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Abstract. We construct a noncommutative Kähler manifold based on a non-linear pertur-
bations of Moyal integrable deformations of D = 4 self-dual gravity. The deformed Kähler
manifold preserves all the properties of the commutative one, and we obtain the associated
noncommutative Kähler potential using the Moyal deformed gravity approach. We apply
this construction to the Atiyah–Hitchin metric and its Kähler potential, which is useful in
the description of interactions among magnetic monopoles at low energies.
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1 Introduction

Several applications of hyper-Kähler manifolds in four dimensions involve gravitational instan-
tons, non-linear graviton theory and the heavenly equations [12, 17, 25, 31, 32]; they have also
been extensively used in supersymmetric field theories [2, 22]. Of particular interest is their ap-
pearance in topological field theories and string theory, where in some cases the moduli spaces
have a hyper-Kähler structure. The existence of such a structure provides a more profound and
alternative understanding of a physical system in general.

Even though hyper-Kähler manifolds have been analysed in great detail, there exist exam-
ples where the metric has proved to be difficult or impossible to calculate. Nevertheless, an
algebraic description of four-dimensional non-compact hyper-Kähler manifolds possessing one
abelian isometry was given in [7]. In that work, a self-duality condition for the Killing vector
associated to the isometry plays a fundamental role in the analysis and classification mani-
folds; the translational or rotational character of the isometry translates into the existence of
a translational or rotational Killing vector.

Two particular examples of self-dual manifolds with rotational Killing symmetries are the
Eguchi–Hanson and the Taub-NUT metrics; both metrics share SO(3)×SO(2) as a larger group
of isometries, but these two group factors act differently on each spacetime. SO(3) is a translation
symmetry for the Eguchi–Hanson metric with SO(2) acting as a rotational one; the situation is
the opposite for the Taub-NUT spacetime. On the other hand, a relevant example of a spacetime
admitting only a rotational isometry is the Atiyah–Hitchin (AH) metric that arises on the moduli
space M0

2 of BPS SU(2) monopoles [4, 18].
As noted in a series of works [3, 4, 18], the AH spacetime is a useful tool in the descrip-

tion of interactions among magnetic monopoles. More specifically, the AH metric is the metric
on the moduli space of charge-two non-abelian magnetic SU(2) monopole with a fixed centre.
Its geodesics describe low-energy monopoles interacting through the exchange of massless pho-
tons and scalars [4]; at long distances, it reduces to the Taub-NUT space with negative mass
parameter [21]. The structure of the AH metric is a four-dimensional hyper-Kähler manifold
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with SO(3) isometry; the SO(3) group does not rotate the three Kähler forms, and it is the only
specific example of a four-dimensional hyper-Kähler space without tri-holomorphic isometries.
Furthermore, the AH spacetime is a self-dual solution to Einstein field equations [5] and all of
its Killing vectors lack a self-dual covariant derivative [20]; the isometry group SU(2) is often
identified with a supersymmetry group [19].

In general, the metric related to self-dual vacuum solutions to Einstein’s field equations is
a solution to the first, or the second, heavenly equations [34]. The original motivation for
heavenly equations, heavenly metrics and heavenly spaces was the desire to obtain real solutions
to Einstein’s equations on real manifolds and spawned several papers on the subject and its
generalisations [1, 8, 13, 14, 23]. Assuming that the anti-self-dual part of the Weyl tensor was
algebraically special, the equivalence between the vacuum Einstein field equations in complex
spacetime and the heavenly equation was established in [36]. The heavenly equations are also
integrable using the twistor formalism [10, 31] and several examples are known [15, 37]; they are
a constant source of research in mathematics and physics.

It is of interest to consider integrable generalisations of the heavenly equation due to its
applications to physical systems; its modifications may allow a description of new phenomena
or interactions not present in the standard description of a system. For instance, one of the
possible generalisations that may be relevant is the one related to the Moyal ?-product. Within
the context of particles and fields, the Moyal product provides a straightforward generalisation
to noncommutative field theories and introduces, for example, new interactions in the Standard
Model that may be probed in the laboratory. Several applications in quantum gravity also
exist, in particular regarding the issue of the singularities and the thermodynamical properties
of solutions in general relativity.

In the case of the first heavenly equation, a Moyal deformation of this equation has been done
independently by Strachan [38] and Takasaki [43]. Furthermore, a suitable deformed differential
calculus was introduced in [41] to deal with the deformation. When applied to integrable systems,
the equations

dΩ̂ = 0, Ω̂ ∧ Ω̂ = 0,

for a 2-form Ω̂ provide a concise writing of the integrability conditions for the deformed system.
We want to analyse the consequences of a noncommutative structure on the moduli space

of interacting magnetic monopoles; we expect that such a deformation gives rise to interactions
that may be identified with some already known or produces new ones. For the classical case,
the Kähler potential for the AH metric was obtained by Olivier [28] following an approach based
on the existence of a η-self-dual Killing vector in conjunction with previous results obtained by
Boyer and Finley [9]. In our approach, we consider a Moyal deformation of this Kähler potential,
and we require that the deformed potential Ω̂ must share the same features and properties of
the classical one.

The plan of the present paper is as follows. In Section 2, we review the noncommutative
deformation of the Monge–Ampère or first heavenly equation using the Moyal ?-product; in this
section, we write the equation satisfied by the noncommutative contributions that preserve the
first heavenly equation. In Section 3, we also recall the anti-self-dual vacuum Einstein equations
that determine the structure of complex four-dimensional metrics of Euclidean signature. How
integrability is preserved in the Moyal-deformed case for these spaces and the conditions under
which we guarantee that the Moyal-deformed potential is Kähler are presented there.

