演習問題

入力: ブール変数U, クローズ集合 Γ (各クローズはリテラルを**丁度**3個含む), 非負整数のクローズ重み w: $\Gamma \to Z_+$

下記の問題を01整数計画に定式化し、丸め法を用いた近似解法を構築し、その近似比率を算定しなさい。

P1: min.
$$\sum_{\{b,b',b''\}=C\in\Gamma} w(C) (x(b)+x(b')+x(b''))^2$$

s. t. $x(a)+x(\neg a)=1$, $x(a)$, $x(\neg a)\in\{0,1\}$ $(\forall a\in U)$.
P2: min. $\sum_{\{b,b',b''\}=C\in\Gamma} w(C) \min\{2,x(b)+x(b')+x(b'')\}$
s. t. $x(a)+x(\neg a)=1$, $x(a)$, $x(\neg a)\in\{0,1\}$ $(\forall a\in U)$.
P3: max. $\sum_{\{b,b',b''\}=C\in\Gamma} w(C) \min\{2,x(b)+x(b')+x(b'')\}$
s. t. $x(a)+x(\neg a)=1$, $x(a)$, $x(\neg a)\in\{0,1\}$ $(\forall a\in U)$.

P1 目的関数値

P1: min.
$$\sum_{\{e, f, g\} = C \in \Gamma} w(C) (x(e) + x(f) + x(g))^2$$

s. t. $x(a) + x(\neg a) = 1$, $x(a)$, $x(\neg a) \in \{0,1\}$ $(\forall a \in U)$.

$$C = \{e, f, g\}$$
 とすると $x_i \in \{0,1\}$ ($\forall i$) ならば $(x(e) + x(f) + x(g))^2$ $= (x(e))^2 + (x(f))^2 + (x(g))^2 + 2x(e)x(f) + 2x(f)x(g) + 2x(g)x(e)$ $= x(e) + x(f) + x(g) + 2x(e)x(f) + 2x(f)x(g) + 2x(g)x(e)$

P1 独立丸め法(IR)の適用

IR を使うことにしよう!

 $0 \le x \le 1$ を満たすベクトル.

X:xを用いてIRで得られる確率変数ベクトル.

Z:解Xに対応する目的関数値を表す確率変数.

$$Z = \sum_{\{e, f, g\} = C \in \Gamma} w(C) \begin{pmatrix} X(e) + X(f) + X(g) \\ +2X(e)X(f) + 2X(f)X(g) + 2X(g)X(e) \end{pmatrix}$$
 $E[Z] = \sum_{\{e, f, g\} = C \in \Gamma} w(C) \begin{pmatrix} x(e) + x(f) + x(g) \\ +2x(e)x(f) + 2x(f)x(g) + 2x(g)x(e) \end{pmatrix}$ が成り立つ.

P1 凸2次緩和

P1-1: min. $\sum_{C \in \Gamma} w(C)z(C)$

s. t.
$$z(C) \ge (x(e) + x(f) + x(g))^2$$
, $(\forall C = \{e, f, g\} \in \Gamma)$, $z(C) \ge x(e) + x(f) + x(g)$, $(\forall C = \{e, f, g\} \in \Gamma)$, $x(a) + x(\neg a) = 1$, $x(a)$, $x(\neg a) \in \{0,1\}$ $(\forall a \in U)$.

上記の連続緩和問題の最適値を z^* とし、最適解(x,z)を用いてIRを行う.

$$x(e) + x(f) + x(g) + 2x(e)x(f) + 2x(f)x(g) + 2x(g)x(e)$$

 $\leq x(e) + x(f) + x(g) + 2x(e)x(f) + 2x(f)x(g) + 2x(g)x(e)$
 $+(x(e))^2 + (x(f))^2 + (x(g))^2$
 $\leq x(e) + x(f) + x(g) + (x(e) + x(f) + x(g))^2 \leq 2z(C)$
 $E[Z] = \sum_{C \in \Gamma} w(C)2z(C) \leq 2z^* \rightarrow 2$ -近似

P1 最悪ケースは?

$$x(e) + x(f) + x(g) = \alpha$$
 と書くと,
 $2x(e)x(f) + 2x(f)x(g) + 2x(g)x(e)$ が最大となるのは
 $x(e) = x(f) = x(g) = \alpha/3$ のときで $3 \times 2(\alpha/3)^2 = \left(\frac{2}{3}\right)\alpha^2$

