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Abstract. Let X be a non-singular ruled surface over an algebraically closed field of

characteristic zero. There is a non-trivial surjective endomorphism f : X → X if and

only if X is (1) a toric surface, (2) a relatively minimal elliptic ruled surface, or (3) a

relatively minimal ruled surface of irregularity greater than one which turns to be the

product of P1 and the base curve after a finite étale base change.

Introduction

We work over an algebraically closed field K of characteristic zero. Our interest is to

determine when a non-singular projective surface X has a non-trivial surjective endo-

morphism f : X → X. Here an endomorphism simply means a morphism into itself. A

non-trivial surjective endomorphism is a surjective endomorphism which is not an iso-

morphism. If κ(X) ≥ 0, then the endomorphism f is étale and X is a minimal model.

Moreover in the case κ(X) ≥ 0, it is known (cf. [F]) that X has a non-trivial surjec-

tive endomorphism if and only if X is an abelian surface, a hyper-elliptic surface, or a

minimal elliptic surface of κ(X) = 1 and χ(OX) = 0. In this article, we treat the rest

case: κ(X) = −∞. This is the case X is a ruled surface, which is called a birationally

ruled surface in some article. This problem is studied in several years by E. Sato and his

student M. Segami. The following result is obtained by Segami [S].

Theorem 1. Suppose that X is an irrational ruled surface with a non-trivial surjective

endomorphism. Then X is relatively minimal. If further the irregularity q(X) is greater

than one, then the P1-bundle structure X → B is associated with a semi-stable vector

bundle of rank two of B.

He proved more about possible vector bundles. For the rational case, Sato posed the

following:

Conjecture 2. If X is a rational surface with a non-trivial surjective endomorphism,

then X is a toric variety.
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A projective varietyX is called a toric variety if there is a Zariski-open subset T such that

T is a two-dimensional algebraic torus and the embedding T ⊂ X is a torus embedding

(cf. [TE]). We shall give an affirmative answer to the conjecture and characterize the

irrational surfaces.

Theorem 3. Let X be a ruled surface. It has a non-trivial surjective endomorphism if

and only if X is one of following surfaces:

(1) a toric surface;

(2) a P1-bundle over an elliptic curve;

(3) a P1-bundle over a non-singular projective curve B of genus g(B) > 1 such that

X ×B B ′ � P1 × B ′ for some finite étale morphism B ′ → B.

In the first section, we shall construct non-trivial surjective endomorphisms in the three

cases above. In the case (2), we use the formula in [Mu] on the pull-back of invertible

sheaves by the multiplication mapping of elliptic curve. The case (3) is reduced to the

construction of equivariant endomorphisms of P1 with respect to a given action of a

finite group. All the finite subgroups of SL(2,K) are classified up to conjugate (cf. [K]).

We shall construct endomorphisms explicitly by using some semi-invariant polynomials.

In the second section, we begin with studying the set S(X) of irreducible curves with
negative self-intersection numbers. The existence of non-trivial endomorphism f yields

strong conditions. For example, S(X) is a finite set and there is a positive integerm such

that fm(C) = C for any C ∈ S(X) (cf. Proposition 10), where fm stands for the m-times

composite f ◦ f ◦ · · · ◦ f . Thus we may assume f(C) = C for any C ∈ S(X) by replacing
f by fm. The ramification formula for f also yields some condition on the dual graph

of S(X). We then have a simplified proof of Theorem 1 in Proposition 12, and further

characterize the irrational surfaces in Theorem 13. Conjecture 2 is solved affirmatively

in Theorem 14.

The author thanks to Professor Y. Fujimoto for introducing him to this problem. He

also thanks to Professor O. Fujino for the careful reading of the manuscript.

1. Construction of endomorphisms

Lemma 4. A toric variety has a non-trivial surjective endomorphism.

Proof. Let T be an algebraic torus. LetM andN , respectively, be the groups of characters

and of one-parameter subgroups of T . A torus embedding T ⊂ X is defined by a collection

of rational convex polyhedral cones σ in N ⊗ R. The multiplication mapping T → T by

an integer m > 1 induces an endomorphism of group algebras Aσ := K[σ∨∩M ]. Since X

is a natural union of SpecAσ, the multiplication mapping extends to an endomorphism

of X.
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The following statement is mentioned in [S] without proof.

