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In this paper, we investigate the application of the probabilistic method (PM) for the numeri-
cal solution of the Dirichlet generalized harmonic problem in axisymmetric finite homogeneous
and isotropic bodies with a right circular cylindrical hole. The term “generalized” indicates
that a boundary function has a finite number of first kind discontinuity curves. The suggested
algorithm for the numerical solution of boundary problems consists of the following main
stages: a) application of the PM, which in turn is based on the computer modeling of the
Wiener process; b) finding the intersection point of the trajectory of the simulated Wiener
process and the surface of the problem domain; c) development of a code for the numerical
implementation and checking the reliability of obtained results; d) finding the probabilistic
solution of generalized problems at any fixed points in the considered domains. The algo-
rithm does not require the approximation of a boundary function. The PM is tested on an
explicit analytical solution from the literature. To illustrate the effectiveness and simplicity
of the proposed method several examples are considered. Numerical results are presented and
discussed.

Keywords: Dirichlet generalized harmonic problem, Probabilistic method, Wiener process,
Axisymmetric body, Computer modeling.
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1. Introduction

The method of probabilistic solution (MPS), or in short, the probabilistic method
(PM) is a relatively new technique for the numerical solution of Dirichlet ordinary
and generalized harmonic problems. The investigation and application of the PM
has been carried out for almost twenty years at the Muskhelishvili Institute of
Computational Mathematics. The reason for this mentioned analysis is one theorem
of Duenkin and Yushkevich (see Section 3).

In the present paper, the PM for the numerical solution of the Dirichlet har-
monic problem with singularities in the boundary data is considered, and some
axisymmetric finite domains with circular cylindrical holes are considered.

It is known (see e.g., [1–5]) that in practical stationary problems (for example,
for determination of the temperature of the thermal field or the potential of the
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electric field, and so on) there are cases when it is necessary to consider the Dirichlet
generalized harmonic problem.

In general, it is known (see e.g., [1, 6, 7]) that the methods used to obtain an
approximate solution to ordinary boundary value problems are less suitable (or
not suitable at all) for solving generalized boundary value problems. In particular,
the convergence of the approximate process is very slow in the neighborhood of
boundary singularities and, consequently, the accuracy of the approximate solution
of the generalized problem is very low. For example, a similar phenomenon takes
place when solving the Dirichlet generalized harmonic problem by the method of
fundamental solutions. Therefore researchers have tried to conduct preliminary
improvements of the boundary value problem in question.

For plane Dirichlet generalized harmonic problems the following approaches may
be used: I) A method of reduction of the Dirichlet generalized problem to an
ordinary problem (see e.g., [8–11]); II) A method of conformal mapping (see e.g.,
[12]); III) The probabilistic method (see e.g., [13, 14]).

In the case of 3D Dirichlet generalized harmonic problems, the difficulties become
more significant. In particular, from the above approaches we can apply only III).
The choice and construction of computational schemes (algorithms) mainly depend
on the problem class, its dimension, geometry and location of singularities on the
boundary. In particular, there does not exist a standard scheme which can be ap-
plied to a wide class of domains. In the literature (see e.g., [1–5]), simplified, or so
called “solvable” generalized problems are considered and some methods, namely,
separation of variables, particular solutions and heuristic methods are mainly ap-
plied for their solution and therefore the accuracy of the solution is rather low.
Since heuristic methods do not guarantee finding the best solution(moreover, in
some cases they may give an incorrect solution), it is necessary to check these solu-
tions in order to establish how well they satisfy all conditions of the problem (see
e.g., [1]).

Therefore the construction of high accuracy and effectively realizable computa-
tional schemes for the approximate solution of 3D Dirichlet generalized harmonic
problems (whose application is possible for a wide class of domains) have both
theoretical and practical importance.

It should be noted that in the literature (see e.g., [4], pp. 346-348), while solving
3D Dirichlet generalized harmonic problems, the existence of discontinuity curves is
often ignored. This fact and the application of classical methods to solving Dirichlet
generalized harmonic problems is the reason of this low accuracy. Therefore for the
numerical solution of 3D Dirichlet generalized harmonic problems we should apply
methods which do not require the approximation of a boundary function and in
which the existence of discontinuity curves is not ignored. The probabilistic method
(PM) is one such method.

A brief outline of this paper is as follows. The mathematical formulation of the
3D Dirichlet generalized harmonic problem is given in Section 2. In Section 3, the
PM and the simulation of the Wiener process are briefly described. In Section
4, one analytical generalized solution for an axisymmetric circular cylindrical ring
(from the literature) is considered and its properties are given. In Section 5, several
examples are considered and the results of numerical experiments are presented.
vestigations are provided. Finally, in Section 6, some conclusions and ideas for
future investigations are provided.
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2. Mathematical formulation of the problem

Let D be an axisymmetric finite domain with a right circular cylindrical hole.
Without loss of generality we assume that the axis of D is the axis Ox3 of the
Cartesian coordinate right-handed system Ox1x2x3 and the lower base of D lies in
the plane Ox1x2. We consider the following Dirichlet generalized harmonic problem.