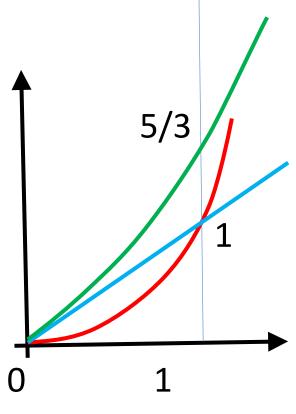
目的関数:
$$x(e) + x(f) + x(g) + (\frac{2}{3})\alpha^2 = \alpha + (\frac{2}{3})\alpha^2$$

最悪ケース解析なので、このときがネックになるのでは?↑

$$z(C) \ge \left(x(e) + x(f) + x(g)\right)^2 = \alpha^2$$

$$z(C) \ge x(e) + x(f) + x(g) = \alpha$$

$$\alpha + \left(\frac{2}{3}\right)\alpha^2 \le \left(\frac{5}{3}\right)\max\{\alpha^2,\alpha\}$$
 2-近似は算定が甘い?



P1 マクローリンの不等式

$$x(e) = x(f) = x(g) = \frac{1}{3}$$
, $z(C) = 1$ のときは?
 $x(e) + x(f) + x(g) + 2x(e)x(f) + 2x(f)x(g) + 2x(g)x(e) \rightarrow 1 + (2/3) = 5/3$
 $\leq x(e) + x(f) + x(g) + 2x(e)x(f) + 2x(f)x(g) + 2x(g)x(e)$
 $+(x(e))^2 + (x(f))^2 + (x(g))^2 \rightarrow 1/3 + 5/3 = 6/3 = 2$
 $\leq x(e) + x(f) + x(g) + (x(e) + x(f) + x(g))^2 \leq 2z(C) \rightarrow 2 \times 1$

対称関数を扱うとき便利なマクローリンの不等式(相加相乗平均を含む)

$$\sqrt[3]{pqr} \le \sqrt[2]{\frac{pq+qr+pr}{3}} \le \frac{p+q+r}{3}$$
 $(p = q = r \text{ のとき, すべて等号})$
 $\sqrt[4]{pqrs} \le \sqrt[3]{\frac{pqr+pqs+prs+qrs}{4}} \le \sqrt[2]{\frac{pq+pr+ps+qr+qs+rs}{6}} \le \frac{p+q+r+s}{4}$

P1 近似比率

$$\sqrt[3]{pqr} \le \sqrt[2]{\frac{pq + qr + pr}{3}} \le \frac{p + q + r}{3}$$

 $\left| \frac{\sum_{i < j} x_i x_j}{\sum_{i=1}^n x_i} \right| \le \frac{\sum_{i=1}^n x_i}{\sum_{i=1}^n x_i}$

$$x(e) + x(f) + x(g) + 2x(e)x(f) + 2x(f)x(g) + 2x(g)x(e)$$

$$\leq x(e) + x(f) + x(g) + 2 \times 3\left(\frac{x(e) + x(f) + x(g)}{3}\right)^{2}$$

$$\leq x(e) + x(f) + x(g) + \left(\frac{2}{3}\right)\left(x(e) + x(f) + x(g)\right)^{2}$$

$$\leq z(C) + \left(\frac{2}{3}\right)z(C) = \left(\frac{5}{3}\right)z(C)$$

$$E[Z] = \sum_{C \in \Gamma} w(C) \left(\frac{5}{3}\right) z(C) \le \left(\frac{5}{3}\right) z^* \to \left(\frac{5}{3}\right)$$
-近似

ちなみにn個の和の2乗ならば

$$\sum_{i=1}^{n} x_i + 2\sum_{i < j} x_i x_j \le \sum_{i=1}^{n} x_i + 2\binom{n}{2} \left(\frac{\sum_{i=1}^{n} x_i}{n}\right)^2$$

$$= \sum_{i=1}^{n} x_i + \left(\frac{n-1}{n}\right) \left(\sum_{i=1}^{n} x_i\right)^2 \le z(C) + \left(1 - \frac{1}{n}\right) z(C) = \left(2 - \frac{1}{n}\right) z(C)$$

P1 問題から2乗項を無くす!

