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Abstract. Consider an essentially nonbranching metric measure space with the measure
contraction property of Ohta and Sturm, or with a Ricci curvature lower bound in the sense
of Lott, Sturm and Villani. We prove a sharp upper bound on the inscribed radius of any
subset whose boundary has a suitably signed lower bound on its generalized mean curvature.
This provides a nonsmooth analog to a result of Kasue (1983) and Li (2014). We prove
a stability statement concerning such bounds and — in the Riemannian curvature-dimension
(RCD) setting — characterize the cases of equality.
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1 Introduction

Kasue proved a sharp estimate for the inscribed radius (or inradius, denoted InRad) of a smooth,
n-dimensional Riemannian manifold M with nonnegative Ricci curvature and smooth bound-
ary OM whose mean curvature is bounded from below by n — 1. More precisely, he concluded
InRadp; < 1 [30]. This result was also rediscovered by Li [40] and extended to weighted Rie-
mannian manifolds with Bakry-Emery curvature bounds by Li-Wei [38, 39] and Sakurai [48].
Their result can be seen either as a manifold-with-boundary analog of Bonnet and Myers’ di-
ameter bound, or as a Riemannian analog of the Hawking singularity theorem from general
relativity [27] (for the precise statement see [44, Theorem 6.49]). There has been considerable
interest in generalizing Hawking’s result to a nonsmooth setting [26, 37, 42]. Motivated in part
by this goal, we give a generalization of Kasue’s result which is interesting in itself and can serve
as a model for the Lorentzian case. Independently and simultaneously, Cavalletti and Mondino
have proposed a synthetic new framework for Lorentzian geometry (also under investigation by
one of us independently [43]) in which they establish an analog of the Hawking result [13].

This paper is a contribution to the Special Issue on Scalar and Ricci Curvature in honor of Misha Gromov
on his 75th Birthday. The full collection is available at https://www.emis.de/journals/SIGMA /Gromov.html
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In this note we generalize Kasue and Li’s estimate to subsets Q of a (potentially nonsmooth)
space X satisfying a curvature dimension condition CD(K, N) with K € R and N > 1, provided
the topological boundary 052 has a lower bound on its inner mean curvature in the sense of [34].
The notion of inner mean curvature in [34] is defined by means of the 1D-localisation (needle
decomposition) technique of Cavalletti and Mondino [11] and coincides with the classical mean
curvature of a hypersurface in the smooth context. We also assume that the boundary 92
satisfies a measure theoretic regularity condition that is implied by an exterior ball condition.
Hence, our result not only covers Kasue’s theorem but also holds for a large class of domains
in Alexandrov spaces or in Finsler manifolds. Kasue (and Li) were also able to prove a rigidity
result analogous to Cheng’s theorem [15] from the Bonnet—Myers context: namely that, among
smooth manifolds, their inscribed radius bound is obtained precisely by the Euclidean unit ball.
In the nonsmooth case there are also truncated cones that attain the maximal inradius; under
an additional hypothesis known as RCD, we prove that these are the only nonsmooth optimizers
provided € is compact and its interior is connected.

To state our results first we recall the following definition. For £ € R we define cos,: R — R
as the solution of

v + kv =0, with v(0) =1 and v’ (0) = 0. (1.1)

The function sin,: R — R is defined as solution of the same ordinary differential equation (ODE)
with initial values v(0) = 0 and v'(0) = 1. We define

T
— if k>0,
T =4 VE (1.2)

oo otherwise,

and I, = [0,7). Let K, H € R and N > 1. The Jacobian function is

H N-1
reRw— Jgan(r):= <COSK/(N—1)("”) TN -1 SmK/(N—l)(T)> ) (1.3)
+

where (a)4 := max{a,0} for a € R. Since Jx g n(r) = Jx,—u n(—7), its interval of positivity
around the origin is given by r € (—rx _u N, 7K H,N), Where

ri u.N = inf{r € (0,00): Jg un(r) =0} (1.4)
In [30] and [48] the authors define
SH,A(T) = cosy(r) — Asing(r) (1.5)

for k,A\ € R. They say the pair (k,\) satisfies the ball condition if the equation s, \(r) = 0
has a positive solution. The latter happens if and only if one of the following three cases holds:
(1) k>0and A€R, (2) k=0and A > 0or (3) K <0 and A > /|s]. If (k,\) = (57, 3225),
then rg gy coincides with the smallest positive zero of s ) if any exists; moreover s, (r) < 0
for all » > rg gy if kK <0, while s, \ oscillates sinusoidally with mean zero and period greater
than 2rx g N if & > 0. In particular, rx g N < oo if and only if (%,%) satisfies the
ball-condition.

For Q C X, letting ¢ := X \ €2, our main theorem reads as follows:

Theorem 1.1 (inscribed radius bounds for metric measure spaces). Let (X,d,m) be an essen-
tially nonbranching CD(K', N) space with K" € R, N € (1,00) and sptm = X. Let K,x € R
such that (%,X) satisfies the ball condition. Let Q C X be closed with Q # X, m(Q) > 0
and m(0€2) = 0 such that Q0 satisfies the restricted curvature-dimension condition CD, (K, N)
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for K € R (Definition 2.3) and 0 = S has finite inner curvature (Definition 2.17). Assume
the inner mean curvature Hg satisfies Hg > x(N — 1) mg-a.e. where mg denotes the surface
measure (Definition 2.15). Then

InRad 2 < TK,x(N—l),Nv (16)

where InRad Q = sup dqge(z) is the inscribed radius of .
€
The theorem generalizes previous results for Riemannian manifolds [30, 40] and weighted
Riemannian manifolds [38, 39, 48]. Moreover Theorem 1.1 also holds in the context of weighted
Finsler manifolds and Alexandrov spaces and seems to be new in this context.
We also show:

Theorem 1.2 (stability). Consider (X,d, m) and Q C X as in the previous theorem. Then, for
every € > 0 there exists 6 > 0 such that

InRadQSTk,HJv—i-E
provided K > K — 6, Hg > H — 6 mg-a.e. and N < N +6 for K,H€R and N € (1,00).

Remark 1.3 (definitions and improvements). Let us comment on the definitions in Theorem 1.1
and generalizations.

1. The curvature-dimension conditions CD(K, N) and the restricted curvature-dimension
condition CD,.(K, N) for an essentially nonbranching metric measure space (X,d, m) are
defined in Definition 2.3. If (X, d, m) satisfies the condition CD (K, N) then 2 # & trivially
satisfies CD,.(K, N) for the same K. For this we note that for essentially nonbranching
CD(K, N) spaces, L?-Wasserstein geodesics between m-absolutely continuous probability
measures are unique [10].

2. Appendix A extends the conclusions of Theorems 1.1 and 1.2 to the case where the
CD(K, N) hypothesis is replaced by the measure contraction property MCP(K, N) pro-
posed in [46, 49], still under the essentially nonbranching hypothesis.

3. The backward mean curvature bound introduced in Appendix B also suffices for the con-
clusion of the above theorems, provided the finiteness assumed of the inner curvature of
092 = S is replaced by the requirement that the surface measure mg, be Radon. This
alternate framework also suffices for the rigidity result of Theorem 1.4 below. It is related
to but distinct from a notion presented in [13].

4. The property “having finite inner curvature” (Definition 2.17) rules out inward pointing
cusps and cones, and is implied by an exterior ball condition for Q (Lemma 2.21). The
surface measure mg is defined in Definition 2.15.

5. For S with finite inner curvature, the definition of generalized inner mean curvature Hg
is given in Definition 2.17. Let us briefly sketch the idea. Using a needle decomposition
associated to the signed distance function dg := dq — dge, one can disintegrate the refer-
ence measure m into needles, meaning into conditional measures {m, }ocq (for a quotient
space Q) that are supported on curves -, of maximal slope of dg. For g-almost every
curve v, with respect to the quotient measure q of m on @, there exists a conditional
density ho of m, with respect to the 1-dimensional Hausdorff measure H'. Then the inner
mean curvature for mg-a.e. p = Yo (to) € S is defined as 9 logha(tg) = Hg (p). This
left derivative quantifies the extent to which a given collection of needles are spreading
(i.e., capturing more measure) as they exit 2. We postpone details to the Sections 2.3
and 2.4. In the case (X,d,m) = (M, dg, voly) for a Riemannian manifold (M, g) and 02 is
a hypersurface the inner mean curvature coincides with the classical mean curvature.
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6. Our assumptions cover the case of a Riemannian manifold with boundary: If (X,d, m) =
(M,dg,voly) for a n-dimensional Riemannian manifold (M, g) with boundary and Ricci
lower bound ricy; > K, then one can always construct a geodesically convex, n-dimensional
Riemannian manifold M with boundary such that M isometrically embeds into M, and
such that ric;; > K’ [51]. In particular, one can consider M as a CD,(K,n) space that is
a subset of the CD(K’,n) space (M,d,;,voly; ) (Remark 5.8 in [34]).

1.1 Cones and spherical suspension

For smooth, n-dimensional Riemannian manifolds with non-negative Ricci curvature and bound-
ary that has mean curvature bounded from below by n — 1, equality in the inradius estimate is
obtained precisely by the Euclidean unit ball (see [30, 39, 40]). In the nonsmooth case, truncated
cones also attain the maximal inradius.

Let (X,d, m) be a metric measure space.

1. The Euclidean N -cone over (X,d, m) is defined as the metric measure space
(10,00) x X/ ~, dpyel, miyq ) =1 [0,00) xiy X,

where the equivalence relation ~ is defined by (s, x) ~ (¢,y) if and only if either s =¢ =0
or (s,x) = (t,y). The tip of the cone is denoted by o. The distance dgy is defined by

A ((t,2), (5,9)) = t* + 5 — 2ts cos[d(w, y) A,

where a A b := min{a, b}, and the measure m%  is given by r¥dr ® dm.

If an Euclidean N-cone [0, 00) %Y X is a manifold then X = S", N =n € Nand [0, co) x}4S"
is isometric to R™+1,

2. The hyperbolic N-cone is defined similarly:
([O, o) x X/ N,dHyp,mgyp) =: [0, 00) Xgnh X.
The distance dpyp, is defined by

cosh duyp ((t, ), (s,y)) := coshtcosh s — sinh ¢ sinh s cos[d(x, y) A 7],

and the measure mgyp is given by sinh’¥ r dr ® dm.
If a hyperbolic N-cone [0, o) xgnhX is a manifold then X = S", N = n and [0, 00) x2. , S"

is isometric to the n-dimensional hyperbolic plane.

