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Abstract. The following problem is addressed: A 3-manifold M is endowed with a triple
Ω =

(
Ω1,Ω2,Ω3

)
of closed 2-forms. One wants to construct a coframing ω =

(
ω1, ω2, ω3

)
of M such that, first, dωi = Ωi for i = 1, 2, 3, and, second, the Riemannian metric g =(
ω1
)2

+
(
ω2
)2

+
(
ω3
)2

be flat. We show that, in the ‘nonsingular case’, i.e., when the three
2-forms Ωi

p span at least a 2-dimensional subspace of Λ2(T ∗
pM) and are real-analytic in some

p-centered coordinates, this problem is always solvable on a neighborhood of p ∈ M , with
the general solution ω depending on three arbitrary functions of two variables. Moreover,
the characteristic variety of the generic solution ω can be taken to be a nonsingular cubic.
Some singular situations are considered as well. In particular, we show that the problem
is solvable locally when Ω1, Ω2, Ω3 are scalar multiples of a single 2-form that do not
vanish simultaneously and satisfy a nondegeneracy condition. We also show by example
that solutions may fail to exist when these conditions are not satisfied.
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1 Introduction

1.1 The problem

Given a 3-manifold M and a triple Ω =
(
Ω1,Ω2,Ω3

)
of closed 2-forms on M , it is desired to

find a coframing ω =
(
ω1, ω2, ω3

)
(i.e., a triple of linearly independent 1-forms) satisfying the

first-order differential equations

dωi = Ωi (1.1)

and the second-order equations that ensure that the metric

g =
(
ω1
)2

+
(
ω2
)2

+
(
ω3
)2

(1.2)

be flat.
This question was originally posed in the context of a problem regarding ‘residual stress’

in elastic bodies due to defects, where the existence of solutions to equations (1.1) and (1.2) is
related to the existence of residually stressed bodies that also satisfy a global energy minimization
condition. (See [1] for more details.) However, we feel that the problem is of independent
geometric interest.

1.2 Initial discussion

As posed, this problem becomes an overdetermined system of equations for the coframing ω,
which, in local coordinates

(
u1, u2, u3

)
, can be specified by choosing the 9 coefficient func-

tions aij(u) in the expansion ωi = aij(u)duj . Indeed, (1.1) is a system of 9 first-order equations
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while the flatness of the metric g as defined in (1.2) is the system of 6 second-order equations
Ric(g) = 0. Together, these constitute a system of 15 partial differential equations on the coef-
ficients aij that are independent in the sense that no one of them is a combination of derivatives
of the others.

However, the problem can be recast into a different form that makes it more tractable. For
simplicity, we will assume that M is connected and simply-connected. The condition that the
R3-valued 1-form ω define a flat metric g = tω ◦ ω is then well-known to be equivalent to the
condition that ω be representable as

ω = a−1dx,

where x : M → R3 is an immersion and a : M → SO(3) is a smooth mapping.1 This representa-
tion is unique up to a replacement of the form

(x,a) 7→ (x′,a′) = (Rx + T,Ra),

where T ∈ R3 is a constant and R ∈ SO(3) is a constant.

Since SO(3) has dimension 3, specifying a pair (x,a) : M → R3 × SO(3) is, locally, a choice
of 6 arbitrary (smooth) functions on M . The remaining conditions on ω needed to solve our
problem,

d
(
a−1dx

)
= −a−1da ∧ a−1dx = Ω, (1.3)

still constitute 9 independent first-order equations for the ‘unknowns’ (x,a) (which are essen-
tially 6 in number), but these equations are not fully independent: dΩ = 0 by hypothesis, and
the exterior derivatives of the three 2-forms on the left hand side of (1.3) also vanish identically
for any pair (x,a), which provides 3 ‘compatibility conditions’ for the 9 equations, thereby, at
least formally, restoring the ‘balance’ of 6 equations for 6 unknowns. Thus, this rough count
gives some indication that the problem might be locally solvable.

However, caution is warranted. Let (x̄, ā) : M → R3 × SO(3) be a smooth mapping and
let Ω̄ = d

(
ā−1dx̄

)
. Linearizing the equations (1.3) at the ‘solution’ (x,a) = (x̄, ā) yields a system

of differential equations of the form

d
(
ā−1(dy − bdx̄)

)
= Ψ, (1.4)

where (y,b) : M → R3 ⊕ so(3) are unknowns and Ψ is a closed 2-form with values in R3. If one
were expecting (1.3) to always be solvable, one might näıvely expect (1.4) to always be solvable as
well, but this is not so: When one linearizes at (x̄, ā) = (x̄, I3), the linearized system reduces to

−db ∧ dx̄ = Ψ, (1.5)

where b : M → so(3) ' R3 is essentially a set of 3 unknowns and Ψ is a given closed 2-form
with values in R3. However, as is easily seen, the solvability of (1.5) for b imposes a system of 9
independent first-order linear equations on Ψ, while the closure of Ψ is only a subsystem of 3
independent first-order linear equations on Ψ.

Thus, some care needs to be taken in analyzing the system. Indeed, as Example 4.1 in Sec-
tion 4 shows, there exists an Ω defined on a neighborhood of the origin in R3 for which there is
no solution ω = a−1dx to the system (1.3) on an open neighborhood of the origin.

1In this note, we regard R3 as columns of real numbers of height 3, though we will, from time to time, without
comment, write them as row vectors in the text.
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1.3 An exterior differential system

The above observation suggests formulating the problem as an exterior differential system I
on X = M ×R3× SO(3) that is generated by the three 2-form components of the closed 2-form

Θ = −a−1da ∧ a−1dx− Ω, (1.6)

where now, one regards x : X → R3 and a : X → SO(3) as projections on the second and third
factors.2

We will show that, when Ω is suitably nondegenerate, this exterior differential system is
involutive, i.e., it possesses Cartan-regular integral flags at every point. In particular, if Ω is
also real-analytic, the Cartan–Kähler theorem will imply that the original problem is locally
solvable.

1.4 Background

For the basic concepts and results from the theory of exterior differential systems that will be
needed in this article, the reader may consult Chapter III of [2]. The book [3] may also be of
interest.

2 Analysis of the exterior differential system

2.1 Notation

Define an isomorphism [·] : R3 → so(3) (the space of 3-by-3 skew-symmetric matrices) by the
formula

[x] =

x1x2
x3

 =

 0 x3 −x2
−x3 0 x1

x2 −x1 0

 .

The identity [ax] = a[x]a−1, which holds for all a ∈ SO(3) and x ∈ R3, will be useful, as will
the following identities for x,y ∈ R3; A a 3-by-3 matrix with real entries; α and β 1-forms with
values in R3; and γ a 1-form with values in 3-by-3 matrices:

[x]y = −[y]x,

[Ax] = (trA)[x]− tA[x]− [x]A,

[x][y] = ytx− txyI3,

[α] ∧ β = [β] ∧ α,
[γ ∧ α] = (tr γ) ∧ [α]− tγ ∧ [α] + [α] ∧ γ,
[α] ∧ [β] = tβ ∧ αI3 − β ∧ tα,
tα ∧ [α] ∧ α = −6α1 ∧ α2 ∧ α3,

[Aα] ∧ α = 1
2

(
(trA)I3 − tA

)
[α] ∧ α. (2.1)

There is one more identity along these lines that will be useful. It is valid for all R3-valued
1-forms α and functions A with values in GL(3,R):

[Aα] ∧Aα = det(A)
(
tA
)−1

[α] ∧ α.
2We use a different font in equation (1.6) to emphasize that a, x, etc., denote matrix- and vector-valued

coordinate functions on X, while a, x, etc., denote matrix- and vector-valued functions on M . We use Ω to
denote both the 2-form on R3 and its pullback to X via the projection map x : X → R3.
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On R3 × SO(3) with first and second factor projections x : R3 × SO(3) → R3 and a : R3 ×
SO(3)→ SO(3), define the R3-valued 1-forms ξ and α by

ξ = a−1dx and [α] = a−1da =

 0 α3 −α2

−α3 0 α1

α2 −α1 0

 . (2.2)

These 1-forms satisfy the so-called ‘structure equations’, i.e., the identities

dξ = −[α] ∧ ξ and dα = −1
2 [α] ∧ α. (2.3)

2.2 Formulation as an exterior differential systems problem

Now suppose that, on M3, there is specified an R3-valued, closed 2-form Ω =
(
Ωi
)
. Choose an

R3-valued coframing η = (ηi) : TM → R3. Then one can write

Ω = 1
2Z[η] ∧ η,

where Z is a function on M with values in 3-by-3 matrices.
Let I be the exterior differential system on X9 = M × R3 × SO(3) that is generated by the

three components of the closed 2-form

Θ = dξ − Ω = −[α] ∧ ξ − 1
2Z[η] ∧ η.

Proposition 2.1. If N3 ⊂ X is an integral manifold of I to which η and ξ pull back to be
coframings, then each point of N3 has an open neighborhood that can be written as a graph{(

p,x(p),a(p)
)
p ∈ U

}
⊂ X (2.4)

for some open set U ⊂ M and smooth maps x : U → R3 and a : U → SO(3). Moreover, on U ,
the coframing ω = a−1dx satisfies dω = Ω and the metric g = tω ◦ ω = tdx ◦ dx is flat.

