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不確実な最適化問題に対する定式化と解法 

l 第１部：　ロバスト最適化    (10:30 – 11:20) 
l 第２部：　確率計画法         (11:40 – 12:30) 

l 第３部：　ロバスト最適化や確率計画法の機械学習 
　　　　　　　問題への適用　　 (14:00 – 15:00) 
l 第４部：　演習 
l 第５部：　総括 
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講義の構成	



Mathematical Optimization	

•                                                     : 
 
•  If 　　　　　　　　　　　　　   are linear in     ,  
   the problem is called a linear programming problem.	

It helps to select a best element (with regard to some criteria) 
from some set of available alternatives.	

Mathematical Optimization Problem:　　	

3 



math.	  
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polynomial	  equa:ons	

Optimization Problem	

por;olio	  alloca:on	

…....	

Min:	
subj.to：	machine	  learning	  

Support	  Vector	  Machine	

(Linear Programming)	
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mathema:cal	  	  
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	  	  Solu:on	  Method	  
• Nonconvex	  Opt.	  
• Robust	  Op:miza:on	



Various Optimization Problems	

Continuous Optimization	 Discrete Optimization	

Semidefinite Program.	
Convex Program.	

Nonconvex Quadratic Program.	

Linear 0-1  
Integer Program.	

Quadratic 0-1  
Integer Program.	

Linear Integer Program.	

Problem name based  
on Application: 

Shortest Path Prob., Travelling 
Salesman Prob. Knapsack Prob. 	
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Linear 
Program.	

Second Order Cone Program.	

Quadratic Program. 	
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Second-order cone programming	

Euclidean norm 
	

•  SOCP can be reformulated as an instance of SDP.  
•  Convex quadratic programs can also be formulated as SOCPs.  
•  SOCPs can be solved with great efficiency by interior point 

methods. 



 

l Robust Optimization 
ü modeling strategies and solution methods for optimization  
    problems that are defined by uncertain inputs 
ü proposed by Ben-Tal & Nemirovski in 1998 

 
l Stochastic Programming 

ü classical framework for modeling optimization problems  
      involving uncertainty (studied since the 1950’s). 
ü assuming that probability distributions are known 
ü relation to robust optimization 
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Optimization Method under Uncertainty 	



Example : Power Generation Planning 
	

T. Electric Company has 2 turbines (Fuel： oil, natural gas).  
It wants to determine their production outputs to  

minimize production costs and satisfy electric demands.   

：Production Output 
                     [MWh]	

Decision Variable： 

Demand	

Unit Cost （Yen/MWh）	

　　　　Linear Programming: LP 
         （Simplex Method, 

           Interior Point Method）	
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 uncertainty sets:	

　Assump.:  uncertain inputs vary within a set (uncertainty set).  
The best decision is done under the worst-case scenario.	
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Formulation of Robust Optimization	



Necessity of Robust Solution	

　　PILOT4  (NETLIB library) 
1000 var., 410 const.,             : optimal solution 　	

……	

……	

……	

……	

……	

Change the coeff.       by its 0.1%  →  	
        e.g.,  

　  satisfying                               largely violates the perturbed one:  
　　　　　　　　　　　　	

 Ben-Tal & Nemirovski [’00]	
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Applications of Robust Optimization	

The obtained solution  
• is relatively insensitive to data variations, and  
• hedges against catastrophic outcomes.  
 
 Ben-Tal & Nemirovski  [’97]　　　 
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Truss topology under the load uncertainties ：　 
 constructing a building assuming a typical wind load 
→ neglecting the possibility of strong wind  
→ causing the building to collapse 　　　　 
　　　　　　　　　　　　                                          
Robust scheduling of chemical processing :  
 scheduling of multiproduct and multipurpose batch plants.  
→ neglecting variability of process and environmental data.  
→ causing fire and explosion 

Lin, Janak & Floudas [’04]　　　 
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[Radiation Therapy for Cancer Patients]	

http://www.newswise.com/articles/improving-radiation-therapy-for-cancer-patients 

Beams of radiation are delivered from different angles around a 
patient, targeting a tumor in their intersection while trying to spare 
nearby critical organs.  

T. C. Y. Chan et al. [’06]　　　 

→ Optimization methods determine  
     the angles of the beams and the  
     intensities of the beamlets, etc.   
 

