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SCHUR FUNCTIONS : THEME AND VARIATIONS

BY

I. G. MACDONALD

Introduction and theme

In this article we shall survey various generalizations, analogues and
deformations of Schur functions — some old, some new — that have
been proposed at various times. We shall present these as a sequence of
variations on a theme and (unlike e.g. Bourbaki) we shall proceed from
the particular to the general. Thus Variations 1 and 2 are included in
Variation 3 ; Variations 4 and 5 are particular cases of Variation 6 ; and in
their turn Variations 6, 7 and 8 (in part) are included in Variation 9.

To introduce our theme, we recall [M1, Ch. I, § 3] that the Schur
function sλ(x1, . . . , xn) (where x1, . . . , xn are independent indeterminates
and λ = (λ1, . . . , λn) is a partition of length ≤ n) may be defined as the
quotient of two alternants :

(0.1) sλ(x1, . . . , xn) =
det
(
x
λj+n−j
i

)
1≤i,j≤n

det
(
xn−ji

)
1≤i,j≤n

.

The denominator on the right-hand side is the Vandermonde determinant,
equal to the product

∏
i<j

(xi − xj).

When λ = (r), sλ is the complete symmetric function hr, and when
λ = (1r), sλ is the elementary symmetric function er. In terms of the
h’s, the Schur function sλ (in any number of variables) is given by the
Jacobi-Trudi formula

(0.2) sλ = det
(
hλi−i+j

)
1≤i,j≤n.

Dually, in terms of the elementary symmetric functions, sλ is given by
the Nägelsbach-Kostka formula

(0.3) sλ = det
(
eλ′

i
−i+j

)
1≤i,j≤m
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in which λ′ = (λ′1, . . . , λ
′
m) is the conjugate [M1, Ch. I, § 1] of the

partition λ.
There are (at least) two other determinantal formulas for sλ : one in

terms of “hooks” due to Giambelli, and the other in terms of “ribbons” dis-
covered quite recently by Lascoux and Pragacz [LP2]. If λ = (α1, . . . , αp |
β1, . . . , βp) in Frobenius notation [M1, Ch. I, § 1], Giambelli’s formula is

(0.4) sλ = det
(
s(αi|βj)

)
1≤i,j≤p.

To state the formula of Lascoux and Pragacz, let

λ(i,j) = (α1, . . . , α̂i, . . . , αp | β1, . . . , β̂j , . . . , βp)

for 1 ≤ i, j ≤ p, where the circumflexes indicate deletion of the symbols
they cover ; and let

[αi | βj ] = [αi | βj ]λ = λ− λ(i,j).

In particular, [α1 | β1] is the rim or border of λ, and [αi | βj ] is that part
of the border consisting of the squares (h, k) such that h ≥ i and k ≥ j.
With this notation explained, the “ribbon formula” is

(0.5) sλ = det
(
s[αi|βj ]

)
1≤i,j≤p.

Finally, we recall [M1, Ch. I, § 5] the expression of a Schur function as
a sum of monomials : namely

(0.6) sλ =
∑
T

xT

summed over all column-strict tableaux T of shape λ, where xT =∏
s∈λ

xT (s). (Throughout this article, we shall find it convenient to think of

a tableau T as a mapping from (the shape of) λ into the positive integers,
so that T (s) is the integer occupying the square s ∈ λ.)

All these formulas, with the exception of the original definition (0.1),
have their extensions to skew Schur functions sλ/µ. In place of (0.2) we
have

sλ/µ = det
(
hλi−µj−i+j

)
,(0.7)

and in place of (0.3) we have

sλ/µ = det
(
eλ′

i
−µ′

j
−i+j

)
(0.8)
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where λ′, µ′ are the partitions conjugate to λ, µ respectively. For the skew
versions of (0.4) and (0.5) we refer to [LP1], [LP2]. Finally, in place of
(0.6) we have

(0.9) sλ/µ =
∑
T

xT

where now T runs over column-strict tableaux of shape λ− µ [M1, Ch. I,
§ 5].

To complete this introduction we should mention the Cauchy identity∏
i,j

(1− xiyj)−1 =
∑
λ

sλ(x)sλ(y)(0.10)

and its dual version ∏
i,j

(1 + xiyj) =
∑
λ

sλ(x)sλ′(y)(0.11)

where λ′ is the conjugate of λ.
If we replace each yj by y−1

j and then multiply by a suitable power of
y1y2 . . ., (0.11) takes the equivalent form (when the number of variables
xi, yj is finite)

(0.11′)
∏

1≤i≤n
1≤j≤m

(xi + yj) =
∑
λ

sλ(x)s
λ̂′

(y)

summed over partitions λ = (λ1, . . . , λn) such that λ1 ≤ m, where λ̂ =
(λ̂1, . . . , λ̂n) is the complementary partition defined by λ̂i = m− λn+1−i,
and λ̂′ is the conjugate of λ̂.

The left-hand side of (0.10) may be regarded as defining a scalar product
〈f, g〉 on the ring of symmetric functions, as follows. For each r ≥ 1 let pr
denote the r th power sum

∑
xri , and for each partition λ = (λ1, λ2, . . .)

let pλ denote the product pλ1pλ2 . . . The pλ form a Q-basis of the ring
of symmetric functions (in infinitely many variables, cf. [M1, Ch. I]) with
rational coefficients, and the scalar product may be defined by

(0.12) 〈pλ, pµ〉 = δλµzλ

where δλµ is the Kronecker delta, and

zλ =
∏
i≥1

imi .mi!,
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mi = mi(λ) being the number of parts λj of λ equal to i, for each i ≥ 1.
The Cauchy formula (0.10) is now equivalent to the statement that the

Schur functions sλ form an orthonormal basis of the ring of symmetric
functions, i.e.,

(0.13) 〈sλ, sµ〉 = δλµ.

Also, from this point of view, the skew Schur function sλ/µ may be defined
to be s⊥µ (sλ), where s⊥µ is the adjoint of multiplication by sµ, so that
〈s⊥µ f, g〉 = 〈f, sµg〉 for any symmetric functions f , g.

1st Variation : Hall-Littlewood symmetric functions

Let x1, . . . , xn, t be independent variables and let λ = (λ1, . . . , λn) be
a partition of length ≤ n. The Hall-Littlewood symmetric function indexed
by λ [M1, Ch. III] is defined by

(1.1) Pλ(x1, . . . , xn; t) =
1

vλ(t)

∑
w∈Sn

w
(
xλ1

1 . . . xλnn
∏
i<j

xi − txj
xi − xj

)
in which vλ(t) ∈ Z[t] is a polynomial (with constant term equal to 1)
chosen so that the leading monomial in Pλ is xλ = xλ1

1 . . . xλnn . When
t = 0, the right-hand side of (1.1) is just the expansion of the determinant
det(xλj+n−ji ), divided by the Vandermonde determinant, so that when
t = 0 the formula (1.1) reduces to the definition (0.1) of the Schur function.

None of determinantal formulas (0.2) – (0.5) have counterparts for the
Hall-Littlewood functions (so far as I am aware). In place of (0.6) we have

(1.2) Pλ(x; t) =
∑
T

ψT (t)xT

summed over column-strict tableaux T of shape λ, where ψT (t) ∈ Z[t] is
a polynomial given explicitly in [M1, Ch. III, § 5].

Finally, in place of the Cauchy identity (0.10) we have

(1.3)
∏
i,j

1− txiyj
1− xiyj

=
∑
λ

bλ(t)Pλ(x; t)Pλ(y; t).

As in the case of the Schur functions, this identity may be interpreted
as saying that the symmetric functions Pλ(x; t) are pairwise orthogonal
with respect to the scalar product defined in terms of the power-sum
products by

(1.4) 〈pλ, pµ〉t = δλµzλ
∏
i≥1

(1− tλi)−1.