Proposition 5. A relatively minimal elliptic ruled surface has a non-trivial endomor-

phism.

Proof. Let π : X = PB(E)→ B be the ruling of a relatively minimal elliptic ruled surface

associated with a locally free sheaf E of rank two over an elliptic curve B. We may assume
that E is one of the following sheaves:
(1) E = OB ⊕ L for an invertible sheaf L;
(2) There is a non-trivial extension

0→ OB → E → OB → 0;

(3) There exist a point b ∈ B and a non-trivial extension

0→ OB → E → OB([b])→ 0.

Here,OB([b]) stands for the invertible sheaf associated with the prime divisor [b] consisting

of b. We shall construct endomorphisms in each cases.

Case (1). We want to construct an endomorphism ν : B → B such that

ν∗L � L⊗m(∗m)

for some integer m. If the ν exists, then the natural embedding

OB ⊕ L⊗m ↪→ Symm(OB ⊕ L) = OB ⊕ L⊕ · · · ⊕ L⊗m

induces a homomorphism ν∗E → Symm(E). This defines a morphism

X = PB(E) → X ×B,ν B = PB(ν
∗E)

over B and an endomorphism X → X. Let us fix a point 0 ∈ B and let us give B a

unique abelian group structure whose zero is 0. We seek a positive integer n and a point

c ∈ B such that the composite ν = µn ◦ Tc of the translation morphism Tc : y �→ y + c

and the multiplication mapping µn : B → B by n, satisfies the condition (∗m) for some

m. There is an invertible sheaf L0 of degree zero such that

L � OB([0])
⊗d ⊗L0

for d = degL. We have the following isomorphisms (cf. [Mu]):

µ∗
nL0 � L⊗n

0 , and µ∗
nOB([0]) � OB([0])

⊗n2

.

Since Tc does not change L0, we have

T ∗
c µ

∗
nL � OB([−c])⊗n2d ⊗ L⊗n

0 .
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The condition (∗m) for ν = µn ◦ Tc is satisfied if

OB([−c])⊗n2d ⊗OB([0])
⊗(−n2d) � L⊗(n2−n)

0 .

For any invertible sheaf M of degree zero, there is a point c such that

T ∗
c OB([0])⊗OB([0])

⊗(−1) � OB([−c]− [0]) � M.

Since the group Pic0(B) of invertible sheaves of degree zero is divisible, we can find an

expected point c for any positive integer n.

Case (2). Let µm be the multiplication mapping above. Then the induced exact

sequence of (2) by µ∗
m is not split. Thus µ∗E � E.

Case (3). A stable vector bundle of rank two on B is isomorphic to the E twisted

by an invertible sheaf for a point b. The pull-back µ∗
mE for an odd integer m is still a

semi-stable vector bundle of odd degree. Thus µ∗
mE is stable. Hence

T ∗
c µ

∗
mE � E ⊗ N

for a point c ∈ B and for an invertible sheaf N . The isomorphism induces X � X×B,ν B

for ν = µm ◦ Tc.

Lemma 6. Let G be a finite group acting on P1. Then there exists an equivariant non-

trivial surjective endomorphism f : P1 → P1; it satisfies the condition: f(g · z) = g · f(z)
for any z ∈ P1 and g ∈ G.

Proof. We may assume that the action of G is faithful; G ⊂ Aut(P1) � PGL(2,K). Let V

be the two-dimensional vector space H0(P1,O(1)) and let us fix a basis {x, y} of V , which
defines a homogeneous coordinate. Then P1 = P(V ) and g∗ induces an automorphism of

V up to scalar. Thus there is a central extension

1→ Z/2Z → G̃ → G → 1,

such that V is a right G̃-module and that the generator of Z/2Z acts as (−1). An element
g̃ ∈ G̃ acts on V as (

xeg

yeg

)
=

(
a b

c d

)(
x

y

)
,

for a matrix ( a b
c d ) of SL(2,K). The corresponding automorphism g ∈ G is written in

terms of the in-homogeneous coordinate z = x/y as:

z �−→ az + b

cz + d
.

