
RIMS Summer School (COSS 2018), Kyoto, July 2018
Problems for “Discrete Convex Analysis” (by Kazuo Murota)

Solve the problems marked by (COSS) .

Problem 1. (COSS) Prove that a function f : Z2 → R defined by f (x1, x2) = φ(x1 − x2) is an L♮-convex
function, where φ : Z→ R is a univariate discrete convex function (i.e., φ(t − 1) + φ(t + 1) ≥ 2φ(t) for all
t ∈ Z).

Problem 2. Prove that a function f : Z2 → R defined by f (x1, x2) = φ(x1 + x2) is an M♮-convex function,
where φ : Z→ R is a univariate discrete convex function.

Problem 3. (1) Show that a function f (x1, x2) is M♮-convex if and only if f (x1,−x2) is L♮-convex.
(2) Is there any such correspondence for functions in three or more variables?

Problem 4. (COSS) Find an integrally convex function that corresponds to
the triangulation to the right:
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Problem 5. (COSS) Prove that f (x) = max{x1, x2, . . . , xn} is an L-convex function.

Problem 6. (COSS) Let G = (V, E) be a connected graph. Define a set function f by: f (X) = 0 if X is the
edge set of a spanning tree, and f (X) = +∞ otherwise. We may regard f as f : ZE → Z ∪ {+∞}. Show
that f is an M-convex function.

For a family F of subsets of {1, 2, . . . , n} and a family of univariate discrete convex functions
φA : Z→ R indexed by A ∈ F , we consider a function defined by

f (x) =
∑
A∈F
φA(x(A)) (x ∈ Zn), (1)

where x(A) =
∑

i∈A xi. A function f : Zn → R is called laminar convex if it can be represented
in this form for some laminar family F and φA (A ∈ F ).

Problem 7. Prove that a laminar convex function is M♮-convex.

In Problems 8–11, we consider a quadratic function in three variables f (x) = x⊤Ax (x ∈ Z3)
defined by a 3 × 3 symmetric matrix A = (ai j).

Problem 8. (1) Find a necessary and sufficient condition on (ai j) for f (x) to be submodular.
(2) When f (x) is submodular, is the matrix A positive semidefinite?

Problem 9. (1) Find a necessary and sufficient condition on (ai j) for f (x) to be L♮-convex.
(2) When f (x) is L♮-convex, is the matrix A positive semidefinite?

Problem 10. (1) Show that f (x) is an M♮-convex function if and only if (i) aii ≥ ai j ≥ 0 for all (i, j), and
(ii) the minimum among the three off-diagonal elements, a12, a23, a13, is attained by at least two elements.
(2) When f (x) is M♮-convex, is the matrix A positive semidefinite?
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Problem 11. (1) Is f (x1, x2, x3) = (x1 + x2)2 + (x2 + x3)2 + (x1 + x3)2 laminar convex?
(2) Is this function M♮-convex?
(3) Prove that a quadratic function f (x) (x ∈ Z3) is M♮-convex if and only if it is laminar convex1.

Problem 12. (1) Show that f (x1, x2, x3) = a(x1 + x2)2 + b(x2 + x3)2 + c(x1 + x3)2 with randomly chosen
a, b, c > 0 is not an M♮-convex function.
(2) Show that, under some “nondegeneracy assumption,” a function f (x) of the form (1) is M♮-convex
only if F is a laminar family.

Problem 13. Miller’s paper (1971) in inventory theory dealt with the function:

f (x) =
∞∑

k=0

1 − n∏
i=1

Fi(xi + k)

 + n∑
i=1

cixi (x = (x1, . . . , xn) ∈ Zn
+), (2)

where F1, . . . , Fn are cumulative distribution functions of Poisson distributions (with different means),
and c1, . . . , cn are nonnegative real numbers. Prove that this function is L♮-convex.

For a matroid on V , the rank function ρ is defined by

ρ(X) = max{|I| | I is an independent set, I ⊆ X} (X ⊆ V). (3)

Problem 14. (COSS) Let ρ be a matroid rank function on V , and define f : {0, 1}V → Z by f (1X) = ρ(X)
for X ⊆ V , where 1X denotes the characteristic vector of X.
(1) Prove that f is L♮-convex.
(2) Prove that f is M♮-concave.
(3) Prove that f •(1X) = |X| − f (1X) for X ⊆ V , where f •(p) = sup{⟨p, x⟩ − f (x) | x ∈ {0, 1}V }.

