Symmetry, Integrability and Geometry: Methods and Applications SIGMA 16 (2020), 135, 33 pages

Toward Classification of 2nd Order Superintegrable
Systems in 3-Dimensional Conformally Flat Spaces
with Functionally Linearly Dependent Symmetry
Operators

Bjorn K. BERNTSON T, Ernest G. KALNINS * and Willard MILLER Jr.

¥ Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
E-mail: bbernts@kth.se

! Department of Mathematics, University of Waikato, Hamilton, New Zealand
E-mail: math0236@Quwaikato.ac.nz

§ School of Mathematics, University of Minnesota, Minneapolis, Minnesota, USA
E-mail: miller@ima.umn.edu
URL: http://www-users.math.umn.edu/~mille003/

Received April 07, 2020, in final form December 09, 2020; Published online December 16, 2020
https://doi.org/10.3842/SIGMA.2020.135

Abstract. We make significant progress toward the classification of 2nd order superin-
tegrable systems on 3-dimensional conformally flat space that have functionally linearly
dependent (FLD) symmetry generators, with special emphasis on complex Euclidean space.
The symmetries for these systems are linearly dependent only when the coefficients are al-
lowed to depend on the spatial coordinates. The Calogero—Moser system with 3 bodies on
a line and 2-parameter rational potential is the best known example of an FLD superinte-
grable system. We work out the structure theory for these FLD systems on 3D conformally
flat space and show, for example, that they always admit a 1st order symmetry. A par-
tial classification of FLD systems on complex 3D Euclidean space is given. This is part of
a project to classify all 3D 2nd order superintegrable systems on conformally flat spaces.
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1 Introduction

There is a hierarchy of 2nd order classical and quantum superintegrable systems in 3-dimensional
conformally flat spaces, ranging from the most tractable at the top, nondegenerate (i.e., 4-
parameter) potentials with 6 linearly independent symmetries, all of which have been classified,
followed by semidegenerate (i.e., 3-parameter) potentials on which much progress has been made,
to the least tractable (1-parameter) for classification at the bottom. By definition the 2 classes
at the top admit 5 functionally linearly independent symmetry operators, i.e., they are not only
linearly independent in the usual sense but also if the coefficients are allowed to depend on
the spatial variables. However, there exist 2nd order superintegrable systems with at least 5
functionally linearly dependent symmetry operators and 2-parameter potentials; such systems
have never been classified. We initiate the study of such systems by developing their structure
theory on conformally flat spaces and performing a partial classification of these systems in
constant curvature spaces.

We recall some basic facts and results about conformally flat superintegrable systems. An
n-dimensional complex Riemannian space is conformally flat if and only if it admits a set of local
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coordinates {x1,...,z,} such that the contravariant metric tensor takes the form g% = §% /\(x)
[10, 14]. A classical superintegrable system H = Zij gijpipj + V(x) on the phase space of
this manifold is one that admits 2n — 1 functionally independent generalized symmetries (or
constants of the motion) S, for k =1,...,2n — 1 with §; = H where the Sy are polynomials in
the momenta p;. It is easy to see that 2n — 1 is the maximum possible number of functionally
independent symmetries and, locally, such (in general nonpolynomial) symmetries always exist.
The system is second order maximal superintegrable if the 2n — 1 functionally independent
symmetries can be chosen to be quadratic in the momenta. (Second order superintegrable
systems, though complicated, are tractable because standard orthogonal separation of variables
techniques are associated with second order symmetries, and these techniques can be brought
to bear.)

For a classical 3D system in a conformally flat space (note that all 2D spaces are conformally
flat) we can always choose local coordinates {z, y, z}, not unique, such that the Hamiltonian takes
the form H = (p% + p3 + pg)/)\(m’, y,z) + V(x,y, z). This system is second order superintegrable
with semidegenerate potential V = V(z,y, 2; o, 8,7) = aV®(x) + fVP(x) + vV (x) if it admits
5 functionally independent quadratic constants of the motion, i.e., generalized symmetries,

Sk = Za?png +Wk(%y,2’;0¢a577) :S£+Wka k= 17"'75'
Z'7j

Here the functions V*, V#, V7 are independent of the parameters «, 3, v, the set {V‘l, VA, VV}
must have linearly independent gradients, and we ignore the additive constant. We call this
a 3-parameter potential.

In some cases the system may also have a 6th symmetry Sg, (but no more) such the set
{S,g lk=1,..., 6} is functionally linearly independent and this implies that the potential de-
pends on 4 parameters [10]. Furthermore the classification theory requires that the 5, 6 constants
of the motion be functionally linearly independent, i.e., the equation

5,6
> f)SE(x) =0 (1.1)
k=1

is satisfied if and only if fi(x) = 0 for all k. If equation (1.1) is satisfied for functions f(x) not
identically 0, the set of constants of the motion are functionally linearly dependent (FLD).

For 2nd order superintegrable systems in 3 dimensions that are functionally linearly inde-
pendent, the systems that admit 6 linearly independent second order constants of the motion
(the maximum possible) have all been classified [6, 13] and there has been considerable progress
on the remaining 5 linear independent case [7, 12]. However, little has been done to classify
superintegrable systems in 3 dimensions that are FLD. The best known such system is the ra-
tional 3-body Calogero—Moser system on the line with 2-parameter potential. To the best of our
knowledge there are no 2nd order FLD superintegrable systems with trigonometric, hyperbolic,
or elliptic potentials. In this paper we derive structure results for all 2nd order superintegrable
FLD systems with » > 5 linearly independent second order symmetries on conformally flat real
or complex spaces that have potentials that depend on 2 functionally independent variables
(the maximum possible), and such that the FLD equation Y, fix(x)Sp(x) = 0 is satisfied with
at most 5 nonzero terms f;(x). (For the analogous 2nd order 2-dimensional FLD systems the
answer is known: there is only one such family of systems [9].)

The paper is organized as follows: in Section 2 we present the Calogero—Moser system and
a system on 3-dimensional Minkowski space as examples. In Section 3 we present structure
results for all FLD systems on conformally flat spaces. The most important result is that all
such systems admit a 1st order constant of the motion. In Section 4 we work out a partial
classification of all 3-dimensional second order superintegrable FLD systems in flat space with
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2-parameter potentials, such that the FLD equation Y., fi(x)SP(x) = 0 is satisfied with at
most 5 nonzero terms fi(x), (including the structure of the symmetry algebras for most of these
systems). In Section 5 we summarize the corresponding result for 3-dimensional FLD systems on
the complex 3-sphere. In Section 6 we present some conclusions and a brief discussion of related
properties of these systems. Here all of our systems are classical. However the quantum analogs
follow easily by symmetrization of the symmetry operators and there is a 1-1 matching of the
Hamiltonians modulo the scalar curvature [11]. In particular the Euclidean space Hamiltonians
are identical.

2 Examples

2.1 An FLD example: the rational Calogero—Moser system
with 2-parameter potential

This potential takes the form [1, 4, 5, 8, 16, 17, 18, 19, 20]

V=

a B Y
-9 (-22 (G-o2

Let us consider the system of symmetries defining the system with potential V. A basis for the
space of symmetries is (using Ji2 = xp2 — yp1, Jos = yps — zp2, Ji3 = Tps — zp1)

(2.1)

Si=H=pi+p3+p3+V, Sy = (p1 +p2 + p3)?, Sy = Jiy + J33 + Jiz + W,
Sy = p1(J13 — J12) + p2(J12 — Jo3) + p3(Jas — Ji3) + W,
Ss = JioJiz + JazJi2 + Ji3Jaz + W,

where the potential terms W; contain the parameters c, 3, . In this case, the Bertrand-Darboux
equations [10, 11] for each symmetry S = Zij ay pipj + Wy, of H are

V$+Vy+VZ:0’ (x_y)vly+(z_y)vyz_Vz+2Vy—Vz:07
(x—2)Veo+(y—2)Vye — Vo =V, + 2V, =0, (2.2)

and their differential consequences.

We say that this is a (functionally independent) 2-parameter potential. A 2-parameter po-
tential is one that can be expressed in the form V = a1 f(z,y,2) + a2g(z,y, z) where a1, ao
are arbitrary parameters, f and g are independent of these parameters, and the set {f, g} is
linearly independent. (Here we are ignoring the trivially additive parameter in the potential.)
Functional independence for the potential is the additional requirement that the set {f, g} is
functionally independent. Functional dependence means essentially that the system could be
recast as 1-parameter.

What is important to notice here is the occurrence of the first order condition V,+V,+V, = 0
for the potential as a consequence of the Bertrand—Darboux equations. Thus the potential is
a function of only two functionally independent variables, impossible for nondegenerate poten-
tials.

We observe the FLD relation

(z+y+2)%S) — (2% +y? +23)8) + 289 — 2(x + y + 2)S] — 285 =0

obeyed by the purely quadratic terms in the symmetries, i.e., we have set S; = S + W;. We
show below, in Theorem 3.1, that the existence of such an FLD relation implies the existence of
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a first order condition in the Bertrand-Darboux equations (2.2). Furthermore, the 5 quadratic
symmetries are functionally dependent:

2
H(SS_S5)_ﬁ_S283+(a“‘B‘FW)H_(()é-{—ﬁ—l-’y)

2 2 2 2 S =0

Hence the system defined by (2.1) is minimally superintegrable with 4 functionally independent
symmetries. We show below, in Corollary 3.2, that this is a generic feature of FLD systems with
exactly 5 linearly independent generators.

2.2 A Minkowski space FLD example

Here

H =pl+p3+p5+ale—2z)+By+iz) +7(y +iz)? (2.3)
which admits the 1st order symmetry

J =p1—ip2+p3
and the 2nd order symmetries [7]

St =M =pi+p5+p3+a(z—2)+ By +iz) + y(y +1i2)*,

S=J%  Sy=pitar,  Si=(-ip2+p)p+ (03— ip2)? + Gy — 2 - 2),

S5 = (p1 — ip2 + p3)(i12 — J13) — sayz — Sazy + %04!752 + taxz — ﬁayQ + %042?

The 5 generators are linearly independent and satisfy the FLD relation
(iy — 2)SY + (—iy + 2 + 2)8Y + 82 = 0,

where as before S is the quadratic momentum part of the symmetry S.

3 Some theory

Functional linear dependence of a functionally independent maximal set of symmetries is hard
to achieve. We recall the following result where the system need not be superintegrable [11]:

Theorem 3.1. Let the linearly independent set {H = S1,S2,...,St}, (t > 2) be a functionally
linearly dependent basis of 2nd order symmetries for the system H = (p% +p3 +p§)/)\(x) +V =
HO + V' with nontrivial potential V, i.e., there is a relation Dk fk(x)S,g = 0 in an open set,
where not all fr(x) are constants, and no such relation holds for the fi(x) all constant, except
if the constants are all zero. (Here S; = SZO + W; where the W; are the potential terms.) Then
the potential must satisfy a first order relation AV, + BV, + CV, = 0 where not all of the
functions A, B, C vanish.

