ is a smooth
boundary defining function. We require that |dρ/ρ|2g → 1 at ∂M , which ensures that the sectional
curvatures of g tend to −1 near ∂M . The conformal class [ρ2g|T∂M ] is a well-defined conformal
class on ∂M , and ∂M with this conformal class is called the conformal infinity of (M, g). This
class of metrics provides the setting for many interesting problems in geometric analysis and
physics.

This class contains the ‘special’ Poincaré–Einstein (PE) metrics, which by definition are the
conformally compact metrics which satisfy

E := Rc(g) + (n− 1)g = 0, n = dimM. (1.1)
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There are differences in various parts of this theory depending on the parity of n, but in this pa-
per we restrict ourselves entirely to the case where n is even. We emphasize our convention that
n = dimM is the dimension of the bulk manifold, which is in contrast to certain other papers
on PE metrics where n denotes the dimension of the conformal boundary instead. It turns out
that a choice of representative of the conformal infinity uniquely determines a boundary defining
function and a diffeomorphism of a collar neighbourhood of ∂M with ∂M × (0, 1). In terms
of this identification, there is a formal series solution g to equation (1.1) called the Fefferman–
Graham expansion. This expansion is even up to order n with respect to the special defining
function, with coefficients locally determined by the choice of metric in the conformal infinity.
Furthermore, the first odd term in the expansion has vanishing trace. Using these properties,
one may then compute the volumes of compact truncations in the exhaustion of the manifold
determined by these special boundary defining functions. Discarding the divergent terms in the
expansion of this one-parameter family of volumes defines the renormalized volume. Consider-
ations of parity in this expansion then shows that this renormalized volume is independent of
the choice of representative of the conformal infinity.

We study here this renormalized volume in a slightly more general setting, where the asymp-
totic expansion of the metric has qualitatively similar features. The first possibility is to re-
lax (1.1) and simply require that g is asymptotically Poincaré–Einstein (APE) in the sense that
|E|g = O(ρn) for some (hence any) boundary defining function ρ. In this case one has the
same Fefferman–Graham expansion of the metric and the same volume renormalization scheme
as in the PE case. However, we relax these conditions even further, and require only that the
expansion of the metric be even to a critical order and that the first odd term have vanishing
trace. We call AH metrics satisfying the first condition partially even, and metrics satisfying
both conditions volume renormalizable. Thus both PE metrics and APE metrics are volume
renormalizable. However, no special properties are required of the nonzero coefficients in the
expansion of a volume renormalizable metric, and hence the E tensor need only vanish to second
order.

AH metrics with various assumptions on the evenness of the expansion have been considered
frequently before, see [15, 16] and the more recent work by Vasy [21] regarding the role of evenness
in establishing the meromorphic extension and properties of the resolvent of the Laplacian of
an AH metric.

We also consider the normalized Ricci flow

∂tg = −2(Rc(g) + (n− 1)g), t ∈ [0, T ), g(0) = g0. (1.2)

The (n− 1)g term ensures that the conformal infinity is fixed in time. Observe that hyperbolic
metrics and more generally PE metrics are stationary points of this flow.

The preservation of the APE condition under the normalized Ricci flow and the variation of
renormalized volume was studied in our earlier paper [4]. Here we turn to these questions in
the more general class of partially even and volume renormalizable metrics. We now state our
main results.

Theorem 1.1. Suppose that
(
M, g0

)
, dimM =: n = 2m, is partially even, and let g(t) be

a solution of (1.2) with g(0) = g0 with maximal interval of existence [0, T0). Then (M, g(t))
remains partially even for t < T0. If, furthermore,

(
M, g0

)
is volume renormalizable then

(M, g(t)) remains volume renormalizable for t < T0.

Our second main result computes the variation of the renormalized volume along this flow. We
cast this slightly more generally by proving that the variation through volume renormalizable
metrics of any curvature functional is just the renormalized first variation of the same form
that, on compact manifolds, yields the Euler–Lagrange equations, see Theorem 5.4 below. An
immediate application is the
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Theorem 1.2. Let
(
M, g0

)
, n = 2m, be volume renormalizable, and g(t) the solution of (1.2)

with g(0) = g0. Then

d

dt
RenV = −

R
∫
M
S(g(t)) + n(n− 1) dVg(t). (1.3)

Here R
∫

(·)dVg indicates that the integral is not classically convergent, but must be regularized
in a way to be made precise below. The analogue of formula (1.3) in [4] appears almost exactly
the same except that when g(t) is APE, the integral is convergent and there is no need to
renormalize the integral.

Finally let us present a nonexhaustive list of related works studying the Ricci flow in the
context of AH metrics. Short-time existence was obtained in [20] and a uniqueness result in [9].
Preservation of conformally compact metrics along the flow was obtained in [3]. Stability of the
flow around hyperbolic space or other PE metrics under various hypotheses have been obtained
in [7, 17, 19]. A long-time existence and convergence result for rotationally symmetric AH
metrics was obtained in [5]. The present authors studied the behavior of APE metrics along
the flow in [4]. The evolution of the mass aspect tensor was obtained in [6]. In [18] it is proved
that polyhomogeneity is preserved along a flow adapted to asymptotically complex hyperbolic
metrics. More generally still, [2] proves that the polyhomogeneity of a metric with a Lie structure
fibred at infinity is preserved along the Ricci flow.

This paper is organized as follows. In Section 2 we review the families of asymptotically hyper-
bolic metrics considered here and establish some of basic properties involving even expansions.
In Section 3 we prove that the normalized Ricci flow of a partially even metric remains partially
even. In Section 4 we complete the proof of Theorem 1.1 by showing that the volume renor-
malizability condition also persists under the Ricci flow. We defer several long computations
needed in this section to Appendix A. Finally in Section 5 we review the Riesz renormalization
and apply it to the variation of curvature functionals. We then prove Theorem 1.2.

2 Fefferman–Graham expansions of AH metrics

2.1 Taxonomy of conformally compactifiable metrics

As in the introduction, let M be a smooth compact n-manifold with boundary and M its interior.
We assume n is even.

A metric g on M is called conformally compact if

g = ρ−2g,

where both ρ and g are C∞ up to ∂M , and g is a metric on M .

Any such metric has a sort of boundary value on ∂M ,

c(g) =
[
ρ2g
∣∣
T∂M

]
,

called its conformal infinity. Furthermore, a conformally compact metric is called asymptotically
hyperbolic, abbreviated as AH, if |dρ|2g = 1 at ∂M . Note that g is unchanged if we replace ρ

and g by aρ and a2g for any smooth positive function a, but nonetheless both c(g) and the AH
condition are well-defined.

Now, if g is AH and we select a representative metric h0 ∈ c(g), then there exists a uniquely
determined ‘special’ boundary defining function x which satisfies |dx|2x2g ≡ 1 in a neighbor-

hood Vx in M of the boundary and x2g|T∂M = h0. With this choice of x, the flow lines of the
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gradient ∇gx allow us to identify Vx with a neighborhood of ∂M of the form Ux = [0, εx)×∂M ,
via a diffeomorphism

φ : Ux −→ φ(Ux) ⊂ Vx,

where φ(s, y) is the flow of ∇gx for s units of time. By Gauss’s lemma

φ∗g =
ds2 + h(s)

s2
, (2.1)

where h(s) is a smooth family of metrics on ∂M . This is the Graham–Lee normal form [14],
and we follow common practice of writing g and x in place of φ∗g and s above. We shall be
primarily concerned with the terms in the asymptotic expansion

h(x) = h0 + h1x+ h2x
2 + · · · .

