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tions, constitute a wide class of discrete convex functions in discrete convex
analysis, a unified framework of discrete optimization, proposed by Murota.
This paper shows a technical result that any Le-convex function can be
represented by the convolution of two L-convex functions attaining the in-
fimum in the definition of the convolution. This result gives simple proofs

for several known results on Ls-convex functions.
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1 Introduction

In the area of discrete optimization, nonlinear optimization problems have been
investigated as well as linear optimization problems. “Discrete convex analysis,”
proposed by Murota [6, 7], is being recognized as a unified framework of discrete op-
timization problems with reference to existing studies on submodular functions [3],
valuated matroids [2, 8] and convex analysis [13]. Discrete convex analysis is not
only a general framework but also a fruitful one with applications in the areas
of mathematical economics and engineering [1, 4, 9, 10, 11]. The concepts of L-
convex and M-convex functions play central roles in discrete convex analysis, and
these are extended to wider and important classes of discrete convex functions,
called Ly-convex and Ms-convex functions that are relevant to the matroid in-
tersection problem. Given a pair of two matroids defined on a common ground
set V', the matroid intersection problem is to find a common independent set of
maximum size, and is a variant of Ms-concave function maximization. On the
other hand, it is well-known that the maximum size of a common independent
set is characterized by the minimum of p;(X) + p2(V \ X) over all subsets X
of V, where p; and p, are rank functions of the given matroids. The function
g(Y) = minxcy (p1(X) + p2(Y \ X)) is an Ly-convex function in disguise. See
[7, 9] for details.

This paper focuses on Ls-convex functions, and gives several new results and
simple proofs of known results on Ly-convex functions. We introduce the definitions
L-convex and Ly-convex functions and our results below.

Let V be a nonempty finite set. We denote by Z and R the sets of all integers
and reals respectively, and by Z" the set of all integral vectors p = (p(v) : v € V)
indexed by V. For any p,q € ZV, the vectors p A g and pV ¢ in Z" are such that

(p A g)(v) =min{p(v),q(v)}, (pVg)(v)=max{p(v),q(v)} (veV).
Given a function g : Z¥ — R U {£o0}, the effective domain of g is defined by

domyg = {p € Z" | g(p) # +oo}.

A function g : ZV — RU{+oo} is said to be L-conver if dom g # () and it satisfies
the following two conditions:

(SBF) g is submodular, i.e.,
9(p) +9(a) 2 9(p A q) +9(pVa) (Vp,q€Z),
(TRF) there exists 7 € R such that

gp+1)=g(p)+r (VpeZV),

where 1 denotes the vector of all ones.
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For any functions gi,¢, : Z¥ — R U {400}, the infimal convolution (or simply
convolution) of g; and gy, denoted by ¢10gs : ZV — R U {£o0}, is defined by

(10g2)(p) = inf{g1(p1) + g2(p2) | P + 2 =p, P1,p2 €ZY} (p€ZV). (1)

It is easy to show that if gy0go > —o0 then the effective domain of g;0gs coincides

with the Minkowski sum of the effective domains of g; and g, i.e.,
dom (910g>) = dom g1 4+ dom g» = {p1 + p2 | p1 € dom g1, p, € dom g»}.

A function g : Z¥ — RU{+o0} is said to be Ly-convez if dom g # ) and g = ¢g;0gs
for some L-convex functions g;, ¢, : Z¥ — R U {+00}. For an L-convex function
g:2Z" — RU{+0} with g(p+1) = g(p) +r (Vp € ZV), let us consider an
L-convex function h : Z¥ — R U {400} defined by h(p) = ra if p = a1 for some
«a € Z; otherwise h(p) = +00. Then, we have g = gOh, and hence, the class of
Ly-convex functions contains that of L-convex functions. On the other hand, it is
known that the convolution of two L-convex functions is not necessarily L-convex
[6]. Thus, the class of Ly-convex functions is properly larger than that of L-convex
functions.