P1: min.
$$\sum_{\{e,f,g\}=C\in\Gamma} w(C) (x(e)+x(f)+x(g))^2$$

s. t. $x(a)+x(\neg a)=1$, $x(a)$, $x(\neg a)\in\{0,1\}$ ($\forall a\in U$).
 $C=\{e,f,g\}$ とすると $x_i\in\{0,1\}$ ($\forall i$) ならば $(x(e)+x(f)+x(g))^2$
 $=(x(e))^2+(x(f))^2+(x(g))^2+2x(e)x(f)+2x(f)x(g)+2x(g)x(e)$
 $=x(e)+x(f)+x(g)+2x(e)x(f)+2x(f)x(g)+2x(g)x(e)$
以下のようにも書ける筈!

P1-2: min.
$$\sum_{\{e,f,g\}=C\in\Gamma} w(C) \begin{pmatrix} x(e) + x(f) + x(g) \\ +2x(e)x(f) + 2x(f)x(g) + 2x(g)x(e) \end{pmatrix}$$
 s. t. $x(a) + x(\neg a) = 1$, $x(a)$, $x(\neg a) \in \{0,1\}$ $(\forall a \in U)$.

P1 目的関数

P1-2: min.
$$\sum_{\{e, f, g\} = C \in \Gamma} w(C) \begin{pmatrix} x(e) + x(f) + x(g) \\ +2x(e)x(f) + 2x(f)x(g) + 2x(g)x(e) \end{pmatrix}$$

$$= \sum_{\{e, f, g\} = C \in \Gamma} w(C) \begin{pmatrix} \left(\frac{1}{2}\right)x(e) + 2x(e)x(f) + \left(\frac{1}{2}\right)x(f) \\ +\left(\frac{1}{2}\right)x(f) + 2x(f)x(g) + \left(\frac{1}{2}\right)x(g) \\ +\left(\frac{1}{2}\right)x(e) + 2x(e)x(g) + \left(\frac{1}{2}\right)x(g) \end{pmatrix}$$

s. t.
$$x(a) + x(\neg a) = 1$$
, $x(a)$, $x(\neg a) \in \{0,1\}$ $(\forall a \in U)$.

P1 下側凸包の記述

$$\left(\frac{1}{2}\right)x(e) + 2x(e)x(f) + \left(\frac{1}{2}\right)x(f)$$

$$z1(C) \ge (1/2)(x(e) + x(f))$$

$$z1(C) \ge (5/2)(x(e) + x(f)) - 2$$

P1-3: min.
$$\sum_{\{e, f, g\} = C \in \Gamma} w(C)(z1(C) + z2(C) + z3(C))$$

s. t.
$$z1(C) \ge (1/2)(x(e) + x(f))$$

 $z1(C) \ge (5/2)(x(e) + x(f)) - 2$
 $z2(C) \ge (1/2)(x(f) + x(g))$
 $z2(C) \ge (5/2)(x(f) + x(g)) - 2$
 $z3(C) \ge (1/2)(x(e) + x(g))$
 $z3(C) \ge (5/2)(x(e) + x(g)) - 2$ $(\forall C = \{e, f, g\} \in \Gamma), g$

 $x(a) + x(\neg a) = 1$, x(a), $x(\neg a) \in \{0,1\}$

$$z1(C)$$
 $x(f)$
 $1/2$
 $x(e)$

$$(\forall C = \{e, f, g\} \in \Gamma),$$

 $(\forall a \in U)$.

P1 独立丸め法

$$z1(C) \ge (1/2)(x(e) + x(f))$$

$$z1(C) \ge (5/2)(x(e) + x(f)) - 2$$

(x(e) + x(f))

P1-3の連続緩和の最適値を z^* とし、最適解(x,z)を用いてIRを行う.

$$\frac{\left(\frac{1}{2}\right)x(e) + 2x(e)x(f) + \left(\frac{1}{2}\right)x(f)}{2} \times \frac{1}{2} \times \frac{1}{2}$$

P1 制約式を集める

```
P1-4: min. \sum_{\{e, f, g\} = C \in \Gamma} w(C)(z1(C) + z2(C) + z3(C))
       s. t. z1(C) \ge (1/2)(x(e) + x(f))
              z1(C) \ge (5/2)(x(e) + x(f)) - 2
              z2(C) \ge (1/2)(x(f) + x(g))
              z2(C) \ge (5/2)(x(f) + x(g)) - 2 \qquad (\forall C = \{e, f, g\} \in \Gamma),
              z3(C) \ge (1/2)(x(e) + x(g))
               z3(C) \ge (5/2)(x(e) + x(g)) - 2
               z1(C) + z2(C) + z3(C) \ge (x(e) + x(f) + x(g))^2
               z1(C) + z2(C) + z3(C) \ge x(e) + x(f) + x(g)
               x(a) + x(\neg a) = 1, \ x(a), \ x(\neg a) \in \{0,1\} (\forall a \in U).
```

こうしたら、もっとなんとかなる?