Conversely, if U ⊂ M is a simply-connected open subset on which there exists a cofram-
ing ω : TU → R3 satisfying (i) dω = Ω, and (ii) the metric g = tω ◦ ω be flat, then there exist
mappings x : U → R3 and a : U → SO(3) such that ω = a−1dx. Moreover, the immersion
ι : U → X defined by ι(p) =

(
p,x(p),a(p)

)
is an integral manifold of I that pulls η and ξ back

to be coframings of U .

Proof. The statements in the first paragraph of the proposition are proved by simply unwinding
the definitions and can be left to the reader.

For the converse statements (i.e., the second paragraph), suppose that a coframing ω : TU →
R3 be given satisfying the two conditions. By the fundamental lemma of Riemannian geometry,
there exists a unique R3-valued 1-form φ : TU → R3 such that

dω = −[φ] ∧ ω.

The condition that the metric g = tω ◦ ω be flat is then the condition that dφ = −1
2 [φ] ∧ φ.

These equations for the exterior derivatives of ω and φ, together with the simple-connectivity
of U , imply that there exist maps x : U → R3 and a : U → SO(3) such that

ω = a−1dx and [φ] = a−1da. (2.5)

Consequently, g = tω◦ω is equal to tdx◦dx, which is flat, by definition. Finally, since dω = Ω, it
follows that the graph manifold N3 ⊂ X defined by (2.4) is an integral manifold of I. Moreover,
since, by construction,

(idU ,x,a)∗(ξ) = ω,

it follows that ξ and η pull back to N3 to be coframings on N3. �
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Remark 2.2. Observe that the 1-forms ω and φ in equation (2.5) are the pullbacks to U of the
1-forms ξ and α, respectively, on R3× SO(3) defined by equation (2.2). We will continue to use
this notation to distinguish between forms on R3× SO(3) and their pullbacks via 3-dimensional
immersions throughout the paper.

2.3 Integral elements

By Proposition 2.1, proving existence of local solutions of our problem is equivalent to proving
the existence of integral manifolds of I to which ξ and η pull back to be coframings. (This latter
condition is usually referred to as an ‘independence condition’.)

The first step in this approach is to understand the nature of the integral elements of I, i.e.,
the candidates for tangent spaces to the integral manifolds of I.

A (necessarily 3-dimensional) integral element E ∈ Gr(3, TX) of I will be said to be admis-
sible if both ξ : E → R3 and η : E → R3 are isomorphisms.

Proposition 2.3. All of the admissible integral elements of I are Kähler-ordinary.3 The set
V3
(
I, (ξ, η)

)
consisting of admissible integral elements of I is a submanifold of Gr(3, TX), and

the basepoint projection V3
(
I, (ξ, η)

)
→ X is a surjective submersion with all fibers diffeomorphic

to GL(3,R).

Proof. Let (p, x,a) ∈ X = M ×R3 × SO(3), and let E ⊂ T(p,x,a)X be a 3-dimensional integral
element of I to which both ξ and η pull back to give an isomorphism of E with R3. Then there
will exist a P ∈ GL(3,R) and a 3-by-3 matrix Q with real entries such that E ⊂ T(p,x,a)X is
defined as the kernel of the surjective linear mapping

(ξ−Pη, α−QPη) : T(p,x,a) → R3 ⊕ R3. (2.6)

To simplify the notation, set η̄ = E∗η. Then, E∗ξ = P η̄ and E∗α = QPη̄. The 2-form Θ, which
vanishes when pulled back to E, becomes

0 = E∗Θ = −[QPη̄] ∧ P η̄ − 1
2Z(p)[η̄] ∧ η̄

= −1
2

((
(trQ)I3 − tQ

)
det(P )

(
tP
)−1

+ Z(p)
)
[η̄] ∧ η̄.

Since η̄ : E → R3 is an isomorphism, it follows that(
(trQ)I3 − tQ

)
+ Z(p) tP/ det(P ) = 0,

so that, solving for Q, one has

Q = det(P )−1
(
P tZ(p)− 1

2 tr
(
P tZ(p)

)
I3
)
. (2.7)

Conversely, if (p, x,a) ∈ X = M × R3 × SO(3) and P ∈ GL(3,R) are arbitrary and one
defines Q via (2.7), then the kernel E ⊂ T(p,x,a)X of the mapping (2.6) is an admissible integral
element of I.

The claims of the Proposition follow directly from these observations. �

2.4 Polar spaces and Cartan-regularity

In order to be able to apply the Cartan–Kähler theorem to prove existence of solutions in the
real-analytic category, one needs a stronger result than Proposition 2.3; one needs to show
that there are Cartan-ordinary admissible integral elements, in other words, to establish the

3For definitions of Kähler-ordinary, Cartan-ordinary, etc., see [2, Chapter III, Definition 1.7].
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existence of ordinary flags terminating in elements of V3
(
I, (ξ, η)

)
. This requires some further

investigations of the structure of the ideal I near a given integral element in V3
(
I, (ξ, η)

)
.

Let E ∈ V3
(
I, (ξ, η)

)
be fixed, with E ⊂ T(p,x,a)X, and let E be defined in this tangent space

by the 6 linear equations

ξ − Pη = α−QPη = 0, (2.8)

where Q is given in terms of P ∈ GL(3,R) and Z(p) by (2.7). For simplicity, set ξE = (ξ −
Pη)(p,x,a) and αE = (α − QPη)(p,x,a), and let ωE = (Pη)(p,x,a). The 9 components of ξE , αE ,

and ωE yield a basis of T ∗(p,x,a)X, with E⊥ ⊂ T ∗(p,x,a)X being spanned by the components of ξE

and αE while ωE : E → R3 is an isomorphism.
After calculation using (2.7) and the identities (2.1), one then finds that Θ(p,x,a) has the

following expression in terms of ξE , αE , and ωE :

Θ(p,x,a) = −[αE ] ∧ ωE − [QωE ] ∧ ξE − [αE ] ∧ ξE
= −

(
[αE ] + [ξE ]Q

)
∧ ωE − [αE ] ∧ ξE .

The second term in this final expression, −[αE ] ∧ ξE , lies in Λ2
(
E⊥
)

and hence plays no role in
the calculation of the polar equations of E. Hence, the polar spaces for an integral flag of E can
be calculated using only −

(
[αE ] + [ξE ]Q

)
∧ ωE .

If (e1, e2, e3) is a basis of E, let Ei ⊂ E be the subspace spanned by {ej j ≤ i} and set
wi = ωE(ei) ∈ R3. Then the polar space of Ei is given by

H(Ei) =
{
v ∈ T(p,x,a)X

(
[αE(v)] + [ξE(v)]Q

)
wj = 0, j ≤ i

}
.

Consequently, the codimension ci of this polar space satisfies ci ≤ 3i for 0 ≤ i ≤ 3. Since the
codimension of V3

(
I, (ξ, η)

)
in Gr(3, TX) is 9, which is always greater than or equal to c0+c1+c2,

it follows, by Cartan’s test, that the flag (E0 ⊂ E1 ⊂ E2 ⊂ E3) will be Cartan-ordinary if and
only if c0 + c1 + c2 = 9, i.e., ci = 3i for i = 0, 1, 2. Moreover, this holds if and only if c2 = 6.

Whether or not there is a 2-plane E2 ⊂ E with c2 = 6 evidently depends on Q (which is
determined by E).

Example 2.4. Suppose that E satisfies Q = 0, which, by (2.7), is the case for all of the
admissible integral elements based at (p, x,a) if Z(p) = 0. In this case, it is clear that [αE ] +
[ξE ]Q = [αE ] takes values in skew-symmetric 3-by-3 matrices and hence that, for every 2-plane
E2 ⊂ E, one must have H(E2) = kerαE , so that c2 = 3. Thus, Cartan’s inequality is strict, and
the integral element E is not Cartan-ordinary.

Note, though, that this does not imply that there are no solutions to the original problem
on domains containing p when Z(p) = 0; it’s just that Cartan–Kähler cannot immediately be
applied in such situations. For example, note that, when Ω vanishes identically (equivalently,
Z vanishes identically), then all of the admissible integral elements of I are contained in the
integrable 6-plane field α = 0, and, indeed, the general solution ω is of the form ω = dx where
x : M → R3 is any immersion.

For any 3-by-3 matrix Q, define AQ ⊂ gl(3,R) = Hom
(
R3,R3

)
, the tableau of Q, to be the

span of the 3-by-3 matrices

[x] + [y]Q

for x,y ∈ R3. The dimension of the vector space AQ lies between 3 and 6.
It is evident that the polar equations of flags in a given admissible integral element E defined

by (2.8) are governed by the properties of the tableau AQ.
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To simplify the study of AQ, it is useful to note that it has a built-in equivariance: For
R ∈ SO(3), one has

R
(
[x] + [y]Q

)
R−1 = R[x]R−1 +R[y]R−1

(
RQR−1

)
= [Rx] + [Ry]RQR−1.