For some of the computations below we will also need a full coordinate system near the boundary
of M . Let {yα} be any coordinates on ∂M extended to be constant along the integral curves
of ∇gx. We use Greek indices to index these tangential directions, x to index ∂

∂x , and Latin
indices to include both tangential and normal directions. In the expansion above, the coefficient
tensors are functions of the y-coordinates alone.

Definition 2.1. An AH metric g is called even to order 2` if, in Graham–Lee normal form (2.1),
the expansion for h(x) contains no terms h2j+1 with j ≤ `− 1, i.e.,

h(x) ∼ h0 + x2h2 + · · ·+ x2`h2` + x2`+1h2`+1 + · · · .

Our main focus will be on AH metrics g which are even to order n− 2, and we call these simply
partially even.

That this notion and the next are well defined, independent of the choice of special defining
function is proved in Proposition 2.5 below.

Definition 2.2. We say that g is volume renormalizable (VR) if it is partially even and in
addition satisfies

trh0hn−1 = 0.

For volume renormalizable metrics, one can compute the volume in the compact set {x ≥ ε},
expanding the result in powers of ε (there can also be log ε terms when the bulk dimension n is
odd) and taking the limit at ε = 0 after discarding the singular terms in this expansion. While
this may be done for any AH metric with a fixed special defining function x, this has an invariant
meaning which is independent of the choice of x precisely when the metric is VR [13].

We now recall one of the most important classes of AH metrics

Definition 2.3. An AH metric g is called Poincaré–Einstein (PE) if its modified Ricci ten-
sor E(g), defined in (1.1), vanishes identically.

Since our primary concern is with asymptotic expansions at the boundary, it is also natural
to introduce the

Definition 2.4. An AH metric g is called asymptotically Poincaré–Einstein (APE) if |E(g)|g =
O(xn).
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If g is APE, or in particular PE, then it is known, see [12], that every odd coefficient h2j+1,
0 ≤ j ≤ (n − 4)/2, must vanish while the even coefficients h2j , 1 ≤ j ≤ (n − 2)/2, can be
expressed as universal differential operators applied to h0, see [12], and finally, trh0hn−1 = 0.
This implies that when n is even,

PE =⇒ APE =⇒ VR =⇒ partially even =⇒ AH.

We have not included the slightly different results when n is odd; the key difference in that
case is that when g is PE, the expansion for h(x) may also include the terms xn−1+j(log x)`h̃j`,
j ≥ 0. When n = 2m, if g is merely C2 conformally compact and Einstein, then a regularity
theorem due to Chruściel, Delay, Lee and Skinner [10] shows that if h0 ∈ C∞, then h(x) is
automatically smooth up to x = 0, i.e., it is not necessary to assume a priori that g is smoothly
conformally compact, so long as its conformal infinity contains a smooth representative.

2.2 Partially even metrics

We now discuss the extent to which even expansions are well-defined. The procedure leading
to Graham–Lee normal form discussed in the previous section establishes a bijection between
representatives of the conformal infinity c(g) and the set of special defining functions. The
following lemma is due to Graham [13] with an important addition by Guillarmou [15].

Proposition 2.5. If an AH metric g is even to order 2` in the normal form corresponding to
one choice of metric h0 ∈ c(g), then it is even to the same order with respect to any other metric
h′0 ∈ c(g). Further, if x and x′ are the special boundary defining functions corresponding to h0

and h′0 respectively, and y = yα and y′ = y′α are corresponding choices of smooth coordinates
on ∂M extended to be constant along the respective gradient flow lines, then coordinate change
of (φ′)−1 ◦ φ on Ux has expansions

x′ = x
`+1∑
j=0

aj(y)x2j +O
(
x2`+4

)
, y′ =

`+1∑
j=0

bj(y)x2j +O
(
x2`+3

)
,

for smooth functions aj and bj on ∂M .

Sketch of proof. The first part of this lemma is proved in Graham [13] by first writing h′0 =
e2ω0h0, where ω0 ∈ C∞(∂M). The special boundary defining function x′ associated to h′0 is then

given by x′ = eωx, where ω satisfies
∣∣d(eωx)/(eωx)

∣∣2
g
≡ 1, ω|x=0 = ω0. Expanding the eikonal

equation, we obtain

2x〈dω,dx〉g + x2|dω|2g = 0, ω|∂M = ω0. (2.2)

Inductively computing derivatives of ω and using the parity of g allows one to prove that ω is
even in x to order 2`+ 2.

The second part of this lemma is proved by Guillarmou [15] by explicitly writing out the
gradient flow equations of x′(x, y) and y′(x, y) and again arguing by induction using the parity
of ω and h(x). �

It follows from this proof that if g is an AH metric which is even to order 2`, then it defines
an equivalence class of defining functions [x], where x ∼ x′ if x′/x is even to order 2`+ 2. This
motivates another approach to studying even expansions: we may translate parity conditions for
the metric into regularity statements about extensions over the boundary. To this end, let M̃
denote the double of M across its boundary. The atlas of C∞ functions on M̃ is determined
uniquely once we specify an identification of a collar neighborhood U of ∂M with the product
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∂M × [0, ε); the double of this neighborhood, Ũ , is then endowed with the atlas of C∞ functions
on the product ∂M × (−ε, ε). While this atlas a priori depends on the choice of x, using
Proposition 2.5 we thus see for an AH metric even to order 2` that there is a well defined C2`+2

structure on the doubled manifold M̃ .
Having checked that the notion of even expansion is well defined, we now check that the

volume renormalizability condition is well defined.

Proposition 2.6. If an AH metric g is a volume renormalizable metric in the normal form
corresponding to one choice of metric h0 ∈ c(g), then it is volume renormalizable to the same
order with respect to any other metric h′0 ∈ c(g).

Proof. Choose h0 ∈ c(g) and obtain a special defining function x so that the metric g may be
written in the normal form of equation (2.1), and even to order n − 2, with trh0hn−1 = 0. For
any h′0 ∈ c(g), Proposition 2.5 guarantees that the expansion of g relative to x′ = eωx remains
even to order n− 2. We need only check the vanishing trace condition, trh

′
0h′n−1 = 0. Since h0

and h′0 are conformal, note that trh
′
0hn−1 = 0.

Consider the auxiliary product metric G′ = (dx′)2 + h′0 on Ux′ , and define a function t′ =
trG

′[
(x′)2g

]
. By construction the (n−1)-st term in the expansion of t′ relative to x′ is trh

′
0h′n−1.

On the other hand, the function t′ may be alternatively computed by

t′ = trG
′[

(x′)2g
]

= trG
′
[

(x′)2

x2
g

]
= e2ωtrG

′
[g] = e2ωtrG

′[
dx2 + hαβ(x, y)dyαdyβ

]
.

Now express G′ in (x, y) coordinates using the expansions for x′ and y′ in terms of x of Proposi-
tion 2.5, and combine with the even expansion for h(x), the fact g contains no cross terms and
the fact that trh

′
0hn−1 = 0 to obtain that trG

′
[g] is even in x to order n. Using the parity for ω

we then find t′ is even to order n in x and thus defines a Cn function on the doubled manfiold.
Thus the (n− 1)-st term in the expansion of t′ relative to x′ vanishes, as required. �

We now extend this discussion by considering how to recognize partially even AH metrics
which are not written in normal form. Thus fix an AH metric g and suppose that x is an arbitrary
boundary defining function. As before we set g = x2g and use the gradient lines of ∇gx to define
a (pointed) smooth structure C∞x on the double M̃ , and finally, consider the extended metric g̃

which restricts to g on M and satisfies I∗x g̃ = g̃, where Ix : M̃ → M̃ is reflection across the

submanifold ∂M ⊂ M̃ .