Proof. By relabeling, we can express one of the quadratic parts of the constants of the mo-
tion 88 as a linear combination of a linearly independent subset

{s,...,8 1<r<t—1},

ie.,

T

So = fulz,y.2)S.

(=1
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Taking the Poisson bracket of both sides of this equation with (p% +p3+ pg) /A and using the
fact that each of the S, is a constant of the motion, we obtain the identity

r 3
Z Z (B fo)al pipjpk = O,

0=14ij=1
where (x,y, z) = (x1, 2, x3). It is straightforward to check that this identity can be satisfied if
and only if the functions

r

&/ = (0w fo)af,  1<ij k<3
/=1

satisfy the equations
=0, C;z + 2c§j =0, 1#j, e+ +al =0. (3.1)

Note that cij = ciz Corresponding to each of the basis symmetries Sy there is a linear set
Cy = 0 of Bertrand—Darboux equations [11]. A straightforward substitution into the identity
Co — >y fe(x)Cy = 0 yields the relation

12 11 22 21 32 31
h_h ot s
j e W A S B s 1 &

These first order differential equations for the potential cannot all vanish identically. Indeed
if they did all vanish then we would have the conditions

12 _ 11 31 _ 11 31 21 22 21 32 _ 12
G =6, €1 =03, Gy =3, 1 =¢, =63,
32 22 32 31 33 13 33 23
C2 :C3 5 C]. :CQ 3 Cl :63 5 CQ :63 .

These conditions, together with conditions (3.1) show that czk = 0 for all 4, j, k. Thus we
have Yy (0y, fr)a] =0, 1 < 4,5,k < 3. Since the set {S?, .. ,89}, is functionally linearly
independent, we have 0., fp = 0 for 1 < k < 3,1 < ¢ <r. Hence the f; are constants, which
means that 88 — > fgS? = 0. Thus the set {88, ces ,Sff} is linearly dependent. This is
a contradiction! |

This shows that the potential function for any system, superintegrable or not, with a basis of
symmetries that is functionally linearly dependent must satisfy at least one nontrivial first order
partial differential equation AV, + BV, + C'V, = 0 where the functions A, B, C' are parameter-
free. This means that all such potentials depend on either one or two functionally independent
coordinates.

Corollary 3.2. Suppose the system has exactly 5 linearly independent generators {S1 =H, ...,
S5} and is a functionally linearly dependent basis of 2nd order symmetries for the Hamiltonian
H= (p% +p3 —|—p§)/)\(x) +V = HY4+V with 3-parameter potential. Then this set of 5 generators
must be functionally dependent.

Proof. Suppose the set is functionally independent. Then from [12, equation (2)] at any fixed
point there is a potential for any prescribed values of V', V,, V,, V.. However, since the system
is FLD the potentials must satisfy A(z,y, 2)Vy + B(z,y, 2)V, + C(x,y,2)V, =0 for A, B, C not
all zero, so the possible derivatives of V' are not independent. Contradiction! |
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Thus for systems with exactly 5 linearly independent symmetries at most 4 of the 5 FLD
generators can form a functionally independent set. However we shall show that there are FLD
systems with 2-parameter potentials that admit > 5 linearly independent and 5 functionally
independent 2nd order symmetries in which case Corollary 3.2 does not apply.

Lemma 3.3. Equations (3.1) imply

Oz, (céj — cé’) =0, Oz, (czj — c;k) =0.
A new result is

Theorem 3.4. Under the hypotheses of Theorem 3.1 there exists a 1st order Killing vector J
for H, e, {T,H} ={T,V} =0, of the form

J = aip1 + agp2 + asps + as(xp2 — yp1) + as(yps — 2p2) + ae(zp1 — xpz)
for some constants a;, not all zero.

Proof. Let
J = (1 =i )p1 + (2 — e3?)p2 + (¢1* — c3¥)ps = T"p1 + T¥p2 + TP,

so that the first of equations (3.2) is {7,V } = 0. From equations (3.1) and Lemma 3.3 we can
verify that

(g00) = - [l () | (=)

1
= (3 — efho + (- )],
so either J = 0 or J is a conformal symmetry of H?. However, from Lemma 3.3 we see that
0, J" = 0yJY = 0.J° = 0. (3.3)

The first order conformal symmetries of H° are the same as for the case A = 1, and the only
such symmetries that satisfy the requirements (3.3) are linear combinations of pi, p2, ps and

J12 = xp2 — yp1, Jo3 = yp3 — zpo, J13 = Tp3 — zp1,

and these would be actual symmetries of H (true conformal symmetries such as zp; +yp2 + 2p3
fail this test). Thus either [J vanishes or it is a 1st order symmetry of H.

Analogous constructions and conclusions can be obtained for the 2nd and 3rd of equa-
tions (3.2). However, at least one of these equations is nonzero. [

Since any Euclidean coordinate transformation applied to the Hamiltonian H takes it into
one of similar form

PR+ps+P5 | -

H = +V,
A

without loss of generality, we can assume that, up to conjugacy, J takes one of the five canonical
forms:

p1, p1+ipe, xp2—yp1, (zp2 —yp1) +i(yps — zp2),
(xp2 — yp1) +i(yps — zp2) + p3 + ip1. (3.4)
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With the same assumptions for FLD systems as in Theorem 3.1, let Ozo(r) be the set of all
subsets B of {S; = H,Sa,..., S} with 7 + 1 elements such that, after relabeling, there is an
FLD relation

S0 = felw,y,2)8, (3.5)
(=1

and such that

1) H°, J? € span B,
2) span B C span Ad 7 B,

3) H admits a 2-parameter potential.

In this paper we find all superintegrable Hamiltonians H on constant curvature spaces for
which Oy0(4) # @. Note that if H admits exactly 5 linearly independent symmetries, all cases
are included in Oy0(4). If H admits more than 5 linearly independent 2nd order symmetries we
have no proof of completeness but we have not as yet found a verifiable counterexample.

4 Euclidean space

We first study the possible FLD 2nd order superintegrable systems in 3D complex Euclidean
space. Complex metrics were commonly used in the 19th century. Of particular interest for
superintegrability and separation of variables are the paper [15] and the book [3]. Bocher was
the first president of the American Mathematical Society. The metrics are defined as usual as
are the curvature conditions but all the variables are complex. Thus a space is conformally
flat if the metric can be expressed as A(z,y, z) (dx2 +dy? + sz) for complex variables x, y, z.
The advantage is that one complex system can describe several real forms of this system by
specializing the coordinates. For example the complex metric dz? + dy? 4+ dz? is Euclidean for
x, y, z real and Minkowski space for z = iw for z, y, w real. In this paper, potentials V(z,y, 2)
that are real for z, y, z real live on Euclidean space and potentials that are real for z, y, w real
live on Minkowski space. Every potential belongs to one of these classes. Similar remarks are
true for the complex 3-sphere, with real forms the real 3-sphere, and the 3-hyperboloids of one
and two sheets.

By relabeling, we can express one of the quadratic parts of the constants of the motion S§ as
a linear combination of the quadratic parts of the remaining r generators through (3.5). Without
loss of generality we can reduce to the case where the expansion (3.5) is unique. The generators
S9,8%, 88, ...,8Y are polynomials in x, y, 2z of order at most 2 and are linearly independent.
Thus we can solve for the expansion coefficients in the form fy(z,y, z) = s¢(x,y, 2)/s0(x,y, 2),
{=1,...,4 where sg, s1,...,S, are polynomials in z, y, z of order at most 2. It follows that

4
Z Alay, az,a3)xy*22% = 5,8 — Z 50S) = 0, (4.1)

a1,a2,a3 /=1

where each coefficient A(aq, ag, as) must vanish. In particular, the sum of all terms homogeneous
of degree n must vanish for each n =0, ..., 4:

B(n) = Z A(ay,ag,a3)z®y*?2% = 0.

a1+az+az=n

Each of the generators SC is a linear combination of terms J;;Jke, (order 2), J;;p, (order 1)
and p;p;, (order 0).
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Since we have assumed that the expansion (3.5) is unique, there must be only a single
term B(N) that is not identically zero and each S} is homogeneous of degree 0, 1, or 2. Thus
each sy, must be homogeneous of degree b and each Sg must be homogeneous of degree ¢ = 0,1, 2
where b+ ¢ = N. This greatly restricts the possibilities for (4.1).

4.1 Classification criteria

In the subsequent five subsections we obtain all FLD-superintegrable bases B on 3D complex
Euclidean space that belong to the class Oy0(4). Each such basis is associated with a Hamilto-
nian H = H° + V with a two-parameter potential V. We emphasize that B does not necessarily
contain all the (momentum parts of) symmetries of . We compute V as the general solution
of the Bertrand-Darboux equations associated with B. However, the Hamiltonians H = H° +V
obtained in this way may admit additional symmetries not obtained from B. Additionally, we
remark that a particular solution V}, of the general solution V' may correspond to a Hamiltonian
with more symmetries than the Hamiltonian with V. We make no attempt to classify these
special cases.

The classification is performed modulo complex Euclidean transformations: by the discussion
in Section 3, the Hamiltonian H must admit one of the first order symmetries in (3.4). Starting
from each of the symmetries in (3.4), which we denote by 7, we use the following algorithm to
identify FLD-superintegrable systems.

1. We compute the action of Ads on a basis of second order symmetries of H°. We use this
to construct a generalized eigenbasis (with respect to Ad ) of such possible second order
symmetries.

2. We then consider 5-element subsets B of this basis and verify that B € Ozo(4).

3. For each possible action of Ad 7 on B, we identify all possibilities where 1) the elements of B
are homogeneous in the spatial variables, in accordance with the discussion in the previous
subsection, 2) the elements of B are FLD, 3) the elements H? and J? are contained in
span B.

4. For each basis satisfying the criteria in the previous step, we use the Bertrand—Darboux
equations to compute the corresponding potential. We require that the potential be 2-
parameter functionally independent. In this case B € Oyo0(4). We verify that H is super-
integrable: it must admit at least 4 functionally independent symmetries. The final list of
the potentials defining such systems is given in Table 1.

In the case of J = pi, the space of quadratic forms in {p1,p2, p3, Ji2, Ji3, Ja3}, modulo the
relation p - (p x x) = 0, provides a generalized eigenbasis of order two symmetries with respect
to Ads. Hence we provide details of steps 2-4 of the algorithm above and also show that our
examples in Section 2 are contained in this case.

The computations involved in the cases of the remaining forms in (3.4) are lengthier and we
provide only the essential details. In all cases we supply the potentials and the algebra generated
by the FLD symmetries.

4.2 First case: J = p;

Here the centralizer of 7 is the group generated by translation in ¥, z and rotation about the x-
axis. We can use this freedom to simplify the computation. Since p; is a symmetry the potential
must be of the form V(y, z). Any degree two symmetry can be written as a quadratic form in
{p1,p2, p3, J12, J13, Jos}. Due to the triple product identity p - (p x x) = 0, the space of such
quadratic forms has dimension 21 — 1 = 20.
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To be concrete, we write a general symmetry as
S= RQRT+FU($7y7Z)7 (42)
where

R = (p1,p2,p3, J12, J13, J23) (4.3)

and

2a1 ag as aq as Qg
az 2a7 ag a9 ayp a1
1l a3 ag 2a12 a13 aus ais
21 as a9 a1z 2a16 a7 a1
as aip a4 a7 2ai9 a0
ag aix ais  aig  ag  2az1

(To get a true basis of second order symmetries of H°, we set one of ag, a19, a13 to zero.)