3. Similar, the spherical N -suspension over (X, d, m) is defined as the metric space

([0, 7] x X/ N7dSuSp7m]S\{15p) =: [0, 7] xX X,

sin
where the equivalence relation ~ is now defined by (s,z) ~ (¢,y) if and only if either

s=te€{0,7} or (s,z) = (t,y). The distance dsysp is defined by

cos dgusp((t, x), (s,y)) := costcos s + sintsin s cos[d(z,y) A 7],

N
Susp

If a sphercial N-cone [0, 7] x& X is a manifold then X =S", N =n € N and [0, 7] x2_ S"
is isometric to the (n + 1)-dimensional standard sphere S"*+1.

and the measure m is given by sin’¥ ¢ dt ® dm.
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In each case 0 may also be used to denote the equivalence class of the points (0, x).

The next result shows that in an appropriate setting, cones and suspensions are the only
maximizers of our inscribed radius bound. This requires the Riemannian curvature-dimension
condition RCD(K, N) (Definition 4.1), a strengthening of the curvature-dimension condition that
rules out Finsler manifolds and yields isometric rigidity theorems for metric measure spaces. This
condition is crucial in the proof of the next theorem, since it permits us to exploit the volume
cone rigidity theorem by DePhilippis and Gigli [17]. For K > 0 one can view Theorem 1.4 as
a version of the maximal diameter theorem [32] adapted to mean convex subsets of RCD spaces.
For rigidity results pertaining to other inequalities in nonsmooth or even discrete settings, see
recent work of Ketterer [33], Nakajima, Shioya [45] and Cushing et al. [16].

Theorem 1.4 (rigidity). Let (X,d,m) be RCD(K,N) for K € R and N € (1,00) and let 2 C X
be closed with Q # X, m(Q) > 0, connected and non-empty interior Q°, and m(9Q) = 0. We
assume that K € {N —1,0,—(N — 1)}, 0 = S has finite inner curvature, S # {pt}, and the
inner mean curvature mg-a.e. satisfies Hg > x(N —1) € R. Then, there exists v € X such that

doe(r) = InRad Q = gy (v_1), N

if and only if T \(n—1),§N < 00 and there exists an RCD(N — 2, N — 1) space Y such that Q°

becomes isometric to the ball BTK’X(NA)’N(O) of radius ri \(n-1),§ around the cone lip in
I x é\lfn_ ! Y, when each is equipped with the induced intrinsic distance which it inher-
N-1 K/(N-1)

K= [O,WL).

its from its ambient space. Here I k
N—-1 N—-1

The theorem generalizes corresponding rigidity results for Riemannian manifolds [30, 40] and
weighted Riemannian manifolds [38, 39, 48].

Remark 1.5 (easy direction). In the above rigidity theorem one direction is obvious. Let us
explore this just for the case K =0 and y = 1.

Let Y be an RCD(N — 2, N — 1) space. Both the Euclidean N-cone X = [0,00) xX YV
and its truncation Q = [0,1] x YV are geodesically convex and satisfy RCD(0, N) [31]. The
distance function dge from (X, d, m) restricted to Q is given by dge(t,x) = 1 — t. In particular,
TON—1,N = doe((0,2)) = dqe(0) = 1.

Moreover, S has (inner) mean curvature equal to N — 1 in the sense of Definition 2.17 in
X =10, 00) xﬁfl Y. Indeed, we can see that points (s, z) and (¢, y) in €2 lie on the same needle if
and only if either x = y or st = 0. Hence, the needles in {2 for the corresponding 1D-localization
are t € (0,1) — ~v(t) = (1 —t,z), z € Y. One can also easily check that h;/N_l(t) =t for all
needles 7 in the corresponding disintegration of m[q. Hence Hy, = N — 1.

Remark 1.6. We may allow S = {pt} in Theorem 1.4 if we adopt the convention that ¥ = {pt}
satisfies RCD(N — 2, N — 1) for all N > 1. This would correspond to case (1) of De Philippis
and Gigli’s classification, Theorem 4.2 below.

2 Preliminaries

2.1 Curvature-dimension condition

Let (X, d) be a complete and separable metric space and let m be a locally finite Borel measure.
We call (X,d, m) a metric measure space. We always assume sptm = X and X # {pt}.

The length of a continuous curve v: [a,b] — X is L(y) = sup { Zi-:ll d(y(t:),y(ti1))} €
[0, 0o] where the supremum is w.r.t. any subdivision of [a,b] given by a =1 <to < -+ <tp_1 <
tr = b and k € N. Obviously L(v) > d(y(a),v(b)); a geodesic refers to any continuous curve
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~v: la,b] — X saturating this bound. We denote the set of constant speed geodesics v: [0,1] — X
with G(X); these are characterized by the identity

d(vs,7t) = (t — 8)d(v0, 1)

forall0 <s<t<1. Fortel01]let e;: v € G(X) > ~v(t) be the evaluation map. A subset of
geodesics F' C G(X) is said to be nonbranching if for any two geodesics v,% € F such that there
exists € € (0,1) with ¥]g.¢) = ¥/ (0,¢), it follows that v = 4.

Example 2.1 (Euclidean geodesics). When X C R”™ is convex and d(z,y) = |z — y| then G(X)
consists of the affine maps v: [0,1] — X.

The set of (Borel) probability measures on (X,d, m) is denoted with P(X), the subset of
probability measures with finite second moment is P?(X), the set of probability measures
in P?(X) that are m-absolutely continuous is denoted with P?(X, m) and the subset of measures
in P?(X, m) with bounded support is denoted with PZ(X, m).

The space P2(X) is equipped with the L2-Wasserstein distance Wa, e.g., [50]. A dynamical
optimal coupling is a probability measure IT € P(G(X)) such that ¢ € [0,1] — (e;)xIT is a Wo-
geodesic in P?(X) where (e)4II denotes the push-forward under the map v — e:(y) = (t).
The set of dynamical optimal couplings IT € P(G (X)) between g, 1 € P*(X) is denoted with
OptGeo(pg, 111)-

A metric measure space (X,d,m) is called essentially nonbranching if for any pair ug, pu1 €
P?(X,m) any IT € OptGeo(uo, pu1) is concentrated on a set of nonbranching geodesics.

Definition 2.2 (distortion coefficients). For K € R, N € (0,00) and 6 > 0 we define the
distortion coefficient as

—Fr—— iffel0,n )
te(0,1] = ot (6) = { sing /v (6) [0, 7k /N)
s otherwise,
where m, = 00 if x < 0 and 7, = % if x > 0. Here sing/y was defined after (1.1), and

Uﬁ?N(O) = t. Moreover, for K € R, N € [1,00) and 6 > 0 the modified distortion coefficient is
defined as

t 1 (t 1—L
te[0,1] = iy (0) = t¥ [0} y_1(0)] ',
where our conventions are 0 - 0o := 0 and oc? := 1.

Definition 2.3 (curvature-dimension conditions [41, 49]). An essentially nonbranching metric
measure space (X, d, m) satisfies the curvature-dimension condition CD(K,N) for K € R and
N € [1,00) if for every pg, 1 € PZ(X, m) there exists a dynamical optimal coupling IT between 1
and g such that for all ¢ € (0,1)

()N = T8 (d(0,711))po (0) "V
+ridn(d(0,1)pr ()TN for Thae. y € G(X), (2.1)

where (e;) 41l = p;m.

Now instead suppose (X, d, m) satisfies CD(K’, N’) for some K’ € R and N’ > 1. We say
asubset  C X with m(Q) > 0 satisfies the restricted curvature-dimension condition CD, (K, N)
if for every dynamical optimal coupling IT with (e;)xII(Q) = 1 for all ¢t € [0,1] and po, 1 €
PZ(X,m), (2.1) holds for all ¢ € [0,1].

Remark 2.4 (locally compact geodesic spaces). A CD(K, N) space (X,d,m) for N € [1,00) is
geodesic and locally compact. Hence, by the metric Hopf-Rinow theorem the space is proper
(i.e., Heine—Borel) [7, Theorem 2.5.28].
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2.2 Disintegration of measures

For further details about the content of this section we refer to [22, Section 452].

Let (R, R) be a measurable space, and let Q: R — @ be a map for a set (). One can equip @
with the o-algebra Q that is induced by £ where B € Q if Qfl(B) € R. Given a measure m
on (R,R), one can define its quotient measure q on @ via the push-forward Q4 m =: q.

Definition 2.5 (disintegration of measures). A disintegration of a probability measure m that
is consistent with 9 is a map (B,a) € R X @ — my(B) € [0, 1] such that it follows

e m, is a probability measure on (R, R) for every a € Q,

e o +— m,(B) is g-measurable for every B € R,

and for all B € R and C € Q the consistency condition

m (BNQ~(0)) = /Cma(B)q(da)

holds. We use the notation {mg}.cq for such a disintegration. We call the measures m,
conditional probability measures or conditional measures. A disintegration {mg,}qeq consistent
with Q is called strongly consistent if for g-a.e. & we have mq (Q7!()) = 1.

The following theorem is standard:

Theorem 2.6 (existence of unique disintegrations). Assume that (R, R, m) is a countably gener-
ated probability space and R = UaeQ R,, is a partition of R. Let Q: R — Q be the quotient map
associated to this partition, that is « = Q(x) if and only if v € Ry and assume the corresponding
quotient space (Q, Q) is a Polish space.

Then, there exists a strongly consistent disintegration {mq }aeq of m with respect to Q: R—Q
that is unique in the following sense: if {m] }oecq is another consistent disintegration of m with
respect to Q then m, = m., for q-a.e. a € Q.

2.3 1D-localization

In this section we will recall the basics of the localization technique introduced by Cavalletti
and Mondino for 1-Lipschitz functions as a nonsmooth analog of Klartag’s needle decomposition:
needle refers to any geodesic along which the Lipschitz function attains its maximum slope, also
called transport rays here and by Klartag and others [20, 21, 36]. The presentation follows
Sections 3 and 4 in [11]. We assume familiarity with basic concepts in optimal transport (for
instance [50]).

Let (X,d, m) be a proper metric measure space (with sptm = X as we always assume).

Let u: X — R be a 1-Lipschitz function. Then the transport ordering

Ly = {(CC,y) €X xX: u(y) - U,((L') = d(x7y)}

is a d-cyclically monotone set, and one defines I';! = {(z,y) € X x X: (y,z) € [',}.

