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Figure 8. The function J̃(α, β).

Proof. We must consider the two cases that the momenta pu and pv lie on the same mass cone
(i.e. both on the upper or both on the lower mass cone) and that they lie on different mass
cones. In the first case, we see from the right of Figure 3 as well as from Figure 7 that the
distribution K̂ vanishes or is constant for all momenta −αpu − βpv. As a consequence, the line
integrals can be carried out to obtain zero,
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In the remaining case that pu and pv lie on different mass cones, we must make use of the
fact that, due to the δ-distribution in (6.21), it suffices to consider the case pu = −pv. Then K̂

depends only on α− β. As a consequence, the resulting integrals vanish by symmetry,
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= 0 ,

because the integrand is odd under the transformation α→ 1− β and β → 1− α. �

6.4.2 Contributions With Logarithmic Poles

We now turn our attention to the contributions involving logarithms as computed in Proposi-
tion 6.3. Rewriting (6.20) according to (6.18) in momentum space, our task is to show that

0 =

ˆ

d4pv
(2π)4

e−i(p
0
u
+p0

v
)x0 δ3

(

~pu + ~pv
)

×

ˆ ∞

−∞
dα

ˆ ∞

−∞
dβ J(α, β)

(

F̂ u(pu)
)

ij

(

F̂ v(pv)
)j

k
K̂
(

− αpu − βpv
)

,

(6.26)

where J(α, β) is the function in (6.6) (see Figure 4) and K̂ is the Fourier transform of the kernel
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Since the distribution K(ξ) is again supported on the light cone, we can argue exactly as
after (6.24) to justify the following assumption:

(b’) Polynomial integrals over the whole real line (6.24) vanish in (6.26).

Lemma 6.6. Using (b’), the function J in (6.26) can be replaced by the function J̃ given by
(see Figure 8)


