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Abstract. The Weierstrass curve is a pointed curve (X,∞) with a numerical semi-
group HX , which is a normalization of the curve given by the Weierstrass canonical form,
yr+A1(x)y

r−1+A2(x)y
r−2+ · · ·+Ar−1(x)y+Ar(x) = 0 where each Aj is a polynomial in x

of degree ≤ js/r for certain coprime positive integers r and s, r < s, such that the generators
of the Weierstrass non-gap sequence HX at ∞ include r and s. The Weierstrass curve has
the projection ϖr : X → P, (x, y) 7→ x, as a covering space. Let RX := H0(X,OX(∗∞)) and
RP := H0(P,OP(∗∞)) whose affine part is C[x]. In this paper, for every Weierstrass curveX,
we show the explicit expression of the complementary module Rc

X of RP-module RX as an
extension of the expression of the plane Weierstrass curves by Kunz. The extension natu-
rally leads the explicit expressions of the holomorphic one form except ∞, H0(P,AP(∗∞))
in terms of RX . Since for every compact Riemann surface, we find a Weierstrass curve that
is bi-rational to the surface, we also comment that the explicit expression of Rc

X naturally
leads the algebraic construction of generalized Weierstrass’ sigma functions for every com-
pact Riemann surface and is also connected with the data on how the Riemann surface is
embedded into the universal Grassmannian manifolds.

Key words: Weierstrass canonical form; complementary modules; plane and space curves
with higher genera; sigma function
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1 Introduction

The Weierstrass σ function is defined for an elliptic curve of Weierstrass’ equation y2 = 4x3 −
g2x − g3 in Weierstrass’ elliptic function theory [40, 41]. Since

(
℘(u) = − d2

du2 log σ(u),
d℘(u)
du

)
is

identical to a point (x, y) of the curve, we can use the equivalence between the algebraic objects of
the curve and the transcendental objects on its Jacobi variety. The equivalence leads to the cru-
cial relations among them and their algebraic and analytic properties associated with the elliptic
curves [40]. These relations and properties affect the various fields of science and mathematics.

We have studied the generalization of this picture to algebraic curves with higher genera in
the series of the studies [17, 18, 19, 20] following Mumford’s excellent studies for the hyperelliptic
curves [29, 30].

As the elliptic theta function was generalized by Riemann for an Abelian variety, its equiva-
lent function Al was defined for any hyperelliptic curve by Weierstrass and was refined by Klein
as a generalization of the elliptic sigma function. Since Klein defined his hyperelliptic sigma
function by using only the data of the hyperelliptic Riemann surface and Jacobian transcenden-
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tally, Baker re-constructed Klein’s sigma function by using only the data of the hyperelliptic
curve itself from an algebraic viewpoint [3]. Buchstaber, Enolskii, and Leykin extend the sigma
functions to certain plane curves, so-called (n, s) curves, based on Baker’s construction which we
call EEL construction due to work by Eilbeck, Enolskii, and Leykin (see [5, 10] and references
therein). For the (n, s) curves with the cyclic symmetry, the direct relations between the affine
rings and the sigma functions were obtained as the Jacobi inversion formulae [27, 28]. Further,
we generalized the sigma functions and the formulae to a particular class of the space curves
using the EEL-construction [18, 20, 26].

Recently as a generalization of Klein’s sigma functions, D. Korotkin and V. Shramchenko de-
fined the sigma function of every compact Riemann surface transcendentally [22]. Every compact
Riemann surface with a point P has the Weierstrass non-gap sequence at P , which is described
by a numerical semigroup H; we call the numerical semigroup Weierstrass semigroup. In [32],
Nakayashiki refined the sigma function for every compact Riemann surface with Weierstrass
semigroup H based on Sato’s theory on the universal Grassmannian manifolds (UGM) [35, 36].

On the other hand, it is well-known that for every compact Riemann surface Y with the
Weierstrass semigroup HY at a point P ∈ Y , there is an algebraic curve X which is bi-rational
to the surface Y and is obtained by the normalization of the curve satisfying the Weierstrass
canonical form, yr+A1(x)y

r−1+A2(x)y
r−2+· · ·+Ar−1(x)y+Ar(x) where each Aj is a polynomial

in x of degree ≤ js/r for certain coprime positive integers r and s, r < s; the point P ∈ Y
corresponds to ∞ ∈ X and the Weierstrass semigroup HX at ∞ ∈ X is equal to HY whose
generators include r and s [3, 6, 15, 38]. In this paper, we call such a curve Weierstrass curve or
W-curve. The set of W-curves represents the set of compact Riemann surfaces. The Weierstrass
canonical form provides the projection ϖr : X → P (e.g., (x, y) 7→ x) as a covering space. For
RX = H0(X,OX(∗∞)) and RP = H0(P,OP(∗∞)), let their quotient fields beQ(RX) andQ(RP).
Then Q(RX) is a Galois extension of Q(P), or X is the Galois covering on P, and RX is regarded
as an RP-module.

The (n, s) curves are identical to the plane W-curves, whereas the space curves studied in
[18, 20, 26] are particular classes of the space W-curves. In [20], we implicitly showed that
these studies on the sigma functions in [5, 18, 27, 28, 33] are based on the algebraic structures
of RX as an RP-module for such particular W-curves. In [17], we show that if we have the data
of the holomorphic one-forms over X except ∞, H0(X,AX(∗∞)), we have the correspondence
between RX and the Riemann theta function for the subvarieties of its Jacobi variety associated
with SkX, 0 ≤ k < g, where AX is the sheaf of the holomorphic one-forms on X.

Our purpose of the studies series is to connect the algebra RX and the sigma function for
every W-curve X and show the equivalence between the algebraic objects of the W-curve X
and the transcendental objects on its Jacobi variety using the sigma functions as Baker did
for the hyperelliptic sigma functions following Weierstrass’ elliptic function theory [3]. The
equivalence also leads to the crucial relations among them and their algebraic and analytic
properties associated with the W-curve X, like Weierstrass’ elliptic function theory. In other
words, we purpose to extend Weierstrass’ elliptic function theory [40] and Mumford’s study
[29, 30] to every W-curve.

It is a critical perspective that Weierstrass himself and related researchers had already ob-
tained some, but not perfect, results [3, 39]. Due to the difficulty, these attempts were given
up and forgotten for a century. However, the development of mathematics enables us to revive
their approaches. We also emphasize that the progress in the studies on the sigma function has
provided several non-trivial results as a generalization of those in elliptic curves, which had been
regarded as impossible for the century, e.g., [5, 8, 9, 10, 12, 27, 28, 31, 33] and reference therein
as Mumford did for the hyperelliptic curves using θ functions in [29, 30].

In the general theory of the algebraic curves [7, 24, 37], the algebraic curves with the Galois
covering are studied well, and it turns out that the complementary module plays important
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roles and is connected with the Kähler differentials. The origin of the complementary modules
is in the study by Dedekind and Weber [7]; Weierstrass already stated some results in [39].
Kunz showed the explicit expression of the complementary module for every plane W-curve [24,
Theorem 15.1] though he did not call it W-curve.

To connect Nakayashiki’s sigma functions in [32] for pointed compact Riemann surfaces with
the Weierstrass semigroup HX and the algebraic properties of the W-curves X, in this paper,
we study the algebraic properties of RX and the complementary module Rc

X as RP-modules.
This paper aims to show the explicit expression of Rc

X since the expression of Rc
X enables us

to apply the algebraic construction of the sigma function following the EEL construction to
every W-curve: 1) Rc

X is directly related to the meromorphic one forms H0(X,AX(∗∞)), i.e.,
H0(X,AX(∗∞)) = Rc

Xdx; we can find the Jaocobi inversion formula as mentioned in [17]. 2) As
we show in a follow-up paper [21], by using the structure of Rc

X , we can define the fundamental
differential of the second kind Ω following the EEL-construction to obtain the Jacobi inversion
formula of Nakayashiki’s sigma function.

We remark that in Weierstrass’ elliptic function theory, if we regard x(u) = − d2

du2 log σ with
du = dx/y as a differential equation, it is known that x can be integrated twice in u to obtain
the elliptic sigma function without theta functions, at least, formally. Similarly, we regard that
the Jacobi inversion formula, i.e., the relation between RX and the sigma function, for every W-
curve also means an algebraic construction of the sigma function as Baker considered [3]. In the
construction, the most critical and most complicated point is to obtain the explicit expression
of the complementary module Rc

X . Thus this paper is devoted to the expression.

By using the general theory of the algebraic curves, in this paper, we obtain the explicit ex-
pression of the complementary module Rc

X for every W-curve X, including a space curve as an
extension of Kunz’s results on the complementary modules of the plane W-curves [24]. Though
the extension, especially to non-symmetric HX cases, is complicated, we have already obtained
the expressions of particular space curves heuristically in [18, 20, 26]. By investigating them,
we found the essentials of the general constructions of Rc

X in terms of data of RX for general
W-curves as follows. Since the W-curves X are characterized by the Weierstrass semigroups,
HX [38], the monomial curves XH and the monomial rings RZ

H associated with HX determine
the behavior of RX at∞ ∈ X. Following such studies on the monomial curves by Kunz [23], Her-
zog [13], and Pinkham [34], we use the multiple groups Gm action on the monomial curveXH and
the monomial algebra RZ

H . As we assume that the generators of the Weierstrass semigroup HX

include the minimal number r, the cyclic group Cr of order r gives the standard basis of HX with
respect to r. The standard basis of HX governs the monomial algebra and induces the standard
basis of RX as the RP-module globally. By using the standard basis of RX , we investigate
the RP-module structure of RX . As a key proposition, we find the characterization of RX in
Proposition 3.14 which induces an embedding of mX -dimensional space curve X into P2(mX−1)

with projection to each singular plane curve in P2 in Proposition 3.15. This embedding leads
the trace structure RZ

H in Lemma 4.6 and the structure determines the dual basis with the trace
of RX in Proposition 4.18. Finally we find the explicit expression of Rc

X in Theorem 4.27. Using
it, we describe H0(X,AX(∗∞)) = Rc

Xdx in terms of RX in Theorem 5.3.

Furthermore it is known that H
c
X := Z\HX provides the embedding of the algebraic systems

associated with X into the UGM due to Segal and Wilson [36, p. 46]. Since due to Riemann–
Roch theorem, Rc

Xdx has the weight sequence which is equal to H
c
X − 1, Rc

Xdx might lead the
embedding as Nakayashiki did for (n, s) curve in [31] rather than the spin connection in [32]. Our
results in this paper can be naturally applied to the generalization of the EEL-constructions [20]
as we mentioned above. Our previous report on the Riemann constant on the theta function [19]
enables us to construct the sigma function of every W-curve algebraically and connect RX with
the sigma function as we show in the follow-up paper [21]. We mention it shortly in Re-
mark 5.10.
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In [12], the explicit description of the Abelian functions in terms of the sigma function
demonstrates the degenerating behavior of the sigma function for the degenerating family of
curves given by the Weierstrass canonical form fX(x, y) = y3−x(x−s)(x−b1)(x−b2) for s → 0
for disjoint non-zero complex numbers b1 and b2 recently, which is much more precise than the
known results [14]. The results in this paper with this follow-up paper [21] mean that 1) as we
handle the elliptic functions of an elliptic curve, we can handle the algebraic functions of any W-
curve X using the explicit connection between the sigma function for X and the affine ring RX ,
e.g., their additive structure, Jacobi inversion formula, and differential relations, 2) as we did
in [12], we can basically express the degenerating behavior of sigma function (theta function) for
any degenerating family of W-curves, and 3) in terms of them, we could have explicit expressions
of the algebraic solutions of KP hierarchy more precisely: Though it has not been a concern in
the study of the integrable system, even for soliton solutions of KP hierarchy, there is no study
on explicit description associated with the space curves except the recent interesting work by
Kodama and Xie [16]. Our results in this paper provide the bases.

Contents are as follows: Section 2 consists of the two subsections: Section 2.1 reviews
Dedekind’s trace, and its related topics based on Kunz’s book [24]. Section 2.2 gives the sum-
mary of the numerical and Weierstrass semigroups. We show the Weierstrass canonical forms
and Weierstrass curves (W-curves) and their properties in Section 3. Using their properties, we
find the identities in RX in Proposition 3.14, as the first key proposition, to show the RP-module
structure of RX and an embedding of X into P2(mX−1), where mX is the minimal number of
the generators of HX . Section 4 is devoted to the construction of the complementary mod-
ule Rc

X . After rewriting the tools in Section 2.1 for W-curves X shortly, we start to review
the explicit expression of the complementary module for every plane W-curve of (mX = 2) [24,
Theorem 15.1] in Proposition 4.3. In order to extend it to a general W-curve X including a non-
symmetric case, we consider the trace structure of the monomial ring RZ

H in Lemma 4.6 as the
second key proposition. Using it, we investigate the global structure of RX as the RP-module
in Proposition 4.18 and Lemma 4.22 as the third key propositions. Finally, we construct the
complementary module in Theorem 4.27 as the first main theorem in this paper. In Section 5,
we consider the W-normalized Abelian differentials H0(X,AX(∗∞)) and show the second main
theorem in Theorem 5.3. In Section 6, we provide some examples of our results.

2 Preliminary

2.1 Trace and complementary modules

We review Dedekind’s trace and its related topics based on Kunz’s book [24] whose origin
appeared in the paper by Dedekind and Weber [7].

Let RP be an algebra over C and RY an RP algebra such that RY =
⊕r−1

i=0 RPyi, yi ∈ RY .
The dual of RY is defined by

ωRY /RP
= HomRP

(RY , RP )

with the basis {y∗
i }i∈Zr ⊂ ωRY /RP

satisfying y∗
i yj = δij . We assume that for x, y ∈ RY and

z ∈ ωRY /RP
, (x ◦ z)(y) = z(xy), and we also regard ωRY /RP

as an RY -module.

Let us introduce standard trace, τRY /RP
:=
∑r−1

i=0 yi ◦y∗
i , and its complementary module Rc

Y

with respect to τRY /RP
given by

Rc
Y := {z ∈ Q(RY ) | τRY /RP

(zRY ) ⊂ RP }.

We construct the complementary module Rc
Y as follows because Rc

Y is directly connected with
the Kähler differentials.
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Lemma 2.1. There are structure coefficients aijk in RP satisfying yiyj =
∑

k aijkyk and
aijk = ajik, which determines the structure of the RP -module RY . Then the standard trace
shows τRY /RP

(yj) =
∑

i aiji.

Proof. The former statement is obvious and due to the definition of the standard trace, we
have τRY /RP

(yj) =
∑

i yi ◦ y∗
i (yj) =

∑
i y

∗
i (yiyj) =

∑
i y

∗
i (
∑

k aijkyk) =
∑

i aiji. ■

The RY -action on the RP -module RY , x : RY → RY for x ∈ RY , has the matrix expres-
sion Mx, i.e., (Mx)ij =

∑
k xkajki since (xz)i = y∗

i (
∑

kj xkzjykyj) = y∗
i (
∑

kjℓ xkzjajkℓyℓ) =∑
j(
∑

k xkajki)zj . Lemma 2.1 asserts that the standard trace τRY /RP
(x) agrees with trace

of Mx, i.e, τRY /RP
(x) =

∑
i(Mx)ii.

Definition 2.2. If there is an element τ in ωRY /RP
such that ωRY /RP

= RY ◦τ as an RP -module,
i.e., ωRY /RP

is a free RP -module with the basis {τ}, we say that RY has the trace τ .

We note that if RY /RP is separable, the standard trace τRY /RP
is a trace in this definition.

Lemma 2.3. If RY has a trace τ , the following hold.

1. If an element a in RY satisfies a ◦ τ = 0, then a = 0. It means that ωRY /RP
∼= RY ◦ τ as

an RY -module.

2. For a basis {yi} of RY as an RP -module, there exists a subset {ŷi} ⊂ RY satisfying
τ(ŷiyj) = δij. (We call {ŷi} the dual basis with respect to the trace τ.) Then τRY /RP

=(∑r−1
i=0 ŷiyi

)
◦ τ .