Problem A. The function g(y) is given on the boundary S of the domain D and is
continuous everywhere, except a finite number of curves l1, l2, . . . , ln, which repre-
sent discontinuity curves of the first kind for the function g(y). It is required to find

a function u(x) ≡ u(x1, x2, x3) ∈ C2(D)
⋂

C(D\
n⋃

k=1

lk) satisfying the conditions:

∆u(x) = 0, x ∈ D, (2.1)

u(y) = g(y), y ∈ S, y ∈ lk ⊂ S (k = 1, n), (2.2)

|u(x)| < c, x ∈ D, (2.3)

where ∆ =
3∑

i=1

∂2

∂x2
i

is the Laplace operator, c is a real constant and S is a closed

piecewise smooth surface.
It is shown (see [7, 15]) that Problem (2.1), (2.2), (2.3) has a unique solution

depending continuously on the data, and for a generalized solution u(x) the gen-
eralized extremum principle is valid:

min
x∈S

u(x) < u(x)
x∈D

< max
x∈S

u(x), (2.4)

where it is assumed that x∈lk (k = 1, n) for x ∈ S.
Note (see [7]) that the additional requirement (2.3) of boundedness actually

concerns only the neighborhoods of singularities of the function g(y) and it plays
an important role in the extremum principle (2.4).

On the basis of (2.3), in general, the values of u(y) are not uniquely defined on
the curves lk. For example, if Problem A concerns the determination of the thermal
(or the electric) field, then we must take u(y) = 0 when y ∈ lk, respectively. In
this case, in the physical sense the curves lk are non-conductors (or dielectrics).
Otherwise, lk will not be a discontinuity curve.

It is evident that, the surface S is divided into the parts Si(i = 1,m) by curves
lk(k = 1, n), for the concrete case, where one of the following conditions holds:
n = m,n < m,n > m. Thus, the boundary function g(y) has the following form

g(y) =



g1(y), y ∈ S1,

g2(y), y ∈ S2,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

gm(y), y ∈ Sm,

0, y ∈ lk (k = 1, n),

(2.5)

where: Si (i = 1,m) are the parts of S without discontinuity curves, respectively;
the functions gi(y), y ∈ Si (i = 1,m) are continuous on the parts Si. It is evident
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that S = (
m⋃

j=1
Sj)

⋃
(

n⋃
k=1

lk).

Remark 1 : If the interior S is empty then we have the generalized problem with
respect to the closed shell.

3. The Probabilistic method and simulation of the Wiener process

In this section the essence of the suggested algorithm for the numerical solution of
the problem of type A is given, and its detailed description is in [16]. The main
theorem in the realization of the PM is the following one(see e.g., [15])

Theorem 3.1 : If a finite domain D ⊂ R3 is bounded by a piecewise smooth
surface S and g(y) is a continuous (or discontinuous) bounded function on S, then
the solution of the Dirichlet ordinary (or generalized) boundary value problem for
the Laplace equation at the fixed point x ∈ D has the form

u(x) = Exg(x(τ)). (3.1)

In (3.1): Exg(x(τ)) is the mathematical expectation of the values of the boundary
function g(y) at the random intersection points of the trajectory of the Wiener
process and the boundary S; τ is the random moment of the first exit of the Wiener
process x(t) = (x1(t), x2(t), x3(t)) from the domain D. It is assumed that the
starting point of the Wiener process is always x(t0) = (x1(t0), x2(t0), x3(t0)) ∈ D,
where the value of the desired function is being determined. If the number N of
the random intersection points yj = (yj

1, y
j
2, y

j
3) ∈ S (j = 1, N) is sufficiently large,

then according to the law of large numbers, from (3.1) we have

u(x) ≈ uN (x) =
1
N

N∑
j=1

g(yj) (3.2)

or u(x) = lim uN (x) for N → ∞, in probability. Thus, if we have the Wiener
process, the approximate value of the probabilistic solution to Problem A at a
point x ∈ D is calculated by formula (3.2).

In order to simulate the Wiener process we use the following recursion rela-
tions(see e.g., [7, 16]):

x1(tk) = x1(tk−1) + γ1(tk)/nq,

x2(tk) = x2(tk−1) + γ2(tk)/nq,

x3(tk) = x3(tk−1) + γ3(tk)/nq,
(3.3)

(k = 1, 2, . . . ), x(t0) = x,

according to which the coordinates of the point x(tk) = (x1(tk), x2(tk), x3(tk)) are
being determined. In (3.3): γ1(tk), γ2(tk), γ3(tk) are three normally distributed in-
dependent random numbers for the k-th step, with zero means and variances equal
to one(the generation of the above numbers takes place apart); nq is a quantifi-
cation number (nq) such that 1/nq =

√
tk − tk−1 and when nq → ∞, then the
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discrete process approaches the continuous Wiener process. In the implementa-
tion, the random process is simulated at each step of the walk and continues until
it crosses the boundary.

In the considered case computations and the generation of random numbers are
done in MATLAB.

Remark 2 : It is evident that for the PM it does not matter whether the boundary
function (2.5) is axisymmetric or not.

4. An analytical solution of a certain Dirichlet generalized harmonic
problem

This section is devoted to an explicit analytic solution of the Dirchlet generalized
harmonic problem for a right circular axisymmetric cylindrical ring. We intend to
use it for testing.

Let the domain D be a right circular cylindrical ring D(a < r < b, o < x3 < h),
where h is its height, r =

√
x1

2 + x2
2, and a, b are the internal and external radii

of ring, respectively.
In ([5], p.82) for the ring D a simplified case of Problem A is considered, in

particular, when the boundary function g(y) = g(y1, y2, y3) has the form

g(y) =



0, y ∈ S1 = {y ∈ S|a ≤ r ≤ b, y3 = 0},
0, y ∈ S2 = {y ∈ S|a ≤ r ≤ b, y3 = h},
0, y ∈ S3 = {y ∈ S|r = a, 0 < y3 < h},
v, y ∈ S4 = {y ∈ S|r = b, 0 < y3 < h},
0, y ∈ lk, (k = 1, 2).