Problem 15. Let ρ1 and ρ2 be the rank functions of two matroids on V . For the rank of the union matroid,
the following formula is known:

max
X
{ρ1(X) + ρ2(V \ X)} = min

Y
{ρ1(Y) + ρ2(Y) − |Y |} + |V |. (4)

Relate this formula to the Fenchel min-max duality in discrete convex analysis.

Problem 16. (COSS) Let f : Z3 → Z ∪ {+∞} be defined by f (0, 0, 0) = 0 and f (1, 1, 0) = f (0, 1, 1) =
f (1, 0, 1) = 1, with dom f = {(0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1)}.
(1) Show that f is integrally convex.
(2) Show that the subdifferential of f at x = 0 is given as

∂ f (0) = {p = (p1, p2, p3) ∈ R3 | p1 + p2 ≤ 1, p2 + p3 ≤ 1, p1 + p3 ≤ 1}.

(3) Show that ∂ f (0) is not an integer polyhedron.
(4) Show that ∂ f (0) contains an integer point.

Problem 17. (COSS) Let f : Zn → Z ∪ {+∞} be an integer-valued integrally convex function with
f (0) < +∞.
(1) Show that ∂ f (0) is nonempty.

1This statement is true for general n. That is, a quadratic function in n integer variables is M♮-convex if and only if it is
laminar convex.
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(2) Show that ∂ f (0) is given as ∂ f (0) = {p ∈ Rn |
n∑

j=1

y j p j ≤ f (y) − f (0) (∀y ∈ {−1, 0,+1}n)}.

(3) Suppose that we apply the Fourier–Motzkin elimination to the system of inequalities
∑n

j=1 y j p j ≤
f (y) − f (0) indexed by y ∈ {−1, 0,+1}n. Show that we do not need to generate new inequalities in the
elimination process.
(4) Show that ∂ f (0) contains an integer vector.

Problem 18 (Research Problem (COSS) ). The integral biconjugacy for integrally convex functions im-
plies that there is a one-to-one correspondence between the class FIC of integer-valued integrally convex
functions and the class of their integral conjugates F •IC = { f • | f ∈ FIC}. Give a direct characterization of
F •IC.

The steepest descent algorithm for an L♮-convex function g : Zn → R∪{+∞} reads as follows
(1X means the characteristic vector of a set X ⊆ {1, 2, . . . , n}):

Step 0: Set p := p◦ (initial point).
Step 1: Find σ ∈ {+1,−1} and X that minimize g(p + σ 1X).
Step 2: If g(p + σ 1X) = g(p), then output p and stop.
Step 3: Set p := p + σ 1X and go to Step 1.

In Problems 19 and 20 we consider the behavior of this algorithm when n = 2.

Problem 19. Define g : Z2 → R by g(p1, p2) = max(0,−p1 + 2,−p2 + 1,−p1 + p2 − 1, p1 − p2 − 2).
(1) Verify that g is L♮-convex.
(2) Find the set, say, S of the minimizers of g. Draw a figure, indicating S on the lattice Z2.
(3) Take an initial point p◦ = (0, 0). Which minimizers are possibly found? Is the number of iterations
constant, independent of the generated sequences of vector p? How is the number of iterations related to
the ℓ∞-distance from p◦ to S ?
(4) Take another initial point p◦ = (1, 4). Which minimizers are possibly found? Is the number of
iterations equal to the ℓ∞-distance from p◦ to S ?

Problem 20. Let g : Z2 → R be an L♮-convex function that has a minimizer; denote by S the set of its
minimizers. Give an expression for the number of iterations in terms of p◦ and S .

Problem 21 (M-minimizer cut theorem). Let f : Zn → R be an M-convex function such that argmin f ,
∅. Take any x ∈ dom f and i ∈ {1, 2, . . . , n}, and let j ∈ {1, 2, . . . , n} be such that f (x − 1i + 1 j) =
min

1≤k≤n
f (x − 1i + 1k). Prove that there exists x∗ ∈ argmin f such that x∗j ≥ x j + 1 in the case of i , j and

x∗j ≥ x j in the case of i = j.

(END of Problems)
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