It is well-known that for a suitable in-homogeneous coordinate z ∈ P1, G and the action

of G are described in one of the following ways (cf. [K]):
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(1) G is a cyclic group Z/mZ of order m. The action of the generator 1 is:

z �→ εmz.

(2) G is a dihedral group Dn of order 2n. The action of two generators is written as:

z �→ εnz, and z �→ z−1.

(3) G is the tetrahedral group, which is isomorphic to the alternating group A4. The

action is given by:

z �→ −z, and z �→ z +
√
−1

z −
√
−1

.

(4) G is the octahedral group, which is isomorphic to the symmetric group S4. The

action is given by:

z �→
√
−1z, and z �→ z +

√
−1

z −
√
−1

.

(5) G is the icosahedral group, which is isomorphic to the alternating group A5. The

action is given by:

z �→ ρz, and z �→ −(ρ− ρ−1)z − (ρ2 − ρ−2)

(ρ2 − ρ−2)z + (ρ − ρ−1)
.

Here, εm is the primitive m-th root of 1 defined as follows: The field K contains the field

Q of algebraic numbers. We fix an inclusion Q ⊂ C to the field of complex numbers. Let

εm ∈ K correspond to exp(2π
√
−1/m). As special cases, we set

√
−1 := ε4 and ρ := ε5.

In the cases (1) and (2), the endomorphisms f : P1 → P1 given by

f(z) = zm+1, and f(z) = −z−(2n−1)

are G-equivariant, respectively. For the rest cases, we shall construct a G̃-linear injection

V ⊗ L ↪→ Symd(V ) = H0(P1,O(d))

for a one-dimensional representation space L of G̃ and for an integer d > 1. If the linear

sub-system of |O(d)| defined by the subspace V ⊗ L ⊂ Symd(V ) is base-point free, then

it induces a G-equivariant endomorphism of P1. Suppose that F (x, y) ∈ C[x, y] be a

non-zero homogeneous polynomial of degree d + 1 such that F (x, y) ∈ Symd+1(V ) is

semi-invariant under G̃;

F (ax+ by, cx+ dy) = δ(g̃)F (x, y)

for an one-dimensional character δ of G̃. Let L be the one-dimensional representation

space associated with δ. Thus F induces a G̃-linear injection L → Symd+1(V ). We have

the decomposition

V ⊗ Symd+1(V ) � Symd+2(V )⊕ Symd(V )
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as SL(V )-modules. The projection V ⊗ Symd+1(V )→ Symd(V ) is given by:

(αx+ βy)⊗H(x, y) �−→ β
∂H

∂x
(x, y)− α

∂H

∂y
(x, y),

for α, β ∈ K and for H(x, y) ∈ Symd+1(V ). Thus the composite

φF : V ⊗ L → V ⊗ Symd+1(V )→ Symd(V )

is G̃-linear.

Cases (3) and (4). We know the following semi-invariant polynomial (cf. [K]):

F (x, y) = xy(x4 − y4).

Thus φF is given by

x �→ −x(x4 − 5y4), and y �→ y(5x4 − y4).

There are no common roots in the two polynomials above. Hence we have an equivariant

endomorphism

f(z) = −z(z4 − 5)
5z4 − 1 .

Case (5). We know the following invariant polynomial (cf. [K]):

F (x, y) = xy(x10+ 11x5y5 − y10).

Thus φF is given by

x �→ −x(x10 + 66x5y5 − 11y10), and y �→ y(11x10 + 66x5y5 − y10).

There are no common roots in the two polynomials above. Hence we have an equivariant

endomorphism

f(z) = −z(z10 + 66z5 − 11)
11z10 + 66z5 − 1 .

Theorem 7. Let π : X → B be a relatively minimal ruled surface over a non-singular

curve B of genus g(B) > 1. Then the following conditions are equivalent :

(1) The relative anti-canonical divisor −KX/B is semi-ample;

(2) There exist at least three distinct irreducible curves C satisfying C2 = 0 and π(C) =

B;

(3) There exist a finite étale covering τ : B ′ → B and an isomorphism X ×B B ′ �
P1 × B ′.

If the mutually equivalent conditions are satisfied, then X has a non-trivial surjective

endomorphism.
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Proof. (1) =⇒ (2). Since (−KX/B)
2 = 0, then the linear systems |−mKX/B| define a

fibration h : X → C onto a non-singular curve C . The fibers of π dominate C . Hence

C � P1. Let D be a general fiber of h. Then D2 = 0 and π(D) = B.