We use the fact that the adjoint action S — {p1,S} = Ad,, S will map the 5-dimensional
space of a solution set into itself. Since this action is essentially differentiation with respect to z,
it is clear that Adg’,1 = 0, so the generalized eigenvalues of Ad,, must all be 0. Thus the possible
Jordan canonical forms for the operator Ad,, on a generalized eigenbasis of solutions S are

01000 01000 01000
00100 00100 00000

0000 O], 0000 O], 000710],

00000 00001 00000

00000 00000 00000

01000 00000

00000 00000

0000 O0], 00000 (4.4)
00000 00000

00000 00000

We get 5 different forms depending on the smallest integer k such that Ad’;1 = 0. We will
consider each of these 5 forms in turn to determine its implications for the generalized eigenbasis
of solutions §.

4.2.1 Form (4.4a)

We first look at the possibilities for form (4.4a). In this case Adg1 # 0 so that part of the
eigenbasis must be {£, £1, L2}, symmetries that generate a chain of length 3.
The action of Ad,, is nontrivial on only two of components of R in (4.3):

Ady,, Ji2 = —p2, Ad,, J13 = —ps. (4.5)

The action of Ady,, on any monomial in S can then be determined from (4.5) and the Leibniz
property. We find that

L= a16J122 + a17J10J13 + a19J123 + W (4.6)

(where here and below, the a;; are assumed to be arbitrary parameters) is the most general
homogeneous solution of Adf’,1 = (. Starting from L, a chain is generated with

L1 = Ady, £ = —2a16p2J12 — a17(p2J13 + p3Ji2) — 2a19p3J13 + Wi,
Lo = Adp1 L= 2a16p§ + 2a17paps + 2a19p§ + Ws. (4.7)
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where we omit the expressions for the functions W, Wi, Ws. In addition there must be 2
eigenfunctions of Ad,, with eigenvalue 0 and independent of Ls.
The symmetries that are annihilated by Ad,, take the form

K = bip} + bap1p2 + b3pips + bep1Jas + brps + bspaps + bi1paJas
+ blgpg ~+ bisp3Jos + 521J223 + U, (4.8)

where the b;, analogous to a;, are constants to be determined, and U is the potential.

L is homogeneous of order 2 in the variables z, y, z. We consider cases for the form of Ls.
A very special case is that where, by a rotation if necessary, Lo takes the form where a1 =
a9 # 0, aj7 = 0. Thus we have L'g = 2a16(H° — J?). Always H can be assumed to be a basis
symmetry, so to achieve form (4.4a) we have to select a symmetry K that is linearly independent
of the 4 forms already exhibited.

If we choose K of order 2 in the spatial variables, so K = bo; J223 it is straightforward to show
that B = L, L1, L2, K, H is an FLD basis. The Bertrand-Darboux equations for V' (y, z) and the
potentials associated with these symmetries are obtained from requiring

{H, L}y ={H, L1} ={H, L2} ={H,K} =0.
We consider the equations for V (y, z) and W(x, y, z) arising (as coefficients of p;, pa, p3) from
{H,L}:
ar622Vy + areryVy + We =0,  a12°V, — W, =0, a2V, — W, =0.
The second and third equations are satisfied when W (z,y,2) = a1V (y,2) + Woo(z), where
Woo is at this point arbitrary. Upon substituting this form for W into the first equation, we

observe that we must have Wyo(x) = ¢1 x2+ ¢, for some constants 1, ¢z, to obtain a well-defined
equation for V(y, z). The general solution of the first equation is then

Viy.2) = F(yzz/y)

(4.9)

for F' an arbitrary function (up to an additive constant, —c;, which we set to zero without
loss of generality). The Jacobi identity guarantees that this potential is compatible with the
symmetries L1, L£o. We can verify compatibility with X directly: a function U of z, y, z can be
found so that {#,K} = 0.

The Calogero potential (2.1) belongs to the class (4.9). Indeed, under the Jacobi transfor-
mation

v=g(rtratrs), y=sl2-m), 2= E@2rs-r2—n), (4.10)
we obtain the Calogero potential (2.1) in variables r1, r9, r3 by choosing
B Y o
Flw) = + + .
(w) 2(1 —v3Bw)2  2(1 ++/3w)2 2
If we choose K of order 1, so that K = b11p2Jas + bispsJas + U where |b11| + |b15] > 0, we

can verify that the symmetries B = {£, L1, L2, K, H} is an FLD basis and solve the Bertrand—
Darboux equations to obtain

Ry _ B Ba(qt — 1)
V=T PSS v e (1

where (31, B2 are arbitrary parameters and g = by1/b15. Similarly, applying the Jacobi transfor-
mation (4.10) to (4.11) we can obtain a solution adapted to translation invariance.

If we choose K of order 0, there is no 3-parameter solution for the potential. The other
possibilities for £ of order 2 are that 1) Lo can be transformed so that a;7 = aj9 = 0 and
the one chains are H and p?, in which case there is no 3-parameter potential, and 2) L5 can be
transformed so that a7 = 2ia16, a19 = —a1¢ and the one chains are ‘H and p%, which is not FLD.
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4.2.2 Form (4.4b)

Here there is one chain of length 3 and one chain of length 2. The general form for the chain of
length 3 is (4.6)—(4.7) again. The general form for a chain of length 2 is

| = bopaJia + biop2Jis + bispsJiz + braps iz + bisJi2J23 + baoJ13J2s + W,
Lh = Ady, £} = —bop3 — biopaps — bispaps — b1apj — bispaJas — baopsJas + Wi, (4.12)

where W3 and W, are potentials that will play no role in our analysis. We consider three cases
based on the order (in the spatial variables) of £}

Case: L] of order 2. In this case we have by = big = b1z = b4 = 0 so that so that £ takes
the form £} = bigJi2Jaz + baoJ13Jos + W3 and L), takes the form —bigpaJasz — boopsJaz + Wa.
Since both H and p? are of order 0, and since they both must be included in form (4.4b), this
case cannot occur.

Case: [} of order 1. In this case we have big = byy = 0 and L] = bypaJi2 + biop2Ji3 +
bispsJi2 + biapsJiz + Ws, L) = —bgp% — biopaps — bispaps — b14p§. However, there is no choice of
the surviving parameters a; and b; so that H or p% is contained in span{Ls, £,} and this case
cannot occur.

Case: L] of order 0. This case cannot occur since £} vanishes.

Thus we conclude that form (4.4b) does not occur.

4.2.3 Form (4.4c)

Now we have 2 chains of length 2 and one of length 1. The general form for a chain of length 2
is (4.12). We use the convention that the first chain of length two, {£1, L2}, has parameters a;
and the second chain of length two, {£], £5}, has parameters b;.

The general form for a chain of length 1 is (4.8).

It is not possible for both £; and £ to be of order 2 since then there would only be one
symmetry of order 0, not enough to contain both H and p?. We perform case-based analysis on
the allowable cases.

Case: £ of order 2, £} of order 1. This implies that & must be of order 0, so that H and p?
can be contained in the spanning set. We consider the symmetry Lo = —ajgpaJos — asopsJos.

By rotation of coordinates about the z-axis we can achieve one of the forms asg # 0, a18 = 0
or asg # 0, a1g = —iagy. For the second form the basis is not FLD, so can be ruled out. For
the first form the basis is FLD but fails the requirement of yielding a 2-parameter potential
depending on 2 functionally independent coordinates.

Case: Both £; and £ are of order 1. Then, since p? and H are always basis vectors, the
remaining basis symmetry X must be of order 0. It can be chosen as either p2 or (pz +ip3)?. In
the 1st case we determine all possible choices of basis vectors such that the set is FLD. There
are only 4 general cases and we verify that none of them define a superintegrable system, i.e.,
yields a 2-parameter potential. In the 2nd case there are 9 possible FLD families, but they all
fail the symmetry test.

4.2.4 Form (4.4d)

Here we have 1 chain of length 2 and 3 chains of length 1.

The general form for a chain of length 2 is (4.12) while the general form for a chain of length 1
is (4.8).

There are 2 basic cases: 1) L] is of order 2, £} is of order 1 and K is of orders, 2, 1, or 0;
2) L} is of order 1, £} is of order 0 and K is of orders, 2, 1, or 0. We check all of the possibilities
and find the Hamiltonian H = p2 + pg +p? + V(y, 2), with

V(y,2) =blz —iy) + F(z +1y), (4.13)
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where b is a free constant and F' is an arbitrary function. The corresponding FLD basis is
B = {7-[0, T2, (ipa + p3)?, p1(ip2 + p3), (z + iy)*p?, p1(iJ12 + J13)}. The Minkowski example in
Section 2 is a special case of potential (4.13). Indeed, under the complex orthogonal change of
coordinates

x = —2iry, y=21(ri+r2—(1-1i)rs), z=3(ri—ry— (1—1)rs)

the potential (4.13) becomes that in (2.3) when we choose F(w) = fw + yw? and b = a.
A special case of (4.13) with increased symmetry is

V(y,2) = bi(z —iy) + ba(z + iy)2. (4.14)
Another case is
bo
V(y,z) =biz+ " (4.15)

A third FLD basis is {Ho,p%,pg,plpg,lelg} with corresponding potential
V(y,z) =by+ F(z), (4.16)

where F' is an arbitrary function, and b is an arbitrary constant. A special case with increased
symmetry is

V(y,z) = b1y + baz. (4.17)
Remark 4.1. The symmetry algebras of the Hamiltonians corresponding the potentials (4.14)
and (4.17) are omitted below due to their complexity.

4.2.5 Form (4.4e)

Here we have 5 chains of length 1. The possibilities are 1) 1 symmetry of order 2, 2 symmetries
of order 1 and 2 symmetries of order 0; 2) 1 symmetry of order 2, 1 symmetry of order 1 and 3
symmetries of order 0; 3) 2 symmetries of order 1 and 3 symmetries of order 0; 4) 1 symmetry
of order 1 and 4 symmetries of order 0. In all cases the systems are FLD but they do not admit
2-parameter functionally independent potentials.