Afterwards, in Section 4, we use the Moyal deformed gravity approach to rewrite the deformed
Kähler potential Ω̂ in terms of local frame fields êaµ(x, θ); we also obtain general expressions for
the corresponding deformed metric elements. We discuss the deformed Kähler potential up
to first order on the noncommutative parameter θ in greater detail in Section 5; through an
integration procedure, we explicitly specify the first order modifications to the deformed metric
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and vierbien. The results in Sections 4 and 5 are put together in Section 6 to analyse the case of
the AH metric. There, we obtain the Moyal deformed AH metric as a function of the original AH
metric, the corrections to the Kähler manifold and the complex coordinates used in the original
formulation by Olivier. We finally end with our conclusions and some remarks on future work.

2 Moyal deformation of the first heavenly equation

It is well known that the first and second heavenly equations describe the general metric of a self-
dual vacuum space-time [34] and that these equations are integrable by twistor methods [10, 31,
33]. Plebański [34] showed that complex metrics with a self-dual Riemann tensor, to be referred
to as self-dual metrics, can be described in terms of one function Ω, the Kähler potential,
satisfying the first heavenly equation

{Ωp,Ωq}PB = Ωpp̄Ωqq̄ − Ωpq̄Ωqp̄ = 1. (2.1)

This equation is also called Plebański’s first equation; it defines a completely multidimensional
integrable system with an infinite number of conservation laws, hierarchy and Lax pair formu-
lation [27, 29, 30, 39, 40]. The Kähler potential Ω is an unknown function of suitable spacetime
coordinates xµ := (p, q, p̄, q̄); it gives a local expression of self-dual vacuum Einstein spaces.

In this section we outline the procedure in [38] to obtain the deformation of the first heavenly
equation using Strachan’s idea. The starting point is to replace the Poisson bracket

{F,G}PB =
∂F

∂p̄

∂G

∂q̄
− ∂F

∂q̄

∂G

∂p̄
,

by the Moyal bracket defined as [26]

{F,G}MB :=
1

iθ
(F ? G−G ? F ) =

2

θ
F sin

[
θ

2

(←−
∂

∂p̄

−→
∂

∂q̄
−
←−
∂

∂q̄

−→
∂

∂p̄

)]
G,

with the ?-product defined as

f ? g := f exp

[
iθ

2

(←−
∂

∂p̄

−→
∂

∂q̄
−
←−
∂

∂q̄

−→
∂

∂p̄

)]
g.

Thus the Moyal algebra is a deformation of the Poisson algebra. Using the well-known Taylor
expansion of the sine function we obtain

{F,G}MB =
∞∑
s

−2iθ2s
(
F ∗2s+1 G

)
,

where the product ∗2s+1 has the generic form

f(x) ∗r g(x) =
1

r!

(
i

2

)r
εµ1ν1 · · · εµrνr∂µ1 · · · ∂µrf(x)∂ν1 · · · ∂νrg(x).

The above formulation can be also implemented by considering a noncommutative matrix

θµν := θεµν = θδµı̄ δ
ν
̄ ε
ı̄̄ = θ


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 . (2.2)



4 M. Maceda and D. Mart́ınez-Carbajal

with the ?-product defined as

f ? g := f exp

(
i

2
θµν
←−
∂

∂xµ

−→
∂

∂xν

)
g. (2.3)

In the above, εµν = −ενµ is an anti-symmetric object, and εı̄̄ is the standard Levi-Civita tensor
in two dimensions. Following [38] and [35], we briefly review the iterative method for constructing
a set of differential equations for the Moyal deformation of the first heavenly equation. For this
purpose, we consider then a series development in powers of θ for Ω̂

Ω̂ =
∞∑
n=0

θnΩ(n), n = 0, 1, . . . . (2.4)

Here Ω(n) are functions to be determined and Ω(0) =: Ω is the classical Kähler potential. Plugging
this expansion into the integrable deformation of Plebański’s (first heavenly) equation{

Ω̂p, Ω̂q

}
MB

= 1,

we obtain the expression

{
Ω̂p, Ω̂q

}
MB

= −2i

∞∑
r=0

θr
[ r2 ]∑
s=0

r−2s∑
m=0

(
∂pΩ

(m) ∗2s+1 ∂qΩ
(r−m−2s)

)
= 1. (2.5)

We compare now the coefficients of the same powers of θ in both sides of this equation; for r = 0
we find the first heavenly equation (2.1). For any r ≥ 1, equation (2.5) gives the condition

[ r2 ]∑
s=0

r−2s∑
m=0

(
∂pΩ

(m) ∗2s+1 ∂qΩ
(r−m−2s)

)
= 0. (2.6)

To analyse the lowest order modifications to the first heavenly equation, we set r = 1 to obtain

Ωpp̄Ω
(1)
qq̄ + Ω

(1)
pp̄ Ωqq̄ − Ωpq̄Ω

(1)
qp̄ − Ω

(1)
pq̄ Ωqp̄ = 0. (2.7)

Therefore, once Ω is known, equation (2.7) becomes a linear partial differential equation for the
first order corrections Ω(1). The deformed potential Ω̂ defined as before is not necessarily Kähler-
like, we need to impose additional conditions to guarantee that it will be; these conditions will
be discussed in the next section.

3 Integrable systems

Several multidimensional integrable systems were discussed in [41] assuming a symplectic man-
ifold with some associated ?-product. All these systems share the characteristic feature that
they have associated a 2-form Ω̂ which satisfies the equations

dΩ̂ = 0, (3.1)

Ω̂ ∧ Ω̂ = 0. (3.2)

These equations contain the integrability conditions of the systems in a concise geometric way.
In the following, we focus on the implications of these relations for the particular case of an
integrable deformation of self-dual vacuum Einstein equations.
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3.1 The self-dual vacuum Einstein equations

Consider a real manifold (M, g) of dimension four and metric

ds2 = gabdφ
adφb, a = 1, . . . , 4.

