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Coxeter groups



Coxeter groups

A Coxeter group is a group W generated by a finite set
S = {s1, s2, . . . , sn} such that for all s, t ∈ S,

(st)m(s,t) = id (1)

where m : S × S → N ∪ {∞} is a function satisfying m(s, s) = 1, and
m(s, t) = m(t , s) and m(s, t) ≥ 2.

We can write (1) as
stst · · ·︸ ︷︷ ︸

m(s,t)

= tsts · · ·︸ ︷︷ ︸
m(s,t)

.

Relation (1) is called

• commutation, if m(s, t) = 2
• braid relation, if m(s, t) > 2

2
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Coxeter groups

The length of w ∈ W is the smallest natural number L for which we can
write w as the product si1si2 · · · siL .

The product si1si2 · · · siL is called a reduced decomposition and
a = i1i2 · · · iL a reduced word.

R(w) denotes the set of reduced words for w.

Theorem (Matsumoto)
Two reduced words for the same element differ by a finite sequence of
commutations and/or braid relations.

Problem: How ”far” are two reduced words??
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Graphs structures on reduced
words



Graph of reduced words

G(w) is the graph with vertex set R(w) and an edge between two
reduced words if they differ by a single commutation or braid relation.

The distance between two reduced words a and b is the length of a
shortest path joining a and b in G(w).

In general, there is no known formula for the distance between two
reduced words.

Most of the work was done for elements in Coxeter groups of classical
type.
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Graph of commutation classes

Gc(w) is the graph obtained from G(w) by contracting the edges that
encodes commutations.

We can obtain Gc(w) in another way.

a ∼ b if a and b differ by a sequence of commutations

[a] denotes the commutation class of a

C(w) is the set of commutation classes of w

Then, Gc(w) is the graph with vertex set C(w) and an edge between [a]

and [b] if there are a′ ∈ [a] and b ′ ∈ [b] such that a′ and b ′ differ by a
single braid relation

dw([a], [b]) is the distance between [a] and [b] in Gc(w)
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Coxeter groups of classical type



Type An

• Φ(An) = {ej − ei : 1 ≤ i , j ≤ n + 1}

• Φ+(An) = {ej − ei : 1 ≤ i < j ≤ n + 1}

• ∆(An) = {αi : 1 ≤ i ≤ n}, where αi = ei+1 − ei .

• W(Φ(An)) � Sn+1

Generators: {s1, . . . , sn} with si = (i i + 1)

Relations:

• sisj = sjsi , if |i − j| > 1

• sisi+1si = si+1sisi+1
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Type Bn

• Φ(Bn) = {±ej ± ei : 1 ≤ i , j ≤ n + 1} ∪ {±ei : 1 ≤ i ≤ n + 1}

• Φ+(Bn) = {ej ± ei : 1 ≤ i < j ≤ n + 1} ∪ {ei : 1 ≤ i ≤ n + 1}

• ∆(Bn) = {αi : 0 ≤ i ≤ n}, where α0 = e1 and αi = ei+1 − ei , for i ≥ 1.

• W(Φ(Bn)) � SB
n+1, the group of signed permutations.

Generators: {sB
0 , s

B
1 , . . . , s

B
n }, with sB

0 = (1 1) and sB
i = (i i + 1)(i + 1 i)

Relations

• sB
i sB

j = sB
j sB

i , if |i − j| > 1

• sB
i sB

i+1sB
i = sB

i+1sB
i sB

i+1, if i , 0

• sB
0 sB

1 sB
0 sB

1 = sB
1 sB

0 sB
1 sB

0
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Type Dn

Φ(Dn) = {±ej ± ei : 1 ≤ i , j ≤ n + 1}
Φ+(Dn) = {ej ± ei : 1 ≤ i < j ≤ n + 1}
∆(Dn) = {αi : 0 ≤ i ≤ n}, where α0 = e2 + e1 and αi = ei+1 − ei , for i ≥ 1.
W(Φ(Dn)) � SD

n+1 ⊆ S
B
n+1 denotes group of even signed permutations

Generators: {sD
0 , s

D
1 , . . . , s

D
n }, with sD

0 = sB
0 sB

1 sB
0 and sD

i = sB
i if i , 0

Relations:

