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Abstract. A breathing mode in a Hamiltonian system is a function on the phase space
whose evolution is exactly periodic for all solutions of the equations of motion. Such
breathing modes are familiar from nonlinear dynamics in harmonic traps or anti-de Sit-
ter spacetimes, with applications to the physics of cold atomic gases, general relativity and
high-energy physics. We discuss the implications of breathing modes in weakly nonlinear
regimes, assuming that both the Hamiltonian and the breathing mode are linear functions
of a coupling parameter, taken to be small. For a linear system, breathing modes dictate
resonant relations between the normal frequencies. These resonant relations imply that ar-
bitrarily small nonlinearities may produce large effects over long times. The leading effects
of the nonlinearities in this regime are captured by the corresponding effective resonant
system. The breathing mode of the original system translates into an exactly conserved
quantity of this effective resonant system under simple assumptions that we explicitly spec-
ify. If the nonlinearity in the Hamiltonian is quartic in the canonical variables, as is common
in many physically motivated cases, further consequences result from the presence of the
breathing modes, and some nontrivial explicit solutions of the effective resonant system can
be constructed. This structure explains in a uniform fashion a series of results in the re-
cent literature where this type of dynamics is realized in specific Hamiltonian systems, and
predicts other situations of interest where it should emerge.
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1 Introduction

Even in a complicated nonlinear dynamical system, with chaotic trajectories and all, it may
turn out that some specific combinations of the dynamical variables always behave periodically
with the same period, independent of the initial conditions. In such situations, one is talking
about breathing modes." Perhaps the simplest example is the separation of the center-of-mass
motion in a harmonic potential [2], say, for a system of identical classical particles with arbitrary
translationally invariant 2-body interactions. The center-of-mass always behaves like a single
independent particle bound by a harmonic potential, and all of its trajectories are periodic
with the same period, providing a breathing mode. There are less obvious examples, such as
the Pitaevskii-Rosch breathing mode [31, 32] for two-dimensional Bose-Einstein condensates in

! One should distinguish breathing modes from cases where trajectories themselves are periodic, associated with
superintegrability, such as the periodic trajectories of the Kepler problem. None of the systems that motivate our
study are known to be superintegrable, nor even integrable. Their trajectories may be arbitrarily complicated,
and are certainly not exactly periodic, while a breathing mode only gives one specific function of the phase space
variables that is periodic for all trajectories.
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a harmonic potential, as well as relativistic analogs of these systems involving nonlinear wave
equations in anti-de Sitter spacetimes that we shall comment upon below. Recent experimental
work on cold atomic gases motivated by breathing modes can be found in [34].

The most immediate consequence of the breathing modes is in existence of time-dependent
symmetry transformations in the system (kinematic symmetries) akin to Galilean and Lorentz
boosts, except that the dependence on time is periodic rather than linear. For systems in har-
monic traps, these symmetries have been explored, for instance, in [29, 30]. Such symmetries are
generated by the breathing modes in the same manner as ordinary time-independent symmetry
transformations are generated by conserved quantities. One can of course use these symmetries
to construct new solutions, as has been done in [23] to produce time-dependent solutions from
stationary configurations. It may seem that there is nothing more profound in this than boosting
Galilean-invariant systems from one inertial frame to another, though in practice the effect of
the transformations generated by the known breathing modes may be much less evident than
in the Galilean case. Our focus in this article, however, will be precisely on the implications of
breathing modes for the dynamics that go beyond mere applications of ‘boosts.’

As with any symmetries, the presence of breathing modes imposes strong constraints on
the Hamiltonian of the system. For a linear system, it mandates resonant relations between
the frequencies of the normal modes, which form evenly spaced ladders. If weak nonlinearities
are turned on, the resonances between the linearized normal modes result in an enhancement of
nonlinear interactions, so that a nonlinearity of order g < 1 may induce arbitrarily strong effects
on long timescales of order 1/g. A standard way to accurately capture the leading effects in this
regime is the resonant approximation, also known as the multiscale analysis, effective equation or
time-averaging method [26, 28], which simply discards all nonresonant mode couplings, irrelevant
at small g. Our key result is that, under a simple condition, breathing modes result in ordinary
conserved quantities within the resonant approximation. We then focus on a situation generic
for interacting field theories, relativistic and non-relativistic, where the leading nonlinearity is
quartic in the dynamical variables, that is, a Hamiltonian H = Hy+gH; that admits a breathing
mode B = By + ¢gB; so that Hy and By are quadratic in the dynamical variables and H;
is quartic. Making a simple assumption about the Poisson brackets of By and its complex
conjugate, which essentially means that the symmetry algebra closes without generating extra
conserved quantities apart from the already known ones, we obtain strong constraints on the
resonant system corresponding to H at small g. In this formulation, By becomes an exact
conserved quantity of the resonant system, while a family of explicit analytic solutions can be
constructed within the resonant system at the full nonlinear level, accurately approximating
solutions of the original system on long time scales of order 1/g. This is an example where the
presence of breathing modes constrains the system and allows one to construct novel analytic
solutions that do not follow from applying the symmetry transformations generated by the
breathing mode to any obvious solutions.