For more details, and in particular for the definition of the polynomials
bλ(t) featuring in the right-hand side of (1.3), we refer to [M1, Ch. III].
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2nd Variation : Jack symmetric functions

These are symmetric functions P (α)
λ (x) depending on a parameter α,

but unlike the Hall-Littlewood functions (Variation 1) there is no closed
formula such as (1.1) that can serve as definition. The simplest (and
original) definition is the following : analogously to (0.12) and (1.4), we
define a scalar product by

(2.1) 〈pλ, pµ〉(α) = δλµzλα
l(λ)

where l(λ) is the length of the partition λ, that is to say the number of non
zero parts λi. For each positive integer n, arrange the partitions of n in
lexicographical order (so that (1n) comes first and (n) comes last). Then
the P (α)

λ (x) are uniquely determined by the two requirements

(2.2) P
(α)
λ (x) = xλ + lower terms

where xλ denotes the monomial xλ1
1 xλ2

2 . . ., and by “lower terms” is meant
a sum of monomials xβ corresponding to sequences β = (β1, β2, . . . ) that
precede λ in the lexicographical order ; and

(2.3) 〈P (α)
λ , P (α)

µ 〉(α) = 0 if λ 6= µ.

The two conditions mean that the P
(α)
λ may be constructed from the

monomial symmetric functions by the Gram-Schmidt process, starting (for
partitions of n) with P(1n) = en, the n th elementary symmetric function.

Since the scalar product (2.1) reduces to (0.12) when α = 1, it follows
that P (α)

λ = sλ when α = 1.
In view of the definition (2.1) of the scalar product, the orthogonality

property (2.3) is equivalent to the following generalization of the Cauchy
identity (0.10) :

(2.4)
∏
i,j

(1− xiyj)−1/α =
∑
λ

cλ(α)P (α)
λ (x)P (α)

λ (y)

where the cλ(α) are rational functions of the parameter α which have
been calculated explicitly by Stanley [S] — note, however, that his
normalization of the Jack symmetric functions is different from ours.

As in the case of the Hall-Littlewood symmetric functions, none of the
determinantal formulas (0.2) – (0.5) generalize, so far as is known, to
the present situation. In place of (0.6) there is an explicit expression for
P

(α)
λ (x) as a weighted sum of monomials, namely

(2.5) P
(α)
λ (x) =

∑
T

fT (α)xT
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summed over column-strict tableaux T of shape λ, where fT (α) is a
rational function of α, computed explicitly by Stanley [S], to whom we
refer for more details.

Finally, the dual Cauchy formula (0.11) generalizes as follows :

(2.6)
∏
i,j

(1 + xiyj) =
∑
λ

P
(α)
λ (x)P (1/α)

λ′ (y)

where as before λ′ is the conjugate of λ.

3rd Variation

Our third variation is a family of symmetric functions Pλ(x; q, t),
indexed as usual by partitions λ, and depending on two parameters q
and t. They include the two previous variations (the Hall-Littlewood
symmetric functions and the Jack symmetric functions) as particular cases
(see below). Since I have given an extended account of these symmetric
functions at a previous Séminaire Lotharingien [M2], I shall be brief here
and refer to loc. cit. for all details. The functions may be most simply
defined along the same lines as in Variation 2 : we define a new scalar
product on the ring of symmetric functions by

(3.1) 〈pλ, pµ〉q,t = δλ,µzλ
∏
i≥1

1− qλi
1− tλi

,

and then the symmetric functions Pλ(x; q, t) are uniquely determined by
the two requirements

(3.2) Pλ(x; q, t) = xλ + lower terms,
(3.3) 〈Pλ, Pµ〉q,t = 0 if λ 6= µ.

If we set q = tα and then let t → 1, in the limit the scalar product
(3.1) becomes that defined in (2.1), from which it follows that the Jack
symmetric function P

(α)
λ (x) is the limit of Pλ(x; tα, t) as t → 1. Again,

if we set q = 0 the scalar product (3.1) reduces to (1.4), and it follows
that Pλ(x; 0, t) is the Hall-Littlewood symmetric function Pλ(x; t). Finally,
if q = t then (3.1) reduces to the original scalar product (0.12), and
correspondingly Pλ(x; q, q) is the Schur function sλ(x).

In view of the definition (3.1) of the scalar product, the orthogonality
condition (3.3) is equivalent to the following extension of the Cauchy
identity (0.10) :

(3.4)
∏
i,j

(txiyj ; q)∞
(xiyj ; q)∞

=
∑
λ

bλ(q, t)Pλ(x; q, t)Pλ(y; q, t).
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On the left-hand side of (3.4) we have used the standard notation

(x; q)∞ =
∏
i≥0

(1− xqi).

On the right-hand side, bλ(q, t) is a rational function of q and t, given
explicitly in [M2, § 5].

As in the previous two variations, none of the determinantal formulas
for Schur functions quoted in the introduction appear to generalize to the
present situation. However, the formula (0.6) for sλ as a sum of monomials
does generalize : namely we have

(3.5) Pλ(x; q, t) =
∑
T

ϕ
T

(q, t)xT

where ϕ
T

(q, t) is a rational function of q and t, again given explicit
expression in [M2, § 5].

Finally, the dual Cauchy formula (0.11) generalizes as follows [M2, § 5] :

(3.6)
∏
i,j

(1 + xiyj) =
∑
λ

Pλ(x; q, t)Pλ′(y; t, q).

4 th Variation : factorial Schur functions

Let z = (z1, . . . , zn) be a sequence of independent variables. For each
pair of partitions λ, µ Biedenharn and Louck have defined a skew factorial
Schur function tλ/µ(z) in [BL1]. Their original definition (loc. cit.) was
couched in terms of Gelfand patterns, and in the equivalent language of
tableaux it reads as follows. If T : λ−µ→ [1, n] is a column-strict tableau
of shape λ− µ, containing only the integers 1, 2, . . . , n, let

(4.1) z(T ) =
∏

s∈λ−µ

(
zT (s) − T ∗(s) + 1

)
,

where T ∗(i, j) = T (i, j) + j− i (so that T ∗ is a row-strict tableau of shape
λ− µ). Then tλ/µ(z) is defined by

(4.2) tλ/µ(z) =
∑
T

z(T )

summed over all column-strict tableaux T : λ− µ→ [1, n].
When µ = 0 they write tλ in place of tλ/0.
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It is not particularly obvious from this definition that tλ/µ(z) is in fact a
(non-homogeneous) symmetric polynomial in z1, . . . , zn, and Biedenharn
and Louck had some trouble (see [BL1] pp. 407–412) in establishing this
fact directly from their definition (4.2).

Some time ago I noticed that it followed rather simply from one of
their results (Th. 5 of [BL2]) that an alternative definition of tλ(z) could
be given which brought out its analogy with the Schur function sλ : namely
(for λ = (λ1, . . . , λn) a partition of length ≤ n)

(4.3) tλ(z) = det
(
z

(λj+n−j)
i

) /
det
(
z

(n−j)
i

)
,

where z(r) is the “falling factorial”

(4.4) z(r) = z(z − 1) . . . (z − r + 1) (r ≥ 0).

Note that since z(r) is a monic polynomial in z of degree r, the denominator
in (4.3) is just the Vandermonde determinant :

det
(
z

(n−j)
i

)
= det

(
zn−ji

)
=
∏
i<j

(zi − zj).

Hence tλ as defined by (4.3) is the quotient of a skew-symmetric polyno-
mial in z1, . . . , zn by the Vandermonde determinant, and is therefore a
(non-homogeneous) symmetric polynomial in the zi. Moreover, it is clear
from (4.3) that tλ(z) is of the form

tλ(z) = sλ(z) + terms of lower degree,

and hence that the tλ(z), as λ runs through the partitions of length ≤ n,
form a Z-basis of the ring Λn of symmetric polynomials in z1, . . . , zn.

In [CL], Chen & Louck show that tλ (and more generally tλ/µ) satisfies
a determinantal identity analogous to (0.2) and (0.7). Namely if

wr(z) = t(r)(z)

for all r ≥ 0 (and wr(z) = 0 when r < 0) then we have (loc. cit., Th. 5.1)

(4.5) tλ/µ(z) = det
(
wλi−µj−i+j(z − µj + j − 1)

)
where in general z + r denotes the sequence (z1 + r, . . . , zn + r).

The other determinantal formulas quoted in the introduction all have
their analogues for factorial Schur functions. If we define

fr(z) = t(1r)(z) (0 ≤ r ≤ n)

12
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(and fr(z) = 0 for r < 0 and r > n), so that the fr are the analogues of
the elementary symmetric functions, then we have

(4.6) tλ/µ(z) = det
(
fλ′

i
−µ′

j
−i+j(z + µ′j − j + 1)

)
.