4.2.6 Structure algebras

For the generalized Calogero system (4.9) a basis for the generators is

_ 2.2 2 F(%) 2
J =np1, Si=H=pl+py+p3+ 2 S2 = p1,
1,  F(E)y*+F(Y)2° Lo 2 2’ F(Y)
Sy = 5J23 + 2 , Sy = 5(J12 + J53) + R
zF (%)
S5 = p2J12 +p3Ji3 + R
The nonzero commutators of the generators are
(T8} ==, {T.S}=T"-H, {58} =278 278, (4.18)
and the functional relationship is
228 — (22 + y? + 2%)SY + 28) — 2280 = 0. (4.19)

Note that both ‘H and S3 lie in the center of this algebra.
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For the system (4.11) a basis for the 1st and 2nd order generators is

(4 +2%)

1
j:pla 81:%7 82:j27 83:§J223+

22 )
1 2p (¥ g
Si= 5T+ ) + 2y<> 8o = pai + padia 4 y() |

Se = (qJ12 + J13)Jog + W, S7 = (qp2 + p3)Jaz + Wi,

where we omit the complicated forms of the potentials Wg, Wr. Since the potential-free parts
of the generators satisfy (4.19) the set of generators is FLD. The subset {J,H,S1,...,S5}
generates a closed quadratic algebra with nonzero relations (4.18). However, if any linear com-
bination of Sg, S7 is added to the generators, a new 3rd order symmetry is produced that is not
a polynomial in the generators, so the resulting algebra doesn’t close at second order.

Remark 4.2. The set of symmetries {S, ..., S7} contains 5 independent symmetries. However,
the set of FLD symmetries {L, L1, L2, H,K}, equivalent to {S1,S2,S4,S5,S7} via a general
linear transformation, contains only 4 independent symmetries (as is the maximum possible by
Corollary 3.2). The symmetries S3, Sg are obtained in addition to the FLD symmetries by
seeking all 2nd order, linearly independent symmetries of the potential (4.11).

For the generalized Minkowski system (4.13) it is convenient to pass from the original variables
{z,y, z} to new variables {X,Y,Z} where X =z, Y = 2z — iy, Z = z + iy. The Hamiltonian
then can be written as H = p% + 4pypz + bY + F(Z). The generating symmetries are

J =px, S1 =H =pk +4pypz +bY + F(2), Sy =J%
Sy = Zpyx — 2Xpxpy — 5bX*,  Si=pxpy +5bX, S5 =py +3bZ,

and the nonzero structure relations are
{TJ, 83} = 284, {T, 8} =-35, {83, 84} = —2T S5,

with A in the center of the algebra. The potential-free parts of the generators satisfy —zJ7?2 +
SY + 228 = 0, so the system is FLD.
For the system (4.15) the generating symmetries are

b
J =1, Slzﬂ:p%—i-pg—i-pg—i-bw—l—y%, Sy = J?,

b l‘z b €T b xz
S3:p1‘]13+1T5 84:101]73"‘17, 85:J122+2yTu
56:2])2‘]124_722’ 87:217%4'?22’ 58:p2J23+%—ﬁ.

Since the potential-free parts of the generators satisfy zS9 -+ S:? — x84 = 0, the set of generators
is FLD. The subset {J,S1,S2,S3,S4,S7} generates a closed quadratic algebra with nonzero
relations:

{J, 83} = =84, {T,8)=-Y4, {82, 83} = =278y,
{82,84} = -0 T, {85,841 =T (81 — 157 —28,).
However, if any linear combination of S5, Sg, Sg is added to the generators, a new 3rd order

symmetry is produced that is not a polynomial in the generators, so the resulting algebra doesn’t
close at second order.
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For the system (4.16) the generating symmetries are

J =p1, Sle:p%-Fp%—l-pg—Fby—FF(z), ngp%,
bx? bx

Sy =p1p2 + =, S5 = p3 + by,

S = —yp} -
3 yp1 + xp1p2 + 1 5

and the nonzero structure relations are

{j783} = _847 {j,S,?,} = _%7 {82783} = _2\7847 {82784} = _bja
{83,84} = =T (S2 — S4), {83,855} = —2J 84, {84,585} = -bJ.

The potential-free parts of the generators satisfy yJ2 + ng — &) =0, so the system is FLD.

4.3 Second case: J = p; + ip,

We introduce appropriate new coordinates {n, &, z} where x = %(f +n),y= %(n —§&),z==z2.1In
the new coordinates the 1st order symmetries for the potential-free case are:

p1+ipe =2p, = J, p2 = i(pe — py), Ji2 = i(&pe — npy),
Jis =5+ Ep: — 2y +pe)s  Joz = (€ —n)p. +iz(py — pe).

In this case Adf’,1 +ip, = 0. For convenience we prefer to work with J =py = (p1 +ip2)/2. The

canonical forms associated with Ad:} = 0 are again (4.4).

Remark 4.3. A basis of second order symmetries in this case is again given by (4.2). The
formulas for the momentum parts of the symmetry operators appearing below are most naturally
expressed in terms of {p1,p2, ps, J12, J13, Jos}, as before. However, the potentials we obtain are
most naturally expressed in terms of the new coordinates {1, ¢, z}. We take this approach below
and in Sections 4.4 and 4.5.

Adj; has nontrivial action on three components of R in (4.3):
AdjJip = i(p1 +ip2)/2 = ipy, Adj Ji3 = —p3/2, Adj Jog = —ip3/2.

From here we can construct a convenient generalized eigenbasis for the 20-dimensional space of
symmetries:

Ly =173, Ly = 3 J1a(J13 — iJa3), Ly = 2J33,

M, = —%(pl +ip2)J12, My = —i(pl +ip2)(J13 — 1J23) — %p3J12,
M3 = —2p3Ji3, My = Jis + J3s, Ms = iJ12(J13 + iJa3),

Mg =ipa(J13 —iJag), My = —2i(p1 —ip2)J12 — p3(J13 — iJas),

~ 1 . . .
Ny =J?= Z(Pl +ips)?, No = 4(p1 +ip2)ps, N3 = p3, Ny = —p3(J13 +iJa3),

N5 = —3(p1 +ip2)(J13 + iJ23), Ng = —ipaps, N7 =H" = pi + p3 + p3,
Ng = (J13 +iJ23)%, Ng = —1(p1 — ip2)(J13 + iJa3), Nip = %(p1 — ip2)?,

where the 3-chains and 2-chains are {Ll,Ml,Nl}, {LQ,MQ,NQ}, {Lg,Mg,Ng}, {M4,N4},
{M5,N5}, {MG,N(;}, and {M7,N7}. Ng, Ng, and N10 are 1-chains.
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4.3.1 Form (4.4a)

Here we have a 3-chain and two 1-chains, one of which must be H°. There are two cases to
consider. Either the terminal element of the three chain or the second 1-chain must be N; = j 2,

In the first case, the 3-chain is {Ll + B1My + Bo M5 + vNg, My + B1Ny4 + B N5, Nl} (Where
here and below Greek letters with subscripts are arbitrary parameters analogous to the a;; in
the previous subsection; they are fixed by requiring certain combinations of them are FLD) and
the 1-chain is one of p1 No + paN3 + psNe + 4 N1o, 1Ny + poNs + u3Ng, or Ng (in which case
we can take v = 0 by a canonical form-preserving change of basis). The first 1-chain possibility
is FLD when 1) 81 = —1/4, jig = pg = pg = 0, 0r 2) By = 0, v = B2/2, u1 = 2B2(2u2 — 265 — 1),
p3 = =282, g =1or 3) B1 = p3 = pg = 0, p11 = 4P2p2, or 4) f1 = Ba = 1 = pz = ypa = 0.
The third subcase with v = 35/2 and the fourth subcase with v = 4 = 0 lead to the admissible
potentials

Vi 2) = ;2 + F(g€ +2) (4.20)
and
V(¢ 2) = ;2 + F(2), (4.21)

respectively. Note that (4.21) is special case of (4.20) with increased symmetry.

The second 1-chain possibility is FLD when p; = ug = 0 and 3 = —1/4 but does not lead
to an admissible potential.

The third 1-chain possibility is FLD when 81 = —1/2 and f2 = 0, leading to the admissible
potential

F(z/§)
2

In the second case, the 3-chain is {1 Ly + agLo + agLs + 1 My + BoMs + v Ny, ooy My + ag Mo +

agMs+ 51Ny + B2 Ns, a1 N1 + aaNo + a3 N3 }. This case is not FLD for any choice of parameters.

V(§ 2) = (4.22)

4.3.2 Form (4.4b)

Here we have one 3-chain and one 2-chain. The 3-chain must be {L1 + B1 M4+ BoMs+~vNg, M1+
BiNy+ B2N5, N1 = J?} and the 2-chain must be { Mz + 11 Ny + po N5 + p3No, N7 = H°}. The
symmetries are not FLD for any choice of parameters.

4.3.3 Form (4.4c)

Here we have two 2-chains and a single 1-chain. There are three cases to consider: the terminal
elements of the 2-chains are j 2 and 7—[0, one 2-chain terminates in j 2 and the 1-chain is 7—[0,
one 2-chain terminates with H° and the 1-chain is J2.

In the first case, the 2-chains are {Ml + 61Ny + Bo N5 + B3Ny, Nl} and {M7 + v1 N4+ Y2 N5 +
v3Ng, N7} and the 1-chain is one of Ng, pu1 Ny + uaNs + pusNg, 11 No + pusNg + paNyg. For the
first choice of the 1-chain, the symmetries are FLD when 1 = —1/2, 82 = 83 = 0, but this does
not lead to an admissible potential. The second 1-chain possibility is FLD when 5 = —1/4,
B3 = p1 = pg = 0, but this does not lead to an admissible potential. For the third 1-chain
possibility, the symmetries are FLD when either 81 = 83 = us = pqa = 0, u1 = 4Pu0 or
1 = —1/4, B3 = p2 = u3 = pg = 0, but neither corresponds to an admissible potential.

In the second case, one 2-chain is {M; + 81Ny + B2 N5 + 53Ny, N1} and the second 2-chain is
either {71 M1 +~v2 My +y3 M3 +~y4 Mg + 5 M7+ 51 Ny + 02 N5 + 03 Ng, v1 N1 + Y2 N + 3 N3 +v4 Ng +
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~v5 N7} (we can take 3 = 0 by a canonical form-preserving change of basis) or {3 My + v2 M5 +
dNg,v1 Ny+72N5}. To simplify the analysis, we observe that the symmetry My + 51 Ng+ B2 N5 +
B3Ny leads to an inadmissible potential unless 83 = 0; similarly, if v{ N1 + voNo +v3 N3 +v4Ng +
~v5 N7 is a symmetry of an admissible potential we must have 4 = 0. For the first choice of the
second 2-chain, we find three sets of FLD symmetries: 1 = 83 = 71 = 74 = 0, v2 = 45273;
Br=-1/4, f3=m=v3=v=0;and B3 =71 =93 =1 =5 = 0, 72 = 2J3, but none of
these lead to admissible potentials. The second choice of the second 2-chain leads to an FLD
basis when 1 = —1/4, B3 = 71 = 0, but this does not lead to an admissible potential.

In the third case, one 2-chain is { M7+ /51 Ny+ 52 N5+ B3 Ng, N7 } and the second 2-chain is either
{1 My +~y2 Ma+~3 Mz +~y4 Me~+y5 M7+61 Ny+02 N5 +03Ng, y1 N1+v2 No+73N3+74 Ne+v5 N7 } (we
can take 75 = 0 by a canonical form-preserving change of basis) or {v; M4+ y2Ms+ dNg,v1 Ny +
~v2N5}. Using the requirement 4 = 0 from the second case, we find that the first choice for the
second 2-chain does not yield an FLD basis for any choice of parameters. The second choice for
the second 2-chain also does not lead to an FLD basis for any choice of parameters.

