RIMS Summer School (COSS 2018), Kyoto, July 2018 Problems for "Discrete Convex Analysis" (by Kazuo Murota)

Solve the problems marked by (COSS).

Problem 1. (COSS) Prove that a function $f : \mathbb{Z}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = \varphi(x_1 - x_2)$ is an L^{\\[\epsilon}-convex function, where $\varphi : \mathbb{Z} \to \mathbb{R}$ is a univariate discrete convex function (i.e., $\varphi(t-1) + \varphi(t+1) \ge 2\varphi(t)$ for all $t \in \mathbb{Z}$).

Problem 2. Prove that a function $f : \mathbb{Z}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = \varphi(x_1 + x_2)$ is an M^{\\[\eta}-convex function, where $\varphi : \mathbb{Z} \to \mathbb{R}$ is a univariate discrete convex function.

Problem 3. (1) Show that a function $f(x_1, x_2)$ is M^{\natural}-convex if and only if $f(x_1, -x_2)$ is L^{\natural}-convex. (2) Is there any such correspondence for functions in three or more variables?

Problem 4. (COSS) Find an integrally convex function that corresponds to the triangulation to the right:

Problem 5. (COSS) Prove that $f(x) = \max\{x_1, x_2, \dots, x_n\}$ is an L-convex function.

Problem 6. (COSS) Let G = (V, E) be a connected graph. Define a set function f by: f(X) = 0 if X is the edge set of a spanning tree, and $f(X) = +\infty$ otherwise. We may regard f as $f : \mathbb{Z}^E \to \mathbb{Z} \cup \{+\infty\}$. Show that f is an M-convex function.

For a family \mathcal{F} of subsets of $\{1, 2, ..., n\}$ and a family of univariate discrete convex functions $\varphi_A : \mathbb{Z} \to \mathbb{R}$ indexed by $A \in \mathcal{F}$, we consider a function defined by

$$f(x) = \sum_{A \in \mathcal{F}} \varphi_A(x(A)) \qquad (x \in \mathbb{Z}^n), \tag{1}$$

where $x(A) = \sum_{i \in A} x_i$. A function $f : \mathbb{Z}^n \to \mathbb{R}$ is called laminar convex if it can be represented in this form for some laminar family \mathcal{F} and φ_A ($A \in \mathcal{F}$).

Problem 7. Prove that a laminar convex function is M^{\natural} -convex.

In Problems 8–11, we consider a quadratic function in three variables $f(x) = x^{T}Ax$ ($x \in \mathbb{Z}^{3}$) defined by a 3 × 3 symmetric matrix $A = (a_{ij})$.

Problem 8. (1) Find a necessary and sufficient condition on (a_{ij}) for f(x) to be submodular. (2) When f(x) is submodular, is the matrix A positive semidefinite?

Problem 9. (1) Find a necessary and sufficient condition on (a_{ij}) for f(x) to be L^{\natural}-convex. (2) When f(x) is L^{\natural}-convex, is the matrix *A* positive semidefinite?

Problem 10. (1) Show that f(x) is an M^{\natural} -convex function if and only if (i) $a_{ii} \ge a_{ij} \ge 0$ for all (i, j), and (ii) the minimum among the three off-diagonal elements, a_{12} , a_{23} , a_{13} , is attained by at least two elements. (2) When f(x) is M^{\natural} -convex, is the matrix A positive semidefinite?

Problem 11. (1) Is $f(x_1, x_2, x_3) = (x_1 + x_2)^2 + (x_2 + x_3)^2 + (x_1 + x_3)^2$ laminar convex?

(2) Is this function M^{\natural} -convex?

(3) Prove that a quadratic function f(x) ($x \in \mathbb{Z}^3$) is M^{\(\phi\)}-convex if and only if it is laminar convex¹.

Problem 12. (1) Show that $f(x_1, x_2, x_3) = a(x_1 + x_2)^2 + b(x_2 + x_3)^2 + c(x_1 + x_3)^2$ with randomly chosen a, b, c > 0 is not an M^{\(\beta\)}-convex function.

(2) Show that, under some "nondegeneracy assumption," a function f(x) of the form (1) is M^{\natural}-convex only if \mathcal{F} is a laminar family.

Problem 13. Miller's paper (1971) in inventory theory dealt with the function:

$$f(x) = \sum_{k=0}^{\infty} \left(1 - \prod_{i=1}^{n} F_i(x_i + k) \right) + \sum_{i=1}^{n} c_i x_i \qquad (x = (x_1, \dots, x_n) \in \mathbf{Z}_+^n),$$
(2)

where F_1, \ldots, F_n are cumulative distribution functions of Poisson distributions (with different means), and c_1, \ldots, c_n are nonnegative real numbers. Prove that this function is L^{\\[\beta]}-convex.

For a matroid on V, the rank function ρ is defined by

$$\rho(X) = \max\{|I| \mid I \text{ is an independent set, } I \subseteq X\} \qquad (X \subseteq V).$$
(3)

Problem 14. (COSS) Let ρ be a matroid rank function on *V*, and define $f : \{0, 1\}^V \to \mathbb{Z}$ by $f(\mathbb{1}^X) = \rho(X)$ for $X \subseteq V$, where $\mathbb{1}^X$ denotes the characteristic vector of *X*.

- (1) Prove that f is L^{\natural} -convex.
- (2) Prove that f is M^{\natural}-concave.