We assume that the associated Levi-Civita covariant derivative is torsionless, i.e., Dkgab = 0.
Locally it is possible to introduce complex coordinates φa = (τ i, τ ı̄), i, ı̄ = 1, 2, such that the
metric reads

ds2 = gīdτ
idτ ̄ + gı̄jdτ

ı̄dτ j = 2gīdτ
idτ ̄. (3.3)

Note that this metric is real since it was so in the original coordinates; as a consequence we have

gī = g∗jı̄, gij = g∗̄̄ı = 0.

The indexes i and ı̄ are called holomorphic and antiholomorphic respectively; the standard
convention is to write the holomorphic index first.

Complex 4-metrics of Euclidean signature with vanishing Ricci tensor and anti-self-dual Weyl
tensor correspond to anti-self-dual vacuum Einstein solutions. Using the fact that these metrics
are Kähler, they may be written in terms of the Kähler potential Ω as gī := Ωī := ∂īΩ. It
follows that

gµν =
(
δiµδ

̄
ν + δiνδ

̄
µ

)
Ωī =

(
0 Ωī

Ωjı̄ 0

)
. (3.4)

As mentioned before, a noncommutative deformation of the integrability conditions equa-
tions (3.1) and (3.2) was proposed in [41]. More specifically, it was noted that if Ω̂ is the
deformed 2-form

Ω̂ = dp ∧ dq + λ
(
Ω̂pp̄dp ∧ dp̄+ Ω̂pq̄dp ∧ dq̄ + Ω̂qp̄dq ∧ dp̄+ Ω̂qq̄dq ∧ dq̄

)
+ λ2dp̄ ∧ dq̄, (3.5)

then it clearly satisfies the condition dΩ̂ = 0. Furthermore, it is straightforward to see that

Ω̂ ∧ Ω̂ = λ2
({

Ω̂p, Ω̂q

}
MB
− 1
)
dp ∧ dp̄ ∧ dq ∧ dq̄.

The right hand side of this equation vanishes if Ω̂ satisfies the deformed Plebański equation. This
result means that a Moyal deformation of the first heavenly equation preserves its integrability.
Furthermore, we have the important result that a perturbative solution equation (2.4) exists.
This result implies that equation (3.4) generalises to

g(n)
µν =

(
δiµδ

̄
ν + δiνδ

̄
µ

)
Ω

(n)
ī . (3.6)

3.2 Deformed properties

As we previously mentioned, we want to construct a four-dimensional Moyal deformed integrable
Kähler manifold. For this purpose, we impose that the deformed Kähler potential Ω̂ must share
the same features and properties of the undeformed system; they are (ĝī := ∂i∂̄Ω̂)

1) the 2-form Ω̂ := Ω̂īdx
i ∧ dx̄̄ := 2iĝīdx

i ∧ dx̄̄ should be closed, i.e., dΩ̂ = 0,

2) the metric coefficients Ω̂ī should be real (hermitian property),

3) the determinant of Ω̂ī should be equal to one, i.e., det Ω̂ī := Ω̂pp̄ ? Ω̂qq̄ − Ω̂pq̄ ? Ω̂qp̄ = 1.
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The first of the above conditions can be analysed by fixing for the 2-form Ω̂, the same
functional form as that of equation (3.5). This fact implies that the following condition must hold

∂kΩ
(n)
ī = 0 = ∂k̄Ω

(n)
ī , k = p, q, k̄ = p̄, q̄.

We now write equation (2.6) as

r∑
m=0

(
∂pΩ

(m) ∗1 ∂qΩ(r−m)
)

+

[ r2 ]∑
s=1

r−2s∑
m=0

(
∂pΩ

(m) ∗2s+1 ∂qΩ
(r−m−2s)

)
= 0.

The second sum vanishes because of the first property imposed on Ω(n); we have thus
r∑

m=0

(
∂pΩ

(m) ∗1 ∂qΩ(r−m)
)

=
r∑

m=0

εı̄̄Ω
(m)
pı̄ Ω

(r−m)
q̄ = 0. (3.7)

Therefore, we can write equation (2.5) in terms of the Poisson bracket as{
Ω̂p, Ω̂q

}
PB

= 1.

The second condition implies that the corresponding metric coefficients are hermitian as in the
commutative case; therefore, each perturbation Ω(n) is also hermitian. We have then

Ω
(n)
ī = Ω

†(n)
jı̄ , Ω

(n)
ij = Ω

†(n)
ı̄̄ = 0,

where the last two conditions hold because we have a deformed Kähler manifold.
The third property can be imposed from the curvature condition equation (2.1) since the

deformed first heavenly equation admits a rewriting as a simple determinant. We know that in
the case of the non-deformed Kähler manifold, the determinant of the metric tensor is equal to
one. In the case of the deformed case the deformed metric tensor Ω̂ī should then satisfy the
same property. We demand that by definition

det Ω̂ī := Ω̂pp̄Ω̂qq̄ − Ω̂pq̄Ω̂qp̄ = 1.

The above equation is equivalent to det Ω̂ī = εk̄l̄Ω̂pk̄Ω̂ql̄ = 1. Using the power series expansion

in equation (2.4) for Ω̂, we get the different contributions to det Ω̂ī order by order on θ

det Ω̂ī = {Ωp,Ωq}PB +
∞∑
r=0

r∑
m,n=0

m+n=r≥1

εk̄l̄θm+nΩ
(m)

pk̄
Ω

(n)

ql̄
.

The first term in this expression is the Moyal deformation of the first heavenly equation; its
value is equal to one. Therefore, we conclude that the second term should vanish, namely

r∑
m,n=0

m+n=r≥1

εk̄l̄θm+nΩ
(m)

pk̄
Ω

(n)

ql̄
= 0.

