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Introduction to multicommodity flow theory

I. From single-commodity flow to multicommodity flow
[I. Multiflow-metric duality and beyond

[1l. Multiflows as LP-relaxations of NP-hard problems

Notation: undirected graph G = (V, E)
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Part I: From single-commodity flow to multicommodity flow
1. Max-flow min-cut theorem (Ford-Fulkerson 56)
2. Two-commodity flow: max-biflow min-cut theorem (Hu 63)

3. Free multiflow: Lovasz-Cherkassky theorem
(Lovész 76, Cherkassky 77)

4. Splitting-off method
5. Fractionality
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Maximum Flow Problem

t

=(V,E), c: E — Z. edge-capacit

(G, c): undirected network
s,t € V: sink-source pair

Definition: (s, t)-flow f = (P, )

LU P 5 set of (s, t)-paths, A\ : P — R4 flow-value function s.t.

f(e):=) {MP)|PeP:ecP}<c(e) (ecE).

Total flow-value ||| := S {A(P) | P € P}

Maximum Flow Problem

Maximize ||f|| over all (s, t)-flows f in (G, c).
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Labeling method (Ford-Fulkerson 56)

0. P=10.
1. Orient all paths in P as s — t.

2. Label nodes from s as
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Labeling method (Ford-Fulkerson 56)
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Labeling method (Ford-Fulkerson 56)
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3. If t is labeled, then we get an augmentmg path P and let

P <~ P + P, do cancellations as ¢ ¢

and go to 1.

4. If t is unlabeled, then P is maximum,
and stop (labeled nodes give min-cut).
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Max-Flow Min-Cut Theorem (Ford-Fulkerson 56)

O0X: edge set between X and V \ X.
c(0X) = 2 ecox c(e)-

Max-Flow Min-Cut Theorem (Ford-Fulkerson 56)

mfafoH =min{c(0X) |s e X # t}.

Moreover the maximum is attained by an integral flow.

combinatorial optimization, algorithmic proof, min-max theorem,
LP-relaxation, polyhedral combinatorics, Menger's theorem,
bipartite matching, multicommodity flows, . ..
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Multicommodity Flows

(G = (V,E),c): undirected network (G,c)
HC (‘2/) commodity graph i

Multiflow f = {(s, t)-flow fst}ster: Y gep fsr(€) < c(e) (e € E)

Maximum Multiflow Problem

Maximize .,y || fst|| over all multiflows f = {ft}sters in (G, c).

Many other formulations, e.g., feasibility, concurrent flows, ...

Polynomially solvable by LP-solver (ellipsoid or interior point),
but no combinatorial polynomial time algorithm is known.

Integer version is NP-hard for almost H.

Half-integrality phenomena.
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Two-Commodity Flows

: t
H = {st,s't'} °
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Two-Commodity Flows
] t
H = {st,s't'} " /
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Two-Commodity Flows
] t
H = {st,s't'} " /

Max-biflow Min-Cut Theorem (Hu 63)

max || fst|| + ||fse || = min{(ss’, tt’)-mincut, (st’, ts’)-mincut}

Moreover the maximum is attained by a half-integral flow.
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Free Multiflows

H= (‘g) for terminal set S C V
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Free Multiflows

H= (‘2) for terminal set S C V
T
e .\
@ \
P
\\._/

Theorem (Lovéasz 76, Cherkassky 77)

max Z | fsell = %Z (t, S\ t)-mincut

ste(g) tes

Moreover the maximum is attained by a half-integral flow.

Hiroshi Hirai Multiflow Theory in Combinatorial Optimization



Cherkassky's algorithmic proof
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Cherkassky's algorithmic proof

freeze (s, u)-flow
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Cherkassky's algorithmic proof

[ fsel + [[feull + (| fus|l =
(s, {t, u})-mincut + (t, {s, u})-mincut + (u, {s, t})-mincut }
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Splitting-off method

Splitting-off operation:

N\

or———o
Def. (G = (V, E), c): Eulerian €% ¢(9x) € 2Z (Vx € V)
Theorem (Rothschild-Winston 66, Lovasz 76)
Suppose (G = (V, E), ¢) is Eulerian.

max  ||fst]|+ ||fsre || = min{(ss’, tt')-mincut, (st’, ts)-mincut}
integral flow

max Zste(g) ||f—StH = %Ztes (t,s \ t)—mincut

integral flow
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Fractionality Problem

Fractionality

frac(H) := the least positive integer k with property:
3 1/k-integral maximum flow for ¥(G, c; H).