We shall not stop to prove (4.6) here, nor the hook and ribbon formulas

tλ(z) = det
(
t(αi|βj)(z)

)
1≤i,j≤r(4.7)

= det
(
t[αi |βj ](z)

)
1≤i,j≤r

(where λ = (α1, . . . , αr |β1, . . . , βr) in Frobenius notation, and for the
explanation of the notation [αi |βj ] we refer to (0.5)), since they are special
cases of the corresponding results in Variation 6, which in their turn are
contained in Variation 9. In this development we take (4.3) and (4.5) as
definitions of tλ and tλ/µ respectively, and deduce (4.2) from them (see
(6.16) below), very much in the spirit of [M1], Chapter I, § 5.

5 th Variation : α-paired factorial Schur functions

Let z = (z1, . . . , zn) again be a sequence of independent variables, and
let α be another variable (or parameter). In parallel with the factorial
Schur functions (Variation 4) Biedenharn and Louck [BL1] have defined
α-paired factorial Schur functions Tλ/µ(α; z). As in the previous case, their
definition was couched in terms of Gelfand patterns, and in the equivalent
language of tableaux it reads as follows. Let

zi = −α− zi (1 ≤ i ≤ n)

and for each column-strict tableau T : λ− µ→ [1, n] let

(5.1) (α : z)(T ) =
∏

s∈λ−µ

(
zT (s) − T ∗(s) + 1

)(
zT (s) − T ∗(s) + 1

)
where (as in § 4) T ∗ is the row-strict tableau associated with T (i.e.,
T ∗(i, j) = T (i, j) + j − i). Then

(5.2) Tλ/µ(α; z) =
∑
T

(α : z)(T )

summed over all column-strict tableaux T : λ− µ→ [1, n]. (When µ = 0,
they write Tλ in place of Tλ/0.)
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Chen and Louck remark ([CL], p. 18) that “it is quite surprising that the
α-paired factorial Schur function enjoys all the properties of the ordinary
factorial Schur function.” The reason for this, we believe, lies in the fact
that both these classes of symmetric functions are special cases of those
to be defined in our 6 th Variation. In the present situation the falling
factorial z(r) is replaced by

z(r) z (r) =
r−1∏
i=0

(z − i)(z − i)

where z = −α− z ; and since
(z − i)(z − i) = zz + αi+ i2

it follows that we may write

z(r) z (r) =
r∏
i=1

(x+ ai)

where x = zz and ai = α(i − 1) + (i − 1)2. In Variation 6 below

the building blocks are the products (x |a)r =
r∏
i=1

(x+ ai) defined by an
arbitrary sequence a1, a2, . . .

We may then take as an alternative definition of Tλ(α; z), where λ is a
partition of length ≤ n,

(5.3) Tλ(α; z) =
det
(
z

(λj+n−j)
i z

(λj+n−j)
i

)
det
(
z

(n−j)
i z

(n−j)
i

)
([CL], Th. 6.2) ; all the determinantal formulas (Jacobi-Trudi etc.) together
with the tableau definition (5.2) are consequences of (5.3), as we shall show
in a more general context in the next section.

6 th Variation

Let R be any commutative ring and let a = (an)n∈Z be any (doubly
infinite) sequence of elements of R. For each r ∈ Z we define τ ra to be the
sequence whose nth term is an+r :

(τ ra)n = an+r.

Let
(x |a)r = (x+ a1) . . . (x+ ar)

for each r ≥ 0. Clearly we have

(6.1) (x |a)r+s = (x |a)r (x |τ ra)s

for all r, s ≥ 0.

14
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Now let x = (x1, . . . , xn) be a sequence of independent indeterminates
over R, and for each α = (α1, . . . , αr) ∈ Nn define

(6.2) Aα(x |a) = det
(
(xi |a)αj

)
1≤i,j≤n.

In particular, when α = δ = (n − 1, n − 2, . . . , 1, 0), since (xi |a)n−j is a
monic polynomial in xi of degree (n− j), it follows that

(6.3) Aδ(x |a) = det
(
xn−ji

)
=
∏
i<j

(xi − xj)

is the Vandermonde determinant ∆(x), independent of the sequence a.
SinceAα(x |a) is a skew symmetric polynomial in x1, . . . , xn, it is therefore
divisible by Aδ(x |a) in R[x1, . . . , xn]. Moreover, the determinant Aα(x |a)
clearly vanishes if any two of the αi are equal, and hence (up to sign)
we may assume that α1 > · · · > αn ≥ 0, i.e., that α = λ + δ where
λ = (λ1, . . . , λn) is a partition of length ≤ n. It follows therefore that

(6.4) sλ(x |a) = Aλ+δ(x |a)
/
Aδ(x |a)

is a symmetric (but not homogeneous) polynomial in x1, . . . , xn with
coefficients in R. Moreover it is clear from the definitions that

Aλ+δ(x |a) = aλ+δ(x) + lower terms,

in the notation of [M1], ch. I, and hence that

sλ(x |a) = sλ(x) + terms of lower degree.

Hence the sλ(x |a) form an R-basis of the ring Λn,R = R[x1, . . . , xn]Sn .
These polynomials sλ(x |a), and their skew analogues sλ/µ(x |a) to be

defined later, form our 6th Variation. They include Variations 4 and 5 as
special cases : for Variation 4 we take R = Z, xi = zi and an = 1 − n
for all n ∈ Z ; for Variation 5 we take R = Z[α], xi = zizi and
an = (n−1)α+ (n−1)2. The Schur functions themselves are given by the
zero sequence : an = 0 for all n ∈ Z. When λ = (r) we shall write

hr(x |a) = s(r)(x |a) (r ≥ 0)

with the usual convention that hr(x |a) = 0 if r < 0 ; and when λ = (1r)
(0 ≤ r ≤ n) we shall write

er(x |a) = s(1r)(x |a) (0 ≤ r ≤ n)

with the convention that er(x |a) = 0 if r < 0 or r > n.
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Let t be another indeterminate and let

f(t) =
n∏
i=1

(t− xi).

From (6.3) it follows that

f(t) = Aδn+1(t, x1, . . . , xn |a)
/
Aδn(x1, . . . , xn |a).

By expanding the determinant Aδn+1 along the top row we shall obtain

(6.5) f(t) =
n∑
r=0

(−1)rer(x |a)(t |a)n−r.

Let E(x |a), H(x |a) be the (infinite) matrices

H(x |a) =
(
hj−i(x |τ i+1a)

)
i,j∈Z,

E(x |a) =
(
(−1)j−iej−i(x |τ ja)

)
i,j∈Z.

Both are upper unitriangular, and they are related by

(6.6) E(x |a) = H(x |a)−1.

Proof. — We have to show that∑
j

(−1)k−jek−j(x |τka)hj−i(x |τ i+1a) = δik

for all i, k. This is clear if i ≥ k, so we may assume i < k. Since f(xi) = 0
it follows from (6.5) that

n∑
r=0

(−1)rer(x |a) (xi |a)n−r = 0

and hence, replacing a by τ s−1a and multiplying by (xi |a)s−1, that

(1)
n∑
r=0

(−1)rer(x |τ s−1a) (xi |a)n−r+s−1 = 0

for all s > 0 and 1 ≤ i ≤ n. Now it is clear, from expanding the
determinant A(m)+δ(x |a) down the first column, that hm(x |a) is of the
form

(2) hm(x |a) =
n∑
i=1

(xi |a)m+n−1ui(x)
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with coefficients ui(x) rational functions of x1, . . . , xn independent of m.
(In fact, it is easily seen that ui(x) = 1/f ′(xi).)

From (1) and (2) it follows that

n∑
r=0

(−1)rer(x |τ s−1a)hs−r(x |a) = 0

for each s > 0. Putting s = k − i and replacing a by τ i+1a we obtain∑
i≤j≤k

(−1)k−jek−j(x |τka)hj−i(x |τ i+1a) = 0,

as required.
Next, we have analogues of the Jacobi-Trudi and Nägelsbach-Kostka

formulas (0.2), (0.3) :

(6.7) If λ is a partition of length ≤ n, then

sλ(x |a) = det
(
hλi−i+j(x | τ1−ja)

)
= det

(
eλ′

i
−i+j(x |τ j−1a)

)
.