(2) =⇒ (3). If there is a section C0 of π with C2
0 < 0, then any other irreducible curve

C with π(C) = B is linearly equivalent to aC0 + π∗E for some a > 0 and a divisor E of

P1. Since 0 ≤ C0 · C = aC2
0 + degE, we have degE > 0 and

C2 = a2C2
0 + 2a degE > 0.

Hence, there is no section C0 with C2
0 < 0. Therefore π is associated with a semi-stable

vector bundle of rank two on B. By [Mi, 3.1], −KX/B and any effective divisors of

X are nef. Let Ci for i = 1, 2, 3 be the three irreducible curves with C2
i = 0 and

π(Ci) = B. There exist rational numbers ai > 0 and Q-divisors Ei of P1 such that Ci

is numerically equivalent to −aiKX/B + π∗Ei. We have degEi = 0 from C2
i = 0. Thus

Ci · Cj = Ci · KX/B = 0 for any i, j. In particular, Ci → B is an étale morphism,

since (KX/B + Ci) · Ci = 0. There is a finite étale morphism τ : B ′ → B such that any

component of Ci ×B B ′ is a section of X ×B B ′ → B ′. Thus we may assume that Ci are

sections of π. These are mutually disjoint. There exist divisors L2 and L3 of B such that

C2 ∼ C1 + π∗L2 and that C3 ∼ C1 + π∗L3. Since C1 ∩ C2 = C1 ∩ C3 = ∅, we infer that
L2 ∼ L3. Thus C2 ∼ C3. Therefore X � P1 × B.

(3) =⇒ (1). We may assume that τ is a Galois covering. Let µ : X ′ := X ×B B ′ → X

be the induced étale morphism. Then µ∗(−KX/B) = p∗1(−KP1) for the first projection

p1 : X
′ → P1. The action of the Galois group G on X ′ � P1 × B ′ is given by:

(z, b) �−→ (gz, gb)

for g ∈ G, for a suitable action of G on P1. This is because the morphism B ′ → Aut(P1)

induced by g is constant. We may assume that G acts faithfully on P1; G ⊂ Aut(P1) =

PGL(2,K). There exist two G-invariant effective divisors E1 and E2 of P1 such that

E1 ∼ E2 and E1∩E2 = ∅. Then p∗1E1 and p∗1E2 define a base-point free sub-linear system

of |−mKX/B| for m = degE1. Hence −KX/B is semi-ample.

We have a G-equivariant surjective endomorphism ν : P1 → P1 by Lemma 6. Thus

ν × id is a G-equivariant non-trivial surjective endomorphism of X ′ = P1 × B ′. This

descends to an endomorphism of X.

2. Curves with negative self-intersection numbers

LetX be a non-singular ruled surface. Let N(X) denote the real vector space NS(X)⊗R

for the Néron–Severi group NS(X). The intersection numbers C1 ·C2 of curves C1 and C2

define a natural intersection pairing on N(X). In this section, we assume that there exists
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a non-trivial surjective endomorphism f : X → X. Then the pull-back f∗ : N(X) →
N(X) and the push-down f∗ : N(X) → N(X) are both isomorphic and the composite

f∗ ◦ f∗ is the multiplication map by deg f . We note the projection formula: f∗C ·D =

C · f∗D for C , D ∈ N(X).

Lemma 8. Let C be an irreducible curve with C2 < 0 and let C1 = f(C) be the image of

C by f . Then there exist positive integers a and b such that f∗C1 = bC and f∗C = aC1.

In particular, deg f = ab and C2
1 = (b/a)C

2 < 0.

Proof. We have f∗C = aC1 for the mapping degree a of C → C1. If C ′ is another

irreducible curve with f(C ′) = C1, then f∗C
′ = αf∗C in N(X) for some positive rational

number α. Since f∗ is an isomorphism, C
′ = αC in N(X). Thus C ′ = C , since C2 < 0.

Therefore f∗C1 = bC for a positive integer b.