→ Uncertainty in tumor position (e.g.,  
      lung tumors move as the patient  
      breathes during treatment) 
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Applications to Radio Therapy 	



Determining the optimal size of a residential grid-connected solar 
system to meet a certain CO2 reduction target at a minimum cost.    
                                                       [project from Japanese local authority] 
 

→ Useful to determine an amount of subsidy for system owners 
 

→ Taking into consideration uncertainty in the level of solar    
       irradiation (or solar energy) due to weather conditions 
 

Okido & Takeda [’12]　　　 [Solar Energy System] 	
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Applications to Solar Energy System	



When the data differs from the assumed nominal values,  
the generated optimal solution may violate  

critical constraints and perform poorly.  

It optimizes against  the worst instance  
that might arise due to uncertain inputs.  

Robust optimization:  
modeling strategies and solution methods for uncertain problems.	

Want to find a solution  
immune to data uncertainty.	

What is Robust Optimization?	
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Other Method:   Stochastic Programming	

 
 

l Stochastic Programming                        Dantzig [’55], Beale [’55] 

 

　　　　　　　　　 

　　: uncertain data	

density func.	

Uncertain Optimization Problem:	

Assump. ：  
  Prob. distributions of                     are known.　　　　　　　	

Chance Const.（Probabilistic Const. ）	  Charnes & Cooper [’59]	
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ex.1)	

ex.2)	



Other Method:  Sensitivity Analysis	

 
 

　                                 　　 

　　　　　　　　　 

　　      : uncertain data	

Uncertain Optimization Problem：	

•  Post-optimal analysis after obtaining an 
optimal solution for some                . 

•  It shows whether the optimal solution 
changes for the data perturbation. 

 
Restrictions: data of objective func. & RHS of   

                             LP can be uncertain	
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History of Robust Optimization	

 

n In 1973, A.L.Soyster proposed “inexact LP” using rectangular      .     　　　 
　　　　　　　 

 
 

n In 1998, Ben-Tal & Nemirovski proposed “robust  
   optimization” using ellipsoidal      . 　  
 

n Studies on robust optimization are going on … 

Robust Optimization:  
 
 

　　　	

Almost no progress (two papers†)	

u1 

u2 

u1 

u2 

: Rect.	

: Ellips.  
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†) reported by Ben-Tal, El Ghaoui & Nemirovski [’09]	



Why robust optimization became popular? 

Robust LP 
Ben-Tal & Nemirovski [’98] 

Inexact LP 
Soyster [’73] 

is a rectangle	

u1 

u2 

u1 

u2 

	

① Inexact LP (=Robust LP with rectangle      ) only assumes  
      extreme situations. This drawback was solved by ellipsoidal     . 
	

② Resulting in a second-order cone programming (SOCP),   
     semidefinite programming (SDP).	

Extreme situations	
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is an ellipsoid, etc….	



Various Research Directions 	

Establishment of Robust Opt.  
Ben-Tal & Nemirovski [‘98,‘99] 

Conditions for Tractable Robust Opt.  
Goldfarb & Iyengar [‘03] 

Extension to Multi-period Model  
Ben-Tal, et.al. [‘04]  

Application to Finance,  
Machine learning,  

Energy System, etc. 	

Stochastic Approach 
Calafiore & Campi [‘05,‘06] 

Original Form of Robust Opt. 
Soyster [‘73] 
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第2部	

第３部	

第１部：残り時間で．．	



Feasible region at	

Objective function	

min 

The optimal value of robust  
optimization problem	

The optimal value of the deterministic  
   problem with                   	

         
One research direction: 
     Want to define       so that the RO problem is tractable. 

infinite number of constraints	

Difficult to Be Solved in General	

20 



Standard Form for Robust Optimization	

 convex in             　( 　　           ) 

X : closed convex set,	

- When the objective function is uncertain	

： bounded closed set	

•  Constraint-wise uncertainty is assumed. 
•                     : 
•   	

21 



Ben-Tal & Nemirovski [‘99] 

Ellipsoidal uncertainty set:	

Second order cone programming (SOCP)	22 

Tractable Robust LP (Ellipsoidal Case) 



Tractable Robust LP (Rectangle Case) 
Soyster [‘73] 

       Rectangle： 
 

where	

Linear Programming Problem	

A vector constructed by taking absolute 
values for each element of	

23 



Conditions for Tractable Robust Optimization	

Want to transform it to a tractable convex prob. 
 Ben-Tal & Nemirovski [‘98], Goldfarb & Iyengar [‘03] 	

	

(3)　　  is a finite set, its convex hull or ellipsoid.	