Proof. — Let α = (α1, . . . , αn) ∈ Nn. From equation (2) above we have

hαi−n+j(x |τ1−ja) =
n∑
k=1

(xk |τ1−ja)αi+j−1uk(x)

=
n∑
k=1

(xk |a)αi (xk |τ1−ja)j−1uk(x)

by (6.1). This shows that the matrix Hα =
(
hαi−n+j(x |τ1−ja)

)
i,j

is the
product of the matrices

(
(xk |a)αi

)
i,k

and B =
(
(xk |τ1−ja)j−1uk(x)

)
k,j

.
On taking determinants it follows that

det(Hα) = Aα det(B).

In particular, when α = δ, the matrix Hδ =
(
hj−i(x |τ1−ja)

)
is unitrian-

gular and hence has determinant equal to 1. It follows that Aδ det(B) = 1
and hence that

det(Hα) = Aα(x |a)
/
Aδ(x |a),

for all α ∈ Nn. Taking α = λ+ δ, we obtain the first of the formulas (6.7).
The second formula, involving the e’s, is then deduced from it and (6.6),
exactly as in the case of Schur functions ([M1], ch. I, (2.9)).

17
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Remark. — A consequence of (6.7) is that the determinant

det
(
hλi−i+j(x |τ1−ja)

)
,

which appears to involve not only a1, a2, . . . but also a0, a−1, . . . , a2−l(λ),
is in fact independent of the latter.

More generally, if λ and µ are partitions we define

sλ/µ(x |a) = det
(
hλi−µj−i+j(x |τµj−j+1a)

)
(6.8)

and then it follows as above from (6.6) that

sλ/µ(x |a) = det
(
eλ′

i
−µ′

j
−i+j(x |τ−µ

′
j+j−1a)

)
.(6.9)

Moreover,

(6.10) sλ/µ(x |a) = 0 unless 0 ≤ λ′i − µ′i ≤ n for all i.

The proof is the same as for Schur functions : [M1] ch. I, § 5.

The hook and ribbon formulas (0.4), (0.5) remain valid in the present
context : if λ = (α1, . . . , αp |β1, . . . , βp) in Frobenius notation, then

sλ(x |a) = det
(
s(αi |βj)(x |a)

)
1≤i,j≤p(6.11)

= det
(
s[αi |βj ](x |a)

)
1≤i,j≤p.

This will be considered in a more general context in § 9.

Let y = (y1, . . . , ym) be another set of indeterminates, and let (x, y)
denote (x1, . . . , xn, y1, . . . , ym). Then we have

E(x, y |a) = E(y |τna) E(x |a),(6.12) (i)
H(x, y |a) = H(x |a) H(y |τna).(ii)

Proof. — It is enough to prove (i), since (ii) then follows by taking
inverses and invoking (6.6). From (6.5) we have

m+n∑
i=0

(−1)iei(x, y |a)(t |a)m+n−i =
n∏
i=1

(t− xi)
m∏
j=1

(t− yj)

=
n∑
j=0

(−1)jej(x |a)(t |a)n−j
m∑
k=0

(−1)kek(y |τn−ja)(t |τn−ja)m−k

=
∑
j,k

(−1)j+kej(x |a) ek(y |τn−ja) (t |a)m+n−j−k

18
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by use of (6.1). Since the polynomials (t |a)r, r ≥ 0 are linearly indepen-
dent, we may equate coefficients to obtain

ei(x, y |a) =
∑
j+k=i

ej(x |a) ek(y |τn−ja).

With a change of notation this relation takes the form

(−1)k−iek−i(x, y |τka) =
∑
j

(−1)k−jek−j(x |τka) (−1)j−iej−k(y |τn+ja)

which establishes (i).

(6.13) Let λ, µ be partitions. Then

sλ/µ(x, y |a) =
∑
ν

sν/µ(x |a) sλ/ν(y |τna).

Proof. — Let r ≥ max(l(λ), l(µ)). By definition (6.8), sλ/µ(x, y |a) is
the r× r minor of H(x, y |a) corresponding to the row indices µ1−1, . . . ,
µr − r and the column indices λ1 − 1, . . . , λr − r, that is to say, it is
the element of

∧r H(x, y |a) indexed by these sets of indices. The formula
(6.13) now follows from (6.12) (ii) and the functoriality of exterior powers,∗

which together imply that
∧r H(x, y |a) =

∧r H(x |a).
∧r H(y |τna).

By iterating (6.13) we obtain the following result. Let x(i), . . . , x(n) be
n sets of variables, where x(i) = (x(1)

1 , . . . , x
(i)
ri ), and let λ, µ be partitions.

Then

(6.14) sλ/µ(x(i), . . . , x(n) |a) =
∑
(ν)

n∏
i=1

sν(i)/ν(i−1)(x(i) |τ r1+···+ri−1a)

summed over all sequences (ν) = (ν(0), . . . , ν(n)) of partitions, such that
µ = ν(0) ⊂ ν(1) ⊂ · · · ⊂ ν(n) = λ.

We shall apply (6.14) in the case that each x(i) consists of a single
variable xi (so that ri = 1 for 1 ≤ i ≤ n). For a single x we have
sλ/µ(x |a) = 0 unless λ− µ is a horizontal strip, by (6.10) ; and if λ− µ is
a horizontal strip it follows from (6.8) that

sλ/µ(x |a) =
∏
i≥1

hλi−µi(x |τµi−i+1a)

=
∏
i≥1

(x |τµi−i+1a)λi−µi .

∗ also known as the Cauchy-Binet identity.
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since hr(x |a) = s(r)(x |a) = (x |a)r in the case of a single x, from the
definition (6.4). Hence

(6.15) For a single x we have

sλ/µ(x |a) =
∏

s∈λ−µ

(x+ ac(s)+1)

if λ− µ is a horizontal strip, and sλ/µ(x |a) = 0 otherwise.
(Here c(s) is the content of s, i.e., c(s) = j − i if s = (i, j).)

From (6.14) and (6.15) it now follows that if x = (x1, . . . , xn)

(6.16) sλ/µ(x |a) =
∑
T

(x |a)T

summed over column strict tableaux T : λ− µ→ [1, n], where

(x |a)T =
∏

s∈λ−µ

(
xT (s) + aT∗(s)

)
and T ∗(i, j) = T (i, j) + j − i (so that T ∗ is row-strict).

When ai = 1 − i for all i ∈ Z (Variation 4), (6.16) reduces to the
definition (4.2) of the factorial Schur functions.

Finally, there is an analogue of the dual Cauchy formula : namely (with
the notation of (0.11′))

(6.17)
n∏
i=1

m∏
j=1

(xi + yj) =
∑
λ

sλ(x |a) s
λ̂′

(y | − a)

where −a is the sequence (−an)n∈Z.

Proof. — Consider the quotient

Aδm+n(x, y)
/
Aδn(x)Aδm(y)

which by (6.3) is equal to
∏
i,j

(xi−yj). On the other hand, Laplace expansion

of the determinant Aδm+n(x, y) gives

Aδm+n(x, y) =
∑

λ⊂(mn)

(−1)
∣∣λ̂∣∣
Aλ+δn(x)A

λ̂′+δm
(y).
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Hence we have∏
i,j

(xi − yj) =
∑

λ⊂(mn)

(−1)
∣∣λ̂∣∣
sλ(x |a) s

λ̂′
(y |a)

and by replacing each yj by −yj we obtain (6.17).

Remark. — From the definition (6.1) it follows that

(x |a)r =
∑
k≥0

xker−k
(
a(r)

)
,

where a(r) = (a1, a2, . . . , ar). Hence, with x = (x1, . . . , xn),

Aα(x |a) = det
(∑
βk≥0

xβki eβk−αj
(
a(αj)

))
=
∑
β

det
(
xβki
)

det
(
eβk−αj

(
a(αj)

))
summed over β = (β1, . . . , βn) ∈ Nn such that β1 > β2 > · · · > βn.

