RIMS Summer School (COSS 2018), Kyoto, July 2018
Problems for “Discrete Convex Analysis’ (by Kazuo Murota)

Solve the problems marked by (COSS) .

Problem 1. (COSS) Prove that a function f : Z? — R defined by f(x1,x2) = @(x1 — x2) is an Li-convex
function, where ¢ : Z — R is a univariate discrete convex function (i.e., ¢(t — 1) + @(t + 1) > 2¢(¢) for all
te’).

Problem 2. Prove that a function f : Z> — R defined by f(x1,x2) = @(x1 + x3) is an Mt-convex function,
where ¢ : Z — R is a univariate discrete convex function.

Problem 3. (1) Show that a function f(x, xp) is Mt-convex if and only if f(x1, —xp) is Li-convex.
(2) Is there any such correspondence for functions in three or more variables?

Problem 4. (COSS) Find an integrally convex function that corresponds to
the triangulation to the right:

Problem 5. (COSS) Prove that f(x) = max{x;, x3,..., X} is an L-convex function.

Problem 6. (COSS) Let G = (V, E) be a connected graph. Define a set function f by: f(X) = 0 if X is the
edge set of a spanning tree, and f(X) = +co otherwise. We may regard f as f : ZF — Z U {+c0}. Show
that f is an M-convex function.

For a family 7 of subsets of {1,2,...,n} and a family of univariate discrete convex functions
¢4 : Z — Rindexed by A € ¥, we consider a function defined by

fx) = Z pa(x(4))  (xeZ), (D

AeF

where x(A) = Y;ca Xi- A function f : Z" — Riis called laminar convex if it can be represented
in this form for some laminar family ¥ and ¢4 (A € 7).

Problem 7. Prove that a laminar convex function is Mf-convex.

In Problems 8-11, we consider a quadratic function in three variables f(x) = x"Ax (x € VA
defined by a 3 X 3 symmetric matrix A = (a;;).

Problem 8. (1) Find a necessary and sufficient condition on (a;;) for f(x) to be submodular.
(2) When f(x) is submodular, is the matrix A positive semidefinite?

Problem 9. (1) Find a necessary and sufficient condition on (a;;) for f(x) to be Lf-convex.
(2) When f(x) is Lf-convex, is the matrix A positive semidefinite?

Problem 10. (1) Show that f(x) is an ME-convex function if and only if (i) a;; > a;; > 0 for all (i, j), and
(i1) the minimum among the three off-diagonal elements, aj;, a3, a3, is attained by at least two elements.
(2) When f(x) is ME-convex, is the matrix A positive semidefinite?



Problem 11. (1) Is f(x1, X2, x3) = (X1 + x2)*> + (X2 + x3)* + (x| + x3)?> laminar convex?
(2) Is this function Mf-convex?
(3) Prove that a quadratic function f(x) (x € Z3) is MP-convex if and only if it is laminar convex!.

Problem 12. (1) Show that f(xi, x2, x3) = a(x] + X2)? 4 b(xa + x3)% + ¢(x] + x3)? with randomly chosen
a, b, c > 0 is not an M¥-convex function.

(2) Show that, under some “nondegeneracy assumption,” a function f(x) of the form (1) is Mf-convex
only if ¥ is a laminar family.

Problem 13. Miller’s paper (1971) in inventory theory dealt with the function:

(o] n n
EEDY (1 - | Fitxi+ k)) e (= (o) € ZY), @)
k=0 i=1 i=1
where F1, ..., F, are cumulative distribution functions of Poisson distributions (with different means),
and cy, ..., ¢, are nonnegative real numbers. Prove that this function is LA-convex.

For a matroid on V, the rank function p is defined by

p(X) = max{|/| | I is an independent set, I C X} Xcv. 3)

Problem 14. (COSS) Let p be a matroid rank function on V, and define f : {0, 1}V — Z by f(1%) = p(X)
for X C V, where 1% denotes the characteristic vector of X.