Note that we switch orientation in comparison to [11] where Cavalletti and Mondino define T,
as ;L.

The union I'y, UT';, I defines a relation R, on X x X, and R, induces the transport set with
endpoint and branching points

Tue = Pi(R,\{(z,y): 2 =y € X}) C X,

where Py (z,y) = z. For z € T, one defines ', () := {y € X: (x,y) € Ty}, and similarly T'; }(z)
and R, (). Since u is 1-Lipschitz, I',, [';! and R, are closed, as are ', (x), I'; (z) and R, (z).

u
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The forward and backward branching points are defined respectively as

Ay ={z € Tye: Jz,w e Ty(2) & (z,w) ¢ Ry},
A ={r€The: Iz,w €T () & (2,w) ¢ Ry}

Then one considers the (nonbranched) transport set as Ty, := Ty e \(A+ UA_) and the (nonbran-
ched) transport relation as the restriction of Ry, to Ty X Ty.

The sets Tye, A+ and A_ are o-compact ([11, Remark 3.3] and [8, Lemma 4.3] respectively),
and T, is a Borel set. In [8, Theorem 4.6] Cavalletti shows that the restriction of R,, to T, X T,
is an equivalence relation. Hence, from R, one obtains a partition of 7T, into a disjoint family of
equivalence classes { X, }aeq. There exists a measurable section s: 7, — Ty, [8, Proposition 5.2],
such that if (z,s(z)) € R, and (y,z) € Ry then s(z) = s(y), and @ can be identified with the
image of 7, under s. Every X, is isometric to an interval I, C R (cf. [11, Lemma 3.1] and the
comment after Proposition 3.7 in [11]) via a distance preserving map o : Io — X, where 7, is
parametrized such that d(v4(t), s(7a(t))) = sign(va(t))t, t € I, and where signz is the sign of
u(z) —u(s(z)). The map v4: I — X extends to a geodesic also denoted 7, and defined on the
closure I, of I,. We set I, = [a(X,),b(Xa)]-

Then, the quotient map Q: 7, — @ given by the section s above is measurable, and we set
q := Qum]|7,. Hence, we can and will consider @) as a subset of X, namely the image of s,
equipped with the induced measurable structure, and q as a Borel measure on X. By inner
regularity we replace @ with a Borel set @' such that q(Q\Q') = 0 and in the following we
denote Q' by @ (compare with [11, Proposition 3.5] and the following remarks).

In [12, Theorem 3.3], Cavalletti and Mondino extend Definition 2.5 to disintegrate measures m
which are merely o-finite by using a positive function f on X to relate m to a probability
measure f(z)dm(z). Using the framework of this extension, which we also adopt, they prove:

Theorem 2.7 (disintegration into needles/transport rays). Let (X,d,m) be a geodesic metric
measure space with sptm = X and o-finite m. Let u: X — R be a 1-Lipschitz function,
let {Xa}acq be the induced partition of T, via R, and let Q: T, — Q be the induced quotient
map as above. Then, there exists a unique strongly consistent disintegration {mq}acq of m|r,
with respect to 9.

Now, we assume that (X, d, m) is an essentially nonbranching CD(K, N) space for K € R and
N > 1. Recall the Bishop—Gromov inequality holds and m is therefore o-finite. The following
is [12, Lemma 3.4].

Lemma 2.8 (negligibility of branching points). Let (X,d,m) be an essentially nonbranching
CD(K, N) space for K € R and N € (1,00) with sptm = X. Then, for any 1-Lipschitz function
u: X = R, it follows m(Ty \Ty) = 0.

The initial and final points are defined by
a:={z € Tye: I, Hz) = {z}}, b:={z e Tye: Tu(z) ={x}}.

In [9, Theorem 7.10] it was proved that under the assumption of the previous lemma there exists
Q C Q with q(Q\Q) = 0 such that for o € @ one has X,\7, C aUb. In particular, for a« € Q
we have

Ru(z) = Xa D Xa O (Ru(2))° VzeQ 'a)c Ty, (2.2)

where (R, (z))° denotes the relative interior of the closed set R, (x).
The following is [12, Theorem 3.5].
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Theorem 2.9 (conditional measures inherit curvature-dimension bounds). Let (X,d, m) be an
essentially nonbranching CD(K, N) space with sptm = X, K € R and N € (1,00). For any 1-
Lipschitz function u: X — R, let {mq }qcq denoted the disintegration of m |1, from Theorem 2.7
which is strongly consistent with the quotient map Q: Ty, — Q. Then there exists Q such that

1(Q\Q) = 0 and Va € Q, m, is a Radon measure with dm, = hedH'|x, and (Xa,d,mg)
verifies the condition CD(K, N). More precisely, for all o € Q it follows that

_1 _1 . _1
ha(W) ¥ > ol (ADRa(10) ¥ + 03y () ha() ¥ (23)

for every affine map v: [0,1] = (a(Xa),b(Xa))-

Remark 2.10 (semiconcave densities on needles). The property (2.3) yields that h, is locally
Lipschitz continuous on (a(X,),b(X4)) [11, Section 4], and that hy: (a(Xa),b(Xa)) — (0,00)
satisfies

d? K

th 4 th <0 on (a(Xa),b(X,)) in distributional sense; (2.4)

1
in particular, hy ' is semiconcave on (a(X4), b(X,)), hence admits left and right derivatives at
each point.
Conversely, it is well-known that any function h, > 0 satisfying (2.4) can be chosen to be
continuous up to its endpoints and that this extension then satisfies (2.3); see also Remark 2.12.

Remark 2.11. We observe the following from the proof of [11, Theorem 4.2]: when Q@ C X
satisfies the restricted condition CD,.(K’, N) and the 1-Lipschitz function v = dge is chosen to
be the distance function to Q°, then h., satisfies (2.3) with K’ replacing K.

Let us be a little bit more precise here. For the proof of Theorem 4.2 in [11] the authors
construct L?-Wasserstein geodesics between m-absolutely continuous probability measures such
that the corresponding optimal dynamical plans are supported on transport geodesics of the
1-Lipschitz function ¢ that appears in the statement of [11, Theorem 4.2].

In our situation, when ¢ is actually dqe, all transport geodesics of positive length are inside
of Q. Hence, the L?-Wasserstein geodesics constructed by Cavalletti and Mondino are concen-
trated in © and the restricted condition CD,(K’, N) applies. Then we can follow verbatim the
proof of Theorem 4.2 in [11].

Remark 2.12 (extended densities). The Bishop—Gromov volume monotonicity implies that A,
can always be extended to continuous function on [a(X,),b(X,)] [12, Remark 2.14]. Then (2.3)
holds for every affine map 7: [0,1] — [a(Xa),b(Xa)]. We set (ha ©7a(7)) * La(x0)b(Xa)] = Pa(T)
and consider h, as function that is defined everywhere on R. We also consider %ha: Xo— R
defined a.e. via & (hq 074)(r) =1 Lha(r).

It is standard knowledge that the derivatives from the right and from the left

d+ . ha(r+1t) — ha(r) d- . ha(r+1t) = ha(r)

drh o(r) = lgf(l)l t ’ drh o(r) = lt%l t

exist for r € [a(X,),b(Xs)) and 7 € (a(X,),b(X4)] respectively. Moreover, we set %ha = —00
in b(X,) and (é—;ha = o0 in a(Xa).

Remark 2.13 (generic geodesics). In the following we set Qf := Qn Q, where Q and Q index
the transport rays identified between Lemma 2.8 and Theorem 2.9. Then, q(Q\QT) = 0 and

for every a € Q1 the inequality (2.3) and (2.2) hold. We also set Q71(Q") =: 7J c 7T, and
Upers Rul@) = Tie € T
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2.4 Generalized mean curvature

Let (X,d, m) be a metric measure space as in Theorem 2.9. Let Q2 C X be a closed subset, and
let S = 02 such that m(S) = 0. The function do: X — R is given by

do(z) = égg d(z,y).

The signed distance function dg for S is given by
ds ::dQ—dQc: X — R.

It follows that dg(x) = 0 if and only if x € S, and dg < 0 if x € Q and dg > 0 if x € Q°. It is
clear that dg|q = —dge and dg|ge = dg. Setting v = dg we can also write

ds(z) = sign(v(z))d({v = 0}, x), Ve X.

Since X is proper, dg is 1-Lipschitz [12, Remarks 8.4 and 8.5]. Let Q° denote the topological
interior of €.

Let T4g.e be the transport set of dg with end- and branching points. We have 74, . D X\S. In
particular, we have m(X\7g,) = 0 by Lemma 2.8 and m(S) = 0. Therefore, by Theorem 2.9 the
1-Lipschitz function dg induces a partition {Xa},cq of (X, d, m) up to a set of measure zero for
a measurable quotient space @), and a disintegration {mq}q.cq that is strongly consistent with
the partition. The subset X, a € @, is the image of a distance preserving map v, : I, — X for
an interval I, C R with I, = [a(X,),b(X4)] 2 0.

We consider QT € Q as in Remark 2.13. One has the representation

/ma ) dg(« /QT/ r)drdq(a)

for all Borel B C X.
For any transport ray X, with a € QT, it follows that dg (7. (b(X4))) > 0 and ds(va(a(X4)))
< 0 (for instance compare with [12, Remark 4.12]).

Remark 2.14 (measurability and zero-level selection). It is easy to see that A := Q~1(Q(S N
Tas)) C Tag is a measurable subset. The reach A C g, is defined such that Vo € Q(A) we have
XoaNS ={y(ta)} # @ for a unique t, € I,. Then, the map 5: y(t) € A — (to) € SN Taq
is a measurable section (i.e., selection) on A C Ty, and one can identify the measurable set
Q(A) C Q with AN S and can parameterize 7, such that ¢, = 0.

This measurable section § on A is fixed for the rest of the paper. The reach A is the union
of all disjoint needles that intersect with 9€2 — possibly in a(X,) (or in b(X,)) provided a(X,)
(respectively b(X,)) belongs to I,. We shall also define the inner reach Bi, as the union of all
needles disjoint from Q¢ and the outer reach Byy as the union of all needles disjoint from €.
The superscript T will be used indicate intersection with 7;;3. Thus

ANT) = A" and U Ras(@) =: Al
zcAf

The sets AT and Al are measurable, and also

Bl =0°nT/\ATc T and Bl =0nT]\ATc Ty, (2.5)

as well as J, g1 Rag(z) = Blut eand U, pi Rag(2) = Bjne are measurable.
out in
The map o € Q(AT) — h,(0) € R is measurable (see [9, Proposition 10.4]).
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Definition 2.15 (surface measures). Taking S = 0 as above, we use the disintegration of
Remark 2.14 to define the surface measure mg via

/ o) dms(z) := /Q 1y P2 O)al0) da(e)

for any bounded and continuous function ¢: X — R. That is, mg is the push-forward of the
measure hq (0) dq(a)[q(aty under the map 8: v € Q(AY) = 4(0) € S.