Proof. (1) For any x ∈ RY , 0 = a ◦ τ(x) = τ(ax) = x ◦ τ(a). For every b ∈ ωRY /RP
, b(a) = 0

implies that a = 0. The RP -morphism ωRY /RP
→ RY ◦τ is injective. (2) For the dual basis {y∗

i }
of ωRY /RP

such that y∗
i (yj) = δij , we can find an element ŷi ∈ RY satisfying y∗

i = ŷi ◦ τ . Then
τ(ŷiyj) = y∗

i (yj) = δij , and τRY /RP
=
∑r−1

i=0 yi ◦ y∗
i =

(∑r−1
i=0 ŷiyi

)
◦ τ . ■

We construct τ and τRY /RP
in terms of the enveloping algebra Re

Y := RY ⊗RP
RY . For R

e
Y ,

the standard multiplication µ : Re
Y → RY is defined by µ(a⊗ b) = ab.

Lemma 2.4. The kernel of µ, Kerµ, is generated by {yi ⊗ 1− 1⊗ yi}i=0,...,r−1.

Proof. Following [24, Theorem G.7], we show it. Let I := ⟨{a ⊗ 1 − 1 ⊗ a}a∈RY
⟩RP

. Clearly
I ⊂ Kerµ. There are surjective RP -homomorphisms,

RY ⊗RP
RY

pµ−→ (RY ⊗RP
RY )/I

p′µ−→ (RY ⊗RP
RY )/Kerµ ∼= RY .

For a, b ∈ RY , we have a⊗ b = (a⊗ 1)(1⊗ b) = −(a⊗ 1)(b⊗ 1− 1⊗ b) + (ab⊗ 1). Thus there

is an injection RY
ιµ−→ (RY ⊗RP

RY ) → (RY ⊗RP
RY )/I. Hence p′µ is the identity map as a set,

and is bijective. Further since

(ab⊗ 1)− (1⊗ ab) = (b⊗ 1)(a⊗ 1− 1⊗ a) + (1⊗ a)(b⊗ 1− 1⊗ b),

every element in {a⊗ 1− 1⊗ a}a∈RY
is generated by {yi ⊗ 1− 1⊗ yi}i=0,...,r−1. ■

We consider the annihilator of the kernel of µ,

AnnRe
Y
(Kerµ) := {z ∈ Re

Y | z ·Kerµ = 0}.

For an element
∑

ai⊗bi ∈ AnnRe
Y
(Kerµ), (c⊗1−1⊗c) ·

∑
ai⊗bi = 0 or

∑
cai⊗bi =

∑
ai⊗cbi.

Lemma 2.5. There is a natural embedding φ : AnnRe
Y
(Kerµ) → HomRY

(ωRY /RP
, RY ).
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Proof. Since
∑

cai ⊗ bi =
∑

ai ⊗ cbi for an element
∑

ai ⊗ bi ∈ AnnRe
Y
(Kerµ) and c ∈ RY ,

it should be defined φ(
∑

i ai ⊗ bi)(ρ) =
∑

i ρ(ai)bi ∈ RY for ρ ∈ ωRY /RP
; for every s ∈ RY , we

have sρ(a)b = ρ(a)sb = ρ(sa)b. ■

Proposition 2.6 ([24, Corollary H.20]). Suppose RY /RP has a trace. Then φ induces a bi-
jection between the set of all traces of RY /RP and the set of all generators of the RY -module
AnnRe

Y
(Kerµ): Each trace τ ∈ ωRY /RP

is mapped to the unique element ∆τ :=
∑r−1

i=0 ŷi ⊗ yi ∈
AnnRe

Y
(Kerµ) associated with τ such that

∑r−1
i=0 τ(ŷi)yi = 1. Furthermore

1. ∆τ generates the RY -module AnnRe
Y
(Kerµ), and {ŷ1, . . . , ŷr} is the dual basis of the basis

{y1, . . . ,yr} of RX with respect to τ ; i.e.,

τ(ŷiyj) = δi,j , i, j = 1, . . . , r.

2. If
∑r−1

i=0 ŷ
′
i ⊗ yi generates the RY -module AnnRe

Y
(Kerµ), and if τ ′ ∈ ωRY /RP

is a linear

form with
∑r−1

i=0 τ
′(ŷ′

i)yi = 1, then τ ′ is a trace of RY /RP and ∆τ ′ =
∑r−1

i=0 ŷ
′
i ⊗ yi is

associated with the trace τ ′; hence {ŷ′
1, . . . , ŷ

′
r} is the dual basis of the basis {y1, . . . ,yr}

of RX with respect to τ ′.

3. For each trace τ of RY /RP ,

τRY /RP
= µ(∆τ ) ◦ τ.

Proof. Let us consider 1 ∈ HomRY
(ωRY /RP

, RY ), and consider the inverse image of {1},
φ−1(1) ∈ AnnRe

Y
(Kerµ), which is denoted by ∆τ . By using the basis {yi} ⊂ RY , we can express

it as ∆τ =
∑

i ŷi⊗yi for a certain {ŷi}. Thus φ(
∑

i ŷi⊗yi)(τ) =
∑

i τ(ŷi)yi = 1. The fact that∑
i τ(ŷi)yi = 1 implies that yj = yjφ(

∑
i ŷi ⊗ yi)(τ) = φ(

∑
i ŷi ⊗ yi)(yj ◦ τ) =

∑
i τ(ŷiyj)yi.

Thus τ(ŷiyj) = δij . Hence the set {ŷi} is a dual basis of RY with respect to τ .
Let us consider the case AnnRe

Y
(Kerµ) = RY

(∑
i ŷ

′
i ⊗ yi

)
with

∑r−1
i=0 τ

′(ŷ′
i)yi = 1 for

τ ′ ∈ ωRY /RP
. Then by the above arguments, obviously φ(

∑
i ŷ

′
i ⊗ yi) = 1. we obtain (2).

Lemma 2.3 shows that τRY /RP
=
∑

i yi ◦ y∗
i =

∑
i ŷiyi ◦ τ = µ(∆τ ) ◦ τ . ■

2.2 Numerical and Weierstrass semigroup

This subsection is on numerical and Weierstrass semigroups based on [2, 18]. An additive sub-
monoid of the monoid, non-negative integers N0 is called a numerical semigroup if its complement
in N0 is a finite set. In this subsection, we review the numerical semigroups associated with
algebraic curves.

Let X be a smooth (complex projective) curve of genus g, and M(X) be the set of the
meromorphic functions on X. For a point P ∈ X,

H(X,P ) := {n ∈ N0 | there exists f ∈ M(X) such that (f)∞ = nP}

forms a numerical semigroup by the Riemann–Roch theorem, which is called the Weierstrass
semigroup of the point P . If the Weierstrass gap sequence Hc(X,P ) := N0 \ H(X,P ) differs
from the set {1, 2, . . . , g}, we say that P is a Weierstrass point of X [11].

In this paper, we consider a pointed curve, a pair (X,P ) with P a point of the curve X with
the Weierstrass semigroup H(X,P ).

In general, a numerical semigroup H has a unique (finite) minimal set of generators, M =
M(H), (H = ⟨M⟩) and the finite cardinality g of Hc = N0 \H; g is the genus of H or Hc and
Hc is called a gap-sequence. For example,

Hc = {1, 2, 4, 5}, for H = ⟨3, 7, 8⟩,
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Hc = {1, 2, 3, 4, 6, 8, 9, 13}, for H = ⟨5, 7, 11⟩, and

Hc = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 17, 23}, for H = ⟨6, 13, 14, 15, 16⟩.

We let rmin(H) be the smallest positive integer of M(H), which is referred the multiplicity
of H. We call the semigroup H an rmin(H)-semigroup, so that ⟨3, 7, 8⟩ is a 3-semigroup and
⟨6, 13, 14, 15, 16⟩ is a 6-semigroup. Let N(i) and N c(i) be the i-th ordered element of H =
{N(i) | i ∈ N0} and Hc = {N c(i) | i = 0, 1, . . . , g − 1} satisfying N(i) < N(i + 1) and N c(i) <
N c(i+ 1), respectively. The Schubert index of the set Hc is

α(H) := {α0(H), α1(H), . . . , αg−1(H)},

where αi(H) := N c(i)− i− 1. Moreover,

α(⟨3, 7, 8⟩) =
{
02, 12

}
and α(⟨6, 13, 14, 15, 16⟩) =

{
05, 15, 6, 11

}
.

Further the conductor cH ofH is defined by the minimal natural number satisfying cH + N0 ⊂ H.
The number cH − 1 is known as the Frobenius number, which is the largest element of Hc.

By letting the row lengths be Λi = αg−i(H) + 1, i < g, we have the Young diagram of the
semigroup, Λ := (Λ1, . . . ,Λg), Λi ≥ Λi+1. The Young diagram Λ is a partition of

∑
i Λi. We say

that such a Young diagram is associated with the numerical semigroup. If for a given Young
diagram Λ, we cannot find any numerical semigroup H such that Λi = αg−i(H) + 1, we say
that Λ is not associated with the numerical semigroup. It is obvious that in general, the Young
diagrams are not associated with the numerical semigroups.

⟨3, 7, 8⟩, ⟨5, 7, 11⟩, ⟨6, 13, 14, 15, 16⟩.

The Young diagram and the associated numerical semigroup are called symmetric if the Young
diagram is invariant under reflection across the main diagonal. It is known that the numerical
semigroup is symmetric if and only if 2g−1 occurs in the gap sequence. It means that if cH = 2g,
H is symmetric.

We obviously have the following proposition:

Proposition 2.7. The following hold:

(1) N(n)− n ≤ g for every n ∈ N0,

(2) N(n)− n = g for N(n) ≥ cX = N(g),

(3) N(n)− n < g for 0 ≤ N(n) < cX ,

(4) #{n |N c(n) ≥ g} = #{n |N(n) < g},
(5) for N(i) < N c(j), N c(j)−N(i) ∈ Hc, and

(6) when H is symmetric, cH = N(g) = 2g and cH−N(i)−1 = N c(g−i−1) for 0 ≤ i ≤ g−1.
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Proof. (1)–(3) and (5) are obvious. By noting #Hc = g, (4) means that what is missing must
be filled later for Hc. (6) is left to [2]. ■

In this paper, we mainly consider the r-numerical semigroup, H. We introduce the tools as
follows:

Definition 2.8.

1. Let Zr := {0, 1, 2, . . . , r − 1} and Z×
r := Zr \ {0}.

2. Let ẽi := min{h ∈ H | i ≡ h mod r}, i ∈ Zr.

3. Let ẼH := {̃ei | i ∈ Zr} be the standard basis of H. Further we define the ordered set
EH := {ei ∈ ẼH | ei < ei+1}, and E×

H := EH \ {0}, e.g., e0 = ẽ0 = 0.

4. Let e∗ℓ,i be the element in EH such that e∗ℓ,i = eℓ − ei modulo r.

5. Let H
c
:= Hc

⋃
(−N), where N := N0 \ {0}.

6. The Apéry set Ap(H,n) for a positive integer n is defined by

Ap(H,n) := {s ∈ H | s− n ̸∈ H}.

Since it is obvious that Ap(H, r) = EH = ẼH as a set, the standard basis is sometimes defined
by the Apéry set Ap(H, r).

We have the following elementary but essential results:

Lemma 2.9. For a ∈ N0, we define

[a]r := {a+ kr | k ∈ N0}, [a]
c

r := {a− kr | k ∈ N}, [a]cr := [a]
c

r ∩ N.

1. We have the following decomposition:

(a) N0 =
⊕

i∈Zr
[i]r,

(b) H =
⊕

i∈Zr
[ei]r,

(c) H
c
=
⊕

i∈Zr
[ei]

c

r, H
⋃

H
c
= Z,

(d) Hc =
⊕

i∈Zr
[ei]

c
r =

⊕
i∈Z×

r
[ei]

c
r, H

⋃
Hc = N0,

2. for every xi ∈ [ei]r (i ∈ Zr),

{xi modulo r | i ∈ Zr} = Z/rZ,

especially for x ∈ [̃ei]r, x = i modulo r, and

3. e∗ℓ,ℓ = e0 = 0, and e∗ℓ,0 = eℓ.

Proof. (1a), (2) and (3) are apparent. From the definition of EH , H = {ei+kr | i ∈ Zr, k ∈ N0}.
For i ̸= j, [ei]r ∩ [ej ]r = ∅ and thus we have the decomposition in (1b). Since Hc = N0 \H, we
have (1d) and (1c) noting (1a). ■

The following is obvious:

Lemma 2.10. For the generators r and s in the numerical semigroup H, there are positive
integers is and ir such that iss− irr = 1.

We remark that H
c
determines the structure of the differentials on a certain curve X in

Theorem 5.3 and the embedding of the curve into the universal Grassmannian manifold as in
[36, p. 46].

A numerical semigroup H is said to be Weierstrass if there exists a pointed curve (X,P )
such that H = H(X,P ). Hurwitz posed the problem of whether any numerical semigroup H is
Weierstrass. The question was revived in the 1980s, viewed as the question of deformations of
a reduced complex curve singularity (X0,∞). Buchweitz and Greuel showed a counterexample.
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3 Weierstrass canonical form and Weierstrass curves
(W-curves)

3.1 Weierstrass canonical form

In this subsection, we now review the “Weierstrass canonical form” (“Weierstrass normal form”)
based on [17, 19, 20], which is a generalization of Weierstrass’ standard form for elliptic curves.
This form originated from Abel’s insight, and Weierstrass investigated its primitive property
[38, 39]. Baker [3, Chapter V, Sections 60–79] gave a complete review, proof, and examples of
the theory. Here we refer to Kato [6, 15], who also produces this representation with proof.

Proposition 3.1 ([6, 15]). For a pointed curve (X,∞) with Weierstrass semigroup HX :=
H(X,∞) for which rmin(HX) = r, and ei ∈ EHX

, i ∈ Z×
r , in Definition 2.8, and we let s :=

mini∈Z×
r
{ei ∈ EHX

| (ei, r) = 1} and s = eℓs. (X,∞) is defined by an irreducible equation,

fX(x, y) = 0, (3.1)

for a polynomial fX ∈ C[x, y] of type,

fX(x, y) := yr +A1(x)y
r−1 +A2(x)y

r−2 + · · ·+Ar−1(x)y +Ar(x), (3.2)

where the Ai(x)’s are polynomials in x, A0 = 1,

Ai =

⌊is/r⌋∑
j=0

λi,jx
j =:

⌊is/r⌋∏
j=1

ai,0(x− ai,j),

and λi,j ∈ C, λr,s = −1.

Proof. We let EHX
:= {e1, e2, . . . , er−1} \ {s}, EHX

=: {e2, . . . , er−1}, (ei < ej for i < j), and
e1 = s. Let ỹei be a meromorphic function on X whose only pole is ∞ with order ei, i ∈ Z×

r ,
taking ys := ỹs = ỹe1 and 1 = ỹe0 . From the definition of X, we have, as C-vector spaces,

H0(X,OX(∗∞)) =
r−1∑
i=0

∑
j=0

Cxj ỹei . (3.3)

Let the affine ring RX of X be defined by H0(X,OX(∗∞)), i.e., RX := H0(X,OX(∗∞)). Thus
for every ej ∈ EHX

, j = 2, 3, . . . , r − 1, we obtain the following equations,
ysỹe2 = A2,0 +A2,1ys +A2,2ỹe2 + · · ·+A2,r−2ỹer−2 +A2,r−1ỹer−1 ,

ysỹe3 = A3,0 +A3,1ys +A3,2ỹe2 + · · ·+A3,r−2ỹer−2 +A3,r−1ỹer−1 ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ysỹer−1 = Ar−1,0 +Ar−1,1ys +Ar−1,2ỹe2 + · · ·+Ar−1,r−2ỹer−2 +Ar−1,r−1ỹer−1 ,

(3.4)

y2s = A1,0 +A1,1ys +A1,2ỹe2 + · · ·+A1,r−2ỹer−2 +A1,r−1ỹer−1 , (3.5)

where Ai,j ∈ C[x].
When r = 2, (3.1) equals (3.5). We assume that r > 2 and then (3.4) is reduced to (r − 2)

linear equations,
A2,1 − ys A2,2 · · · A1,r−1

A3,1 A3,2 − ys · · · A3,r−1
...