Problem (Karzanov, ICM Kyoto 90)

Classify commodity graphs having finite fractionality.

frac(1) =1 (Ford-Fulkerson 56)
frac( 1) =2 (Hu 63)
frac(|11---1) =400

——

k>3

frac(A) = frac(X) = frac(K,) = 2 (Lovész 76, Cherkassky 77)
frac(| A) =2 (Karzanov 98)
frac(| X) = frac(Ky + K,) = 4 (Lomonosov 04)
frac(A A) =7
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Part 1I: Multiflow-metric duality and beyond

1. Japanese Theorem (Onaga-Kakusho 71, Iri 71)
2. T-duality
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Multiflow-Metric Duality (Onaga-Kakusho, Iri 71 ~)

Multiflow is a linear programming — LP-dual by metric

LP-duality:  max. pu'x = min. y'c
s.t. Ax < ¢ s.t. yTA > i
x>0 y=>0

Metric: d:V xV = Ry,
d(x,x) =0 (x€ V),
d(x,y) =d(y,x) (x,y € V),
d(x,y)+d(y,z) > d(x,z) (x,y,ze€ V).

h-metric: [[x —yll1 =Y Ixi—yil (x,y € R")

lso-metric: || X — y|looc = MaXj=12...n
graph-metric: distg (x,y) = min{>_ p/(e) | (x,y)-path P}

xi—yil (x,y €R")
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Multiflow-Metric Duality

e feasibility (Onaga-Kakusho, Iri 71)
e cut condition v.s. cut decomposability (cf. Avis-Deza 91)
e concurrent flow (Shahrokhi-Matula 90)

o approximate max-flow min-cut theorem (Leighton-Rao 88)

e conductances in Markov chains (Sinclair 89)

o low-distortional embedding v.s. approximation of sparsest cuts
(Linial-London-Rabinovich 95, Aumann-Rabani 98, ...)

@ maximization (Karzanov-Lomonosov 70s ~)
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Our version

(G =(V,E),c): undirected network with terminal set S C V

e (g) — R4: terminal weight

p-weighted maximum multiflow problem

Maximize 3~ sy 1(st)|foell over all multiflows f = {fit} . s)
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Our version

(G =(V,E),c): undirected network with terminal set S C V
e (‘;) — R4: terminal weight

p-weighted maximum multiflow problem

Maximize 3~ sy 1(st)|foell over all multiflows f = {fit} . s)

Theorem (Multiflow-Metric Duality)
max S u(st)lfel = Min. 3 c()d(x,v)

xy€E
s.t. d: metricon V, d(s,t) > u(st) (s,t €S

— blackboard
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max Y u(st)||fst|| = Min>_ c(xy)d(x,y) s.t.d: metricon V,...

Theorem (Karzanov 98, H. 09)

max Y u(st)l|fsell = Min. Y c()lp(x) = p(y)lloo

xy€E

st.p: V=T, p(s) € Tus (s€S).

Tight span (Isbell 64, Dress 84)

T, := Minimal {p € R | p(s) + p(t) > p(s,t) s,t € S}
Tus == Tu {p(s) = 0} (s € )

— blackboard
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max [ e[| + | feul| + || foull
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(G, ¢) p(u) J}ZE?))i zi)((ztt))i 1
p, p(u) +p(s) > 1
//pu)
3 ............
o LT > pls)
max || fse|| + ||feull + [[fsull = min ZEC(XY)HP(X)—P(V)H
e

st.p: V= Ty, p(s) € Tys
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71@8
(7-‘#7100>
P
1/2
Ty,t Tﬂau
max || feel| + [[feull + [l = min > c(x)llo(x) = p(y)|
xy€E

st.p: V= Ty, p(s) € Tys
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Example

(G, ¢)

max [|fot || + [l frull + [l fsu
1
=5 {(s,{t, u})-mincut + (t,{s, u})-mincut + (u, {s, t})-mincut} .
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A Solution of the Fractionality Problem

Fractionality

frac(u) := the least positive integer k with property:
3 1/k-integral max flow for V p-max multiflow problem

Theorem (H. 07-09, STOC2010)

o dim T, <2 — frac(u) < 24
e dim T, > 3 — frac(u) = +o0

Problems 51,52 in:
A. Schrijver, " Combinatorial Optimization”, 2003.
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Digression: what is tight span ?

Tight span (Isbell 64, Dress 84)

T, := Minimal{p € RS | p(s) + p(t) > (s, t) s,t € S}

64 Isbell: category of metric spaces, injective hull
84 Dress: phylogenetic tree

94 Chrobak-Larmore: k-server problem

98 Karzanov, Chepoi: connection to multiflows

06 Hirai: nonmetric version

Hiroshi Hirai Multiflow Theory in Combinatorial Optimization



Part 1ll: Multiflows as LP-relaxations of NP-hard problems

1. Approximate max-flow min-cut theorems
(Leighton-Rao 88, ...)

2. Minimum 0-extensions

Of course, multiflow is an LP-relaxation of edge-disjoint paths,
but...
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Multicut

(G =(V,E),c): undirected network

H: commodity graph of k edges

Def. multicut w.r.t. H

PLN edge subset £ with PN & # () for every H-path.

Minimum multicut problem

Minimize ¢(€) over multicuts £.