 
(1)　　　　　  is convex quadratic in terms of     . 

 

(2) Uncertain data is linear w.r.t      .	
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Three Assumptions 	



Difficulty of Solving Problems	

 

l Robust LP　→　Second-order Cone Programming（SOCP） 
l Robust SOCP　　→　　Semidefinite Programming （SDP） 
l Robust SDP　 　 →　　　　　　× 
　　　　　　　　　　　　　　　　　Approximately solved by SDP 

Assump. 
ü 　   is an ellipsoidal uncertainty set 

ü  Uncertain data is linear with respect to 
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In the case where the condition is not satisfied  
        stochastic approach by sampling a finite number of 
        constraints among infinitely many constraints 

With robust optimization ... .. 
ü  How to express uncertainty data is important! 
ü  There is a great limitation on its expression  

•  Uncertainty data is linear w.r.t      .  
•  The range for       is an ellipse, etc. 

If these conditions are satisfied, a RO problem can be converted  
to a tractable problem. 

Tips on Formulation of Robust Optimization	
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l Robust Optimization 
ü modeling strategies and solution methods for optimization  
    problems that are defined by uncertain inputs 
ü proposed by Ben-Tal & Nemirovski in 1998 

 
l Stochastic Programming 

ü classical framework for modeling optimization problems  
      involving uncertainty (studied since the 1950’s). 
ü assuming that probability distributions are known 
ü relation to robust optimization 

27 

Contents	



Stochastic Programming	

 
 

l Stochastic Programming                        Dantzig [’55], Beale [’55] 

 

　　　　　　　　　 

　　: uncertain data	

density func.	

Uncertain Optimization Problem:	

Assump. ：  
  Prob. distributions of                     are known.　　　　　　　	

Chance Const.（Probabilistic Const. ）	  Charnes & Cooper [’59]	
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ex.1)	

ex.2)	
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-quantile (VaR): 

Instead of “Expectation”, risk measure “CVaR” is often used. 
 
 

CVaR  (Conditional Value-at-Risk) : �
Conditional expectation of               exceeding     -quantile	

Examples of Another Risk Measure	
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= 
0.8	

Rockafellar & Uryasev [’02]	

High Risk	

mean	

-quantile (VaR): 
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Definition of Conditional Value-at-Risk (CVaR)	
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Conditional expectation of               exceeding     -quantile	

Rockafellar & Uryasev [’02]	

: β-CVaR�
: β-VaR (= β-quantile)	 of the loss                associated  

　　    　with a decision�

random vec.	

mean	



For some                  and     ,	

��
	
��
	
�
�
	�

-quantile (VaR): 

Histogram of	

CVaR for Discrete Distribution	
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N	 High Risk	

When random variables follow a discrete dist. or  normal dist., 
CVaR minimization can be tractable.  

ex.)	

For the finite support: 	

Rockafellar & Uryasev [’02]	

opt.sol:	

opt.val = 	



Rockafellar & Uryasev [’02]	
Tractable Form for CVaR Minimization	
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If                  is convex in       and      is a convex set, 

  this is a convex optimization prob.	



��
	
��
	
�
�
	�

-quantile: 

Histogram of	

Parameter      of CVaR	
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N	 High Risk	

CVaR  (Conditional Value-at-Risk) : �
Conditional expectation of               exceeding     -quantile	

robust optimization	

traditional stochastic program. 	



-quantile (VaR): 

CVaR  (Conditional Value-at-Risk) : �
Conditional expectation of               exceeding     -quantile	

High Risk	

CVaR for Normal Distribution	
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mean	

= 
0.8	

Rockafellar & Uryasev [’02]	

-VaR: 

Random variable:	

Probability density of the normal dist. : 	

density func.	

CVaR is defined as 	



（ただし，　　　　　）	
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Probabilistic Constraint	

ex.)	

Under the assump.:	

second-order cone constr.	

: cumulative dist.    
 func. (cdf) of	:    -quantile 



Relation to Robust Constraint	

Assump.:	
Probabilistic Const.	