• sD
i sD

j = sD
j sD

i , if |i − j| > 1 and {i, j} , {0, 2}

• sD
0 sD

1 = sD
1 sD

0

• sD
i sD

i+1sD
i = sD

i+1sD
i sD

i+1, if i , 0

• sD
0 sD

2 sD
0 = sD

2 sD
0 sD

2
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Reduced words and orderings of I(w)

I(w) = {α ∈ Φ+ : wα ∈ −Φ+} is the inversion set of w

Lemma (Humphreys,1990)
L(w) = |I(w)|

Reduced words are orderings of the set I(w).

<a is the ordering of I(w) induced by a reduced word a

Question: How commutations and braid relations affect the orderings of
I(w)?
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Reduced words and orderings of I(w)

Lemma (Humphreys,1990)
Let w ∈ W and a, b ∈ R(w)

1. If b differ by a single commutation aplied to a, then the effect on the
total order <a is to replace two consecutive positive roots α, β by
β, α, where α + β < I(w).

2. If b differ by a single 3-braid move aplied to a, then the effect on the
total order <a is to replace three consecutive roots of the form
α, α + β, β by β, α + β, α.

3. If b differ by a single 4-braid move aplied to a, then the effect on the
total order <a is to replace four consecutive roots of the form
α, α + β, α + 2β, β by β, α + 2β, α + β, α, or vice-versa

10



Distances in Gc(w)



Lower bound

rw(a, b) = |{(α, β) ∈ I(w)2 : α <a β, β <b α, α+ β ∈ I(w), 2α+ β, α+ 2β < I(w)}|

is the rank of b with respect to a

Properties of rw :

• If a′ ∈ [a] and b ′ ∈ [b], then rw(a′, b ′) = rw(a, b).
• If b and c differ by a single braid relation, then
|rw(a, b) − rw(a, c)| = 1

Proposition (Scott,1996)
dw([a], [b]) ≥ rw([a], [b]).

Question: Is the other inequality true?? No...
Smallest examples:

• Type A: w = (6, 5, 4, 3, 2, 1) ∈ S6

• Type B: w = (1, 2, 3, 4) ∈ SB
4

• Type D: w = (1, 2, 3, 4) ∈ SD
4
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Necessary conditions

Proposition (Mamede, Santos and Soares)
Suppose that dw([a], [b]) = rw([a], [b]) for all [a], [b] ∈ C(w).

1. If w ∈ Sn, then w is 654321−avoiding.

2. If w ∈ SB
n or w ∈ SD

n , then w is 1 2 3 4 and 654321−avoiding.

The proof of the previous proposition relys on the following lemma.

Lemma (Mamede, Santos and Soares)
Let u, v ∈ W such that u ≤WB v. Then Gc(u) can be isometrically
embedded in Gc(v).

The converse of the previous proposition is still unknown...
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Longest elements

Something very interesting occurs when w is the longest elements in the
previous groups.

w0,n := (n, n − 1, . . . , 1) is the longest elements of Sn

wB
0,n := (1, 2, . . . , n) is the longest elements of SB

n

wD
0,n :=

(1, 2, . . . , n) if n is even
(1, 2, . . . , n) if n is odd

is the longest elements of SD
n

Proposition (Mamede, Santos and Soares)

1. dw0,n = rw0,n if and only if n < 6.

2. dwB
0,n

= rwB
0,n

if and only if n < 4.

3. dwD
0,n

= rwD
0,n

if and only if n < 4.
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Longest elements

Theorem (Gutierres, Mamede and Santos; Mamede, Santos and Soares)

1. The graph Gc(w0,n) is plannar if and only if n < 6.

2. The graph Gc(wB
0,n) is plannar if and only if n < 4.

Corollary (Mamede, Santos and Soares)
Let w0 denote the longest elements of type A and B. Then, dw0 = rw0 if
and only if Gc(w0) is plannar.

We conjecture that previous result is also true for type D (It remains to
check the plannarity of Gc(wD

0,4)).