Definition 2.7. We say that g is even to order j relative to an arbitrary boundary defining
function x if g̃ is Cjx on M̃ (still recalling that it is C∞ on each side of ∂M).

To explain the definition further, suppose {yα} is any choice of coordinates on ∂M extended as
usual to be constant along the integral curves of ∇gx. Consider a symmetric 2-tensor T

T = Txx(x, y)dx2 + Txα(x, y)dxdyα + Tαβ(x, y)dyαdyβ,

defined and smooth for x ≥ 0. The Ix invariant extension is then given by the same formula for
x ≥ 0 and for x < 0,

T̃ = Txx(−x, y)dx2 − Txα(−x, y)dxdyα + Tαβ(−x, y)dyαdyβ.

Now suppose j = 2` and that T̃ is Cjx. Then the component functions Txx and Tαβ are
even to order 2` while Txα is odd to order 2` + 1 (i.e., it is of the form xmxα where mxα is
even to order 2`). To explain this last condition, note that a term of order 2` in the expansion
for Txα with the correct parity must be of the form a(y)(sgnx)|x|2`, and hence is not C2`

x . On
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the other hand, if j = 2` + 1, then evenness to order j implies that Txx and Tαβ are even to
order j+ 1 = 2`+ 2 while Txα is still just odd to order 2`+ 1. Moreover, if T is a metric and the
components of T satisfy these parity conditions, then by Cramer’s formula, the components of
the inverse metric are also C2`

x across x = 0, hence these too satisfy the same parity conditions.
Returning to metrics, clearly, if g is even to order 2` in the sense of Definition 2.1, then g is

even to order 2` in the sense of Definition 2.7 relative to a special defining function x. As the
following result shows, the converse is true too.

Lemma 2.8. The metric g is even to order 2` relative to any fixed boundary defining function
(cf. Definition 2.7) if and only if g is even to order 2` with respect to any special boundary
defining function (cf. Definition 2.1).

Proof. If x denotes the initial defining function, let h0 = x2g restricted to T∂M . We seek
x′ = eωx such that |dx′/x′|2g = 1, ω0(y) = ω(0, y) ≡ 0, or equivalently

2〈dx,dω〉g + x|dω|2g =
1− |dx|2g

x
, ω|∂M = 0.

In contrast to equation (2.2), the right hand side of this equation is nonvanishing, but there
still exists a unique solution ω which is C∞ for 0 ≤ x < ε, and the only issue is the degree of
smoothness of its even extension across x = 0. However, since g is even and asymptotically
hyperbolic, x−1

(
|dx|2g − 1

)
= x−1(gxx − 1) is odd to order 2` − 1, hence lies in C2`−1

x , and the

solution of this equation is one order smoother, i.e., lies in C2`
x . This proves that ω is vanishes to

second order and is even in x to order 2`, and thus x′ has an odd expansion in x to order 2`+ 1.
Now set g′ = (x′)2g = e2ωg and write g̃′ for its Ix-invariant extension. From the paragraph

above, g̃′ ∈ C2`
x . In fact, the metric is C∞ in the tangential direction and its irregularity is only

in the direction normal to the boundary (technically, it is polyhomogeneous at the boundary).
It is standard to show that the exponential mapping Φ: NM → M from the normal bundle
of ∂M to M , Φ(x′, y) = expy(x

′ν(y)) is smooth in the ‘base’ variable y ∈ ∂M and C2`+1
x in x,

by writing out the flow equations as a first-order system in a way similar to [15, p. 6]. Hence
Φ∗g̃′ = d(x′)2 + h̃′αβ(x′, y)dyαdyβ, where h̃′αβ ∈ C2`

x , or finally, g′ is even to order 2` in x, and
thus in x′. �

As a consequence of this lemma, an AH metric that is even to order 2` in the sense of
Definition 2.7 gives rise to a well-defined C2`-structure on the doubled manifold. This structure
contains the C2`+2-structure defined by special defining functions discussed in the previous
section.

3 Partially even metrics and Ricci flow

Our aim in this section is to prove the following.

Proposition 3.1. Suppose that g0 is an AH metric which is even to order 2`. Let g(t) be the
unique solution to the Ricci flow equation (1.2) with initial condition g0. Then g(t) remains
even to order 2` throughout its time of existence.

Notice that we do not use the gauged Ricci flow equation here since we are taking the
existence of the solution as given. Indeed, we take from [3] the fact that there is a unique
solution to (1.2) and this remains smoothly conformally compact throughout its maximal time
interval of existence.

The proof of the proposition requires some further preliminaries. First, we choose a represen-
tative h0 of the conformal infinity of the initial metric g0. Obtain a special defining function x
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corresponding to this choice. We now fix this x and use it for all our computations. Note that
as the metric g(t) evolves under the Ricci flow x will no longer be a special defining function,
so we will need to consider the extended notion of even metric from the previous section.

To proceed we make some remarks concerning an AH metric g = g(t) at fixed time. Appealing
to the transformation formula for the Ricci tensor under a conformal change of metric, see [8]:
if g = x−2g, then E(g) = Rc(g) + (n− 1)g = x−2E(g), where

E(g) = −(n− 1)
(
|dx|2g − 1

)
g + ((n− 2) Hessg(x) + (∆gx)g)x+ Rc(g)x2. (3.1)

We shall analyze the equation

∂tg = −2E(g), (3.2)

which is obtained if we multiply (1.2) by x2.
As a first step, consider the restriction of this equation to x = 0:

∂t(g|x=0) = 2(n− 1)
(
|dx|2g − 1

)
(g|x=0).

Since g is AH, the leading coefficient |dx|2g−1 vanishes at t = 0, which shows that the restriction
(not just the pullback) of g to the boundary is invariant under the flow. It is thus reasonable
to write the evolving solution in the form g(t) = g0 + k(t), where |k(t)|g0 = O(x). This was
the ansatz in (1.2) in [3], and a uniqueness theorem in this setting [9] shows that any solution
of (3.2) in this quasi-isometry class must agree with the solution in [3]. The proof in [3] also
shows that k(t) ∈ C∞(M) for every t ≥ 0. Consequently, E

(
x2g(t)

)
= 0 at ∂M for all t ≥ 0.

Now rewrite (3.2) as an equation for the evolving tensor v(t) = g(t)− g0:

∂tv(t) = 2(n− 1)
(
|dx|2g(t) − 1

)
g(t)− 2((n− 2) Hessg(t)(x) + (∆g(t)x)g(t))x

− 2 Rc(g(t))x2, (3.3)

where here v ∈ xC∞(M), which we expand as v ∼
∑
{v(t, y)}nxn.

We introduce the following notation for coefficients in smooth power series expansions. Sup-
pose that f(x, y) ∼ a0(y) + a1(y)x + · · · is smooth. To simplify notation below, we denote
by {f}n the nth coefficient function an(y).

Proof of Proposition 3.1. We now commence an inductive proof to show that if g0 is even
to order 2` then g(t) remains even to order 2`. We assume ` ≥ 1. Note that we have relegated
most of the long parity computations to the appendix.

Base case

To check the base case, we must check g(t) is even to order 2 given that g0 is even to order 2.
This means we must check that along the flow both

vxx, vαβ remains even to order 2, and vxα remains odd to order 3.

To do this we check the coefficients {vxx}1, {vαβ}1 and {vxα}2 all vanish along the flow. We
thus compute evolution equations for each coefficient.