Remark 2.16 (surface measure via ray maps). Let us briefly explain the previous definition from
the viewpoint of the ray map [11, Definition 3.6] or its precursor from the smooth setting [21].
For the definition we fix a measurable extension sg: Tq, — Tqg such that so|4+ = § as in
Remark 2.14. As was explained in Section 2.3 such a section allows us to identify the quotient
space @ with a Borel subset in X up to a set of g-measure 0. Following [11, Definition 3.6] we
define the ray map

g: VCROQ(AUBiy) X (—00,0] = X
into € and its domain V via its graph

graph(g) = {(a, t,z) € Q(A) x R x Q: z € X, —d(z,a) =t}
U{(a,t,xz) € Q(Bin) x Rx Q: 2z € X, —d(z,7.(b(X4))) = t}.

This is exactly the ray map as in [11] up to a reparametrisation for @ € Q(Bj,). Note that
9(0,0) = 7(0) = a and g(,t) = Ya(t) if a € Q(A) but 1 (t + d(b(Xa),)) = gla?) for
a € Q(Biy,). Then the disintegration for a non-negative ¢ € Cy(Q2) takes the form

[oaun=[ [ oogathaegiandc o)
Q Qv
where V, = P,(VN{a} xR) C R and Py(a,t) = t. With Fubini’s theorem the right hand side is

[ éestahaoglandas )t = [[ sogathaogandalad,

1% Vi

where V; = PL(VNQ x {t}) C Q and Pi(a,t) = a. In particular, for L'-a.e. t € R the map
a > hg o g(a,t) is measurable. Hence, for £'-a.e. t € R we define dp;(a) = hq 0 g(a, ) dqly, (@)
on ). Then disintegration takes the form

mlo = mlans;, = / (g £)p) .

Now, we can consider the push-forward mg, = g(-,0)xpo. When Bj, # @ then mg, may be
concentrated on a larger set than mg but by construction one recognizes that mg = mg, | 4+-

Definition 2.17 (inner mean curvature). Set S = 02 and let {X,}acq be the disintegration
induced by u := dg. Recalling (2.5), we say that S has finite inner (respectively outer) curvature
if m (BiTn) = 0 (respectively m (Blut) = 0), and S has finite curvature if m (BiUlt U B;rn) =0.If S
has finite inner curvature we define the inner mean curvature of S mg-almost everywhere as

&
rlr=0l08ha 0 a(r) if p=17a(0) € SN A,
0 if peBl . NS,

out,e

peS— Hg(p):=

where we set ‘21—; log ha(74(0)) = —o0 if ha(74(0)) = 0.
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Remark 2.18 ((sign) conventions). We point out two differences in comparison to [34]: For
the definition of A" we do not remove points that lie in a and b, and we switched signs in the
definition of inner mean curvature. The latter allows us to work with mean curvature bounded
below instead of bounded above.

Remark 2.19 (smooth case). Let us briefly address the case of a Riemannian manifold (M, g)
equipped with a measure of the form dm = Wdvol, for 0 < ¥ € C°°(M) and §2 with a boundary S
which is a smooth compact submanifold. For every x € S there exist a, < 0 and b, > 0 such
that v, (r) = exp,(rVdgs(z)) is a minimal geodesic on (az, b;) C R, and we define

U={(x,r) e SxR:re(azby)} CSxR

and the map T: U — M via T(x,r) = ~,(r). The map T is a diffeomorphism on U, with
volg(M\T(U)) = 0 and the integral of ¢ € C(M) can be computed effectively by the following
formula:

ba
/cbdm—// ¢oT(x,r)det DTy, |1,5V o T(x,r) dr dvolg(x),
S Jag

where volg is the induced Riemannian surface measure on S. By comparison with the needle
technique disintegration it is not difficult to see that dmg = W dvolg. Moreover, the open needles
for dg are the geodesics vz : (az, bz) — M and the densities h;(r) are given by c(x) det DT{, , W o
T(x,r) for some normalization constant c(z), € S.

A direct computation then yields

d
. log hy(0) = Hg(x) + (Vdg(z), Vieg ¥)(x), Vo e,

where Hg is the standard mean curvature, i.e., the trace of the second fundamental form of S.

Definition 2.20 (exterior ball condition). Let @ C X and 9Q = S. Then S satisfies the
exterior ball condition if for all x € S there exists 7, > 0 and p, € Q° such that d(x,p,) = ry
and B, (pg) C Q°. We say S satisfies a uniform exterior ball condition if there exists § > 0 such
that r, > d forall x € S.

Lemma 2.21 (exterior ball criterion for finite inner curvature). Let Q C X. If S = 09 satisfies
the exterior ball condition, then S has finite inner curvature.

Proof. Let S satisfy the exterior ball condition. Then for every z € S there exists a point
pr € Q° and a geodesic v;: [0,7,] — Q° from x to p, such that L(v,) = d(z,p,) = r, and
d(pz,y) > ry for any y € S\{z}. Hence, ds(p,) = r» and the image of 7, is contained in Ry, (z).

Recall the definition of Qf ¢ Q (Remark 2.13). Since Q' has full g-measure, it is enough to
show that for all o € QT the endpoint b(X,) > 0. Then also BiT][1 = @. Assume the contrary.
Let o/ € Q' and let o/ := v, be the corresponding geodesic such that b(X,) = 0, that is
Im(Y'|(a(x_),0) € Q. The concatenation v": (a(Xa),rz) — X of o/ with v, for z = 4/(0)
satisfies v”(0) = x and

d(y"(s),7"(t)) < d(v"(s),2) + d(z,7" (1)) = ds(v"(t)) — ds(v"(s)) < d(7"(s),7"(t)) (2:6)

for s € (a(Xy),0] and t € [0, 7).

Thus the inequalities in (2.6) are actually equalities. Hence, Im(y"”) C Ry, (7" (s)), the points
that are Ry -related to 7" (s). These are exactly the points y that satisfy (2.6) with 4" (¢) replaced
with y. But this contradicts the requirement X, = Rq.(7”(s)) from the definition of QT. W
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Remark 2.22 (partial converse). As was pointed out to us by one of the referees the converse
implication in Lemma 2.21 holds in the following sense. If for x € S N A then there exists
p € X that either belongs to Q¢ or 2° such that B,(p) is either fully contained in Q¢ or Q° with

r=d(p,x).

Remark 2.23 (related literature). We note that the previous notion of mean curvature under
the assumption that S has finite inner curvature, allows to assign to any point p € S N Af
a number that is the mean curvature of S at p. This was useful for proving the Heintze-Karcher
inequality in [34].

If one is just interested in lower bounds for the mean curvature, one can adapt a definition
of Cavalletti-Mondino [13]. They define achronal future timelike complete Borel subsets in
a Lorentz length space having forward mean curvature bounded below. We will not recall their
definition for Lorentz length spaces but we give a corresponding definition for CD(K, N) metric
measure spaces in the appendix of this article and outline how analogs of our results also hold
for this notion of lower mean curvature bounds.

3 Proof of inradius bounds and stability (Theorems 1.1 and 1.2)

Recall the Jacobian Jg g n(r) and its maximal interval r € (—rg g n, 7K HN) of positivity
around the origin defined in (1.1)—(1.4). To prove our main theorems requires a sort of below-
tangent implication (3.2) of distorted power concavity (3.1) from [34]:

Lemma 3.1 (comparison inequality). Let h: [a,b] — [0,00) be continuous such that a <0 < b
and every affine map v: [0,1] — [a,b] satisfies

hw) 7T 2 ol (ADR(0) ¥ + 00y (ADR() ™ Yt e [o,1]. (3.1)
Then
1 1 dt 1
(h(r))~-1 < (h(0))~-T COS%(T) + R Szo(h(s))ﬁ Sinm (r) Vr € |a,b]. (3.2)

If h(0) > 0, it follows h(r)h(0)™" < Jx g (r) where H = —9=
b<rkmHN-

—o logh(r) and in particular

Proof. If a < 0, the lemma is exactly the statement of Corollary 4.3 in [34].
For a = 0 we pick r, | 0. Then, the statement follows since %h(r) is continuous from the
left for a semiconcave function h. |

Remark 3.2 (reverse parameterization). If instead h: [a,b] — [0, 00) is continuous and every
affine map ~: [0,1] — [a, b] satisfies (3.1) but a < 0 < b, then applying Lemma 3.1 to h(r) :=
h(—r) yields —a < 7, 7 With H= ((iT;‘r:O log h(r).

Proof of Theorem 1.1. Let (X,d,m) be a CD(K’, N) space and consider Q C X satisfying
CD, (K, N) as assumed in Theorem 1.1. Let u = dg be corresponding signed distance function.
Let {X4s}aco be the decomposition of 7y, and [ m, dq(a) be the disintegration of m given by
Theorem 2.9 and Remark 2.14. In Remark 2.13 we define Qf ¢ Q. Recall that QT is a subset
of @ with full g-measure and for all a € QJr one has dmg = ho dH!, Xae = X, and h,, satisfies

1 K
(hzfl)”+mhé§* <0  on (a(Xa),0) (33)

in the distributional sense.
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Assume K € R and Hg > x(N — 1) mg-a.e. Recall that

H3 (a(0) = S| Togha(r).
In particular, ho(0) > 0 for g-a.e. @ € QF, since ho(0) = 0 yields %—;log ha(r) = —o0 <
X(N — 1) by Definition 2.17. Now (3.3) implies h, can be represented by a continuous function
on [a(X4), 0] which satisfies the hypotheses of Remark 3.2. That remark then asserts —a(X,) <
TKx(N—1),§ for any a € Q.

Since (mq o) et is a disintegration of m |, and since m,, |q is supported on Im(va{a(x.),0])
where 74 : [a(Xa,0] — Q is a geodesic, it follows that for m-almost every x € € there exists
a € QF and t € [a(X,),0] such that = 7,(t). For such x it follows that dgec(z) = —t <
—a(Xa) <7 (N—1),n- Hence doc < 7\ (nv—1),n for m-almost everywhere in Q.