P1 最悪ケース

$$C = \{e, f, g\}$$
 とし、 $x(e) = x(f) = x(g) = 1/3$ のとき
目的関数
 $x(e) + x(f) + x(g) + 2x(e)x(f) + 2x(f)x(g) + 2x(g)x(e) = 5/3$
制約
 $z1(C) + z2(C) + z3(C) \ge (x(e) + x(f) + x(g))^2 = 1$

P2 まずはやってみよう

P2: min.
$$\sum_{\{e,f,g\}=C\in\Gamma} w(C) \min\{2,x(e)+x(f)+x(g)\}$$

s. t. $x(a)+x(\neg a)=1, x(a), x(\neg a)\in\{0,1\}$ $(\forall a\in U).$

P2-1: min.
$$\sum_{\{e,f,g\}=C\in\Gamma} w(C)z(C)$$

s. t. $z(C) \ge \left(\frac{2}{3}\right) \left(x(e) + x(f) + x(g)\right) \quad (\forall C = \{e,f,g\} \in \Gamma),$
 $z(C) \in \{0,1,2\}$ $(\forall C \in \Gamma),$
 $x(a) + x(\neg a) = 1, \quad x(a), \quad x(\neg a) \in \{0,1\} \quad (\forall a \in U).$

P2 まずはやってみよう

P2-1-R: min.
$$\sum_{\{e,f,g\}=C\in\Gamma} w(C)z(C)$$

s. t. $z(C) \geq \left(\frac{2}{3}\right) \left(x(e) + x(f) + x(g)\right) \quad (\forall C = \{e,f,g\} \in \Gamma),$
 $z(C) \geq 0 \quad (\forall C \in \Gamma),$
 $x(a) + x(\neg a) = 1, \ 0 \leq x(a), \ x(\neg a) \quad (\forall a \in U).$

上記の連続緩和の最適値を z^* とし、最適解(x,z)を用いてIRを行う.

$$\begin{split} \mathrm{E}[\mathrm{Z}] &= \mathrm{E} \Big[\sum_{\{e,f,g\} = C \in \Gamma} w(C) \Big(X(e) + X(f) + X(g) - X(e) X(f) X(g) \Big) \Big] \\ &= \sum_{\{e,f,g\} = C \in \Gamma} w(C) \Big(x(e) + x(f) + x(g) - x(e) x(f) x(g) \Big) \\ &\leq \sum_{\{e,f,g\} = C \in \Gamma} w(C) \Big(x(e) + x(f) + x(g) \Big) \leq \Big(\frac{3}{2} \Big) \sum_{C \in \Gamma} w(C) z(C) = (\frac{3}{2}) z^* \\ &\qquad \qquad (3/2) - 近似 \end{split}$$

P2 もっと良くできるの?

- (1) IRで得られる解の算定を良くする
- (2) 丸め法をもっと良くする
- (3) 制約式をもつと良くする

$$E[Z] = E\left[\sum_{\{e,f,g\}=C \in \Gamma} w(C) (X(e) + X(f) + X(g) - X(e)X(f)X(g))\right]$$

$$= \sum_{\{e,f,g\}=C\in\Gamma} w(C) (x(e) + x(f) + x(g) - x(e)x(f)x(g))$$

$$\leq \sum_{\{e,f,g\}=C\in\Gamma} w(C) (x(e) + x(f) + x(g)) \leq \left(\frac{3}{2}\right) \sum_{C\in\Gamma} w(C) z(C) = \left(\frac{3}{2}\right) z^*$$

P2 解の算定が悪いんじゃないのか?