In this equation are encoded all the combinations of order θj such that j > r.

4 Noncommutative gravity

In the previous section, we studied the noncommutative deformation of the Kähler potential
using the Moyal deformation of the first heavenly equation. The deformation functions Ω(n)

are unknown; each one of them satisfy their respective differential equations obtained from
equation (2.6). In this section, we give an ansatz for the deformed Kähler potentials Ω(n)

appearing in equation (3.7). As we will see later, the deformed functions Ω(n) can be expressed
in terms of a deformed local frame or vierbein êaµ(x, θ); after an integration procedure, the

deformed Kähler potential Ω̂ will be written in terms of the vierbein.



A Kähler Compatible Moyal Deformation of the First Heavenly Equation 7

4.1 Deformed gauge fields

For some time now, a subject of interest has been the construction of consistent noncommutative
deformations of Einstein gravity. Following the standard procedure to construct noncommuta-
tive gauge and scalar field theories [11, 42], noncommutative versions of the Einstein-Hilbert
action have been obtained by replacing the ordinary product by the noncommutative Moyal
product in equation (2.3). The noncommutative structure of spacetime is then[

xµ, xν
]
?

= iθµν ,

where the elements θµν are constant (canonical) parameters and antisymmetric, i.e., θµν = −θνµ.
In this approach, we can introduce a noncommutative metric as

ĝµν =
1

2

(
êaµ ? ê

b
ν + êaν ? ê

b
µ

)
ηab, (4.1)

in terms of a vierbein êaµ(x, θ) and the Minkowski metric ηab; the vierbein êaµ(x, θ) reduces to
the commutative one when θ = 0. The metric ĝµν is symmetric by construction and real even
if the deformed tetrad fields êaµ(x, θ) are complex quantities. For θ = 0, we identify this metric
with the commutative metric field

ĝµν(x, θ)
∣∣
θ=0

= gµν = eaµe
b
νηab.

We want now to construct a Moyal deformed spacetime with associated deformed vierbein and
metric, sharing the same properties of the undeformed spacetime, and such that the deformed
Kähler potential discussed in the Section 3.2 exists. For this purpose, we first introduce the
vector fields êbµ as

êbµ = ebµ + θkλebµkλ + · · ·+ θk1λ1 · · · θknλnebµk1λ1···knλn + · · · ,

where the elements ebµk1λ1···knλn are to be found. With this series expansion in powers of θ, we
write then the metric tensor as

ĝµν = gµν + iθkλg
(1)
µνkλ +O

(
θ2
)
, (4.2)

up to first order on θ.
Since we are interested in making compatible the noncommutative deformation of the Kähler

metric equation (3.6), with the deformation in equation (4.2), let us assume the following de-
composition for the verbein

θkλebµkλ = θkλPkλe(1)b
µ ,

to first order on θ; here Pkλ and e
(1)b
µ are unknown quantities. For the n-th order we generalize

this ansatz to

θk1λ1 · · · θknλnebµk1λ1···knλn =
(
θkλPkλ

)n
e(n)b
µ .

We now impose the condition

êbµ =
∞∑
n=0

θne(n)b
µ , e(0)b

µ := ebµ, (4.3)

implying θkλPkλ = θ; it is easy to show now that if we choose Pkλ := ∂kΩp∂λΩq where Ω
is the undeformed Kähler potential, then equation (4.3) is satisfied, where θkλ is given by
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equation (2.2). In a similar way as for the vierbein, the tensor metric equation (4.2) takes the
general form

ĝµν =

∞∑
n=0

θng(n)
µν ,

where the g
(n)
µν ’s are tensor fields written in terms of the e

(n)a
µ ’s; we fix their form as follows:

first, to make compatible this deformation with the structure of a Kähler manifold, we need

to impose the constraint ∂αg
(n)
µν = 0 with xα = (p, q, p̄, q̄). This condition implies the property

∂µe
(n)a
ν = 0 for the vierbein; equation (4.1) simplifies then to

ĝµν = êaµê
b
νηab. (4.4)

Using now the expansion of êaµ in powers of θ into equation (4.4), and equating the coefficients

of the same power of θ in both sides of the equation, we obtain the n-th tensor field g
(n)
µν in terms

of the deformed tetrad e
(n)a
µ as

g(n)
µν =

n∑
m=0

e(m)a
µ e(n−m)b

ν ηab, n = 0, 1, . . . .

5 The deformed Kähler potential

According with [34], self-dual gravity can be parametrised in terms of the complex coordinates
xµ = {p, q, p̄, q̄} and the resulting spacetime has the estructure of a Kähler manifold. In our case,
the Kähler spacetime given in equation (3.3) can be written in terms of the classical vierbein eaµ
and the local flat spacetime metric ηab defined as

eaµ :=


0 0 Ωpp̄ Ωpq̄

1 0 0 0
0 0 Ωqp̄ Ωqq̄

0 1 0 0

 , ηab :=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (5.1)

We now construct an ansatz for the deformed potentials Ω(n) in terms of the deformed vier-

bein e
(n)a
µ . Since we want that all the properties listed in Section 3.2 hold, we write first

g(n)
µν =

n∑
m=0

e(m)a
µ e(n−m)b

ν ηab =
(
δiµδ

̄
ν + δiνδ

̄
µ

)
Ω

(n)
ī . (5.2)

The simplest ansatz for the vierbein e
(n)a
µ that satisfies g

(n)
ij = g

(n)∗
̄̄ı = 0, is

e(n)a
µ =


0 0 e

(n)1
p̄ e

(n)1
q̄

e
(n)2
p e

(n)2
q 0 0

0 0 e
(n)3
p̄ e

(n)3
q̄

e
(n)4
p e

(n)4
q 0 0

 .

