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Abstract. We study the Kawai–Lewellen–Tye (KLT) relations for quantum field theory
by reformulating it as an isomorphism between two Lie algebras. We also show how ex-
plicit formulas for KLT relations arise when studying rational functions on M0,n, and prove
identities that allow for arbitrary rational functions to be expanded in any given basis. Via
the Cachazo–He–Yuan formulas for, these identities also lead to new formulas for gauge
and gravity tree amplitudes, including formulas for so-called Bern–Carrasco–Johansson nu-
merators, in the case of non-linear sigma model and maximal-helicity-violating Yang–Mills
amplitudes.
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1 Introduction

The Kawai–Lewellen–Tye (KLT) relations for field theory amplitudes express the tree amplitude
of a gravity theory as a quadratic expression in the tree amplitudes of a gauge theory. The
existence of such a relation is motivated by the string KLT relation between open and closed
string tree amplitudes. These relations were proposed in [30], and explicit formulas for the
components of the KLT matrix were derived more recently in [6]. The KLT relation for string
amplitudes resembles the Riemann period relations, because the quadratic relation is obtained
by taking the inverse of a matrix of the intersection numbers (in a certain homology theory)
of M0,n, the moduli space of n points in P1. The KLT relations are studied from this point
of view in [10, 37]. There has been work done to understand the field theory KLT relation in
similar terms [38, 39].

This article studies the field theory KLT relation directly, without reference to M0,n, to
find a simple algebraic interpretation of the KLT matrix. The relationship to M0,n is then
exploited to find new formulas for some gauge theory tree amplitudes. The formulas obtained
are in a special form, which manifests the numerators of Bern–Carrasco–Johansson (BCJ) [4].
The rest of this introduction gives a brief review of the field theory KLT relations, and then
summarizes the results of the paper.

1.1 Partial amplitudes and the field theory KLT relations

The colour factors of a gauge theory amplitude organize the amplitude into partial amplitudes
corresponding to surfaces with boundary marked points. For an SU(N) gauge theory, with
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coupling constant gYM, the full amplitude may be written as

An = (igYM)n−2
∞∑
ℓ=0

λℓ
∑
h,p,g

(
1

N

)2g+h−1

Ap,g,h, (1.1)

where λ = g2YMN is the ’t Hooft coupling [46], and where Ap,g,h is the sum of partial amplitudes
corresponding to surfaces of genus g, with p punctures and h boundary components. The second
sum in (1.1) is constrained by the relation p+ 2g + h = ℓ+ 1.

Consider Yang–Mills (YM) gauge theory, with gluons in the matrix representation of su(N).
Fix some distinct λ1, . . . , λn ∈ su(N), corresponding to the external gluon colour states. A cubic
Feynman tree diagram, α, gives a contribution to the tree amplitude which is proportional to

cα := tr(α[λ1, . . . , λn−1]λn), (1.2)

where tr is the Killing form, and α[λ1, . . . , λn−1] is the Lie bracketing of the λi according to the
tree α, regarded as a rooted binary tree, with root n.1 A Feynman tree diagram that contains
quartic vertices gives a contribution which is a sum of terms, each proportional to cα for some
binary rooted tree α.2 It is therefore possible to write the n-point tree amplitude as

Atree
YM =

∑
trees
α

Aαcα,

where the sum is over all binary trees α, with external edges labelled by 1, . . . , n. The coeffi-
cients Aα that appear in the sum depend only on the gluon momenta and polarizations. The
colour factors cα may be expanded as a sum over permutations:

cα =
∑

a∈Sn−1

(a, α) tr(λa(1) . . . λa(n−1)λn), (1.3)

where Sn−1 is the set of permutations. The bracketing (a, α) denotes the coefficient of the
ordering a in the expansion of the monomial α, which can be either +1, −1, or 0. The partial
amplitude expansion of Atree

YM can therefore also be written as a sum over permutations:

Atree
YM =

∑
a∈Sn−1

A(a, n) tr(λa(1) . . . λa(n−1)λn),

where A(a, n) is the sum over binary trees,

A(a, n) =
∑
trees
α

(a, α)Aα.

Given the gauge theory partial tree amplitudes, the field theory KLT relation expresses the
n-point gravity tree amplitude Mn as a quadratic expression of the following form [6, 7]

Mn = lim
k2n→0

∑
a,b∈Sn−2

A(1an)S(1a, 1b)A
(
b1n
)

k2n
, (1.4)

where the matrix entries S(1a, 1b) depend only on the gluon momenta, kµi . It is understood that,
S(1a, 1b) is defined ‘off-shell’, in the sense that it is valid for k2n ̸= 0. When k2n ̸= 0, S(1a, 1b) is

1A binary rooted tree with k leaves determines and is determined by a Lie bracketing of k variables, up to
a sign.

2The cubic diagrams that appear in this sum can be found by considering all the possible ways to ‘expand’
the quartic vertices into a subdiagram with two cubic vertices.
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a (n − 2)! × (n − 2)! matrix of full rank (as explained in Section 2). Its rank drops by 1 when
k2n = 0. The explicit formula for the entries of S(1a, 1b) is given by [6]

S(1a, 1b) :=
n−1∏
i=2

∑
j<1ai
j>1bi

sij

 , (1.5)

where the variables

sij = 2ki · kj

are the Mandelstam variables associated to the gluon momenta. For fixed i, the sum in this
formula is over all j that both precede i in 1a, and are preceded by i in 1b. The notation b
denotes the reversal of the ordering b.

This formula, (1.4), was originally derived in [6] using an argument from the properties
of the open string integral. [24] showed that the ‘off-shell’ KLT matrix, (1.5), is the matrix
inverse of a matrix of ‘Berends–Giele’ currents for bi-adjoint scalar theory. Namely, define
a (n− 2)!× (n− 2)! matrix, T :

T (1a, 1b) =
∑
trees
α

(1a, α)(1b, α)

k2nsα
,

where a and b are permutations of 2, . . . , n−1, and the sum is over all binary trees. The brackets
(1a, α) are defined as in (1.3), above. The denominator, sα, is the product of propagators.