Robust Const.	
Assump.:	

36 



n=2 

u1	u2	

density	                         % 
data are covered	

37 

Stochastic Interpretation for Uncertainty Set	
Assump.:	

Assump.:	

Relation of two Asumptions?	

chi-squared distribution 
with n degrees of freedom	

support for  
truncated normal dist. 	



Two Optimization Methods under Uncertainty	

Assump.:	

Robust Const.	
Assump.:	

Boundary between two methods is getting blurred. 
 
Recently, studies on robust optimization using “probability” 
are increased e.g. for setting the uncertainty set      .  

　　: uncertain data	
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Probabilistic Const.	



Solve a relaxation problem having a finite number of const.	

：randomly generated following the distribution on 　	

Among three assumptions for tractable robust optimization,　　 
　(2) Uncertain data is linear w.r.t   
　(3) 　  is a finite set, its convex hull or ellipsoid 
can be removed. 

Want to estimate the sample size N to obtain  
a relaxed solution with theoretical guarantee.  

39 

Calafiore & Campi [‘05]	

Stochastic Approach for Robust Optimization	



i.i.d. 
How to determine the sample size N	

Randomly generated relaxation problem (SCPN)： 
 

(Assume the probability distribution on      ) 

Criteria for deciding N：	

Optimal sol. of (SCPN) :   

   Calafiore & Campi [’05, ’06]  

  

-   Allow          to violate some ratio of constraints: 
min 

feasible set  
of robust opt.	

40 

 
-  Allow some amount of constraint violation for         : 

Kanamori & Takeda [‘12]	



The optimal solution                    of (SCPN) generated with  
　　　　　　　　　samples satisfies                          with  
the probability at least             , that is, 
 

Violation probability: 
41 

Campi & Garatti [’08]	

Evaluation for Sample Size	

Theo.　（Calafiore & Campi [’05,’06], Campi & Garatti [’08]）	

Let                                           ．	

Calafiore & Campi [’06]	



A-priori / A-posteriori Evaluations	
( A-priori Evaluation ) 

Optimal sol.          of (SCPN), N > 0, satisfies 	
 ( A-posteriori Evaluation ) 

Optimal sol.          of (SCPN) satisfies	

 independent from     	

 depending on 	

42 

Takeda, Taguchi & Tanaka [‘10]	
(construction of 
  function q is 
  a key idea)	



Various Research Directions 	

Establishment of Robust Opt.  
Ben-Tal & Nemirovski [‘98,‘99] 

Conditions for Tractable Robust Opt.  
Goldfarb & Iyengar [‘03] 

Extension to Multi-period Model  
Ben-Tal, et.al. [‘04]  

Application to Finance,  
Machine learning,  

Energy System, etc. 	

Stochastic Approach 
Calafiore & Campi [‘05,‘06] 

Original Form of Robust Opt. 
Soyster [‘73] 
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ロバスト最適化や確率計画法の
機械学習問題への適用	

統計数理研究所 / 理化学研究所AIP センター  
武田朗子 

1 Seminar @ COSS2017 



 

l  There are trends in optimization techniques used in ML 
ü semidefinite program 
ü submodular optimization 
ü first-order methods such as APG, ADMM, etc.  
 

l Stochastic Program. and Robust Optimization are not  
popular in ML 

ü but they are implicitly used. 

2 

Optimization Techniques in ML	



Contents	

 

l   Provide a view based on Robust Optimization for various  
     Binary Classification Models including 

ü Support Vector Machine (SVM),  
    Minimax Probability Machine (MPM) and  
    Fisher Discriminant Analysis (FDA), etc. 

l Provide a view based on Stochastic Programming 
ü ν-SVM  & Eν-SVM                        Generalization Bound  
ü Minimum Margin MPM  
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Application of Robust Optimization to ML 
 

 
 

ü  Introducing the work of Xu, Caramanis and Mannor [2009] 
ü   Showing a unified view for various ML models such as 
    SVM MPM, FDA, logistic regression. 

 

We use robust optimization techniques in a different problem setting	

4 



Find a decision function	  	  
based on given training samples 
to correctly classify new samples.	  　　　　	