Let us consider the following sets of irreducible curves:

S(X) := {C |C2 < 0}, and S0(X) := {C |C2 < 0, and C ⊂ SuppR},

where R stands for the ramification divisor of f ; it is defined by the ramification formula

KX ∼ f∗KX +R.

The map f : S(X)→ S(X) given by C �→ f(C) is bijective by Lemma 8.

Lemma 9. If C ∈ S(X), then fm(C) ∈ S0(X) for a positive integer m.

Proof. Let C1 = f(C) and let a and b be the same numbers as Lemma 8. The condition

C ⊂ SuppR is equivalent to b ≥ 2. If b = 1, then |C2
1 | = (deg f)−1|C2| < |C2|. Thus

fm(C) ⊂ SuppR for some m.

Proposition 10. The set S(X) is finite and there is a positive integer m such that

fm(C) = C for any C ∈ S(X).

Proof. For any curve C ∈ S0(X), there exist infinitely many positive integers m such

that fm(C) ∈ S0(X) by Lemma 8. If fm(C) = fn(C) for some 0 < m < n, then

fm(C) = fm(fn−m(C)). Thus C = fn−m(C) by the injectivity of f : S(X)→ S(X). Let
mC be the smallest positive integer m such that fm(C) = C . We put

m0 :=
∏

C∈S0(X)

mC.

Then fm0(C) = C for any C ∈ S0(X). If C
′ ∈ S(X) \ S0(X), then fm′

(C ′) ∈ S0(X)

for some m′ > 0. Hence fm0+m′
(C ′) = fm′

(C ′) and thus fm0(C ′) = C ′ by the injec-

tivity. Since we can choose m′ < m0, we have fm0−m′
(fm′

(C ′)) = C ′. Hence S(X) =⋃
m>0 f

m(S0(X)). Therefore f
m0 is identical on S(X) and S(X) is a finite set.
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We may assume that f(C) = C for C ∈ S(X) by replacing f by fm0 . Then we have

a = b in Lemma 8 for C ∈ S(X), since (deg f)C2
1 = b2C2. Therefore, deg f = a2 and

multC R = a− 1 for any curve C ∈ S(X). In particular, S(X) = S0(X) for the f . We

define

∆ := R− (a− 1)
∑

C∈S(X)

C.

Then ∆ is a nef and effective divisor. We have the ramification formula

KX ∼ f∗KX +∆+ (a− 1)
∑

C∈S(X)

C.(2.1)

Let C be a curve in S(X). The ramification divisor RC for f |C : C → C is calculated as:

RC = (R + C − f∗C)|C = ∆|C + (a− 1)
∑

C �=Cλ∈S(X)

Cλ|C.

Hence we have the following relation of intersection numbers with C :

(a− 1)(KX · C + C2) + ∆ · C + (a− 1)
∑

C �=Cλ∈S(X)

Cλ · C = 0.(2.2)

Lemma 11. Let C be a curve in S(X). Then the following three properties hold :

(1) The arithmetic genus pa(C) is at most one.

(2) If pa(C) = 1, then C is a connected component of SuppR.

(3) C intersects at most two other irreducible curves in S(X). The intersection is

locally transversal.

If a connected component of S(X) is not irreducible, then it is a chain or a cycle of

non-singular rational curves. Curves in the component are apart from Supp∆ except for

edge curves of chain.

Proof. (1) and (2) follow from the inequality

2pa(C)− 2 +
∑

C �=Cλ∈S(X)

Cλ · C ≤ 0

induced from (2.2).

(3). If C intersects another C ′ ∈ S(X), then C and C ′ are non-singular rational curves

and ∑
C �=Cλ∈S(X)

Cλ · C ≤ 2.

Suppose that C ∩C ′ consists of one point P and C ·C ′ = 2. Then C ∪C ′ is a connected

component of SuppR and RC = (a − 1)C ′|C = 2(a− 1)P . This is a contradiction since
f |C is unramified over the affine line C \ {P}. Therefore, if C · C ′ = 2, then C and C ′
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intersects transversely at two distinct points. If C intersects two other irreducible curves

C1 and C2 in S(X), then the intersection points C ∩ C1 and C ∩ C2 are distinct, by the

same reason. The rest assertion is derived from these properties.