Hence,

RAQR
−1 = ARQR−1 .

In particular, properties of AQ such as its dimension, character sequence, and involutivity depend
only on the equivalence class of the matrix Q under the action of conjugation by SO(3). Also,
writing Q = qI3 +Q0 where tr(Q0) = 0, one has

[x] + [y]Q = [x + qy] + [y]Q0.

Thus,

AQ = AQ0 .

Proposition 2.5. The tableau AQ ⊂ gl(3,R) = Hom
(
R3,R3

)
has dimension 6 and is involutive

with characters (s1, s2, s3) = (3, 3, 0), except when the trace-free part of Q is conjugate by SO(3)
to a matrix of the form

Q0 '

−2x 0 0
0 x+ 3r 3y
0 −3y x− 3r

 , (2.9)

where (x, y, r) are real numbers satisfying either r2 = x2 + y2 or r = y = 0.

Proof. The proof is basically a computation. The conjugation action of SO(3) on 3-by-3 mat-
rices preserves the splitting of gl(3,R) into three pieces: The multiples of the identity (of di-
mension 1), the subalgebra so(3) (of dimension 3), and the traceless symmetric matrices (of
dimension 5). Moreover, as is well-known, a symmetric 3-by-3 matrix can be diagonalized by
conjugating with an orthogonal matrix. Thus, one is reduced to studying the case in which Q0

is written in the form

Q0 =

 q1 p3 −p2
−p3 q2 p1
p2 −p1 q3

 , (2.10)

where q1 + q2 + q3 = 0.
It is now a straightforward (if somewhat tedious) matter (which can be eased by MAPLE)

to check that, when AQ0 has dimension less than 6 (the maximum possible), two of the pi must
vanish. Thus, after conjugating by a signed permutation matrix that lies in SO(3), one can
assume that p2 = p3 = 0. With this simplification, AQ0 is seen to have dimension less than 6 if
and only if

p1
(
p1

2 + 2q2
2 + 5q2q3 + 2q3

2
)

= (q2 − q3)
(
p1

2 + 2q2
2 + 5q2q3 + 2q3

2
)

= 0.

Thus, either p1
2 + 2q2

2 + 5q2q3 + 2q3
2 = 0 or p1 = q2 − q3 = 0. Making the necessary changes

of basis, these two cases give the two non-involutive normal forms in (2.9).
It remains to show that, when AQ has dimension 6, it actually is involutive with the stated

characters (s1, s2, s3) = (3, 3, 0). To do this, return to the general normal form (2.10), and assume
that AQ has dimension 6. Because AQ has codimension 3 in gl(3,R), it will be involutive with
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characters (s1, s2, s3) = (3, 3, 0) if and only if it has a non-characteristic covector. Now, the
condition that a covector z∗ = (z1, z2, z3) ∈

(
R3
)∗

be characteristic for AQ is the condition that
the 3-dimensional vector space of rank 1 matrices of the form xz∗ (where x ∈ R3 and z∗ =
(z1, z2, z3) is regarded as a row vector) have a nontrivial intersection with AQ in gl(3,R). The
condition that a rank 1 matrix r = xz∗ lie in the 6-dimensional subspace AQ of the 9-dimensional
space gl(3,R) can be expressed as 3 homogeneous linear equations in r, i.e., 3 homogeneous
equations bilinear in the components of x and z∗. Regarding z∗ 6= 0 as given, this becomes
a system of three linear equations for the components of x whose coefficient matrix CQ(z∗) is
3-by-3 with entries that are linear in the components of z∗. This system will have a nonzero
solution x if and only if det

(
CQ(z∗)

)
= 0. In terms of the coefficients pi and qi of Q0, this

determinant vanishing can be written as a homogeneous cubic polynomial equation

0 =
∑
ijk

cijk(p, q)zizjzk = cQ(z∗).

One then finds (again by a somewhat tedious calculation that is eased by MAPLE) that this
equation holds identically in z∗ (i.e., that all of the cijk(p, q) vanish) if and only if Q0 is equivalent
to a matrix of the form (2.9) subject to either of the two conditions r = y = 0 or r2 = x2 + y2.

Thus, except when Q0 is orthogonally equivalent to such matrices, AQ has dimension 6 and
there exists a non-characteristic covector z∗ for AQ. As already explained, this implies that AQ

is involutive, with the claimed Cartan characters. �

Remark 2.6. The SO(3)-orbits of the matrices Q whose trace-free part Q0 is of the form (2.9)
with r = y = 0 forms a closed cone of dimension 4 in the (9-dimensional) space gl(3,R) of
3-by-3 matrices. Meanwhile, the SO(3)-orbits of the matrices Q whose trace-free part Q0 is of
the form (2.9) with r2 = x2 + y2 forms a closed cone of dimension 6 in gl(3,R).

Consequently, the set consisting of those Q for which AQ is involutive is an open dense set
in the space gl(3,R).

Remark 2.7. It does not appear to be easy to determine the condition on Q that the real cubic
curve cQ(z∗) = 0 be a smooth, irreducible cubic with two circuits. This is what one would need
in order to have a chance of showing that the (linearized) equation were symmetric hyperbolic,
which would be a key step in proving solvability of the original problem in the smooth category.

Corollary 2.8. If E ∈ V3
(
I, (ξ, η)

)
is defined by equations (2.8), then E is Cartan-regular if

and only if Q0 = Q − 1
3 tr(Q)I3 is not orthogonally equivalent to a matrix of the form (2.9),

where either r = y = 0 or r2 = x2 + y2.

Proof. Everything is clear from Proposition 2.5, except possibly the assertion of Cartan-
regularity. However, because the characters are (s1, s2, s3) = (3, 3, 0), when Q avoids the two
‘degenerate’ cones, it follows that, when E ∈ V3

(
I, (ξ, η)

)
has the property that its AQ is invo-

lutive, then, for any non-characteristic 2-plane E2 ⊂ E, we must have H(E2) = E, and hence
H(E) = E, so that E must be not only Cartan-ordinary, but also Cartan-regular. �

3 Involutivity

Finally, we collect all of this information together, yielding our main result:

Theorem 3.1. Let Ω be a real-analytic closed 2-form on a 3-manifold M with values in R3,
and suppose that there is no nonzero vector v ∈ TpM such that v Ω = 0. Then there is an open
p-neighborhood U ⊂ M on which there exists an R3-valued coframing ω : TU → R3 such that
dω = ΩU and such that the metric g = tω ◦ ω is flat. Moreover, the space of such coframings ω
depends locally on 3 functions of 2 variables.
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Proof. Keeping the established notation, it suffices to show that, if Z(p) has rank at least 2,
then there exists a P ∈ GL(3,R) such that, when Q is defined by (2.7), the tableau AQ is
involutive.

Now, by the hypothesis that there is no nonzero vector v ∈ TpM such that v Ω = 0, the rank
of Z(p) is either 2 or 3. When the rank of Z(p) is 3, as P varies over GL(3,R), the matrix Q
varies over an open subset of GL(3,R), and it is clear that, for the generic choice of P , the
corresponding Q0 will not be SO(3)-equivalent to anything in the two ‘degenerate’ cones defined
by (2.9) with either r = y = 0 or r2 = x2 + y2.

When the rank of Z(p) is 2, we can assume, after an SO(3) rotation, that the bottom row
of Z(p) vanishes and that the first two rows of Z(p) are linearly independent. It then follows that
P/(detP ) tZ(p) has its last column equal to zero, but that, as P varies, the first two columns
of P/(detP ) tZ(p) range over all linearly independent pairs of column vectors. Now explicitly
computing the polynomial cQ(z∗) for the corresponding matrix Q shows that cQ(z∗) does not
vanish identically on the set of such matrices, hence it is possible to choose P so that cQ(z∗)
does not vanish identically, and the corresponding AQ is then involutive, implying that the
corresponding admissible integral element E is Cartan-ordinary.

In either case, there exist Cartan-ordinary admissible integral elements of I based at p, so
the Cartan–Kähler theorem applies, showing that there exist admissible integral manifolds of I
passing through any point (p,x,a) ∈ X9, and hence, by Proposition 2.1, the original problem
is solvable in an open neighborhood of p. Moreover, since the last nonzero Cartan character of
a generic integral flag is s2 = 3, the space of solutions ω depends locally on 3 functions of 2
variables, in the sense of Cartan. �

4 The rank 1 case

If the rank of Z(p) is either 0 or 1, then, for all values of Q as defined in (2.7) with P invertible,
the tableau AQ fails to be involutive, so the Cartan–Kähler theorem cannot be applied to prove
local solvability.

However, as noted in Example 2.4, this does not necessarily preclude the existence of integral
manifolds of I in a neighborhood of p. Indeed, when Z vanishes identically on a neighborhood
of p ∈ M , the general solution ω = dx (where x : M → R3 is an arbitrary immersion) depends
locally on 3 functions of 3 variables; so there are actually more integral manifolds in this case
than in the case in which Z(p) has rank 2 or 3.