14
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Longest elements

Figure 1: The graph Gc(wD
0,4)

The previous result is not true in general! For instance, if
w = [3, 1, 2, 4] ∈ SB

4 we have that dw = rw but Gc(w) is not plannar.
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Type B and new graph structures



Type B

Recall that SB
n+1 has the following presentation:

Generators: {sB
0 , s

B
1 , . . . , s

B
n }, with sB

0 = (1 1) and sB
i = (i i + 1)(i + 1 i)

Relations

• sB
i sB

j = sB
j sB

i , if |i − j| > 1

• sB
i sB

i+1sB
i = sB

i+1sB
i sB

i+1, if i , 0

• sB
0 sB

1 sB
0 sB

1 = sB
1 sB

0 sB
1 sB

0
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The graph G3(w)

a ∼3 b if a and b differ by a sequence of commutation and/or 3-braid
relations

C3(w) is the set of equivalence classes for the relation ∼3

G3(w) is the graph with vertex set C3(w) and an edge between [a]3 and
[b]3 if there are a′ ∈ [a]3 and b ′ ∈ [b]3 that differ by a single 4-braid
relation.

G3(w) can be obtained from Gc(w) by contracting the edges that
encodes 3-braid relations.
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The graph G3(w)

neg(w) is the permutation containing the absolute values of the negative
entries of the window notation of w.

Example: If w = (2, 4, 5, 3, 1), then neg(w) = (2, 4, 1).

Theorem (Mamede, Santos and S.)
For w ∈ SB

n , we have that G3(w) is the Hasse diagram of an interval
[id, σ] in the weak bruhat order of Sn, where σ = neg(w) · w0,k and
k = |{i ∈ {1, 2, . . . , n} : w(i) < 0}.

We have that neg(wB
0,n) = (1, 2, . . . , n).

Corollary
G3(wB

0,n) is the Hasse diagram of Sn with respect to weak Bruhat order.
Moreover, |C3(wB

0,n)| = n!.
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The graph G3(w)

Figure 2: The graph Gc(wB
0,4)
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The graph G3(w)

Figure 3: The graph G3(wD
0,4)
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The graph G4(w)

a ∼4 b if a and b differ by a sequence of commutation and/or 4-braid
relations

C4(w) is the set of equivalence classes for the relation ∼4

G4(w) is the graph with vertex set C4(w) and an edge between [a]4 and
[b]4 if there are a′ ∈ [a]4 and b ′ ∈ [b]4 that differ by a single 3-braid
relation.

G4(w) can be obtained from Gc(w) by contracting the edges that
encodes 4-braid relations.

The commutation relation sD
0 sD

1 = sD
1 sD

0 in SD
n is equivalent to the

4-braid relation sB
0 sB

1 sB
0 sB

1 = sB
1 sB

0 sB
1 sB

0 in SB
n .
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Connections with type D

Given w ∈ SD
n , let wB be w but seen as an element in SB

n .

Theorem (Mamede, Santos and S.)
If w ∈ SD

n , then G4(wB) is a subgraph of Gc(w).

In the proof of the previous theorem, we rely on the following well know
result.

Theorem (Björner)
An ordering < of I(w) coincides with an ordering of a reduced word
a ∈ R(w) if and only if for all the triples α, β, α + β ∈ Φ+ such that
α, α + β ∈ I(w),

1. α < α + β, if β < I(w),

2. α < α + β < β, or β < α + β < α if β ∈ I(w).
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Connections with type D

Recal that Φ(Dn) = Φ(Bn) \ {±ei , 1 ≤ i ≤ n}.

f : R(wB)→ R(wD)

a = α1α2 · · ·αl 7→ f(a) = a \ {ei : ei ∈ I(wB)}

Note: f is well defined, but in general is not injective nor surjective

ψ : C4(wB)→ C(wD)

[a]4 7→ ψ([a]4) = [f(a)]

Note: ψ is well-defined, injective and embedds G4(wB) in Gc(wD).

Question: In what cases do we have a bijection??
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Conclusion

w ∈ SB
n

• G3(w) is a closed interval in the weak Bruhat order of Sn.

• if w ∈ SD
n , then G4(wB) is a subgraph of Gc(w).
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Thank you for your attention!
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