The structures outlined above have been observed in the recent literature for a number of
special cases, motivated by rather disparate topics in physics. Thus, the analysis of [3, 4, 24, 25]
is rooted in the Gross—Pitaevskii equation and the physics of Bose-Einstein condensates, while
the analysis of [8, 9, 10, 11, 17] originates in studies of nonlinear dynamics in anti-de Sitter
spacetimes, which is of interest for mathematical general relativity and high-energy physics.
(Similarities between these two classes of systems have been pointed out in [7] and explained via
taking nonrelativistic limits in [9, 17].) In the case of Bose-Einstein condensates, the existence of
breathing modes is well-known [2, 31, 32], though their relation to the weakly nonlinear solutions
within the resonant approximation has not been duly appreciated in the literature. For the case
of [8], the solutions of the resonant approximation came first, and our present analysis will
supply the corresponding breathing mode responsible for these solutions. The general type
of resonant systems relevant for us here, where the presence of an extra conserved quantity
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imposes relations between mode couplings and generates some explicit analytic solutions, has
been constructed in [5, 6]. Our present exposition explains the origin of these structures in the
underlying Hamiltonian dynamics from which the resonant approximation originates. Breathing
modes are common in system with dynamical symmetry, where the Hamiltonian is realized as
a Cartan generator of the corresponding dynamical symmetry Lie algebra. Likewise, quartic
nonlinearities that play a significant role in our treatment are generic leading nonlinearities
under the assumption that odd order nonlinearities are prohibited by a reflection symmetry in
the configuration space. The framework we present here gives a recipe to search for explicit
weakly nonlinear solutions within this class of systems.

2 Breathing modes

Consider a system with the Hamiltonian H(p, q) and the usual equations of motion

dp;  OH  dgi  OH

dt ~ 9g;’ dt — op;’

A function B(p, q) on the phase space is called a breathing mode if

((f:{H’B}EZ<8H@B_8HﬁB> —iB. (2.1)

This equation is evidently solved by
B(t) = " B(0),

and hence B(p(t), q(t)) oscillates for all solutions of the equations of motion with the same period
equal 27r. Note that whenever {H, B} is proportional to iB, we can always set it equal to iB,
as in (2.1), by rescaling H, and this is the normalization of the Hamiltonian we shall assume
below without loss of generality.

Existence of breathing modes of the form (2.1) is a strong restriction on the system (that we
intend to exploit), but at the same time the algebraic structure of (2.1) is completely generic for
systems with dynamical symmetries. Indeed, if {H, -} is a generator of a dynamical Lie group
lying in the Cartan subalgebra and { B, -} is a generator corresponding to a positive root, one gets
a relation of the sort (2.1). In such situations, many breathing modes can be present on the same
footing, corresponding to different generators of the dynamical symmetry group, as is indeed the
case for the systems that motivate our current study [3, 4, 8, 9, 10, 11, 17, 24, 25]. Nonetheless,
one can often construct consistent dynamical truncations of such systems to a subset of degrees
of freedom, either at the level of the full system or at the level of the resonant approximation
in the weakly nonlinear regime, so that only one breathing mode is relevant in each truncation,
which is again what happens in [3, 4, 8, 9, 10, 11, 17, 24, 25]. We shall therefore focus here on
systematically exploring the consequences of having one breathing mode, while keeping in mind
that in cases with many breathing modes some extra work may have to be done to make our
results applicable.