...
. . .

...
Ar−1,1 Ar−1,2 · · · Ar−1,r−1 − ys




ỹe2
ỹe3
...

ỹer−1

 = −


A2,0 +A2,1ys
A3,0 +A3,1ys

...
Ar−1,0 +Ar−1,1ys

 . (3.6)
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One can check that the determinant of the matrix on the left-hand side of (3.6) is not equal
to zero by computing the order of pole at ∞ of the monomials Biy

r−2−i
s in the expression,

P (x, ys) :=

∣∣∣∣∣∣∣∣∣
A2,1 − ys A2,2 · · · A2,r−1

A3,1 A3,2 − ys · · · A3,r−1
...

...
. . .

...
Ar−1,1 Ar−1,2 · · · Ar−1,r−1 − ys

∣∣∣∣∣∣∣∣∣
= yr−2

s +B1y
r−3
s + · · ·+Br−3ys +Br−4,

which is s(r− 2− i) + r · degxBi by letting degx h(x) be the degree of h with respect to x. The
fact that (r, s) = 1 shows that s(r − 2− i) + r · degxBi ̸= s(r − 2− j) + r · degxBj for i ̸= j.

Hence by solving equation (3.6), we have

ỹei =
Qi(x, ys)

P (x, ys)
, (3.7)

where Qi(x, ys) ∈ C[x, ys] and a polynomial of order at most r − 2 in ys. Note that the equa-
tions (3.7) are not algebraically independent in general but in any case the function field of the
curve can be generated by some of these ỹej ’s, and its affine ring RX can be given by a quotient
ring of C[x, yr2 , yr3 , . . . , yrmX

] for ij ∈ MX := M(HX), where MX = {r1, r2, . . . , rmX} ⊂ NmX

with the conditions that mutually coprime, (r1, . . . , rmX ) = 1, r1 = r, r2 = s, and ri < rj for
2 < i < j, is a minimal set of generators for HX . Here the cardinality of the generator MX

of HX is mX(< r).

By putting (3.7) into (3.5), we obtain (3.2) if it is irreducible. If it is reducible, fX(x, ys)
is decomposed to polynomials whose degree is less than r with respect to ys. However the
relation (r, s) = 1 shows that there does not exist such monic polynomials due to the order of
the singularity at ∞.

Further the order of the singularity of Aiy
r−i
s is given by s(r − i) + r degxAi. The cases

satisfying that s(r− i) + r degxAi = s(r− j) + r degxAj mean that i = j or (i, j) = (0, r), (r, 0)
due to (r, s) = 1. Hence r degxAr = s. For i = 1, . . . , r − 1, s(r − i) + r degxAi < rs leads that
degxAi < si/r. ■

Remark 3.2. Let us call the curve in Proposition 3.1 a Weierstrass curve or a W-curve in this
paper. The Weierstrass canonical form characterizes the W-curve, which has only one infinity
point ∞. The infinity point ∞ is a Weierstrass point if Hc

X = Hc(X,∞) = {N c(i)} differs
from {1, 2, . . . , g}. Since every compact Riemann surface of the genus, g(> 1), has a Weierstrass
point whose Weierstrass gap sequence has genus g [1, 11], it characterizes the behavior of the
meromorphic functions at the point, and thus there is a W-curve which is bi-rationally equivalent
to the compact Riemann surface.

Further Proposition 3.1 is also applicable to a pointed compact Riemann surface (Y, P ) of
genus g whose point P is an ordinary point rather than the Weierstrass point; its Weierstrass gap
sequence at P is Hc(Y, P ) = {1, 2, . . . , g}. Even for the case, we find the Weierstrass canonical
form fX and the W-curve X with Hc

X = {1, 2, . . . , g} which is bi-rational to Y .

Remark 3.3. Let R◦
X◦ := C[x, y]/(fX(x, y)) for (3.1) and its normalized ring be R◦

X if X◦ :=
SpecR◦

X◦ is singular. R◦
X is the coordinate ring of the affine part of X \{∞} and we identify R◦

X

with RX = H0(X,OX(∗∞)). Then the quotient field C(X) := Q(RX) of RX is considered as
an algebraic function field on X over C.

By introducing RP := H0(P,OP(∗∞)) = C[x] and its quotient field C(x) := Q(RP), Q(RX) is
considered a finite extension of Q(RP). We regard RX as a finite extended ring of RP of rank r,
e.g., R◦

X◦ = RP[y]/(fX(x, y)) as mentioned in Section 3.4 [24]. Further as we will mention in
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Section 3.3, ỹei in the proof of Proposition 3.1 is the standard basis of RX as an RP-module,
and the matrix in (3.6) are naturally interpreted as the RP-module.

For the local ring RX,P of RX at P ∈ X, we have the ring homomorphism, φP : RX → RX,P .
We note that RX,∞ plays crucial roles in the Weierstrass canonical form. We let MX =
{r1, r2, . . . , rmX} be the minimal generator of the numerical semigroup HX = H(X,∞) ap-
pearing in the proof of Proposition 3.1. The Weierstrass curve admits a local cyclic Cr = Z/rZ-
action at ∞, cf. Section 3.2. The genus of X is denoted by gX , briefly g and the conductor
of HX is denoted by cX := cHX

; the Frobenius number cX − 1 is the maximal gap in HX , i.e.,
cH = N c(g − 1) + 1. We let H

c
X := Z \HX .

3.1.1 Projection from X to P

There is the natural projection,

ϖr : X → P, ϖr(x, yr2 , . . . , yrmX
) = x = yr,

such that ϖr(∞) = ∞ ∈ P.
Let {y•} := {ys = yr2 , yr3 , . . . , yrmX

} and C[x, y•] := C[x, ys = yr2 , yr3 , . . . , yrmX
].

3.1.2 Symmetric and non-symmetric Weierstrass curves (W-curves)

We also investigate the W-curves whose Weierstrass semigroups HX are symmetric and non-
symmetric, which are called symmetric Weierstrass curve or symmetric W-curve, and non-
symmetric Weierstrass curve or non-symmetric W-curve respectively in this paper.

3.2 The monomial curves and W-curves

This subsection shows the monomial curves and their relation to W-curves based on [17, 19, 20].
For a given W-curve X with the Weierstrass semigroup H = HX , and its generator MX =

{r = r1, r2, . . . , rmX}, the behavior of singularities of the elements in RX at ∞ is described
by a monomial curve XZ

H . For the numerical semigroup H = ⟨MX⟩, the numerical semigroup
ring RH is defined as RH := C[zr1 , zr2 , . . . , zrmX ].

Following a result of Herzog’s [13], we recall the well-known proposition for a polynomial ring
C[Z] := C[Zr1 , Zr2 , . . . , ZrmX

].

Proposition 3.4. For the C-algebra homomorphism φ̃Z
H : C[Z] → RH , Za 7→ za, the kernel of

φ̃Z
H is generated by certain binomials fH

i ∈ C[Z], i = 1, 2, . . . , kX , for a positive integer kX ,
mX − 1 ≤ kX < ∞, i.e., ker φ̃Z

H =
(
fH
1 , fH

2 , . . . , fH
kX

)
, and

RH ≃ C[Z]/ ker φ̃Z
H =: RZ

H .

Proof. This follows from a result of Herzog’s [13]. There are the multiplicative group actions
(Gm-actions) on Zri ’s, whereas RH is invariant for the action. It means that the number of
generators of ker φ̃Z

H is determined, i.e., kX . The relation in the ker φ̃Z
H is reduced to a binary

one. ■

We call RZ
H = C[Z]/ ker φ̃Z

H a monomial ring. Sending Zr to 1/x and Zri to 1/yri , the
monomial ring RZ

H determines the structure of gap sequence of X at ∞ [13, 34]. Bresinsky
showed that kX can be any finitely large number if mX > 3 [4].

Let XH := SpecRZ
H ,which we call a monomial curve. We also define the ring isomorphism

on RZ
H induced from φ̃Z

H , which is denoted by φZ
H ,

φZ
H : C[Z]/ ker φ̃Z

H = RZ
H → RH .
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Further, we let {Z•} := {Zr2 , Zr3 , . . . , ZrmX
}, and C[Zr, Z•] := C[Zr, Zr2 , Zr3 , . . . , ZrmX

].
A monomial curve is an irreducible affine curve with Gm-action, where Gm is the multiplicative
group of the complex numbers; Za 7→ gaZa for g ∈ Gm, and it induces the action on the monomial
ring RZ

H .

The following action of the cyclic group of order r plays a crucial role in this paper.

Lemma 3.5. The cyclic group Cr of order r acts on the monomial ring RZ
H ; the action of the

generator ζ̂r ∈ Cr on Za is defined by sending Za to ζarZa, where ζr is a primitive r-th root of
unity. By letting r∗i := (r, ri), ri := r/r∗i , and ri := ri/r

∗
i , the orbit of Zri forms Cri; especially

for the case that (r, ri) = 1, it recovers Cr.

Thus in RZ
H , we have the following identities:

f
(j)
H (Zr, Zrj ) = 0, f

(j)
H := Z

rj
rj − Z

rj
r , j = 2, . . . ,mX . (3.8)

For example, the case MX = {3, 7, 8} provides these elements
{
fH
1 , fH

2 , fH
3

}
are given by the

2× 2 minors of
∣∣∣ Z2

3 Z7 Z8

Z7 Z8 Z3
3

∣∣∣. There is a cyclic group C3 := {ζa3 | a = 0, 1, 2} action on RH as a Gm

action. Due to the relation, there are other possibilities which are given by the 2× 2 minors of∣∣∣ Z2
3 ζa3Z7 ζ2a3 Z8

ζa3Z7 ζ2a3 Z8 Z3
3

∣∣∣ for a = 0, 1, 2. It means that fH
i is unique up to the Gm action. On the other

hand, f
(2)
H = Z3

7 − Z7
3 and f

(3)
H = Z3

8 − Z8
3 for (3.8).

There are non-negative integers h
(i±)
j such that

fH
i =

(∏
j=2

Z
h
(i+)
j

rj

)
−
(∏

j=1

Z
h
(i−)
j

rj

)
, (3.9)

where, in the first term, Zr1 does not exist because (r1, r2, . . . , rmX ) = 1.

Corresponding to the standard basis of HX in Definition 2.8, we find the monic monomial
Zei ∈ RZ

H such that φZ
H(Zei) = zei , and the standard basis {Zei | i ∈ Zr}; Ze0 = 1.

Lemma 3.6. The C[Zr]-module RZ
H is given by

RZ
H = C[Zr]⊕ C[Zr]Ze1 ⊕ · · · ⊕ C[Zr]Zer−1 ,

and thus ZH := {Ze0 = 1,Ze1 , . . . ,Zer−1} is the basis of the C[Zr]-module RZ
H . Then there is

a monomial bijk ∈ C[Zr] such that

ZeiZej =
∑
k∈Zr

bijkZek .

Further, there are elements Z ∈ RZ
H and Z∗

ei ∈ RZ
H , (i ∈ Z×

r ) satisfying

Z∗
eiZei = Z, for i ∈ Z×

r ,

and {Zrj | j = 2, . . . ,mX} ⊂ ZH .

Moreover, the cyclic group of order r acts on these elements; the action of the generator
ζ̂r ∈ Cr on Zei, i = 0, . . . , r − 1, is defined by sending Zei to ζeir Zei. For f, g ∈ RZ

H , by letting

ζ̂r(fg) = ζ̂r(f)ζ̂r(g), ζ̂r(Ze1Ze2 · · ·Zer−1) = Ze1Ze2 · · ·Zer−1.

Proof. They are obtained from Definition 2.8 and Lemma 2.9. From the definition of MX ,
every Zrj , j = 2, . . . ,mX , belongs to ZH . The group action is obvious from Lemma 3.5. ■
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To construct our curve X from RH or SpecRH , we could follow Pinkham’s strategy [34] with
an irreducible curve singularity with the Gm action, though we will not mention it in this paper.
For the coefficients λij in RX , we may consider the coefficient ring C[λij ], and then we also
consider the case C[λij ]/mA divided by its maximal ideal mA = (λij). Pinkham’s investigations
provide the following proposition [34]:

Proposition 3.7. For a given W-curve X and its associated monomial ring, RZ
H = C[Z]/

(
fH
1 ,

fH
2 , . . . , fH

kX

)
, there is a surjective ring-homomorphism [2, p. 80]

φX
H : RX → RZ

H

such that RX/mA is isomorphic to RZ
H , where mA is the maximal ideal (λij) in the coefficient ring

C[λij ], and φX
H(yri) = Zri, and there is a set of polynomials {fX

i }i=1,...,kX ∈ C[x, y•] satisfying

(1)
(
fX
i modulo mA

)
= fH

i for i = 1, . . . , kX ,

(2) the affine part of RX is given by RX = C[x, y•]/
(
fX
1 , fX

2 , . . . , fX
kX

)
, and

(3) the rank of the matrix
(∂fX

i
∂yrj

)
i=1,2,...,kX ,j=1,2,...,mX

is mX − 1 for every point P in X.

Proof. As we showed in the proof of Proposition 3.1, RX is a quotient ring of C[x, y•]. Since
φX
H must be a surjective, there is a prime ideal

(
fX
1 , fX

2 , . . . , fX
kX

)
⊂ C[x, y•] generated by{

fX
i

}
i=1,...,kX

⊂ C[x, y•] satisfying (1). Thus we prove (2). By noting kX ≥ mX , Nagata’s

Jacobi criterion [25, Theorem 30.10] shows (3). ■

Definition 3.8.

1. Recalling Lemma 2.10, we define the arithmetic local parameter at ∞ by [33]

t =
xir

yis
.

2. The degree at Q(RX,∞) as the order of the zero or singularity with respect to t is naturally
defined by

wt = deg∞ : Q(RX) → Z,

which is called Sato–Weierstrass weight [38].

3. In the ring of the formal power series C[[t1, . . . , tℓ]], we define the symbols d>n(t1, . . . , tℓ)
and d≥n(t1, . . . , tℓ), which express that they belong to the ideals

d>n(t1, . . . , tℓ) ∈
{∑

ai1,...,iℓt
i1
1 · · · tiℓℓ | ai1,...,iℓ = 0 for i1 + · · ·+ iℓ ≤ n

}
,

d≥n(t1, . . . , tℓ) ∈
{∑

ai1,...,iℓt
i1
1 · · · tiℓℓ | ai1,...,iℓ = 0 for i1 + · · ·+ iℓ < n

}
.

The weight of yri is given by

wt(yri) = −ri, i = 1, 2, . . . ,mX , yri =
1

tri
(1 + d>0(t)).

Since RX or R◦
X is given by a quotient ring of C[x, yr2 , yr3 , . . . , yrmX

] divided by the relations,{
fX
i

}
i=1,...,kX

, we have the decomposition of RX as a C-vector space,

RX =
⊕
i=0

Cϕi, (3.10)
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where ϕi is a monomial in RX satisfying the inequalities −wtϕi < −wtϕj for i < j, i.e., ϕ0 = 1,
ϕ1 = x, . . . .

Further by assigning a certain weight on each coefficient λi,j in (3.1) so that (3.1) is a homo-
geneous equation of weight rs, we also define another weight,

wtλ : RX → Z.

Definition 3.9. We define SX := {ϕi | i = 0, 1, 2, . . . } by the basis of RX as in (3.10).

Then N(i) = −wt(ϕi), for {N(i) | i ∈ N0} = HX .

Lemma 3.10. Let t be the arithmetic local parameter at ∞ of RX .

1. By the isomorphism φinv : z 7→ 1
t , φinv(RH)

(∼=RZ
H

)
is a subring of C

[
1
t

]
; for g(z) ∈ RH ,

g
(
1
t

)
∈ C

[
1
t

]
.