On dividing both sides by the Vandermonde determinant ∆(x) and
replacing α, β by λ+ δ, µ+ δ respectively, we obtain

(6.18) sλ(x |a) =
∑
µ⊂λ

sµ(x) det
(
eλi−µj−i+j

(
a(λj+n−j)

))
,

symmetric in the x’s but not in the a’s.
Now assume that the a’s are independent variables ; then we can let

n→∞ (which would not have been possible in the contexts of Variations 4
and 5). In the limit the right-hand side of (6.18) becomes, by virtue of (0.8),∑

µ⊂λ

sµ(x)sλ′/µ′(a)

where x = (x1, x2, . . . ) and a = (a1, a2, . . . ). It follows that

(6.19) lim
n→∞

sλ(x1, . . . , xn |a) = sλ(x ||a),

where sλ(x ||a) is the “supersymmetric Schur function” defined by

sλ(x ||a) = det
(
hλi−i+j(x ||a)

)
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in which hr(x ||a) is the coefficient of tr in the power series expansion of∏
i≥1

(1 − txi)−1
∏
j≥1

(1 + taj). Thus the limit as n → ∞ of sλ(x1, . . . , xn |a)

is symmetric in the a’s as well as in the x’s. From (6.19) and (6.16) we
conclude that, with the notation of (6.16),

(6.20) sλ(x ||a) =
∑
T

(x |a)T

summed over all column-strict tableaux T of shape λ with positive integer
entries.

For the skew functions the corresponding result reads as follows. Let
x = (xn)n∈Z, a = (an)n∈Z now be two doubly infinite sequences of
independent variables, and let λ, µ be partitions such that λ ⊃ µ. The
“skew supersymmetric Schur function” sλ/µ(x ||a) is defined by

sλ/µ(x ||a) = det
(
hλi−µj−i+j(x ||a)

)
,

where hr(x ||a) is now the coefficient of tr in the power series expansion
of
∏
i∈Z

(1− txi)−1
∏
j∈Z

(1 + taj). Then we have

(6.21) sλ/µ(x ||a) =
∑
T

(x |a)T

summed over all column-strict tableaux T : λ − µ → Z. (6.20) and (6.21)
were found independently by Ian Goulden and Curtis Greene.

7 th Variation

Here we shall work over a finite field F = Fq of cardinality q (so that q
is a prime power). Let x1, . . . , xn be independent indeterminates over F ,
and let V ⊂ F [x1, . . . , xn] denote the F -vector space spanned by the xi,
so that F [x1, . . . , xn] is the symmetric algebra S(V ) of V over F .

For each α = (α1, . . . , αn) ∈ Nn we define

(7.1) Aα = det
(
xq

αj

i

)
1≤i,j≤n.

If v ∈ V , v 6= 0, so that
(7.2) v = a1x1 + · · ·+ anxn

with coefficients ai ∈ F , not all zero, then we have
vq
r

= a1x
qr

1 + · · ·+ anx
qr

n

for all integers r ≥ 0, from which it follows that the determinant (7.1) is
divisible by v in S(V ). Hence if V0 is the subset of V consisting of all the
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vectors (7.2) for which the first non zero coefficient ai is equal to 1, we see
that Aα is divisible in S(V ) by the product

(7.3) P = P (x1, . . . , xn) =
∏
v∈V0

v,

which is homogeneous of degree

Card(V0) = qn−1 + qn−2 + · · ·+ 1.

In particular, when α = δn = δ = (n − 1, n − 2, . . . , 1, 0), Aδ is
divisible by P , and is a homogeneous polynomial of the same degree
qn−1 + qn−2 + · · ·+ 1; moreover the leading term in each of P and Aδ is
the monomial xq

n−1

1 xq
n−2

2 . . . xn, and therefore

(7.4) P = Aδ.

The determinant Aα clearly vanishes if any two of the αi are equal,
and hence (up to sign) we may assume that α1 > · · · > αn ≥ 0, i.e., that
α = λ + δ where λ = (λ1, . . . , λn) is a partition of length ≤ n. It follows
from what we have just proved that

(7.5) Sλ(x1, . . . , xn) = Aλ+δ

/
Aδ

is a polynomial, i.e., an element of S(V ), homogeneous of degree

n∑
i=1

(qλi − 1)qn−i.

These polynomials Sλ (and their skew analogues Sλ/µ that we shall
define later) constitute our 7 th Variation. Clearly they are symmetric in
x1, . . . , xn ; but they are in fact invariant under a larger group, namely
the group GLn(F ) (or GL(V )).

For if g = (gij) ∈ GLn(F ), we have

gxi =
n∑
k=1

gkixk

and therefore
(gxi)q

r

=
∑
k

gkix
qr

k

for all integers r ≥ 0, from which it follows that gAα = (det g)Aα and
hence that

Sλ(gx1, . . . , gxn) = Sλ(x1, . . . , xn).
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Consequently Sλ(x1, . . . , xn) depends only on (λ and) the vector space V ,
and not on the particular basis x1, . . . , xn of V , and accordingly we shall
write Sλ(V ) in place of Sλ(x1, . . . , xn) from now on.

When λ = (r) we shall write

Hr(V ) = S(r)(V ) (r ≥ 0)

with the usual convention that Hr(V ) = 0 if r < 0 ; and when λ = (1r)
(0 ≤ r ≤ n) we shall write

Er(V ) = S(1r)(V ) (0 ≤ r ≤ n)

with the convention that Er(V ) = 0 if r < 0 or r > n.
A well-known theorem of Dickson states that the subalgebra of GL(V )-

invariant elements of S(V ) is a polynomial algebra over F , generated by
the Er(V ) (1 ≤ r ≤ n). But by contrast with the classical situation, the
Sλ(V ) do not form an F -basis of S(V )GL(V ), as one sees already in the
simplest case n = 1.

Let t be another indeterminate and let

(7.6) fV (t) =
∏
v∈V

(t+ v).

From (7.3) and (7.4) it follows that

fV (t) = P (t, x1, . . . , xn)/P (x1, . . . , xn)
= Aδn+1(t, x1, . . . , xn)/Aδn(x1, . . . , xn).

By expanding the determinant Aδn+1 along the top row, we shall obtain

(7.7) fV (t) = tq
n

− E1(V )tq
n−1

+ · · ·+ (−1)nEn(V )t.

Since (at + bu)q
r

= atq
r

+ buq
r

for all a, b ∈ F and integers r ≥ 0 (t, u
being indeterminates) it follows from (7.7) that

(7.8) fV (at+ bu) = afV (t) + bfV (u),

i.e., that fV is an additive (or Ore) polynomial.
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Let ϕ : S(V )→ S(V ) denote the Frobenius map, namely

ϕ(u) = uq (u ∈ S(V )).

The mapping ϕ is an F -algebra endomorphism of S(V ), its image being
F [xq1, . . . , x

q
n]. Since we shall later encounter negative powers of ϕ, it is

convenient to introduce

Ŝ(V ) =
⋃
r≥0

S(V )q
−r

where S(V )q
−r

= F [xq
−r

1 , . . . , xq
−r

n ]. On Ŝ(V ), ϕ is an automorphism.

Let E(V ), H(V ) be the (infinite) matrices

H(V ) =
(
ϕi+1Hj−i(V )

)
i,j∈Z,

E(V ) =
(
(−1)j−iϕjEj−i(V )

)
i,j∈Z.

Both are upper triangular, with 1’s on the diagonal. They are related by

(7.9) E(V ) = H(V )−1.