By continuity of doc and X = sptm it follows that doc(z) < g\ (v—1),n for all z € Q. In
particular, the inscribed radius satisfies InRad Q < rg \(v—_1) n- |

Proof of Theorem 1.2. Assume K > K — §, Hg > H — § mg-a.e. and N < N +§. Since
§>0and X € CD(K,N) imply X € CD(K — §, N + ), Theorem 1.1 yields

InRadQ S TR757ﬁ757N+6.

Now for any € > 0 there exists 6 > 0 such that rg_s5p5_ 5545 < T gy + € since the

function § K H (r) = cos K (r) — +25 sinNKl (r) whose first positive zero defines rx g N is
continuously differentiable with respect to K, H, N and r, and its derivative is non-zero at

T =Tk f.; the implicit function theorem then gives continuous differentiability of rjz g § with
respect to its parameters near any (%, %) satisfying the ball condition. If the ball condition
is not satisfied, then 77 g § = 0o and the theorem holds trivially. |

4 Rigidity
4.1 The Riemannian curvature-dimension condition

We recall briefly the Riemannian curvature-dimension condition that is a strengthening of the
CD(K, N) condition and the result of the combined efforts by several authors [1, 4, 5, 9, 19, 23].
The Cheeger energy Ch: L*(m) — [0, co] of a metric measure space (X,d, m) is defined as

2Ch(f):= liminf , (Lip u,)? dm, (4.1)
Lip(X)oun 2> f

where Lip(X) is the space of Lipschitz functions on (X, d, m) and Lip u(x) := lim sup %
Yy—T ’

is the local slope of u € Lip(X). The L?-Sobolev space is defined as W'2(X) = {f € L?(m):
Ch(f) < oo} and equipped with the norm | f|? := Hinz(m) +2Ch(f) [2, 3]
For u € WH2(X) the Cheeger energy can be written as

ZCh(u):/ |Vu/|? dm
X

for a measurable density |Vu|: X — [0, 00) that is identified as the minimal weak upper gradient
of u. For more details about the minimal weak upper gradients and its characterizations we
refer to [2, 14].
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Definition 4.1 (Riemannian curvature-dimension condition). A metric measure space (X, d, m)
satisfies the Riemannian curvature-dimension condition RCD(K, N) if (X,d, m) satisfies the
condition CD(K, N) and W'2(X) is a Hilbert space, meaning the 2-homogeneous Cheeger
energy (4.1) satisfies the parallelogram law:

Ch(f + g) + Ch(f — g) = 2Ch(f) + 2 Ch(g).

When (X,d, m) is an RCD space, one can introduce a symmetric bilinear form (-,-) on the
Sobolev space W12(X) with values in L!(m) via

(.9) € WH(X) x W'(X) 5 (V1. Vg) = (IV(f + ) — 1IV(f ~ g) € L' (m).

4.2 Volume cone implies metric cone

The following theorem by Gigli and De Philippis will be crucial in the proof of the rigidity result.

Theorem 4.2 (volume cone implies metric cone [17, Theorem 4.1]). Let K € {—(N—1),0, N—1},
N € [1,00) and (X,d,m) an RCD(K, N) space with sptm = X. Assume there exists o € X and
R >1r >0 such that

m(Bg(0)) = e m(B,(0)). (4.2)

Then exactly one of the following three cases holds:

(1) If OBRry2(0) contains only one point, then X is isometric to [0,diamx] (or [0,00) if X
is unbounded) with an isometry that sends o to 0 either way. The measure m|g, ) s

proportional to (sm )dx
Nfl
(2) If O0BRys(0) contains exactly two points then X is a 1-dimensional Riemannian mani-
fold, possibly with boundary, and there exists a bijective, locally distance preserving map
from Bg(o) to (=R, R) that sends o to 0 under which the measure m |p (o) becomes pro-

portional to (sm K ! \:U|)dx
N—

(3) If0Bp/2(0) contains more than two points then N >2 and there em’sts an RCD(N—-2,N—-1)

space Z with diamy < 7 and a local isometry U: Br(o) — [0, R) x Z sending o to 0

sm K
N-T

that is also a measure preserving bijection.

Remark 4.3 (excluding the middle case). In the second case the conclusion also implies that
N = 1: otherwise X is locally isomorphic to (—R, R) equipped with a measure proportional
to (Sln%/N L |:L“)dl' But for N > 1 this space does not satisfy the CD condition because the
density of the reference measure vanishes at 0. This means the density is not semi-concave which

is a necessary condition for the measure on a 1D space to satisfy the CD condition.

Remark 4.4. In the proof of Theorem 4.2 Gigli and De Philippis show that the map U has an
inverse V': Br(0) — Br(o) that is also a local isometry.
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4.3 Distributional Laplacian and strong maximum principle

We recall the notion of the distributional Laplacian for RCD spaces (cf. [12, 23]).

Let (X, d,m) be an RCD space, and Lip,.(£2) denote the set of Lipschitz functions compactly
supported in an open subset 2 C X. A Radon functional over €2 is a linear functional T :
Lip.(£2) — R such that for every compact subset W in Q there exists a constant Cy > 0 such
that

IT(f)] < Cw max |f] V f € Lip,(Q) with spt f C W. (4.3)

One says T' is non-negative if T'(f) > 0 for all f € Lip.(Q) satisfying f > 0.
The classical Riesz—Markov—Kakutani representation theorem says that for every non-nega-
tive Radon functional T' from (4.3) there exists a non-negative Radon measure pup such that

T(f) = [ fdpr for all f € Lip.(Q).

Definition 4.5 (nonsmooth Laplacian). Let €@ C X be an open subset and let u € Lip(X).
One says u is in domain of the distributional Laplacian on €2 provided there exists a Radon
functional T over €2 such that

T(f) = /(Vu,Vf) dm V f € Lip.().

In this case we write u € D(A,Q). If T is represented as a measure pr, one writes up € Aulq,
and if there is only one such measure pr by abuse of notation we will identify pr with 7" and
write pur = Aulgq.

We also recall that u € Wﬁ)f(ﬂ) for an open set 2 C X if and only if for any Lipschitz
function ¢ with compact support in  we have ¢ -« € W12(X). In particular, if v € Lip(X)
then u € W22 (Q).

Remark 4.6 (locality and linearity).
(i) If u € D(A,Q) and € is open in X with Q" C Q, then v € D(A, Q') and for p € Aulq it
follows that u|o € Aulg.
(i) If u,v € D(A,Q), then u+v € D(A,Q) and for p,, € Aulg and u, € Avg it follows that

Recall that u € W12(Q) is sub-harmonic if
/]Vu\Qdm S/ IV(u+g)?dm  Vge WH(Q) with g < 0 compactly supported in Q°.
Q Q
One says u is super-harmonic if —u is sub-harmonic, and u is harmonic if it is both sub- and

super-harmonic. The following can be found in [24, Theorem 4.3].

Theorem 4.7 (characterizing super-harmonicity). Let X be an RCD(K, N) space with K € R
and N € [1,00), let Q@ C X be open and u € WI})CZ(Q) Then w is super-harmonic if and only if
u € D(A,Q) and there exists pu € Aulg such that p < 0.

The following is [6, Theorem 9.13] (see also [25]):

Theorem 4.8 (strong maximum principle). Let X be an RCD(K, N) space with K € R and
N € [1,00), let Q C X be a connected open set with compact closure and let u € VVlif(Q) NC(Q)
be sub-harmonic. If there exists xog € Q0 such that u(zg) = maxgu then u is constant.

Let us recall another result of Cavalletti-Mondino:
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Theorem 4.9 (Laplacian of a signed distance, [12, Corollary 4.16]). Let (X, d, m) be a CD(K, N)
space, and 2 and S = 0 as above. Then ds € D(A, X\S), and one element of Adgs|x\s that we
also denote with Adg\x\s is the Radon functional on X\S given by the representation formula

(Ads)|x\s = (log ha)' m|x\s + /Q(ha5a(xa)m{ds<o} — halp(x.)n{ds>0y) da(a).

We note that the Radon functional Adg|x\s can be represented as the difference of two measures
[Ads|t and [Ads|x\s]™ such that

[AdS‘X\S}reg [AdS’X\S]reg (logh ) m-a.e.,

where [AdS’X\S]reg denotes the m-absolutely continuous part in the Lebesgue decomposition of
[AdSIX\S]i In particular, —(log hy)" coincides with a measurable function m-a.e.

To prove the rigidity asserted in Theorem 1.4, we need one more lemma:

Lemma 4.10 (Riccati comparison). Let u: [0,b] — R be non-negative and continuous such that
u" 4 ku < 0 in the distributional sense, u(0) = 1 and v’ (0) < d. Let v: [0,b] — R be the mazimal
non-negative solution of v + kv = 0 with v(0) =1 and v'(0) = d. That is, v = S, _q from (1.5).
Then b > b and d 7 logu < (logw) on [0,b).

Proof. Note that v(r) = cos,(r) + dsing(r) and b = Tw(N—1),—d(N—1),n- Then Lemma 3.1
already yields that b < b and u < v on [0, b]. Therefore, without loss of generality we restrict v
to [0, b].

We pick ¢ € C%(R) compactly supported in (—1,1) with [pdL! = 1 and define ¢ (z) =
ep(%). Let € > 0 and € € (0,€), and let uc = [@c(t)u(s — t) dt be the mollification of u by ¢..
One can check that u. is well-defined on [€,b — €] and u. € C?([¢,b — €]) satisfies

u? + (k+ 8)ue <0

in the classical sense with 6 = d(e) — 0 for € — 0. Since wu is continuous, u(t) — u(t) for all
t € [€,b — €. Moreover, u’(t) — u/(t) for every t € [€,b — € where u is differentiable.

Let v: [0,b] — [0,00) be the maximal positive solution of v”+(;~s+5( ))ve = 0 with v.(0) = 1
and v/(0) = d. Since 6(¢) — 0 for € — 0 we have b, — b, v. — v and v’ — v pointwise on [0, b]
if e = 0.

We pick € € (0,b) and ¢ € [¢,b — €] where u is differentiable. Then

0> / (! + (5 + 6)ue) — ue(v!! + (k + 8)v)] ALY = / (v — [ucrl]'} AL

= ve(t)ue(t) — uc(t)ve(t) + uc(€)ve(e) — ve(€)uc(€)
— o(t)u' () — u(t)'(t) + u('(€) — v(@)u'(€).