2. There is a surjection of ring φ∞ : RX → RH

(∼=RZ
H

)
; for f ∈ RX , there is g(z) ∈ RH such

that

(f)∞ = g

(
1

t

)
(1 + d>0(t)) ∈ RX,∞,

where (f)∞ means the germ at ∞ or (f)∞ ∈ RX,∞ via φX
H in Proposition 3.7. It induces

the surjection RX,∞ → RH

(∼=RZ
H

)
.

Proof. By letting g = φZ
H ◦ φX

H(f), the existence of g is obvious. ■

3.3 RP-module RX

RX is an RP-module, and its affine part is given by the quotient ring of RP[y•]. We recall
Definition 2.8 and Lemma 3.6, and apply them to W-curves:

Proposition 3.11. For ei ∈ EHX
, we find yei such that it is the monic monomial in RX whose

weight is −ei, (ye0 = 1) and satisfies

RX = RP ⊕
r−1⊕
i=1

RPyei =

r−1⊕
i=0

RPyei = ⟨ye0 , ye1 , . . . , yer−1⟩RP

with the relations,

yeiyej =
r−1∑
k=0

aijkyek , (3.11)

where aijk ∈ RP, aijk = ajik, especially a0jk = aj0k = δjk.

Further we let Ĥe :=
{
−wt(f) | f ∈

⊕
ei∈E×

H
RPyei

}
and then Ĥe ⊂ HX .

Proof. The generating formula is directly obtained from (3.3) noting ye0 = 1 and Lemma 3.6.
Ĥe ⊂ HX is obvious. ■

The set YX := {y0, ye1 , . . . , yer−1} is called the standard basis of RX as an RP-module, which
is essentially the same as ỹei in the proof of Proposition 3.1; YX = {ỹei} ∪ {1, ys}, and thus we
let ℓs be ys = yeℓs . aℓs,k,ℓ in (3.11) corresponds to Akℓ in the proof of Proposition 3.1.

The following corollary is obvious:

Corollary 3.12. In C[x, y•], the ideal generated by (3.11) is a sub-ideal of IRX
:=
(
fX
1 , fX

2 , . . . ,
fX
kX

)
in Proposition 3.7.
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As we regard an element in RX as an element in RP-module, we introduce a polynomial in RX

as an RP-monomial such that it is given by δ(x)
∏mX

i=2 y
hi
ri for certain non-negative integers hi and

δ(x) ∈ RP, e.g.,
(
x2−ax− b

)
y2r2yr3 . Since we also define the weight, wtλ, on the RP-monomials,

we can consider homogeneous polynomials as elements in the RP-module.

Remark 3.13. Corresponding to (3.9), the relation fX
i in Proposition 3.7 is decomposed as

fX
i =

(∏
j=2

y
h
(i+)
j

rj

)
− δfX

i
(x)

(∏
j=2

y
h
(i−)
j

rj

)
+ lower weight terms with respect to −wt

as an RP-module, which is relevant to (3.11). Here δfX
i
(x) is an element of RP whose degree

is h
(i+)
1 in (3.9). The first and the second terms are homogeneous polynomials in the Sato–

Weierstrass weight wt.

3.3.1 Embedding of X into P2(mX−1)

The projection from X to P in Section 3.1.1 with the RP-module structure induces an embedding
ofX into P2(mX−1) as follows. Besides

{
fX
i | i = 1, . . . , kX

}
, we introduce a subset of polynomials{

f
(i)
X | i = 2, . . . ,mX

}
of C[x, y•], which are RX -analog of f

(i)
H in Lemma 3.5 such that f

(i)
X = 0

an identity in RX .

Proposition 3.14. Let X be the W-curve in Proposition 3.1 with the affine ring RX =

C[x, y•]/
(
fX
1 , fX

2 , . . . , fX
kX

)
. There are polynomials A

(j)
i ∈ C[x], i = 2, 3, . . . , rj = r/(r, rj,

j = 2, . . . ,mX , satisfying A
(j)
i =

∑⌊irj/rj⌋
k=0 λ

(j)
i,kx

k, where rj = rj/(r, rj), λ
(j)
i,k ∈ C, λ

(j)
r,rj = 1,

and an irreducible polynomial,

f
(j)
X (x, yrj ) := y

rj
rj +A

(j)
1 y

rj−1
rj +A

(j)
2 y

rj−2
rj + · · ·+A

(j)
rj−1yrj +A

(j)
rj , (3.12)

in C[x, yrj ], especially f
(2)
X = fX in (3.2), so that f

(j)
X satisfies the identity f

(j)
X (x, yrj ) = 0

in RX .

Proof. The mX = 2 case is trivial. Let us consider mX > 2 case. Then Spec(C[x, y]/(fX(x, y)))
is singular and the commutative ring C[x, y]/(fX(x, y)) is not normal. We normalize it to
obtain RX , in which every element in Q(RX) is expressed by a monic equation with coefficients
in RX . It means that yrj satisfies a certain relation ynrj + b1y

n−1
rj + · · · + bn−1yrj + bn = 0 for

certain positive integer n and bi ∈ RX . We show that when n = rj , it is irreducible and bj ∈ RP
as follows.

We remark that yrj is equal to an element of the standard basis YX from the definition

of yrj in the proof of Proposition 3.1; we take j̃ such that yrj = yej̃ . We apply the investigation

of Akℓ for yeℓs = ys in the proof of Proposition 3.1 and aℓsik in (3.11) to this yej̃ = yrj case. We
introduce

Ã
(j)
i,k := aj̃,i,k − yej̃δi,k, b̃i := −aj̃,i,0 − aj̃,i,ℓj̃

yej̃ , i, k ∈ Z×
r \

{
j̃
}
,

and then we consider the yej̃ = yrj action on YX in (3.11), which is described by∑
ℓ∈Z×

r \{j̃}

Ã
(j)
kℓ yeℓ = b̃k, k ∈ Z×

r \
{
j̃
}
, (3.13)

y2rj = Aj̃,0 +Aj̃j̃yrj +
∑

k∈Z×
r \{j̃}

Aj̃,kyek , (3.14)

where Aj̃,ℓ := aj̃ ,̃j,ℓ ∈ C[x].
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If (rj , r) = 1, the matrix Ã
(j)
kℓ is regular and we obtain (3.12) as in the proof of Proposition 3.1.

Thus we assume that rj and r are not coprime. We recall r∗j = (r, rj), rj = r/r∗j and rj = rj/r
∗
j .

If the determinant of the (r−2)× (r−2) matrix Ã(j) is not equal to zero, it is reduced to the
above case. Then we obtain the formula f which is given by yrrj − xrj + · · · and thus its image

of φX
H is reduced to Zr

rj −Z
rj
r , which is decomposed into

(
Z

rj
rj −Z

rj
r

)(
Z

rj(r
∗
j−1)

rj + · · ·+Z
rj(r

∗
j−1)

r

)
.

If the formula f is irreducible, the infinity point ∞ in X must not be unique, which contradicts
the uniqueness of ∞ in W-curve as mentioned in Remark 3.2. Thus the formula must be
reduced to two formulae; one of them must be the Sato–Weierstrass weight, −rrj/r

∗
j and contain

the terms yrrj − xrj , which is equal to f
(j)
X (3.12). If the other formula h

(j)
X is algebraically

independent to f
(j)
X , there are two proejctions, πr,rj : X → Spec

(
C[x, yrj ]/

(
f
(j)
X

))
and π′

r,rj : X →
Spec

(
C[x, yrj ]/

(
h
(j)
X

))
. It also contradicts the uniqueness of the infinity ∞ at X in W-curves.

Hence f =
(
f
(j)
X

)r∗j up to a constant factor. Hence we have (3.12) and the identity f
(j)
X = 0.

Hence we further assume that the matrix Ã(j) is singular, and its rank is q(< r − 2).
Now we consider the case that q = 0. Then in the relation (3.14), we show that Aj̃,k,

k ∈ Zr\
{
j̃
}
, must vanish. If some ofAj̃,k does not vanish, there is an element ỹ ∈

⊕
i∈Zr\{j̃}RPyei

which is expressed by a meromorphic function of x and yrj from the relation. However, it means
that there is a non-trivial relation in (3.13) and thus the rank q must not be zero. It contradicts
the assumption. Hence y2rj is expressed as Aj̃,0+Aj̃j̃yrj ; the order of Aj̃,0 in x is rj . Accordingly,

if q = 0, there exists a RP-submodule R̃′ = RP ⊕RPyrj , which forms a subring of RX , C[x, yrj ]/(
y2rj − Aj̃,0 − Aj̃j̃yrj

)
⊂ RX . X is a covering of a hyperelliptic (or elliptic) curve, and wt(x) is

divisible by two and 2|r. It is obvious that (y2rj −Aj̃,0 −Aj̃j̃yrj ) is irreducible as an RP-module

since X is not a covering of decomposed curve, and we obtain (3.12).
Hence we let q ̸= 0 or 0 < q < r − 2. We introduce a subset I := {n1, n2, . . . , nq} of Z×

r and

a submodule R̃X of RP-module RX defined by

R̃X = RP ⊕RPyrj ⊕
⊕
i∈I

RPyei .

We assume that R̃X is closed for the yrj action on R̃X , i.e.,

yrj R̃X ⊂ R̃X . (3.15)

The assumption enables us to find the regular submatrix ÃI :=
(
Ã

(j)
i,k

)
i,k∈I of Ã(j) satisfying∑

k∈I
Ã

(j)
ik yek = b̃i, i ∈ I. (3.16)

We let I := I ∪ {0, rj}, and YI
X :=

{
yei | i ∈ I

}
.

By considering the image of (3.16) under φZ
H ◦ φX

H , the weight −wt of each component

in ÃI obviously leads the fact that there is a sub-monoid H ′ := ⟨r, rj , en1 , . . . , enq⟩ such that
⟨r, rj⟩ ⊂ H ′ ⊂ HX , and the set I is characterized by

I = {ℓ ∈ Z×
r | eℓ ∈ H ′} ≠ ∅, and

∑
k∈I

[ek]r = H ′. (3.17)

Then we find an expression yek of k ∈ I as a meromorphic function of x and yrj ,

yek =
Q̃k(x, yrj )

|ÃI |(x, yrj )
, (3.18)
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where
∣∣ÃI
∣∣ is a monic degree q polynomial of yrj with RP coefficients, whereas the degree of Q̃k

in yrj is q − 1. (3.18) means that yeℓ satisfies the relation
∣∣ÃI
∣∣yek = Q̃k(x, yrj ).

Then by substituting (3.18) into yek in the relation y2rj = Aj̃,0 + Aj̃j̃yrj +
∑

k∈I Aj̃,kyek , we
obtain

yq+2
rj +A1y

q+1
rj + · · ·+Aq+1yrj +Aq+2 = 0,

where Ai is a certain element in RP. We state (q + 2)|r because φX
H

(
y
rj
rj − xrj

)
= 0 and it

must belong to φX−1
H ({0}). Thus we let (q + 2) = nrj for an integer n(≥ 1). However due

to φX
H

(
y
rj
rj − xrj

)
= 0 again, y

rj
rj − xrj is equal to lower weight terms with respect to −wt

because of the uniqueness of the ∞ in X. Thus the equation is reduced to multiply the same
equation with rj order in yrj , due to the above arguments. It means that H ′ ⊂ ⟨r, rj⟩, and thus
H ′ = ⟨r, rj⟩, i.e., q = nrj − 2. Hence we obtain (3.12) as in the proof of Proposition 3.1, which
is irreducible.

We now show (3.15) under (3.17). Assume that yrj R̃X \ R̃X ̸= ∅ and let I
c
:= Z×

r \
(
I
)
.

Obviously yrjyei belongs to R̃X for i ∈ I because of (3.16). Hence the assumption means

y2rj = Aj̃,0 +Aj̃j̃yrj +
∑
i∈I

Aj̃,iyei +
∑
k∈Ic

Aj̃,kyek ,

where there exists, at least, a non-vanishing Aj̃,ℓ ∈ RP for a certain ℓ ∈ I
c
, and Aj̃,i ∈ RP. By

considering the Sato–Weierstrass weight of the both hand sides, we have −wt(Aj̃,ℓyeℓ) = 2rj ∈ H ′

and eℓ belongs to H ′. It means ℓ ∈ I and thus contradicts (3.17). Hence we show yrj R̃X ⊂ R̃X

or (3.15). ■

Proposition 3.14 obviously leads the following observations. Using (3.12) in Proposition 3.14,

we introduce RX(i) := C[x, yri ]/
(
f
(i)
X

)
, i = 2, . . . ,mX , which are RP-modules and the unnormal-

ized rings for mX > 2, and their associated singular curves X(i), i = 2, . . . ,mX , with the projec-

tion ϖX(i) : X(i) → P, ϖX(i)(x, yi) = x, i = 2, . . . ,mX . Since f
(i)
X is irreducible, RX(i) is a sub-

ring of RX , and RX is the normalized ring of RX(i) . There are injective ring-homomorphisms

RP
ι
(i)
r−−→ RX(i)

ιr,ri−−→ RX ; thus it induces the projections ϖri,r : X → X(i) ((x, y•) 7→ (x, yri)) and

ϖ
(i)
r : X(i) → P ((x, yri) 7→ x). They satisfy the commutative diagrams,

RX RX(j)

ιrj ,roo

RX(i)

ιri,r

OO

RP,
ι
(i)
r

oo

ιr

cc

ι
(j)
r

OO
X

ϖr

""

ϖr,rj //

ϖr,ri
��

X(j)

ϖ
(j)
r

��
X(i)

ϖ
(i)
r

// P.

Further we also define the tensor product of these rings RX(2) ⊗RP RX(3) ⊗RP · · · ⊗RP RX(mX ) ,

and its geometrical picture X
[mX−1]
P := X(2) ×P X(3) ×P · · · ×P X(mX). By identifying C[x, y•]

/
(
f
(2)
X , f

(3)
X , . . . , f

(mX)
X

)
= R

⊗[mX−1]
X with a ring RX(2) ⊗RP RX(3) ⊗RP · · · ⊗RP RX(mX ) , we have

the natural projection φ
R

⊗[mX−1]

X

: R
⊗[mX−1]
X → RX , i.e., RX = R

⊗[mX−1]
X /

(
fX
1 , . . . , fX

kX

)
, and

the injection ι
R

⊗[mX−1]

X

: RP ↪→ R
⊗[mX−1]
X . It induces the injection ι

X
[mX−1]

P
: X → X

[mX−1]
P and

the projection
∏

iϖX(i) : X
[mX−1]
P → P.

Moreover, we also define the direct product of these rings R
[mX−1]
X := RX(2) × RX(3) × · · · ×

RX(mX ) , and its geometrical picture X [mX−1] :=
∏

X(i) ⊂ P2(mX−1). Then we have the following
proposition.
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Proposition 3.15. Expression (3.12) in Proposition 3.14 provides surjective and injective ring
homomorphisms,

φ
R

⊗[mX−1]

X

: R
⊗[mX−1]
X → RX , ι

R
⊗[mX−1]

X

: RP ↪→ R
⊗[mX−1]
X ,

so that they satisfy the commutative diagrams

RX R
⊗[mX−1]
X ,

φ
R
⊗[mX−1]
Xoo

RP

OO

ι
R
⊗[mX−1]
X

::
X

��

ι
X

[mX−1]
P // X

[mX−1]
P ,

∏
ϖ

X(i){{
P

which is consistent with the projection ϖ
X

[mX−1]

P
: X

[mX−1]
P → X. They induce the homomor-

phism by the ideal (x− x2, x− x3, . . . , x− xmX ) and an embedding,

φ
R

[mX−1]

X

: R
[mX−1]
X → RX , ιX[mX−1] : X ↪→ X [mX−1](⊂ P2(mX−1)).