The breathing mode generates a kinematic symmetry given by

0B 0B 9B _ 0B 22)

qi — qi + 1

where 7 is a complex-valued infinitesimal parameter, and bars denote complex conjugation, here
and for the rest of our treatment. Unlike the case of ordinary symmetries (whose generators have
vanishing Poisson brackets with the Hamiltonian), these transformations do not commute with
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the evolution, but rather induce very simple, predictable changes in the dynamical trajectory.
Namely, if one applies (2.2) at t = 0, the subsequent trajectory is transformed as

4 OB . OB o+ OB . OB
(1) = qi(t) + e'n— +e T —, (1) = pi(t) —eln—— — ety —.
For the simplest case of systems in harmonic potentials, such transformations are discussed in

[23, 29, 30].
Our main focus in this article will be on weakly nonlinear systems with a breathing mode,
so that

H = Hy+ gH;, B = By + gBx, (2.3)

with ¢ < 1. We shall assume that Hy is quadratic in the dynamical variables (which simply
means that g = 0 corresponds to a linear system), and so is By (which means that the corre-
sponding kinematic symmetry for this linear system at g = 0 is linearly realized). Substituting
these expressions in (2.1) and equating the coefficients of different powers of g, we obtain?

{Ho, Bo} = iB, {Ho, B1} +{H1, Bo} = iBy, {H1,B1} = 0. (2.4)

In the later parts of our analysis, we shall also be assuming that H; is quartic in the dynamical
variables, which is a generic situation for classical field systems with a field-reflection symmetry
(and corresponds to generic two-body interactions in the quantum case).

We conclude this section with a few examples of breathing modes in relativistic and non-
relativistic field systems that fit the above framework:

e Consider a classical complex nonrelativistic field in D spatial dimensions with the Hamil-
tonian

H = ;/dDa: [8k\il(:z)8k\11(x) + zF 2P| W2 (2)

T glTP () / APy V(x — )| TP (y))|. (2.5)

The momenta conjugate to ¥(z) are understood to be i¥(z), so that the Hamiltonian
equations of motion take the form of a nonlinear Schrodinger equation. (The first two
terms of the Hamiltonian may of course be equivalently rewritten in the vector notation as
|VW|? +22|¥|2.) Quantization of this Hamiltonian (which we do not consider here) would
have led to a system of identical bosons in an external harmonic potential interacting via
translationally invariant two-body interactions given by V (x —y), which is a standard sub-
ject in the physics of cold atomic gases. The classical Hamiltonian given above describes,
from this perspective, the regime in which the trapped bosons undergo Bose-Einstein con-
densation. There is a set of breathing modes associated to the center-of-mass motion in D
spatial dimenstions:

B, = /dD:c (20| V> — WO, V). (2.6)

Of particular importance in our context are combinations of these modes in the form
B, + iB, (not necessarily in two dimensions) that play a role in the dynamics of the
Landau level truncations [3, 4, 24] of the evolution corresponding to (2.5).

2There is some similarity between these expressions and the ‘integrable matrix theory’ of [35, 36, 37], where
Hamiltonians and symmetry generators depending linearly on a coupling parameter are considered for quantum-
mechanical systems with finite-dimensional Hilbert spaces. Our classical phase space functions are naturally
replaced by matrices, and commutators take the place of our Poisson brackets. The only substantial difference
is that the right-hand sides of (2.4) would be zero in the framework of [35, 36, 37], since one is dealing with
conserved quantities rather than breathing modes.
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e In two spatial dimensions and for the case of contact interactions, the symmetries of (2.5)
get enhanced [30]. The corresponding Hamiltonian is

1
H= z/dwdy (10: 9% + [0, 0[* + (2% + y*) [ 9] + g|¥[*).

This is known to possess the Pitaevskii-Rosch breathing mode [31, 32|, which manifests
itself in perfectly periodic evolution of

I= /dxdy (2% + ) [V
To recast this mode in our standard form (2.1), one introduces
1 _ _ _ _
B=(I—-H)- 3 /dxdy [2(V0,¥ — WO, V) + y(VO,¥ — ¥O,V)], (2.7)

which satisfies dB/dt = 2iB. (This can be changed to dB/dt = iB to literally match our
definition (2.1) by a simple rescaling of the Hamiltonian, as per our general discussion.)

e We now formulate relativistic analogs of the above two cases. An analog of the harmonic
potential is provided by anti-de Sitter (AdS) spacetimes (maximally symmetric spacetimes
of constant negative curvature) that play the same role for relativistic wave equations as
the harmonic potential does for nonlinear Schrédinger equations.