3 Then,
thinking of S(1a, 1b) as an (n− 2)!× (n− 2)! matrix, S:

Proposition 1.1. The matrices S and T are inverse: ST = TS = Id, i.e.,∑
b∈Sn−2

T (1a, 1b)S(1b, 1c) =
∑

b∈Sn−2

S(1a, 1b)T (1b, 1c) = δb,c, (1.6)

where δb,c is the identity matrix.

Section 2 gives a basis-independent statement of this result, and gives a streamlined version
of the proof in [24].

1.2 Summary

This section summarizes the new results in Sections 3 and 4, which build on the approach
taken in Section 2, and culminate in formulas for some gauge and gravity tree amplitudes. The
proof of (1.6) involves a bracket operation (originally called the ‘S-map’ in [33, 34]) defined on
orderings. Some examples are

{1, 23} = s12123− s13132, {12, 34} = s231234− s132134 + s142143− s241243. (1.7)

The definition of {a, b} is given in Section 2, where it is also shown that { , } is a Lie bracket.
As explained in Section 3, and exploited in Section 4, the bracket operation {a, b} naturally
arises in the context of rational functions on the configuration space, Confn−1(C), of points in
the complex plane. Write pt(12 . . . n) for the function

pt(12 . . . n) =

n−1∏
i=1

1

zi − zi+1
.

Then (proved in Section 3)

3sα is a polynomial expression in Mandelstam variables, determined by the tree α; see (2.3).
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Proposition 1.2. For an ordering a of 1, . . . , k, and an ordering b of k + 1, . . . , n: k∑
i=1

n∑
j=k+1

sij
zi − zj

 pt(a)pt(b) = pt({a, b}). (1.8)

When combined with the definition of S(1a, 1b), (1.8) can be used to derive a formula for
the partial tree amplitudes of the non-linear sigma model (the gauge theory associated to maps
from the Riemann sphere to the Lie group SU(N)). The result is

Proposition 1.3. The NLSM tree partial amplitudes are given by

ANLSM(a, n) =
∑

b∈Sn−2

S(1b, 1b)m(1b, n|a, n), (1.9)

where the sum is over all permutations of 2, 3, . . . , n− 1, and m(a, n|b, n) = k2nT (1a, 1b) are the
partial biadjoint scalar amplitudes.

This agrees with earlier results reported in [16, 32]; but the methods used to derive it are
new. The idea that leads to (1.9) is to use the matrix tree theorem to expand the matrix
determinant that appears in the integrand of the so-called CHY formula for ANLSM. Identities
proved in Section 3 are then used to re-arrange the integrand into a suitable form. The most
useful identity is

Proposition 1.4. Let G be a tree with vertex set 1, . . . , n. Orient the edges of G by fixing 1 to
be a sink, and demanding that all vertices (except for 1) have only one outgoing edge. For i ̸= 1,
write x(i) for the endpoint of the edge outgoing from i. Then

∏
edges
i→j

1

zij
=

∑
a

x(i)<1ai

pt(1a). (1.10)

The sum is over all orderings, a, such that x(i) precedes i in 1a, for all i.

The identity, (1.10), can also be used to obtain formulas for other tree amplitudes that have
CHY formulas (or similar). In four dimensions, gravity tree amplitudes can be expressed in
terms of determinants of matrices called Hodges’ matrices. Applying the same idea that leads
to (1.9) also leads to new formulas for 4D gravity (and then, by the KLT relations, for Yang–
Mills) amplitudes. These formulas are not always easy to evaluate. However, in the MHV case
(when only 2 gluons are + helicity, and the rest are − helicity), contact can be made with known
results. The MHV result, expressed in the standard spinorial notation used, is

Proposition 1.5. The tree level gravity amplitude can be expanded as

MGR =
∑

σ∈Sn−3

AYM(12bσ)N(12bσ), (1.11)

where

N(12bσ) =
⟨12⟩ [12]2

[b1][b2]

n∏
j=3
i ̸=b

∑
i<σj

[i2][ij]

[j2]
.
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This is closely related to the early result due to Berends–Giele–Kuijf [3], which gives a formula
for MGR, but in a different form. The methods used in the derivation lead directly to expressions
of the form of (1.11), which is well suited to the KLT relations. Indeed, the field theory KLT
relations imply that, given (1.11), the YM partial amplitudes can be written as

AYM(ρ) =
∑

σ∈Sn−3

m(12bσ|ρ)N(12bσ).

Finally, the discussion in Section 5 concludes by relating the approach taken in this paper
to three important outstanding problems for our understanding of perturbative gauge theory
amplitudes and the KLT relations.

2 The KLT kernel

The KLT kernel, (1.5), is the inverse of a certain map, as shown in [24]. This section revisits
this result, emphasizing those aspects which are relevant for Sections 3 and 4.

To fix notation, write A for the set {1, . . . , n}. An ordering of A is a word that uses each
letter i ∈ A exactly once. Write SA for the set of orderings of A, and WA for the R-vector space
generated by SA. There is a multilinear inner product, ( , ), on WA, such that, for two distinct
orderings a and b,

(a, a) = 1, and (a, b) = 0.

Let LA ⊂ WA be the subspace of multilinear Lie polynomials in WA.
4 And let ShA ⊂ WA be

the subspace of nontrivial shuffle products: ShA is linearly spanned by expressions of the form

a� b,

where a and b are two (non-empty) words whose concatenation, ab, is an ordering of A.5 By
Ree’s theorem [41], LA is the orthogonal subspace

LA = Sh⊥A,

with respect to the given inner product. The dual vector space L∨
A is

L∨
A = WA/ShA.

Remark 2.1. An alternative definition of ShA is as follows. It is the subspace in WA spanned
by the expressions

aib− (−1)|a|i(a� b), (2.1)

where aib is an ordering in SA, and i ∈ A is a single letter, and |a| denotes the length of the
word a. See [44, Corollary 2.4] or [23, Lemma 3.6].