Remark 3.16. Since the normalization of a ring is not unique in general, the surjective ring
homomorphism φ

R
⊗[mX−1]

X

is not injective except mX = 2. For example, in the (3, 4, 5) case,

there is an surjective ring homomorphisms whose φH image is given by

C[Z3, Z4, Z5]/
(
Z3
4 − Z4

3 , Z
2
5 − Z5

3

)
→ C[Z3, Z3, Z4]/

(
Z2
4 − ζa3Z3Z5, Z4Z5 − Z3

3 , Z
2
5 − ζ2a3 Z2

3Z4

)
.

Thus y and yrj are related via fX
i ’s whose image of φX

H are binomial relations.

Direct computation gives the following relation based on (3.12).

Lemma 3.17.(
δY,yf

(j)
X

)
(x, Y, y) :=

f
(j)
X (x, Y )− f

(j)
X (x, y)

Y − y

=

rj−1∑
ℓ=0

A
(j)
ℓ (x)

rj−ℓ−1∑
i=0

Y iyrj−ℓ−i−1 ∈ RX ⊗RP RX .

3.4 The covering structures in W-curves

We follow [24, 37] to investigate the covering structure in W-curves.

3.4.1 Galois covering

As mentioned in Remark 3.3, let us consider the Riemann sphere P and RP = H0(P,OP(∗∞)).
We identify RP with its affine part R◦

P = C[x] and its quotient field is denoted by C(x) = Q(RP).
The quotient field Q(RX) = C(X) of RX is an extension of the field C(x).

Following the above description, we consider the covering structure of the W-curve X. The
covering ϖr : X → P ((x, y•) 7→ x) is obviously the Galois covering. Further we have the Galois
group Gal(Q(RX)/ Q(RP)) = Aut(X/P) = Aut(ϖr), which is denoted by GX . The ϖr is a finite
branched covering. Each point in ϖ−1

r (x) for x ∈ P except certain finite points is biholomorphic.
A ramification point of ϖr is defined as a point of such that is not biholomorphic at the point.
The image ϖr of the ramification point is called the branch point of ϖr. The number of the
finite ramification points is denoted by ℓB.

We basically focus on the Galois covering ϖr : X → P:
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Definition 3.18. Let BX := BX,r = {Bi}i=0,...,ℓB and BP := ϖr(BX) = {bi}i=0,...,ℓB , where
ℓB := #BX − 1, B0 = ∞ ∈ X and bi := ϖr(Bi).

We have the following results.

Lemma 3.19. Every element Bi in BX \{∞} is given by the point (x, y•) at which there exists,

at least, a certain j in {2 ≤ j ≤ mX} such that
∂f

(j)
X (x,yrj )

∂yrj
= 0 and

∂f
(j)
X (x,yrj )

∂x ̸= 0.

Proof. When
∂f

(i)
X (x,yri )

∂x = 0 and
∂f

(i)
X (x,yri )

∂yrj
= 0 at a point P ∈ X, the point means the singular

point as the plane curve given by f
(i)
X (x, yri) = 0 at ϖr,ri(P ). However, since X is not singular,

there exists j satisfying the condition. Then at the point, dx is identically zero, and thus at
the point, x is not a local parameter of X. Thus P must be an element in BX \ {∞}, P = Bi.
It means dx = d(tei)(1 + d>0(t)) for a positive integer ei > 1 in terms of the local parameter t
such that t(Bi) = 0, and there exists j such that dyrj = dt and dyri = tfidt(1 + d>0(t)), i ̸= j,
fi ≥ 1. ■

The ei appearing the proof for the ramification point Bi in Lemma 3.19 is called the ramifi-
cation index, and denoted by eBi .

3.4.2 Riemann–Hurwitz theorem

Let us consider the behaviors of the covering ϖr : X → P, including the ramification points.
The Riemann–Hurwitz theorem [24],

2g − 2 = −2r +

ℓB∑
i=1

(eBi − 1) + (r − 1) =

ℓB∑
i=1

(eBi − 1)− (r + 1),

shows the following:

Corollary 3.20. The divisor of dx is given by

div(dx) =

ℓB∑
i=1

(eBi − 1)Bi − (r + 1)∞.

4 Complementary module Rc
X of RX

4.1 Trace in the covering structure

It is known that the Riemann–Hurwitz relation and the divisor of dx are obtained via the
Dedekind different [24, Theorem 15.11]. In this subsection, we consider the properties of RP-
module RX , which are related to the trace, the complementary module, and the Dedekind
different [24, Chapter 15].

4.1.1 Trace in RX/RP

We review the general results of RX as a ring extension of RP following [24] (see Section 2.1).
Let us consider the covering structures of ϖr : X → P to discriminate its lifted points, and the
enveloping field Q(RX)e = C(X)e := C(X)⊗C(x) C(X) = Q(RX)⊗Q(RP) Q(RX).

The field extension C(X)/C(x) induces the extension ring RX of RP. As mentioned in
Section 2.1, we consider the dual of RX with respect to RP,

ωRX/RP := HomRP(RX , RP),
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which is a free RP-module. For RX = ⊕r−1
i=0RPyi (i.e., yi = yei), it is expressed by the dual basis

{y∗
i }i=0,...,r−1 such that

ωRX/RP =

r−1⊕
i=0

RPy
∗
i , and y∗

i yj = δi,j .

Here y∗
i and yj correspond to the point in fiber which lies over x ∈ RP. For the standard trace

τRX/RP :=
∑r−1

i=0 yi ◦ y∗
i ∈ ωRX/RP , we define the complementary module Rc

X over RX/RP with
respect to the standard trace τRX/RP by

Rc
X := {z ∈ Q(RX) | τRX/RP(za) ∈ RP, ∀a ∈ RX}. (4.1)

It is obviously that the localization (Rc
X)P at P ∈ X is equal to Rc

X,P from the definition.
Since for a point P ∈ X, RX,P is a principal ideal domain, every ideal is generated by a cer-
tain element in RX,P . There is an element hX,P ∈ RX,P such that Rc

X,P = hX,PRX,P [37,
Proposition 3.4.2]. Following [37, Definition 3.4.3], we define the different of RX/RP.

Definition 4.1. The different diff(RX/RP) is a divisor defined by

diff(RX/RP) :=
∑

P∈X\{∞}

dPP,

where the different divisor dP := −degP (hX,P ) for R
c
X,P = hX,PRX,P .

By Dedekind’s different theorem, we have the following:

Proposition 4.2. dBi = eBi − 1 for P ∈ BX \ {∞}, and the support of diff(RX/RP) equals
BX \ {∞}.

Proof. See [24, Theorem 15.11] and [37, Theorem 3.5.1]. ■

4.2 Trace operator for plane W-curves: RX = RX◦ (mX = 2) case

Following Kunz [24, Theorem 15.1], we review Rc
X of the mX = 2 case:

Proposition 4.3 ([24, Theorem 15.1]). For the plane W-curve (mX = 2), we have the relation,

Rc
X =

1

fX,y
·RX . (4.2)

Proof. Let us show the proof by Kunz. We note that the extension of field Q(RX) of Q(RP)
is separable and fX is monic,

Q(RX) = Q(RP)[Y ]/(fX) =

r−1⊕
i=0

Q(RP)y
i,

and thus we note yi = yi = yei in Proposition 3.11 and in Section 2.1, and

Q(RX)e = Q(RX)⊗Q(RP) Q(RX) ∼= Q(RX)[Y ]/(fX).

Using the ring-homomorphism µ : Q(RX)e → Q(RX) (a⊗b 7→ ab), the standard trace τRX/RP :=∑r−1
i=0 y

i ◦ y∗
i is obtained by the extension of a trace τ . Let us find the basis {ŷi} of RX with

respect to τ , and ∆τ :=
⊕r−1

i=0 ŷi⊗yi as an element of RP-module AnnRe
X
(Kerµ). If we find {ŷi}

and τ , using them, we obtain the standard trace τRX/RP = µ(∆τ )◦ τ . Accordingly, we construct
the τ and {ŷi} as follows.
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For an element h̃ ∈ Q(RX)[Y ] such that fX(x, Y ) = (Y −y)·h̃, we can identify AnnRe
X
(Kerµ)

with the principal ideal (h̃)/(fX(x, Y )). Indeed, in Q(RX)[Y ]/(fX(x, Y )),

fX(x, Y ) = fX(x, Y )− fX(x, y) = (Y − y)
fX(x, Y )− fX(x, y)

Y − y
= (Y − y)h̃ = 0.

It means that h̃(x, Y, y) := δY,yfX(x, Y, y) belongs to RX ⊗RP RX noting Lemma 3.17. Thus we
have

∆
h̃
=

r−1∑
ℓ=0

Aℓ(x)
r−ℓ−1∑
j=0

yj ⊗ yr−ℓ−j−1 ∈ Re
X = RX ⊗RP RX ,

which generates the ideal AnnRe
X
(Kerµ) in Re

X , i.e., (a ⊗ 1 − 1 ⊗ a)∆
h̃
= 0 for every a ∈ RX .

Further from Proposition 2.6, it corresponds to the trace τ
h̃
∈ ωRX/RP by

1 =

r−1∑
ℓ=0

Aℓ(x)

r−ℓ−1∑
j=0

τ
h̃

(
yj
)
yr−ℓ−j−1.

For example, r = 4 case, it is

1 = τ
h̃

(
y3 +A1y

2 +A2y +A3

)
+ τ

h̃

(
y2 +A1y +A2

)
y + τ

h̃
(y +A1)y

2 + τ
h̃
(1)y3,

which should be interpreted as τ
h̃
(1) = 0, τ

h̃
(y) = 0, τ

h̃

(
y2
)
= 0, and thus τ

h̃

(
y3
)
= 1. Similarly

since A0 = 1 and yr−ℓ−j−1 = 1 when ℓ = 0 and j = r − 1, we compare the both sides in the
equation and obtain

τ
h̃
(yi) =

{
1 for i = r − 1,

0 otherwise.

In other words, for yi = yi, i ∈ Zr, we have

ŷi =
r−1−i∑
ℓ=0

Aℓ(x)y
ℓ

as the dual basis of the basis {yi = yi = yei}i∈Zr with respect to τ
h̃
in Section 2.1. Then

τ
h̃
(RX) ⊂ RP. It is obvious that µ(∆

h̃
) = fX,y. Thus the standard trace τRX/RP of RX/RP is

given by

τRX/RP = µ(∆
h̃
) ◦ τ

h̃
= fX,y ◦ τh̃.

We have

τRX/RP

(
yi

fX,y(x, y)

)
=

{
1 for i = r − 1,

0 otherwise.

Let us consider an element in Rc
X as in (4.1). We consider u ∈ Q(RX) which is expressed by

u =
1

fX,y(x, y)

r−1∑
i=0

aiy
i ∈ Q(RX),

and its conditions in (4.1). For every element v =
∑r−1

j=0 bjy
j ∈ RX , bj ∈ RP, u satisfies

τRX/RP(uv) ∈ RP, i.e.,

τRX/RP(uv) =
∑
i,j

τ
h̃

(
aibjy

iyj
)
=

r−1∑
i=0

aibr−1−i ∈ RP.

It implies that ai ∈ RP for every i = 0, 1, . . . , r − 1. Thus we obtain the relation (4.2). ■
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Remark 4.4. Here we note that instead of {ŷi} in the proof, we define a simpler dual basis of
{yi = yi = yei}i∈Zr with respect to τ

h̃
by{

ŷei := yr−i−1
}
i∈Zr

,

because it is obvious that τ
h̃
(ŷeiyej ) = δij from the definition of τ

h̃
.

From (4.2), the Dedekind different of the plane W-curve is given by

diff(RX/RP) = −
∑

P∈X\{∞}

degP (fX,y)P.

By Dedekind’s different theorem (Proposition 4.2), we have the following [24, Chapter 15]:

Proposition 4.5. degBi
(fX,y) = eBi − 1.

4.2.1 Trace in the Galois covering at RX I

We generalize the result of the plane curves to the space curves. The surjective ring homomor-
phism in Proposition 3.15 can be interpreted as follows. We implicitly introduce the dual mod-

ules ωR
X(i)/RP of RX(i) and their tensor product ω

⊗[mX−1]
RX/RP

:= ωR
X(2)/RP ⊗RP · · · ⊗RP ωR

X(mX )/RP

to find Rc
X . More precisely, we implicitly construct the trace τ in RX by using the data of

(τ2, . . . , τmX ) of R
⊗[mX−1]
X by regarding RX as RX = R

⊗[mX−1]
X /

(
fX
1 , fX

2 , . . . , fX
kX

)
. By investi-

gating them, we obtain Rc
X for the mX > 2 case.

We first investigate the similar relations in RH following Lemma 3.5.

4.2.2 Trace in the Galois covering at RH

In order to generalize the investigation of the complementary module for the plane curvesmX = 2
to general W-curves, we investigate the trace structure at RH since the monomial curve in
Section 3.2 is crucial in W-curves. We assume mX ≥ 2.

We use the surjection φ∞ : RX → RH in Lemma 3.10, and consider the behavior of the trace
in RZ

H . We investigate a “covering” structure in ϖH : XH = SpecRZ
H → P = SpecC[Zr]. The

cyclic group Cr of order r acts on RZ
H and XH as the Gm action. We regard it as the Galois

covering and consider C[Zr]-module RZ
H and RH .

We introduce a meromorphic function on SpecRZ
H ×SpecC[Zr] SpecR

Z
H or an element p in the

enveloping field Q(RZ
H)e := Q

(
RZ

H ⊗C[Zr] R
Z
H

)
, and an element h in its associated enveloping

ring RZ
H

e
:= RZ

H ⊗C[Zr] R
Z
H , i.e., Zr

ri = Zri
r = Z ′r

ri for i = 2, . . . ,mX . We extend the group action

of Cr to that on Q
(
RZ

H ⊗C[Zr] R
Z
H

)
such as ζh(Zr, Z•, Z

′
•) = h(Zr, ζZ•, ζZ

′
•) for ζ ∈ Cr. We

define an element pH in Q
(
RZ

H ⊗C[Zr] R
Z
H

)
by

pH(Zr, Z•, Z
′
•) :=

mX∏
i=2

pH,ri(Zr, Zri , Z
′
ri),

pH,ri(Zr, Zri , Z
′
ri) :=

Zri−1
ri + Zri−2

ri Z ′
ri + Zri−3

ri Z ′2
ri + · · ·+ Z ′ri−1

ri

rZri−1
ri

. (4.3)

Due to Zri
ri = Zri

r = Z ′ri
ri in Lemma 3.5, then each factor behaves like

pH,ri(Zr, Zri , Z
′
ri) =

{
1 for Z ′

ri = Zri ,

0 otherwise.
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We have the trace property,

pH(Zr, Z•, Z
′
•) =

{
1 for Z ′

• = Z•,

0 otherwise.
(4.4)

Lemma 4.6. There are polynomials h̃H(Zr, Z•, Z
′
•) ∈ RZ

H ⊗C[Zr] R
Z
H and hH(Z) = hH(Zr, Z•)

:= h̃H(Zr, Z•, Z•) ∈ RZ
H such that

φZ
H

(
h̃H(Zr, Z•, Z

′
•)
)
= zdh

r−1∑
i=0

z′ eiz−ei =
r−1∑
i=0

z′ eiz êi ∈ RH ⊗C[zr] RH , (4.5)

where

(1) z and z′ are given by φZ
H(Zri) = zri, φZ

H(Z ′
ri) = z′ ri, for i ∈ Zr, and zr = z′ r,

(2) dh, êi, δi, i ∈ Zr, and ℓ are non-negative integers satisfying the conditions that

(a) dh ≥ ei for every i ∈ Zr,

(b) dh is determined by Lemma 4.16,

(c) dh = eℓ + δ0r such that eℓ =
∑mX

i=2(ri − 1)ri modulo r, and

(d)

êi := dh − ei = e∗ℓ,i + δir, zeiz êi = ze0z ê0 = zdh , (4.6)

for every i ∈ Zr, especially

ê0 = dh = eℓ + δ0r, êℓ = δ0r, δℓ = δ0, (4.7)

(3) h̃H(Zr, Z•, Z
′
•) consists of r monomials corresponding to each term in (4.5) and satisfies

pH(Zr, Z•, Z
′
•) =

h̃H(Zr, Z•, Z
′
•)

hH(Z)
. (4.8)

Proof. The cyclic group Cr acts on pH(Zr, Z•, Z
′
•) so that it is invariant. We consider RH rather

than RZ
H . We note the following: 1) For j = 2, . . . ,mX , ri and rj ∈ MX , {rji modulo r | i ∈

Zr} = Zr, 2) the numerator in each pH,ri in (4.3) is homogeneous, and 3) their product is also

homogeneous. Therefore we see that there are non-negative integers, d̃∆ and ∆i, ∆i < ∆i+1,
such that

zd̃∆
∑r−1

i=0 z
′∆iz−∆i

rzd̃∆

has the property of the right-hand side of (4.4) after acting φZ
H both sides in (4.4), and

{∆i modulo r | i ∈ Zr} = Zr. It means that {∆i | i ∈ Zr} equals {ei + nir | i ∈ Zr} for a certain
non-negative number ni ∈ N0 from Lemma 2.9, and ∆0 = 0.