For d spatial dimensions, we denote the corresponding AdS space as AdSgz41. It can be
realized as a hyperboloid in an auxiliary flat pseudo-Euclidean space of dimension d + 2
parametrized by (X, Y, Xk) with the line element ds? = —dX2?—dY2+dX*dX*, defined by

—X?2—y? 4 xkXF = 1. (2.8)

One can parametrize this embedded hyperboloid by X* and ¢ so that the two remaining
embedding coordinates are given by

X =V1+ XkXFkcost, Y =1+ XFXFksint.
The AdS metric can be the extracted as [21]

XiXi

2 kyvk 2 .

) dx'dXx’.

(Note that ¢ runs from 0 to 27 in the embedding (2.8), but as the AdS metric does not
depend on t, it can be straightforwardly extended to run from —oo to co, which is how the
AdS space is normally understood.) One can now define a relativistic field theory in this
space, which shares many properties of the nonlinear Schrodinger equation in a harmonic
trap. We shall use a real scalar field ¢(X,t) and its conjugate momentum my(X,t) =
oo/ (1 + XkX k), though a complex field could easily be employed if more contact with
nonrelativistic theories is needed. The Hamiltonian is then H = [ dX h(X;ms, ¢) with

1
h(X;mg,0) = 5 |(1L+ XFXP) 72 + 00 + (X*0p0)” +m2 + 261, (2.9)
as derived from the standard action S = —% [d¥tiz \/—g(gf“’ﬁuqﬁ 0y b + m2¢? + g¢4/2).
Just like for a harmonic trap, the center-of-mass motion separates for any self-interactions
respecting the AdS isometries (in particular, the q§4 interactions in the Hamiltonian above)
and performs independent oscillations described by the breathing modes

X"h
B, = [ax | —2" i1+ XkXFr,0, ) . 2.10
/ <\/1 T XEXF #0n9 (2.10)
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e Finally, there is a relativistic analog of the Pitaevskii-Rosch breathing mode that can be
made manifest by considering the systems defined by (2.9) in three spatial dimensions and
with the value of m? corresponding to a conformally coupled scalar [8]. In fact, it is more
convenient to consider the same type of scalar field on a spatial 3-sphere, which is related
to the above AdS setup by a conformal transformation. We refer the reader to [8] for
detailed analysis of the corresponding equations. The important point for us here is that,
restricting to scalar fields that only depend on time ¢ and the polar angle x on the 3-sphere,
and introducing v(x,t) = ¢(x,t) sinz, one obtains the following nonlinear wave equation

gv®

sin? z

v — d%v + =0

with the boundary conditions v(0,t) = v(mw,t) = 0. This equation possesses a breathing
mode of the form

4

B= /dx [cosx <(8tv)2 + (0p0)2 + 02 ) — 2isin2dwdyv| | (2.11)
2sin“ x

which can, of course, equally well be expressed canonically through the momentum 7w, =

Jyv conjugate to v.

3 Linear systems

We start with setting ¢ = 0 in (2.3) and considering a linear system with a quadratic Hamil-
tonian Hy and a quadratic breathing mode By. Any linear system performing bounded motion
can be diagonalized and split into independent harmonic oscillators with normal frequencies
wy > 0 described by the complex amplitudes o, (t) = e“rfa,,(0) whose canonically conjugate
momenta are defined to be —iay, (). In these variables, any quadratic Hamiltonian corresponding
to bounded motion becomes simply

Hy=) wnbinan. (3.1)

We shall assume for the rest of our treatment that this diagonalization has been performed and
our canonical variables are a,, and —id,,.

For this simple case, the structure of a general quadratic breathing mode By can be made
explicit. Indeed, the most general possible expression is

nm

where by, bt

oy and b are numbers. We have to impose

OHy 0By _ 0Ho OB\ _. .
oay, Doy, Oay, Oay, -

{Ho,Bo} =1) _

k

which implies
_ + +
Wnbnm - menm = _bnma (Wn + wm)bnm = ibnm

Since wy, > 0, b,,,,, = 0. The rest exclusively depends, at least at the level of linearized theory, on
the spectrum of normal mode frequencies w,,. If there are two frequencies satisfying w,, +w,, = 1,
the corresponding b, can have an arbitrary value. If there are two frequencies satisfying
W = wp, + 1, the corresponding by, can have an arbitrary value. (Evidently, b,,, must be zero.)
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While, within the linearized approximation, the above argument still leaves a huge amount
of freedom in constructing breathing modes, provided that the spectrum w, satisfies simple
constraints, it is worth discussing upfront which of these breathing modes have a chance to
survive inclusion of nonlinearities. In the linearized theory, all normal mode energies |a,|? are
individually conserved. Generic nonlinearities induce energy transfer between the normal modes,
typically in a way that essentially involves all modes. It is unrealistic to expect that a linearized
breathing mode that only depends on a subset of «;, will survive in a nonlinear theory, since it is
oblivious of all the other «,,, while all the degrees of freedom participate in a complex collective
dynamical process.