As we discussed previously, the vierbein e
(n)a
µ must have the property ∂µe

(n)a
ν = 0, µ = p, q, p̄, q̄.

Therefore, we shall assume the following dependence

e(n+1)a
µ = e(n+1)a

µ

(
Ω

(n)
pp̄ ,Ω

(n)
qq̄ ,Ω

(n)
pq̄ ,Ω

(n)
qp̄

)
. (5.3)
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The deformed Kähler potential Ω(n+1) to order n+1 will depend explicitly on the vierbein to

order n+ 1 and n, i.e., on e
(n+1)a
µ and e

(n)a
µ respectively. We begin by analising the deformation

to first order: from equation (5.2) we obtain

Ω
(1)
ī = e

(1)a
(i eb̄)ηab.

Using the undeformed vierbein eaµ given in equation (5.1), we write explicitly

Ω
(1)
qq̄ = e

(1)3
q̄ + e(1)2

q Ωpq̄ + e(1)4
q Ωqq̄, (5.4)

Ω
(1)
qp̄ = e

(1)3
p̄ + e(1)2

q Ωpp̄ + e(1)4
q Ωqp̄, (5.5)

Ω
(1)
pp̄ = e

(1)1
p̄ + e(1)2

p Ωpp̄ + e(1)4
p Ωqp̄, (5.6)

Ω
(1)
pq̄ = e

(1)1
q̄ + e(1)2

p Ωpq̄ + e(1)4
p Ωqq̄. (5.7)

To obtain the Kähler potential up to first order, we need to solve equations (5.4)–(5.7). If we
integrate first the above equations with respect to the anti-holomorphic variables xı̄ = {p̄, q̄},
we need to calculate a set of integrals of the form

∫
e

(1)A
α Ωβµdxν . After an integration by parts,

we see that∫
e(1)A
α Ωβµdxν =

{
e

(1)A
α Ωβµx

ν + C
(1)
i , if µ 6= ν,

e
(1)A
α Ωβ + C

(1)
i , if µ = ν,

where we used the properties ∂µe
(1)a
ν = 0, ∂αΩµν = 0 of the vierbein and the Kähler potential

respectively. In consequence, we have

Ω(1)
q = e

(1)3
q̄ q̄ + e(1)2

q Ωp + e(1)4
q Ωq + C

(1)
1 (p, q, p̄), (5.8)

Ω(1)
q = e

(1)3
p̄ p̄+ e(1)2

q Ωp + e(1)4
q Ωq + C

(1)
2 (p, q, q̄), (5.9)

Ω(1)
p = e

(1)1
p̄ p̄+ e(1)2

p Ωp + e(1)4
p Ωq + C

(1)
3 (p, q, q̄), (5.10)

Ω(1)
p = e

(1)1
q̄ q̄ + e(1)2

p Ωp + e(1)4
p Ωq + C

(1)
4 (p, q, p̄), (5.11)

where C
(1)
1 = C

(1)
1 (p, q, p̄), C

(1)
2 = C

(1)
2 (p, q, q̄), C

(1)
3 = C

(1)
3 (p, q, q̄) and C

(1)
4 = C

(1)
4 (p, q, p̄) are

functions of their arguments. We determine these functions by comparing equations (5.8)–(5.9)

and (5.10)–(5.11); we conclude that C
(1)
1 = e

(1)3
p̄ p̄, C

(1)
2 = e

(1)3
q̄ q̄, C

(1)
3 = e

(1)1
q̄ q̄ and C

(1)
4 = e

(1)1
p̄ p̄.

Therefore, we obtain the following two expressions

Ω(1)
q = e

(1)3
p̄ p̄+ e

(1)3
q̄ q̄ + e(1)2

q Ωp + e(1)4
q Ωq, (5.12)

Ω(1)
p = e

(1)1
p̄ p̄+ e

(1)1
q̄ q̄ + e(1)2

p Ωp + e(1)4
p Ωq. (5.13)

Following the same procedure as before, after an integration by parts of equations (5.12)
and (5.13) with respect to the holomorphic variables q and p respectively, the Kähler potential
takes the unique form

Ω(1) =
(
e

(1)1
p̄ p+ e

(1)3
p̄ q

)
p̄+

(
e

(1)1
q̄ p+ e

(1)3
q̄ q

)
q̄ + e(1)2

q Ωpq + e(1)4
p Ωqp

+
(
e(1)2
p + e(1)4

q

)
Ω. (5.14)

In general, a straightforward calculation shows that the Kähler potential up to the n-th order
has the expression

Ω(n) =
(
e

(n)1
p̄ p+ e

(n)3
p̄ q

)
p̄+

(
e

(n)1
q̄ p+ e

(n)3
q̄ q

)
q̄ + e(n)2

q Ωpq + e(n)4
p Ωqp+

(
e(n)2
p + e(n)4

q

)
Ω

+
n−1∑
m=1

(
e(m)a
p p+ e(m)a

q q
)(
e

(n−m)b
p̄ p̄+ e

(n−m)b
q̄ q̄

)
ηab.