Binary Classification Problem 

EX.) diagnosis of diabetes  

Label?? 
xj 

xi 

y= -1 

y= 1 

blood pressure 

insulin 

medical 
examination 

tested 
positive/negative 

extendable to nonlinear one using kernel 	

(n=2) 

5 



y= 1 y= -1 

x1 

x4 

Maximize the minimum  
distance to the hyperplane 

	

Minimizing a regularization penalty  
enhances generalization performance   
(prediction accuracy for test dataset) 

x2 

x3 

Hard margin SVM (support vector machine) 

Linearly Separable	

6 

Boser, Guyon & Vapnik [‘92]	

regularization penalty	

=1	



C-SVM 

Two conflicting goals 

l minimizing training error 

l minimizing a regularization penalty 

- the trade-off between these goals  
   is controlled by C 
 

y= 1 

y= -1 

Margin = 1 
7 

Cortes & Vapnik [‘95]	

y= 1 

y= -1 

Margin = 1 

penalized samples 



ν-SVM 
 Scholkopf, Smola, Williamson & Bartlett [’00] 

Ø C-SVM with                         ν-SVM 
Ø margin is nonnegative :  
Ø admissible values of ν are limited 
           (                                               ) 
Ø  0 opt. solution for small ν 
	
	

C is replaced by an intuitive parameter ν

8 

y= 1 

y= -1 

Margin =  

y= 1 

y= -1 

SVs	

penalized samples 



Extended ν-SVM (Eν-SVM) 

l  The margin        is negative for                            .  
l  A non-trivial solution is obtained even for the range. 
l The same optimal sol. with ν-SVM for 
l  An iterative algorithm was proposed for a local solution.  

Perez-Cruz, Weston, Hermann & Scholkopf [’03]　	

Nonconvex optimization	

9 



21.0%	

21.5%	

22.0%	

22.5%	

23.0%	

23.5%	

24.0%	

0.40 	0.42 	0.44 	0.46 	0.48 	0.50 	0.52 	0.54 	

R
at

e
 [

%
]	

Advantage of Extended Range of ν 

Training error 

ν

Test error 

0.46	 0.48	 0.50	 0.52	 0.54	 0.56	 0.58	 0.60	

good prediction with Eν-SVM	

Perez-Cruz, Weston, Hermann & Schoelkopf (‘03)　	

Eν-SVM ν-SVM 

admissible 

dataset: diabetes	
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Uncertainty in Dataset	
y= -1 

y= 1 

    Bi & Zhang (‘04), Shivaswamy et al. 
(‘06), Trafalis & Gilbert (’06), etc. applied 
robust optimization to handle uncertainty 
in observations. 

　　	

11 

Robust C-SVM model 	

Instead of the deterministic constraint:	

→ Second-order cone program	



Consider “robustness”	

Regularization = Robustness	
y= -1 

y= 1 

Regularization penalty	

Remove “regularization” 
Equivalent	

12 

Xu-Caramanis-Mannor [‘09] 



Max-min form. finds a robust solution with  
the best worst-case performance.  

ü             
 

ü  　            　　　　   : set of possible points 
 for each class, called uncertainty set. 

 

ü     is optimized under the worst-case vectors                 . 
ü     is determined by using         and       ; 

   e.g., so as to go though in the middle of        and       . 

Robust Classification Model (RCM)	

13 

Uncertain Inputs	

                :  representative points (or means)  of each class.  
 

RCM:	

Takeda-Mitsugi-Kanamori [‘12] 



Examples of Uncertainty Sets 

14 

: index set of samples with label +1	

Reduced convex hull (RCH) with param. κ :	

using  sample mean :  
           sample covariance :  
of samples in each class. 
 
 
                                                         . 	

Ellipsoid with param. κ :	

          and         are defined with training samples in each class. 	

a set of discrete distributions	



y= 1 

y= -1 

Two uncertainty sets do not intersect. 
                      is replaced by                 .	
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Intersecting or Non-intersecting Uncertainty Set 

Two uncertainty sets intersect. 
                      is replaced by                 .	
	

RCMs with specific sets        are reduced to well-known models.	

RCM is a convex problem.	

RCM is a non-convex problem.	