We begin with the xx-component. Specializing equation (3.3) to this case, we find

∂t{vxx}1 = {∂tvxx}1 =
{

2(n− 1)
(
|dx|2g − 1

)
gxx

− 2((n− 2)xHessg(x)xx + (x∆gx)gxx)− 2x2 Rc(g)xx
}

1

= {2(n− 1)
(
|dx|2g − 1

)
gxx − 2((n− 2)xHessg(x)xx + (x∆gx)gxx)}1,
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since x2 Rcxx already vanishes to second order. Using Lemmas A.1 and A.2 in the appendix we
find {

2(n− 1)
(
|dx|2g − 1

)
gxx
}

1
= −2(n− 1){vxx}1.

Using equations (A.1) and (A.4) and Lemma A.1 we obtain{
−2((n− 2)xHessg(x)xx + (x∆gx)gxx)

}
1

= (n− 1){vxx}1 − hαβ0 {vαβ}1

so that

∂t{vxx}1 = −(n− 1){vxx}1 − hαβ0 {vαβ}1.

Passing to the αβ-components we find

∂t{vαβ}1 =
{

2(n− 1)
(
|dx|2g − 1

)
gαβ

− 2((n− 2)xHessg(x)αβ + (x∆gx)gαβ)− 2x2 Rc(g)αβ
}

1

=
{

2(n− 1)
(
|dx|2g − 1

)
gαβ − 2((n− 2)xHessg(x)αβ + (x∆gx)gαβ)

}
1
.

Now using Lemmas A.1 and A.2 once more, we have{
2(n− 1)

(
|dx|2g − 1

)
gαβ
}

1
= −2(n− 1){vxx}1h0

αβ,

and using now equations (A.2) and (A.5) we find{
−2((n− 2)xHessg(x)αβ + (x∆gx)gαβ)

}
1

= {vxx}1 − (n− 2){vαβ}1 + hµν0 {vµν}1h
0
αβ.

The evolution equation for {vαβ}1 is therefore

∂t{vαβ}1 = (−2n+ 3){vxx}1h0
αβ − (n− 2){vαβ}1 − hµν0 {vµν}1h

0
αβ.

Thus, the xx and αβ components satisfy a coupled system of linear equations

∂t{vxx}1 = −(n− 1){vxx}1 − hαβ0 {vαβ}1, and

∂t{vαβ}1 = (−2n+ 3){vxx}1h0
αβ − (n− 2){vαβ}1 − hµν0 {vµν}1h

0
αβ.

Since each component is zero initially, this condition persists under the flow.
We now specialize to xα indices, and we compute the evolution equation for the coefficient

at order 2, i.e.,

∂t{vxα}2 =
{

2(n− 1)
(
|dx|2g(t) − 1

)
g(t)

− 2((n− 2) Hessg(t)(x) + (∆g(t)x)g(t))x− 2 Rc(g(t))x2
}

2
.

Now both
{
g0
xα

}
0

= 0 and
{

Rc(g0)xα
}

0
= 0. This forces

{
−2 Rc(g(t))x2

}
2

= 0. Additionally,
by the parity property just proved for vxx, i.e., that it remains even to order 2 we may conclude{

2(n− 1)
(
|dx|2g(t) − 1

)
gxα
}

2
= 2(n− 1){gxx}1{vxα}1 = 0

as well. This leaves

∂t{vxα}2 = −2{(n− 2)xHessg(t)(x)xα + (x∆g(t)x)g(t)xα}2.

Now, applying equation (A.3), we find

−2{(n− 2)xHessg(t)(x)xα}2 = (n− 2)∂α{vxx}1 + (n− 2){vxµ}1{vµα}1,
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and applying equation(A.6), we find

{−2(x∆g(t)x)g(t)xα}2 = {gxα}1
(
{vxx}1 − hµν0 {vµν}1

)
.

However, since we already know that vxx and vαβ are even to order 2, the right hand side of
both of these equations vanishes. We thus conclude

∂t{vxα}2 = 0.

Since this coefficient vanishes initially, {vxα}2 = 0 along the flow. We conclude g(t) is even to
order 2 and this concludes the proof of the base case.

Inductive step

We now assume for the purposes of induction g(t) = g0 + v is even to order 2j where 2 ≤ 2j ≤
2` − 2, and we will prove that g(t) is even to order 2j + 2. By the extended notion of even
metric, our inductive hypothesis means that the components

vxx, vαβ are even to order 2j, vxα is odd to order 2j + 1,

and we must show

vxx, vαβ are even to order 2j + 2, vxα is odd to order 2j + 3.

The assumption that g0 is even to order 2` remains in force. We remark that the inductive
hypothesis is used extensively in this proof when extracting the coefficient that breaks parity in
an expansion, via Lemma A.1 and the computations of the appendix.

There are essentially no new ideas in the inductive step. Similar to the base case, we first
calculate evolution equations for the (2j + 1)-th coefficients of vxx and vαβ and again we will
find that these coefficients satisfy coupled linear ordinary differential equations in time with
zero initial conditions and thus remain zero along the flow. We then use this information and
calculation the (2j + 2)-th coefficient of vxα, and find that these coefficients again ordinary
differential equations in time with zero initial conditions and thus remain zero along the flow.

Now,

∂t{v(t)}2j+1 =
{

2(n− 1)
(
|dx|2g(t) − 1

)
g(t)

− 2((n− 2) Hessg(t)(x) + (∆g(t)x)g(t))x− 2 Rc(g(t))x2
}

2j+1
.

Specializing first to the xx-components, we find first that{
2(n− 1)

(
|dx|2g(t) − 1

)
g(t)

}
2j+1

= −2(n− 1){vxx}2j+1.

Next, note that{
−2
(
(n− 2) Hessg(t)(x) + (∆g(t)x)g(t)

)
x
}

2j+1

= −2

(
−1

2
(n− 2)(2j + 1){vxx}2j+1 −

1

2
(2j + 1){vxx}2j+1 +

1

2
(2j + 1)hαβ0 {vαβ}2j+1

)
= (n− 1)(2j + 1){vxx}2j+1 − (2j + 1)hαβ0 {vαβ}2j+1.

Finally,{
−2 Rc(g(t))x2

}
2j+1

= 2j(2j + 1)hαβ0 {vαβ}2j+1.
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We conclude

∂t{vxx}2j+1 = (n− 1)(2j − 1){vxx}2j+1 + (2j − 1)(2j + 1)hαβ0 {vαβ}2j+1.

In a similar way, we specialize to the αβ-components

∂t{vαβ}2j+1 = −2(n− 1){vxx}2j+1h
0
αβ − (n− 2)(2j + 1){vαβ}2j+1

+ (2j + 1){vxx}2j+1h
0
αβ − (2j + 1)hµν0 {vµν}2j+1h

0
αβ + 2j(2j + 1){vαβ}2j+1

= (−2(n− 1) + (2j + 1)){vxx}2j+1h
0
αβ − (2j + 1)hµν0 {vµν}2j+1h

0
αβ

+ (−(n− 2) + 2j)(2j + 1){vαβ}2j+1.

These equations form a coupled linear system for the coefficients {vxx}2j+1 and {vαβ}2j+1,
thus these coefficients remain zero along the flow since the initial condition vanishes.

It remains to study the evolution of {vxα}2j+2, using the improved parity just proved for
the xx and αβ-components. In particular, note that as gxα is odd to order 2j + 1 and |dx|2g − 1
vanishes to second order and is even to order 2j + 2,{

2(n− 1)
(
|dx|2g − 1

)
gxα
}

2j+2
= 0.

In a similar way, due to equations (A.3) and (A.6), we find that since the xx and αβ-
components of v are even to order 2j + 2,{

−2((n− 2) Hessg(x)xα + (∆gx)gxα)x
}

2j+2
= 0.