Nevertheless, as the following example demonstrates, even local solvability is not guaranteed
in general.

Example 4.1. Set Ω = (Ωi) = (Υ, 0, 0), where

Υ = u1du2 ∧ du3 + u2du3 ∧ du1 − 2u3du1 ∧ du2. (4.1)

(Note that in this case, the matrix Z has rank 1 everywhere except at the origin, where the rank
is 0.) We will show that there is no coframing ω = (ωi) on any neighborhood of u = (ui) =
(0, 0, 0) such that the metric g = tω ◦ω is flat. In fact, we will show, more generally, that if ω is
any coframing on M such that dω2 = dω3 = 0 and the metric g = tω ◦ ω is flat, then we must
have ω1 ∧ dω1 = 0.

Meanwhile, Υ defined as in (4.1) has no nonvanishing factor on any neighborhood of u =
(ui) = (0, 0, 0). In order to see this, suppose that Υ ∧ β = 0, where β = b1du

1 + b2du
2 + b3du

3.
Then

u1b1 + u2b2 − 2u3b3 = 0.
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This implies, for example, that u3b3 must vanish on the line u1 = u2 = 0 and hence that b3 must
also vanish there. In particular, b3 must vanish at the origin ui = 0. Similarly, b1 and b2 must
also vanish at the origin. Thus, β must vanish at the origin.

To establish the general claim, let ω be a coframing on M3 such that dω2 = dω3 = 0 and the
metric g = tω ◦ ω is flat. Writing

d

ω1

ω2

ω3

 = −

 0 φ3 −φ2
−φ3 0 φ1

φ2 −φ1 0

 ∧
ω1

ω2

ω3

 =

dω1

0
0

 ,

we see, from the vanishing of dω2 and dω3, that there must exist functions a1, a2, and a3 such
that

φ1 = a1ω1, φ2 = a2ω1 − a1ω2, φ3 = a3ω1 − a1ω3.

Consequently, we must have

dω1 = −2a1ω2 ∧ ω3 − a2ω3 ∧ ω1 − a3ω1 ∧ ω2.

Now, the flatness of the metric g is equivalent to the equations

dφ1 − φ2 ∧ φ3 = dφ2 − φ3 ∧ φ1 = dφ3 − φ1 ∧ φ2 = 0.

However, from the above equations, we see that

0 = dφ1 − φ2 ∧ φ3 = da1 ∧ ω1 − 3
(
a1
)2
ω2 ∧ ω3 − 2a1a2ω3 ∧ ω1 − 2a1a3ω1 ∧ ω2.

Wedging both ends of this equation with ω1 yields −3
(
a1
)2
ω1 ∧ω2 ∧ω3 = 0. Hence a1 = 0, and

we have

dω1 = ω1 ∧
(
a2ω3 − a3ω2

)
.

In particular, ω1 ∧ dω1 = 0, as claimed.
It is worthwhile to carry these calculations with the coframing ω a little further. Since a1 = 0,

we see that φ1 = 0, and the condition for flatness reduces to dφ2 = dφ3 = 0.
Let us assume that M is connected and simply-connected. Fix a point p ∈ M and write

ω2 = du2 and ω3 = du3 for unique functions u2 and u3 that vanish at p. Since ω1 ∧ dω1 = 0,
it follows from the Frobenius Theorem that there exists an open p-neighborhood U ⊂ M on
which there exists a function u1 vanishing at p such that ω1 = fdu1 for some nonvanishing
function f on U . Restricting to a smaller p-neighborhood if necessary, we can arrange that
u =

(
u1, u2, u3

)
: U → R3 be a rectangular coordinate chart. Now, computation yields

φ1 = 0, φ2 = − ∂f

∂u3
du1, φ3 =

∂f

∂u2
du1.

The remaining flatness conditions dφ2 = dφ3 = 0 then are equivalent to

∂2f(
∂u2

)2 =
∂2f

∂u2∂u3
=

∂2f(
∂u3

)2 = 0.

Consequently, f = f
(
u1, u2, u3

)
is linear in u2 and u3, so it can be written in the form f =

g1
(
u1
)

+ g2
(
u1
)
u2 + g3

(
u1
)
u3 for some functions g1, g2, g3. Since f does not vanish on u2 =

u3 = 0, by changing coordinates in u1, we can arrange that g1
(
u1
)

= 1. Thus, the coframing
takes the form

ω =
((

1 + g2
(
u1
)
u2 + g3

(
u1
)
u3
)
du1,du2,du3

)
,
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where the p-centered coordinates ui are unique. Conversely, for any two functions g2 and g3 on
an interval containing 0 ∈ R, the above coframing has the property that dω2 = dω3 = 0 while
the metric g = tω ◦ω is flat. Finally, note that dω1 is nonvanishing at u = 0 if and only if g2(0)
and g3(0) are not both zero.

In light of Example 4.1, it is clear that some assumptions will be required in order to ensure
that local solutions exist. First, in order to avoid a singularity of the type in Example 4.1,
where Z vanishes at a single point, we will assume that Z has constant rank 1 in some neighbor-
hood U of p ∈M . This assumption is equivalent to the assumption that the 2-forms Ω1, Ω2, Ω3

are scalar multiples of each other and do not simultaneously vanish.

4.1 Formulation as an exterior differential system

We will take the following approach: Rather than assuming that Z is specified in advance, we will
seek to characterize functions x : U → R3, a : U → SO(3) such that the components

(
ω1, ω2, ω3

)
of the R3-valued 1-form ω = a−1dx form a local coframing on U with the property that the
2-forms

(
dω1,dω2, dω3

)
are pairwise linearly dependent and do not vanish simultaneously. Since

this property is invariant under reparametrizations of the domain U , it suffices to characterize
3-dimensional submanifolds N3 ⊂ R3 × SO(3) that are graphs of functions with this property.
In practice, this means that the coordinates x =

(
x1, x2, x3

)
on the open subset V = x(U) ⊂ R3

may be regarded as the independent variables on any such submanifold N3, and the map a : U →
SO(3) may be regarded as a function a(x), i.e., as a map a : V → SO(3). As in Section 2, we
define the R3-valued 1-forms ξ and α on R3×SO(3) by equation (2.2); we will regard the 1-forms(
ω1, ω2, ω3

)
as the pullbacks to V of the 1-forms

(
ξ1, ξ2, ξ3

)
on R3 × SO(3).

Any 3-dimensional submanifold N3 of the desired form must have the property that the
1-forms

(
ξ1, ξ2, ξ3

)
restrict to be linearly independent on N3 and hence form a basis for the

linearly independent 1-forms on N3. Thus the restrictions of the 1-forms
(
α1, α2, α3

)
to N3 may

be written as

αi = yijξ
j

for some functions yij on N3. Then from the structure equations (2.3), we havedξ1

dξ2

dξ3

 = −

−(y22 + y33) y21 y31
y12 −(y33 + y11) y32
y13 y23 −(y11 + y22)

ξ2 ∧ ξ3ξ3 ∧ ξ1
ξ1 ∧ ξ2


= −

(
t
(
yij
)
− tr

((
yij
))
I3
)ξ2 ∧ ξ3ξ3 ∧ ξ1

ξ1 ∧ ξ2

 . (4.2)

The condition that the 2-forms
(
dω1,dω2,dω3

)
are pairwise linearly dependent and do not

vanish simultaneously on U is equivalent to the condition that the same is true for the 2-forms(
dξ1,dξ2,dξ3

)
on N3, and hence that the matrix in equation (4.2) has rank 1 on N3. This, in

turn, is equivalent to the condition that(
yij
)

= λI3 +M

for some matrix M of constant rank 1 on N3, with λ = −1
2(trM).

Remark 4.2. The function λ has the following interpretation: equations (4.2) imply that on
any integral manifold, the 1-forms

(
ω1, ω2, ω3

)
satisfy the equation

ω1 ∧ dω1 + ω2 ∧ dω2 + ω3 ∧ dω3 = −2λω1 ∧ ω2 ∧ ω3.

As we will see, the cases where λ = 0 and λ 6= 0 behave quite differently.
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Since the matrix M has rank 1 on N3, it can be written as

M = vtw =

v1v2
v3

(w1 w2 w3

)
for some nonvanishing R3-valued functions v, w on N3 that are determined up to a scaling
transformation

v→ rv, w→ r−1w.

Without loss of generality, we may take advantage of this scaling transformation to assume
that v is a unit vector at each point of N3. Then, since tr(M) = −2λ, we can choose an
oriented, orthonormal frame field (f1, f2, f3) along N3 with the property that

v = f1, w = −2λf1 + µf2

for some real-valued function µ on N3.

Let f ∈ SO(3) denote the orthogonal matrix

f = [f1 f2 f3].

Since we have f tf = I3, we can write the matrix
[
yij
]

as[
yij
]

= λI3 +M = λ
(
fI3

tf
)

+ f1
(
−2λ tf1 + µ tf2

)
= f

λI3 +

−2λ µ 0
0 0 0
0 0 0

 tf = f

−λ µ 0
0 λ 0
0 0 λ

 tf .

