

FIGURE 1. The form of the set $g_y(x, y) = 0$

1. Abstract

We consider the problem of finding heteroclinic solutions x(s), y(s), of the singularly perturbed system

(1.1)

$$\begin{array}{rcl}
x'' &=& g_x(x,y) \\
\epsilon^2 y'' &=& g_y(x,y) \\
x &=& x(s) , \quad y = y(s) , \quad s \in \mathbb{R} , \quad ' = \frac{d}{ds}
\end{array}$$

which are approximated, when ϵ is small, by a non-smooth connection for the formal limiting system obtained by setting $\epsilon = 0$. The irregularity in the formal limit arises due to the branching nature of the set of solutions (x, y) of the degenerate relation $0 = g_y(x, y)$ (see Fig. 2). Thus the critical manifold will have a "corner" singularity. The salient features of the function g are

(i) g(x,y) = g(x,-y), $\forall (x,y) \in \mathbb{R}^2$. (This assumption is for convenience only.) (ii) g has three nondegenerate equal global minima at (0,0), (x_1,y_1) , and $(x_1,-y_1)$, where $x_1 > 0$, and $y_1 > 0$. Without loss of generality, we assume that $g(0,0) = g(x_1,y_1) = g(x_1,-y_1) = 0$.

(iii) There exists a continuous function, with finitely many points of nondifferentiability $Y : [-\delta, x_1 + \delta] \to [0, \infty), \ \delta > 0$ small, such that $Y(0) = 0, \ Y(x_1) = y_1, \ g_y(x, Y(x)) = 0, \ \forall x \in [-\delta, x_1 + \delta] \text{ and } g(x, Y(x)) \neq 0, \ \forall x \in (0, x_1).$

We show existence of solutions $(x, y) \in C^2(\mathbb{R}) \times C^2(\mathbb{R})$ of (1.1) which satisfy

(1.2)
$$(x(-\infty), y(-\infty)) = (0, 0)$$
 and $(x(\infty), y(\infty)) = (x_1, y_1)$

and their projection on the x - y plane converges as $\epsilon \to 0$ to the set $\{(x, Y(x)), x \in (0, x_1)\}$.