Due to the isomorphism φZ
H , for sufficiently large n andm, we find an element in RZ

H⊗C[Zr]R
Z
H

whose image of φZ
H is znz′m. For ℓi satisfying

∑
i riℓi ≡ 0 modulo r,

∏
Zℓi
ri =

∏
Z ′ℓi
ri , and thus

we can find dh such that zd̃∆
∑r−1

i=0 z
′∆iz−∆i = zdh

∑r−1
i=0 z

′ eiz−ei noting zr = z′ r. There is

a preimage h̃H(Zr, Z•, Z
′
•) as an element in RZ

H ⊗C[Zr] R
Z
H . It is obvious that h̃H(Zr, Z•, Z

′
•)

consists of r monomials and satisfies (4.5) and (4.8) for pH(Zr, Z•, Z
′
•).

We note that the determination of dh has the ambiguity up to r, and thus we set it such that
it satisfies Lemma 4.16. Here dh = d̃h + nhr so that d̃h is the minimal element satisfying the
above relations.

From the definition and Lemma 2.9 (3), we obtain the relations (4.6) of i = 0 and i = ℓ, and
δ0 = δℓ.

We consider the cases dh modulo r.
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1. dh = e0 = 0 modulo r case: We note that {ei modulo r | i ∈ Z×
r } = Z×

r , and eℓ < er−1,
whereas êℓ must be non-negative. Each ei, i ∈ Z×

r , cannot be divided by r and thus ei,
especially, er−1 is not equal to dh. From Definition 2.8. we find a non-negative integer δi
such that êi = e∗0,i+ δir, i ∈ Z×

r . It is obvious that dh = ê0 = δ0r > er−1 > 0. We also note
êr−1 > 0 because of e∗0,r−1 > 0.

2. dh = eℓ modulo r case (ℓ = 1, . . . , r− 2): Similarly, since dh = eℓ + δ0r satisfies dh − ei ≥ 0
for i ∈ Zr (especially dh ≥ er−1), we find non-negative integers δi such that êi = e∗ℓ,i + δir
for i ∈ Zr, and êℓ = δℓr = δ0r > 0, noting e∗ℓ,ℓ = 0. Then êr−1 > 0 because of e∗ℓ,r−1 > 0.

3. dh = er−1 modulo r case: Similarly since dh = er−1 + δ0r satisfies dh − ei ≥ 0, especially
dh ≥ er−1, δ0 is non-negative. We find non-negative integers δi such that êi = e∗r−1,i + δir
for i ∈ Z×

r , and êr−1 = δr−1r ≥ 0 or δr−1 = δ0 because of e∗r−1,r−1 = 0.

These show the statements in the proposition. ■

Proposition 4.7. The δ0 in (4.7) equals zero if and only if dh = er−1.
The case dh = er−1 or δ0 = 0, occurs if and only if H is symmetric whereas the case δ0 ̸= 0

if and only if HX is not symmetric.
Thus we say that if δ0 = 0, dh is symmetric and otherwise, dh is not symmetric.

Proof. They are proved in Lemma 5.4. ■

Remark 4.8. We remark that RH and RZ
H are characterized by these parameters (MX = {ri},

mX , kX , {ei}, {̂ei}, dh, {δi}, ℓ). Especially ℓ is a fixed number for a given X in this paper.

Example 4.9.

1. H = ⟨4, 6, 7, 9⟩ (non-symmetric) case (dh = 4δ0 +9, δ0 = 1, ℓ = 3): H = {0, 4, 6, 7, 8, 9, 10,
11, . . . }, Hc = {1, 2, 3, 5}, RH = C[Z4, Z6, Z7, Z9]/∼ and then

hRH
Z
(Z,Z•, Z

′
•) = Z4Z9 + Z7Z

′
6 + Z6Z

′
7 + Z4Z

′
9, hH(Z) = 4Z4Z9.

i 0 1 2 3

ei 0 6 7 9
êi 4 + 9 7 6 4

2. H = ⟨5, 7, 11, 13⟩ (non-symmetric) case (dh = 5δ0, δ0 = 5, ℓ = 0): H = {0, 5, 7, 10, 11, 12,
13, 14, . . . }, Hc = {1, 2, 3, 4, 6, 8, 9}, RH = C[Z5, Z7, Z11, Z13]/∼ and then

hRH
Z
(Z,Z•, Z

′
•) = Z5

5 + Z5Z13Z
′
7 + Z14Z

′
11 + Z5Z7Z

′
13 + Z11Z

′
14, hH(Z) = 5Z5

5 .

i 0 1 2 3 4

ei 0 7 11 13 14
êi 25 13+5 14 7+5 11

3. H = ⟨6, 13, 14, 15, 16⟩ (symmetric) case (dh = er−1, δ0 = 0, ℓ = r−1): H = {0, 6, 12, 13, 14,
15, 16, 18, 19, 20, 21, 22, 24, . . . }, Hc = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 17, 23}. RH = C[Z6, Z13,
Z14, Z15, Z16]/∼ and noting Z13Z16 = Z14Z15,

hRH
Z
(Z,Z•, Z

′
•) = Z13Z16 + Z13Z

′
16 + Z14Z

′
15 + Z15Z

′
14 + Z16Z

′
13 + Z ′

13Z
′
14,

hH(Z) = 6Z13Z16.
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i 0 1 2 3 4 5

ei 0 13 14 15 16 29
êi 29 16 15 14 13 0

By comparing the semigroup HX with {ei}, we have the following corollaries:

Corollary 4.10.

(1) h̃H(Zr, Z•, Z
′
•) is a homogeneous polynomial whose degree is dh = eℓ + δ0r in (4.7),

(2) h̃H(Zr, Z•, Z
′
•) =

∑r−1
i=0 Z

δi
r Ze∗ℓ,i

Z′
ei,

(3) Zδ0
r Zeℓ = Zδi

r Ze∗ℓ,i
Zei,

(4) hH(Z) = rZδi
r Ze∗i

Zei = rZδ0
r Zeℓ for i ∈ Zr.

Proof. They are obvious from Definition 2.8, Lemma 2.9 (3), Lemma 3.6 and Lemma 4.6. ■

Corollary 4.11. ei − r − 1 ≥ 0, êi − r − 1 ≥ 0 and dh − r − 1 ≥ 0, for i ∈ Z×
r .

Proof. ei ≥ minmX
j=2 rj = r2 ≥ r + 1 because of r + 1 ≤ r2. ■

Remark 4.12. Corollary 4.10 determines the RP-module structure of RX in Proposition 3.11.

4.2.3 Trace structure in Weierstrass curves (W-curves)

We use the RP-module structure of RX in the previous subsubsection and the properties in RH

and RZ
H noting the surjection φ∞ : RX → RH to define p

(j)
X in the quotient field Q(RX ⊗RP RX)

for every affine ring C[x, y]/
(
f
(j)
X

)
:

Definition 4.13. For f
(j)
X ∈ C[x, y], we define

p
(j)
X (x, y, y′) :=

(
δy,y′f

(j)
X

)
(x, y, y′)(

f
(j)
X,y

)
(x, y)

.

We regard p
(j)
X (x, y, y′) as an element in Q

(
C[x, y]/

(
f
(j)
X

)
⊗C[x]C[x, y]/

(
f
(j)
X

))
associated with

Q(RX ⊗RP RX). We extend the Galois group GX to the action on RX ⊗RP RX , such that

ζ̂(x, y•, y
′
•) =

(
x, ζ̂y•, ζ̂y

′
•
)
.

Lemma 4.14. p
(j)
X (x, y, y′) =

{
1 for y = y′,

0 for y ̸= y′,
and for a Galois action ζ̂ ∈ GX ,

p
(j)
X

(
x, ζ̂y, ζ̂y′

)
= p

(j)
X (x, y, y′).

Let us consider pRX
:=
∏mX

j=2 p
(j)
X as an element of Q(RX ⊗RP RX). The following is obvious:

Proposition 4.15. For (P,Q) ∈ X ×P X,

pRX
(P,Q) =

{
1 for P = Q,

0 for P ̸= Q.

However, some parts in its numerator and denominator are canceled because they belong
to RP. Thus we introduce an element h(x, y•, y

′
•) ∈ RX⊗RPRX such that h(x, y•, y

′
•)/h(x, y•, y•)

reproduces the product.
The ring homomorphism φX

RX
in Proposition 3.7 is extended to the surjective ring homomor-

phism from RX ⊗RP RX to RZ
H ⊗C[Zr] R

Z
H .
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Lemma 4.16. For a point (P = (x, y•), P
′ = (x, y′•)) ∈ X ×P X, there is a polynomial

h̃RX
(x, y•, y

′
•) ∈ RX ⊗RP RX such that

(1) by regarding the element a in RX as a⊗1 in RX ⊗RP RX , h̃RX
(x, y•, y•) and h̃RX

(x, y•, y
′
•)

are coprime as elements in RX ⊗RP RX ,

(2) for a Galois action ζ̂ ∈ GX ,
h̃RX

(x,ζ̂y•,ζ̂y′•)

h̃RX
(x,ζ̂y•,ζ̂y•)

=
h̃RX

(x,y•,y′•)

h̃RX
(x,y•,y•)

,

(3) it satisfies
h̃RX

(x,y•,y′•)

h̃RX
(x,y•,y•)

= pRX
(x, y•, y

′
•), and

(4) φX
H

(
h̃RX

(x, y•, y
′
•)
)
= h̃H(Zr, Z•, Z

′
•), wt

(
h̃RX

(x, y•, y
′
•)
)
= dh with respect to (x, y), for h̃H

in Lemma 4.6 by letting φX
H(yi) = Zi, φ

X
H(y′i) = Z ′

i.

Proof. By considering the numerator and denominator in
∏mX

j=2 p
(j)
X

(
ϖx(P ), ϖrj (P ), ϖrj (P

′)
)

modulo
(
fX
i

)
i=1,...,kX

, they are reduced to h̃RX
. Let the numerator be denoted by h̃RX

(x, y•, y
′
•)

∈ RX ⊗RP RX . It is obvious that
h̃RX

(x,y•,y′•)

h̃RX
(x,y•,y•)

must be invariant for the Galois action GX on

RX ⊗RP RX . Due to the condition (1), we have a unique h̃RX
(x, y•, y•). Then we can find dh in

Lemma 4.6 such that the image φX
H

(
h̃RX

(x, y•, y
′
•)
)
is equal to h̃H in Lemma 4.6 because it is

invariant for the Gm action; the reduction in (3) correspond to the reduction in RZ
H ⊗C[Zr] R

Z
H

as in (4). Then it is clearly that (1), (2), and (3) are satisfied. ■

Definition 4.17. Let hX(x, y•) := h̃RX
(x, y•, y•).

Noting Corollary 4.10, we have the expression of h̃RX
(x, y•, y

′
•):

Proposition 4.18. h̃RX
∈ RX ⊗RP RX is expressed by

h̃RX
(x, y•, y

′
•) = Υ̂0 · 1 + Υ̂1y

′
e1 + · · ·+ Υ̂r−1y

′
er−1

= 1 · Υ̂′
0 + ye1Υ̂

′
1 + · · ·+ yer−1Υ̂

′
r−1

= ẙe0y
′
e0 + ẙe1y

′
e1+ · · ·+ ẙer−1y

′
er−1

+ lower weight terms with respect to −wt

as an RP-module. Here y′e0 = 1, and each Υ̂i holds the following properties:

(1) Υ̂i =
∑r−1

j=0 bi,jyej , with certain bi,j ∈ C[x], and

(2) Υ̂i = ẙei + lower weight terms with respect to −wt, where ẙei = δ̃i(x)ye∗ℓ,i with a monic

polynomial δ̃i(x) ∈ C[x] whose weight is −δir, (especially, ẙe0 = δ̃0(x)ye∗ℓ,0 = δ̃0(x)yeℓ) such
that

ẙe0 = ẙeiyei + lower weight terms with respect to −wt

for i ∈ Zr, wt(̊yei) = −êi = −(dh− ei) in Lemma 4.6, where bi,j is a certain element in RP
for (i, j).

Proof. From the construction, h̃RX
(x, y•, y

′
•) = h̃RX

(x, y′•, y•); h̃RX
(x, y•, y

′
•) is invariant for

the exchanging between y• and y′•. From Proposition 3.11, Υ̂i’s are uniquely determined. It
is obvious that bij belongs to C[x] = RP. However by letting ℓi satisfy eℓi = e∗ℓ,i, due to the

Sato–Weierstrass weight of Υ̂i, −wt(bi,jyej ) < −wt(bi,ℓiyeℓi ) and wt
(
Υ̂i

)
= wt(bi,ℓiyeℓi ). Thus

we let δ̃i := bi,ℓi , and then we obtain ẙei = δ̃iye∗ℓ,i , in particular ẙe0 = δ̃0yeℓ . ẙei is monic from

Corollary 4.10. Hence h̃RX
(x, y•, y

′
•) must have the form mentioned above.
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Since ẙe0 and ẙeiyei are homogeneous with respect to −wtλ and correspond to the relations in
Corollary 4.10, ẙe0− ẙeiyei is given by the lower weight terms with respect to −wt. Further (3.11)

shows δ̃0yeℓ ,

ẙeiyei = δ̃iyeℓiyei =
∑
j∈Zr

δ̃iai,ℓi,jyej

= δ̃iai,ℓi,ℓyeℓ + lower weight terms with respect to −wt.

Unless δ̃iai,ℓi,ℓ/δ̃0 belongs to RP, it must be expressed as α/β. where α and β are elements of RP
and their Sato–Weierstrass weights are the same, and thus we redefine

ẙei := βδ̃iye∗ℓ,i , ẙe0 := αδ̃0yeℓ .

We repeat such operation for each i and then, for every i, we obtain

ẙeiyei = ẙe0 +
∑

j∈Zr,j ̸=ℓ

δ̃iai,ℓi,jyej .

However if h̃RX
(x, y•, y

′
•) and h̃X(x, y•, y•) = hX(x, y•) are not coprime, it means that there is

a cofactor in h̃RX
(x, y•, y

′
•) and we can divide h̃RX

(x, y•, y•) by the factor. ■

Recalling Proposition 4.7, ẙei and hX(x, y•) are expressed as follows.

Corollary 4.19.

1. If dh is symmetric, ẙei = δ̃i(x)ye∗r−1,i
for i ∈ Zr, δ̃0 = δ̃r−1 = 1, ẙe0 = yer−1, and ẙer−1 =

ye0 = 1.

2. If dh is not symmetric, ẙei = δ̃i(x)ye∗ℓ,i for i ∈ Z×
r , and δ̃0 ̸= 1.

3. hX(x, y•) = r̊ye0+ lower weight terms with respect to −wt.

We extend the arguments for the mX = 2 case to general mX cases.
Obviously, due to Proposition 3.11, the dual ωRX/RP of RX as an RP-module has the standard

basis as a trace.

Lemma 4.20. We define

∆
h̃
:= Υ̂0 ⊗ 1 +

∑
k∈Z×

r

Υ̂k ⊗ yek =
∑

i,k∈Zr

yeibi,k ⊗ yek =
∑

i,k∈Zr

yei ⊗ bi,kyek .