This discussion suggests that we introduce the following exterior differential system: Let X
denote the 11-dimensional manifold

X = R3 × SO(3)× SO(3)× R2,

with coordinates (x,a, f, (λ, µ)). We may take the 1-forms
(
ξi, αi, ϕi,dλ,dµ

)
as a basis for the

1-forms on X, where the 1-forms
(
ϕ1, ϕ2, ϕ3

)
are the standard Maurer–Cartan forms on the

second copy of SO(3) and so are defined by the equation

[ϕ] =

 0 ϕ3 −ϕ2

−ϕ3 0 ϕ1

ϕ2 −ϕ1 0

 = f−1df.

Let I be the exterior differential system on X that is generated by the three 1-forms
(
θ1, θ2, θ3

)
,

whereθ1θ2
θ3

 =

α1

α2

α3

− f

−λ µ 0
0 λ 0
0 0 λ

 tf

ξ1ξ2
ξ3

 .

Proposition 4.3. If N3 ⊂ X is an integral manifold of I to which ξ pulls back to be a coframing,
then each point of N3 has an open neighborhood that can be written as a graph{(

x,a(x), f(x), λ(x), µ(x)
)
x ∈ V

}
⊂ X
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for some open set V ⊂ R3 and smooth maps a, f : V → SO(3) and λ, µ : V → R. Moreover,
on V , the coframing ξ = a−1dx satisfies the structure equationsdξ1

dξ2

dξ3

 = f

−2λ 0 0
µ 0 0
0 0 0

 tf

ξ2 ∧ ξ3ξ3 ∧ ξ1
ξ1 ∧ ξ2

 ,

and the metric g = tξ ◦ ξ = tdx ◦ dx is flat.
Conversely, if V ⊂ R3 is a simply-connected open subset on which there exists a cofram-

ing ξ : TV → R3 satisfying (i) the 2-forms dξi are pairwise linearly dependent and nowhere si-
multaneously vanishing, and (ii) the metric g = tξ◦ξ is flat, then there exist mappings a, f : V →
SO(3) and λ, µ : V → R such that ξ = a−1dx. Moreover, the immersion ι : V → X defined by
ι(x) =

(
x,a(x), f(x), λ(x), µ(x)

)
is an integral manifold of I that pulls ξ back to be a coframing

of V .

Proof. The proof is similar to that of Proposition 2.1. �

It turns out that the calculations involved in the analysis of this exterior differential system
are much simpler if we introduce the 1-formsχ1

χ2

χ3

 = tf

ξ1ξ2
ξ3


on X and replace

(
ξ1, ξ2, ξ3

)
by the equivalent expressionsξ1ξ2

ξ3

 = f

χ1

χ2

χ3

 .

It is straightforward to show that the 1-forms
(
χ1, χ2, χ3

)
satisfy the structure equationsdχ1

dχ2

dχ3

 = −
(
[ϕ] + [tfα]

)
∧

χ1

χ2

χ3


≡ −

 0 ϕ3 −ϕ2

−ϕ3 0 ϕ1

ϕ2 −ϕ1 0

 ∧
χ1

χ2

χ3

+

2λ
−µ
0

χ2 ∧ χ3 mod I,

and we can now write the generators of I asθ1θ2
θ3

 =

α1

α2

α3

− f

−λ µ 0
0 λ 0
0 0 λ

χ1

χ2

χ3

 . (4.3)

The exterior differential system I is generated algebraically by the 1-forms
(
θ1, θ2, θ3

)
and their

exterior derivatives
(
dθ1, dθ2,dθ3

)
.

The value of λ on any particular integral manifold N3 plays a crucial role here. If λ = 0
on N3, then the 1-forms

(
α1, α2, α3

)
are all multiples of the single 1-form χ2, and therefore the

corresponding map a : V → SO(3) has rank 1; in particular, the image of a is a curve in SO(3).
On the other hand, if λ 6= 0 on N3, then the 1-forms

(
α1, α2, α3

)
are linearly independent,

and therefore the corresponding map a : V → SO(3) has rank 3 and is a local diffeomorphism
from V onto an open subset of SO(3). Due to these different behaviors, the analysis of this
exterior differential system varies considerably depending on whether or not λ vanishes, and so
we will consider these cases separately.
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4.2 The case λ = 0

Consider the restriction Ī of I to the codimension 1 submanifold X̄ of X defined by the equation
λ = 0. The rank 1 condition implies that any integral manifold must be contained in the open
set where µ 6= 0, and the expressions (4.3) reduce toθ1θ2

θ3

 =

α1

α2

α3

− f

0 µ 0
0 0 0
0 0 0

χ1

χ2

χ3

 . (4.4)

Differentiating equations (4.4), reducing modulo
(
θ1, θ2, θ3

)
, and multiplying on the left by tf

yields

tf

dθ1

dθ2

dθ3

 ≡ −
π1 π2 π3

0 −π1 0
0 π4 0

 ∧
χ1

χ2

χ3

 mod θ1, θ2, θ3, (4.5)

where

π1 = µϕ3, π2 = dµ+ µ2χ3, π3 = −µϕ1, π4 = µϕ2.

The tableau matrix in equation (4.5) has Cartan characters s1 = 3, s2 = 1, s3 = 0, and the
space of integral elements at each point of X̄ is 5-dimensional, parametrized by

π1 = p1χ
2, π2 = p1χ

1 + p2χ
2 + p3χ

3, π3 = p3χ
2 + p4χ

3, π4 = p5χ
2,

with p1, p2, p3, p4, p5 ∈ R. Since s1 + 2s2 + 3s3 = 5, the system Ī is involutive, with integral
manifolds locally parametrized by 1 function of 2 variables.

As a result of this computation and Remark 4.2, we have the following theorem.

Theorem 4.4. The space of local orthonormal coframings
(
ω1, ω2, ω3

)
on an open subset of R3

whose exterior derivatives
(
dω1,dω2,dω3

)
are pairwise linearly dependent and do not simulta-

neously vanish and satisfy the additional property that

ω1 ∧ dω1 + ω2 ∧ dω2 + ω3 ∧ dω3 = 0

is locally parametrized by 1 function of 2 variables.

This function count suggests that, if the rank 1 matrix Z on M is specified in advance, local
solutions are likely to exist for arbitrary, generic choices of Z. More specifically, by Darboux’s
Theorem, the rank 1 condition implies that we can find local coordinates

(
u1, u2, u3

)
on some

neighborhood U of any point p ∈M such that

Ω = z
(
u1, u2

)
du1 ∧ du2

for some smooth, nonvanishing R3-valued function z
(
u1, u2

)
. Moreover, by local coordinate

transformations of the form
(
u1, u2, u3

)
→
(
ũ1
(
u1, u2

)
, ũ2
(
u1, u2

)
, u3
)
, we might expect that we

could normalize 2 of the 3 functions zi
(
u1, u2

)
. For example, if d

(
z1/z2

)
(p) 6= 0, then we could

choose the functions ũ1, ũ2 in a neighborhod of p such that z1
(
ũ1, ũ2

)
= 1 and z2

(
ũ1, ũ2

)
= ũ1.

Then the vector Ω is characterized by the remaining single function of 2 variables z3
(
ũ1, ũ2

)
.

Since this function account agrees with that for the space of integral manifolds of I, one might
hope that generic choices for the function z

(
u1, u2

)
would admit solutions.

In Section 4.4, we will show that this is in fact the case; specifically, a mild nondegene-
racy condition on the function z

(
u1, u2

)
suffices to guarantee the existence of solutions. (See

Theorem 4.7 below for details.)
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4.3 The case λ 6= 0

Now consider integral manifolds of I contained in the open subset of X where λ 6= 0. First we
show that there are no integral manifolds on which µ = 0. To this end, suppose for the sake of
contradiction that µ = 0 on some integral manifold N3. Then the expressions (4.3) reduce toθ1θ2

θ3

 =

α1

α2

α3

− f

−λ 0 0
0 λ 0
0 0 λ

χ1

χ2

χ3

 .

Differentiating these equations, reducing modulo
(
θ1, θ2, θ3

)
, and multiplying on the left by tf

yields

tf

dθ1

dθ2

dθ3

 ≡ −
π1 π2 π3
π2 −π1 0
π3 0 −π1

 ∧
χ1

χ2

χ3

+

λ2χ2 ∧ χ3

0
0

 mod θ1, θ2, θ3,

where

π1 = −dλ, π2 = 2λϕ3 + λ2χ3, π3 = −
(
2λϕ2 + λ2χ2

)
.

Since λ 6= 0, the torsion cannot be absorbed and this system has no integral elements, and hence
no integral manifolds. Thus we conclude that there are no integral manifolds unless µ 6= 0, and
henceforth we assume that this is the case.

Now, differentiating equations (4.3), reducing modulo
(
θ1, θ2, θ3

)
, and multiplying on the left

by tf yields the surprisingly simple formula

tf

dθ1

dθ2

dθ3

 ≡ −
 π1 π4 π5

2λπ2 −π1 0
2λπ3 −µπ3 −π1 + µπ2

 ∧
χ1

χ2

χ3

 mod θ1, θ2, θ3, (4.6)

where

π1 = −dλ+ µϕ3, π2 = ϕ3 + 1
2λχ

3, π3 = −
(
ϕ2 + 1

2λχ
2
)
,

π4 = dµ+ 2λϕ3 +
(
3λ2 + µ2

)
χ3, π5 = −µϕ1 − 2λϕ2.

