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The quantized vector potential A(x) is defined by

A(x) =
∑
λ=1,2

∫
R3

dk
%̂(k)√

2|k|
ε(k, λ)

(
e−ik·xa(k, λ)∗ + eik·xa(k, λ)

)
, (2.4)

where ε(k, λ) = (ε1(k, λ), ε2(k, λ), ε3(k, λ)), λ = 1, 2 are polarization vectors. For concreteness,
we choose as

ε(k, 1) =
(k2,−k1, 0)√

k2
1 + k2

2

, ε(k, 2) =
k

|k|
∧ ε(k, 1). (2.5)

Note that A(x) is essentially self-adjoint. We will denote its closure by the same symbol. The
field energy Hf is given by

Hf =
∑
λ=1,2

∫
R3

dk |k|a(k, λ)∗a(k, λ). (2.6)

The operator H1e acts in the Hilbert space L2(R3)⊗F(L2(R3
k×{1, 2})), where F(h) is the bosonic

Fock space over h: F(h) =
⊕∞

n=0 h
⊗sn. Here, ⊗s indicates the symmetric tensor product.

To examine the Casimir-Polder potential, we consider two hydrogen atoms, one located at the
origin and the other at r = (0, 0, R) with R > 0. For computational convenience, we define the
position of the second electron relative to r, see Figure 1. Then the two-electron Hamiltonian
reads

H2e =
1

2

(
− i∇1 − eA(x1)

)2 − e2V (x1) +
1

2

(
− i∇2 − eA(x2 + r)

)2 − e2V (x2)

+ e2VR(x1, x2) +Hf (2.7)

with

VR(x1, x2) = −V (x1 − r)− V (x2 + r) + V (r) + V (r + x2 − x1) (2.8)

=

∫
R3

dk %̂(k)2|k|−2(1− e−ik·x1)(1− eik·x2)eik·r. (2.9)

The operator H2e acts in L2(R3
x1)⊗ L2(R3

x2)⊗ F(L2(R3
k × {1, 2})).

The dipole approximation (C. 1) means the following replacement:

A(x1) ; A(0), A(x2 + r) ; A(r). (2.10)