Then for every a ∈ RX , (a⊗ 1− 1⊗ a)∆
h̃
= 0 and ∆

h̃
Re

X is equal to AnnRe
X
(KerµQ).

Proof. First we consider

yej h̃RX
(x, y•, y

′
•) =

∑
j,k

bj,kyeiyejy
′
ek

=
∑
j,k,ℓ

bj,kaijℓyeℓy
′
ek

and

y′ej h̃RX
(x, y•, y

′
•) =

∑
j,k,ℓ

bj,kaikℓyejy
′
eℓ
.

The latter can be expressed by
∑

ℓ,j,k bℓ,jaijkyeℓy
′
ek
. Lemma 4.16 with Proposition 4.15 shows

that both cases agree

yej h̃RX
(x, y•, y

′
•) = y′ej h̃RX

(x, y•, y
′
•) =

{
yejhX for y• = y′•,

0 otherwise.

It means that
∑

j bk,jaijℓ =
∑

j bℓ,jaijk. This relation shows
∑

i,k bj,kyeiyej ⊗yek =
∑

i,k bj,kyej ⊗
yeiyek and we obtain the equality (a⊗ 1− 1⊗ a)∆

h̃
= 0. ■
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Further from Proposition 2.6, ∆
h̃
in Lemma 4.20 provides the trace τ

h̃
∈ ωRX/RP with the

dual basis
{
Υ̂i

}
of RX with respect to the trace τ

h̃
.

Lemma 4.21.
{
Υ̂i

}
is the dual basis of RX with respect to the trace τ

h̃
, such that

τ
h̃
(Υ̂i) =

{
1 for i = 0,

0 otherwise.

Proof. These
{
Υ̂i

}
correspond to the dual basis {ŷi} of RX with respect to the trace τ

h̃
. By

considering

1 = τ
h̃

(
Υ̂0

)
· 1 +

∑
k∈Z×

r

τ
h̃

(
Υ̂k

)
y′ek ,

we have the relation. ■

We introduce an RP-module, R∗
X,τ

h̃
:=
〈
Υ̂0, Υ̂1, . . . , Υ̂r−1

〉
RP

, and consider its structure as

an RX -module. Due to Proposition 2.6, ωRX/RP = RX ◦ τ
h̃
, and thus ωRX/RP

∼= R∗
X,τ

h̃
as an

RX -module:

Lemma 4.22. R∗
X,τ

h̃
is an ideal of RX , especially yeiR

∗
X,τ

h̃
⊂ R∗

X,τ
h̃
, and

R∗
X,τ

h̃
=
〈
Υ̂0, Υ̂1, . . . , Υ̂r−1

〉
RX

=
〈
Υ̂1, . . . , Υ̂r−1

〉
RX

.

It means that as RP-modules,〈
Υ̂0, Υ̂1, . . . , Υ̂r−1

〉
RP

=
〈
Υ̂1, . . . , Υ̂r−1

〉
RX

.

Proof. Let us consider yeiΥ̂j , which is equal to

yeiΥ̂j =

r−1∑
k=0

bjkyejyek =

r−1∑
k,ℓ=0

bjkaikℓyeℓ .

However from the proof in Lemma 4.20,
∑

k bjkaikℓ =
∑

k bℓkaikj , and thus

yeiΥ̂j =
r−1∑
k=0

bkℓaikjyeℓ =
r−1∑
k=0

aikjΥ̂k.

Hence, R∗
X,τ

h̃
is closed for the action of yei .

On the other hand, we take an integer i, i ̸= ℓ, and then consider yeiΥ̂i which is decomposed
by Υ̂i’s but has the form,

yeiΥ̂i = Υ̂0 +

r−1∑
j=1

dijΥ̂j , (4.9)

where dij belongs to RP because the leading terms of the both yeiΥ̂i and Υ̂0 must agree in the

both sides. It means that Υ̂0 ∈
〈
Υ̂1, . . . , Υ̂r−1

〉
RX

. ■

This proof shows the following lemma:

Lemma 4.23. τ
h̃

(
yeiΥ̂i

)
= 1 for every i ∈ Z×

r , and thus τ
h̃

(
yeiΥ̂j

)
= δij.

Proof. (4.9) shows this. ■

Noting Remark 4.4 for themX = 2 case, we also introduce the more convenient basis {ŷei}i∈ZR

with respect to τ
h̃
instead of {Υ̂i}i∈ZR

:
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Definition 4.24. For i ∈ Zr, we define a truncated polynomial ŷei of Υ̂i such that the weight
−wt of Υ̂i− ŷei is less than −wt(̊yei), i.e., ŷei = ẙei+ certain terms, and the number of the terms
is minimal satisfying the relations as RP-modules,

〈
Υ̂1, . . . , Υ̂r−1

〉
RX

=
〈
ŷe1 , . . . , ŷer−1

〉
RX

=
〈
ŷe0 , . . . , ŷer−1

〉
RP

, τ
h̃
(ŷei) =

{
1 for i = 0,

0 otherwise.

Lemma 4.25.

1. When dh is symmetric, ŷei = yer−1−i, especially for mX = 2 case, ŷei = ẙei = yis.

2. When X has a cyclic symmetry of order r, ŷei = ẙei.

Proof. The mX = 2 case is described in Section 4.2 and the statement is obvious. For sym-
metric dh case, under which the numerical semigroup HX is symmetric due to Proposition 4.7,
ẙei = yer−1−i , ẙer−1 = Υ̂r−1 = 1, and thus it is obvious〈

Υ̂1, Υ̂2, . . . , Υ̂r−1

〉
RX

= ⟨ye0 , ye1 , . . . , yer−2⟩RX
= RX .

Further, when X has the cyclic symmetry of the order r, Υ̂i = ẙei because of the invariance for
the cyclic action. ■

Since µ(∆
h̃
) = hX(x, y•), the trace τRX/RP of RX/RP is given by

τRX/RP = hX(x, y•) ◦ τh̃.

Then we obviously have the following lemma:

Lemma 4.26. For a monomial ϕ in RX as an RP-module and ŷei, we have the following:

1. When dh is symmetric (dh = er−1, δ0 = 0) in (4.7),

τRX/RP

(
ŷei

hX(x, y•)

)
=

{
1 for i = 0,

0 otherwise.

2. When dh is not symmetric (dh = eℓ + δ0r, δ0 ̸= 0) in (4.7),

τRX/RP

(
ϕ

hX(x, y•)

)
=

{
ϕ/ŷe0 for ŷe0 |ϕ,
0 otherwise.

Here we note that the case ŷe0 |ϕ means
(
yeℓ δ̃0

)
|ϕ whereas the case ŷe0 ∤ ϕ consists of two

cases 1) ϕ = (f(x)yeℓ), δ̃0 ∤ f and 2) ϕ = (f(x)yei) i ∈ Zr \ {ℓ}.

Let us consider elements in Rc
X as in (4.1). We consider u ∈ Q(RX) given by

u =
1

hX(x, y•)

r−1∑
i=0

aiŷei ∈ Q(RX),

which satisfies the condition in (4.1). Indeed, for any element v =
∑r−1

j=0 bjyej ∈ RX , bj ∈ RP,
u satisfies τRX/RP(uv) ∈ RP, i.e.,

τRX/RP(uv) =
∑
i,j

τ
h̃
(aibj ŷeiyej ) =

r−1∑
i=0

(aibi) ∈ RP.

The condition τRX/RP(uv) ∈ RP means that ai belongs to RP for every i = 0, 1, . . . , r − 1, and
thus we obtain Rc

X .
We, now, state the first theorem in this paper.
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Theorem 4.27. The complementary module Rc
X is given as a fractional ideal of RX ,

Rc
X =

⟨ŷe1 , . . . , ŷer−1⟩RX

hX(x, y•)
.

Proof. It is obvious that due to the above arguments and the identity
〈
Υ̂0, Υ̂1, . . . , Υ̂r−1

〉
RX

=〈
ŷe1 , . . . , ŷer−1

〉
RX

due to Lemma 4.22 and Definition 4.24. ■

Let us identify the generator hX,P of the principal ideal Rc
X,P locally.

Proposition 4.28.

1. Symmetric dh case (δ0 = 0 in (4.7) or δ̃0 = 1 and dh = er−1): The complementary module
(as a fractional ideal) is given by

Rc
X =

1

hX(x, y•)
RX = hXRX , (4.10)

and we define hX := 1
hX(x,y•)

.

2. Non-symmetric dh case (δ0 ̸= 0 in (4.7)) or δ̃0 ̸= 1 and dh = eℓ+δ0r: For complex numbers
(ai( ̸= 0))i, e.g., ai = 1, we define

hX :=

∑r−1
i=1 aiŷei

hX(x, y•)
.

For the both cases, we obtain the local expression of the complementary module at P ∈ X,

Rc
X,P = hX,PRX,P . (4.11)

Proof. Symmetric dh case: The ideal I contains 1 because ŷer−1 = 1. It includes mX = 2 case
in Section 4.2. In other words, hX,P in Definition 4.1 is given by φP (hX) = hX,P by using the
homomorphism φP : RX → RX,P in Remark 3.3.

Non-symmetric dh case: By noting

degP,0

(
r−1∑
i=1

aiŷei

)
= min

(
degP,0

(
ŷei
))
,

we also identify hX,P in Definition 4.1 with φP (hX). ■

Using the complementary module for both cases, we have the Dedekind different,

diff(RX/RP) = −
∑

P∈X\{∞}

degP (hX)P.

By Dedekind’s different theorem (Proposition 4.2), we have the following.

Proposition 4.29. eBi − 1 = −degBi
(hX), and the support of div(hX) is equal to BX .

Since some of f
(j)
X,y(P ) = 0 at P = Bi ∈ BX \ {∞}, hX(x, y•) ∈ RX vanishes only at the

ramification point Bi ∈ X from Proposition 4.29 and the construction of hX , we have the
following corollary:
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Corollary 4.30.

div(hX(x, y•)) =
∑

Bi∈BX\{∞}

dBiBi − dh∞,

where dBi := degBi,0(hx) ≥ (eBi − 1), and dh =
∑

Bi∈BX\{∞} dBi = −wt(hX).

Definition 4.31. The effective divisor,
∑

Bi∈BX\{∞}(dBi − eBi + 1)Bi, is denoted by KX , i.e.,
KX > 0 and let kX :=

∑
Bi∈BX\{∞}(dBi − eBi + 1) = deg(KX) ≥ 0.

Lemma 4.32. The divisor of dx
hX

is expressed by (2g−2+kX)∞−KX , and 2g−2+kX = dh−r−1
or kX = dh − 2g − r + 1.

Proof. Since the meromorphic one-form in general has degree 2g− 2, we obtain deg(dx/hX) =
2g − 2. From Definition 4.31, its divisor is expressed by div(dx/hX) = (2g − 2 + kX)∞− KX .
Further since at the ∞, its degree deg∞(dx/hX) = dh−r−1, we have 2g−2+kX = dh−r−1. ■

From Corollary 3.20, we note that these KX and kX play crucial roles in the investigation of
the differentials on X (e.g., Lemma 5.4).

Proposition 4.33. kX is equal to zero if dh is symmetric whereas kX is not zero otherwise.

Proof. For the symmetric case, (4.10) and Proposition 4.29 show that dBi = eBi − 1, whereas
for the non-symmetric case, (4.11) and Proposition 4.29 yield non-vanishing kX . ■

We recall êi in (4.6), ei in Definition 2.8 for the standard basis in Lemma 3.6 and Proposi-
tion 3.11, and ŷei in Definition 4.24.

By applying Propositions 4.27 and 4.29 to differentials on X, we consider
xk ŷei (x,y•)dx

hX(x,y•)
, which

holds the following proposition:

Proposition 4.34.

div

(
xkŷei(x, y•)dx

hX(x, y•)

)
= div

(
xkδ̃i(x)yeℓ,i(x, y•)dx

hX(x, y•)

)
= k div0(x) + div0(ŷei)

−
ℓB∑
j=1

(dBj − eBj − 1)Bj + (dh − êi − (k + 1)r − 1)∞

= k div0(x) + div0(ŷei)− KX + (ei − (k + 1)r − 1)∞,

where div0(ŷei)− KX ≥ 0. We have{
wt

(
xkŷei(x, y•)dx

hX(x, y•)

)
+ 1

∣∣∣ i ∈ Z×
r , k ∈ N0, ei − (k + 1)r > 0

}
= Hc

X ,

and {
wt

(
xkŷei(x, y•)dx

hX(x, y•)

)
+ 1

∣∣∣ i ∈ Zr, k ∈ N0

}
= H

c
X .

Proof. The former statement is asserted from the previous lemma, whereas the latter two
relations on Hc

X and H
c
X proved by Lemma 2.9 noting wt(ŷei) = −êi = −(dh − ei) due to (4.6)

and e0 = 0. ■
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5 W-normalized Abelian differentials H0(X,AX(∗∞))

Following K. Weierstrass [39], H.F. Baker [3], V.M. Buchstaber, D.V. Leykin and V.Z. Enol-
skii [5], J.C. Eilbeck, V.Z. Enolskii and D.V. Leykin [10], we construct the Abelian differentials
of the first kind and the second kind H0(X,AX(∗∞)) on X for the hyperelliptic curves and
plane Weierstrass curves (W-curves). We extend them to more general W-curves based on
Proposition 4.34.

We consider the Abelian differentials of the first kind on a general W-curve. Due to the
Riemann–Roch theorem, there is the i-th holomorphic one-form whose behavior at ∞ is given
by (

tN
c(g−i)−1(1 + d>0(t))

)
dt,

where N c(i) ∈ Hc
X , i = 1, 2, . . . , g, N c(i) < N c(i + 1), and t is the arithmetic local parameter

at ∞. We call this normalization the W-normalization. Similarly we find the differentials or the
basis of H0(X,AX(∗∞)) associated with H

c
X .

5.1 W-normalized Abelian differentials

The W-normalized holomorphic one-forms are directly obtained from Proposition 4.34:

Lemma 5.1. For xkŷei in Proposition 4.34, we have the relation,〈
xkŷei

hX(x, y•)
dx
∣∣∣ i ∈ Z×

r , k ∈ N0, ei − (k + 1)r > 0

〉
C
= H0(X,AX).

By re-ordering xkŷej with respect to the weight at ∞, we define the ordered set
{
ϕ̂i

}
:

Definition 5.2.

1. Let us define the ordered subset ŜX of RX by

ŜX =
{
ϕ̂i | i ∈ N0

}
such that ϕ̂i is ordered by the Sato–Weierstrass weight, i.e., −wt ϕ̂i < −wt ϕ̂j for i < j,

and ŜX is equal to
{
xkŷei | i ∈ Zr, k ∈ N0

}
as a set.

2. Let R̂X be an RX -module generated by ŜX , i.e., R̂X := ⟨ŜX⟩RX
⊂ RX .

3. Recalling KX and kX in Definition 4.31, we let N̂(n) := −wt
(
ϕ̂n

)
− kX , ĤX :=

{
−wt

(
ϕ̂n

)
|

n ∈ N0

}
, and we define the dual conductor ĉX as the minimal integer satisfying ĉX +N0 ⊂

ĤX − kX .

4. We define Ŝ
(g)
X :=

{
ϕ̂0, ϕ̂1, . . . , ϕ̂g−1

}
and the W-normalized holomorphic one form, or the

W-normalized Abelian differentials of the first kind νIi as the canonical basis of X,〈
νIi :=

ϕ̂i−1dx

hX

∣∣∣ ϕ̂i−1 ∈ Ŝ
(g)
X

〉
C

= H0(X,AX). (5.1)

We note that at ∞, νIi behaves like νIi =
(
tN

c(g−i−1)−1(1+ d>0(t))
)
dt for the arithmetic local

parameter t at ∞, and further ϕ̂i−1dx
hX

=
(
tN

c(g−i−1)−1(1 + d>0)
)
dt where N c(i) indicates the

element in H
c
X such that N c(−i) = −i for i ∈ N; they are W-normalized Abelian differentials.