The tableau matrix in equation (4.6) has Cartan characters s1 = 3, s2 = 2, s3 = 0, and the
space of integral elements is 6-dimensional, parametrized by

π1 = −2λp1χ
1 +

(
2µp1 + µ2p2

)
χ2,

π2 = 2λp2χ
1 + p1χ

2,

π3 = 2λp3χ
1 − µp3χ2 + (p1 + µp2)χ

3,

π4 =
(
2µp1 + µ2p2

)
χ1 + p4χ

2 + p5χ
3,

π5 = p5χ
2 + p6χ

3,

with p1, p2, p3, p4, p5, p6 ∈ R. Since s1 + 2s2 + 3s3 = 7 > 6, the system I is not involutive, and
we need to prolong.

After some rearranging, we can parametrize the space of integral elements of I more mana-
geably for computational purposes as

dλ = 2λu3χ
1 − µu3χ2 − 1

2λµχ
3,

dµ =
(
2µu3 −

(
4λ2 + µ2

)
u4
)
χ1 + u1χ

2 −
(
µu5 + λ2 + µ2

)
χ3,
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ϕ1 = 2λ2u6χ
1 + (u5 − λµu6)χ2 + u2χ

3,

ϕ2 = −λµu6χ1 + 1
2

(
µ2u6 − λ

)
χ2 − u3χ3,

ϕ3 = 2λu4χ
1 + (u3 − µu4)χ2 − 1

2λχ
3,

with u1, u2, u3, u4, u5, u6 ∈ R. The prolongation I(1) of I is the exterior differential system on
the manifold X(1) = X × R6, with coordinates (u1, . . . , u6) on the R6 factor, generated by the
1-forms

(
θ1, θ2, θ3

)
, together with the 1-forms

θ4 = dλ− 2λu3χ
1 + µu3χ

2 + 1
2λµχ

3,

θ5 = dµ−
(
2µu3 −

(
4λ2 + µ2

)
u4
)
χ1 − u1χ2 +

(
µu5 + λ2 + µ2

)
χ3,

θ6 = ϕ1 − 2λ2u6χ
1 − (u5 − λµu6)χ2 − u2χ3,

θ7 = ϕ2 + λµu6χ
1 − 1

2

(
µ2u6 − λ

)
χ2 + u3χ

3,

θ8 = ϕ3 − 2λu4χ
1 − (u3 − µu4)χ2 + 1

2λχ
3. (4.7)

From this point on, the details of the computation become rather unwieldy, so we will just
give a sketch of the next few steps.4 Computing the 2-forms

(
dθ4, . . . ,dθ8

)
and reducing modulo

the 1-forms
(
θ1, . . . , θ8

)
yields a system for which the torsion cannot be absorbed – and hence

there are no integral elements – except along the codimension 1 submanifold X ′ ⊂ X(1) defined
by the equation

2λu1 − 2λµu2 − 4λ2u3 −
(
4λ2µ+ µ3

)
u4 = 0. (4.8)

Thus any integral manifold of the system I(1) on X(1) must be contained in X ′.

We may parametrize the solution space to equation (4.8) by

u1 = µv1 + 2λv2 +
(
4λ2µ+ µ3

)
v4, u2 = v1, u3 = v2,

u4 = 2λv4, u5 = v3, u6 = v5, (4.9)

with v1, v2, v3, v4, v5 ∈ R. Substituting the expressions (4.9) into equations (4.7) yields a new
EDS I ′ on X ′ ∼= X × R5 with the property that the integral manifolds of I(1) are precisely the
integral manifolds of the system I ′ on X ′.

Now computing the 2-forms
(
dθ4, . . . ,dθ8

)
and reducing modulo the 1-forms

(
θ1, . . . , θ8

)
yields a system for which the torsion can be absorbed. The tableau matrix has Cartan characters
s1 = 5, s2 = s3 = 0, but the space of integral elements is only 4-dimensional. Since s1 +
2s2 + 3s3 = 5 > 4, the system I ′ is not involutive, and so we need to prolong again. The
prolongation I ′(1) is the EDS on the manifold X ′(1) = X ′ × R4, with coordinates (w1, . . . , w4)
on the R4 factor, generated by the 1-forms

(
θ1, . . . , θ8

)
, together with the 1-forms

θ9 = π9 + w1χ
2 − w2χ

3, θ10 = π10, θ11 = π11 + w2χ
2 + w1χ

3,

θ12 = π12 − 4λ2w4χ
1 + 2λµw4χ

2, θ13 = π13 + 2λw3χ
1 − µw3χ

2, (4.10)

where, for each j = 1, . . . , 5, the 1-form πj+8 has the form

πj+8 = dvj − Pjkχ
k,

and the functions Pjk are polynomials in (v1, . . . , v5) with coefficients that are rational functions
of λ and µ with nonvanishing denominators.

4All computations were carried out with the assistance of MAPLE, including the Cartan package which was
written by the second author and is available at http://math.colorado.edu/~jnc/Maple.html.

http://math.colorado.edu/~jnc/Maple.html
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Computing the 2-forms
(
dθ9, . . . ,dθ13

)
and reducing modulo the 1-forms

(
θ1, . . . , θ13

)
yields

a system for which the torsion cannot be absorbed—and hence there are no integral elements –
except along the codimension 2 submanifold X ′′ ⊂ X ′(1) defined by two independent equations
that are linear in the variables (w1, w2, w3, w4). These equations can be solved for w3 and w4,
yielding expressions of the form

w3 =
8µ

3
(
4λ2 + µ2

)2 (4λv4w1 − µv5w2) +
1

λµ
(
4λ2 + µ2

)3P3,

w4 = − µ2

3λ2
(
4λ2 + µ2

)2 (µv5w1 + 4λv4w2) +
1

λ3
(
4λ2 + µ2

)3P4, (4.11)

where P3 and P4 are polynomials in the variables (λ, µ, v1, . . . , v5). Substituting the expres-
sions (4.11) into equations (4.10) yields a new EDS I ′′ on X ′′ ∼= X ′×R2 with the property that
the integral manifolds of I ′(1) are precisely the integral manifolds of the system I ′′ on X ′′.

Now computing the 2-forms
(
dθ4, . . . ,dθ8

)
and reducing modulo the 1-forms

(
θ1, . . . , θ8

)
yields a system of the form

dθi ≡ 0 mod θ1, . . . , θ13, 1 ≤ i ≤ 8,


dθ9

dθ10

dθ11

dθ12

dθ13

 ≡



0 π14 −π15
0 0 0
0 π15 π14

4µ2

3
(
4λ2 + µ2

)2π16 − 2µ3

3λ
(
4λ2 + µ2

)2π16 0

16λµ

3
(
4λ2 + µ2

)2π17 − 8µ2

3
(
4λ2 + µ2

)2π17 0


∧

χ1

χ2

χ3



+



T 9
jkχ

j ∧ χk

T 10
jk χ

j ∧ χk

T 11
jk χ

j ∧ χk

T 12
jk χ

j ∧ χk

T 13
jk χ

j ∧ χk

 mod θ1, . . . , θ13, (4.12)

where

π14 ≡ dw1

π15 ≡ dw2

}
mod χ1, χ2, χ3

and

π16 = µv5π14 + 4λv4π15, π17 = 4λv4π14 − µv5π15.

First, consider the open set where v24 + v25 6= 0. On this open set, the 1-forms π16 and π17
are linearly independent linear combinations of the 1-forms π14 and π15, and the torsion terms
T i
jkχ

j ∧ χk cannot be absorbed except along a codimension 1 submanifold defined by a com-
plicated polynomial equation. Moreover, the form of the tableau matrix in equation (4.12)
implies that I ′′ possesses a unique integral element at each point of this submanifold. This
means that the restriction of I ′′ to this submanifold is, at best, a Frobenius system with a finite-
dimensional space of integral manifolds. More likely, differentiating the equation that defines
this submanifold will lead to additional relations that will further restrict the set that admits
integral elements, thereby reducing the dimension of the space of integral manifolds, possibly to
the point that there are no integral manifolds on which v24 + v25 6= 0. Unfortunately, we have not
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been able to carry out this computation to completion, so we will content ourselves with the
statement that the space of integral manifolds on which v24 +v25 6= 0 is at most finite-dimensional.

Next, we consider the case where v4 = v5 = 0. In order to characterize integral manifolds
satisfying this condition, we must go back to the system I ′ on the manifold X ′ generated by(
θ1, . . . , θ8

)
and restrict to the codimension 2 submanifold Y ⊂ X ′ defined by the equations

v4 = v5 = 0. Let J denote the restriction of I ′ to Y ; then J is generated by the 1-forms(
θ1, θ2, θ3

)
, together with the 1-forms

θ4 = dλ− 2λv2χ
1 + µv2χ

2 + 1
2λµχ

3,

θ5 = dµ− 2µv2χ
1 − (µv1 + 2λv2)χ

2 +
(
µv3 + λ2 + µ2

)
χ3,

θ6 = ϕ1 − v3χ2 − v1χ3,

θ7 = ϕ2 + 1
2λχ

2 + v2χ
3,

θ8 = ϕ3 − v2χ2 + 1
2λχ

3.