(4.1)

In (4.1): v is a real constant; l1, l2 are the external circles of the bases S1 and
S2; l1, l2, S1, S2, S3 are non conductors (or dielectrics); S is the full surface of D

(S = (
4⋃

j=1
Sj)

⋃
(

2⋃
k=1

lk)).

In ([5], p.415), it is given that in conditions (4.1) the exact analytical solution to
Problem A has the following form (in cylindrical coordinates)

u(r, x3) =
4v

π

∞∑
m=0

I0(cmr)K0(cma)− I0(cma)K0(cmr)
I0(cmb)K0(cma)− I0(cma)K0(cmb)

×sin(cmx3)
2m + 1

≡ 4v

π

∞∑
m=0

um(r, x3), (4.2)

where a < r < b, 0 < x3 < h, cm = (2m+1)π/h, I0 and K0 are the first and second
kind Bessel functions of order zero with an imaginary argument, respectively.
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It is known (see, e.g., [17])that

I0(t) ≡ J0(it) =
∞∑

k=0

( t
2)2k

(k!)2
, t ∈ R,

I0(0) = 1, I0(t) →
et

√
2πt

for t →∞.

K0(t) ≡ K0(it) = −(ln
t

2
+ C)I0(t) +

∞∑
k=0

Φ(k)
( t
2)2k

(k!)2
, t > 0,

where

Φ(k) =
k∑

j=1

1
j
, k ≥ 1, Φ(0) = 0,

K0(t) →
√

π

2t
e−t for t →∞

and C = 0.577215664901532 is the Euler-Mascheroni constant(see e.g., [9], p.592).
Moreover, it is known (see, e.g.,[17]) that I0(t) and K0(t) are linearly independent

solutions of the following ordinary differential equation

y′′ +
1
t
y′ − y = 0, where y = y(t), t ∈ (0,∞). (4.3)

Since (4.2) is constructed by methods presented in Section 1, its investigation is
necessary. For the solution (4.2), the validity of the following properties are shown
in [18]: 1) the general term um(r, x3) of series (4.2) is harmonic; 2) the series (4.2)
is uniformly convergent in D; 3) the asymptotical behaviour of the general term of
(4.2) is

um(r, x3) →
1

2m + 1
exp(cm(r − b)) for m →∞ and (r, x3) ∈ D;

4) It is easy to see that for the solution u(r, x3) conditions (4.1) are satisfied on
S1, S2, S3, l1, l2. If (r, y3) ∈ S4 or (r = b, 0 < y3 < b) then from (4.2) we have

u(b, y3) =
4v

π

∞∑
m=0

1
2m + 1

sin(cmy3). (4.4)

In [18] it is shown that series (4.4) is uniformly convergent and equals to v when
0 < y3 < h.

Besides, since sin(cm(h/2 + t)) = sin(cm(h/2 − t)) for 0 ≤ t ≤ h/2, therefore,
u(r, h/2 + t) = u(r, h/2− t) for a ≤ r ≤ b, and this fact is in exact agreement with
the real physical picture(or in the considered case the physical field is symmetric
with respect to the plane x3 = h/2 and is not dependent on the angle of rotation).
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Table 4.1C. Results for partial sum of (4.4)

i (b, y3 S100 S500 S1000

1 (2, 1) 1.00315 1.00064 1.00032
2 (2, 1.5) 0.99842 0.99968 0.99984
3 (2, 1.8) 0.99166 0.99833 0.99917
4 (2, 1, 9) 0.98068 0.99613 0.99807
5 (2, 1.95) 0.90301 0.90798 0.98989
6 (2, 1.995) 0.87899 0.89175 0.97978
7 (2, 1.999) 0.20087 0.87393 0.92922
8 (2, 1.9999) 0.01986 0.019910 0.02002

For illustration we calculated the partial sum Sp(r, x3) of series (4.2) for m = 0, p
at several interesting points. In the numerical experiments we took: a = 1, b = 2,
h = 2, v = 1. Because of the convergence rate of (4.2) when (r, x3) ∈ D, the
calculations have shown that for p = 20, 50 practically: Sp(1.2, 1) = 0.221517;
Sp(1.5, 1) = 0.519826; Sp(1.8, 1) = 0.846086; Sp(1.5, 1.5) = 0.424747; Sp(1.5, 0.5) =
0.425002; Sp(1.5, 1.8) = 0.217324; Sp(1.5, 0.2) = 0.217581; Sp(1.8, 1.5) = 0.750919;
Sp(1.8, 1, 8) = 0.516492.

Since boundary function (4.1) is symmetric with respect to the plane x3 = 1,
the partial sum Sp(r, x3) is calculated also at the points which are symmetric with
respect to the plane x3 = 1, the results are in good agreement with the real physical
picture.

It is clear that if a point y(y1, y2, y3) ≡ (b, y3) ∈ S4 and tends to the disconti-
nuity curve lk (k = 1, 2), then all terms of series (4.4) tend to zero. Consequently,
series (4.4) converges very slowly, therefore, the accuracy of the satisfaction of the
boundary condition is very low.

In Table 4.1C the values of the partial sum Sp(b, x3) of (4.4) at several points of
S4 for p = 100, 500, 1000 and the same parameters- a, b, h, v are given.

From Table 4.1C it is clear that the accuracy of the satisfaction of the boundary
condition is very low in the neighborhood of the discontinuity curves, as expected
(see Section 1).