4.3.4 Form (4.4d)

Here we have a 2-chain and three 1-chains. There are again three cases to consider: J2 and H°
are 1-chains, J2 is the terminal element of a 2-chain and H is a 1-chain, and H° is the terminal
element of a 2-chain and J2 is a 1-chain.

In the first case, the 2-chain is either {a; M + ag Mo+ agMs + ayg Mg + s M7 + 81 Ny + B2 N5 +
B3Ny, a1 N1+ agNo + a3 N3 + g Ng +055N7} or {a1M4 +agMs+ BNg, a1 Ny —|—042N5} and the final
1-chain is one of w1 No+ o N3+ 3 Ne+ 14 N1o, 1 N4+ poNs+ 3 Ng, Ng. To simplify the analysis,
it is sometimes useful to find conditions under which the nontrivial 1-chains are compatible (both
correspond to the same admissible potential) before searching for FLD systems. For the first
choice of the 2-chain where the final 1-chain is order-0, we have the conditions g = —2aspus/ 114
and po = (u§—2u1u2+2u3uﬁ) /4pspg when gy # 0 (we must also assume asps # 0 to avoid linear
dependence), but this does not lead to an FLD system with admissible potential. When py4 = 0,
the 1-chains are incompatible. For the first choice of the 2-chain where the final 1-chain is order-
1, we have the compatibility conditions a3 = 0 or ae = 2agpa/p1 (1 # 0); the first of these
leads to an FLD system (ag = a4 = a5 = u1 = pu3 = 0, B3 = 3aa/2) with admissible potential

b

V(¢ 2) = 5% + ba(q€ + 2) (4.23)

and an FLD system (a3 = oy = a5 = p1 = pus3 = 0, B3 = —bay/2) with admissible potential

b b
V(e 2) = 52}3 + Z(Zf /;f 2 (4.24)

In the first choice of the 2-chain where the final 1-chain is order-2, the symmetries are FLD when
ag = ag = as = 0 and f3 = ag/2, but this does not lead to an admissible potential. For the
second choice of the 2-chain where the final 1-chain is order-0, the symmetries are FLD when
a1 = g = ps = pg = 0, but this does not lead to an admissible potential. For the second choice
of the 2-chain where the final 1-chain is order-1, imposing pu3 = 0 we find that the symmetries
are not FLD for any choice of parameters. For the second choice of the 2-chain where the final
1-chain is order-2, the symmetries are not FLD for any choice of parameters.

In the second case, the 2-chain is {M; + 51 N4+ B2 N5 + 53Ng, N1} and there are five subcases
for the two remaining 1-chains: one order-2 and one order-1 1-chain, one order-2 and one order-0
1-chain, two order-1 1-chains, one order-1 and one order-0 1-chain, and two order-0 1-chains.

In the first subcase, the symmetries are FLD when 1 = —1/4 and 83 = u1 = pg = 0, but
this does not lead to an admissible potential.
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In the second subcase, the symmetries are FLD when either 51 = —1/2, o = 3 = 0 or
B3 = p3 = pg = 0. From here we obtain three admissible potentials. When g; = —1/2,
Bo = B3 =0, ps, s # 0 and po = (3 — 2p1p3 + 2u33) /4pspia, we have the potential

V(€)= big + (4.25)
,2) = by —, .
(g€ + 2)?
when B2 = (u1 + 261p1)/4pe, B3 = ps = pg = 0, we have the potential
b
V(€ z)=——= + F(§), 4.26
(€9 = o + FO (4.26)
and when (3 = us = us = ug = 0, we have the potential
bz
Vi, z2) = &3 + F(¢). (4.27)

In the third subcase, we recall that pq Ng+ po N5+ pu3Ng only leads to an admissible potential
when s = 0. Then, by a canonical form-preserving change of basis, we see that V4 and N5 must
be independent symmetries. The symmetries are FLD when 83 = 0 and lead to an admissible
potential

V(,2) = ;;j? + F(&). (4.28)

In the fourth subcase, we write M1N4 + M2N5 + MgNg and 11Ny + 9 N3 + v3Ng + v4 N1 for
the order-1 and order-2 1-chains, respectively. The symmetries are FLD when 8; = —1/4,
B3 = p1 = pu3 = 0 or B3 = v3 = vg = 0. There are two resulting FLD systems with admissible
potentials: Sy = (o +2B112) /211, v1 = 2uave /1, Pz = us = v3 = vy = 0, we obtain a potential
equivalent to (4.26) and 83 = p1 = pu3 = v3 = v = vy = 0 with

V(& z) = b2£" + F (). (4.29)

In the fifth subcase, we 1 No 4+ poNs + pusNg + paN1g and v1No 4+ voN3 + v3Ng + v4N1g
for the two order-0 1-chains. Assume first that 4 and v4 are not both zero. Without loss of
generality we assume pq # 0, so we can take v4 = 0 by a canonical form-preserving change of
basis. It is then required that v3 = 0 if we are to have an admissible potential. The 1-chains are
incompatible unless pug = —vqpg/2v2. When additionally v1 = 48919, 51 = f3 = v3 = 14 = 0,
we find an FLD system with admissible potential

V(€ 2) =bE+ Fg€ + 2). (4.30)

If pg = v4 = 0, we must also have us3 = v3 = 0 and we can consider No and N3 as independent
symmetries. The symmetries are FLD when 83 = 0; when additionally $; = —1/10, we find the
admissible potential

V(& z) = b8z + F(€), (4.31)
and when additionally 81 = 0, we find the admissible potential
V(& z) =bz+ F(€). (4.32)

In the third case, the 2-chain is { M7 + S1 N4 + B2 N5 + S3Ng, N1} and there are five subcases
for the two remaining 1-chains: one order-2 and one order-1 1-chain, one order-2 and one order-0
1-chain, two order-1 1-chains, one order-1 and one order-0 1-chain, and two order-0 1-chains.
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The first three subcases are not FLD for any choice of parameters. In the fourth subcase, we
write gy Ny + po N5+ pu3Ng and v No 4+ v9 N3+ v3Ng + 14 N1g for the order-1 and order-2 1-chains,
respectively. The symmetries are FLD when gy = ps = vo = v3 = v4 = 0, but this does not
lead to an admissible potential. In the fifth subcase, we write p1 No + puoNs + pus3Ng + paN1g
and v No 4+ 9 N3 + v3Ng + v4 N1 for the two 1-chains. Compatibility of these 1-chains requires
u3 = pg = v3 = vy = 0 and we may take No and N3 as independent symmetries. However, the
simultaneous admissible potential of Ny and N3 is incompatible with the M7+ 81 N4+ 89 N5+ 53 Ng
for all choices of parameters.

4.3.5 Form (4.4e)

Here we have five 1-chains, two of which must be HY and j 2 There are seven cases for the
three additional 1-chains:

1) one order-2 1-chain and two order-1 1-chains,

\)

one order-2, one order-1, and one order-0 1-chain,

3

one order-2 1-chain and two order-0 1-chains,

SN

two order-1 1-chains and one order-0 1-chain,

(=)

one order-1 and two order-0 1-chains,

7

)
)
)
) three order-1 1-chains,
)
)
) three order-0 1-chains.

In the first case, we write Ng, 1Ny 4+ o N5 + usNg and v Ny + v5 N5 4+ v3Ng for the three 1-
chains. The potential is admissible only if u3 = v3 = 0, so we may take Ny and N5 as independent
symmetries. The symmetries are incompatible (do not have a simultaneous admissible potential).

In the second case, we write Ng, p1 Ny + paNs + pu3Ng and vy Ny + vo N3 + v3Ng + v4N1g for
the three 1-chains. The symmetries are FLD when p3 = v3 = v4 = 0. When also us = v1 = 0,
we find the potential

V(€ 2) = ;bQ + F(&); (4.33)

when also v = p11v1/2p9, we find the admissible potential

01 + baz(pa z + pf)
Y = e + e

+ F(¢), (4.34)

which contains (4.33) as a special case.

In the third case, we write Ng, p1 No+ po N3+ 3 Ne + g N1g and v No + 19 N3 4+ v3Ng + v4N1g
for the 1-chains. We first assume that one of g4, v4 is nonzero. Without loss of generality we
take p14 # 0 so that we may take v4 = 0 by a canonical form-preserving change of basis. We can
only have an admissible potential if also v3 = 0. The symmetries are not FLD for any choice of
the remaining parameters. We then consider the case where ps3 = g = v3 = vy = 0. We can
then take N9 and N3 as independent symmetries, but the symmetries are not FLD.

In the fourth case, we can make a canonical-form preserving change of basis and con-
sider Ny, N5 and Ny as independent symmetries. These symmetries are incompatible (in par-
ticular, Ng does not produce an admissible symmetry).

The fifth case is similar to the first case: we may take N4 and N5 as independent symmetries.
We write p1 No + paN3 + pusNg + paN1g for the remaining nontrivial 1-chain. The symmetries
are FLD when p3 = pug = 0; when also ug = 0, we find the admissible potential (4.28).
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In the sixth case, we write w3 N4 + po N5 + pu3Ng, v1 No + v9 N3 + v3Ng + v4N1g, and o1 Ng +
09oN3 + 03Ng + 04N for the three 1-chains. This case is similar to the third case: the two
subcases reduce to vy # 0, 03 = 04 = 0 and 1o = v3 = v4 = 01 = 03 = 04 = 0. The first subcase
is FLD when also u; = g2 = 0, but we do not get an admissible potential. The second subcase
is FLD and when also u; = 0, we find the admissible potential (4.33).

In the seventh case, we write p1 No + poN3 + pu3Ng + paN1o, v1 N2 + vo N3 + v3Ng + v4 Ny,
and o1 Ns 4+ 09 N3 + 03Ng + 04N1o for the three 1-chains. We assume that at least one of pg4,
vy, o4 is nonzero. Without loss of generality, we take j4 # 0 so we can make a canonical form-
preserving change of basis and take vy = o4 = 0. The second and third symmetries will only
have an admissible potential if also v3 = o3 = 0, so we may also take 15 = 07 = 0: Ny and N3
are independent symmetries. The symmetries are incompatible unless p4 = 0, a contradiction.
We next assume puy4 = v4 = 04 = 0. Then we may consider Ny, N3, and Ng as independent
symmetries. These symmetries are incompatible.

4.3.6 Structure algebras

For the potential (4.20), we have the symmetries
b -

J = (p1 +ip2)/2, 81=H=p%+p§+p§+g+F(Q§+Z), S =T,
2

_ @y b(2g2 1) _ b

53—L1+qM5+2N8+ 26 54—M1+qN5+2§7

S5 = N3 +4gNy + F(qz +€).
They satisfy 4(2¢z — n)j2 +£8Y — 48 — ¢80 = 0 and their nonzero commutators are

{7,853} =S4, {T,8} = T% {85,814} = —27 83 — ¢*bJ,
{Ss,85} =8¢ T S, {84,85} =8¢°T°.