Computing the 2-forms
(
dθ4, . . . ,dθ8

)
and reducing modulo the 1-forms

(
θ1, . . . , θ8

)
yields

a system for which the torsion can be absorbed. The tableau matrix has Cartan characters
s1 = 3, s2 = s3 = 0, but the space of integral elements is only 2-dimensional. Since s1 + 2s2 +
3s3 = 3 > 2, the system J is not involutive, and we need to prolong. The prolongation J (1) is
the EDS on the manifold Y (1) = Y × R2, with coordinates (q1, q2) on the R2 factor, generated
by the 1-forms

(
θ1, . . . , θ8

)
, together with the 1-forms

θ9 = dv1 +
(
1
2λv3 − v1v2

)
χ1 + q1χ

2 + q2χ
3,

θ10 = dv2 +
(
1
4λ

2 − v22
)
χ1 − 1

4λµχ
2 + 1

2µv2χ
3,

θ11 = dv3 −
(
1
2λv1 + v2v3

)
χ1 −

(
q2 − µv1 + 2

λ

µ
(λv1 − 2v2v3)

)
χ2

+
(
q1 + v21 + v22 + v23 + µv3 + 1

4λ
2
)
χ3.

Computing the 2-forms
(
dθ9,dθ10,dθ11

)
and reducing modulo the 1-forms

(
θ1, . . . , θ11

)
yields

a system for which the torsion can be absorbed. The tableau matrix has Cartan characters
s1 = 2, s2 = s3 = 0, and the space of integral elements at each point is 2-dimensional. Since
s1 + 2s2 + 3s3 = 2, the system J (1) is involutive, with integral manifolds locally parametrized
by 2 functions of 1 variable.

As a result of this computation and Remark 4.2, we have the following theorem.

Theorem 4.5. Aside from a possible finite-dimensional family of solutions (which may be
empty), the space of local orthonormal coframings

(
ω1, ω2, ω3

)
on an open subset of R3 whose

exterior derivatives
(
dω1,dω2, dω3

)
are pairwise linearly dependent and do not simultaneously

vanish and satisfy the additional property that

ω1 ∧ dω1 + ω2 ∧ dω2 + ω3 ∧ dω3 6= 0

is locally parametrized by 2 functions of 1 variable.

One consequence of this result is that the space of integral manifolds with λ 6= 0 is strictly
smaller than the space of integral manifolds with λ = 0, which we recall is locally parametrized
by 1 function of 2 variables. In particular, if the function z

(
u1, u2

)
is specified in advance, there

will be no solutions with λ 6= 0 for generic choices of z. The question of precisely which choices
for the function z

(
u1, u2

)
do admit solutions is an interesting one, but we shall not attempt to

address it here.
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4.4 Explicit solutions with λ = 0

We will conclude by showing how to construct explicit solutions with λ = 0 for arbitrary choices
of the function z

(
u1, u2

)
that satisfy a certain nondegeneracy condition, which will be described

below. First, we will show how to construct local coordinates and a local normal form for
a general integral manifold of the system Ī on the manifold X̄. We will need the following
well-known fact from linear algebra:

Lemma 4.6. Let v = t
(
v1, v2, v3

)
be a nonzero vector in R3, and let [v] denote the skew-

symmetric matrix

[v] =

 0 v3 −v2
−v3 0 v1

v2 −v1 0

 .

Then [v] has rank 2, and its kernel is spanned by v. Specifically, for any vector w ∈ R3, we
have

tw[v] = [v]w = 0

if and only of w is a scalar multiple of v.

Let N3 ⊂ X̄ be any integral manifold of Ī; in keeping with our conventions, let ω and φ
denote the pullbacks to N of ξ and α, respectively. As noted above, the assumption that λ = 0
implies that the map a : V → SO(3) whose graph determines the integral manifold N has rank 1.
Therefore, there exists a local coordinate function u1 on V such that a = a

(
u1
)
, and we can

write

[φ] = a−1da =

 0 g3
(
u1
)
−g2

(
u1
)

−g3
(
u1
)

0 g1
(
u1
)

g2
(
u1
)
−g1

(
u1
)

0

 du1 (4.13)

for some smooth functions gi
(
u1
)

on V that do not all vanish simultaneously.

Let g
(
u1
)

denote the R3-valued function g
(
u1
)

= t
(
g1
(
u1
)
, g2
(
u1
)
, g3
(
u1
))

. From equa-
tion (4.13), the R3-valued 2-form Ω must satisfy

Ω = dω = −[φ] ∧ ω = −
[
g
(
u1
)]

du1 ∧ ω. (4.14)

It follows that each of the 2-forms
(
Ω1,Ω2,Ω3

)
must have the 1-form du1 as a factor. By

Darboux’s theorem, we can find another independent coordinate function u2 on V such that
each of the 2-forms Ωi is a multiple of du1 ∧ du2.

Now let u3 be any coordinate function on V that is independent from u1 and u2, so that(
u1, u2, u3

)
form a local coordinate system on V . Let u =

(
u1, u2, u3

)
: V → R3 and let U =

u(V ) ⊂ R3; then we may regard
(
u1, u2, u3

)
as local coordinates on N and x and a as functions

x : U → R3 and a : U → SO(3).

Next, we can write

ω = wjdu
j

for some R3-valued functions (w1,w2,w3) on U that are linearly independent at each point of U .
Then we have

−[φ] ∧ ω = −
[
g
(
u1
)]
w2du

1 ∧ du2 −
[
g
(
u1
)]
w3du

1 ∧ du3.
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Since the left-hand side is a multiple of du1 ∧ du2, it follows that
[
g
(
u1
)]
w3 = 0. Since the

vector w3 cannot vanish, it must lie in the kernel of the rank 2 matrix
[
g
(
u1
)]

; therefore,
Lemma 4.6 implies that

w3 = µ̄
(
u1, u2, u3

)
g
(
u1
)

for some smooth, nonvanishing function µ̄
(
u1, u2, u3

)
. Setting

ũ3 =

∫
µ̄
(
u1, u2, u3

)
du3,

we have

w3du
3 = g

(
u1
)
µ̄
(
u1, u2, u3

)
du3 ≡ g

(
u1
)
dũ3 mod du1,du2.

So, via the local coordinate transformation
(
u1, u2, u3

)
→
(
u1, u2, ũ3

)
, we can arrange that

w3 = g
(
u1
)
.

We now have

ω = w1du
1 + w2du

2 + g
(
u1
)
du3. (4.15)

Differentiating gives

Ω = dω = −(w2)3du
2 ∧ du3 +

(
(w1)3 − g′

(
u1
))

du3 ∧ du1

+
(
(w2)1 − (w1)2)

)
du1 ∧ du2, (4.16)

where subscripts outside parentheses indicate partial derivatives with respect to the coordinates
ui. On the other hand, substituting (4.15) into (4.14) yields

Ω = −
[
g
(
u1
)]
w2du

1 ∧ du2. (4.17)

Comparing (4.16) and (4.17) yields the differential equations

(w2)3 = 0, (w1)3 = g′
(
u1
)
, (w2)1 − (w1)2 = −

[
g
(
u1
)]
w2. (4.18)

The first two equations in (4.18) imply that w1, w2 have the form

w1 = u3g′
(
u1
)

+ h1

(
u1, u2

)
, w2 = h2

(
u1, u2

)
for some R3-valued functions h1, h2 of

(
u1, u2

)
alone. Then the third equation in (4.18) implies

that

(h1)2 = (h2)1 +
[
g
(
u1
)]
h2.

The general solution to this equation is

h1 = (k)1 +
[
g
(
u1
)]
k, h2 = (k)2,

where k
(
u1, u2

)
is an arbitrary, smooth R3-valued function of

(
u1, u2

)
.

We now have

ω =
((
u3g′

(
u1
)

+ k1

(
u1, u2

)
+
[
g
(
u1
)]
k
(
u1, u2

))
du1

+ k2

(
u1, u2

)
du2 + g

(
u1
)
du3, (4.19)
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where ki

(
u1, u2

)
denotes ∂

∂ui

(
k
(
u1, u2

))
. (Note that k

(
u1, u2

)
must be chosen so that the

components of ω are linearly independent at each point of U .) Moreover, we have

Ω = −[φ] ∧ ω = −
[
g
(
u1
)]
k2

(
u1, u2

)
du1 ∧ du2.

Now, suppose that we are given a vector Ω of closed 2-forms on U whose components(
Ω1,Ω2,Ω3

)
are all scalar multiples of a single 2-form and do not vanish simultaneously. What

conditions must Ω satisfy in order to guarantee the existence of a local coordinate system
(
ui
)

on U and R3-valued functions g
(
u1
)
, k
(
u1, u2

)
so that the coframing ω given by (4.19) satisfies

the condition dω = Ω?