Breathing modes based on b}, are essentially eliminated by the above argument. Indeed,
wn + wm = 1 can only be satisfied for w,,,w, < 1. While it is possible to imagine artificially
prepared sets of coupled oscillators with frequencies less than 1, where such breathing modes
are relevant, in a realistic field theory, the normal frequencies grow without bound for short-
wavelength modes. Therefore, w, < 1 will necessarily cover a small portion of the spectrum,
and the corresponding breathing mode based on b, will depend only on a small subset of a,
and has little chance to survive in an interacting theory.

Breathing modes based on b,,,, may depend on «,, if there exists m such that w,, = w, — 1
and may depend on &, if there exists m such that w,, = w, + 1. In order for By to depend on
all a,, and &y, as per the discussion above, one needs all w,, to fit in an evenly spaced ladder

Wy = wp + N, (3.2)

which we shall for simplicity assume nondegenerate. All the breathing modes mentioned in the
previous section are of this type. With this structure, the only nonvanishing by, are by, n+1 = Bn,
and hence we write

By =) Bulintni1. (3.3)

For the rest of our treatment, we shall focus on including weak nonlinearities into systems defined
by (3.1), (3.2) and (3.3).

4 Weak nonlinearities and effective resonant dynamics

As explained in the previous section, a natural way for a breathing mode of the form (2.3) to be
supported by the evolution is to have a theory with a linearized normal mode spectrum consisting
of an infinite evenly spaced ladder of the form (3.2). In this case, there is a linearized breathing
mode of the form (3.3) that one might hope to lift to the interacting theory to obtain (2.3).
Assuming that has been accomplished (and our examples from Section 2 indeed demonstrate
that it is possible in special cases), what are the properties of the corresponding interacting
theory in the weakly nonlinear regime g < 17
The equations of motion arising from (2.3) are

dan . +. 8H1
— = iwpa, +1i
at n@n T

Ot
It is convenient to switch to the ‘interaction picture’ by introducing a, so that a, = a,e“n’.
Then,

dan _
dt

0H,

oa
" | ap=aneiwnt
n—4wn

it = igale (anelwnta dneilwnt)' (4'1)
an
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The above equation is in what is known as the ‘periodic standard form’ in mathematical litera-
ture [28], which facilitates its analysis at g < 1. Qualitatively, a,(t) evolve very slowly, varying
appreciably on time scales of order 1/g, while being essentially constant on time scales of order 1.
By contrast, the right-hand side contains explicit oscillatory factors et varying on time scales
of order 1. By the standard lore of time-averaging [28], (4.1) can be approximated arbitrarily
well for sufficiently small g on long time scales of order 1/g by the corresponding averaged (or
resonant) system of the form

da,, 0 1 [P i )
i | dt H lwnpt = —lwpt .
i =950, (o [, b (and= ™))

Note that the t-integral only applies to the explicit dependence on ¢ through the oscillatory
factors e and not to the implicit dependence on ¢ in a, and a,, which are treated as
constants for the purposes of the t-integration. The result of the integration is an explicit
function of a,, and a,, while all the explicit dependence on t disappears and g can be absorbed
by defining the slow time ™ = gt. The resulting equations for a, are again in a Hamiltonian
form, but with a new ‘resonant’ Hamiltonian Heg,

2
da .OH, 1 i _
0

Detailed justification of the time-averaging method and the resulting resonant approximation
can be found in [26, 28]. One can more formally (and more generally) write Hyes through the
evolution operator of Hy denoted as 38, whose action on any phase space function F' is defined
by d(SéF) /dt = {H, SSF} This gives simply

2
1 R
Hyes = 5 /dtngl,
0

and we shall make use of this representation in our subsequent treatment.
We can now ask whether the breathing mode B has any implications for the resonant sys-
tem (4.2). To this end, consider the Poisson brackets { Hes, Bo}:

2 2w 2

1 \ 1 \ . 1 o
0 0 0
1 7 1 7 d B, — 8> B
— — [ dte S (iBy — {Hy. B;}) = —— [ dt — (e S§tB,) = =L — 20 21
zw/ ¢ " S(iB1 ~ {Ho, Bi}) 27r/ A o
0 0

where we have used the evident properties of the evolution operator S!St =1 and St{F G} =
{StF , StG}, which is easily proved by differentiating with respect to ¢t and using Jacobi identities
for the Poisson brackets; in going from the first line to the second line, we used (2.4). One can
also write equivalently and more explicitly

(an, dn) — Bl (aneQﬂ'iWH7 ane—Qﬂ'iwn)

By
{Hre87 BO} = o

(4.3)

The simple expression on the right-hand side easily vanishes in special cases. For example, it
would vanish if B; = 0, as is the case in (2.6), or if wp in (3.2) is integer, or if wp is half-integer
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and Bj is quartic in a, and a,. If the right-hand side of (4.3) is zero, By is conserved by the
Hamiltonian evolution defined by Hies.

The bottom line, and a key message of our treatment is then that By, the quadratic part of
the breathing mode B defined by (2.3)—(2.4), becomes an ordinary conserved quantity within
the resonant approximation at g < 1, provided that

Bi(an,a,) = By (ane%iwo, dnef%iwo). (4.4)

This statement is independent of the form of By and Hj, as long as they satisfy the defini-
tion (2.4), and the linearized breathing mode By is realized as (3.2)—(3.3). The specific examples
of breathing modes given in section 2 follow this pattern (at least after the evolution has been
truncated to appropriate subsets of modes labelled by a single integer n).

Assume now that (4.4) is satisfied so that By of the form (3.3) is a conserved quantity of Hyes.
If Hy, and hence H,es, is quartic in a, and a,, further implications of the breathing mode can
be exposed. The most general quartic Hy.s one could write is

Hres = § Cnmkl&namakal + § Snmkldnamakal
Wn,FwWm=wg+w; Wn=Wwmtwg+w;
+ E Snmkl On G Qg (4.5)

Wn=Wm+wi+w;

where C' and S are numerical coefficients. Terms with four a’s or four a’s could not possibly
survive the time averaging in the definition (4.2). Assuming that (4.4) is satisfied and hence By of
the form (3.3) is a conserved quantity of Hyes, the following symmetry transformation associated
to By must be respected by Hies:

Ap — Qp + inﬁnan—l—l + iﬁlgn—lan—lv (46>

which imposes relations between the coefficients Cy,pk; and Spmkr in Hyes. (In all of our formulas
it should be understood that if a mode number index is outside the standard range [0, 00), the
corresponding expression is 0.) The actual form of the constraints on C' and S from the above
symmetry transformations is

Bncn—&—l,m,k,l + Bmcn,m—l-l,k,l = Bk—lcn,m,k—l,l + Bl—lcn,m,k,l—la (47)
BrnSnt1,m bkl = Bm—1nm—1k1 + Be—1Sn,mk—11 + Bi—1Snm k-1 (4.8)

The equation for 9, in fact, guarantees that Sy, = 0. Indeed, setting m =k =1=0 in (4.8),
we obtain Spgp0 = 0, and then one proceeds recursively increasing m, k and [ in steps of 1 to
prove that Sp,,x = 0. This is closely related to the selection rules for AdS mode couplings
discussed in [21]. With only C in place, the resonant Hamiltonian takes the simple form

Hyes = Z CrmkiGnGmagay, (49)
n+m=k+l

which is familiar from [3, 4, 5, 6, 8, 9, 17]. Note that, with S having dropped out, the resonant
Hamiltonian enjoys two conservation laws

N=> lal>, E=) nlay (4.10)

irrespectively of the values of C.
We have just seen that, for a system with quartic nonlinearities, if (4.4) is satisfied and By
becomes a conserved quantity of Hyes, a number of possible terms in H,es drop out, leaving the
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simple expression (4.9). The converse is also true: if it happens that the S-couplings in (4.5) van-
ish for a specific quartic system, and the resonant Hamiltonian is of the form (4.9), then (4.4) is
satisfied, and hence By becomes a conserved quantity of Hyes. Indeed, Hyes of (4.9) is bilinear in a
and bilinear in a, while By is linear in a and linear in a. Therefore, { Hycs, By} is likewise bilinear
in a and bilinear in @, and should arise, by (4.3), from terms in B; bilinear in a and bilinear in a.
But any such terms would give a vanishing contribution to Bj(ay, a,) — B (anezmwo, dne_%iwo),
leaving nothing on the right-hand side of (4.3), and yielding { Hyes, Bo} = 0.