Our calculations showed that the analytic solution (4.2) is sufficiently accurate
for a wide group of practical problems. In addition, the results of calculations for
inner control points are in good accordance with the real physical picture of the
field. Finally, we note that the considered problem can be used as a test with the
help of the above-mentioned analytic solution.

In Section 5, for comparison, the PM is tested on the solution (4.2) (see Example
2).

Remark 3 : If we consider the simple case, when g(y) = v in (4.1) on the lower base
of the cylindrical ring, and g(y) = 0 on the remaining surface, then the analytic
form of the exact solution of Problem A is so difficult in the sense of numerical
implementation, that it has only theoretical significance (see [5], p.82, pp.416-417).

5. Numerical examples

It should be noted that in the 3D case, in general (except for a special case),
there are no test solutions for generalized problems of type A, therefore, for the
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verification of the scheme needed for the numerical solution of Problem A, the
reliability of obtained results can be demonstrated in the following way.

If we take gi(y) = 1/|y − x0| in boundary conditions (2.5), where y ∈ Si (i =
1,m), x0 = (x0

1, x
0
2, x

0
3)∈D, and |y − x0| denotes the distance between the points

y and x0, then it is evident that the curves lk (k = 1, n) represent removable
discontinuity curves for the boundary function g(y). Actually, in the mentioned
case instead of generalized problem A we obtain the following Dirichlet ordinary
harmonic problem.

Problem B. Find a Function u(x) ≡ u(x1, x2, x3) ∈ C2(D)
⋂

C(D) satisfying the
conditions:

∆u(x) = 0, x ∈ D,

u(y) = 1/|y − x0|, y ∈ S, x0 ∈ D.

We solve this problem (by the PM) with the use of the program used for Problem
A. It is well-known that Problem B is well posed, i.e., its solution exists, is unique
and depends on data continuously. Evidently, an exact solution of Problem B is

u(x0, x) =
1

|x− x0|
, x ∈ D, x0 ∈ D. (5.1)

It should be noted that the numerical solution of the Dirichlet ordinary harmonic
problems by the PM is interesting and important (see e.g., [19, 20]). In this paper,
Problem B has an auxiliary role. In particular, for Problem B, the verification of
the scheme needed for the numerical solution of Problem A and the corresponding
program (comparison of the obtained results with exact solution) are carried out
first of all, and then Problem A is solved under boundary conditions (2.5).

In the present paper the PM is applied to four examples. In the tables, N is
the number of implementation of the Wiener process for the given points xi =
(xi

1, x
i
2, x

i
3) ∈ D, and nq is the number of quantification. For simplicity, in the

considered examples the values nq and N are the same. In the tables for problems
of type B we present the absolute errors ∆i at the points xi ∈ D of uN (x), in the
PM approximation, for nq = 200 and various values of N , and under the notation
(E ± k) for 10±k. In particular, ∆i = |uN (xi) − u(x0, xi)|, where uN (xi) is the
approximate solution of Problem B at the point xi, which is defined by formula
(3.2), and the exact solution u(x0, xi) of the test problem is given by (5.1). In the
tables, for problems of type A, the probabilistic solution uN (x) is presented at the
points xi, defined by (3.2).

Remark 4 : The Problems A and B for ellipsoidal, spherical, cylindrical, conic,
prismatic and pyramidal domains are considered in [7, 16, 21, 22].

Example 1 : In the first example in the role of the axisymmetric domain D is we
take the right circular cylindrical ring D(a < r < b, 0 < x3 < h), where h is a
height of the ring, r =

√
x2

1 + x2
2, and a, b are the internal and external radii of the

ring, respectively.
We consider Problem A for D, when the boundary function g(y) ≡ g(y1, y2, y3)

has the form



Vol. 26, No. 2, 2022 45

g(y) =



2, y ∈ S1 = {y ∈ S| a < r < b, y3 = 0},
0.5, y ∈ S2 = {y ∈ S| a < r < b, y3 = h},
1.5, y ∈ S3 = {y ∈ S| r = b, y1 > 0, y2 > 0, 0 < y3 < h},
1, y ∈ S4 = {y ∈ S| r = b, y1 < 0, y2 > 0, 0 < y3 < h},
1.5, y ∈ S5 = {y ∈ S| r = b, y1 < 0, y2 < 0, 0 < y3 < h},
1, y ∈ S6 = {y ∈ S| r = b, y1 > 0, y2 < 0, 0 < y3 < h},
1, y ∈ S7 = {y ∈ S| r = a, 0 < y3 < h/2},
0.8, y ∈ S8 = {y ∈ S| r = a, h/2 < y3 < h},
0, y ∈ lk (k = 1, 9).

(5.2)

In (5.2): l1, l2 are the external circles of the bases S1 and S2; l3, l4 are the internal
circles of the bases S1 and S2; l5 is an intersection circle of surface hole with the
plane x3 = h/2; li (i = 6, 9) are the generatrices of the ring, passing through the
points (b, 0), (0, b), (−b, 0), (0,−b), respectively; It is evident that in the physical
sense in the considered case lk (k = 1, 9) are non-conductors(or dielectrics). S is

the full surface of D (S = (
8⋃

j=1
Sj)

⋃
(

9⋃
k=1

lk).

In the numerical experiments for the considered example, we took: 1) a = 1, b =
2, h = 3; 2) in test Problem B, the boundary function h(y) = 1/|y − x0|, y ∈ S,
x0 = (0, 0,−4).