For the potential (4.21), the symmetries and their FLD relation and algebra are obtained
from that of (4.20) in the limit ¢ — 0.
For the potential (4.22), we have the symmetries

F 3
F=mtim)2  S=H=p@ip+id+ ) s p

&
(En+2%) F(2/¢) 1 F(z/¢)

= M; — =N,
252 ) 84 1 9 4+ 2€ 3

1
S3 =11 — §M4 —
S5 = N3 + F(z/€).
They satisfy 4(577 + 22)j2 - 528? + 4552 - Sg = 0, and their nonzero commutators are

{T,85} = Su, {T,8:} = T% {85,814} = —27Ss.
For the potential (4.23), we have the symmetries

_ ' b -
J = (p1 +1ip2)/2, 81:H:p?+p§+p§+€%+bg(q§+z), S =J%,
2 2
q b1(2qz —n) b1 | gbaf
— Ly +qMs + L Ng ¢ 22220 = M+ 2L
S3 1+4q 5+2 8+ 26 , Sy 1+2§+ g
3 b1z bo(2gz — n)¢ bo&
— My — qNy + SNy + 22 4 228842 7 1)s — Nyt 28
Ss 2= qNa+ 5 9+§2+ 1 ; S6 2+
bo&?

S7 = N3 + boz, Sg = Ny — ——.
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They satisfy 4nj2—55?+482+589 = 2zj2—588—8§) = 0. The subset {j, 81,82, 84, Sg, S7, Sg}
generates a closed quadratic algebra with nonzero relations

{T.84} =T, {84,86} = —T Ss, {84, 85} = —27 Ss,

{S6,S7} = —ba2J, {Ss,Ss} = —27°, {S7,8s} = —4T Ss.

However, if any linear combination of S3, S5 is added to the generators, a new 3rd order symmetry

is produced that is not a polynomial in the generators, so the resulting algebra doesn’t close at
second order.

For the potential (4.24), we have the symmetries

_ b | ba(g€ + 2)

T=+im)f2  Si=H=m+h+ri+ gp+ 2o S=7%
S3 = M) + 2N, — blgzl/:a - bz(qgiz—/;fiz),

Sy= My —qN, — gNg _ 521; ba(2g¢2 Igf/fsn —42)

S5 = No— g?/s’ o= Mo — 3b2§2/3.

They satisfy 2272 —5850 —Sg = 0. The subset {j, S1, 89,83, Ss, 86} generates a closed quadratic
algebra with nonzero relations

{7,853} = T2, {S3, 85} = 3T S5, {S3,S6} = —67 Ss, {Ss5,Se} = —27°.

However, if Sy is added to the generators, a new 3rd order symmetry is produced that is not
a polynomial in the generators, so the resulting algebra doesn’t close at second order.
For the potential (4.25), we have the symmetries

N . bo
J = (p1 +1ip2)/2, 1=H=p]+p;+p3+ 1§+(q§+z)2’
) by €2
S =77, 83:M1+qN5+—8 ;
b1z(z + 2¢€)  bo (2qz +2¢%¢ — (£ + 77))
Sy = M; + 4gM> + 2q(1 — 2¢*) N5 + )
4 3 qivig Q( Q) 5 2 (q€+z)2
by b€ by
Ss=N3+4gNo+ —2 — Se=Ny+2gNs — —2> _ S, =Ng+ :
DT TR T ey o) 6T TR T ey 22 RN PTEREE
b1(2qz — 1) b2g”
Ss = Nig — 2qNg — 2q(1 + 2¢*) Ny — — .
8 10 qiVg CI( Q) 2 2 (q§+z)2

They satisfy
4(2qz — n)J? + €87 — 485 — €85 = A(&n+ 2°) T? — €2S] + 4655 — 2657 — 7 = 0.

The subset {j ,S1, 82, 83, S5, Sg, 87} generates a closed quadratic algebra with nonzero relations
(7,85} =T°, {83,851 = 8¢ T°, {S3,S6} = —T Ss, {85,871} = —278r,
{85, 86} = —4T S5 — 16¢°T%, {85,857} = 878,  {S6,S7} = 4TS,

However, if any linear combination of Sy, Sg is added to the generators, a new 3rd order symmetry

is produced that is not a polynomial in the generators, so the resulting algebra doesn’t close at
second order.
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For the potential (4.26), we have the symmetries

b ~
= i 2 — Y =9 2 247 . R — 72
J = (p1 +ip2)/2, S1=H=pi+p;+p3+ (G 1 2)2 + F(§), S =77,

1 b
33=M1+qN5+4/fFI(§)d§, S4=N3+4CZN2+W,

b be?
£ S Nes M

= Ny 4+ 2qNs — — > 5
55 = Na+ 2qNs (g€ + 2)%’ (g€ + 2)?

They satisfy
42z — )T+ £S) — A4S — €8] = 4(22 + ) T* — 28] + 4689 — 2680 — Sg = 0
and their nonzero commutators are

(7,83} = T2 {85,814} = 84273, {83,851 = —TSs, {S3,86} = —27 Ss,
(84,85} = —4T 84 — 16> T3, (81,86} = —8T Ss, {S5,S6} = —4T Se.

For the potential (4.27), we have the symmetries

J=(p1+ip)/2, Si=H-= p1+p2+p3+£3 FE), S=J7%

1 % b
Si= My~ 3Ni+ o5 + /w & Si=Na- g
b
N, = Ng+ —
S5 = Ny + — TS Se 8 + 5
They satisfy 4(577 + z ) — €280 + 4£8) — = 227J% — €8) — 8Y = 0 and their nonzero

commutators are
{7,853} =T7, {S5,84} = 27 84, {S5,S5} = —TSs,
(84,86} = —4TSs5,  {S5,86} =bJ.
The case of the potential (4.28) is treated as a special case of (4.29) (with a = —3/2) below.
We consider the potential (4.29):
V(& z) = bz€* + F(§), a#—2,-3/2,—1;

we cover these exclusions as special cases below. Under our assumptions we have the symmetries
J=(p1+ip2)/2, Si=H=pi+p3+p3+bz£"+F(E), Sa=JT7

a 2abz§“+1
S3=M; — —N. F'(¢&)d
M T 52a 3 T d2a 1 3) /5 ) d&;

ga—i-l €a+2

= N. =Ns————.
51 2T i 1a) 55 = N5 4(a +2)

They satisfy
2:7% - €8y - 82 =0 (4.35)

and their nonzero commutators are
~ ~ 3(a+1) -
Sl = g2 S3,84} = — S
{'.77 3} \77 {37 4} 2a+3\747
3(a+2)
20 + 3

IS5, (81,85} = —27°.

{85, 85} = —
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In the case a = —2 we have the symmetries
j: (p1+1p2)/27 81 H pl +p2 +p3+ 62 (f)a 82 :j27
bz 1 b bl
S3=M N4+€+ /fF/(f)d& S4=N2—E7 S5 = N5 — (zlgi.

They satisfy (4.35) and their nonzero commutators are

- ~ ~ 3b - ~
(7.8} =0% (S8} =-3T8, (SSy=-77, {88} =-27"

In the case a = —3/2 we have the symmetries
- . bz ~
J = (1 +ip2)/2, 81=H=pf+p§+p§+€3ﬁ+F(£), Sy = 7%
bz b bet/?
83:N4_§1T’ 54:N2—2€W, S5 = N5 — 9 -

They satisfy (4.35) and their nonzero commutators are
{83, 8} =2T8s, {83,855} =278, {84,855} = —27°.

In the case a = —1 we have the symmetries

. bz .
J = (p1+1ip2)/2, Sle:p%+p%+p§+——|—F(£), Sy = J2,
b§

¢
bl
Si=M- Ne- T+ [P SNt T S —N -

They satisfy (4.35) and their nonzero commutators are
{j783} == jz) {83784} - _%bj') {83785} = _3\.7857 {84785} = _2j3

For the potential (4.30), we have the symmetries

T =1 +ip2)/2, Si=H=pi+p3+pi+b+F(¢¢+2), S2=J2
2

b
83:M1+QN5+%, 84:4qN2+N3+F(q§+z),

85 = 24(1+ 20°)Na + 2Ns — Nig — 2 — gb + *F (gt + 7).
They satisfy

429z — )T+ €8Y —48) — 89 =0
and their nonzero commutators are

{ijS} :j2a {j 85} a {83584}:8q2j35
(83,85} =8¢ T + TSy — 34° TS84 + 2785,  {S4,85} = —4¢°bJ.

The case of the potential (4.31) is obtained exactly as a special case of (4.29) (with a = 1)
above.
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For the potential (4.32) (a special case of (4.29) with a = 0, but with an additional symmetry),
we have the symmetries

J = (m +ip2)/2, Si=H =pi+ps+p35+bz+ F (&), Sy = T2,

1 b be?
33=M1+4/§F/(5)d§7 84:N2+Z£’ S5 = N3 — bz, S = 5—%

They satisfy 4nj2 —£8) + 480 +¢8? = 2272 — £8) — 8 = 0 and their nonzero commutators
are

{7,835} =T°, (85,84} = T Su, {S5,86} = —27 Se,
(81,85} = —bT, {81, Ss}=-4T% = {S5.Ss} = —4TSs.

For the potential (4.33), we have the symmetries
5 . 2, .2, .2, b 2
J = (p1 +ip2)/2, 51=H=P1+P2+p3+?+F(§)7 Se=J",
1 b
53=M1+4/5F,(5)df, 54=N2+;2, S5 = Ny — —,
They satisfy
4(en+ 2 J? — 28) + 489 — 26S) — S = 4T — €8 + 485 + £8) =0
and their nonzero commutators are

(7.8} =% {S:8)=-TS  {8,8}=-27Ss,
{84,855} = —47, {84,86} = —87Ss, {S5,86} = —47 Se.
For the potential (4.34), we consider two cases. In the first case, us = 0 and (4.34) reduces

o0 (4.33) after a redefinition of F'(£). In the second case, we take po # 0, so we define ¢ = 1/ p2
so that (4.34) reduces to

bz(€ + qz)
§2(€ + 2¢2)?

after a redefinition of F(¢) and introduction of a new free parameter b. For this potential we
have the symmetries

V(¢ 2) = F(£)

. : bz(§ + gz) -
_ .22, ,2, 92&T3qz) )
j_(p1+1p2)/27 SI_H_pl+p2+p3+€2(€+2qz)2 +F(€)7 S2 J*,
1 bz(€ + qz) / q b
S3=M; — =Ny F¢)d S4=No+-N3g— ————
3= MmNt S oz T 1) FOAG Si=Nod o Ns =g
b§ bg?