A Lie monomial α ∈ LA defines a rooted binary tree with leaves labelled by 1, . . . , n. See
Figure 1 for an example. If the Lie monomial α is written in its bracketed form, then the
associated tree has one internal edge for each pair of brackets in α, and this edge can be labelled

4If Lie(A) is the free Lie algebra on A, then LA is the intersection Lie(A) ∩ WA, using the inclusions of WA

and Lie(A) into the free associative algebra on A.
5The shuffle product, a� b, is defined inductively by (ia)� (jb) = i(a� jb)+ j(ia� b), and a� e = e� a = a,

where i, j are individual letters, e is the empty word, and a, b are nonempty words.
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1 2 3

Figure 1. The labelled rooted binary tree corresponding to the Lie monomial ±[[1, 2], 3].

by the subset I ⊂ A of letters that appear inside that pair of brackets. Write P (α) for the set
of edges of α (including the root edge). For example,

P ([[1, 2], 3]) = {{12}, {123}}.

Given null momenta kµi for each i = 1, . . . , n
(
k2i = 0

)
, form the associated Mandelstam variables

sI =

(∑
i∈I

kµi

)2

,

or, equivalently,

sI =
∑

{ij}⊂I

sij , (2.2)

where sij = 2ki · kj . Given a tree α, associate to each edge, I ∈ P (α), a massless scalar prop-
agator: 1/sI . For each rooted binary tree, α, introduce the following ‘product of propagators’
monomial

s̃α =
∏

I∈P (α)

sI . (2.3)

Finally, it is convenient to write MA for the Laurent ring with variables sI , I ⊂ A, subject to
the linear relations above, (2.2).

For an ordering a ∈ S(A), write

T (a) =
∑
α

(a, α)α

s̃α
∈ LA ⊗MA,

where the sum is over all rooted binary trees with leaves labelled by A. T (a) is a ‘prototype’
of a gauge theory partial tree amplitude. Kapranov [29] proposed to study the KLT relation by
regarding T (a) as defining a linear map

T : L∨
A ⊗MA → LA ⊗MA.

The map T is self-adjoint with respect to the pairing between L∨
A and LA,

(a, T (b)) = (b, T (a)). (2.4)

Moreover, the functions 1/s̃α are linearly independent in MA, and this implies that kerT is
trivial. Indeed, for P ∈ L∨

A, if T (P ) = 0, then (P, α) = 0 for all Lie monomials α. By dimension
counting, T is onto, so it follows that T is an isomorphism.

Write L̃A = ⊕B⊂ALB, and so on. T extends to an isomorphism

T̃ : L̃∨
A ⊗MA → L̃A ⊗MA.
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L̃A⊗MA is a Lie algebra with the usual bracket.6 The isomorphism T̃ then induces a Lie bracket
on the dual vector space! Indeed, define a bracket operation, { , }, on L∨

A ⊗MA by

T ({a, b}) = [T (a), T (b)], (2.5)

for a, b ∈ L∨
A. Since T̃ is an isomorphism, { , } is a Lie bracket. In fact, for disjoint orderings a

and b, it can be shown that, explicitly

{a, b} =
∑

a=a1ia2
b=b1jb2

(−1)|a2|+|b1|sij(a1 � a2)ij
(
b1 � b2

)
. (2.6)

Examples of this were given above, in (1.7). See also [24, Section 4] or [23, Chapter 4].
For a Lie monomial α, written in bracketed form, let S(α) ∈ L∨

A ⊗MA be obtained from α
by replacing every pair of brackets with a pair of braces. For example,

S([[1, 2], 3]) = {{1, 2}, 3}.

This extends to define a linear map

S : LA ⊗MA → L∨
A ⊗MA.

Repeated applications of (2.5) gives that

T (S(α)) = α.

This implies that S is self-adjoint:

(β, S(α)) = (T (S(β)), S(α)) = (S(β), T (S(α))) = (S(β), α),

using (2.4).

Proposition 2.2. T and S are inverses.

Proof. Let bi, βi be a pair of dual bases for LA and L∨
A (with i = 1, . . . , (n − 1)!). For an

ordering a ∈ WA,

S(T (a)) =
∑
i

S(βi)(bi, T (a)) =
∑
i,j

bj(S(βi), βj)(bi, T (a)).

Using that S is self-adjoint gives

rhs =
∑
i,j

bj(βi, S(βj))(bi, T (a)) =
∑
j

bj(T (a), S(βj)) =
∑
j

bj(a, βj).

But bi, βi is a pair of dual bases, so S(T (a)) = a. ■

Fixing a pair of dual bases as above, the components of T and S are (bj , T (bi)) = Tij and
(βj , S(βi)) = Sij . These are (|A| − 1)!× (|A| − 1)! matrices, and the proposition says that Sij is
the matrix inverse of Tij . This very simple definition of S was missed in the literature, possibly
because of the limit that appears in (1.4). Moreover, notice that, trivially,

Til =
∑
j,k

TijSjkTkl. (2.7)

6But note that the bracket of two Lie monomials must be zero in L̃A if they share any letter in common.
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This will be seen to imply the field theory KLT relations for the gauge and gravity-like theories
studied in Section 4.

A possible choice of dual bases for LA and L∨
A is to take the (n− 1)! words 1b, for each b an

ordering in S(2, . . . , n), and dually the (n− 1)! Lie monomials

ℓ(1b) = [[. . . [[1, b(1)], b(2)], . . . ], b(n− 1)] ∈ LA,

for each b ∈ S(2, . . . , n). These are dual bases because

(1b, ℓ(1b′)) =

{
1 if b = b′,

0 otherwise.

In these bases, the components of S are found to be [24]

S(1a, 1b) = (ℓ(1b), S(ℓ(1c))) =

n−1∏
i=2

∑
j<1bi
j<1ci

sij . (2.8)

This formula, discussed in the introduction, is the formula first found by [6] (albeit with the order
of one of the words reversed). Many variations on this formula (including the original formula
in [6]) can be obtained by choosing to compute the matrix elements of S using a different pair
of bases.