(3) Prove that $f^{\bullet}(\mathbf{1}^X) = |X| - f(\mathbf{1}^X)$ for $X \subseteq V$, where $f^{\bullet}(p) = \sup\{\langle p, x \rangle - f(x) \mid x \in \{0, 1\}^V\}$.

Problem 15. Let ρ_1 and ρ_2 be the rank functions of two matroids on *V*. For the rank of the union matroid, the following formula is known:

$$\max_{X} \{ \rho_1(X) + \rho_2(V \setminus X) \} = \min_{Y} \{ \rho_1(Y) + \rho_2(Y) - |Y| \} + |V|.$$
(4)

Relate this formula to the Fenchel min-max duality in discrete convex analysis.

Problem 16. (COSS) Let $f : \mathbb{Z}^3 \to \mathbb{Z} \cup \{+\infty\}$ be defined by f(0,0,0) = 0 and f(1,1,0) = f(0,1,1) = f(1,0,1) = 1, with dom $f = \{(0,0,0), (1,1,0), (0,1,1), (1,0,1)\}$.

(1) Show that f is integrally convex.

(2) Show that the subdifferential of f at x = 0 is given as

$$\partial f(\mathbf{0}) = \{ p = (p_1, p_2, p_3) \in \mathbf{R}^3 \mid p_1 + p_2 \le 1, p_2 + p_3 \le 1, p_1 + p_3 \le 1 \}.$$

(3) Show that $\partial f(\mathbf{0})$ is not an integer polyhedron.

(4) Show that $\partial f(\mathbf{0})$ contains an integer point.

Problem 17. (COSS) Let $f : \mathbb{Z}^n \to \mathbb{Z} \cup \{+\infty\}$ be an integer-valued integrally convex function with $f(\mathbf{0}) < +\infty$.

(1) Show that $\partial f(\mathbf{0})$ is nonempty.

¹This statement is true for general *n*. That is, a quadratic function in *n* integer variables is M^{\natural} -convex if and only if it is laminar convex.

(2) Show that $\partial f(\mathbf{0})$ is given as $\partial f(\mathbf{0}) = \{ p \in \mathbf{R}^n \mid \sum_{j=1}^n y_j p_j \le f(y) - f(\mathbf{0}) \ (\forall y \in \{-1, 0, +1\}^n) \}.$

(3) Suppose that we apply the Fourier–Motzkin elimination to the system of inequalities $\sum_{j=1}^{n} y_j p_j \le f(y) - f(0)$ indexed by $y \in \{-1, 0, +1\}^n$. Show that we do not need to generate new inequalities in the elimination process.

(4) Show that $\partial f(\mathbf{0})$ contains an integer vector.

Problem 18 (Research Problem (COSS)). The integral biconjugacy for integrally convex functions implies that there is a one-to-one correspondence between the class \mathcal{F}_{IC} of integer-valued integrally convex functions and the class of their integral conjugates $\mathcal{F}_{IC}^{\bullet} = \{f^{\bullet} \mid f \in \mathcal{F}_{IC}\}$. Give a direct characterization of $\mathcal{F}_{IC}^{\bullet}$.

The steepest descent algorithm for an L^{\natural}-convex function $g : \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ reads as follows (1^{*X*} means the characteristic vector of a set $X \subseteq \{1, 2, ..., n\}$):

Step 0: Set $p := p^{\circ}$ (initial point). Step 1: Find $\sigma \in \{+1, -1\}$ and *X* that minimize $g(p + \sigma \mathbf{1}^X)$. Step 2: If $g(p + \sigma \mathbf{1}^X) = g(p)$, then output *p* and stop. Step 3: Set $p := p + \sigma \mathbf{1}^X$ and go to Step 1.

In Problems 19 and 20 we consider the behavior of this algorithm when n = 2.

Problem 19. Define $g : \mathbb{Z}^2 \to \mathbb{R}$ by $g(p_1, p_2) = \max(0, -p_1 + 2, -p_2 + 1, -p_1 + p_2 - 1, p_1 - p_2 - 2).$ (1) Verify that g is L⁴-convex.

(2) Find the set, say, S of the minimizers of g. Draw a figure, indicating S on the lattice \mathbb{Z}^2 .

(3) Take an initial point $p^{\circ} = (0, 0)$. Which minimizers are possibly found? Is the number of iterations constant, independent of the generated sequences of vector p? How is the number of iterations related to the ℓ_{∞} -distance from p° to S?

(4) Take another initial point $p^{\circ} = (1, 4)$. Which minimizers are possibly found? Is the number of iterations equal to the ℓ_{∞} -distance from p° to S?

Problem 20. Let $g : \mathbb{Z}^2 \to \mathbb{R}$ be an L^{\(\expscape\)}-convex function that has a minimizer; denote by *S* the set of its minimizers. Give an expression for the number of iterations in terms of p° and *S*.

Problem 21 (M-minimizer cut theorem). Let $f : \mathbb{Z}^n \to \mathbb{R}$ be an M-convex function such that $\operatorname{argmin} f \neq \emptyset$. Take any $x \in \operatorname{dom} f$ and $i \in \{1, 2, \dots, n\}$, and let $j \in \{1, 2, \dots, n\}$ be such that $f(x - \mathbf{1}^i + \mathbf{1}^j) = \min_{\substack{1 \le k \le n \\ x_j^* \ge x_j}} f(x - \mathbf{1}^i + \mathbf{1}^k)$. Prove that there exists $x^* \in \operatorname{argmin} f$ such that $x_j^* \ge x_j + 1$ in the case of $i \neq j$ and $x_j^* \ge x_j$ in the case of i = j.

(END of Problems)