Proof. — We have to show that∑
j

(−1)k−jϕk(Ek−j)ϕi+1(Hj−i) = δik

for all i, k. This is clear if i ≥ k. If i < k, we may argue as follows : since
fV (xi) = 0 it follows from (7.7) that

ϕn(xi)− E1ϕ
n−1(xi) + · · ·+ (−1)nEnxi = 0

and hence that
(1) ϕn+r−1(xi)− ϕr−1(E1)ϕn+r−2(xi)

+ · · ·+ (−1)nϕr−1(En)ϕr−1(xi) = 0

for all r ≥ 0 and 1 ≤ i ≤ n. On the other hand, by expanding the
determinant A(r)+δ down the first column, it is clear that Hr = Hr(V ) is
of the form

(2) Hr =
n∑
i=1

uiϕ
n+r−1(xi)
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with coefficients ui ∈ F (x1, . . . , xn) independent of r. From (1) and (2) it
follows that

(3) Hr − ϕr−1(E1)Hr−1 + · · ·+ (−1)nϕr−1(En)Hr−n = 0

for each r ≥ 0. Putting r = k − i and operating on (3) with ϕi+1, we
obtain ∑

i≤j≤k

(−1)k−jϕk(Ek−j)ϕi+1(Hj−i) = 0

as required.
Next, we have analogues of the Jacobi-Trudi and Nägelsbach-Kostka

formulas (0.2), (0.3) :

(7.10) Let λ be a partition of length ≤ n = dimV . Then

Sλ(V ) = det
(
ϕ1−jHλi−i+j(V )

)
= det

(
ϕj−1Eλ′

i
−i+j(V )

)
.

Proof. — Let α = (α1, . . . , αn) ∈ Nn. From equation (2) above we have

ϕ1−j(Hαi−n+j) =
n∑
k=1

ϕαi(xk)ϕ1−j(uk) (1 ≤ i, j ≤ n)

which shows that the matrix
(
ϕ1−jHαi−n+j

)
i,j

is the product of the
matrices

(
ϕαixk

)
i,k

and
(
ϕ1−juk

)
k,j

. On taking determinants it follows
that

(1) det
(
ϕ1−jHαi−n+j

)
= AαB

where B = det
(
ϕ1−juk

)
.

In particular, taking α = δ (so that αi − n + j = j − i), the left-hand
side of (1) becomes equal to 1, so that AδB = 1 and therefore

det
(
ϕ1−jHαi−n+j

)
= Aα /Aδ

for all α ∈ Nn. Taking α = λ+δ, we obtain the first of the formulas (7.10).
The second formula (involving the E’s) is then deduced from it and (7.9),
exactly as in the case of Schur functions ([M1], Ch. I § 2).

More generally, if λ and µ are partitions we define

(7.11) Sλ/µ(V ) = det
(
ϕµj−j+1Hλi−µj−i+j(V )

)
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and then it follows as above from (7.9) that also

(7.11′) Sλ/µ(V ) = det
(
ϕ−µ

′
j+j−1Eλ′

i
−µ′

j
−i+j(V )

)
.

Moreover

(7.12) Sλ/µ = 0 unless 0 ≤ λ′i − µ′i ≤ n for all i ≥ 1.

The proof is the same as for Schur functions ([M1], Ch. I § 5).

The hook and ribbon formulas (0.4), (0.5) remain valid in the present
context : if λ = (α1, . . . , αp |β1, . . . , βp) in Frobenius notation, then

Sλ(V ) = det
(
S(αi |βj)(V )

)
1≤i,j≤p

= det
(
S[αi |βj ](V )

)
1≤i,j≤p

in the notation of (0.5). These identities are formal consequences of the
definition (7.11) : see § 9 below.

Remark. — Since Hr(V ) has degree (qr − 1)qn−1, it follows that the
degree of ϕµj−j+1Hλi−µj−i+j(V ) is

qµj−j+1(qλi−µj−i+j − 1)qn−1 = qλi+n−i − qµj+n−j .

Hence the determinant (7.11) (and likewise (7.12)) is isobaric, and Sλ/µ(V )
is homogeneous of degree

(7.13)
n∑
i=1

(qλi − qµi)qn−i.

We shall next consider analogues of the “addition formula”

sλ/µ(x, y) =
∑
ν

sλ/µ(x)sν/µ(y)

for Schur functions ([M1], Ch. I § 5). For this purpose let U be an F -vector
subspace of V . From (7.8) it follows that

fU : v 7→ fU (v) =
∏
u∈U

(v + u)

is an F -linear mapping of V into S(V ) with kernel U . Hence fU (V ) is
isomorphic to the quotient of V by U , and we shall write

(7.14) fU (V ) = V/U
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thereby reserving the notation V/U for this particular embedding of the
quotient space in S(V ). If U ′ is a vector space complement of U in V , the
elements of V/U are the products fU (v) =

∏
u∈U

(v+u) as v runs through U ′,

that is to say, they are the products in S(V ) of the elements of the cosets
of U in V .

With this notation we have

(7.15) fV = fV/U ◦ fU
[
i .e., fV (t) = fV/U (fU (t))

]
.

Proof. — We have

fV/U
(
fU (t)

)
=

∏
w∈V/U

(
fU (t) + w

)
=
∏
u′∈U ′

(
fU (t) + fU (u′)

)
=
∏
u′∈U ′

fU (t+ u′) [by (7.8)]

=
∏
u∈U
u′∈U ′

(t+ u+ u′) = fV (t).

(7.16) Let T be a vector subspace of U . Then

V/U = (V/T )
/

(U/T )

(with equality, not merely isomorphism).

Proof. — By definition

(V/T )/(U/T ) = fU/T (V/T ) = fU/T (fT (V ))
= fU (V ) = V/U. [by (7.15)]

(7.17) (i) E(V ) = ϕdim(V/U)
(
E(U)

)
·E(V/U),

(ii) H(V ) = H(V/U) · ϕdim(V/U)
(
H(U)

)
.

Proof. — It is enough to prove (i), since (ii) then follows by taking
inverses and using (7.9). From (7.7) and (7.15) we have (dimV = n,
dimU = m)
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∑
i≥0

(−1)iEi(V )ϕn−i(t) = fV (t) = fV/U
(
fU (t)

)
=
∑
j≥0

(−1)jEj(V/U)ϕn−m−j
(∑
k≥0

(−1)kEk(U)ϕm−k(t)
)

=
∑
j,k≥0

(−1)j+kEj(V/U)ϕn−m−j
(
Ek(U)

)
ϕn−j−k(t)

and therefore
Ei(V ) =

∑
j+k=i

Ej(V/U)ϕn−m−j
(
Ek(U)

)
.

With a change of notation this can be written in the form

Ec−a(V ) =
∑
a≤b≤c

ϕn−m+b−c(Eb−a(U)
)
Ec−b(V/U)

or equivalently

(−1)c−aϕc
(
Ec−a(V )

)
=
∑
b

(−1)b−aϕn−m+b
(
Eb−a(U)

)
(−1)c−bϕc

(
Ec−b(V/U)

)
,

proving (i).

(7.18) Let λ, µ be partitions. Then

Sλ/µ(V ) =
∑
ν

Sν/µ(V/U) · ϕdim(V/U)
(
Sλ/µ(U)

)
.

Proof. — Suppose r ≥ max
(
l(λ), l(µ)

)
. By definition (7.11), Sλ/µ(V )

is the r × r minor of H(V ) corresponding to the row indices µ1 − 1, . . . ,
µr − r and the column indices λ1 − 1, . . . , λr − r, that is to say, it is the

element of
r∧

H(V ) indexed by these sets of indices. The formula (7.18)
now follows from (7.17) (ii) and the functoriality of exterior powers, which

together imply that
r∧

H(V ) =
r∧

H(V/U) · ϕdim(V/U)
r∧

H(U).

By iteration of (7.18) (and making use of (7.16)) we obtain

(7.19) Let V0 > V1 > · · · > Vr be a chain of subspaces of V . Then

Sλ/µ(V0/Vr) =
∑
(ν)

r∏
i=1

ϕdim(V0/Vi−1)Sν(i)/ν(i−1)(Vi−1/Vi)
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summed over all sequences (ν) = (ν(0), ν(1), . . . , ν(r)) of partitions such
that µ = ν(0) ⊂ ν(1) ⊂ · · · ⊂ ν(r) = λ .

As in the case of Schur functions, we shall use (7.19) to express Sλ/µ(V )
as a sum over column-strict tableaux of shape λ− µ.

If U is any finite-dimensional subspace of F (V ), let

π(U) =
∏
u∈U
u 6=0

u.

From (7.7) it follows that

(7.20) π(U) = (−1)dEd(U)

if dimU = d.
If U ′ is a subspace of U , then U/U ′ is defined by (7.14) as a subspace

of S(U) ⊂ S(V ), and its elements are the products (in S(U) or S(V )) of
the elements of the cosets of U ′ in U . From this it follows that

(7.21) π(U/U ′) = π(U)/π(U ′) =
∏

u∈U−U ′
u.