RCM:	

Optimal solution:           	
 



Correspondence to Existing Classifiers 
Uncertainty 
sets	

Intersecting	 They touch externally	 Non-intersecting	

Ellipsoid 1 : 	 No corresponding 
model	

Minimax Probability 
Machine (MPM)  
Lanckriet et al. (’02)	

Minimum Margin-MPM  
Nath & Bhattacharyya 
(’07)	

Ellipsoid 2 : 	 No corresponding 
model	

	

Fisher Discriminant 
Analysis (FDA)  
Fukunaga (’90)	

Sparse Feature 
Selection 
Bhattacharyya (’04)	

Reduced  
convex hull : 	

Eν-SVM 
Perez-Cruz et al. (‘03)　	

 
Crisp & Burges (‘00)	

ν-SVM      ( = C-SVM ) 
Scholkopf et al. (’00) 

Convex hull : 	       
             ----	

    
               ----	

Hard Margin SVM  
Boser et al. (‘92)	
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What Can We Achieve from Robust-Opt View?	

 

 
ü  Main difference of those models is in the definition  

    of their uncertainty sets for the mean of each class. 
ü  New models can be available by defining new uncertainty sets. 
ü  The parameter range can be extended so that the intersection 

of two sets are allowed. 
ü  Unified solution method based on APG is applicable to  

convex models (nonintersecting cases). 

 
17 

We could give an unified interpretation as robust optimization 
    for some existing classification models. 



Correspondence to Existing Classifiers 
Uncertainty 
sets	

Intersecting	 They touch externally	 Non-intersecting	

Ellipsoid 1 : 	 No corresponding 
model	

Minimax Probability 
Machine (MPM)  
Lanckriet et al. (’02)	

Minimum Margin-MPM  
Nath & Bhattacharyya 
(’07)	

Ellipsoid 2 : 	 No corresponding 
model	

	

Fisher Discriminant 
Analysis (FDA)  
Fukunaga (’90)	

Sparse Feature 
Selection 
Bhattacharyya (’04)	

Reduced  
convex hull : 	

Eν-SVM 
Perez-Cruz et al. (‘03)　	

 
Crisp & Burges (‘00)	

ν-SVM      ( = C-SVM ) 
Scholkopf et al. (’00) 

Convex hull : 	       
             ----	

    
               ----	

Hard Margin SVM  
Boser et al. (‘92)	

18 

Analyze these models 
by stochastic programming approach	



Contents	

 

l   Provide a view based on Robust Optimization for various  
     Binary Classification Models including 

ü Support Vector Machine (SVM),  
    Minimax Probability Machine (MPM) and  
    Fisher Discriminant Analysis (FDA), etc. 

l Provide a view based on Stochastic Programming 
ü ν-SVM  & Eν-SVM                        Generalization Bound  
ü Minimum Margin MPM  
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ν-SVM  & Eν-SVM (dual form.) 
Robust Classification Model	

20 

−3 −2 −1 0 1
−4

−3

−2

−1

0

1

 

 
ν=0.0
ν=0.2
ν=0.4
ν=0.6
ν=0.8

 Shrunk polytopes toward the centers  
 by increasing  ν.	

Reduced convex hull (RCH) with param. ν :	

κ	

If two RCHs do not intersect (with large ν)	 ν-SVM 	
If two RCHs intersect            (with small ν)	 Eν-SVM 	



(Eν-SVM ) 

Two RCHs do not intersect.	Two RCHs intersect.	

ν =0 
Convex Program Nonconvex Program 

Robust Classification Model	

 Schoelkopf, Smola,  
Williamson & Bartlett (’00) 

Perez-Cruz, Weston,  
Hermann & Schoelkopf (‘03)	 (ν-SVM ) 
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ν-SVM  & Eν-SVM (primal form.) 

CVaR Minimization??	



CVaR of Distance	

g < 0 

g > 0  
x2 

x1 

For a hyperplane: 
 
compute the signed distance (score)  
from a point      to the hyperplane  
for all training samples by  

g < 0   correctly classified,      g > 0   misclassified 

Minimize CVaR                   with 
 using   

hyperplane of  
(E)ν-SVM  �

22 



��
	
��
	
�
�
	�

CVaR Minimization for Classification	

  high risk of misclassification 

the mean of  
the worst (1-β)×100% scores 

ü Minimize CVaR                   with                       
                                               and  
    by  
 
 
 
 

fr
eq

ue
nc

y 
pr

ob
. 