Finally we state our second theorem, which is obvious.
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Theorem 5.3.

1. H0(X,AX(∗∞)) =
⊕
i=0

C
ϕ̂idx

hX
= Rc

Xdx =
R̂Xdx

hX
.

2. H
c
X =

{
wt

(
ϕ̂idx

hX

)
+ 1 | i ∈ N0

}
=
{
wt
(
ϕ̂i

)
+ dh − r | i ∈ N0

}
=
{
wt
(
ϕ̂i

)
+ 2g − 1− kX | i ∈ N0

}
.

The Riemann–Roch theorem shows that

dimH0(X,OX(−n∞))− dimH0(X,AX(n∞))− n = 1− g.

Lemma 5.4. If dh = er−1 or δ0 = 0 in (4.7) (dh is symmetric in Proposition 4.7), HX is
symmetric, otherwise (δ0 ̸= 0 or dh is not symmetric) kX ̸= 0 and HX is not symmetric.

Proof. If dh is symmetric, kX = 0 from Proposition 4.33. Thus if dh is symmetric, (dx/hX) =
(2g − 2)∞, and due to the Riemann–Roch theorem, HX is symmetric. It corresponds to δ0 = 0
and dh = er−1 in Proposition 4.7 and Lemma 4.6. On the other hand, the case kX ̸= 0 means
that HX is not symmetric and δ0 ̸= 0 in Lemma 4.6. Thus we prove it. ■

Proposition 5.5.

1. Assume dh is symmetric or dh = er−1, δ0 = 0, in (4.7). Then we have the following:

(a) kX = 0 in Definition 4.31 and HX is symmetric,

(b) ŜX = SX in Definitions 3.9 and 5.2, KX = 0 in Definition 4.31, ĉX = cX , and
R̂X = RX in Definition 5.2.

2. In general, R̂X ̸= RX and we have the equality if and only if HX is symmetric.

Proof. We note Proposition 2.7 (5). They are obvious. ■

By the Abel–Jacobi theorem, KX in Definition 4.31 can be divided into two pieces, which are
related to the spin structure in X or the half-canonical form [19].

Definition 5.6. Let Ks and Kc
X be the effective divisors which satisfy

KX − kX∞ ∼ 2Ks − 2ks∞, KX + Kc
X −

(
kX + kcX

)
∞ ∼ 0

as the linear equivalence, where ks and kcX are the degree of Ks and Kc
X respectively.

Since the W-normalized holomorphic one form is given by the basis (5.1), Definition 5.6 shows
the canonical divisor:

Proposition 5.7. The canonical divisor is given by

KX ∼ (2g − 2 + kX)∞− KX ∼ (2g − 2 + 2ks)∞− 2Ks ∼
(
2g − 2− kcX

)
∞+ Kc

X .

This expression can be applied to the shifted Riemann constant for the non-symmetric W-
curves [19]. Theorems 4.27 and 5.3 enable us to define the fundamental 2-form of the second kind
algebraically and to construct the sigma functions of every W-curve as we show in a follow-up
paper [21]. Using the results [19], we connect them with the sigma functions, which is defined
as a modified Nakayashiki’s sigma function [21]. We find the explicit relations between RX and
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the meromorphic functions on the Jacobi variety JX associated with the sigma functions like
Weierstrass’ elliptic function theory.

As mentioned in introduction, Segal and Wilson showed that H
c
X provides the embedding

of the algebraic systems associated with X into the UGM [36, p. 46]. In contrast, we find the
RX -module Rc

Xdx as an algebraic system with the same Sato–Weierstrass weight as H
c
X − 1

explicitly. Though Nakayashiki defined his sigma functions based on the embedding of the
UGM [32] in terms of the ‘wave function’ with a half (spin) density, it is expected that our
results might directly show the construction of the sigma functions by the embedding of the
complementary module Rc

Xdx into the UGM as a natural generalization of his approach in [31]
for plane W-curves.

For the application in [21], as the end of the above discussion, we will summarize the properties
of these parameters.

Lemma 5.8.

1.
{
−wt

(
ϕ̂i

)}
= {̂ei + kr | i ∈ Zr, k ∈ N0} = {dh − ei + kr | i ∈ Zr, k ∈ N0}.

2. div
(
ϕ̂i

)
≥ (KX − (2g − 2 + kX)∞) for every ϕ̂i ∈ Ŝ

(g)
R , i = 0, 1, 2, . . . , g − 1.

3. div
(
ϕ̂i

)
≥ (KX − (g + kX + i)∞) for every ϕ̂i ∈ ŜR, i ≥ g.

Proof. They are obvious. ■

Lemma 5.9.

(1) −wt ϕ̂0 = êr−1 (= 0 if HX is symmetric) = ĉX + kX − cX = dh − r − cX + 1,

(2) −wt ϕ̂g−1 = ĉX + kX − 2 = dh − r − 1 = (2g − 2) + kX , i.e., N̂(g − 1) = 2g − 2,

(3) ĉX = 2g = dh − kX − r + 1, −wt ϕ̂g = 2g + kX = ĉX + kX = dh − r + 1,

(4) −wt ϕ̂g−1 +wt ϕ̂0 = er−1 − r − 1 = cX − 2, and cX = er−1 − r + 1.

Proof. Lemma 5.4 (2) means that −wt
(
ϕ̂0

)
= êr−1 due to the order of the weight. Then (1)

is proved by the relations −wt ϕ̂0 = N̂(0) + kX and N̂(0) = ĉX − cX . Let us consider (2).
Since from the Riemann–Roch theorem, wt νIg = 0 whereas on νIg = ϕ̂g−1dx/hX , wt(dx/hX) =

(2g − 2) + kX = dh − r − 1, we have −wt ϕ̂g−1 = (2g − 2) + kX or (2). The Riemann–Roch

theorem also shows that −wt ϕ̂g = −wt ϕ̂g−1 + 2 = ĉX + kX , or (3). We compare them and
obtain (4). ■

Remark 5.10. As we show in a follow-up paper [21], we mention how the results in this paper
provide the connection between RX and the sigma function shortly in this remark. We extend
pRX

(P,Q) for (P,Q) ∈ X ×P X in Proposition 4.15 and Lemma 4.16 to

pϖ(P,Q) :=
h̃X(xP , yP•, yQ•)

h̃X(xP , yP•)

for (P = (xP , yP•), Q = (xQ, yQ•)) ∈ X × X as in [21, Definition 12]. This extension of the
domain from X ×P X to X ×X is not unique in general. However, it has an excellent property

pϖ(P,Q) =

{
1 for P = Q,

0 for P ̸= Q and ϖx(P ) = ϖx(Q),

for X ×X except ramification points. Thus we introduce the one-forms [21, Proposition 15],

Σ(P,Q) :=
dxP

(xP − xQ)
pϖ(P,Q) =

dxP
(xP − xQ)

h̃X(xP , y•P , y•Q)

hX(xP , y•P )
.
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By investigating the one-form Σ
(
P,Q

)
and its derivative dQΣ(P,Q) in Q, we can define the W-

normalized differentials of the second kind and the third kind, and the fundamental differential
of the second kind Ω(P,Q) such that [21, Theorem 3],

(1) Ω(P,Q) = Ω(Q,P ),

(2) for any ζ ∈ GX , Ω(ζP, ζQ) = Ω(P,Q), and

(3) Ω(P,Q) is holomorphic except Q as a function of P and behaves like

Ω(P,Q) =
dtPdtQ

(tP − tQ)2
(1 + d>0(tP , tQ)).

It turns out that for any extension of pϖ, the differential Ω is unique under the cohomological
meaning so that the choice of how we select the extension does not affect the final results
essentially [21, Proposition 16]. In the considerations, the properties of the complementary
module, as the results in this paper, play a crucial role. Further, as the differential Ω is connected
with the differential of the third kind, we have its connection to the sigma function, σ [21,
Theorem 4]: for (P,Q, Pi, P

′
i ) ∈ X2 ×

(
Sg(X) \ Sg

1(X)
)
×
(
Sg(X) \ Sg

1(X)
)
,

u := w̃s(P1, . . . , Pg), v := w̃s(P
′
1, . . . , P

′
g),

exp

 g∑
i,j=1

ΠP,Q
Pi,P ′

j

 =
σ(w̃(P )− u)σ(w̃(Q)− v)

σ(w̃(Q)− u)σ(w̃(P )− v)
. (5.2)

where ΠP1,P2

Q1,Q2
:=
∫ P1

P2

∫ Q1

Q2
Ω(P,Q), and w̃ and w̃s are the ordinary and the shifted Abelian

integrals. The sigma function σ is the modified version of Nakayashiki’s one [32] based on the
results in [19]. In the Weierstrass elliptic function theory, as ℘(u − v)dudv has the double
order pole at u = v and the elliptic sigma function, σ(u − v), is connected with the integral
℘(u − v) with respect to du and dv, (5.2) means that based on our results in this paper, we
can generalize the picture to every W-curve as mentioned in [21, Theorem 4]. Our results in
this paper undoubtedly contribute to the significant progress in the Weierstrass sigma function
theory for general algebraic curves.

6 Examples of Weierstrass curves (W-curves)

6.1 Special other curves: pentagonal, non-cyclic trigonal, 6-symmetric curves

I. Non-cyclic trigonal curve (3,7,8): y3 + a1k2(x)y
2 + a2k̃2(x)k2(x)y + k2(x)

2k3(x) = 0, where
k2(x) = (x− b1)(x− b2), k3(x) = (x− b3)(x− b4)(x− b5) k̃2(x) = (x− b6)(x− b7), for pairwise
distinct bi ∈ C and aj generic constants. Here (3.5) and (3.6) correspond to

y2 = −a1k2y − k2a2k̃2 − k2w, yw = k2k3.

Multiplying the first equation by y and using the second equation gives the curve’s equation.
Besides them, we have

w2 = −
(
a2k̃2w + a1k2k3 + k3y

)
,

since multiplying the first equation by w2 gives

w3 + a2k̃2w
2 + a1k2k3w + k2k

2
3 = 0.
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Table 1. Examples of ϕ of special curves.

0 1 2 3 4 5 6 7 8 9 10 11 12

I 1 – – x – – x2 y w x3 xy xw x4

II 1 – – – – x – y – – x2 w xy

III 1 – – – – – x – – – – – x2

13 14 15 16 17 18 19 20 21 22 23 24

I x2y y2 yw w2 xy2 xyw xw2 x2y2 x2yw x2w2 x3y x3w2

II – y2 x3 xw x2y wy xy2 x4 y3 x3y xyw x2y2

III y13 y14 y15 y16 – x3 xy13 xy14 xy15 xy16 – x4

This curve is trigonal with HX = ⟨3, 7, 8⟩ but not necessarily cyclic,

h̃X(x, y, w, y′, w′) = k2k
2
3 + k3(yw

′ + y′w)

+
1

3
k3
(
2a1yy

′ + a1k2(w + w′) + (a21k2 + a2k̃2)(y + y′) + 2a1a2k2k̃2
)

+
1

3
k̃2
(
a1a2(yw

′ + y′w) + 2a2ww
′ + a22k̃2(w + w′)

)
,

hX(x, y, w) = 3k2k
2
3.

The differentials of the first kind are given as follows:

νI1 =
ydx

3k2k23
, νI2 =

wdx

3k2k23
, νI3 =

xydx

3k2k23
, νI4 =

xwdx

3k2k23
.

II. Cyclic pentagonal curve (5,7,11): y5 = k2(x)
2k3(x), where k2(x) = (x − b1)(x − b2),

k3(x) = (x− b3)(x− b4)(x− b5) for pairwise distinct bi ∈ C: (3.6) corresponds to−y 0 1
k2 −y 0
0 0 −y

 w
y2

wy

 =

 0
0

−k22k3

 .

The affine ring is R◦
X = C[x, y, w]/

(
y3 − k2w,w

2 − k3y, y
2w − k2k3

)
. Here (3.7) is reduced to

w =
k2k3
y2

, yw =
k2k3
y

, y2 =
k2w

y
.

This is a pentagonal cyclic curve (X,∞) with HX = ⟨5, 7, 11⟩.

h̃X(x, y, w, y′, w′) = y2w + ywy′ + y2w′ + wy′ 2 + yw′y′,

hX(x, y, w) = 5y2w = 5k2k3.

These e’s and dh in Lemma 4.6 are given as e0 = 0, e1 = 7, e2 = 11, e3 = 14, e4 = 18, and
dh = 25.

The differentials of the first kind are given as follows:

νIi =
ϕ̂i−1dx

5k2k3
.

III. 6-symmetric (6,13,14,15,16) curve: We construct a non-singular curve X by giving an
affine patch, an ideal in the ring C[x, y13, y14, y15, y16]. For any complex numbers {bi}i=1,...,7

such that each is distinct from the others, we let

k3(x) := (x− b1)(x− b2)(x− b3) = x3 + λ
(3)
1 x2 + λ

(3)
2 x+ λ

(3)
3 ,
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Table 2. Examples of ϕ̂ in ŜX of special curves with respect to wt
(
ϕ̂i

)
.

0 1 2 3 4 5 6 7 8 9 10 11 12

I – – – – – – – y w – xy xw –

II – – – – – – – y – – – w xy

III 1 – – – – – x – – – – – x2

13 14 15 16 17 18 19 20 21 22 23 24

I x2y y2 yw w2 xy2 xyw xw2 x2y2 x2yw x2w2 x3y x3w2

II – y2 – xw x2y wy xy2 – y3 x3y xyw x2y2

III y z v w – x3 xy xz xv xw – x4

k2(x) := (x− b4)(x− b5) = x2 + λ
(2)
1 x+ λ

(2)
2 .

k̂2(x) := (x− b6)(x− b7) = x2 + λ̂
(2)
1 x+ λ̂

(2)
0 , k̂5(x) := k̂2(x)k3(x),

k13(x) := k3(x)k2(x)
2k̂2(x)

3, k14(x) := k7(x)
2 = k3(x)

2k2(x)
4,

k15(x) := k̂5(x)
3, k16(x) := k8(x)

2 = k3(x)
4k2(x)

2.

The Weierstrass canonical form is given by y66 = k̂32k
2
2k3, which is normalized as follows.

Let the prime ideal P in C[x, y13, y14, y15, y16] be defined by

P := (f12,1, f12,2, f12,3, f12,4, f12,5, f12,6, f12,7, f12,8, f12,9),

where

f12,1 := y213 − k̂2(x)y14, f12,2 := y13y14 − k2(x)y15, f12,3 := k̂2(x)y
2
14 − y13y15k2(x),

f12,4 := y214 − k2(x)y16, f12,5 := y13y16 − y14y15, f12,6 := y215 − k̂2(x)k3(x),

f12,7 := y14y16 − k2(x)k3(x), f12,8 := y15y16 − k3(x)y13, f12,9 := y216 − k3(x)y14,

which are the 2× 2 minors of∣∣∣∣k2(x) y14 y16
y14 y16 k3(x)

∣∣∣∣ , ∣∣∣∣k̂2(x) y13 y14k̂2(x) y15
y13 y14 y15k2(x) y16

∣∣∣∣ ;
again, the minor y13y15 − k̂2(x)y16 is not in the list of fi,j and f12,8 is not a minor, but they are
compatible – the minor follows by combining f12,8 with f12,1 and f12,9.

We define the Gm action on x and ya by g−6x and g−aya, a = 13, 14, 15, 16, at ∞ ∈ X12.

Corresponding to Proposition 3.14, the affine ring is given by

R◦
X = C[x, y13, y14, y15, y16]/P,

and h̃X and hX are

h̃X(x, y•,1, y•2) = y13,1y16,1 + y13,2y16,1 + y13,1y16,2 + y14,2y15,1 + y14,1y15,2 + y14,2y15,2,

hX(x, y•) = 6y13y16.

The differentials of the first kind are given as follows:

νIi =
ϕi−1dx

6y13y16
=

ϕi−1dx

6y14y15
.
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