In order to determine the intersection points yj = (yj
1, y

j
2, y

j
3 (j = 1, N) of the

trajectory of the Wiener process and the surface S, we operate in the following
way. During the implementation of the Wiener process, for each current point
x(tk), defined from (3.3), its location with respect to S is checked, i.e., for the
point x(tk) the value

d =
√

x2
1 + x2

2

is calculated and the following conditions: 1)a < d < b and 0 < x3(tk) < h; 2)d = a
or d = b and 0 < x3(tk) < h; 3) d < a or d > b and 0 < x3(tk) < h; 4)x3(tk) < 0 or
x3(tk) > h and a < d < b; 5) x3(tk) = 0 or x3(tk) = h and a < d < b, are checked.

In the first case x(tk) ∈ D and the process continues until it crosses the boundary
of D. In the second case x(tk) ∈ S and yj = x(tk). It is evident that in the third
case x(tk)∈D. In this case, let x(tk−1) ∈ D for the moment t = tk−1 and x(tk)∈D
for the moment t = tk. For the determination of the point yj , a parametric equation
of the line L passing through the points x(tk−1) and x(tk) is firstly obtained, and
it has the following form 

x1 = xk−1
1 + (xk

1 − xk−1
1 )θ,

x2 = xk−1
2 + (xk

2 − xk−1
2 )θ,

x3 = xk−1
3 + (xk

3 − xk−1
3 )θ,

(5.3)

where (x1, x2, x3) is the current point of L and θ is a parameter (−∞ < θ < ∞),
and xk−1

i ≡ xi(tk−1), xk
i ≡ xi(tk) (i = 1, 2, 3). After this, for definition of the
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Table 5.1B. Results for Problem B (in Example 1)

xi (0, 1.2, 1.5) (0, 1.5, 1.5) (0, 1.8, 1.5) (0, 1.5, 0.2) (0, 1.5, 2.8)
N ∆1 ∆2 ∆3 ∆4 ∆5

5E + 3 0.13E − 3 0.37E − 3 0.20E − 3 0.20E − 3 0.12E − 3
1E + 4 0.29E − 3 0.12E − 3 0.17E − 3 0.42E − 3 0.17E − 3
5E + 4 0.79E − 4 0.11E − 4 0.49E − 4 0.13E − 4 0.73E − 4
1E + 5 0.77E − 4 0.12E − 4 0.33E − 4 0.44E − 4 0.67E − 4
5E + 5 0.32E − 4 0.34E − 4 0.29E − 4 0.21E − 4 0.29E − 4
1E + 6 0.96E − 6 0.69E − 5 0.16E − 4 0.15E − 4 0.25E − 4

intersection points x∗ and x∗∗ of line L with the cylindrical surface x2
1 + x2

2 = a2

(or x2
1 + x2

2 = b2) is solved with respect to θ.
It is easy to see that for the parameter θ we obtain the following equation

Aθ2 + 2Bθ + C = 0, (5.4)

whose discriminant d∗ = B2 −AC > 0.
Since the discriminant of (5.4) is positive, the points x∗ and x∗∗ are defined

respectively on the basis of (5.3) for the solutions of (5.4) (θ1 and θ2). In the role
of the point yj we choose the one (from x∗ and x∗∗) for which |x(tk)−x| is minimal.

In the case 4) we find the intersection point y = (y1, y2, 0) (or (y = (y1, y2, h))
of the plane x3 = 0 (or x3 = h) and the line L passing through the points x(tk−1)
and x(tk), if a2 < y2

1 + y2
2 < b2 then yj = (y1, y2, 0) (or yj = (y1, y2, h)). In the case

5) yj = (y1, y2, 0) (or yj = (y1, y2, h)).
In all examples, considered by us for the determination of the intersection points

yi = (yi
1, y

i
2, y

i
3) (i = 1, N) of the trajectory of the Wiener process and the surface

S the above scheme is used. As noted above, for verification at first we solve the
auxiliary Problem B with the program of Problem A.

In Table 5.1B the absolute errors ∆i of the approximate solution uN (x) of the
test problem B at the points xi ∈ D (i = 1, 5) are presented.

On the basis of the results presented in Table 5.1B, we can conclude that the
program for Problem A is correct.

We also conducted a verification experiment. Namely, we calculated the proba-
bilistic solution of Problem B at the point (0,1.2,1.5) for N = 1E + 5, nq = 400
and we obtained ∆1 = 0.38E − 4 (see, Table 5.1B). The result is improved, as
expected (see Section 3). In general, if more accuracy is needed, then calculations
for sufficiently large values of nq and N must be realized. In this case, the numer-
ical implementation on a PC takes more time. We can avoid this difficulty if we
apply a parallel calculation method. For this, an appropriate computing technique
is needed. Respectively, significantly less time will be needed for the numerical im-
plementation and, besides, the accuracy of the obtained results will be improved.

In Table 5.1A the values of the approximate solution uN (x) to Problem A at the
same points xi (i = 1, 5) are given. The boundary function (5.2) is symmetric with
respect to the axis Ox3, respectively, in the role of x4 and x5, the points which
are symmetric with respect to the axis Ox3 are taken. The results have sufficient
accuracy for many practical problems and are in good agreement with the real
physical picture.