3 Scattering equations identities

The ‘Cachazo–He–Yuan (CHY)’ formulas express the partial tree amplitudes of several gauge
theories as a sum of resides of logarithmic forms on M0,n, as reviewed in Section 4.1. The
logarithmic forms on M0,n satisfy algebraic identities that imply, via the CHY formulas, iden-
tities amoung the associated gauge theory tree amplitudes. This section concludes by proving
one such identity, Proposition 3.4, which is used in applications to gauge theory amplitudes in
Section 4.

The open stratum of the moduli space M0,n is defined as

M0,n(C) =
(
CP1

)⊕n

∗ /PSL2C,

where
(
CP1

)⊕n

∗ denotes n-tuples of pairwise distinct points in CP1, and PSL2C acts by Möbius
transformations. Write C∗

n−1 for the braid hyperplane arrangement, Cn−1
∗ := Cn−1−∆, where ∆

is the big diagonal (i.e., the union of the hyperplanes zi − zj = 0). The open stratum of M0,n

is the quotient of this by the free action of C∗ ⋉C, that acts as (a, b) : z 7→ az + b,

M0,n(C) ≃ Cn−1
∗ /C∗ ⋉C.

This follows by setting zn = ∞, and noticing that the stabalizer in PSL2C of a point in P1 is
C∗ ⋉C.

Write zij := zi − zj . In the ring of rational functions on Cn−1
∗ , there is a natural submodule

spanned by the broken Parke–Taylor functions, pt(a), defined for a given word a = 123 . . . n−1,
as the product

pt(123 . . . n− 1) =

n−2∏
i=1

1

zii+1
.
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It can be shown (by an explicit induction, or by using general results from [9]) that these
functions satisfy

pt(a� b) = 0, (3.1)

for any two disjoint (non-empty) words a and b (i.e., two words with no letters in common). In
view of (2.1), (3.1) further implies that

Lemma 3.1. For an ordering a1b ∈ S(1, . . . , n− 1),

pt(a1b) = (−1)|a|pt(1(a� b)).

This lemma implies that open string partial tree amplitudes satisfy the so-called Kleiss–Kuijf
relations [31].

If a and b are two disjoint words, then for any i ∈ a and j ∈ b, the Lemma implies that

1

zij
pt(a)pt(b) = (−1)|a2|+|b1|pt

(
(a1 � a2)ij

(
b1 � b2

))
,

where a = a1ia2 and b = b1jb2. Recalling (2.6), this implies that

Lemma 3.2. For a and b disjoint words as above,

pt({a, b}) = pt(a)pt(b)Ea,b,

where

Ea,b =
∑

i∈a,j∈b

sij
zij

.

Note that i ̸= j for each term in the sum.

The equations Ea,b = 0 are known as the scattering equations.7 Fix A = {1, . . . , n− 1}, and
take the ordering a = 123 . . . n− 1. Then repeated applications of Lemma 3.2 give that

n−1∏
i=2

Ei,123...i−1 =
∑

b∈S(2...n−1)

S(12 . . . n− 1, 1b)pt(1b).

In this way, the components of the KLT matrix S can be recovered from products of the func-
tions Ea,b.

Remark 3.3. Lemma 3.2 can also be used [11, 33] to show that gauge theory partial tree
amplitudes satisfy the fundamental BCJ relations [4]

AYM({i, a}, n) =
∑
a=bjc

sijAYM

(
ij
(
b� c

)
, n
)
= 0. (3.2)

The open string partial tree amplitudes satisfy a more complicated relation of the form [7, 45]

(α′)(n−3)Astring({i, a}, n) = O(α′).

7Let ab be an ordering of 1, . . . , n, then the functions Ea,b arise as derivatives of the Koba–Nielsen function,

fs(z) =
n∏

i=1,i<j

z
sij
ij .

Indeed,

Ea,b =
∑
i∈a

∂fs(z)

∂zi
.
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1 2 3
5

4

6

Figure 2. The tree associated to the rational function 1/z12z23z34z35z36; and the orientation induced

by designating 3 a sink.

Let G be any spanning tree on the vertex set {1, 2, . . . , n − 1}. Designate 1 to be the ‘sink’
of G. Then there is a unique assignment of directions to the edges of G, such that exactly one
edge incident on any vertex i is outgoing, except for vertex 1, which has only incoming edges (see
Figure 2). For a given vertex i in G, let x(i) be the vertex connected to i by the one outgoing
edge from i.

Proposition 3.4. Let G be as above, and fix 1 to be the sink. Then the rational function
associated to G is the following product over the edges of G:

∏
edges
i→j

1

zij
=

n−2∏
i=2

1

zix(i)
, (3.3)

and this can be expanded as a sum∏
edges
i→j

1

zij
=

∑
a

x(i)<1ai

pt(1a). (3.4)

The sum is over all orderings, a, such that x(i) precedes i in 1a, for all i.

Proof. This follows by repeated applications of Lemma 3.1. The orientation of G induces
a partial order on the vertices, with 1 the smallest. Let i be one of the largest vertices with
valence greater than 1, and suppose that i has k incoming edges. All vertices greater than i
have valence 1, so that the tree ‘greater than i’ is comprised of some number of ‘branches’, as
in Figure 3. By the lemma,

pt(ia)pt(ib) = (−1)|b|pt
(
bia
)
= pt(i(a� b)),

and a product of k branches gives

pt(ia1)pt(ia2) · · · pt(iak) = pt(i(a1 � a2 � · · ·� ak)).

Moving ‘down the tree’ gives the identity. ■

Remark 3.5. Formulas related to (3.4) appear in the discussion of hyperplane arrangements
in [43]. The functions, (3.3), associated to a spanning tree G are studied in [27], with interesting
applications to CHY formulas.

4 Gauge and gravity tree amplitudes in BCJ form

This section uses the identities in Section 3 to obtain formulas for the tree partial amplitudes
of the non-linear sigma model (NLSM), and also Yang–Mills in four dimensions. Moreover, the
field theory KLT relation makes it possible to derive formulas also for the tree amplitudes of
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i

. . .

Figure 3. Outermost branches of a tree.