We call an exceptional curve of the first kind by a (−1)-curve for short. Let C be a

(−1)-curve and let X → X1 be the contraction of C . Then f descends to X1. Any curve

in S(X1) is the image of a curve in S(X). Thus f also stabilizes S(X1). Let us choose a

successive blow-downs

µ : X → X1 → X2 → · · · → Xl,

of (−1)-curves. Then f descends to the final Xl and it stabilizes S(Xl). We assume that

Xl is relatively minimal.

Proposition 12. (1) If X is an irrational surface, then X is isomorphic to the total

space of the P1-bundle over a non-singular irrational curve.

(2) If the irregularity q(X) is greater than one, then the P1-bundle is associated with a

semi-stable vector bundle of rank two.

(3) If X is rational, then any curve in S(X) is a non-singular rational curve.

Proof. (1) and (2). We use some argument of [S]. Let π : X → B be the ruling induced

from the Albanese map. Then there is a unique endomorphism fB : B → B such that

fB ◦ π = π ◦ f . Suppose that π is not a P1-bundle. Then an irreducible component C

of any singular fiber is contained in S(X). Since f−1C = C , the endomorphism fB fixes

the point b := π(C). Thus fB is an isomorphism since B is irrational. We infer that

f∗C = aC = C from f∗π∗(b) = π∗(b). This contradicts to a > 1. Thus X is relatively

minimal and π is a P1-bundle. Suppose that q(X) > 1. Then the induced morphism fB

is an isomorphism. If π is not associated with a semi-stable vector bundle of B, then

there is a section C with C ∈ S(X). We know that the mapping degree of f |C : C → C

is a. Thus the mapping degree of the composite

C ⊂ X
f→ X

π→ B

is also a. This is a contradiction.

(3). If pa(C) = 1 for a curve C ∈ S(X), then µ : X → Xl is an isomorphism along C

by Lemma 11. Thus pa(Cl) = 1 and C2
l < 0 for the image Cl := µ(C). We may assume

that Xl is isomorphic to the P1-bundle over P1 associated with OP1 ⊕ OP1(e) for e > 0.

Then Cl should be the minimal section of the P1-bundle, since this is the unique curve

in X with negative self-intersection number. Thus pa(C) = 0.

Theorem 13. Let π : X → B be a P1-bundle over a non-singular curve B of genus

g(B) > 1. Then the following two conditions are equivalent :
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(1) X has a non-trivial surjective endomorphism;

(2) There is a finite étale morphism B ′ → B such that X ×B B ′ � P1 × B ′ over B ′.

Proof. (2) =⇒ (1) is proved in Theorem 7. We shall show (1) =⇒ (2). Let f : X → X be

a non-trivial surjective endomorphism. We may assume that fB is identical by replacing

f by fm for some m. Hence π ◦ f = π. The ramification divisor R for f is not zero, since

f is not étale along fibers of π. The P1-bundle π is associated with a semi-stable vector

bundle of rank two by Proposition 12. Hence the divisor −KX/B and any effective divisors

are nef by [Mi, 3.1]. In particular, R2 = f∗(−KX/B) · (−KX/B) = 0 and ∆i · ∆j = 0

for any irreducible components ∆i and ∆j of R. We see that ∆j → B is étale, since

(KX/B + ∆j) · ∆j = 0. Let B ′ → B be any finite étale morphism. Then f induces an

endomorphism f ′ of X ′ = X×B B ′. Here the ramification divisor R′ of f ′ is the pull-back

of R. Hence we may assume from the beginning that every irreducible component ∆j

of R is a section of π. Then R has at least two irreducible components; otherwise, f is

unramified over A1 = P1 \ {one point} on fibers of π. Therefore, π is associated with a
vector bundle E of rank two over B such that E � OB ⊕L for an invertible sheaf L with
degL = 0.
Let OX(1) be the tautological line bundle associated with E. We have an isomorphism

f∗OX(1) � OX(d) ⊗ π∗M for an invertible sheaf M of B and for d := deg f > 1. Note

that degM = 0, since OX(1) · OX(1) = deg E = 0. Thus we have an injection

φ : E � π∗OX(1) ↪→π∗f
∗OX(1) = Sym

d(E)⊗M.