 

è Minimize CVaR:  β –quantile:  

probability :  
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New interpretation for Eν-SVC 

 : margin of Eν-SVC 
negative margin 	↔	

misclassification 

0 α1-ν φ1-ν

β = 1-ν
bad samples 

=SVs 

(Eν-SVM )  Schoelkopf, Smola,  
Williamson & Bartlett (’00) 

Perez-Cruz, Weston,  
Hermann & Schoelkopf (‘03)	 (ν-SVM ) 
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If      >0 	φ1-ν If      ≦0 	φ1-νvariable: 	



0 0.2 0.4 0.6 0.8 1
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

ν
 

 

νmin νmax

CVaR

VaR

 
Convex Problem	

Three Cases depending on ν 

 
Nonconvex Problem	

(Eν-SVM )  Schoelkopf, Smola,  
Williamson & Bartlett (’00) 

Perez-Cruz, Weston,  
Hermann & Schoelkopf (‘03)	 (ν-SVM ) 
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If      >0 	φ1-ν If      ≦0 	φ1-ν

φ1-να1-ν 

Eν-SVM with 
negative margin 	

Eν-SVM with 
positive margin 	

ν-SVM with 
positive margin 	

Margin:	



Generalization Error Bounds 

ν =0 ν =1 

Convex Program Nonconvex Program 

   New generalization error bounds of Eν-SVM include  
the CVaR risk measure 

 

     è Minimizing the CVaR lowers the bound 
     è  It justifies the use of Eν-SVM & ν-SVM  

Density 

β = 1-ν

0 
case 1 Density 

β = 1-ν

0 
case 2 Density 0 

β = 1-ν

case 3 

error rates for test (new) samples 

(ν-SVM)	 (Eν-SVM)	
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( generalization error with                                  ) 

holds with probability at least  

For a feasible sol.              of (ν-SVM), the inequality: 

Generalization Error Bound (case 1) 

è CVaR min. gives an opt. solution which minimizes the bound.  
è ν-SVM  is reasonable. 	

Theorem : (            ) case 1 

≦	≦	
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            is used for (ν-SVM)  in Schoelkopf, Smola, Williamson & Bartlett (’00) 

Takeda-Sugiyama [‘08] 



(generalization error with                              ) 

holds with probability at least  

(generalization error with                             ) 

For a feasible sol.               of (Eν-SVM) 

For a feasible sol.               of (Eν-SVM) 

Generalization Error Bound (cases 2&3) 

Density 

β = 1-ν
0 
case 2 

Density 0 

β = 1-ν

case 3 

≦	

 ≧	

This bound is upper -bounded as	
28 



(E)ν-SVM (classification method) 

RCM:	
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(E)ν-SVM:	 Perez-Cruz, Weston,  
Hermann & Schoelkopf (‘03)	

by taking dual w.r.t. 	Robust Optimization 	

Stochastic Programming 	

CVaR Min.:	

(or                   )	



Using  sample mean :  
           sample covariance :  
of samples in each class, let 
 
 
                                                         . 	

Ellipsoidal Uncertainty Sets 
Robust Classification Model	

30 

30 

can be replaced by                  when                          .	



       ,        :   random vectors from each of two classes with  
means and covariance matrices given by                    and                   .            	

Equivalence to Maximum-Margin MPM 
Robust Classification Model (non-intersecting case)	

31 

Worst-case misclassified probabilities 	

Maximum-Margin MPM	
Nath & Bhattacharyya (’07)	

Using generalized Chebyshev-Cantelli inequality,	



Stochastic Problem under Normal Distribution 

The worst-case prob. distribution is considered  
in Nath & Bhattacharyya (’07)	

32 

Robust Classification Model with	

Under the assump:	
: cumulative dist.    
 func. (cdf) of	
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Ø We provided new views based on Robust 
Optimization / Stochastic Programming for existing 
machine learning classification models (SVM, MPM, 
FDA and their variants).    

Ø We could evaluate generalization bounds from the 
viewpoint of SP and propose an efficient algorithm 
from the viewpoint of RO. 

Conclusions 
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Summary	

 

l The first textbook on Robust Optimization appears in 2009.  

l Robust optimization techniques are used in various research areas.  
 

ü The preface of the book briefly mentions the relation to 
　Robust Control  (H∞ Control), Robust Statistics,  
   Machine learning （SVM）, etc. 

l Recently, studies on robust optimization using “probability” 
    are increased. The robust optimization research is still developing.  
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