We now consider the case where U is 1-dimensional.

(7.22) Let U be a 1-dimensional subspace of S(V ) and let λ, µ be partitions.
Then

Sλ/µ(U) = (−1)|λ−µ|
∏

s∈λ−µ

ϕc(s)π(U)

if λ− µ is a horizontal strip, and is zero otherwise.
(Here c(s) is the content of s : c(s) = j − i if s = (i, j).)

Proof. — Since dimU = 1 we have Er(U) = 0 for r ≥ 2 and hence, by
(7.10),

Hr(U) = S(r)(U) =
r∏
j=1

ϕj−1E1(U)

= (−1)r
r∏
j=1

ϕj−1π(U)

by (7.20). From (7.12), we have Sλ/µ(U) = 0 unless 0 ≤ λ′i − µ′i ≤ 1 for
all i, that is to say, unless λ− µ is a horizontal strip. If on the other hand
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λ− µ is a horizontal strip, we have

Sλ/µ(U) = det
(
ϕµj−j+1Hλi−µj−i+j(U)

)
=
∏
i≥1

ϕµi−i+1Hλi−µi(U)

= (−1)|λ−µ|
∏
i≥1

ϕµi−i+1

λi−µi∏
j=1

ϕj−1π(U)

= (−1)|λ−µ|
∏

s∈λ−µ

ϕc(s)π(U).

Now let
V : V = V0 > V1 > · · · > Vn = 0

be a (full) flag in V , so that Vi is a vector subspace of V of dimension (n−i),
for each i. Let

πi(V) = π(Vi−1/Vi) =
∏

v∈Vi−1−Vi

v

for 1 ≤ i ≤ n.
From (7.19) and (7.22) it follows that

Sλ/µ =
∑
(ν)

n∏
i=1

ϕi−1Sν(i)/ν(i−1)(Vi−1/Vi)

= (−1)|λ−µ|
∑
(ν)

n∏
i=1

∏
s∈ν(i)/ν(i−1)

ϕi−1+c(s)πi(V)

summed over all sequences (ν) = (ν(0), ν(1), . . . , ν(n)) of partitions such
that µ = ν(0) ⊂ ν(1) ⊂ · · · ⊂ ν(n) = λ and each ν(i)−ν(i−1) is a horizontal
strip. Such sequences are in one-one correspondence with column-strict
tableaux T : λ− µ→ [1, n], and hence we obtain

(7.23) Sλ/µ(V ) = (−1)|λ−µ|
∑
T

ψ(T,V)

summed over column strict tableaux T : λ− µ→ [1, n], where

ψ(T,V) =
∏

s∈λ−µ

ϕT
∗(s)−1πT (s)(V),

and T ∗(i, j) = T (i, j) + j − i (as in (6.16)).
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Remark. — The degree of ψ(T,V) is∑
s∈λ−µ

qc(s)+T (s)−1(qn−T (s)+1 − qn−T (s)) =
∑
s∈λ−µ

qc(s)(qn − qn−1)

which is easily seen to be equal to
n∑
i=1

(qλi − qµi)qn−i, in agreement with
(7.13).

In the formula (7.23) the flag V is fixed and the sum is over tableaux T .
Since Sλ/µ(V ) is GL(V )-invariant, and since the number of flags V in V
is congruent to 1 modulo q, we may sum over all flags as well :

(7.23′) Sλ/µ(V ) = (−1)|λ−µ|
∑
T,V

ψ(T,V),

It seems plausible that (when µ = 0) there should be another expression
for Sλ(V ) as a sum over flags, namely

(7.24 ?) Sλ(V ) = (−1)|λ|
∑
V

ψ(T0,V)

where T0 is the tableau defined by T0(i, j) = i for all (i, j) ∈ λ. For this
tableau we have

ψ(T0,V) =
∏

(i,j)∈λ

ψj−1πi(V)

= (−1)|λ|
∏
i≥1

Hλi(Vi−1/Vi).

The formula (7.24 ?) is true for example when λ = (1r) (1 ≤ r ≤ n), and
in some other cases ; but I do not know whether it is true generally. It
would be enough to show that, if l(λ) < n,

(7.25 ?) Sλ(V ) =
∑
L

Sλ(V/L)

summed over all lines (i.e., 1-dimensional subspaces) L in V .

Finally, we shall indicate an analogue of the dual Cauchy formula
(0.11′). Let V (resp. W ) be the F -vector space spanned by x1, . . . , xn
(resp. y1, . . . , ym), the x’s and y’s being independent indeterminates
over F . Let

π(V,W ) =
∏
L,M

(
π(L) + π(M)

)
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where the product on the right is over all lines L in V and M in W . Then
we have (with the notation of (0.11′))

(7.26) π(V,W ) =
∑
λ

Sλ(V )S
λ̂′

(W ).

Proof. — Consider the quotient

Aδm+n(x, y)
/
Aδn(x)Aδm(y)

which by (7.4) is equal to the product∏
v∈V0
w∈W
w 6=0

(v + w) =
∏
w∈V0
w∈W0

(vq−1 − wq−1)

=
∏
L,M

(
π(L)− π(M)

)
(1)

(product over lines L < V and M < W ). On the other hand, by Laplace
expansion of the determinant Aδm+n(x, y), we obtain

Aδm+n(x, y) =
∑

λ⊂(mn)

(−1)|̂λ|Aλ+δn(x)A
λ̂′+δm

(y). (2)

From (1) and (2) it follows that∏
L,M

(
π(L)− π(M)

)
=

∑
λ⊂(mn)

(−1)|̂λ|Sλ(V )S
λ̂′

(W ).

Finally, to get rid of the minus signs, replace each yj by ωyj , where ω lies
in an extension field of F and satisfies ωq−1 = −1.

8 th Variation : flagged Schur functions

Let x1, x2, . . . be independent variables. For all positive integers a,
b, r define hr(a, b) (resp. er(a, b)) to be the complete (resp. elementary)
symmetric function of degree r in the variables xa, xa+1, . . . , xb if a ≤ b,
and to be zero if a > b ; also define h0(a, b) = e0(a, b) = 1 for all a, b, and
hr(a, b) = er(a, b) = 0 for all a, b when r < 0.

Let λ, µ be partitions of length ≤ n and let a = (a1, . . . , an),
b = (b1, . . . , bn) be sequences of positive integers. The row-flagged Schur
function sλ/µ(a, b) with row flags a, b is defined [W] to be

(8.1) sλ/µ(a, b) = det
(
hλi−µj−i+j(aj , bi)

)
1≤i,j≤n

It is zero unless λ ⊃ µ, which we assume henceforth.
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Let m ≥ λ1 (so that µ ⊂ λ ⊂ (mn)) and let a′ = (a′1, . . . , a
′
m),

b′ = (b′1, . . . , b
′
m) be sequences of positive integers. The notion dual to (8.1)

is that of the column-flagged Schur function s′λ/µ(a′, b′)∗ with column flags
(a′, b′) :

(8.1′) s′λ/µ(a′, b′) = det
(
eλ′

i
−µ′

j
−i+j(a′j , b

′
i)
)

1≤i,j≤m

where λ′, µ′ are the partitions conjugate to λ, µ respectively.
With mild restrictions on the flags these Schur functions can be ex-

pressed as sums over tableaux :

(8.2) Suppose that ai ≤ ai+1 and bi ≤ bi+1 whenever µi < λi+1 (i.e., the
sequences a, b are increasing on each connected component of λ−µ). Then

sλ/µ(a, b) =
∑
T

xT

summed over column-strict tableaux T of shape λ − µ such that ai ≤
T (i, j) ≤ bi for all (i, j) ∈ λ− µ, where as usual xT =

∏
s∈λ−µ

xT (s).

(8.2′) Suppose that a′i−µ′i ≤ a′i+1−µ′i+1 + 1 and b′i−λ′i ≤ b′i+1−λ′i+1 + 1
whenever µ′i < λ′i+1. Then

s′λ/µ(a′, b′) =
∑
T

xT

summed over column-strict tableaux T of shape λ − µ such that a′j ≤
T (i, j) ≤ b′j for all (i, j) ∈ λ− µ.