Since u is semiconcave and continuous on [0,b], the right derivative 9-u: [0,b] — R U {oo} is

a ¥
continuous from the right. Hence, for € | 0 and any ¢ € (0,b) it follows
d* dt d*
0> v(t)au(t) —u(t)v'(t) + u(0)v'(0) — ’U(O)EU(O) > v(t)Eu(t) —u(t)v'(t).
+ oy
Hence ?Tt logu = 4— < % = (logv)’ as desired. [

We obtain the following improved Laplace comparison statement for distance functions in
CD(K, N) spaces that may be of interest in its own right. In the smooth context the result was
obtained by Kasue [29, Corollary 2.44] for Riemannian manifolds and by Sakurai [48, Lemma 3.3]
for weighted Riemannian manifolds. For weighted Finsler manifolds that satisfy a lower Bakry—
Emery Ricci curvature bound in the sense of [47] the result seems to be new.
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Corollary 4.11 (improved Laplace comparison). Let (X,d,m) be an essentially nonbranching

CD(K',N) space with K’ € R, N € (1,00) and sptm = X. For K,x € R, let  C X be closed

with Q # X, m(2) > 0 and m(0Q2) = 0 such that Q satisfies CD,(K,N) and 0 = S has finite

inner curvature. Assume the inner mean curvature Hg satisfies Hg > (N — 1)x mg-almost
everywhere. Then

S (dQc)

(Adge)|oe < (N —1)2—

S X(dgc)

where s, \ was defined in equation (1.5).

|

m’Q°7

N-1"

Proof. Let u = dg be the signed distance function of S. Let {X,}qcq be the decomposition
of T, and [ m, dg(a) be the disintegration of m given by Theorem 2.7 and Remark 2.14. Recall
that ma = hoH! for g-a.e. o € Q. We consider Qf € @ that has full g-measure as defined in
Remark 2.13. For every a € Qf we have that m, = hoH', Xae = X, and h, is continuous on
[a(X4), 0] by Remark 2.12 and satisfies

1 K 1
( év_l)” + mhéf—l <0 on (a(X4),0) Vae Q' (4.4)
in the distributional sense. Note that we have the constant K because of Remark 2.11. As
usual we write hq = hq © Yq- VVe~ also have the properties of h, as discussed in Remark 2.10.
The function 7 € [0, —a(Xa)] — ha(r) := ho(—7) is also continuous and (4.4) is still holds on
(0, —a(Xa)). Recall that by the lower mean curvature bound the set of a’s in @ with h,(0) =0

has g-measure 0. Hence h,(r) > 0 for g-a.e. a.
- - 1
Therefore, for g-a.e. @ € Q7 we have that [ha(r)/ha(0)]¥T =: u(r) satisfies u”(r) +
2+ u(r) < 0 in the distributional sense with u(0) = 1. Moreover, we have

- +

X(N = 1) < Hy (1a(0) = | toghar) = -5

dr lr= dr log fra(r)

r=0

and therefore
1

INGIRE
r=0 [}NLQ(O)] =X

By Theorem 4.9, dg € D(A, X\S) and

dt d+t
E 7":0u "= 5

(Ads)|x\s = (log ha)' m|x\s + /Q(ha5a(xa)m{ds<o} — halp(x.)n{ds>0y) da(a).

Recall that —dg|ge = dgec|ge and by locality of the distributional Laplacian ((AdS)|X\S)|QO -
A(ds|ae) = A(—dqc|qo). Hence

A(—dgc|ge) = (log ha)’m Qo + /Q (hoc5a(Xa)m{ds<0} - ha5b(Xa)ﬂ{d5>O} dg(a).

Any 7, for a € Q that starts inside of Q° satisfies v, (b(X4)) € Q°. Hence fQ hadp(x.)n0e da(a)
= 0. Recall that —(log ko) (1) = (log hy )’ (—r). Tt follows that

(Adge)|ge = —A(—dge)|ge < —(logha)' m|qe = (log he) m |qe.

In the first equality it seems as one would use linearity of the Laplacian to pull the minus sign
in front of A. But if one examines the proof of Theorem 4.9, one can easily observe that this
is possible also in CD (or even MCP context) because replacing dg with —dg just results in
reversing the parametrization of the geodesics 7.

Now the corollary follows immediately from the curvature bounds and the Riccati comparison
lemma (Lemma 4.10). [
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4.4 Proof of rigidity (Theorem 1.4)

1. We assume that K € {N —1,0,—(N —1)}.
Now dg|qe = —dqac|qe € D(A,Q°) and by Corollary 4.11 we have

1 Ad ‘ 8/]\]%7)((6195) | —% sin% dQc —XCOSN% dQc | (4 5)
N QCQO S K (d )on— COSLdQc—XSiHLdQc e '
N-1'X N-1 N-1
Assume equality holds in the inradius bound (1.6), meaning do<(p) = rgy(v—1)8 < 0o for

some p € Q° by Remark 2.4. In particular, there exists a geodesic v*: [a,b] — Q of length
L(v*) = d(v*(a),v*(b)) = Tk (N—1),§ Such that v*(a) = p and v*(b) € S := IQ. Moreover
B (p) C 2° and

TK,x(N-1),N

1 Cos_K_ dy
Ad ’Qo\{p} < 7d m ‘Qo\{p} (46)

sin_x
N—-1 p

N —

by the Laplace comparison theorem [23, Corollary 5.15] (heuristically the limit y — oo in
inequality (4.5); see also [12, Theorem 1.1]).

We will add the previous inequalities (4.5) and (4.6). We first note that

Sln%(dp)[COS% dge — Xsin_x doe] = sm%(dp) [SNK x (dQc)] m-a.e. on Q°.

This is true because on the one hand Jg \(v—1)n(doc) = (tsK/(]\/,l)7><(dQc))N*1 > 0 m-a.e.
on 2°. The latter is easy to see using the disintegration induced by dge on 2° and Theorem 1.1.
For the other factor recall when K = N —1 > 0 that d,, < 7 for any p € X by the Bonnet-Myers
diameter estimate (e.g., [49]) with at most one point ¢ # p where dp(q) = 7 [46].

Adding the inequalities (4.5) and (4.6) and using the linearity of the Laplace operator yields

A(dy + doe)
o\{pt N -1

(sin%(dp) [Sﬁ,x(dm)]) Q°\{p}

. K
< <[COSNI(1 dp][cos% dQC] - [sm% dp]ﬁ[smNK dgc]>m|ﬂo\{p}

—X([SmNL dp][cosL dQc] + [COSL dp][sin% dQc])m]Qo\{p}
= (COS K (d —I—dQc) X Sin Ii (Cl +dﬂc))m|ﬂo\{p}

8%7x<dp+dgc)m‘go\{p} <0.

The last inequality follows from rg \(v—1),ny < dp+dae < 2rg (n_1),n by the triangle inequality,

the definition of r \ (v—1),n, the period < 27 , (y_1),y of the sinusoid s_x e and Theorem 1.1.
N-1’

Hence dp+dg- on Q°\{p} is a super-harmonic function that attains its minimum TKx(N—1),N
inside Q°\{p} along the geodesic v*. Therefore, dj, + doc = rg \(v—1),n On the connected
component Q* of 4* in Q°\{p} by the strong maximum principle (Theorem 4.8).

In particular, it follows that Q* C BTK,X(NA)YN(p) and a(Xq) = =gy (N—1),§ for g-a.e. a € Q
such that Im~y, intersects with Q* (and therefore v, (o) C 2*). Moreover, both inequalities (4.5)
and (4.6) are saturated throughout Q*:

K .
—N—-1 SN K dQc X COS NIE dQc

Adoclor = (N —1 Nl m
aclo ( ) cos_rk doe — xsin_x dge
N—-1 N-—1

Q*-

By Theorem 4.9,

(Ady) 0 7a(r) = —(Adge) 0 Ya(r) = (log ha)' 0 Ya(r)
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for r € [~rg (v-1),n,0) and g-a.e. @ € Q. Recall that (logha) o v4(r) is in fact given by
(log hy ) (1) for the density h, of m, with respect to £ on [a(X,), b(Xa)]-
Solving the resulting ODE for h,, yields

ha(r) = ha(0)Jx y(v—1),n (=T) for r € [—rny(N,l),N, 0) and g-a.e. a € Q.

Proportionality of s « X(T’K x(N=1),n —T) to sin_x _(r) therefore provides A > 0 such that
N*l ) b b

K
N-1

R
m(Bgr(p) NQ*) = )\/0 (Sin% )N_1 dr VR e [O,TK,X(N_1)7N].
Hence By y_1.(P) N Q" = Q" is a volume cone in the sense of (4.2).

2. We will show that Q°\{p} is connected. We argue by contradiction and outline the idea
first. We can construct explicitly a Wasserstein geodesic between d, for a point ¢ € Q°\(Q*U{p})
and another m-absolutely continuous measure concentrated in Q*. If Q°\{p} is not connected
but Q° is, this Wasserstein geodesic is concentrated on branching geodesics unless the metric
measure space is isomorphic to an interval equipped with a measure that has a non-negative
and semiconcave density w.r.t. £'. Since the former contradicts the essentially non-branching
property of RCD spaces, the latter must hold. But in this case the volume cone property of m
on Q* contradicts that sptm = X and that the £ density of m must be positive in the interior
of the interval because of semiconcavity.

Now, we give the precise construction. Assume Q°\{p} is not connected. Then we can pick
q € = (Q°\{p})\(2*). One can see that Q** is open. Since Q** is open, it has positive
measure. Thus we can pick ¢’ as above such that there is a unique arclength parameterized
geodesic r € [0,d(p, ¢')] — 4 between p = v(0) and ¢/, and such that ¥ is inside Q. Choose § > 0
small enough such that Bas(p) C © and set ¢ := 5(9).

The set Q*NBs(p) is open and hence has positive m measure. Let pug = m m |0+ B; (p)
and (f1¢)e[o,1) be the Wasserstein geodesic between po and §, = p1. Since we assume that
0° = Q*U Q™ U {p} is connected, but Q* U Q* = Q°\{p} is not connected, we have that the
unique L2-Wasserstein geodesic (11t)tefo,1) (for uniqueness see [10] for instance) must be given by
pe = (er) Il with IT € P(G(X)) supported on geodesics that are reparametrized concatenations
of the geodesic segments r € [0,6] = Ya(—Tg(N—1),ny + 0 — 1) and |- (Note that any
geodesic that connects ¢ with a point in Q* must stay in Bogs(p) C 2 and since we assume Q\{p}
is not connected, such geodesics must go through p. And for m-a.e. x in Q* N Bs(p) the unique
geodesic that connects z with p is given by the restriction of some geodesic 7, for a € Q.)