Finally, equations (A.9), (A.10) and (A.11) and the parity and coefficients for the Christoffel
symbols show that the 2j+2 component of −2x2Rcxα involves only xx and αβ components of v
at order 2j + 1. These once again vanish. Thus we have proved

∂t{vxα}2j+2 = 0,

which completes the induction.

This concludes the proof of Proposition 3.1. �

4 The volume renormalizability condition

We have now proved that if the initial metric g0 is even to order 2m− 2 (where 2m = dimM),
then g(t) remains even to order 2m − 2 throughout the interval of existence. Recall that g0 is
volume renormalizable when trh0h2m−1 = 0. In this section we prove

Proposition 4.1. If g0 is volume renormalizable, then the solution g(t) to the Ricci flow with
initial condition g0 remains volume renormalizable so long as this solution is defined.

The proof proceeds very much as before. We show that some version of the scalar function
trh0h2m−1 satisfies a homogeneous ordinary differential equation in t with initial condition 0,
and hence vanishes for t ≥ 0. The actual quantity we study is slightly more complicated, and is
defined below.

Having fixed the initial metric g0 and representative h0 ∈ c
(
g0
)
, let x be the corresponding

special boundary defining function. We define the t-independent metric

G =
dx2 + h0

x2
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by truncating the expansion of the tangential metric h(x) in the normal form for g0. We also
set G = x2G.

Next define the function

F := trGg(t) = trGg(t).

Clearly F is smooth up to x = 0 for every t ≥ 0. Moreover, since G is an even metric and g is
even to order 2m− 2 by Proposition 3.1, it follows F is even to order 2m− 2. Our interest is in
the first odd term in the expansion of F .

Lemma 4.2. Let µ = µ(t, y) := {F}2m−1. Then

µ = {gxx}2m−1 + (h0)αβ{gαβ}2m−1.

Proof. Note that since G
xα ≡ 0,

F = G
xx
gxx +G

αβ
gαβ,

where all indices are raised with respect to G. The result is now straightforward. �

Proposition 4.3. Setting ν = {gxx}2m−1 and µ = {gxx}2m−1 + (h0)αβ{g(t)αβ}2m−1 as above,
then

∂tµ = −2(2m− 1)µ, ∂tν = (2m− 3)(2m− 1)µ.

Proof. We compute the evolution equation of F using equation (3.1) and substituting n = 2m.

∂tF = Gij∂tgij = −2GijEij = −2G
ij
Eij

= 2(2m− 1)
(
|dx|2g − 1

)
G
ij
gij − 2G

ij
[(2m− 2)xHessg(x)ij + (x∆gx)gij ]

− 2x2G
ij

Rc(g)ij .

We must compute the first odd term in this evolution at order 2m − 1, and we split the
calculation into three terms.

Since F = G
ij
gij has leading coefficient

(
G
ij
gij
)
|x=0 = 2m and is even to order 2m − 2, we

have {
2(2m− 1)

(
|dx|2g − 1

)
G
ij
gij
}

2m−1
= 2(2m− 1)

{(
|dx|2g − 1

)
G
ij
gij
}

2m−1

= 2(2m− 1)
({
|dx|2g − 1

}
0

{
G
ij
gij
}

2m−1
+
{
|dx|2g − 1

}
2m−1

{
G
ij
gij
}

0

)
= 4m(2m− 1){gxx}2m−1 = −4m(2m− 1)ν,

where the last equality follows from Lemma A.2 in the appendix.
Regarding the Hessian terms, we compute applying the calculations given in Appendix A:{
−2G

ij[
(2m− 2)xHessg(x)ij + (x∆gx)gij

]}
2m−1

= −2(2m− 2)
{
G
ij
xHessg(x)ij

}
2m−1

− 2
{

(x∆gx)G
ij
gij
}

2m−1

= −2(2m− 2)
{
xHessg(x)xx + hαβ0 xHessg(x)αβ

}
2m−1

− 4m{x∆gx}2m−1

= −2(2m− 2)

(
−1

2
(2m− 1){−gxx + hαβ0 gαβ}2m−1

)
− 4m

(
−1

2
(2m− 1){−gxx + hαβ0 gαβ}2m−1

)
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= (2m− 2)(2m− 1)
{
−gxx + hαβ0 gαβ

}
2m−1

+ 2m(2m− 1)
{
−gxx + hαβ0 gαβ

}
2m−1

= (4m− 2)(2m− 1)
{
−gxx + hαβ0 gαβ

}
2m−1

= (4m− 2)(2m− 1)(µ− 2ν).

Finally, we consider the contributions from the Ricci curvature term. We apply equa-
tions (A.7) and (A.8):{

−2x2G
ij

Rc(g)ij
}

2m−1
= −2

{
x2 Rc(g)xx + x2hαβ0 Rc(g)αβ

}
2m−1

= 2(m− 1)(2m− 1)hαβ0 {gαβ}2m−1 + 2(m− 1)(2m− 1)
{
hαβ0 gαβ

}
2m−1

= 4(m− 1)(2m− 1)hαβ0 {gαβ}2m−1 = 4(m− 1)(2m− 1)(µ− ν).

Collecting all of this information, we obtain

µ′ = −2(2m− 1)µ.

To obtain the evolution equation for ν = {gxx}2m−1, recall that

∂tgxx = x2∂tgxx = −2E(g)xx.

Now, equation (3.1) specializes to

−2E(g)xx = 2(2m− 1)
(
|dx|2g − 1

)
gxx − 2[(2m− 2)xHessg(x)xx + (x∆gx)gxx]

− 2x2 Rc(g)xx.

Computing as above gives

ν ′ = (2m− 1)(2m− 3)µ. �

Applying the result of Proposition 4.3 we immediately obtain

Corollary 4.4. If (µ(0), ν(0)) = (0, 0) then (µ(t), ν(t)) = (0, 0) along the flow. In particular,

hαβ0 {gαβ}2m−1 = 0 for 0 ≤ t < T0.

We now prove Proposition 4.1.

Proof of Proposition 4.1. Suppose that g0 is a volume renormalizable metric on M with
dimM = n = 2m. Let h0 ∈ c

(
g0
)

and x the corresponding special boundary defining function,
so that

g0 =
dx2 + hx

x2
,

where hx|x=0 = h0, and hx is even to order 2m − 2. As usual, fix tangential coordinates yα

extended to be constant along the integral curves of ∇gx.
Let g(t) satisfy the Ricci flow equation. We have already shown that it remains even to order

2m − 2. We write xt for the evolving special boundary defining function corresponding to g(t)
and recall that c(g(t)) is constant in t, so that

g(t) =
dx2

t + h0 + h2(t)x2
t + · · ·+ h2m−2(t)x2m−2

t + h2m−1(t)x2m−1
t + · · ·

x2
t

.

We wish to prove that trh0h2m−1(t) = 0.
Denoting by x the special bdf for the initial metric g0, we have

xt = eωt(x,y)x,
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where ωt vanishes to second order since the conformal infinity is fixed, and ωt is even to order
2m− 2 by Lemma 2.8. Computing further shows that

dxt = (x∂xωt + 1)eωtdx+ (x∂yαωt)e
ωtdyα,

and

dx2
t = (x∂xωt + 1)2e2ωtdx2 + 2(x∂xωt + 1)(x∂yαωt)e

2ωtdyαdx

+ (x∂yαωt)(x∂yβωt)e
2ωtdyαdyβ.