S5 = N5 + qN4 + Sg = Ng —

4(€ 4 2¢2)%’ 49(€ + 2q2)%

They satisfy
Aqn — 2)T* — q€S) + 4¢S9 + 2687 + 280 = 4(én + 2%) T? — 2S) + 4689 - S§ =0
and their nonzero commutators are

{j783} - j27 {83784} = _2j847 {83785} = _j857
(84,85} = —4qTSs — 273, (84,86} = —4T S5, {S5, 86} = —4qT Se.
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4.4 Third case: J = xps — yp1

Here the centralizer of J is the group generated by translation in z and rotations about the z-
axis. We can use this freedom to simplify the computation. Since J is a symmetry the potential
must be of the form V(x2 + 2, z) A basis for symmetries is again given by (4.2), but as in the
previous section, we will construct a more convenient basis by consider the action of Ady,,.

In addition we obtain a series of equations for the first derivatives 0, Fp, 0y Fp, 0.Fp, which
lead to Bertrand—Darboux equations for V(a:2 + 92, z). At the end we have to find 5 linearly
independent solutions for & and verify that they admit one functionally linearly dependent
solution.

The adjoint action § — {J12,8} = Adj,, S will map the 5-dimensional space of a solution
set into itself. This action preserves the order of symmetry operators that are homogeneous
in Cartesian coordinates. However, it is also convenient to introduce cylindrical coordinates
{r,0,z} where x = rcos(0), y = rsin(f), z = z, and

p1 = prcos(d) —pgsin(0)/r,  p2 =pysin(d) +pgcos(d)/r,  p3 =p:,

zsin 6 pg .
Ji2 = pe, Jis = (rps — zpy) cos 6 + — Joz = (rp; — zpy) sinf — .

z cos  py

On the components of R in (4.3), J = Ji2 has the following nontrivial actions:
AdJ12 P1 = P2, Ad-]12 P2 = —P1, AdJ12 J13 = J237 AdJ12 J23 = _Jl3~

We can use these to construct a basis consisting of eigenvectors of Ad,,. We label the eigenvec-
tors to take advantage of their transformation under rotation: eigenvectors with subscripts 42,
+1, and 0 indicate corresponding eigenvalues of +2i, +i, and 0, respectively (the second sub-
script, when applicable, distinguishes between multiple eigenvectors of the same order with the
same eigenvalue). A complex eigenbasis for the 6-dimensional space of symmetries of order 2 is

Log =Jiy,  Log=Jis+J35, Ly =—3J12(J1s — iJog),
Ly = L J12(J1g +iJ23), L_g=—1(J13+1J23)% Lio = (13 —iJog)”.
A complex eigenbasis for the 8-dimensional space of symmetries of order 1 is
Mo = —psiz, Myo = —p1J13 — paJas, M1 = —35ps3(Jis +1Ja3),
My = (p1+ip2)J12, M_15 = p3(J1z — iJa3), M_11 = —3J12(p1 — ip2),
My = —3(p1 — ip2)(J13 — iJa3), M_3 = %(p1 + ip2)(J1s + iJa3).
A complex eigenbasis for the 6-dimensional space of symmetries of order 0 is
No1 = p3, Noa = pi + p3 + p3, N_y = —1(p1 +ip2)?,
Niz = 3(m —ip2)®,  Noi=—3(m +ip2)ps, Ny = 3(p — ip2)ps.

Because J and H must be basis vectors, it follows that the possible actions of Ad,, on an
eigenbasis are described by the canonical forms

A 0 0 00 A 0 000

0 A 0 00 0 A 000

0 0 X 0 0], 0 0 00 0],

0 0 0 00 0 0 000

0 0 0 00 0 0 000

A 00 0 0 0000 O

0 0000 0000 O

0 000 O], 0000 O], (4.36)
0 000 O 0000 O

0 0000 0000 O
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where \; = &£i,42i. Note that there are a large number of cases to consider. The matrices
in (4.36) are all diagonal and each contains at least 2 zeros on the diagonal because J and H
must always be included as eigenfunctions. The remaining eigenfunctions correspond to 3, 2, 1
or 0 eigenvalues A;j. All possible choices have to be considered from the eigenfunctions listed
above.

4.4.1 Form (4.36a)

Since the eigenvalues for real Euclidean space must occur in complex-conjugate pairs, a system
of this form is only possible for Minkowski space. We examine all such cases and find numerous
FLD systems, but none are 2-parameter functionally independent superintegrable.

4.4.2 Form (4.36b)

We find the following FLD bases and potentials (in each case F' is an arbitrary function of its
argument and b is an arbitrary parameter)

bz
_ 0 72 _ 2 2
B—{H ,j ,L+1,L,1,L072}, V(T,Z)—F(T’ +z )‘Fm, (437)
b
B = {7‘[0, j2, L+2, L_Q,LO’Q}, V(T, Z) = F(T’2 + 22) + ;, (438)
B={H’ J% Niz, N_o,No1}, V(r,z) = br? + F(2), (4.39)
and
0 72 b
B = {7‘[ J 7M+1,17 M—l,h NO,I}v V(T, Z) = ; + F(Z), (440)
In addition, there is the FLD basis and potential
b
B={H",J% Nis,N_o,No1}, V(r,z) = by (4r° + 2* + 2¢z) + ﬁ (4.41)

which is 2-parameter superintegrable.

4.4.3 Form (4.36¢)

Since the eigenvalues for real Euclidean space must occur in complex-conjugate pairs, a system
of this form is only possible for Minkowski space. We examine all such systems and find that
none are FLD.

4.4.4 Form (4.36d)

Checking over all possibilities for systems with this eigenvalue form, we find that none are FLD.

4.4.5 Symmetry algebras

For the potential (4.37), we have the symmetries
bz

= J12, S1=H =N F(r? 2 — v Sy =T,
J = Ji2 1 02+ F(r +z)~I—T(T2+22) s =J
bz ibe 10 ibel?
83:[/0’2_'_77 Sy=L_1— R 85:L+1— .
T 4 4
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They satisfy izel? 72 + re21982 + TSg = 0 and their nonzero commutators are
{T, S84} =184, {T,S5} = —iSs, {83,814} = —21T 84,
{853,855} = 21T Ss, (84,85} = 5785 — 7%

For the potential (4.38), we have the symmetries

b
J = Ji2, 31:H:N0,2+F(?“2+22)+;2, Sy = J%,
br? ibr2e2if ibr2e— 20
S3=1L — S4=Lyg— —— Ss=L_og— ——.
3 0,2+ 2 4 +2 822 5 2 32
They satisfy 2iz2e%% 72 — ir2e2i98§) — 4?8y — 4r2e4i952 = 0 and their nonzero commutators are
{J, 84} = —2i84, {T, S5} = 2iSs, {83, 8a} = —4iT S,
{83, 85} = —4iT Ss, (84,85} = LT85+ L%
For the potential (4.39), we have the symmetries
J=Ji2, Si=H=DN2+b’+G(z), S=J%
br2e20 br2e—2i0
Sy =N_
4 ) 4 2+ 4 ’
They satisfy 2e%¢ 72 — 1262080 — 2728521219 S) + 12629 SY = 0 and their nonzero commutators
are

83 = Ni2 —

S5 = Noj + G(2).

{J, 83} = —2iS3, {J, 84} = 2184, {83,854} =ibJ.
For the potential (4.40), we have the symmetries

b
J = Ji2, 31:H=N0,2+F(z)+;, Sy =J?

ibel? ibe~10
83:M+1’1+T’ Sy =M_171+ 1

They satisfy iel? 72 — 7"83? — rezieé’g = 0 and their nonzero commutators are
{j783} = _1837 {j784} = i847 {83784} - %\7(85 - 82)
For the potential (4.41), we have the symmetries

S5 = No1 + F(z2).

bo
- = H = Nog+ by (4% + 22 + 2 — =J?
J=Ji2, Si=H=Nog+b(4r’+2"+ qz)+(z+q)2, So=J%,

) : b
S3=Ni9 — b1T26210, Sy=N_o+ b11"2€_210, S5 = NO,l + blz(z + 2q) + 2

(z+q)%

re (bi(z + g)* — ba)
2(z + q)? ’
re ¥ (bi(z + g)* = ba)
2(z + q)?
They satisfy J2 — r2SY — 2r2e20Ss 1 212298 4- 12S; = 0. The subset {J,S1,S2, S5, Sg, S7}
generates a closed quadratic algebra with nonzero relations

{J,S{’,} = *2i837 {\7784} = 21847 {83784} = 41b1\7

However, if any linear combination of S3, Sy is added to the generators, a new 3rd order symmetry
is produced that is not a polynomial in the generators, so the resulting algebra doesn’t close at
second order.

S =Mi12—qNy1 +

Sr=M_12—qN_1 —
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4.5 Fourth case: J = Jiz + iJ>23

This case is similar to the second case, treated in Section 4.3. We make the change of variables
v=—ple +(1/4-17)],  y=—prexp(d), z=iple”’ —e’(1/4+17)],

so that p, = 2(Jy2 + iJeg) and

e® (4r2 — 1) (po — ppp) — 4(po — 2rpr + pp)) re* (pp, — pg — pr)
1= 9 5 P2 = 9 ;
4pe pe
(4% + 1) (po — ppp) + 4o — 2rpy + ppp)
p3 =1 4p€6 5

Jig = —2rpg + (% + T2 + 6_20)1)7"’ Jiz = i(T’pr - pG)a
Jos = i(r® + ) p, — 2irpy — Ip,.

Similarly to Section 4.3, we prefer to work with J = p,. The action of Ad j on the elements of R
in (4.3) is

Adjp1 =2p2,  Adjp2=-2(p1—1ip3),  Adjps= —2ipy,
Adj Jio = 2iJ13, Adj Jiz = —21(J12 —I—iJgg), AdJ~ Jog = —2J13.

From here we can construct a convenient generalized eigenbasis of symmetries.
A basis for the six-dimensional space of order-two symmetries is

Li=5:Jh,  Lo={§Dades,  Ls=3(Jh — Jis +iJ12J23),
Ly = 2i(J1a + iJo3) J13, Ly = 4(J19 + 1J23)?, L = Jiy + Jis + J35.

Here, {L1, Lo, L3, Ly, L5} form a chain and {Ls, Le} C ker Ad,, .
A basis for the eight-dimensional space of order-one symmetries is

My = $p1J12, My = 5 (p2J12 +ip113), Ms = §(p1Jas + 2p2J13 + p3Jia),
My = —ip1J13 + pa(J12 +iJ23) — p3J13, My = —4(p1 — ip3)(J12 +iJ23),

Mg = §(p2Jr2 — ip1Ji3), M7 = —2p1J12 — ip1Jas + ip3 i,

Ms = —2(ip1 + p3)J13 — 2p2(J12 + 1J23).

Here, we have two separate chains: {My, Mo, M3, My, M5} and {Mg, M7, Mg}: {Ms, Mg} C
ker Ad,, .
A basis for the six-dimensional space of order-zero symmetries is

Ny = 4pi, Ny = gp1ps, N3 = —3(pf — p5 + ip1ps),
Ny = —2(p1 — ip3)p2, N5 = 4(p1 — ip3)?, No = H° = pi + 5 + 3.