(1) Prove that f is L-convex.

(2) Prove that f is Mf-concave.

(3) Prove that f*(1%) = |X| — f(1%) for X C V, where f*(p) = sup{(p, x) — f(x) | x € {0, 1}V}.

Problem 15. Let p; and p; be the rank functions of two matroids on V. For the rank of the union matroid,
the following formula is known:

m}gx{pl(X) +p2(V\X)} = myin{pl(Y) +p2(Y) = Y]} +|V]. 4)

Relate this formula to the Fenchel min-max duality in discrete convex analysis.

Problem 16. (COSS) Let f : Z3 — Z U {+c0} be defined by £(0,0,0) = 0 and f(1,1,0) = £(0,1,1) =
f(1,0,1) = 1, with dom f = {(0,0,0), (1, 1,0),(0, 1, 1), (1,0, 1)}.

(1) Show that f is integrally convex.

(2) Show that the subdifferential of f at x = 0 is given as

Af0) ={p=(p1,pp) ER | pr+pr<Lpp+p3<1,p1+ps <l

(3) Show that df(0) is not an integer polyhedron.
(4) Show that df(0) contains an integer point.

Problem 17. (COSS) Let f : Z" — Z U {+co} be an integer-valued integrally convex function with
f(0) < +oo.
(1) Show that df(0) is nonempty.

IThis statement is true for general n. That is, a quadratic function in n integer variables is Mi-convex if and only if it is
laminar convex.



(2) Show that df(0) is given as df(0) = {p € R" | Zyjp.,- < f(y) - f(0) (Vy e {-1,0,+1}H}.

j=1
(3) Suppose that we apply the Fourier—Motzkin elimination to the system of inequalities Z;?:I yjpj <
f@) — f(0) indexed by y € {-1,0,+1}". Show that we do not need to generate new inequalities in the
elimination process.

(4) Show that df(0) contains an integer vector.

Problem 18 (Research Problem (COSS) ). The integral biconjugacy for integrally convex functions im-
plies that there is a one-to-one correspondence between the class Fic of integer-valued integrally convex
functions and the class of their integral conjugates ¢, = {f* | f € F1c}. Give a direct characterization of

Fic-

The steepest descent algorithm for an Li-convex function g : Z" — RU{+co} reads as follows
(1X means the characteristic vector of a set X C {1,2,...,n}):

Step 0: Set p := p° (initial point).

Step 1: Find o € {+1, -1} and X that minimize g(p + o 1%).

Step 2: If g(p + o 1%) = g(p), then output p and stop.

Step 3: Set p := p + o 1% and go to Step 1.

In Problems 19 and 20 we consider the behavior of this algorithm when n = 2.

Problem 19. Define g : Z> — R by g(p1, p2) = max(0, —p; +2,—p2 + 1,—p1 + p2 — 1, p1 — p2 = 2).

(1) Verify that g is L%-convex.

(2) Find the set, say, S of the minimizers of g. Draw a figure, indicating S on the lattice Z?.

(3) Take an initial point p° = (0,0). Which minimizers are possibly found? Is the number of iterations
constant, independent of the generated sequences of vector p? How is the number of iterations related to
the £ -distance from p° to S ?

(4) Take another initial point p° = (1,4). Which minimizers are possibly found? Is the number of
iterations equal to the {-distance from p° to §?

Problem 20. Let g : Z> — R be an Lf-convex function that has a minimizer; denote by S the set of its
minimizers. Give an expression for the number of iterations in terms of p° and S.

Problem 21 (M-minimizer cut theorem). Let f : Z" — R be an M-convex function such that argmin f #
(0. Take any x € dom f and i € {1,2,...,n}, and let j € {1,2,...,n} be such that f(x - 1' + /) =

1mkin f(x — 1" + 1%). Prove that there exists x* € argmin f such that x;‘. > x; + 1 in the case of i # j and
<k<n

k . s s
X; 2 x;jin the case of i = j.

(END of Problems)