Einstein gravity, and Dirac-Born-Infeld theory, which are the gravity theories associated to YM
and NLSM, respectively. There have been several previous studies that obtain formulas of this
kind from CHY integrals, including [5, 21, 27]. The approach taken here is novel, and combines
applications of the matrix tree theorem with the identities proved in Section 3.

4.1 CHY formulas

The identities in Section 3 are relevant to the problem of computing tree amplitudes. This is
because of the CHY formulas for the partial tree amplitudes of NLSM and YM. In [12], these
formulas are written as integrals of the form

A =

∫
dµ(a)

zijzjkzki

n∏
l=1

l ̸=i,j,k

δ(El)

 I, (4.1)

for functions I of appropriate weight under the action of SL2C, and for any fixed choice of i, j, k.
SL2C acts by Möbius transformations on the coordinates zi. It is convenient to write

zijzjkzki

n∏
l=1

l ̸=i,j,k

δ(El) =
∏
l

′
δ(El),

for any choice of i, j, k. The functions

Ei = Ei,12...̂i...n =
n∑

j=1
j ̸=i

sij
zij

(4.2)

are the scattering equation functions introduced in Section 3. The natural logarithmic top forms
on (CP1)n∗ induce volume forms, dµ(a), on M0,n: for a = 12 . . . n, the associated M0,n top form
is8

dµ(123 . . . n) =
1

Vol PSL2C

n∧
i=1

d log zii+1,

8For any choice of a top form, Vol PSL2C, on the fibres of the projection
(
CP1

)n
∗ → M0,n, such as, for example,

zijzjkzki dzidzjdzk,

for any distinct i, j, k.



12 H. Frost

so that dµ(123 . . . n) is a n−3 top form on M0,n (regarded as the quotient of
(
CP1

)n
∗ by PSL2C).

Or, choosing the gauge fixing z1 = 0, zn−1 = 1, zn = ∞,

dµ(123 . . . n) =
dz2dz3 · · · dzn−2∏n−2

i=1 zii+1

∣∣∣∣∣
z1=0, zn−1=1

.

The formula, (4.1), must be understood as a sum of residues at the solutions of Ei = 0. This
can be written as∫

dµ(a)

(∏
l

′
δ(El)

)
I =

∑
solutions

(z)

Res(z)

(
dµ(a)I

det(∂iEj)

)
,

where the sum is over all solutions, (z∗i ), to the equations Ei = 0, and Res(z) denotes the
Poincaré residue at some given solution, (z∗i ). It is left implicit in these formulas that the
residue at a solution is oriented by the form

+d logE1 ∧ · · · ∧ d logEn−3.

An important example is the CHY formula for the biadjoint scalar partial tree amplitudes.
In the notation of Section 2, for two orderings a, b ∈ S(1, 2, . . . , n− 1), these partial amplitudes
are

m(a, n|b, n) = sa(a, T (b)) =
∑
trees
α

(a, α)(b, α)

sα
,

where the sum is over all rooted binary trees with n − 1 labelled external edges (not including
the root). The CHY formula for these amplitudes is,

m(a, n|b, n) =
∫

dµ(a)

(∏
l

′
δ(El)

)
PT(b, n), (4.3)

where the ‘Parke–Taylor function’ PT(a, n) is, for a = 12 . . . n− 1,

PT(a, n) =
1

z12z23 · · · zn−1nzn1
.

Equation (4.3) is proved in [20].

4.2 Nonlinear sigma model

Define an n× n matrix, A, with off-diagonal entires (i ̸= j)

Aij =
sij
zij

,

and diagonal entires

Aii = −
n∑

j=1
j ̸=i

Aij .
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The row sums of A clearly vanish. Write A[i, j] for the matrix obtained by removing rows i, j
and columns i, j from the matrix. The tree partial amplitudes for the non-linear sigma model
(NLSM) are given by a CHY formula with integrand [13]

ANLSM(a, n) =

∫
dµ(a)

(∏
l

′
δ(El)

)
detA[i, j]

z2ij
, (4.4)

for some choice of i, j.

To evaluate (4.4), it is convenient to choose i = 1, j = n, and to gauge fix, say, z1 = 0,
zn−1 = 1, zn = ∞. With these choices, the integrand simplifies to

ANLSM(a, n) =

∫
dn−3z pt(a)

(∏
l

′
δ(El)

)
detA[1, n],

where now the diagonal entires of A[1, n] are

Aii = −
n−1∑
j=1
j ̸=i

Aij .

To evaluate detA[1, n] in this limit, Kirchoff’s matrix tree theorem gives [17]

detA[1, n] =
∑

spanning
trees,
G

∏
edges,
i→j

sij
zij

, (4.5)

where the orientations of the edges of G are determined by designating vertex 1 the sink, as in
the paragraph before Proposition 3.4. Given this, Proposition 3.4 implies that

detA[1, n] =
∑

spanning
trees,
G

n∏
i=2

sixi

∑
a

xi<1ai

pt(1a), (4.6)

where xi is the vertex in G reached from vertex i along an outgoing edge, and the second sum is
over all permutations a ∈ S(2, . . . , n− 1) such that xi precedes i in 1a for all i. After reversing
the two summations, (4.6) becomes

detA[1] =
∑

a∈Sn−2

pt(1a)
n∏

i=2

∑
j<1ai

sij .

The sum in the product is over all letters appearing before i in the ordering 1a. The product
appearing in this sum can be identified with components of the KLT map, using equation (2.8):

n∏
i=2

∑
j<1ai

sixi = S(1a, 1a).

So the NLSM partial amplitudes, (4.4), are

ANLSM(a, n) =
∑

b∈Sn−2

S(1b, 1b)m(1b, n|a, n). (4.7)
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As in [13], this result can be substituted into the KLT relation (equation (1.4)) to obtain the
tree amplitudes of the special Galileon theory, which is

MSG = lim
s1a→0

1

s1a

∑
a∈Sn−2

ANLSM(1a, n)S(1a, 1b)ANLSM(1b, n).