Inserting this into the expression for g(t) yields

g(t) = (x∂xωt + 1)2 dx2

x2
+ 2(x∂xωt + 1)(x∂yαωt)

dyαdx

x2

+
[
e−2ω(h0)αβ + (h2(t))αβx

2 + · · ·+ (h2m−2(t))αβe(2m−4)ωx2m−2

+ (h2m−1(t))αβe(2m−3)ωx2m−1 + · · ·+ (x∂yαωt)(x∂yβωt)e
2ω
]dyαdyβ

x2
.

Now observe that by the proof of Lemma 2.8, the coefficient of dx2 is even to order 2m− 2, and
its first odd coefficient is

{
(x∂xωt + 1)2

}
2m−1

= 2(2m − 1){ω}2m−1. The coefficient of dxdyα

is odd to order 2m − 1. The entire coefficient of dyαdyβ in square brackets of is even to order
2m − 2. Using the fact {eω}0 = 1, the term in square brackets has leading term h0 while
the term at order 2m− 1 equals (h2m−1(t))αβ − 2{ω}2m−1(h0)αβ. Applying Corollary 4.4 with
ν = 2(2m−1){ω}2m−1 and µ = 2(2m−1){ω}2m−1+(h0)αβ((h2m−1(t))αβ−2(2m){ω}2m−1) shows
that both µ and ν must vanish along the flow, and hence we conclude that trh0h2m−1(t) = 0
along the flow. �

By combining Propositions 3.1 and 4.1, the proof of Theorem 1.1 is now complete as well.

5 Variation of renormalized curvature functionals

We now take up the proof of Theorem 1.2. We begin with a quick review of Riesz renormalization,
referring to [1] and [11] for more details, and then study the variation of renormalized curvature
integrals.

5.1 Regularized and renormalized integrals

Fix a product decomposition [0, ε0)× ∂M of some neighborhood of ∂M , with projection on the
first factor a fixed defining function. Recall that a function u on M is said to be polyhomogeneous
if, in terms of some (and hence any) boundary defining function x, there is an expansion

u ∼
∑
j

Nj∑
`=0

uj`(y)xγj (log x)`,

where γj is a sequence of complex numbers with Re γj → ∞ and the coefficient functions uj`
are C∞ on ∂M . For simplicity we assume that Re γ0 ≤ Re γj for all j. Here the meaning of ∼
is that for every k ∈ N,

u−
∑

Re Γj≤k

Nj∑
`=0

uj`(y)xγj (log x)` ∈ xkA(M),
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where A(M) is the space of conormal functions on M , i.e., v ∈ A(M) if
∣∣(x∂x)j∂αy v

∣∣ ≤ Cj,α for
all j, α.

Now suppose that g is volume renormalizable and u is polyhomogeneous near ∂M . Define

z 7→ I(z) :=

∫
M
xzudVg.

Expand the volume form dVg = x−n
√

dethx
deth0

dxdVh0 =: x−nJ(x, y) dxdVh0 , where the Jaco-

bian factor J(x, y) has the expansion
∑
k≥0

Jkx
k. Writing the expansion of u as above, we see

that I(z) is holomorphic on {z ∈ C : Re(z) > n− 1− Re γ0}. Now consider each term∫
M
xz−n+γj+i(log x)`uj`(y)Ji(y) dxdy

=

∫ ε

0

∫
∂M

xz−n+γj+i(log x)`uj`(y)Ji(y) dxdy

+

∫
x≥ε

∫
∂M

xz−n+γj+i(log x)`uj`(y)Ji(y) dxdy,

where J(x, y) ∼
∑
Ji(y)xi. The second term on the right is entire in z, while the first extends

meromorphically with a pole of order `+ 1 at z = n− γj − i− 1. Thus we conclude I(z) extends
to a meromorphic function in the entire complex plane.

Definition 5.1. The Riesz regularized integral of u is the finite part of I(z) at z = 0, i.e.,

R
∫
M
u dVg := FP

z=0
I(z).

Note that when I(z) has a simple pole at z = 0, FP
z=0

I(z) = lim
z→0

(I(z)− Res
z=0

I(z)).

As an application, suppose that x and x̃ = xeω are two boundary defining functions, where
ω ∈ C∞(M), then x̃z − xz = (ezω − 1)xz =: Aj(y, z)x

j+z. Suppose also that u ∼
∑
j≥0

uj(y)xj ,

i.e., all γj are nonnegative integers and each Nj = 0. A short calculation now shows that if I(z)
and Ĩ(z) are the regularizations with respect to these two defining functions, then near z = 0,

Ĩ(z)− I(z) =

∫
∂M

C(y, 0) dVh0 +O(z),

where C(y, z) =
∑

i+j+k=n−1

ui(y)Aj(y, z)Jk(y). The following is an immediate consequence:

Proposition 5.2. Suppose that g and u are both even to order n− 2 = 2m− 2. Then C(y, 0) =
1
2u0A0trh0hn−1. If, on the other hand, the expansion for u starts with the term xp (p even), then
C(y, 0) = 1

2upA0trh0hn−1−p.

Proof. By the parity assumptions, C(y, 0) = u0(y)A0(y, 0)Jn−1(y); all other terms vanish. It
remains to show that

Jn−1 =
1

2
trh0hn−1.

However, by Proposition 2.5, if g is even to order 2m − 2 then ω is even to order 2m, and by
simple calculation

√
h/
√
h0 is even to order 2m as well. Thus (ezω−1)

√
h/
√
h0 is even to order

2m− 2 and the coefficient of x2m−1 is 1
2trh0hn−1. �
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The key example is u ≡ 1, in which case the renormalized integral is the renormalized volume.
If g is volume renormalizable, then trh0hn−1 = 0, which shows that the renormalized volume is
well-defined with these hypotheses. A very similar argument shows that

Corollary 5.3. Suppose the conditions of Proposition 5.2 hold and trh0hn−1 = 0. Then the
renormalized integral of u is independent of the choice of conformal representative of the bound-
ary metric.

5.2 Variations of renormalized integrals

Let g(t) be a family of metrics on a compact manifold Z, and consider the Riemannian curvature
functional

IZ(g) :=

∫
Z
u(g) dVg,

where u(g) is some scalar quantity defined from the curvature tensor and its covariant derivatives.
One is often interested in critical points of this action, which are solutions of the Euler–Lagrange
equation. The first step in computing these critical points is the variation of the integrand

∂

∂t

∣∣∣∣
t=0

∫
Z
u(t) dVg(t) =

∫
Z

∂

∂t

∣∣∣∣
t=0

(
u(t) dVg(t)

)
,

followed by integration by parts. We are interested in the corresponding calculation on a con-
formally compact manifold. In particular, we shall only take the action of partially even volume
renormalizable metrics and consider variations amongst such metrics. Thus suppose that g(t)
is volume renormalizable for each t and g0 =: g; suppose also that the conformal infinity of g(t)
is independent of t, with fixed representative h0. Let xt be the corresponding family of special
boundary defining functions, and write xt = eωtx. Let u(t) = u(g(t)) be the scalar quantity
associated to g(t). Set

L(g) =

(
∂

∂t

∣∣∣∣
t=0

u(t) +
u(0)

2
trg

∂

∂t

∣∣∣∣
t=0

g(t)

)
.

Writing x0 = x and u(0) = u, then we have

Theorem 5.4. With the notation above,

∂

∂t

∣∣∣∣
t=0

R
∫
u(t) dVg(t) =

∂

∂t

∣∣∣∣
t=0

FP
z=0

∫
M
xztu(t) dVg(t) = FP

z=0

∫
M
xzL(g) dVg,

where the local expression for L is exactly the same as in the compact case.