When n = 1, we recover equation (5.14).
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5.1 Solutions for the Kähler potential to first order

As a particular example of the previous approach, we consider now in detail the deformation of
the Kähler potential and the vierbein up to first order on the noncommutative parameter θ. We
recall that the curvature condition can be formulated as a simple determinant, that is

det Ω̂ī = Ω̂pp̄Ω̂qq̄ − Ω̂pq̄Ω̂qp̄ = 1,

where Ω̂ = Ω+θΩ(1) up to first order. Substituting this expression in the determinant condition,
we obtain the following equations

Ωpp̄Ωqq̄ − Ωpq̄Ωqp̄ = 1, (5.15)

Ωpp̄Ω
(1)
qq̄ + Ω

(1)
pp̄ Ωqq̄ − Ωpq̄Ω

(1)
qp̄ − Ω

(1)
pq̄ Ωqp̄ = 0. (5.16)

Equations (5.15) and (5.16) are the Monge–Ampère equations to zero and first order respec-
tively. If we substitute now equations (5.4)–(5.7) into the heavenly equation to first order
equation (5.16), we obtain

e(1)4
q + e(1)2

p + e
(1)3
q̄ Ωpp̄ + e

(1)1
p̄ Ωqq̄ − e(1)3

p̄ Ωpq̄ − e(1)1
q̄ Ωqp̄ = 0.

Therefore, we need to find a form for the vierbein e
(1)a
µ such that the previous equation holds.

We consider the following two possibilities

Ω
(1)
pp̄ = CΩ

(1)
qp̄ , Ω

(1)
pq̄ = CΩ

(1)
qq̄ ,

for case I, and

Ω
(1)
pp̄ = CΩ

(1)
pq̄ , Ω

(1)
qp̄ = CΩ

(1)
qq̄ ,

for case II. We use now equations (5.4)–(5.7) into the previous formulas to obtain, after some
simplifications, the following relations among the components of the vierbein to first order

Ce(1)4
q = e(1)4

p , Ce(1)2
q = e(1)2

p , Ce
(1)3
q̄ = e

(1)1
q̄ , Ce

(1)3
p̄ = e

(1)1
p̄ ,

for case I, and

e
(1)1
p̄ = Ce

(1)1
q̄ , e

(1)3
p̄ = Ce

(1)3
q̄ , e(1)4

p =
A

A′
e(1)4
q = A(Ωqp̄ − CΩqq̄),

e(1)2
p =

A

A′
e(1)2
q = A(Ωpp̄ − CΩpq̄),

for case II. A, A′ and C are arbitrary constants in the above expressions. After the respective
simplifications, the Monge–Ampère equation becomes

e(1)4
q + e(1)2

p + e
(1)3
q̄ (Ωpp̄ − CΩqp̄) + e

(1)1
p̄ (CΩqq̄ − Ωpq̄) = 0, (5.17)

for case I and

e(1)4
q + e(1)2

p + e
(1)3
q̄ (Ωpp̄ − CΩpq̄) + e

(1)1
p̄ (CΩqq̄ − Ωqp̄) = 0, (5.18)

for case II.
To further proceed, we recall that according to equation (5.3) the vierbein e

(1)a
µ should have

the functional dependence

e(1)a
µ = e(1)a

µ (Ωpp̄,Ωqq̄,Ωpq̄,Ωqp̄),
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where Ωī, with {i, ̄} = {p, q, p̄, q̄}, are the metric coefficients of the undeformed metric tensor.
For case I, we choose the following ansatz for the vierbein

e(1)4
q = α+ βΩpp̄ + γΩqq̄ + δΩpq̄ + σΩqp̄,

e(1)2
p = α′ + β′Ωpp̄ + γ′Ωqq̄ + δ′Ωpq̄ + σ′Ωqp̄,

e
(1)3
q̄ = α′′ + β′′Ωpp̄ + γ′′Ωqq̄ + δ′′Ωpq̄ + σ′′Ωqp̄,

e
(1)3
p̄ = α′′′ + β′′′Ωpp̄ + γ′′′Ωqq̄ + δ′′′Ωpq̄ + σ′′′Ωqp̄,

where α, α′, β, β′, . . . are arbitrary constants. If we substitute the above equations into equa-
tion (5.17), we obtain the following relationship between the coefficients

α+ α′ + γ′′ + Cβ′′′ = 0, β + β′ + α′′ = 0, γ + γ′ + Cα′′′ = 0,

δ + δ′ − α′′′ = 0, σ + σ′ − Cα′′ = 0.

The solution to this system of coupled linear equations is

γ′′ = σ′′′ = −δ′′ = −β′′′, γ′′′ = 0 = δ′′′, σ′′ = 0 = β′′,

C = −α+ α′ + γ + γ′ + γ′′ + σ + σ′

β′′′ − α′′ + α′′′
.

For case II, we choose the following ansatz for the vierbein

e
(1)1
q̄ = α+ βΩpp̄ + γΩqq̄ + δΩpq̄ + σΩqp̄,

e
(1)3
q̄ = α′ + β′Ωpp̄ + γ′Ωqq̄ + δ′Ωpq̄ + σ′Ωqp̄,

where α, α′, β, β′, . . . are arbitrary constants. Substitution of these equations into equation (5.18)
leads to

γ′ + Cβ = 0, α′ +A′ = 0, α−A = 0,

δ − γ′ = 0, σ′ − β = 0, δ + Cσ′ = 0,

with solution

γ = 0 = σ, δ′ = 0 = β′, C = −γ
′

σ′
= − δ

β
.

The previous expressions determine the Kähler potential that is compatible with the Moyal
deformation of the first heavenly equation. We have thus arrived to a multi-parameter family
of solutions for the Moyal-deformed Kähler potential.

6 Deformed η-self dual Riemman metric

Following [9], we consider the algebraic description of four dimensional non-compact hyper-
Kähler manifolds that possess at least one abelian isometry, i.e., a translational or rotational
symmetry. For this purpose, we start by recalling the rotational character of the corresponding
Killing vector fields. By its own definition, a Killing vector field ξµ satisfies ∇(νξµ) = 0, while
the self-duality of the anti-symmetric part ∇[νξµ] provides the critical distinction between these
two types of Killing vectors field [9, 16]: ξµ is translational if it satisfies the condition

ξα;β =
1

2
ηε µν
αβ ξµ;ν , with η = ±1.