Using Proposition 2.2 (or equation (2.7)), together with (4.7), the formula for MSG can be
written compactly as

MSG =
∑

a∈Sn−2

S(1a, 1a)ANLSM(1a, n). (4.8)

Proposition 4.1. The NLSM and special Galileon tree amplitudes can be expressed as the
following sums over binary trees:

ANLSM(a, n) =
∑
trees,
α

(a, α)nα

sα
and MSG =

∑
trees,
α

nαnα

sα
,

where

nα =
∑

b∈Sn−2

(1b, α)S(1b, 1b). (4.9)

The numerators nα have no poles in the sI variables, and the replacement α 7→ nα defines
a homomorphism out of LA. Numerators

The formula (4.9) was found also in [16, 32]; the derivation here is new. One interest of
this derivation is that the methods used here can also be easily adapted to study other CHY
integrals. The next section discusses the case of Yang–Mills gauge theory in four dimensions.

4.3 Yang–Mills

Some of the methods used in the previous section to study NLSM amplitudes also lead to
results about Yang–Mills tree amplitudes. This is because there exist formulas for Yang–Mills
tree amplitudes (in four dimensions) that involve determinants similar to those computed above.
This section first recalls these formulas, and then manipulates them using the identities from
Section 3.

In four dimensions, gluons have two helicity states, and it is conventional to further refine
the partial amplitude decomposition by specifying the helicities of the gluons. Using spinors,
the null momenta ki may be written as kαα̇i = λα

i λ̃
α̇
i , unique up to a complex rescaling λi → αλi,

λ̃i → α−1λ̃i (with α ̸= 0). The two helicities correspond two polarizations ϵαα̇+ ∝ λαξ̃α̇ and

ϵαα̇− ∝ ξαλ̃α̇, for some reference spinors ξ and ξ̇. In practice, the partial amplitudes themselves
do not depend on the choice of reference spinors, and are functions of the invariants

⟨ij⟩ = λα
i λ

β
j ϵαβ, [ij] = λ̃α̇

i λ̃
β̇
j ϵα̇β̇,

where ϵ12 = −ϵ21 = 1. Fix k gluons ‘1, . . . , k’ with + helicity, and n − k gluons ‘k + 1, . . . , n’
with − helicity.

The CHY-like formulas for 4D amplitudes that we will consider are sums over solutions to so-
called ‘polarized scattering equations’, which have fewer solutions than the scattering equations.
To write these equations, it is helpful to define the following two spinor-valued functions on CP1:

λα(z) =
n∑

j=k+1

tjλ
α
j

z − zj
and λ̃α̇(z) =

k∑
i=1

tiλ̃
α̇
i

z − zi
,
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where the ti are non-zero complex scalars. Then the polarized scattering equations are

λα
i − tiλ

α(zi) = 0, for i = 1, . . . , k,

λ̃α̇
j − tj λ̃

α̇(zj) = 0, for j = k + 1, . . . , n. (4.10)

Solutions to these equations are also solutions to the ‘original scattering equations’, (4.2), be-
cause (4.10) ensure that the following residues vanish:

Resz=zi k
αα̇
i λα(z)λ̃α̇(z).

The equations (4.10) also imply that the spinor data satisfies momentum conservation,

n∑
i=1

λα
i λ̃

α̇
i = 0,

which can be checked by breaking the sum into two parts: i = 1, . . . , k and i = k + 1, . . . , n.
In order to present the formula for 4D gravity amplitudes, first define the k × k Hodges’

matrix, H: the off-diagonal entries are [15, 28]

Hij =
titj ⟨ij⟩

zij
for i ̸= j,

and the diagonal entries are

Hii = −
k∑

i=1
j ̸=i

Hij .

Likewise, define the (n− k)× (n− k) matrix H̃ to have entries

H̃ij =
t̃it̃j [ij]

zij
for i ̸= j,

and

H̃ii = −
n∑

j=n−k
j ̸=i

H̃ij .

Fix some a in 1, . . . , k, and fix some b in k + 1, . . . , n. Write H[a] for the matrix formed by
removing the ath row and column from H. Likewise for H̃[b]. Given these Hodges’ matrices, the
4D gravity tree amplitude can be written as

MGR =

∫
dµ

detH[a]detH̃[b]∏n
i=1 t

2
i

k∏
i=1
i ̸=a

δ2(λi − tiλ(zi))

n∏
j=k+1
j ̸=b

δ2
(
λ̃i − t̃iλ̃(zi)

)
. (4.11)

This formula as given can be found in [1, 26], and is proved in [25]. It is equivalent to and closely
related to the Cachazo–Skinner formula [14, 15], and also to the RSVW formula [42]. The 4D
Yang–Mills tree partial amplitude can likewise be written as

AYM(an) =

∫
dµPT(an)

k∏
i=1
i ̸=a

δ2(λi − tiλ(zi))
n∏

j=k+1
j ̸=b

δ2
(
λ̃i − t̃iλ̃(zi)

)
. (4.12)
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GL2C acts on the integrands in (4.11) and (4.12) by matrix multiplication on the pair (zi/ti, 1/ti).
In both formulas, the measure dµ is given by

dµ =
1

VolGL2C

n∏
i=1

dzidti
ti

,

so that dµ is a top dimensional 2n− 4 form. More explicitly, adopting the gauge fixing z1 = 0,
z2 = 1, zn = ∞, tn = 1,

dµ =

n−1∏
i=3

dzidti
ti

∣∣∣∣∣
z1=0, z2=1, zn=∞, tn=1

.

Remark 4.2. By defining homogeneous coordinates σi = (zi/ti, 1/ti), it is possible to write the
integrands of (4.11) and (4.12) in GL2C-covariant form, using the pairing

(σi, σj) =
zi − zj
titj

.

These leads to the formulas in the form presented in [1, 26].

The rest of this section uses the tools from Section 3 to expand the integrand in (4.11), in
order to write MGR as a sum

MGR =
∑

a∈Sn−2

NYM(1an)AYM(1an). (4.13)

Computing the coefficients of this expansion, NYM(1an), also suffices to compute AYM itself: this
follows from the KLT relation, (1.4), as seen in the case of NLSM amplitudes, in equations (4.7)
to (4.8).