But RCD spaces are essentially non-branching (see also Remark 4.12 below). Hence it follows
that IT must be concentrated on non-branching geodesics. Hence, there exists a single geodesic ¥
such that II is concentrated on 7. In particular (2" N Bs(p), m [g«np;(p)) is isomorphic to an
interval. Then by [35, Theorem 1.1] (X, d, m) is isomorphic to a 1-dimensional manifold. Let us
assume p =0 € R and ¢ = —d(0,q) = —0 € R and Q* C (0,00). By the volume cone property

that we proved in the previous step we have dm |« (7) is proportional to sin% /&V_l) |r| dr. Since

the density of m w.r.t. £! must be semi-concave [35, Theorem 1.1] and positive for interior points
but must vanish at the origin, we have a contradiction. Hence Q°\{p} = Q* is connected.

3. We can finish the proof of the main theorem by application of Theorem 4.2. Recall that
Theorem 4.2 provides a measure space isomorphism U between (0°,m|qo) and a truncated
cone such that U and its inverse are locally distance preserving. This yields that U must be
an isometry with respect to the induced intrinsic distances. Though this conclusion might be
obvious to experts, we provide the proof in the following.

We observe first that S = 0By, y_y) » (p) must contain more than two points: our hypothe-
ses rule out S C {pt}, while if S consists of precisely two points, Remark 4.3 asserts N = 1 and
that is also excluded by assumption.
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Hence, only the last case in Theorem 4.2 remains relevant to us. By Remark 4.4 there
exist local isometries U and V' between Q° = B,y ,, y(p) and the ball B in the
corresponding cone that are also measure preserving bijections.

Now, it is standard knowledge that U is an isometry with respect to the induced intrinsic
distances.

Let us be more precise. Set rg ,(v—1)ny = I and let d, be the induced intrinsic distance

TK,x(N-1),N (0)

on Bp_(p). We denote by d* the cone (or suspension distance) and by d* and d* the induced
intrinsic distances of Bg(0o) and Br_.(0), respectively. Then U is an isometry between Br_.(p)
and Bgr_.(0) with respect to the induced intrinsic distances.

To prove this let v: [0,1] — Br_.(p) be a geodesic with respect to d. between z,y € Br_(p).
We can divide v into k € N small pieces |y, ) with i = 1,...,k and ¢y = 0, t; = 1 such
that each piece stays inside a small ball that is mapped 1sometrlcally with respect to d via U to
a small ball in Br(0). We obtain

k k
Zd* Y(tie1)), U(y(t:)) =D d(v(ti1) Z Y(tio1), () = de(z, ).
i=1 i=1
The ﬁrst equality holds because U is an isometry with respect to d and d* on the small balls
that contain 7|, , 4. The last equality holds because 7 is geodesic with respect to d, and the
inequality holds because the intrinsic distance is always equal or larger than d itself.

On the left hand side we can take the supremum with respect to all such subdivisions
(ti)i=o,.x—1. This yields d*(U(z),U(y)) < L(U o 7) < d(x,y) where L(U o ~) is the length
of the continuous curve U o . In particular U o is a rectifiable curve(that means has finite
length) in Br_(o0).

We can argue in the same way for the inverse map V' and obtain that U: Br_.(p) — Br_.(0)
is an isometry with respect to the induced intrinsic distances d, and d*

Finally, we let € — 0 and observe that d. — d on Br_.(p) and the same for CZ: and d*. This
finishes the proof.

Remark 4.12. A deep new result by Qin Deng [18] shows that RCD spaces are in fact non-
branching. In this case the middle step of the previous proof simplifies: If Q°\{p} is not
connected but ° is connected, this yields almost immediately the existence of a branching
geodesic unless the space is isomorphic to an interval equipped with a measure. The proof of
Deng’s result is quite long and involved. Therefore we provide a proof that only relies on the
relatively weak property that the space is essentially non-branching.

A Substituting measure contraction for lower Ricci bounds

In this appendix we will sketch why the results of Theorem 1.1 also hold when one replaces the
condition CD(K, N) with the weaker measure contraction property MCP(K, N) that was intro-
duced in [46, 49]. We will not repeat the technical details but focus on necessary modifications
for this setup.

For a proper metric measure space (X, d, m) that is essentially nonbranching there are several
equivalent ways to define the MCP (K, N). The following one can be found in [9, Section 9].

Definition A.1 (measure contraction property). Let (X,d, m) be proper and essentially non-
branching. The measure contraction property MCP(K,N), K € R and N € (1,00) holds if
for every pair pg, 1 € P?(X) such that pg is m-absolutely continuous there exists a dynamical
optimal plan II such that (e;)xIl = py € P*(m) and

1 _ 1 .
o)™ > 73 (d(0,71))po(v0) "V for M-ace. geodesic v,

where u; = py m.
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For Q@ C X with m(Q) > 0 the restricted measure contraction property MCP, is defined
similarly as the condition CD, (compare with Definition 2.3).

All the technical results in Section 2.3 still hold when we replace the condition CD(K, N)
with MCP(K, N) (cf. [12]). Only in Theorem 2.9 the density h, of the conditional measure mg,
need not satisfy (2.3) and therefore need not be semiconcave, although it does remain locally
Lipschitz on (a(X4a), (X)) and extends continuously to the endpoints. Instead one has only

_1 _1
ha(3) T 2 037 (10 = 1) ha(0) 71 (A1)

for every affine function v: [0,1] — [a(X4),b(X4)] in general where we consider h, as a contin-
uous function on [a(Xy), b(X4)].

Considering Q C X with 0Q = S and m(S) = 0 then Definition 2.15 for mg continues to
make sense. We also can define the notion of finite inner curvature of 2. However, since h,
is not semiconcave in general, the right and the left derivative might not exist for every ¢ €
[a(X4),b(X4)]. Therefore, for a continuous function f: [a,b] — R we set

d~ 1

— f(t) =limsup — [f(t + h) — f(t)] for ¢t € (a,b].
dt h10 h

We can set up a definition of mean curvature for subsets in MCP spaces in the following way.

Definition A.2 (inner mean curvature revisited in the MCP setting). Set S = 99 and let
{Xa}acq be the disintegration induced by v := dg. Recalling (2.5), we say that S has finite

inner (respectively outer) curvature if m (B;rn) = 0 (respectively m(Blut) = 0). If S has finite
inner curvature we define the inner mean curvature of S mg-almost everywhere as

q-
E|r:010gha0fya if p=,(0) € SN AT,
NS,

pES s Hg(p) = (A.2)

00 ifpeB

out,e

where we set %—; log ha(74(0)) = —o0 if ha(74(0)) = 0.

Theorem A.3 (inscribed radius bounds under MCP). Let (X,d,m) be an essentially non-
branching MCP(K’ N) space with K' € R, N € (1,00) and sptm = X. Consider K,H € R
such that (N Ty N 1) satisfies the ball condition. Let Q C X be closed with 2 # X, m(2) > 0
and m(92) = 0 such that Q satisfies the restricted curvature-dimension condition MCP, (K, N)
for K € R and 00 = S has finite inner curvature. Assume the inner mean curvature Hg
satisfies Hg > H mg-a.e., where mg denotes the surface measure. Then

InRad Q2 < TK,H,N,

where InRad Q = sup dge(z) is the inscribed radius of .
z€QN

Proof. Let n: [0,1] — [a(X4),0] be an affine function with a(X,) < m1 < 7o := 0. We note
that |no — m1| = d(va(m0); Ya(n1)). From (A.1) we have

ha(n(£) ¥ > 080 (0 — m|)ha(0) ¥

for any a € Q. Tt follows

a-
—_— heo = limsup

h — ha
e - msup _770[ a(me) (n0)]
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1 1—t _
oM — odt t=0 %/N) 1(’770_771’)]\7 1ha<770>.

If the inner mean curvature is bounded below by H, then

1 —|n0 — m| COSK /(N (|770 —ml)
H< ‘ o —m N t= —"—(N -1 .
n — no dt =0 K/N L a m — 1o ( SmK/(Nfl)(‘UO —ml)
Hence - < SSx/v=n(mo=ml) ¢ g-a.e. & € Qf. The sharp Bonnet-Myers diameter bound

N—-1 = sing,;(nv—1)(Ino—ml)
[41, 49] for CD(K, N) spaces yields |9 — 1| < m_x_ from (1.2). Thus the denominator above
N-1

is non-negative and

0 < cosg /(v (’770 —ml) — SinK/(Nfl)(‘WO —ml).

N -1
Since this expression holds for all 71 € (a(X,),0) we conclude d(ya(1n0),Ya(n1)) = |10 — M| <
ri,m,N- Otherwise |ng — n1| > rg g n implies that the right hand side in the last inequality is
negative by the definition of rx g n.

Noting n9 = 0, taking 71 — a(X,), one can finish the argument exactly as for CD(K, N)
spaces. |

B A different form of mean curvature bound also suffices

Inspired by [13], in this appendix we introduce another new notion of mean curvature bounded
from below which yields Theorems 1.1 and 1.4 without requiring finite inner curvature of 2 but
assuming that the measure py in Remark 2.16 is a Radon measure on Q. Let L', (Q,dpo)
denote the class of pp-measurable functions k: () — [—o0, o0] whose negative part min{0, k}
belongs to L (Q,dpo), i.e., is locally po-summable.

Definition B.1 (backward mean curvature bounded below). Let (X,d,m) be an essentially
nonbranching metric measure space that satisfies MCP or CD. Recall the family of measures
{Pthe(—o0,0 O Q given by dpi(a) = ha o g(a,t)dgly, (a) that we introduced in Remark 2.16,
and its image mg, = g(-,t)xps on X. Recall that Q is constructed as a Borel subset of X and
(a, t) — g(a,t) is the ray map constructed in that remark.