Proof. We begin by computing

∂

∂t

∣∣∣∣
t=0

FP
z=0

∫
M
xztu(t) dVg(t) = FP

z=0

∫
M
zxz−1

0 ẋtu(0) dVg0 + FP
z=0

∫
M
xz0
∂

∂t

∣∣∣∣
t=0

(
u(t) dVg(t)

)
= FP

z=0

(
z

∫
M
xzω̇tudVg

)
+ FP
z=0

∫
M
xz
∂

∂t

∣∣∣∣
t=0

(
u(t) dVg(t)

)
= Res

z=0

∫
M
xzω̇tudVg + FP

z=0

∫
M
xzL(g) dVg,

where ẋt := ∂
∂t

∣∣
t=0

xt, and similarly for ω̇t.

Since ω is even to order 2m, so is ω̇. In addition, ω̇ ∈ O
(
x2
)

since the conformal infinity is
fixed. This produces a shift by 2 in the terms in the expansion of ω̇udVg. This means that poles
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arising from integrating this expression appear at odd integers. In particular, there is no pole
at z = 0, which means that

∂

∂t

∣∣∣∣
t=0

FP
z=0

∫
M
xztu(t) dVg(t) = FP

z=0

∫
M
xzL(g) dVg. �

Theorem 5.5 (Theorem 1.2). Suppose that
(
Mn, g0

)
, n = 2m, is volume renormalizable, and

let g(t) be a solution of (1.2) with g(0) = g0. Then along the flow,

d

dt
RenV = −

R
∫
M
S(g(t)) + n(n− 1) dVg(t).

Proof. Proposition 4.1 asserts that g(t) remains volume renormalizable along the normalized
Ricci flow. Consequently the renormalized volume is defined along the flow.

Recall that on a compact manifold the variation of the volume form g 7→ dVg equals 1
2trg(t)ġ(t),

and for the normalized Ricci flow,

1

2
trg(t)∂tg = −trg(t)Eij = − (S(g(t)) + n(n− 1)) .

Finally, by Theorem 5.4,

d

dt
RenV(M, g(t)) = −

R
∫
M
S(g(t)) + n(n− 1) dVg(t),

as asserted. �

A Parity computations

In this appendix we record a number of parity computations used throughout the paper. Recall
that we use the notation that if f(x, y) is smooth and has a series expansion of the form
f(x, y) ∼

∑
j aj(y)xj , then we denote by {f}n the nth coefficient function an(y). Note that

with respect to 0-derivatives (i.e., derivatives with respect to x∂x and x∂yα = x∂α) one may
check {x∂xf}n = n{f}n, and {x∂αf}n = ∂α{f}n−1.

It is also easy to check the following

Lemma A.1. If f and g are smooth functions which are even as functions of x to order 2j,
then the product fg is even to order 2j, with {fg}0 = {f}0{g}0 and {fg}2j+1 = {f}2j+1{g}0 +
{f}0{g}2j+1.

Referring to the definition of even metric given on page 6 we have

Lemma A.2. Let g be a metric which is even to order 2j. Suppose that x is a defining function

for which |dx|2g = gxx ∼ 1 +
j∑

k=1

A2kx
2k +A2j+1x

2j+1; then completing x to a coordinate system

(x, y), we have that

gxx = 1 +

j∑
k=1

a2kx
2k + a2j+1x

2j+1,

where a2j+1 = −A2j+1, i.e., {gxx}2j+1 = −{gxx}2j+1.
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Proof. We use the formula

gxxgxx + gxαgxα = 1,

recalling that since g is even to order 2j, the coefficients gαx and gαx are odd to order 2j + 1,
hence may be ignored since their product do not contribute to an odd term before order 2j + 1.

Writing gxx ∼ 1 +
j∑

k=1

a2kx
2k + a2j+1x

2j+1, we see that the coefficient at order 2j + 1 of the

product gxxgxx equals a2j+1 + A2j+1. However, this coefficient vanishes, which shows that the
term in gxx at order 2j + 1 is −A2j+1. �

Now suppose g is a metric that is even to order 2j, i.e., gxx and gαβ are even to order 2j
and gxα is odd to order 2j + 1. We record the both the parity and the parity breaking term
in the expansions of 0-derivatives of the various metric components. Note that because of the
prefactor x in the derivative, all of these terms vanish at x = 0; this fact is used frequently in
what follows along with Lemma A.1.

component parity to order coefficient after parity broken

x∂xgxx even to order 2j {x∂xgxx}2j+1 = (2j + 1){gxx}2j+1

x∂αgxx odd to order 2j + 1 {x∂αgxx}2j+2 = ∂α{gxx}2j+1

x∂xgxµ odd to order 2j + 1 {x∂xgxµ}2j+2 = (2j + 2){gxµ}2j+2

x∂νgxµ even to order 2j + 2 {x∂νgxµ}2j+3 = ∂ν{gxµ}2j+2

x∂xgαβ even to order 2j {x∂xgαβ}2j+1 = (2j + 1){gαβ}2j+1

x∂νgαβ odd to order 2j + 1 {x∂νgαβ}2j+2 = ∂ν{gαβ}2j+1

Christoffel symbols

We now document the expansion of the Christoffel symbols. Once again each of these vanishes
at x = 0, and it emerges from the computation that any such symbol with an even number
of x components is odd to order 2j + 1. Any symbol with an odd number of x components is
even to order 2j and the term breaking parity involves only xx and αβ components of the metric.
Further, let Λ̂··· denotes the Christoffel symbols involving only tangential derivatives of tangential
components of the metric. The calculations leading to the table below are straightforward but
tedious, and any entry with an asterisk is not explicitly needed in the sequel.

component parity to order coefficient after parity broken

xΓ
x
xx even to order 2j

{
xΓ

x
xx

}
2j+1

= 1
2(2j + 1){gxx}2j+1

xΓ
x
αβ even to order 2j

{
xΓ

x
αβ

}
2j+1

= −1
2(2j + 1){gαβ}2j+1

xΓ
x
αx odd to order 2j + 1

{
xΓ

x
αx

}
2j+2

=
{

1
2g
xxx∂αgxx

}
2j+2

+
{

1
2g
xµx∂xgαµ

}
2j+2

xΓ
γ
αx even to order 2j

{
xΓ

γ
αx

}
2j+1

= 1
2(2j + 1)hγβ0 {gαβ}2j+1

xΓ
γ
xx odd to order 2j + 1 ∗

xΓ
γ
αβ odd to order 2j + 1

{
xΓ

γ
αβ

}
2j+2

= −1
2{g

γx}1{x∂xgαβ}2j+1 +
{
xΛ̂γαβ

}
2j+2

Hessian and Laplacian of x

Recall that

[Hessg x]ij = ∂i∂jx− Γ
k
ij∂kx.

Thus, from the previous subsection, since x is a coordinate, both

[xHessg(x)]xx = −xΓ
x
xx and [xHessg(x)]αβ = −xΓ

x
αβ
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are even to order 2j, and

{xHessg(x)xx}2j+1 = −1

2
(2j + 1){gxx}2j+1, (A.1)

{xHessg(x)αβ}2j+1 =
1

2
(2j + 1){gαβ}2j+1. (A.2)

Further,

[xHessg(x)]xα = −xΓ
x
xα

is odd to order 2j + 1, and

{xHessg(x)xα}2j+2 = −
{

1

2
gxxx∂αgxx

}
2j+2

−
{

1

2
gxµx∂xgαµ

}
2j+2

= −1

2
{x∂αgxx}2j+2 −

1

2
{gxµ}1{x∂xgαµ}2j+1

= −1

2
∂α{gxx}2j+1 −

1

2
(2j + 1){gxµ}1{gαµ}2j+1, (A.3)

where we have used the fact that x∂αgxx vanishes to third order in the second equation above.
We also compute leading components of x∆gx gij . First recall that

x∆gx = xgpq Hesspq x = −xgpqΓxpq = −xgxxΓ
x
xx − xgxαΓ

x
xα − xgαβΓ

x
αβ.