Here, φ(E) is a direct summand, since OX is a direct summand of f∗OX . Let φj be the

composite of φ and the projection to L⊗j ⊗M induced from

Symd(OB ⊕ L) � OB ⊕ L⊕ · · · ⊕ L⊗d → L⊗j ,

for 0 ≤ j ≤ d. Then φ0 and φd are surjective, since the homomorphism π∗E → f∗OX(1)

induced from φ is surjective. Suppose that the composite of OB ⊂ E and φ0 is not

zero. Then OB � M. If OB  � L⊗d, then the composite of L ⊂ E and φd is surjective.

Hence L � L⊗d. Suppose next that the composite of OB ⊂ E and φd is not zero. Then

OB � L⊗d ⊗M. If L⊗d  � OB, then the composite of L ⊂ E and φ0 is surjective. Hence

L � M. Therefore in any case, L⊗(d−1), L⊗d, or L⊗(d+1) is isomorphic to OB. Since

d > 1, L is a torsion element of Pic(B). We have a finite étale cyclic covering τ : B ′ → B

such that τ ∗L � OB. Therefore X ×B B ′ � P1 × B ′ over B ′.

Theorem 14. If X is a rational surface with a non-trivial surjective endomorphism,

then X is a toric variety.
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Proof. We may assume that X is not relatively minimal and the Xl above is associated

with OP1 ⊕ OP1(e) for e > 0. Let p : Xl → B = P1 denote the P1-bundle structure and

let π := p ◦ µ : X → Xl → P1 denote the composite. Irreducible components of any

singular fiber of π and the proper transform C0 of the minimal section of p belong to

S(X). Therefore S(X) is connected and the number of singular fibers of π is at most
two by Lemma 11. Let Fb = π∗(b) be a singular fiber. Then Fb is a chain of non-singular

rational curves. Let

Fb = Γb,0 + eb,1Γb,1 + · · ·+ eb,lb−1Γb,lb−1 + Γb,lb

be the irreducible decomposition such that

• C0 intersects only Γb,0 in Fb,

• Γb,j intersects only Γb,j−1 and Γb,j+1 in Fb for 1 ≤ j ≤ lb − 1,
• Γb,lb intersects only Γb,lb−1 in F[b],

• eb,j is the multiplicity of Fb along Γb,j .

One of the following two cases occurs.

Case 1. S(X) contains a horizontal curve C ′ different from C0.

The curve C ′ is unique by Lemma 11; C ′ intersects only Γb,lb in singular fibers Fb.

Subcase 1-1. X has two singular fibers.

The morphism µ : X → Xl is considered to be a sequence of blow-ups whose centers

are double points of the image of S(X). The image of S(X) in Xl consists of two fibers,

the minimal section, and a section apart from the minimal section. Hence X is a toric

variety.

Subcase 1-2. X has only one singular fiber Fb.

If C ′ intersect C0, then the point P := C ′ ∩C0 is apart from Fb and is fixed by f , i.e.,

f−1(P ) = P . Thus π(P ) is contained in the ramification locus of the induced morphism

fB : B → B. It follows that the fiber π−1(π(P )) is also contained in the ramification

locus SuppR of f . This contradicts to Lemma 11. Therefore C ′ is apart from C0. The

morphism µ : X → Xl is considered to be a sequence of blow-ups whose centers are double

points of the image of S(X). The image of S(X) in Xl consists of a fiber, the minimal

section, and a section apart from the minimal section. Hence X is a toric variety.

Case 2. S(X) contains no horizontal curve except for C0.

Then S(X) is a chain. In the singular fiber Fb, there is a (−1)-curve different from
Γb,lb . Hence we have a sequence of contraction of (−1)-curves

µ′ : X → X ′
1 → X ′

2 → · · · → X ′
l

which does not contract Γb,lb . Thus µ
′ is a sequence of blow-ups whose centers are double

points of the image of S(X). If there is a section C ′
0 of X

′
l → B such that (C ′

0)
2 < 0,
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then C ′
0 = µ′(C0), since the proper transform of C ′

0 in X should be contained in S(X).
Therefore, we have a section C ′ of π : X → B such that C ′ is apart from C0 and that C

′

intersects Γb,lb in each fiber Fb. Since the image µ
′(C ′) is apart from µ′(C0), X is a toric

variety.
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