We now reexamine the breathing mode (3.3) that has become a conserved quantity of (4.9).
If By is a conserved quantity of Hyes, so are By and {B(), BO}, which is explicitly given by

o0

{Bo,Bo} =1 _ (IBnl® = |Bn-1/*)|anl*.

n=0

This conserved quantity is itself of a form similar to (4.10), being a weighted sum of the individual
linearized mode energies |a,|?. Each such conserved quantity constrains the way nonlinearities
may dynamically redistribute the energy among the normal modes. It may be reasonable to
demand that no further constraints of this sort, beyond the generic conservation of N and F,
are present. In this case, {Bo, Bo} must be a linear combination of N and E, which we can
write as

{BO,BO}—1<N+2§>.

Here, G is an arbitrary number, while the numerical coefficient in front of N has been set to 1 as
a matter of fixing the normalization of Bgy, which has been until now kept undetermined. One
then has

2n

|Bn’2 - ’/Bn—IP =1+ 5,

which is solved by
1Bul?> = (1 +n)(1+n/G).

As the phases of 3, can be arbitrarily shifted by adjusting the phases of a,, one can simply
define (,, to be the square root of the right-hand side,

Bn =+ (1+n)1+n/G),

reducing By to

By => V1 +n)1+n/G)anani1. (4.11)

Thus, with a series of simple and generic assumptions on how the breathing mode is realized
in the linearized theory, how simple conditions are met to promote the breathing mode to
a conserved quantity of the resonant approximation to the weakly nonlinear theory, and how
taking Poisson brackets of the breathing mode with its own complex conjugate does not generate
new conserved quantities, we have arrived at the class of ‘solvable’ resonant systems developed
in [5, 6]. Indeed, the resonant Hamiltonian (4.9) explicitly matches the constructions of [5, 6],
while the conserved quantity By of (4.11) corresponds, in the notation of [5, 6] to Z/vG. We
shall therefore conclude by simply restating the consequences of (4.9) and (4.11) already explored
in [5, 6].
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With 8, = /(1 +n)(1 +n/G), (4.7) imposes constraints on the coefficients of the resonant
system (4.9), which are identical to the ones used in [5, 6] to define the ‘solvable’ class of resonant
system. ‘Solvability’ is understood here in a very restricted sense, namely, as having an explicit
family of nontrivial solutions. This family is defined by the ansatz

oult) = LEENEL2 (G0 2Dy oy (4.12)

where b(t), a(t) and p(t) are complex-valued functions of time (and the conventions in the above
formula differ slightly and inessentially from [5, 6]). The Hamiltonian equations of motion
of (4.9) are

da oo n+m
ditn = imz:O kz_o Cnmk,n+mfkamakan+mfk- (4'13>

It is a nontrivial fact that the ansatz (4.12) is consistent with these equation of motion, and yet
it is true by virtue of the conservation of By and the identity (4.7) it implies, as demonstrated
in [5, 6]. A key point of the proof is that finite-difference identities (4.7) imply summation
identities for Cp,k adapted to the summation structure in (4.13). As a result, one obtains
a closed system of three ODEs for b(t), a(t) and p(t), which is furthermore superintegrable
because of the conservation of H, N, E and By. The ODEs can be integrated to show that |p(¢)|
is always a strictly periodic function for all solutions, and the same is true for the spectrum |a,|?.
An explicit bound can be given on the turbulent transfer of energy toward large n modes for the
solutions in the ansatz (4.12). The reader is referred to [5, 6] for detailed derivations of these
results.

It is worth noting that the above properties were developed in [5, 6] completely in the lan-
guage of resonant systems of the form (4.9), without any specific attention to how such features
could emerge in resonant systems arising as weakly nonlinear approximations to realistic PDEs.
Our present treatment closes this gap. We also remark that it is outside the normal range of
implications of symmetries that explicit families of solutions, as given by (4.12), are generated.
Symmetries produce new solutions out of known solutions, but (4.12) does not follow by appli-
cation of transformations (4.6) to any other, more obvious solutions of (4.13). Rather, the logic
here is that the identities (4.7) imposed on the mode couplings by the symmetries have further
implications and allow for the closure of the ansatz (4.12). This feature is specific to quartic
nonlinearities, and does not immediately generalize to other cases.