This expression is even to order 2j+ 1, and the middle term is even to order 2j+ 2. Thus, using
Lemma A.1 and the fact that the product of x with any Christoffel symbol vanishes at x = 0
we have

{x∆gx}2j+1 = −{gxx}0{xΓ
x
xx}2j+1 − {gαβ}0{xΓ

x
αβ}2j+1

= −1

2
(2j + 1){gxx}2j+1 +

1

2
(2j + 1)hαβ0 {gαβ}2j+1.

Assembling the above, we discover

{x∆gxgxx}2j+1 = −1

2
(2j + 1){gxx}2j+1 +

1

2
(2j + 1)hµν0 {gµν}2j+1, (A.4)

{x∆gxgαβ}2j+1 =

(
−1

2
(2j + 1){gxx}2j+1 +

1

2
(2j + 1)hµν0 {gµν}2j+1

)
h0
αβ, (A.5)

whereas

{x∆gx gxα}2j+2 = {gxα}1{x∆gx}2j+1

= {gxα}1
(
−1

2
(2j + 1){gxx}2j+1 +

1

2
(2j + 1)hµν0 {gµν}2j+1

)
. (A.6)

The Ricci curvature

We now perform a similar analysis on the components of the Ricci curvature. We write this out
in a bit more detail. First, we have

x2Rcxx = x2Rmαxx
α

= x2∂αΓ
α
xx − x2∂xΓ

α
αx + xΓ

s
xxxΓ

α
αs − xΓ

s
αxxΓ

α
xs

= x2∂αΓ
α
xx − x2∂xΓ

α
αx + xΓ

x
xxxΓ

α
αx + xΓ

µ
xxxΓ

α
αµ − xΓ

x
αxxΓ

α
xx − xΓ

µ
αxxΓ

α
xµ

= x∂α
(
xΓ

α
xx

)
− x2∂xΓ

α
αx + xΓ

x
xxxΓ

α
αx + xΓ

µ
xxxΓ

α
αµ − xΓ

x
αxxΓ

α
xx − xΓ

µ
αxxΓ

α
xµ
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= x∂α
(
xΓ

α
xx

)
− x∂x(xΓ

α
αx) + xΓ

α
αx + xΓ

x
xxxΓ

α
αx + xΓ

µ
xxxΓ

α
αµ

− xΓ
x
αxxΓ

α
xx − xΓ

µ
αxxΓ

α
xµ.

Comparing the terms in this expression with the tables above, we find Rcxx is even to order 2j.
Moreover using the parity for the Christoffel symbols already discussed and that each vanishes
at x = 0, the first and the final four terms are even to order 2j + 2 and thus do not contribute
to the term at order 2j + 1. Thus{

x2Rcxx
}

2j+1
=
{
−x∂x

(
xΓ

α
αx

)
+ xΓ

α
αx

}
2j+1

=
1

2

(
−(2j + 1)2 + 2j + 1

)
hαβ0 {gαβ}2j+1

= −j(2j + 1)hαβ0 {gαβ}2j+1. (A.7)

The tangential Ricci components are

x2Rcαβx
2Rmsαβ

s
= x2

(
∂sΓ

s
αβ − ∂αΓ

s
sβ + Γ

r
αβΓ

s
sr − Γ

r
sβΓ

s
αr

)
= x2

(
∂xΓ

x
αβ + ∂µΓ

µ
αβ − ∂αΓ

x
xβ − ∂αΓ

µ
µβ + Γ

x
αβΓ

x
xx + Γ

x
αβΓ

µ
µx

+ Γ
µ
αβΓ

x
xµ + Γ

µ
αβΓ

λ
λµ − Γ

x
xβΓ

x
αx − Γ

x
µβΓ

µ
αx − Γ

µ
xβΓ

x
αµ − Γ

µ
λβΓ

λ
αµ

)
.

This entire expression is even to order 2j, and moreover all terms of the form
(
xΓ
)(
xΓ
)

are even
to order 2j+ 2, as are the derivative terms involving tangential partial derivatives. We thus find
that {

x2Rcαβ
}

2j+1
=
{
x2∂xΓ

x
αβ

}
2j+1

=
{
x∂x

(
xΓ

x
αβ

)
− xΓ

x
αβ

}
2j+1

(A.8)

= −1

2
(2j + 1)2{gαβ}2j+1 +

1

2
(2j + 1){gαβ}2j+1 = −j(2j + 1){gαβ}2j+1.

Now we consider the mixed component x2Rcxα:

x2Rcxα = x2Rmsxα
s

= x2
(
∂sΓ

s
xα − ∂xΓ

s
sα + Γ

r
xαΓ

s
sr − Γ

r
sαΓ

s
xr

)
= x2

(
∂xΓ

x
xα + ∂σΓ

σ
xα − ∂xΓ

x
xα − ∂xΓ

σ
σα + Γ

x
xαΓ

x
xx + Γ

ν
xαΓ

x
xν + Γ

x
xαΓ

σ
σx + Γ

ν
xαΓ

σ
σν

− Γ
x
xαΓ

x
xx − Γ

ν
xαΓ

x
xν − Γ

x
σαΓ

σ
xx − Γ

ν
σαΓ

σ
xν

)
= x2

(
∂σΓ

σ
xα − ∂xΓ

σ
σα + Γ

x
xαΓ

σ
σx + Γ

ν
xαΓ

σ
σν − Γ

x
σαΓ

σ
xx − Γ

ν
σαΓ

σ
xν

)
.

This coefficient is odd to order 2j + 1, thus we will be interested in the coefficient of the first
term which breaks parity, at order 2j + 2. Thus purely from parity considerations we find{

x2Γ
x
xαΓ

σ
σx + x2Γ

ν
xαΓ

σ
σν − x2Γ

x
σαΓ

σ
xx − x2Γ

ν
σαΓ

σ
xν

}
2j+2

=
{
xΓ

x
xα

}
1

{
xΓ

σ
σx

}
2j+1

+
{
xΓ

ν
xα

}
2j+1

{
xΓ

σ
σν

}
1

−
{
xΓ

x
σα

}
2j+1

{
xΓ

σ
xx

}
1
−
{
xΓ

ν
σα

}
1

{
xΓ

σ
xν

}
2j+1

. (A.9)

Observe also{
x2∂σΓ

σ
xα

}
2j+2

=
{
x∂σ

(
xΓ

σ
xα

)}
2j+2

= ∂σ
{
xΓ

σ
xα

}
2j+1

. (A.10)

Finally,{
x2∂xΓ

σ
σα

}
2j+2

=
{
x∂x

(
xΓ

σ
σα

)
− xΓ

σ
σα

}
2j+2

= (2j + 1)
{
xΓ

σ
σα

}
2j+2

=
−(2j + 1)

2
{gσx}1{x∂xgσα}2j+1 + (2j + 1)

{
xΛ̂σσα

}
2j+2

= −(2j + 1)2

2
{gσx}1{gσα}2j+1 +

1

2
{gσµ}0{x∂αgµσ + x∂σgαµ − x∂µgασ}2j+2. (A.11)

The reader may now verify from equations (A.9), (A.10), and (A.11), that the coefficient{
x2 Rcxα

}
2j+2

involves only components {gxx}2j+1 and {gαβ}2j+1 and their tangential deriva-
tives.
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