(1) IRで得られる解の算定

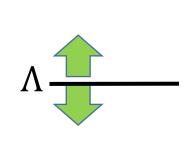
例えば
$$C = \{e, f, g\}$$
 で $x(e) = x(f) = x(g) = \varepsilon$ ならば,
$$z(C) = \left(\frac{2}{3}\right)(\varepsilon + \varepsilon + \varepsilon) = 2\varepsilon$$
$$E[X(e) + X(f) + X(g) - X(e)X(f)X(g)]$$
$$= x(e) + x(f) + x(g) - x(e)x(f)x(g) = 3\varepsilon - \varepsilon^3$$

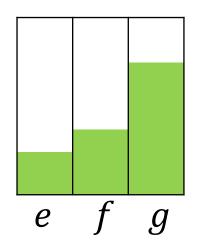
$$\frac{3\varepsilon - \varepsilon^3}{z(C)} = \frac{3\varepsilon - \varepsilon^3}{2\varepsilon} = \frac{3}{2} - \frac{\varepsilon^2}{2} \approx \frac{3}{2}$$

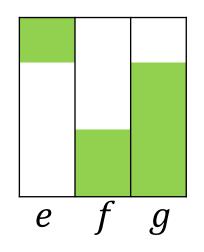
多分(3/2)-近似という推定は、そんなに悪くない!

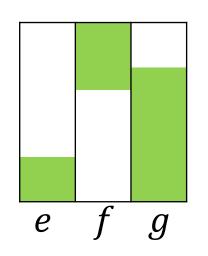
P2 丸め法が悪いんじゃないのか?

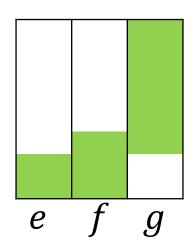
(2) 丸め法をもっと良くする \rightarrow 従属丸め法を使ってみよう! 例えば, $C = \{e, f, g\}$ で $x(e) \le x(f) \le x(g)$ としよう. (上下を無視すると, 下記の4つが等確率(1/4)で出現)









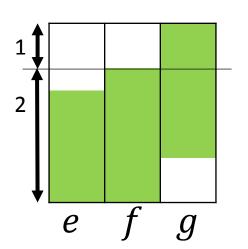


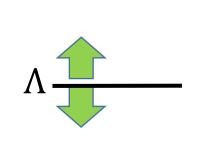
DRで得られる値
$$\leq \left(\frac{1}{4}\right)\left(\left(x(f) + x(g)\right) + 3\left(x(e) + x(f) + x(g)\right)\right)$$

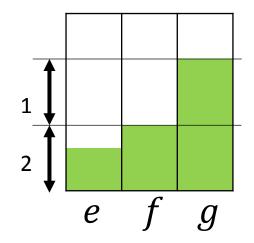
= $\left(\frac{1}{4}\right)(3x(e) + 4x(f) + 4x(g))$

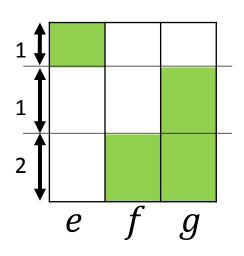
P2 丸め法が悪いんじゃないのか?

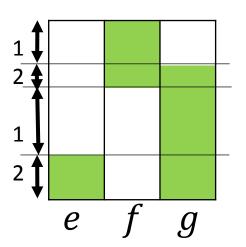
(2) 丸め法をもっと良くする \rightarrow 従属丸め法を使ってみよう! 例えば, $C = \{e, f, g\}$ で $x(e) \le x(f) \le x(g)$ としよう. (上下を無視すると, 下記の4つが等確率(1/4)で出現)

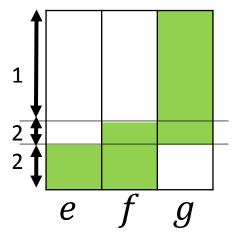












DRで得られる値
$$\leq \left(\frac{1}{4}\right)\left(\left(x(f) + x(g)\right) + 3\left(x(e) + x(f) + x(g)\right)\right)$$

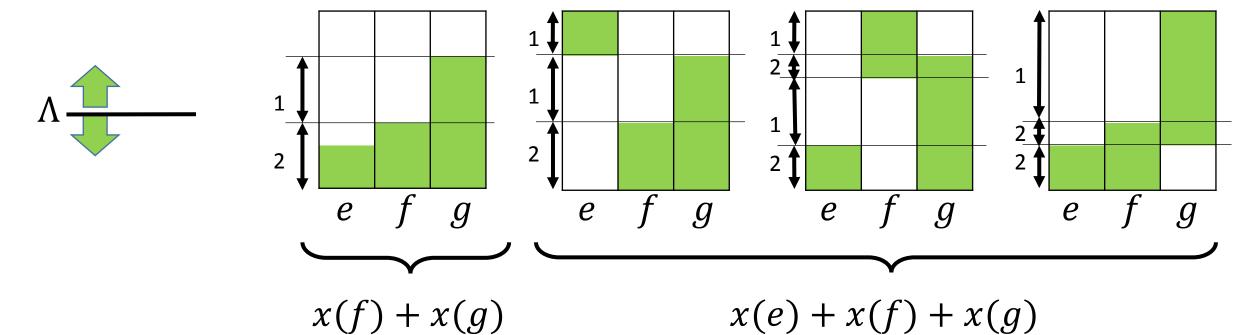
= $\left(\frac{1}{4}\right)(3x(e) + 4x(f) + 4x(g))$