First note that, by Darboux’s theorem, we can find local coordinates
(
u1, u2, u3

)
on U such

that

Ω = z
(
u1, u2

)
du1 ∧ du2

for some smooth, nonvanishing R3-valued function z
(
u1, u2

)
. Moreover, under any change of co-

ordinates of the form
(
u1, u2, u3

)
→
(
ũ1(u1, u2

)
, ũ2
(
u1, u2

)
, u3
)
, each of the functions zi

(
u1, u2

)
is multiplied by the determinant of the Jacobian of the coordinate transformation. Thus, it is
geometrically natural to regard z as defining a map [[z]] into RP2, and this map is unchanged by
coordinate transformations of this form.

The following theorem shows that a mild nondegeneracy condition on the function [[z]] is
sufficient to guarantee the existence of solutions.

Theorem 4.7. Let Ω = z
(
u1, u2

)
du1 ∧ du2, where z : M → R3 \ {0} is a smooth, nonvanishing

function. Let [[z]] : M → RP2 denote the composition of z : M → R3 \ {0} with the standard
projection R3 \ {0} → RP2, and suppose that either, (i) the image of [[z]] is contained in a line
in RP2, or (ii) d[[z]] is nonvanishing on M . Then every point of M has a neighborhood U on
which there exist functions a : U → SO(3), x : U → R3 such that the map a has rank 1 and the
components

(
ω1, ω2, ω3

)
of the R3-valued 1-form ω = a−1dx form a local coframing on U and

dω = Ω.

Proof. We will show that, possibly after a coordinate transformation of the form
(
u1, u2, u3

)
→(

ũ1
(
u1, u2

)
, ũ2
(
u1, u2

)
, u3
)
, we can find R3-valued functions g

(
u1
)
, k
(
u1, u2

)
such that

−
[
g
(
u1
)]
k2

(
u1, u2

)
= z
(
u1, u2

)
. (4.20)

It is important to observe that the matrix
[
g
(
u1
)]

necessarily has rank 2, and equation (4.20)
requires that, for any fixed value of u1, the vector z

(
u1, u2

)
be contained in the image of

[
g
(
u1
)]

for all values of u2. This, in turn, is true if and only if

tg
(
u1
)
z
(
u1, u2

)
= 0. (4.21)

There may not initially appear to exist such a function g
(
u1
)

depending on u1 alone, but under
the hypotheses of the theorem, we can find refined local coordinates and a nonvanishing func-
tion g

(
u1
)

for which this condition holds. For instance:

• If the image of [[z]] is contained in a line in RP2, then there exist constants a1, a2, a3 ∈ R,
not all zero, such that

a1z
1
(
u1, u2

)
+ a2z

2
(
u1, u2

)
+ a3z

3
(
u1, u2

)
= 0.

In this case, let g = t(a1, a2, a3).
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• If d[[z]] is nonvanishing on U , then in some neighorhood of every point, at least one of
the ratios zi/zj has no critical points. If, say, the ratio r

(
u1, u2

)
= z2/z1 is nonconstant

and has no critical points, then in a neighborhood of any point we can make a change
of coordinates of the form

(
u1, u2, u3

)
→
(
ũ1
(
u1, u2

)
, ũ2
(
u1, u2

)
, u3
)

with ũ1 = r
(
u1, u2

)
,

so that in the new coordinates we have z2 = u1z1. After performing this coordinate
transformation, let g

(
u1
)

= t
(
u1,−1, 0

)
.

Now, having constructed the desired local coordinate system and function g
(
u1
)
, let k2

(
u1, u2

)
be a smooth solution of the linear system of equations (4.20). As noted above, this equation can
be solved for k2

(
u1, u2

)
precisely because the condition (4.21) is exactly the condition required to

ensure that for every
(
u1, u2

)
, the vector z

(
u1, u2

)
lies in the image of the rank 2 matrix

[
g
(
u1
)]

.
Now let

k
(
u1, u2

)
=

∫
k2

(
u1, u2

)
du2 + k̄

(
u1
)
, (4.22)

where the function k̄
(
u1
)

may be chosen arbitrarily, and define ω by equation (4.19). By
construction, ω satisfies dω = Ω and so is the desired coframing.

The only detail remaining to check is that the components wj of ω in (4.19) are linearly
independent, so that

(
ω1, ω2, ω3

)
is a coframing on U . First, observe that w3 = g

(
u1
)

lies in
the kernel of

[
g
(
u1
)]

. The vector w2 = k2

(
u1, u2

)
, however, must satisfy (4.20) and so cannot

lie in the kernel of
[
g
(
u1
)]

; hence the vectors w2 and w3 are linearly independent. And since
the function k̄

(
u1
)

in (4.22) may be chosen arbitrarily, we can arrange for w1 to be linearly
independent from w2 and w3 by choosing k̄

(
u1
)

appropriately.
Finally, the functions a : U → SO(3) and x : U → R3 promised by the theorem may be

constructed as follows. First, the function a : U → SO(3) is given by the solution (unique up to
multiplication by a constant matrix in SO(3)) of the ODE

a′
(
u1
)

= a
(
u1
)[
g
(
u1
)]
. (4.23)

Then the function x : U → R3 is given by integrating the (necessarily closed) 1-form

dx = aω.

Note that, while constructing these functions requires solving the ODE (4.23), the coframing ω
can be constructed from Ω using only quadratures. �

The following example shows that the nondegeneracy assumptions of Theorem 4.7 are essen-
tial; specifically, it shows how the construction above can fail near a point where d[[z]] vanishes.

Example 4.8. For ease of notation, we will use (u, v) in place of
(
u1, u2

)
in this example.

Suppose that

z(u, v) = t
(
1, ρ(u, v), ρ(u, v)2

)
,

where

ρ(u, v) = u2 + v2.

Then d[[z]](0, 0) = 0.
Suppose that there exists a (0, 0)-centered local coordinate system (ũ, ṽ) in some neighbor-

hood U of (0, 0) and a nonvanishing vector field g(ũ) on U such that

tg(ũ)z(ũ, ṽ) = 0. (4.24)
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Because the function ρ has a critical point at (0, 0) and is strictly convex, it has the property
that for any nonvanishing vector field v on U ,

v[ρ](0, 0) = 0, v[v[ρ]](0, 0) > 0.

In particular, we have

ρṽ(0, 0) = 0, ρṽṽ(0, 0) = κ0 > 0,

where subscripts denote partial derivatives with respect to ṽ in the (ũ, ṽ) coordinate system. It
follows that

z(0, 0) = t(1, 0, 0),

zṽṽ(0, 0) = t
(
0, ρṽṽ, 2

(
ρρṽṽ + ρ2ṽ

))∣∣
(0,0)

= t(0, κ0, 0),

zṽṽṽṽ(0, 0) = t
(
0, ρṽṽṽṽ, 6ρ

2
ṽṽ + 8ρṽρṽṽṽ + 2ρρṽṽṽṽ

)∣∣
(0,0)

= t
(
0, ∗, 6κ20

)
,

where the second entry of zṽṽṽṽ(0, 0) is irrelevant.
Consequently, evaluating equation (4.24) together with its 2nd and 4th ṽ-derivatives at

(ũ, ṽ) = (0, 0) yields three independent linear equations for the components of g(0). It follows
that g(0) = 0, and hence there is no nonvanishing vector field g(ũ) satisfying the condition (4.24)
for any local coordinate system (ũ, ṽ) on any neighborhood of (u, v) = (0, 0).

Acknowledgements

Thanks to Duke University for its support via a research grant (Bryant), to the National Sci-
ence Foundation for its support via research grant DMS-1206272 (Clelland), and to the Simons
Foundation for its support via a Collaboration Grant for Mathematicians (Clelland).

References

[1] Acharya A., Stress of a spatially uniform dislocation density field, J. Elasticity 137 (2019), 151–155,
arXiv:1809.03567.

[2] Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., Griffiths P.A., Exterior differential systems,
Mathematical Sciences Research Institute Publications, Vol. 18, Springer-Verlag, New York, 1991.

[3] Ivey T.A., Landsberg J.M., Cartan for beginners: differential geometry via moving frames and exterior
differential systems, 2nd ed., Graduate Studies in Mathematics, Vol. 175, Amer. Math. Soc., Providence, RI,
2016.

https://doi.org/10.1007/s10659-018-09717-5
https://arxiv.org/abs/1809.03567
https://doi.org/10.1007/978-1-4613-9714-4
https://doi.org/10.1090/gsm/175

	1 Introduction
	1.1 The problem
	1.2 Initial discussion
	1.3 An exterior differential system
	1.4 Background

	2 Analysis of the exterior differential system
	2.1 Notation
	2.2 Formulation as an exterior differential systems problem
	2.3 Integral elements
	2.4 Polar spaces and Cartan-regularity

	3 Involutivity
	4 The rank 1 case
	4.1 Formulation as an exterior differential system
	4.2 The case = 0
	4.3 The case =0
	4.4 Explicit solutions with = 0

	References