Weak duality

max Z |Ifst]l < Min. multicut
steH
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Multicut

(G = (V,E),c): undirected network

H: commodity graph of k edges

Def. multicut w.r.t. H

PLN edge subset £ with PN & # () for every H-path.

Minimum multicut problem

Minimize ¢(€) over multicuts £.

Theorem (Garg-Vazirani-Yannakakis 96)

max Z |Ifst]l < Min. multicut < O(log k) max Z | o ||
steH steH
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Maximum concurrent flow and Sparsest cut

(G = (V,E),c): undirected network
H: commodity graph of k edges
q:H— Z,: demand function

Maximum concurrent flow
Maximize 7 s.t. @ > 0: If = {fst}sten, ||fst|| = mq(st) (Vst € H)

Multiflow-metric duallty (Shahrokhi-Matula 90)

Max m = m|n —— s.t. metricd on V.
q- d

Sparsest cut problem

Minimize ng))g over ) £ X C V.

Conductance in Markov chain (Sinclair 89)
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Sparsest cut and Low-distortional embedding

Theorem (Bourgain 85)

For any n-point metric d, there is an /;-metric d* such that
d* < d < O(logn)d*

— d* =) X\idx,, where dx: cut metric.

Theorem (Linial-London-Rabinovich 95, Aumann-Rabani 98)

c-d c(8X) . c-d
< —_—
< O(log k) min 0 d

V. V. Vazirani, “"Approximation Algorithms”, 2001.
J. Matousek, “Lectures on Discrete Geometry”, 2002.
(3 Japanese translations !)
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Minimum 0O-extension problem

(G =(V,E),c): undirected network

S: terminal set with |S| = k

w: metric on S

Def: extension d of pon V &% metric d on V with dls = p.
Def: 0-extension d of y on V

L% extension d s.t. Vx € V,3 € S with d(s,x) = 0.

Minimum 0-extension problem

Minimize ¢ - d over O-extensions d.
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Minimum 0O-extension problem

(G =(V,E),c): undirected network

S: terminal set with |S| = k

w: metric on S

Def: extension d of pon V &% metric d on V with dls = p.
Def: 0-extension d of y on V

L% extension d s.t. Vx € V,3 € S with d(s,x) = 0.

Minimum 0-extension problem

Minimize ¢ - d over O-extensions d.

Minimum O-extension problem (alternative form)

Min >°,, c(xy)u(p(x), p(y)) st. p: V = S, p|s = identity.

Multiway cut, computer vision, ...
A special class of metric labeling problem (Kleinberg-Tardos 98)
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Metric relaxation

A. Karzanov: Minimum 0-extensions of graph metrics, Europ. J. combin. 1998

Metric relaxation (Karzanov 98)

Minimize c - d over extensions d

= Min ¢ - d s.t. metric d on V with d|s = p.
= Max > u(st)||fst|l s.t. : multiflow in (G, c; S)
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Metric relaxation

A. Karzanov: Minimum 0-extensions of graph metrics, Europ. J. combin. 1998

Metric relaxation (Karzanov 98)

Minimize c - d over extensions d

= Min ¢ - d s.t. metric d on V with d|s = p.
= Max > u(st)||fst|l s.t. : multiflow in (G, c; S)

Theorem (Calinescu-Karloff-Rabani 04)

max Y u(st)||fst|| < Min 0-extension < O(log k) max > uu(st)||fst|]
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Metric relaxation

A. Karzanov: Minimum 0-extensions of graph metrics, Europ. J. combin. 1998

Metric relaxation (Karzanov 98)

Minimize c - d over extensions d

= Min ¢ - d s.t. metric d on V with d|s = p.
= Max > u(st)||fst|l s.t. : multiflow in (G, c; S)

Theorem (Calinescu-Karloff-Rabani 04)
max Y u(st)||fst|| < Min 0-extension < O(log k) max > uu(st)||fst|]

Theorem (Karzanov 98)

If u is the graph metric of a frame,
then metric relaxation exactly solves minimum 0-extension.
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Frames and 2-dimensional tight spans

Definition

frame <L 5 bipartite graph with properties:

@ no isometric cycle of length > 4 >

@ orientable

Hiroshi Hirai Multiflow Theory in Combinatorial Optimization



Frames and 2-dimensional tight spans

frame <L 5 bipartite graph with properties:

@ no isometric cycle of length > 4 >

@ orientable

Theorem (Karzanov 98)

If v is the graph metric of a frame, then T, is obtained by
filling a folder to each maximal K> m-subgraph.
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Concluding remarks

Multiflow theory is a frontier of combinatorial optimization !!

There are many important topics | did not mention here (sorry):

@ Multiflows on planar graphs (Okamura-Seymour, ..)
@ FPTAS for multiflows (Garg-Kénemann, ...)
@ Mader's A-path theorem and generalizations
(nonzero A-paths (Chudnovsky et.al.), ...)
@ Disjoint path problems (Robertson-Seymour, ...)
— go to RAMP symposium 10/28-29 (Kobayashi's talk)
° .
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