Otherwise, we say that ξµ is rotational.
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On the other hand, let gαβ be a η-self dual Riemman 4-metric with Euclidean signature and
let ξ = ξα∂α = ∂/∂φ be a Killing vector of gαβ. Then, locally we may write

ds2 =
1

V

(
dφ+ ωidx

i
)2

+ γijdx
idxj , (6.1)

with V , ωi and γij being all independent of φ; Greek indices run from 0 to 3 and Latin indices
run from 1 to 3.

In [28], a set of complex coordinates for the Atiyah–Hitchin (AH) metric was found as an
alternative procedure to the twistor formalism [6, 24]. In the analysis of magnetic monopoles
interactions, the moduli space admits a metric formulation in the low-energy limit leading to
the AH metric and scattering processes may be analysed in this way; the length element of the
AH metric is [3]

ds2 = β2γ2δ2 (dk)2(
4k2k′2K2

)2 + β2σ2
x + γ2σ2

y + δ2σ2
z ,

where

βγ = −K2
(
k′2 + u

)
, γδ = K2

(
k′2 − u

)
, βδ = −K2u,

and

u =
G(k)

K(k)
, G(k) = E(k)− k′2K(k), k′2 = 1− k2.

The differential 1-forms σx, σy and σz in the metric are invariant under SU(2) [3, 4]; the Killing
vector associated to the diagonal U(1) is ξ = ∂/∂φ. By casting the metric in the form equa-
tion (6.1), we establish the identifications

1

V
=

1

4

(
β2 sin2 θ cos2 ψ + γ2 sin2 θ sin2 ψ + δ2 cos2 θ

)
,

ω =
1

V

((
γ2 − β2

)
sinψ cosψ sin θdθ + δ2 cos θdψ

)
,

together with

γk2k2 =
β2γ2δ2

V
(
4k2k′2K2

)2 , γθθ =
1

16

[
β2γ2 sin2 θ + δ2 cos2 θ

(
β2 sin2 ψ + γ2 cos2 ψ

)]
,

γθψ = − 1

16

[
δ2
(
γ2 − β2

)
cos θ sin θ cosψ sinψ

]
,

γψψ =
1

16
δ2 sin2 θ

(
β2 cos2 ψ + γ2 sin2 ψ

)
.

The corresponding Kähler potential has a nice simple form as a function of θ, ψ, k2, namely [28]

Ω =
βγ + γδ + δβ

4
− J,

where

J :=
1

8

[
(βγ + γδ + δβ)− γδ sin2 θ cos2 ψ − δβ sin2 θ sin2 ψ − βγ cos2 θ

]
. (6.2)

On the other hand, Boyer and Finley [9] studied the Killing vectors in self dual Euclidean
Einstein spaces using the formalism of complex H-spaces. They proved that it is always possible
to choose complex coordinates such that either

ξ = ∂p + ∂p̄ and ξΩ = 0, or ξ = i(p∂p − p̄∂p̄) and ξΩ = 0, (6.3)
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depending on whether the covariant derivative of the Killing vector ξ is purely self-dual or not.
In the previous formulae, Ω is a Kähler potential that satisfies the Monge–Ampère equation.
Furthermore, they showed how to simplify the equation for Ω with the help of an appropriate
Legendre transformation in both cases. For this purpose, they introduced a pair of complex
coordinates xi ≡ (q, p) such that the second alternative in equation (6.3) is satisfied, and set

p =
√
reiθ̃.

In consequence the Killing vector is ξ = ∂/∂θ̃ and

Ω ≡ Ω(r, q, q̄).

By definition of the Kähler potential, we have

ds2 = 2Ωīdx
idx̄, (6.4)

where Ω satisfies the Monge–Ampère or first heavenly equation

Ωpp̄Ωqq̄ − Ωpq̄Ωqp̄ = 1. (6.5)

In terms of the variable r, the first heavenly equation (6.5) becomes

(rΩr)r Ωqq̄ − rΩrqΩrq̄ = 1. (6.6)

Now, if J := rΩr (J is conjugated to ln r with respect to Ω), and use (J, q, q̄) as a new choice of
independent variables to rewrite equations (6.4) and (6.6), we obtain

Ωqq̄ = rJ

[
rqrq̄
r(rJ)2

+ 1

]
,

where we used Ωrq = −r−1r−1
J rq, Ωrq̄ = −r−1r−1

J rq̄ and Jr = r−1
J . Equation (6.4) becomes

ds2 =
1

2

{(
r

rJ

)[
2dθ̃ +

i

r
(rqdq − rq̄dq̄)

]2

+
(rJ
r

) (
dJ2 + 4rdqdq̄

)}
,

so that the line element ds2 has the same form as equation (6.1); this coordinate frame is referred
as the Toda frame [6]. With J given by equation (6.2), it follows that we have the identifications

V =
rJ
2r
, dφ+ ωidx

i = dθ̃ +
i

2r
(rqdq − rq̄dq̄) , γijdx

idxj = dJ2 + 4rdqdq̄. (6.7)

According to Sections 2 and 3, a Moyal deformed Kähler potential Ω̂ could be given as
a power series expansion on the noncommutative parameter. If we also impose the condition
that the moduli space, which is the AH spacetime, preserves its (anti-)self-dual character under
the deformation, we must demand that the rotational Killing symmetry be unchanged; this
requirement happens if, and only if, each Ω(n) in the series expansion of the deformed Kähler
potential is a function only of r, q, q̄. Therefore, under the assumption Ω(n) ≡ Ω(n)(r, q, q̄), the
original first heavenly equation for the modified Kähler potentials Ω(n) becomes

s∑
m=0

{(
rΩ(m)

r

)
Ω

(s−m)
qq̄ − rΩ(m)

rq Ω
(s−m)
rq̄

}
= 0, s = 1, 2, . . . .

