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The work of Wendelin Werner and his collaborators represents one of the most 
exciting and fruitful interactions between mathematics and physics in recent 
times. Werner's research has developed a new conceptual framework for 
understanding critical phenomena arising in physical systems and has brought 
new geometric insights that were missing before. The theoretical ideas arising 
in this work, which combines probability theory and ideas from classical 
complex analysis, have had an important impact in both mathematics and 
physics and have potential connections to a wide variety of applications. 
 
A motivation for Wendelin Werner's work is found in statistical physics, where 
probability theory is used to analyze the large-scale behavior of complex, many-
particle systems. A standard example of such a system is that of a gas: 
Although it would be impossible to know the position of every molecule of air in 
the room you are sitting in, statistical physics tells you it is extremely unlikely 
that all the air molecules will end up in one corner of the room. Such systems 
can exhibit phase transitions that mark a sudden change in their macroscopic 
behavior. For example, when water is boiled, it undergoes a phase transition 
from being a liquid to being a gas. Another classical example of a phase 
transition is the spontaneous magnetization of iron, which depends on 
temperature. At such phase transition points, the systems can exhibit so-called 
critical phenomena. They can appear to be random at any scale (and in 
particular at the macroscopic level) and become "scale-invariant", meaning that 
their general behavior appears statistically the same at all scales. Such critical 
phenomena are remarkably complicated and are far from completely 
understood. 
 
In 1982 physicist Kenneth G. Wilson received the Nobel Prize for his study of 
critical phenomena, which helped explain "universality": Many different 
physical systems behave in the same way as they get near critical points. This 
behavior is described by functions in which a quantity (for instance the 
difference between the actual temperature and the critical one) is raised to an 
exponent, called a "critical exponent" of the system. Physicists have 
conjectured that these exponents are universal in the sense that they depend 
only on some qualitative features of the system and not on its microscopic 
details. Although the systems that Wilson was interested in were mainly three- 
and four-dimensional, the same phenomena also arise in two-dimensional 
systems. During the 1980s and 1990s, physicists made big strides in 
developing conformal field theory, which provides an approach to studying two-
dimensional critical phenomena. However, this approach was difficult to 
understand in a rigorous mathematical way, and it provided no geometric 



picture of how the systems behaved. One great accomplishment of Wendelin 
Werner, together with his collaborators Gregory Lawler and Oded Schramm, 
has been to develop a new approach to critical phenomena in two dimensions 
that is mathematically rigorous and that provides a direct geometric picture of 
systems at and near their critical points. 
 
Percolation is a model that captures the basic behaviour of, for example, a gas 
percolating through a random medium. This medium could be a horizontal 
network of pipes where, with a certain probability, each pipe is open or 
blocked. Another example is the behaviour of pollutants in an aquifer. One 
would like to answer questions such as, What does the set of polluted sites 
look like? Physicists and mathematicians study schematic models of 
percolation such as the following. First, imagine a plane tiled with hexagons. A 
toss of a (possibly biased) coin decides whether a hexagon is colored white or 
black, so that for any given hexagon the probability that it gets colored black is 
p and the probability that it gets colored white is then 1 - p. If we designate one 
point in the plane as the origin, we can ask, Which parts of the plane are 
connected to the origin via monochromatic black paths? This set is called the 
"cluster" containing the origin. If p is smaller than 1/2, there will be fewer 
black hexagons than white ones, and the cluster containing the origin will be 
finite. Conversely, if p is larger than 1/2, there is a positive chance that the 
cluster containing the origin is infinite. The system undergoes a phase 
transition at the critical value p = 1/2. 
 
This critical value corresponds to the case where one tosses a fair coin to 
choose the color for each hexagon. In this case, one can prove that all clusters 
are finite and that whatever large portion of the lattice one chooses to look at, 
one will find (with high probability) clusters of size comparable to that portion. 
The accompanying picture represents a sample of a fairly large cluster. 
 
The percolation model has drawn the interest of theoretical physicists, who 
used various non-rigorous techniques to predict aspects of its critical behavior. 
In particular, about fifteen years ago, the physicist John Cardy used conformal 
field theory to predict some large-scale properties of percolation at its critical 
point. Werner and his collaborators Lawler and Schramm studied the 
continuous object that appears when one takes the large-scale limit---that is, 
when one allows the hexagon size to get smaller and smaller. They derived 
many of the properties of this object, such as, for instance, the fractal 
dimension of the boundaries of the clusters. Combined with Stanislav 
Smirnov's 2001 results on the percolation model and earlier results by Harry 
Kesten, this work led to a complete derivation of the critical exponents for this 
particular model. 
 
Another two-dimensional model is planar Brownian motion, which can be 
viewed as the large-scale limit of the discrete random walk. The discrete 
random walk describes the trajectory of a particle that chooses at random a 
new direction at every unit of time. The geometry of planar Brownian paths is 
quite complicated. In 1982, Benoit Mandelbrot conjectured that the fractal 
dimension of the outer boundary of the trajectory of a Brownian path (the outer 



boundary of the blue set in the accompanying picture) is 4/3. Resolving this 
conjecture seemed out of reach of classical probabilistic techniques. Lawler, 
Schramm, and Werner proved this conjecture first by showing that the outer 
frontier of Brownian paths and the outer boundaries of the continuous 
percolation clusters are similar, and then by computing their common 
dimension using a dynamical construction of the continuous percolation 
clusters. Using the same strategy, they also derived the values of the closely 
related "intersection exponents" for Brownian motion and simple random walks 
that had been conjectured by physicists B. Duplantier and K.-H. Kwon (one of 
these intersection exponents describes the probability that the paths of two 
long walkers remain disjoint up to some very large time). Further work of 
Werner exhibited additional symmetries of these outer boundaries of Brownian 
loops. 
 
Another result of Wendelin Werner and his co-workers is the proof of the 
"conformal invariance" of some two- dimensional models. Conformal invariance 
is a property similar to, but more subtle and more general than, scale 
invariance and lies at the roots of the definition of the continuous objects that 
Werner has been studying. Roughly speaking, one says that a random two-
dimensional object is conformally invariant if its distortion by angle-preserving 
transformations (these are called conformal maps and are basic objects in 
complex analysis) have the same law as the object itself. The assumption that 
many critical two-dimensional systems are conformally invariant is one of the 
starting points of conformal field theory. Smirnov's above-mentioned result 
proved conformal invariance for percolation. Werner and his collaborators 
proved conformal invariance for two classical two-dimensional models, the 
loop-erased random walk and the closely related uniform spanning tree, and 
described their scaling limits. A big challenge in this area now is to prove 
conformal invariance results for other two-dimensional systems. 
 
Mathematicians and physicists had developed very different approaches to 
understanding two-dimensional critical phenomena. The work of Wendelin 
Werner has helped to bridge the chasm between these approaches, enriching 
both fields and opening up fruitful new areas of inquiry. His spectacular work 
will continue to influence both mathematics and physics in the decades to 
come. 
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