P2 従属丸め法を使ってみよう

やっぱり(3/2)-近似

P2 従属丸め法を使ったとき

例えば、 $C = \{e, f, g\}$ で $x(e) \le x(f) \le x(g)$ としよう. (上下を無視すると、下記の4つが等確率(1/4)で出現)



2番目に大きいの+1番目に大きいの

P2「1番目に大きいの」と「2番目に大きいの」

(3) 制約式をもつと良くする

P2-2: min.
$$\sum_{\{C \in \Gamma} w(C)(z(C))$$

s. t. $z(C) \ge x(e) + x(f)$,
 $z(C) \ge x(f) + x(g)$,
 $z(C) \ge x(g) + x(e)$,
 $z(C) \in \{0,1\}$ $(\forall C \in \Gamma)$,
 $z(a) + x(\neg a) = 1$, $z(a)$, $z(a)$, $z(a)$ $z(a)$

$$z(C) \ge \left(\frac{2}{3}\right) \left(x(e) + x(f) + x(g)\right)$$
 は自動的に満たされる

P2「1番目に大きいの」と「2番目に大きいの」

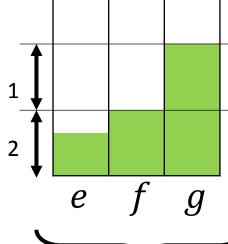
(3) 制約式をもつと良くする

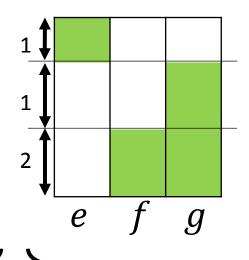
$$z(C) \ge x(e) + x(f)$$
,

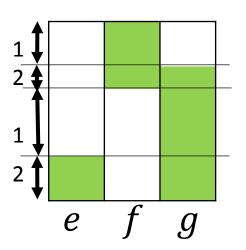
$$z(C) \ge \left(\frac{2}{3}\right) \left(x(e) + x(f) + x(g)\right)$$

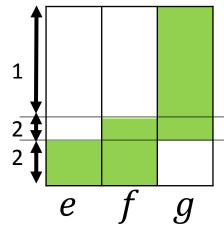
 $z(C) \ge x(f) + x(g)$, $\to z(C) \ge 1$ 番目に大きいの+2番目に大きいの

$$z(C) \ge x(g) + x(e)$$
,







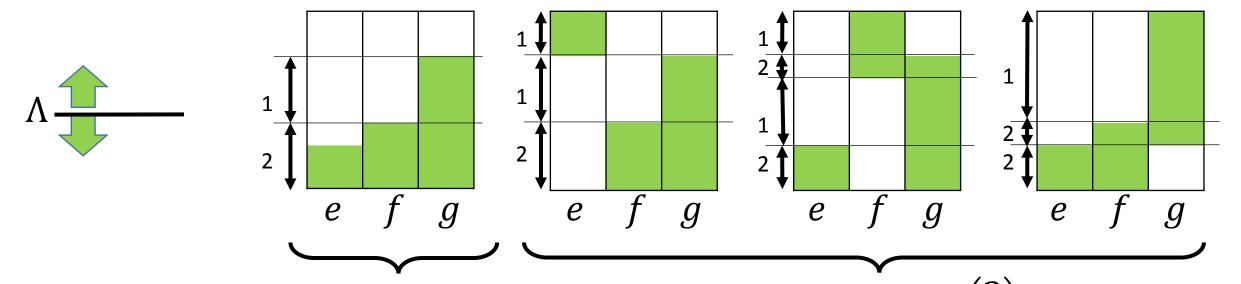


1番目に大きいの+2番目に大きいの $\leq z(C)$

総和
$$\leq \left(\frac{3}{2}\right)z(C)$$

P2「1番目に大きいの」と「2番目に大きいの」

(3) 制約式をもつと良くする



1番目に大きいの
$$+2$$
番目に大きいの $\leq z(C)$

総和
$$\leq \left(\frac{3}{2}\right)z(C)$$

DRで得られる値
$$\leq \left(\frac{1}{4}\right)z + \left(\frac{3}{4}\right)\left(\frac{3}{2}\right)z(C) = \left(\frac{11}{8}\right)z(C) \rightarrow (11/8)$$
-近似