To compute NYM(1an), the first step is to expand the determinants detH[a] and det H̃[b].
The can be done using Kirkchoff’s tree theorem, as in (4.5), above, with the difference that H is
a symmetric matrix, whereas A is not. Fix some a from 1, . . . , k. Then the determinant of H[a]
is

detH[a] =
∑
trees
G

∏
edges
i−j

titj ⟨ij⟩
zij

, (4.14)

where the sum is over all spanning trees, G, of the vertex set 1, . . . , k. The Hodges matrix H is
symmetric, so it is not necessary to orient the edges in order for (4.14) to be well defined. Also
note that the result, (4.14), is independent of the choice of a. A single summand in (4.14), for
a tree G, can also be written as(

k∏
i=1

tdii

) ∏
edges
i−j

⟨ij⟩
zij

,

where di is the degree of the vertex i in G. The determinant det′ H̃ is a sum of similar such
terms. Fixing some b from k + 1, . . . , n,

det H̃[b] =
∑
trees
G

 n∏
j=k+1

t
dj
j

 ∏
edges
i−j
in G

[ij]

zij
,

where dj is the degree of the vertex j in the spanning tree G.
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The full amplitude, MGR, can therefore be expanded as a sum over pairs of trees (G,G′),
with G spanning vertex set 1, . . . , k and G′ spanning vertex set k + 1, . . . , n. Explicitly,

MGR =
∑
trees
G,G′

∫
dµ IG,G′

k∏
i=1
i ̸=a

δ2(λi − tiλ(zi))
n∏

j=k+1
j ̸=b

δ2
(
λ̃i − t̃iλ̃(zi)

)
, (4.15)

where

IG,G′ =

(
n∏

i=1

tdi−2
i

)∏
i−j
in G

⟨ij⟩
zij


∏

i−j
in G′

[ij]

zij

 .

The coefficients nYM(1a) in (4.13) can in principle be computed from (4.15) in two steps. First,
it is necessary to express the ti in terms of the zi by solving for them using the polarized scatter-
ing equations. Second, the integrands IG,G′ should be expanded in Parke–Taylor factors using
the identities in Section 3. The resulting terms can then be regrouped to give a sum of the
form (4.13). This is carried out for the maximal-helicity-violating (MHV) case in the following
subsection.

4.4 Maximal-helicity-violating Yang–Mills amplitude

The Maximal-helicity-violating (MHV) case is k = 2, when only two gluons are + helicity, and
n − 2 are − helicity. In this case, the matrix tree expansion, (4.15), simplifies to the following
sum over spanning trees on 3, . . . , n:

MGR =
∑
trees
G

∫
dµ IG

k∏
i=1
i ̸=a

δ2(λi − tiλ(zi))
n∏

j=k+1
j ̸=b

δ2
(
λ̃i − t̃iλ̃(zi)

)
,

where

IG =
⟨12⟩
z12

(
1

t1t2

n∏
i=3

tdi−2
i

)∏
i−j
in G

[ij]

zij

 .

A tree on n− 2 vertices has n− 3 edges, so that

n∑
i=3

(di − 2) = 2(n− 3)− 2(n− 2) = −2.

It follows that IG may also be written as

IG =
⟨12⟩
z12

(
t1
t2

n∏
i=3

(t1ti)
di−2

)∏
i−j
in G

[ij]

zij

 .

Now fix some b from 3, . . . , n. Choosing b to be a source vertex induces an orientation of each
spanning tree G, such that every vertex (apart from b) has exactly 1 incoming edge. Given
that G is oriented this way, IG may be further re-written as

IG =
⟨12⟩
z12

 t1
t2
(t1tb)

−2
n∏

i=3
i ̸=b

(t1ti)
−1


∏

i→j
in G

(t1ti)[ij]

zij

 . (4.16)
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Having used the matrix tree theorem to evaluate IG, the next step is to use the polarized
scattering equations to solve for the ti appearing in (4.16). In the MHV case, the polarized
scattering equations include,

λ̃j = tj

(
t1λ̃1

zi1
+

t2λ̃2

zi2

)
,

for j in 3, . . . , n. These equations imply that

t1tj =
[j2]

[12]
zj1,

and that, for any given j in 3, . . . , n,

t1
t2

= − [j2]

[j1]

zj1
zj2

.

Making these substitutions, it follows that, on the support of the polarized scattering equations,

IG = −⟨12⟩
z12

(
[b2]

[b1]

zb1
zb2

)(
[12]

[b2]

1

zb1

)2

 n∏
j=3
j ̸=b

[12]

[j2]

1

zj1


∏

i→j
in G

[i2][ij]

[12]

zi1
zij

 .

Both of the products appearing in this equation have n−3 terms, and the factors of [12] in them
cancel out. Combining the remaining factors gives

IG =
⟨12⟩ [12]2

[b1][b2]

1

z12z2bzb1

∏
i→j
in G

(
[i2][ij]

[j2]

zi1
zj1zij

)
. (4.17)

Proposition 3.4 can be used to reexpress the product in (4.17) in terms of Parke–Taylor
functions. A variation on the argument in Proposition 3.4 gives9∏

i→j
in G

zi1
zj1zij

=
∑
σ

xi<i

pt(bσ)
zb1
zσ∗1

,

where σ∗ is the last entry of σ. The resulting expression for IG is

IG =
⟨12⟩ [12]2

[b1][b2]

∏
i→j
in G

[i2][ij]

[j2]

∑
σ

xi<i

PT(12bσ).

Or, reordering the summations, it follows that, on the support of the polarized scattering equa-
tions,∑

G

IG =
∑

σ∈Sn−3

PT(12bσ)N(12bσ),

where

N(12bσ) =
⟨12⟩ [12]2

[b1][b2]

n∏
j=3
i ̸=b

∑
i<σj

[i2][ij]

[j2]
. (4.18)

9This follows by telescoping the factors of zi1/zj1.
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This gives an expansion of the gravity tree amplitude into a sum of YM partial amplitudes,

MGR =
∑

σ∈Sn−3

AYM(12bσ)N(12bσ).