5 Discussion

We have revisited the topic of breathing modes in the dynamics of nonlinear PDEs, and in partic-
ular, the implications of the breathing modes for the weakly nonlinear regime. We have assumed
that both the Hamiltonian and the breathing mode are linear functions of a coupling parame-
ter, and that setting the coupling parameter to zero results in a linear dynamical system, with
a quadratic Hamiltonian, wherein the breathing mode also becomes quadratic in the canonical
variables, which corresponds to a linear realization of the corresponding kinematic symmetry.
Such setup is very generic from a physical perspective, commonly occurring in classical field
theories. We have presented a collection of explicit breathing modes related to the dynamics
of Bose-Einstein condensates and anti-de Sitter spacetimes. While the breathing modes (2.6)
and (2.7) are standard in the Bose—Einstein literature, the corresponding relativistic breathing
modes (2.10) and (2.11) are in principle known from the symmetry properties of AdS spacetimes,
but we believe our explicit expressions are compact and convenient.



12 O. Evnin

We have discussed how breathing modes of our type may be realized in a linear theory.
The most natural realization is for systems whose normal mode frequencies form evenly spaced
ladders, as in (3.2). Such an evenly-spaced spectrum is highly resonant and, by the standard lore
of weakly nonlinear dynamics, creates a possibility for arbitrarily small nonlinearities of order g
to produce arbitrarily large effects on time scales of order 1/g. On these specific time-scales, the
original dynamics may be accurately approximated by the time-averaged dynamics, described
by the resonant system (4.2). A simple condition (4.4), which is easily satisfied in special cases
of interest, ensures that the quadratic part of the original breathing mode becomes a conserved
quantity of the effective resonant dynamics (4.2).

If the nonlinearities are quartic, as is common in field theories, further consequences result
from the conservation law in the resonant system inherited from the breathing mode of the
original system. First, only one of the possible quartic terms may remain in the resonant Hamil-
tonian, leaving a simple expression (4.9). Two conservation laws (4.10) are then obeyed by
the resonant system. Assuming that the algebra of conserved quantities closes on the resonant
Hamiltonian, the breathing mode and these two extra quantities fixes the functional form of
the breathing mode in terms of one free parameter (4.11). This recovers, starting from physi-
cally motivated PDE problems, resonant systems of the solvable class considered in [5, 6]. As
a consequence, one obtains explicit solutions of the form (4.12) at the level of the resonant
approximation, which can be thoroughly analyzed as in [5, 6].

Our treatment explains in a uniform fashion the emergence of solvable features within the
resonant approximation in a number of physically motivated PDEs in the recent literature [3, 4,
8,9, 17, 24]. In particular, the progenitors of these solvable features in the resonant systems are
identified as breathing modes in the PDEs whose dynamics the resonant systems approximate.
With respect to the solvable resonant systems of [5, 6], our treatment provides a mechanism by
which they can emerge as approximations to specific PDEs of mathematical physics. Systems
with breathing modes may be engineered starting with linear systems whose normal frequencies
form evenly spaced ladders (3.2), which creates a lot of room for concrete applications of our
analysis. In relation to the concrete physical problems that have motivated our considerations,
beyond what has been explicitly treated in the literature, one is led to expect solvable features
in the resonant systems corresponding to (1) one-dimensional nonlinear Schrédinger equation in
a harmonic trap with arbitrary 2-body interactions, (2) Landau-level truncations, in the style
of [3, 4], of nonlinear Schrédinger equations in isotropic harmonic traps with arbitrary 2-body
interactions in any number of dimensions, (3) maximally rotating truncations of the resonant
dynamics in AdS, in the style of [17], with arbitrary quartic local interactions. The last topic
connects to extensive studies of nonlinear dynamics in AdS [1, 12, 13, 14, 16, 18, 19], in particular,
outside spherical symmetry [15, 20, 22, 27, 33]. Some of the results presented here, in particular
explicit analytic solutions within the resonant approximation, are specific to the case of quartic
nonlinearities. It would be interesting to investigate whether generalizations of these results
(which are expected to be non-straightforward) exist for more general nonlinearities.

Note added: An anonymous referee has aptly observed that the last condition listed in (2.4),
namely {H1, B1} = 0, has never been used in our derivations. This means that, technically, it is
sufficient for the breathing mode definition (2.1) to be satisfied up to linear order in g to ensure
that the formalism developed here is applicable.
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