As noted above, the program for Problem A (in Example 1) is correct, therefore,
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Table 5.1A. Results for Problem A (in Example 1)

xi (0, 1.2, 1.5) (0, 1.5, 1.5) (0, 1.8, 1.5) (1.2, 1.2, 1.5) (−1.2,−1.2, 1.5)
N uN (x1) uN (x2) uN (x3) uN (x4) uN (x5)

5E + 3 0.99190 1.10950 1.19554 1.34906 1.35333
1E + 4 0.99616 1.10656 1.19309 1.35241 1.35460
5E + 4 0.99659 1.10669 1.19772 1.35241 1.35187
1E + 5 0.99563 1.10985 1.19835 1.35337 1.35218
5E + 5 0.99548 1.10846 1.19791 1.35231 1.35149
1E + 6 0.99532 1.10861 1.19795 1.35225 1.35119

Table 5.2A. Results for Problem A (in Example 2)

xi (0, 1.2, 1) (0, 1.5, 1) (0, 1.8, 1) (0, 1.5, 1.5) (0, 1.5, 1.8)
N uN (x1) uN (x2) uN (x3) uN (x4) uN (x5)

5E + 3 0.22360 0.51878 0.79880 0.41560 0.21260
1E + 4 0.22960 0.52540 0.81190 0.42570 0.21280
5E + 4 0.22292 0.51766 0.80844 0.42610 0.22090
1E + 5 0.22087 0.51925 0.80971 0.42483 0.21900
5E + 5 0.22389 0.51957 0.80920 0.42520 0.21950
1E + 6 0.22381 0.51961 0.81025 0.42520 0.21950

in the following example we solve Problem A directly.

Example 2 : Here we consider the test problem which is considered in Section 4.
In order to compare the results obtained from the analytical solution (4.2) with
results obtained by the PM, we solve Problem A under conditions (4.1) by the
PM, for the same cylindrical ring and parameters: a = 1, b = 2, h = 2, v = 1 (see
Section 4).

Since, Example 2 is a special case of Example 1, and its program and the reliabil-
ity of the obtained results are checked, we directly solved Problem A for Example
2 by the PM.

In the considered case, for the determination of the intersection points yJ (j =
1, N) of the trajectory of modelling the Wiener process and surface S, the same
algorithm, described in Example 1 is applied. For the above mentioned comparison
we calculated the values of the approximate solution uN (x) of Problem A at the
same points, in which the partial sums Sp(r, x3) of the series (4.2) are calculated
(see Section 4),and the obtained results are given in Table 5.2A.

From Table 5.2A it is clear that at the control points the results obtained using
the PM are in good agreement with the results of the test problem and are reliable,
with an accuracy which is sufficient for many practical problems.

Example 3 : Here in the role of axisymmetric domain D we took a regular 4-sided
prism ABCDA1B1C1D1 with a right circular cylindrical hole. We assume that
an axis of symmetry of D lies on Ox3 of the Cartesian coordinate right-handed
system Ox1x2x3 and the base of the prism lies in the plane Ox1x2, and its sides
are perpendicular to the axes Ox1 and Ox2, respectively. It is evident that axes of
symmetry of the prism and cylindrical hole are one and the same and lie on Ox3.
Besides: h and 2a are a height and a base side of the prism, respectively; r is a
radius of a base of the cylindrical hole.
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We solved Problems B and A when h = 3, a = 1, r = 0.5, x0 = (0.5, 1,−5), and
the boundary function g(y) = g(y1, y2, y3) has the form

g(y) =



2, y ∈ S1 = {y ∈ S|y1 ∈ (−a, a), y2 ∈ (−a, a), y3 = 0, d > r},
0.5, y ∈ S2 = {y ∈ S|y1 ∈ (−a, a), y2 ∈ (−a, a), y3 = h, d > r},
1.5, y ∈ S3 = {y ∈ S| y1 = a, −a < y2 < a, 0 < y3 < h},
3, y ∈ S4 = {y ∈ S| − a < y1 < a, y2 = a, 0 < y3 < h},
1.5, y ∈ S5 = {y ∈ S| y1 = −a, −a < y2 < a, 0 < y3 < h},
3, y ∈ S6 = {y ∈ S| − a < y1 < a, y2 = −a, 0 < y3 < h},
1.5, y ∈ S7 = {y ∈ S| 0 < y3 < h/2, d = r},
1, y ∈ S8 = {y ∈ S| h/2 < y3 < h, d = r},
0, y ∈ lk (k = 1, 15),

(5.5)

In (5.5): d =
√

y2
1 + y2

2; lk (k = 1, 15) are discontinuity curves,in particular
l1, l2 are bases of the hole, l3 is an intersection of surface hole with the plane
x3 = h/2, and lk (k = 4, 15) are the edges of the prism; S is the surface of D or

S = (
8⋃

j=1
Sj)

⋃
(

15⋃
k=1

lk), where Sj(j = 1, 8) are the parts of S without discontinuity

curves.
In the considered case, for the determination of the intersection points yj(j =

1, N) of the trajectory of the Wiener process and the surface S the following ap-
proach is used. During the implementation of the Wiener process, for each current
point x(tk), defined by (3.3), its location with respect S is verified, i.e., for the
point x(tk) the following conditions

−a < x1(tk) < a, −a < x2(tk) < a, 0 < x3(tk) < h, d > r (5.6)

are checked. If the conditions (5.6) are fulfilled then the process (3.3) is continuous.
If x(tk) ∈ S then yj = x(tk). In the case when the trajectory of the Wiener process
intersects the cylindrical surface y2

1 + y2
2 = r2, 0 < y3 < h (or basis S1 and S2

of the domain D) then for the determination of the intersection points the same
algorithm, described in Example 1 is applied.