For example, when combined with the Parke–Taylor formula for the MHV Yang–Mills amplitude,
AYM(12bσ), this yields, via (4.12) and (4.11), the MHV gravity amplitude

MGR(1234) =
⟨12⟩ [12]8

[34]

 4∏
i<j
i=1

[ij]


−1

.

Remark 4.3. Formulas for the MHV gravity amplitude were first obtained by Berends–Giele–
Kuijf (BGK), and were inspired by the KLT relations [3]. Variations on the BGK formula have
appeared in several places, including [2, 22, 36]. However, the formula above appears to be
a new variant, and it has been derived here using new methods motivated by Section 3. The
studies cited above mostly use inductive arguments based on recursion relations.

5 Discussion

The formulas for partial NLSM tree amplitudes in Section 4 can be expressed in the form

A(a, n) =
∑

trees α

(a, α)nα

sα
, (5.1)

for numerators nα that satisfy two key properties. First, the replacement α 7→ nα extends to
define a homomorphism out of the space of Lie polynomials, LA. Second, the nα are polynomial
in the Mandelstam variables sI . The numerators nα, satisfying these two properties, are called
‘BCJ numerators’, after [4]. The results for MHV gravity also lead to formulas of the form (5.1)
for YM MHV amplitudes, but the nα have spurious poles coming from the denominator factors
in equation (4.18). Beyond giving formulas for these numerators, there are two important
unresolved questions about the numerators for further research.

First, the BCJ numerators in Section 4 were of the form

nα =
∑
a

(1a, α)n(1a),

for some functions n(1a). A number of authors have asked whether there exists a ‘kinematic’
Lie algebra such that the nα can be expressed instead as a Lie bracketing of n − 1 Lie algebra
elements, by analogy with the definition of cα, (1.2), [8, 18, 19, 40]. The formulas obtained using
the methods in this paper may suggest further clues for identifying such ‘kinematic algebras’ for
gauge theories like Yang–Mills and NLSM.

Second, as has been widely observed, if the partial amplitudes of a gauge theory can be writ-
ten in the form (5.1), for BCJ numerators nα, then that gauge theory can participate in a KLT
relation to produce a gravity amplitude (for some gravity-like theory). It would therefore be de-
sirable to characterise or classify all gauge theories whose tree amplitudes can be obtained using
BCJ numerators. A full answer to this question should consider the space of all possible pertur-
bative gauge theories, which is beyond the immediate scope of the methods used in this paper.

These questions are all concerned with the KLT relations satisfied by tree level amplitudes.
An important further aim is to discover whether the KLT relation, (1.4), can be extended to
a statement about higher order terms in the perturbation series. There have been some attempts
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to formulate a KLT relation amoung 1-loop amplitudes, both in string theory and gauge theory,
and the Lie bracket { , } studied in Section 2 plays some role here (discussed in [35]). The key,
however, to understanding the tree-level KLT relation is the properties of the colour factors and
the partial amplitude decomposition, which at tree level is easily understood as arising from
Lie polynomials. At higher orders in perturbation series, the partial amplitude decomposition
is related to the topology of surfaces. How this arises is reviewed in Appendix A. To formulate
KLT relations at higher loop order, it will be useful to understand the algebraic properties of
the colour factors and partial amplitude decomposition. By analogy with the tree level case,
it would be very difficult to arrive at the tree level KLT relations without understanding the
Kleiss–Kuijf, (2.1), and ‘fundamental BCJ’ relations, (3.2), among partial amplitudes. Finding
the analogs of these relations at higher orders in perturbation theory would therefore be a good
starting point for further work on this topic.

A Colour factors and the partial amplitude decomposition

Fix a Feynman diagram, D, for some SU(N) gauge theory. Let D has k internal vertices and n
labelled external lines and, for simplicity, suppose D has only cubic vertices. Let F1, . . . , Fn ∈
ad(su(N)) be the colour states (in the adjoint representation) associated to each external line.
The contribution of D to the amplitude factors as

AD = (ig)kCDID,

where CD is some invariant function of the Fi and ID is the Feynman integral associated to the
graph. As a tensor diagram, the commutator of two Fi’s can be written as

[F1, F2] =

F1 F2

−

F2 F1

It follows that CD can be expanded as a sum of 2k−1 terms, corresponding to 2k−1 choices
of cyclic orientation to assign to each vertex of D. Each term corresponds to a cubic ribbon
graph, G, that retracts onto D. Write cG for the contraction of the Fi according to the ribbon
graph G, regarded as a tensor diagram. Then

CD =
∑
G s.t.

ThinG=D

(−1)|G|cG,

where |G| is the number of white vertices of G, with the vertex connected to n fixed to be black,
say. In fact, cG depends only on G regarded as a topological surface (forgetting the graph).
Each closed boundary component of G is a trace. A boundary component with marked points
1, . . . , k arranged cyclically, gives a contribution

tr
(
F 1F 2 . . . F k

)
.

Whereas a boundary component of G with no marked points gives a trace of the identity, which
is tr(Id) = N . Since cG does not depend on the graph structure of G, write cΣ for the colour
factor associated to a marked surface with boundary, Σ. Collecting terms, it is possible to
write the whole perturbation series as a sum over surfaces (just as happens for the open string
amplitude),

A(1, . . . , n) =
∑

AΣcΣ,



The Algebraic Structure of the KLT Relations for Gauge and Gravity Tree Amplitudes 21

where the surfaces Σ have boundary marked points labelled by 1, . . . , n. Likewise, there is
a partial amplitude series for biadjoint scalar theory,

Aϕ3(1, . . . , n) =
∑
D

AD =
∑
Σ,Σ′

cΣc̃Σ′A(Σ,Σ′).

The double partial amplitudes A(Σ,Σ′) are the analog, at higher orders in perturbation theory,
of the matrix m(1a, n|1b, n) = s1a(1a, T (1b)) whose inverse (away from s1a = 0) produced the
field theory KLT kernel in Section 2. It is reasonable to expect that there exists a KLT relation
for the partial amplitudes A(Σ) at fixed loop order, involving genus g surfaces, with h boundaries
and p punctures, subject to the Euler characteristic constraint,

p+ 2g + h = ℓ+ 1.
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