Both these results are proved in [W].

In general (i.e., for arbitrary choices of the flags a, b) the row
flagged Schur function sλ/µ(a, b) will not be equal to any column-flagged
s′λ/µ(a′, b′). However, there is the following duality theorem :

(8.3) Let λ, µ be partitions such that µ ⊂ λ ⊂ (mn) and let α, β be positive
integers such that α > m and β − α ≥ m. Let

ai = α+ i− µi − 1, bi = β + i− λi (1 ≤ i ≤ n),
a′j = α+ µ′j − j + 1, b′j = β + λ′j − j (1 ≤ j ≤ m).

Then sλ/µ(a, b) = s′λ/µ(a′, b′).

This is a particular case of (9.6′) in the next section ; alternatively, it
is not hard to verify that with these choices of a, b, a′, b′ a column-strict
tableau T of shape λ− µ satisfies the row restrictions of (8.2) if and only
if it satisfies the column restrictions of (8.2′).

∗ Our notation here differs from that of [W].
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9 th Variation

In this, our last variation, let hrs (r ≥ 1, s ∈ Z) be independent
indeterminates over Z. Also, for convenience, define h0s = 1 and hrs = 0
for r < 0 and all s ∈ Z. Define an automorphism of the ring R generated by
the hrs by ϕ(hrs) = hr,s+1 for all r, s. Thus hrs = ϕshr, where hr = hr0,
and we shall generally use this alternative notation.

Now define, for any two partitions λ, µ of length ≤ n,

sλ/µ = det
(
ϕµj−j+1hλi−µj−i+j

)
1≤i,j≤n(9.1)

and in particular (µ = 0)
sλ = det

(
ϕ−j+1hλi−i+j

)
1≤i,j≤n(9.1′)

As in the case of ordinary Schur functions ([M1], Chap. I, § 5) we have

(9.2) sλ/µ = 0 unless λ ⊃ µ.

The “Schur functions” defined by (9.1) include as special cases Vari-
ations 4, 5, 6, 7 and 8 (in part). Namely for Variation 4 we specialize
hrs = wr(z − s) ; for Variation 5, hrs = wr(α; z − s) ; for Variation 6,
hrs = hr(x |τ sa) ; for Variation 7, hrs = ϕsHr(V ) ; and for Variation 8,
hrs = hr(α+ r + s− 1, β + s).

From (9.1′) it follows that

hr = s(r) (r ≥ 0)
and we define

er = s(1r)

for all r ≥ 0, and er = 0 for r < 0.

(9.3) Let I be any interval in Z. Then the matrices

H = HI =
(
ϕ1−jhj−i

)
i,j∈I

E = EI =
(
(−1)j−iϕ−iej−i

)
i,j∈I

are inverses of each other.

Proof. — Both H and E are upper unitriangular, hence so also are HE
and EH. Hence it is enough to show that the (i, k) element of HE is zero
whenever i, k ∈ I and i < k, i.e., that∑

j

ϕ1−j(hj−i)(−1)k−jϕ−j(ek−j) = 0

or equivalently that∑
j

ϕ1+i−j(hj−i)(−1)k−jϕi−j(ek−j) = 0.
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If we put k − i = r > 0, this is equivalent to

(1)
r∑
j=0

(−1)jϕ1−j(hj)ϕ−j(er−j) = 0.

Now by definition
er = det

(
ϕ1−j(h1−i+j)

)
1≤i,j≤r

and expansion of this determinant along the top row gives (1), as re-
quired.

Let λ, µ be partitions such that λ ⊃ µ, and let θ = λ−µ. The function
sθ = sλ/µ depends not only on the skew shape θ but also on its location
in the lattice plane. For each (p, q) ∈ Z2 let τp,q denote the translation
(i, j) 7→ (i+ p, j + q). Then it follows immediately from (9.1) that

sτ0,1(θ) = ϕsθ, sτ1,0(θ) = ϕ−1sθ

and hence that
(9.4) sτp,q(θ) = ϕq−psθ.

In particular, sθ is invariant under diagonal translation (p = q).

Next let θ̂ be the result of rotating θ through 180o about a point on the
main diagonal. Then we have

(9.5) sθ̂ = εsθ

where ε is the involution defined by ϕshr 7→ ϕ1−r−shr.

Proof. — We may assume that λ, µ are both contained in the square
(nn). Let λ̂, µ̂ be their respective complements in this square, so that
λ̂i = n− λn+1−i, µ̂i = n− µn+1−i. Then we may take θ̂ = µ̂− λ̂, so that

s
θ̂

= det
(
ϕλ̂i−i+1h

µ̂j−λ̂i+i+j

)
which is easily seen to be equal to det

(
ϕi−λihλi−µj−i+j

)
= εsλ/µ.

Let θ′ = λ′ − µ′ be the reflection of θ in the main diagonal. Then we
have

(9.6) sθ′ = ωsθ
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where ω is the involution defined by ϕshr 7→ ϕ−ser for all r, s. Equiva-
lently,

(9.6′) sλ/µ = det
(
ϕ−µ

′
j+j−1eλ′

i
−µ′

j
−i+j

)
.

Proof. — Since the matrices H, E (over an appropriate interval of Z)
are unitriangular, we have detH = detE = 1; and since by (9.3) they
are inverses of each other, it follows that each minor of H is equal to the
complementary cofactor of the transpose of E. This leads to (9.6′), exactly
as in the case of classical Schur functions ([M1], Ch. I, (2.9)).

All the other determinant formulas for Schur functions have their
analogues in the present context, and the proofs are essentially the same.
First, if λ = (α1, . . . , αr |β1, . . . , βr) in Frobenius notation, we have

(9.7) sλ = det
(
s(αi |βj)

)
1≤i,j≤r.

Proof (cf. [M1], Ch. I, § 3, Ex. 9). — If a, b ≥ 0, so that (a |b) =
(a+ 1, 1b), the definition (9.1′) gives

s(a |b) =
b∑
i=0

(−1)iϕ−i(ha+i+1)ϕ−i−1(eb−i)

on expansion of the determinant along the top row. If a < 0 (but b ≥ 0)
we define s(a |b) by this formula : this definition gives s(a |b) = 0 except
when a = −1− b, in which s(a |b) = (−1)b.

Suppose that l(λ) ≤ n and consider the n× n matrices A, B where

Aij = ϕ1−j(hλi−i+j), Bjk = (−1)j−1ϕ−j(en+1−j−k).

We have then (AB)ik = s(λi−i |n−k) for 1 ≤ i, k ≤ n ; and since detA = sλ
and detB = 1, it follows that

sλ = det
(
s(λi−i |n−k)

)
1≤i,k≤n,

which reduces to det
(
s(αi |βj)

)
1≤i,j≤r exactly as in loc. cit.

Next we consider the generalization of (9.7) to skew functions sλ/µ. Let
λ = (α1, . . . , αr |β1, . . . , βr) as before, and let µ = (γ1, . . . , γs |ε1, . . . εs).
Then we have

(9.8) sλ/µ = (−1)s det
(
A B
C 0

)
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where A =
(
s(αi |βj)

)
1≤i,j≤r, B =

(
ϕγj+1hαi−γj

)
1≤i≤r,1≤j≤s,

C =
(
ϕ−εi−1eβj−εi

)
1≤i≤s,1≤j≤r.

The proof of (9.8) is the same as that of Lascoux and Pragacz [LP1]
for classical Schur functions. (Observe that ϕγj+1hαi−γj = sθij , where
θij = (αi |0) − (γj |0), and likewise that ϕ−εi−1eβj−εi = sϕij , where
sϕij = (0 |βj)− (0 |εi).)

Finally we have, with the notation of (0.5)

(9.9) sλ = det
(
s[αi |βj ]

)
1≤i,j≤r

exactly as in the classical case. Again, the proof is the same as in [LP2] :
indeed, both proofs given there apply in the present context, and we
therefore omit the details. There is also a “skew” version of (9.9) in
[LP2] which is likewise valid in the present context : but it is rather
complicated to state in full generality, and we shall therefore leave its
precise formulation to the conscientious reader.
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