P3: max.
$$\sum_{\{e,f,g\}=C\in\Gamma} w(C) \min\{2, x(e) + x(f) + x(g)\}$$

s. t. $x(a) + x(\neg a) = 1$, $x(a)$, $x(\neg a) \in \{0,1\}$ ($\forall a \in U$).

MAX SAT みたい!

P3-1: max.
$$\sum_{\{e,f,g\}=C\in\Gamma} w(C)z(C)$$

s. t. $x(e)+x(f)+x(g)\geq z(C)$ $(\forall C=\{e,f,g\}\in\Gamma),$ $z(C)\in\{0,1,2\}$ $(\forall C\in\Gamma),$ $x(a)+x(\neg a)=1, \ x(a), \ x(\neg a)\in\{0,1\}$ $(\forall a\in U).$

P3-1-R: max.
$$\sum_{\{e,f,g\}=C\in\Gamma} w(C)z(C)$$

s. t. $x(e) + x(f) + x(g) \ge z(C)$ $(\forall C = \{e,f,g\} \in \Gamma)$, $0 \le z(C) \le 2$ $(\forall C \in \Gamma)$, $x(a) + x(\neg a) = 1, \ 0 \le x(a), \ x(\neg a)$ $(\forall a \in U)$.

上記の連続緩和の最適値を z^* とし、最適解(x,z)を用いてIRを行う.

$$E[X(e) + X(f) + X(g) - X(e)X(f)X(g)]$$

$$= x(e) + x(f) + x(g) - x(e)x(f)x(g)$$

$$\geq (x(e) + x(f) + x(g)) - \left(\frac{x(e) + x(f) + x(g)}{3}\right)^{3}$$

P3 の目的関数値の期待値

$$E[X(e) + X(f) + X(g) - X(e)X(f)X(g)]$$

$$\geq (x(e) + x(f) + x(g)) - \left(\frac{x(e) + x(f) + x(g)}{3}\right)^{3}$$

$$\min\{2, x(e) + x(f) + x(g)\} \geq z(C)$$

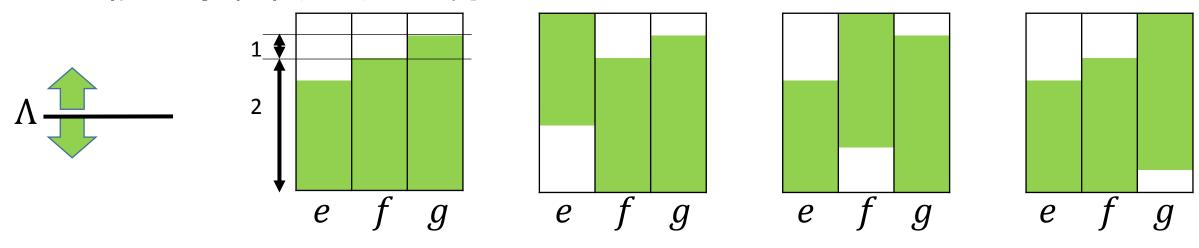
$$\alpha = x(e) + x(f) + x(g) \geq \frac{1}{3}$$

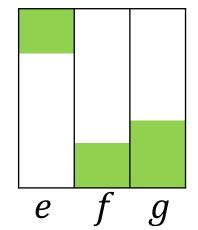
$$\frac{\alpha - \left(\frac{\alpha}{3}\right)^{3}}{\min\{2, \alpha\}} = \frac{\alpha - \frac{\alpha^{3}}{27}}{\min\{2, \alpha\}} \geq \frac{2 - \frac{8}{27}}{2}$$

$$= 1 - \frac{4}{27} = \frac{23}{27} = 0.851$$

P3 従属丸め法は?

下記が等確率(1/4)で出現





隙間があるケースも・・・・

すいません、分かりません