Here, {N1, N2, N3, Ny, N5} form a chain and {N5, Ng} C ker Adj.
The possible canonical forms are

01000 01000
00100 00100
000 10|, 00010], (4.42)
00001 00000
00000 00000
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01000 01000

00100 0 010O0

000 O0O0f, 000 O0O0f, (4.43)
000 01 0 00O0O

0 00O0O 0 00O0O

01000 01000 0 00O0O

000O0O 0 00O0O 0 00O0O

000 1O0]{, 000 O0O0f, 00 00O (4.44)
00 00O 00 00O 00 00O

0 00O0O 0 00O0O 0 00O0O

4.5.1 Form (4.42a)

Here we have a 5-chain. This form does not occur because it cannot not contain H (moreover,
H and p? cannot be in the same chain).

4.5.2 Form (4.42b)

This form can (and must) contain both J2 and H°. Because H° is not in a nontrivial chain, the
basis must be

{#H°, Lo+ BLs + L4 + 61 L5 + 62Le, L3 + BL4 + vLs, Ly + BLs, Ls = p? },

but we can take § = v = d; = 0 by a canonical form-preserving change of basis. The chain
{La + 02L¢, L3, L4, L5} is FLD but does not correspond to an admissible potential.

4.5.3 Form (4.43c)

Here we have a 3-chain and a 2-chain. This form does not occur because it cannot not contain H.

4.5.4 Form (4.43d)

Here we have a 3-chain and two 1-chains. One of the 1-chains is H°. First suppose the second
one-chain is p2. Using canonical form-preserving changes of basis when necessary, the possible
3-chains are equivalent to one of { N3, Ny, N5},

{a1 M3 + Mg + B1 My + 1 Ms, a1 My + My + 1 Ms, aq Ms + Mg},
{M3 + asMs + Bo M7 + o Mg, My + aoMy + S Mg, Ms + as Mg}

The first case is FLD and provides the admissible potential
V(p,0) = bp* + F(pe’). (4.45)

The second case is not FLD. The third case is FLD when ay = 0 and 3 = +1/2 but these cases
do not provide 2-parameter potentials.

If J2 is not one of the 1-chains, our basis must contain (after a canonical form-preserving
change of basis) {Ls + v2L¢, L4, L5}. It is left to chose a second 1-chain, for which there are
three possibilities: Lg (in which case we can take v = 0 by a canonical form-preserving change
of basis), uMs + v Mg, and N5. The first possibility gives an FLD basis and has the admissible
potential

be—QG
o F(p). (4.46)

Vi(p,0) =

The second and third possibilities are FLD when v = 1/3, but neither leads to a 2-parameter
potential.
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4.5.5 Form (4.44e)

Here we have two 2-chains and a 1-chain, which must be H". One of the 2-chains must be
{L4 + pLg,Ls}. The possibilities for the other 2-chain are (after canonical form-preserving
changes of basis) {aMy + M7 + yMs,aMs + Mg} or { My + SM7 + 0 Mg, M5 + fMg}. Only the
latter (together with Ls) is FLD when a = 1, § = = 0, and § = —1/2 but does not yield an
admissible potential.

4.5.6 Form (4.44f)

Here we have a 2-chain and three 1-chains, one of which must be H?. We first assume that the
2-chain is {L4 + uLg, Ls}. There are then four ways to choose the remaining two one chains:
{Ns,aMs + Mg}, {aMs + BMg, Lg} (in which case we take p = 0), {Ns, Lg} (again, u = 0),
or {Ms, Mg}. The first case is FLD when o = 0 but does yield an admissible potential. The
second, third, and fourth cases are not FLD.

If the 2-chain is not {L4 + pLg, L5}, one of the 1-chains must be Ly = J2. Then we have one
1-chain (N5, Lg, or uMs + vMg) and one 2-chain ({ N4, N5}, {aMy + M7+ vMs, M5 + Mg}, or
{My + BM7; + 6 Mg, M5 + SMg}) to choose. There are several FLD bases but only one leads to
an admissible potential

—30

V(p,0) = + F(pe?). (4.47)

4.5.7 Form (4.44g)

This case consists of five 1-chains, two of which must be H® and j 2 There are therefore three
subcases to consider: the remaining symmetries are either {Lg, M5+ BMs, N5}, {L¢, M5, Mg},
or {Ms, Mg, N5}. The first and third cases are FLD in certain cases but the corresponding
potentials do not have 2 independent parameters.

4.5.8 Structure algebras

For the potential (4.45), we have the symmetries

‘7:2(J12+1J23)3 312H2N6+bp2+F(peg), 82:‘_727
—[4+e¥(1—12r%)]bp? — 4F (pe’)
24 ’

S3=1Ls+ Sy = Ny — bp2T629,

S = Ny + bpzeze.

They satisfy p?e’ (48 +2489+248) + (1+12r?)S?) — 1272 = 0 and their nonzero commutators
are

{j753} =&y, {j,34}285, {S3,84} = bJ.
For the potential (4.46), we have the symmetries

- be—20 -
J =2(Ni2+1J23), S =H=Ns+ ep2 +F(p),  Sa=JT%+w,

br2  be=%

S3=L3+ — — ,

3 3t 3

They satisfy (1+ 12e72¢ — 12r2)j 2 1289 — 12rS) — 48Y = 0 and their nonzero commutators
are

Sy =Ly —br, Sy = Lg + be 2.

{T.83} =84, {T.S4} =S, {S3,81} = —2T83+ 1TSs + T+ 57
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For the potential (4.47), we have the symmetries

~ be =39
J =2(Jiz+1J23), S1=H=Ne+

+F(eep)7 82:j27

1 bpr? 2be?
S3 ::A44-—E§A4é<— ST , S4 = M5 + br, S5 = N5 — ¢ .
p

They satisfy J?2 + peegg + prees'g = 0, and their nonzero commutators are

{j’83} = S4a {j584} = _b’ {83784} = _%jsél

4.6 Fifth case: J = —iJ2 + J23 — ip1 + p3

This case does not occur for complex Euclidean systems since the symmetry J is not homoge-
neous.

4.7 Additional comments

We note that for all of the systems classified we can find a complete integral for the Hamilton—
Jacobi equation. For example, the system (4.29) with a = —3, has the Hamilton—Jacobi equation

o0& On 0z &

For this equation, we find the complete integral

+F(¢) = E.

b? b(2¢3z + c2€)

B c3(deaz + EE) — ¢3¢ 1
- T68¢3¢3 16c3¢2

46“;’ 401

S(fﬂ??z) +Cl77+

JEGLS
where c1, co are arbitrary constants and another constant arises from the indefinite integral of F'.
The corresponding Schrodinger equation

(48587, + 9% + zg + F(f)) ) = Ev

has the solution

Y(€,m, z) = expS(E,n, 2).

The symmetry algebras for these FLD superintegrable systems don’t always close. However
the symmetries always provide some information about the classical trajectories of solutions
of the Hamilton—Jacobi equation. If a superintegrable system is functionally independent the
trajectories are uniquely determined, However, if the system is FLD then we can solve for one
of the constants of the motion in terms of the others. Thus a 2-parameter manifold can be
computed from the symmetries such that the trajectories of solutions of the Hamilton—Jacobi
equation must lie on this manifold.

5 The complex 3-sphere

We choose a standardized Cartesian-like coordinate system {x,y, z} on the 3-sphere such that
the Hamiltonian is

2\ 2
T
H—<1+4> (v2+p,+p2)+V,
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Table 1. Summary of the FLD systems.

(49)  V(y,2) = T
D e G
(413) V(y,z) =b(z —iy) + F(z + 1y)
E4.14§ VEy, Z; =b1(z —biy) +ba(z +iy)?
4.15) V(y,z) =biz+ %
(4.16) V(y,2) = ey + F(=)
(4.17) V(y,2) = c1y + caz
(420) V(&2) =%+ F(gé+2)
(421) V(&2) =&+ F(2)
(422) V(& 2) =G0
(4.23) V(,2) = & +ba(g€ + 2)
(4.24)  V(&,2) = g + 2t
(425)  V(£,2) = bié + 25y
(4.26) V(& 2) = (€+2)2 + F(¢)
(427) V(&2) =g +F(§)
(4.28) V(& 2) = 5= + F(€)
(4.29)  V(€,2) = bze® + F(€)
(4.30) V(¢ 2) = b& + F(qé + 2)
(4.31) V(& 2) = béz+ F(€)
(4.32) V(£ 2) =bz+ F(£)
(4.33) V(62)=2% FE(E)
(130) Vies) = ESuzie o ()
(4.37) V(rz2)=F(r*+2%) + ﬁ
1 vegoera s
. r,r)=br z
(4.40) V(r,z) =Lt +F(2)
(4.41) V(r,2) = L 42212 £202) (2b5(a1+2kclz)(b5z+bg)2
(4.45)  V(p,0) = bp* + F(pe’
(4.46)  V(p,0) = 2" + F(p)
(447)  V(p,0) === + F(pe’)

where 72 = 22 + y% + 22. These coordinates can be related to the standard realization of the
sphere via complex coordinates s = (s1, s2, s3, $4) such that 24 s2=1and ds? = Zj ds? via

Jj=1%7

4x 4y 4z 4 —r?

ST = — Sy —m — Sq9 == —— Sy = —F-
YT A 2T A4 ST A R

with inverse z = 2s1/(1 4 s4), y = 2s2/(1 + s4), 2 = 2s3/(1 + s4). A basis of Killing vectors for
the zero potential system is Jp,, Kp, h = 1,2,3 where

Jo3 = yp. — ZPy s J31 = 2py — P2, Ji2 = TPy — YPux,
2 2 2
¢ -y —z Ty Tz
K, = <1+4>px+2py+2PZ7
2 2 2
Y- —xc—z xy Yz
K2:<1+ 1 )py+2 x+?p23
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The relation between this basis and the standard basis of rotation generators on the sphere
Lom = $epm — Smpe = —Ime is

Jog = I3, J13 = I13, Ji2 = Iia, Ky = I, Ko = Iy, K3 = Iy3.

To solve the classification problem for Hamiltonians in the class Oy0(4) on the complex 3-
sphere we can use methods analogous to those for Euclidean space. From result (3.4) applied
to the 3-sphere we see that, up to conjugacy, there are just 2 cases to consider: J = Ji2 and
J = Ji2 +1J23. The details are complicated but we find that there are no class Oy0(4) FLD
superintegrable systems on the complex 3-sphere in this class. To save space we do not provide
the details here. They can be found in the online paper [2].

6 Conclusions

This paper is part of a program to classify all 2nd order superintegrable classical and quantum
systems on 3-dimensional conformally flat complex manifolds. We have worked out the basic
structure theory for certain FLD-superintegrable systems on these manifolds and classified all
such systems on constant curvature spaces that are in the class Oyo0(4). There turn out to
be no such systems on the complex 3-sphere [2]. The remaining systems to classify are highly
degenerate, admitting at least 6 linearly independent symmetries and as yet we have found no
verifiable examples. For complex Euclidean space we list the 2-parameter potentials in Table 1.
In most of the cases the potential depends on at least one arbitrary function. The key to the
classification is a proof that all such systems admit a 1st order symmetry.
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