Let x(t) ∈ D for the moment t = tk−1 and for the moment t = tk the trajectory
of the Wiener process intersect any lateral face of the prism. In this case, under
conditions (5.6) we establish the lateral face where the intersection point yj is
located. After this, for the determination of yj , a parametric equation of a line L
passing through the points x(tk−1) and x(tk) is firstly obtained in the form (5.3).
Finally, the intersection point x∗ of the line L and that face, which is intersected by
the trajectory of the Wiener process is found and respectively, in this case yj = x∗.

In Table 5.3B the absolute errors ∆i of the approximate solution uN (x) of the
test problem B at the points xi ∈ D (i = 1, 5) are presented.

The values of the approximate solution uN (x) of Problem A at the points xi ∈ D
(i = 1, 5) are given in Table 5.3A. Since the boundary function (5.5) is symmet-
ric with respect to the plane Ox1x3, therefore, in the role of xi (i = 4, 5), the
points which are symmetric with respect to the plane Ox1x3 are taken. The ob-
tained results have sufficient accuracy for many practical problems and are in good
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Table 5.3B. Results for Problem B (in Example 3)

xi (0.8, 0.8, 0.2) (0.8, 0.8, 1.5) (0.8, 0.8, 2.8) (0, 0.8, 1.5) (0,−0.8, 1.5)
N ∆1 ∆2 ∆3 ∆4 ∆5

5E + 3 0.48E − 4 0.51E − 4 0.44E − 5 0.27E − 3 0.42E − 4
1E + 4 0.47E − 5 0.97E − 4 0.21E − 4 0.12E − 3 0.59E − 5
5E + 4 0.26E − 4 0.44E − 4 0.32E − 4 0.48E − 4 0.37E − 4
1E + 5 0.49E − 4 0.35E − 4 0.19E − 4 0.74E − 4 0.34E − 4
5E + 5 0.39E − 4 0.12E − 4 0.57E − 6 0.97E − 5 0.76E − 5
1E + 6 0.46E − 6 0.35E − 5 0.60E − 5 0.13E − 4 0.12E − 4

Table 5.3A. Results for Problem A (in Example 3)

xi (0.8, 0.8, 0.2) (0.8, 0.8, 1.5) (0.8, 0.8, 2.8) (0, 0.8, 1.5) (0,−0.8, 1.5)
N uN (x1) uN (x2) uN (x3) uN (x4) uN (x5)

5E + 3 1.97120 1.93150 1.49100 2.35180 2.34980
1E + 4 1.96095 1.92560 1.48725 2.34175 2.33640
5E + 4 1.98466 1.92592 1.49595 2.34196 2.34166
1E + 5 1.98034 1.92629 1.49127 2.34004 2.33329
5E + 5 1.97856 1.93238 1.49168 2.33888 2.33618
1E + 6 1.98096 1.93188 1.49018 2.33875 2.33818

agreement with the real physical picture(see Table 5.3A).

Example 4 : In this example in the role of the axisymmetric domain D we take
a closed truncated right circular cone with a right circular cylindrical hole. We
assume that, they have one and the same axis of symmetry and it lies on Ox3, and
the base of D lies in the plane Ox1x2. For the considered case, the equations of
lateral surfaces of cone- Sc and cylindrical hole - Sh are

dc ≡ (x1)2 + (x2)2 −
(r1 − r2

h

)2( r1h

r1 − r2
− x3

)2
= 0, x ∈ Sc, 0 < x3 < h

and

dh ≡ (x1)2 + (x2)2 − (r3)2 = 0, x ∈ Sh, 0 < x3 < h,

respectively.
In the above equations h is the height of the truncated cone and hole, r1 and r2

are the radii of the lower and upper bases of cone, r3 is the radius of the base of
the hole, and x = (x1, x2, x3) is current point of the noted surfaces, respectively.

It is easy to see that: 1) dc = 0, when x ∈ Sc; dc < 0, when x ∈ D; dc > 0,
when x∈D and 0 < x3 < h. 2) dh = 0, when x ∈ Sh; dh < 0, when r < r3 and
0 < x3 < h (r =

√
x2

1 + x2
2); dh > 0, when x ∈ D. From 1) and 2) it is evident that

if: 3) dc < 0 and dh > 0, then x ∈ D.
In the numerical experiments for this example, we took: a) h = 3, r1 = 2, r2 = 1,

r3 = 0.5; b) in the test Problem B the boundary function h(y) = 1/|y−x0|, y ∈ S,
x0 = (0, 0,−5); c) in Problem A the boundary function g(y) ≡ g(y1, y2, y3) has the
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form

g(y) =



2, y ∈ S1 = {y ∈ S| r3 < r < r1, y3 = 0},
0, y ∈ S2 = {y ∈ S| r3 < r < r2, y3 = h},
1.5, y ∈ S3 = {y ∈ Sc| 0 < y3 < h/3},
1, y ∈ S4 = {y ∈ Sc| h/3 < y3 < 2h/3},
0.5, y ∈ S5 = {y ∈ Sc| 2h/3 < y3 < h},
1.5, y ∈ S6 = {y ∈ Sh| d = r3, 0 < y3 < h/2},
1, y ∈ S7 = {y ∈ Sh| , d = r3, h/2 < y3 < h},
0, y ∈ lk(k = 1, 7).