Following the same procedure that for the undeformed case [28], we start by defining J (n) :=

rΩ
(n)
r and we use (J, q, q̄) as a new choice of independent variables to write Ω

(n)
rq = −r−1J

(n)
r rq
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and Ω
(n)
rq̄ = −r−1J

(n)
r rq̄. Using this result and after a lengthy calculation, we obtain the following

iterative expression for Ω
(n)
qq̄

Ω
(n)
qq̄ = rJJ

(n)
r

(
Ω

(0)
qq̄ − 2rJ

)
+

∑
s+m=n
m 6=n,0

rJJ
(s)
r

(
J (m)
r r−1rqrq̄ − Ω

(m)
qq̄

)
,

where n ≥ 1. The corresponding line element associated to the modified Kähler potential Ω̂ is
then

dŜ2 =
∞∑
n=0

θnJ (n)
r rJds2 +

[ ∞∑
n=1

−θn2rJrJJ
(n)
r +

∞∑
n=2

θn
n−1∑
m=1

rJJ
(n−m)
r

×
(
J (m)
r r−1rqrq̄ − Ω

(m)
qq̄

)]
dqdq̄. (6.8)

It is important to stress that dŜ2 possesses the same symmetries as the line element ds2 of the
undeformed Kähler potential, namely, they both share the same Killing vector ξ = ∂/∂θ̃. In
terms of the coordinate pair (φ, xi), we write equation (6.8) as

dŜ2 =
∞∑
n=0

θnJ (n)
r rJds2 +

∞∑
n=0

θn
n−1∑
m=1

rJJ
(n−m)
r

(
J (m)
r r−1rqrq̄ + Ω

(m)
qq̄

)
× 1

4

[
γijdx

idxj − dJ2
]
. (6.9)

In equation (6.9), each one of the contributions J
(n)
r and Ω

(n)
qq̄ must be expressed in terms of φ = θ̃

and xi. The procedure is straightforward, and we outline it up to first order on θ: first, since
both the undeformed AH metric and its Kähler potential are known, the metric components Ωij̄

are calculated. Then, the first order corrections Ω(1) and e(1) to the Kähler potential and the
vierbien are obtained; from them the elements J (1) are also deduced. We obtain the final form
by using the change of coordinates in equation (6.7).

7 Conclusions

We analysed the construction of a Moyal deformation of the first heavenly equation that preserves
the integrability character of the corresponding Kähler potential, as it happens in the standard
commutative scenario. For this purpose, we reviewed the Moyal deformation of the first heavenly
equation, where the Moyal bracket replaces the standard Poisson bracket; accordingly, a modified
potential replaces the commutative Kähler potential that satisfies the first heavenly equation.
An expression for the modified potential as a series expansion on the noncommutative parameter
exists, where each term in this expansion satisfies a partial differential equation [38].

In the standard commutative situation, the Kähler potential satisfying the first heavenly
equation is integrable. We extended this property to the modified potential by demanding
a set of conditions using the Moyal bracket; these conditions also helped to fix the form of the
potential in such a way that it becomes Kähler.

We applied these results to the particular case of a Kähler potential associated to self-dual
vacuum solutions to Einstein’s equations, and we analysed the problem of determining each
one of the contributions in the series expansion of the modified Kähler potential. We obtained
then explicit expressions for the deformed vierbein up to first order on the noncommutative
parameter. With this information, we obtained two multi-parameter solutions for the Kähler
potential also to first order.
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Finally, we applied this approach to the calculation of the modified Kähler potential as-
sociated with the AH spacetime, also up to first order on the noncommutative parameter. By
extending the procedure of constructing complex coordinates for the AH metric [28], we obtained
thus the modified AH metric in terms of the standard commutative one and the noncommuta-
tive contributions to the Kähler potential. Taking into account that the AH metric describes
the moduli space of interacting magnetic monopoles at low energies, our results aim to incor-
porate noncommutative effects on these interactions. Furthermore, since the reduction of the
AH to the Taub-NUT metric gives the dynamics of two well-separated interacting monopoles at
low energies in a classical context, we expect that a deformation induced by noncommutativity
would be relevant for this dynamics as well.

It would be interesting also to apply our construction to other spaces, such as the Eguchi–
Hanson metric; due to its uncomplicated form, we may find a non-perturbative result for the
deformed metric. Considering the unique properties of this metric as a gravitational instanton
and its connection with orbifolds and D-branes in asymptotically locally Euclidean spaces, we
may find interesting consequences in the context of string theory.
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[15] Garćıa D.A., Plebański J.F., Seven parametric type-D solutions of Einstein–Maxwell equations in the basic
left-degenerate representation, Nuovo Cimento A 40 (1977), 224–234.

[16] Gegenberg J.D., Das A., Stationary Riemannian space-times with self-dual curvature, Gen. Relativity Gra-
vitation 16 (1984), 817–829.

[17] Gibbons G.W., Hawking S.W., Classification of gravitational instanton symmetries, Comm. Math. Phys. 66
(1979), 291–310.

[18] Gibbons G.W., Manton N.S., Classical and quantum dynamics of BPS monopoles, Nuclear Phys. B 274
(1986), 183–224.

[19] Gibbons G.W., Olivier D., Ruback P.J., Valent G., Multicentre metrics and harmonic superspace, Nuclear
Phys. B 296 (1988), 679–696.

[20] Gibbons G.W., Ruback P.J., The hidden symmetries of multi-centre metrics, Comm. Math. Phys. 115
(1988), 267–300.

[21] Hanany A., Pioline B., (Anti-)instantons and the Atiyah–Hitchin manifold, J. High Energy Phys. 2000
(2000), no. 7, 001, 23 pages, arXiv:hep-th/0005160.
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