Then S = 9 has backward mean curvature bounded from below by k € Ll_IOC(Q,de) if the
measure pg is a Radon measure, h, o g(,0) > 0 for g-a.e. @ € @, and

i;‘tzo/ydpt _IHTT%UP (/ dp; — /dPO) _/ k(q) dpo(q) (B.1)

for any bounded measurable subset Y C ). Moreover, S has backward-lower mean curvature
bounded from below by k if the same inequality holds when limsup is replaced by liminf.
Heuristically, these limits quantify the relative rate of change of surface area of the level sets of dg,
as when Y = Q C X is bounded. We may denote the greatest lower bounds k* € LI_IOC(Q, dpo)
for the backwards and backwards-lower mean curvature for k* and &~ respectively.

Remark B.2. Since it is not assumed that p; for ¢ < 0 is a Radon measure, fY dp; can be
infinite.

Similarly, when we want to distinguish between upper and lower limits, we refer to (A.2) as
the inner mean curvature, and to the analogous quantity with liminf in place of lim sup, as the
inner-lower mean curvature. In a CD(K, N) space, these two notions coincide.
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Lemma B.3 (backward versus inner mean curvature in MCP). Let (X,d, m) be an essentially
nonbranching MCP (K, N) space. Assume that S = 00 for some Borel set Q) that has finite
inner curvature in the sense of Definition A.2 and that hy o g(a,0)dq(a«) = dpo(«) is a Radon
measure with hy o g(a,0) > 0 for q-a.e. a € Q. Then mg-almost everywhere, the inner mean
curvature Hg (x) of S is bounded from below by k(x) if S has backward mean curvature bounded
from below by ko g(-,0) € L', (Q,dpo).

Conversely, the backward-lower mean curvature is bounded from below by k o g(-,0) if k o
g(-,0) € L', (Q,dpo) and there exists § > 0 such that (i) the inner-lower mean curvature
of S is bounded from below by k(x) for mg-almost every x € S, and (ii) b(X,) > 0 holds for
g-a.e. o € Q. Note (i) is satisfied if Q satisfies a uniform exterior ball condition.

Proof. 1. Assume backward mean curvature bounded below by k o g(-,0) € L', (Q,dpo).
Then, by monotonicity of the right hand side in (B.1) the backward mean curvature is also
bounded below by kM := min{k, M} € LL (Q,dpo) for M > 0 arbitrary.

We can compute for ¢t < 0 and a bounded measurable set Y C Q:

/det - /deo = /Y (Iy,(@)hq o g(a,t) — 1y (a)hg 0 g(@, 0)) dg(a).

There exists a measurable subset Q* C QT with q[@Q' \ Q*] = 0 such that the map M: a €
Q* — —a(X,) € [0,00) is measurable (for instance compare with step 1 in the proof of The-
orem 7.10 in [9] or Remark 3.4 in [28]). Then, we consider the family of measurable sets

Qm:/\/lfl([m, DformENthatsatlsfyUmeNQm—Q As in [9]

b L g o ala oy coso g/ v—1)(—a(Xa))
h og( 0) (h g( ) ha g( ’0))§(N 1)Sin—|K\/(N—1)(_a(Xa)

Vr e (a(Xa),0), Va € Q. Thus Fatou’s lemma yields
[ R og(a.0)da@) = [ K ogla,0)dpola)
YNQmNVo YNQm

1
gb/ lim sup ~ (1y, (@) ha © g(e, £) — 1y (@)ha o g(a, 0)) dg(a)
YoQm tto t

< C(K,N,m)

. 1
< / lim sup n (Iy,Av (@) ha 0 gla,t) — 1y, (a)hg 0 g(a, 0)) dg(a)
YAQm 10

he o g(a,t) dg(a)

/YQOmVo EL:O
for any bounded measurable Y C Q. It follows that

(th ) o g(a,0) ha o g(a,t) for g-a.e. o € V. (B.2)

< Fhoo
We assumed h,, 0 g(a,0) > 0 for g-almost every a € Vy. Therefore, it follows that

q-
[ ) ogtandater< [ S| haoglanndato)
YV ynv, dt lt=0
!
= — log(hq 0 g(a, t))he 0 g(a,0) dg(a).
L Gl g tosthe o g0 ) o g0, 0) da(e)
Now, we recall that Vy C Q(AT)UBiTn with q(Q (ATUBT )\Vo) =0 and m (BJr ) =q(Q ( )) =
(because we assume finite inner curvature). Moreover g(a,t) = v4(t), hoog(a,t) = o*ya( )
ha(t) and a = 74(0) if @ € Q(A). Hence mg = mg, = g(- ,0)#]30 and

/‘ywdmszi/ KM 0 7 (0)he (0) dg(cx)
Y YNQ(AY)

Il o
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§/ Hg 074(0)ha(0) dg(a) :/ Hg dmg,
YNQ(AT) Y

and consequently kM < H g mg-almost everywhere. Letting M — oo yields k¥ < Hg mg-almost
everywhere.

2. Now assume for some ko g(-,0) € Ll_loc(Q,dpo) that mg-a.e. the inner-lower mean cur-
vature is bounded from below by k. We also assume that b(X,) > d > 0 for g-almost every
a € @ and some § > 0. This implies By, = @ and hence mg, = mg. Recall from the proof of
Lemma 2.21 that this is true if €2 satisfies a uniform exterior ball condition.

Again as in [9]

. cos_|k|/(N—1)(0(Xa) — a(Xa)) < (haog(a,r) = haog(a,0)

—C(K,N,d) < —(N - sin_ (e v_1) (0(Xa) — a(Xa)) = r - hgog(a,0)

Vr e (a(Xa),b(Xa)).
Using Fatou’s lemma again, it follows that

/Y K 0 7a(0) dpo(a) = /Y (ko) 0g(0.0) da(0) = /Y ooy F(O)R0) dafe)
= /mo i o 220208820, () dg(a)

<timint | 3 (a(@)ha(t) = 1y, ()ha(0) da(o)

o1
:lutnﬂljnft</ydpt—/ydpo>,

for any bounded measurable set Y C @. Thus the backward-lower mean curvature is bounded
below by k o g(+,0) as desired. [

Corollary B.4 (backward versus inner mean curvature in CD). Let (X,d, m) be an essentially
nonbranching CD(K, N) space. Assume that S = 02 for some Borel set §) satisfies a uniform ex-
ternal ball condition and that hoog(a, 0)dq(a) = dpo(«) is a Radon measure with hey o g(a,0) > 0
forg-a.e. « € Q. Then S has a backwards mean curvature bound k € Ll_IOC(Q, dpo) from below if

and only if S has inner mean curvature Hg € Ll_IOC(S’, dmg). When either holds, then po-almost
everywhere on Q, the backward and backward-lower mean curvatures k* of S both coincide with

Hg og(-,0).

Proof. Recall that the uniform external ball condition assumed implies S has finite inner cur-
vature by Lemma 2.21, and that mg = mg,. Let Hg denote the inner mean curvature of S,
which agrees with its inner-lower mean curvature mg-a.e. due to the semiconcavity of hé/ (N-1)
in CD(K, N) spaces.

If S has a backwards mean curvature bound ko g(-,0) € L', (Q,dpo) from below, it admits
a greatest such bound k% o g(-,0). Lemma B.3 asserts Hg o g(-,0) > k™ o g(-,0) holds po-a.e.,
which implies Hg € L' || (S, dmg).

Conversely, if S has inner mean curvature Hg € L', (S,dmg), then Lemma B.3 asserts S
has backwards-lower mean curvature k= o g(-,0) > Hg o g(-,0) € L'  (Q,dpy). We conclude
k~ o g(-,0) is also a backwards (i.e., backwards-upper) mean curvature lower bound for S.

Since k*og(-,0) > k™ og(+,0) by definition, in either (and hence both) cases above we conclude

equalities hold pp-a.e. in all three of the inequalities preceding, to conclude the proof. |

We state a theorem under MCP. The corresponding statement for CD then follows since CD
implies MCP for essentially nonbranching proper metric measure spaces.
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Theorem B.5 (inradius bounds under backward mean curvature bounded below). Let (X, d, m)
be an essentially nonbranching MCP(K, N) space with K € R, N € (1,00) and sptm = X. Let
Q C X be closed with Q # X, m(Q2) > 0 and m(92) = 0. Assume 0 = S has backward mean
curvature bounded from below by H € R. Then

InRad < TK,H,N-
Proof. As in the previous appendix we have

L (- 5may) =

ho(t)N-1 > IK/N—-1 (—a(Xa))ha(0) V-1
for any ¢ € (a(X4),0)and any a € QT. Therefore, it follows that

d- 1
(o3 Pl :1. — a , — o ,
3 ol ° 90 1) = limsup £ (ha(g(e.1)) — ha(g( 0))
(M

d- (e )
= ELZOUK/N(:) )(—G(Xa))N 'ha(g(a,0)).

Since the backward mean curvature is bounded below by H, for Y C ) bounded and measurable
it follows that

B haogle0) dga) < /

T ‘
—| haog(a,t)dg(a).
Yo YNVo dt lt=0 ( ) ( )

We obtain the inequality (B.2) exactly as in the beginning of step 1 of the proof of Lemma B.3.
By the definition of backward-lower mean curvature bounds we have hy(0) = hqy 0 g(a,0) > 0
for g-almost every a. Hence

H 1 d- cosg/(N—1)(—a(Xa))
< — log hq, 1) < —
N_1-N_1dfl—o® °g(et) sing/(v—1)(—a(Xa))

for g-a.e. @ € Vo = Q(A U Byy).
At this point it is clear that we can finish the proof as in Theorem A.3. |

Theorem B.6 (rigidity under backward mean curvature bounded from below). Let (X, d, m)
be RCD(K,N) for K € R and N € (1,00) and let Q@ C X be compact with Q # X, m(Q) > 0,
connected and non-empty interior Q° and m(92) = 0. We assume that K € {N—1,0,—(N—-1)},
00 = S # {pt} and S has backward mean curvature bounded below by x(N — 1) € R. Then,
there exists x € X such that

dS(.’E) = InRad 2 = rK,x(N—l),N

if and only if Tx (n—1),y < 00 and there exists an RCD(N — 2, N — 1) space Y such that
(QO,CZQO) is isometric to (B 0),d~) mn fi x N-1 Y, where JQ and d are the

N1 SiK/(N-1)
induced intrinsic distances of 2° and B 0), respectively.

TK,X(N—U,N(

TK,X(Nfl),N(
Proof. In the end of the proof of Theorem B.5 we obtained H < %T”t:o log ho 0 g(a,t) for g-a.e.

a € Vy with H = x(N — 1), so in particular for a € Q(Bj,). Then using the Riccati comparison
and the maximum principle we can follow verbatim the same proof as in Section 4. |
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