(5.7)

In (5.7): l1, l2 are the external circles of the bases S1 and S2; l3, l4 are the internal
circles of the bases S1 and S2; l5 is the circle, which is obtained by the intersection
of the plane x3 = h/2 and the surface Sh; l6 and l7 are circles, which are obtained
by the intersection of the planes x3 = h/3, x3 = 2h/3 and the surface Sc. It is
evident these circles represent discontinuity curves of the first kind for the function

g(y). S is the surface of D or S = (
7⋃

j=1
Sj)

⋃
(

7⋃
k=1

lk), where Sj (j = 1, 7) are the

parts of S without discontinuity curves. In the physical sense the above circles are
non-conductors(or dielectrics).

In order to determine the intersection points yi = (yi
1, y

i
2, y

i
3) (i = 1, N) of the

trajectory of the simulated Wiener process and the surface S, we operate in the
following way. During the implementation of the simulated Wiener process, for each
current point x(tk), defined from (2.3), its location with respect to S is checked,
i. e., for the point x(tk) the values dc and dh are calculated and as above and the
following conditions: 1∗) dc < 0, dh > 0 and 0 < x3(tk) < h; 2∗) dc = 0 or dh = 0
and0 < x3(tk) < h; 3∗) x3(tk) = 0 or x3(tk) = h are checked. In the first case
x(tk) ∈ D and the process continuous until it crosses the surface S. In the second
case x(tk) ∈ Sc (or x(tk) ∈ Sh) and yi = x(tk). In the third case: if r3 < r < r2

then yi = (x1(tk), x2(tk), 0); if r3 < r < r1 then yi = (x1(tk), x2(tk), h).
If x(tk−1) ∈ D for the moment t = tk−1 and x(tk)∈D for the moment t = tk,

then the trajectory of the simulated Wiener process intersects any lateral surface
of D (or any base of D). In this case, for the determination of the intersection
points the same algorithm, described in Example 1 is applied.

In Table 5.4B the absolute errors ∆i of the approximate solution uN (x) of the
test problem B at the points xi ∈ D (i = 1, 5) are presented.

The values of the approximate solution uN (x) of problem A at the points xi ∈ D
(i = 1, 5) are given in Table 5.4A. Since the boundary function (5.7) is symmetric
with respect to the axis Ox3, therefore,

In the role of xk (k = 4, 5), the points which are symmetric with respect to
the axis Ox3 are taken. The obtained results have sufficient accuracy for many
practical problems and are in good agreement with the real physical picture.

In this work we solved problems of type A when the boundary functions gi(y)
(i = 1,m) are constants. This was motivated by our interest to find out how well
the obtained results agreed with the real physical picture. It is evident that solving
Problem A under condition (2.5) is as easy as Problem B. In general, we can
solve Problem A for all locations of discontinuity curves, which give the possibility
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Table 5.4B. Results for Problem B (in Example 4)

xi (0.7, 0, 0.5) (0.7, 0, 1.5) (0.7, 0, 2.5) (1.5, 0, 0.8) (−1.5, 0, 0.8)
N ∆1 ∆2 ∆3 ∆4 ∆5

5E + 3 0.26E − 3 0.10E − 4 0.72E − 4 0.94E − 4 0.23E − 3
1E + 4 0.53E − 5 0.83E − 4 0.73E − 4 0.39E − 4 0.97E − 4
5E + 4 0.32E − 4 0.79E − 4 0.22E − 4 0.16E − 4 0.41E − 4
1E + 5 0.52E − 4 0.22E − 4 0.11E − 4 0.61E − 4 0.34E − 4
5E + 5 0.44E − 4 0.13E − 4 0.13E − 4 0.76E − 5 0.56E − 5
1E + 6 0.13E − 4 0.19E − 4 0.44E − 5 0.27E − 4 0.49E − 4

Table 5.4A. Results for Problem A (in Example 4)

xi (0.7, 0, 0.5) (0.7, 0, 1.5) (0.7, 0, 2.5) (1.5, 0, 0.8) (−1.5, 0, 0.8)
N uN (x1) uN (x2) uN (x3) uN (x4) uN (x5)

5E + 3 1.58250 1.17140 0.75460 1.42940 1.43050
1E + 4 1.57505 1.17575 0.76385 1.43260 1.43145
5E + 4 1.57919 1.17592 0.75844 1.42844 1.43036
1E + 5 1.57734 1.17522 0.75886 1.42485 1.43017
5E + 5 1.57751 1.17445 0.75986 1.43074 1.43015
1E + 6 1.57720 1.17423 0.75966 1.43181 1.43055

to establish the part of surface S where the intersection point is located. The
analysis of the results of numerical experiments show that the results obtained by
the proposed algorithm are reliable and it is effective for the numerical solution of
problems of type A and B. In particular, the algorithm is sufficiently simple for
numerical implementation.

6. Concluding Remarks

1. In this work, we have demonstrated that the probabilistic method (PM) is ide-
ally suited for numerically solving of both ordinary and generalized 3D Dirichlet
harmonic problems for a wide class of axisymmetric finite domains with cylindrical
holes.

2. The PM does not require the approximation of the boundary function, which
is one of its important properties.

3. It is easy to program, its computational cost is low, it is characterized by an
accuracy which is sufficient for many practical problems.

4. In the future we plan to investigate the following:
* Application of the proposed method to the numerical solution of the Dirichlet

generalized harmonic problem for truncated regular n-sided pyramidal domains
with cylindrical, conical and prismatic holes.

* Application of the PM for the same type of problem for irregular pyramidal
domains.

* Application of the PM for the same type of problem in domains which are
bounded by several closed surfaces.

* Application of the PM for the same problem for infinite 3D domains.
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