Before stating our main result, we give an example.
Example 1 Let g1, g» : Z2 — R be the functions defined by

g91(p) = exp(p(2) — p(1)),  g2(p) = exp(p(1) — p(2)) (v = (p(1),p(2)) € Z).

We can easily show that ¢; and ¢, are L-convex and that Ls-convex function
g = ¢10gy is identically zero. On the other hand, for any pi,ps € Z2%, g1(p1) +
g2(p2) > 0 holds. This says that there do not necessarily exist points attaining the
infimum in the right hand side of (1). However, L-convex functions ¢} and g} with
g1(p) = g5(p) = 0 for all p € Z? satisfy

g(p) = min{g}(p1) + g4(p2) | p1 + P2 = p, p1,p2 € Z*} (p € Z%),

and hence, there exists a “deconvolution” of g into g; and g} attaining the infimum
in (1). |

Our main result says that such a deconvolution of an Ls-convex function is

generally possible.

Theorem 2 For any Ly-convex function g : ZV — R U {+o0}, there ezist two

L-convez functions g and gy such that

9(p) = min{g} (p1) + g5(p2) | ;1 + P2 =p, p1,p2 € ZV} (p€Z¥).  (2)
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Theorem 2 affords simple proofs of several known or extended results on Ls-
convex functions, e.g., an optimality criterion, a proximity property and a charac-
terization of the set of all minimizers of an Ls-convex function as follows.

For a function g : Z¥ — R U {+oo}, we denote by argming the set of all

minimizers of g, i.e.,

argming = {p € Z" | g(p) < g(q) (Vg € Z")}.

A minimizer of an Lj-convex function can be characterized by a local optimal

criterion below.

Theorem 3 ([12]) For an Ly-conver function g : ZV — R U {400} and p* €

dom g, we have

g(p*) < gp* +xs) (VS CV),

p* € argming < i B
{ 9" +1) = g(p"),

where xs denotes the characteristic vector of S defined by

)1 (wes)
XS(’U)—{O (v ¢ S) (veV).

The original proof of Theorem 3 in [12] utilizes an argument similar to the proof
of Proposition 8 in Section 2. By applying Theorem 2, we can easily prove it (see
Section 3).

The second application of Theorem 2 is a proximity theorem for Ls-convex
functions, which guarantees that for a minimal solution p of a “scaled” function,

there exists a minimizer p* of the original function near p.
D D

Theorem 4 Let g : ZV — R U {400} be an Ly-convex function with g(p + 1) =
g(p) (Yp € ZV) and let « € Z, . If p € dom g satisfies

g(p) < glp+axs) (VSCV),

then arg min g # () and there exists p* € arg min g with
p<p*<p+2(n-—1)(a—1)1.
Here n = |V| and Z, denotes the set of all positive integers.

A proximity theorem for Lj-convex functions was first stated in [12], but it is
weaker than Theorem 4 in the sense that it assumes an essential boundedness of
g, where an Ly-convex function ¢ is said to be essentially bounded if dom g N {p €
Z"V | p(v) = 0} is bounded for some v € V. The proximity theorem free from this

restrictive assumption can be proved easily by Theorem 2 (see Section 3).
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The third application of Theorem 2 is a characterization of the set of all min-
imizers of an Ly-convex function. It is shown in [7] that for two L-convex func-
tions g1,¢» : ZV — Z U {+oc}, argmin(g;0gy) is either an empty set or equal
to argmin g; + arg min go, and furthermore, if argmin(g;0gy) # 0 then it is an
Ly-convex set. Here, a set P C ZV is called an L-convez set if it is nonempty and
satisfies

pg€P = (pAg), (pVq), pE1EP,

and the Minkowski sum of two L-convex sets is called an Ly-conver set. The
above former result relies on the integrality of the range of functions g; and gs.
For example, the statement does not hold for two L-convex functions ¢; and g,
in Example 1 because argmin ¢ = Z? and arg min g; = arg min g, = (). However,
Theorem 2 extends the above latter result to the following theorem.

Theorem 5 For an Ly-convez function g : ZV — R U {+o0}, if argming # 0

then argmin g s an Ly-convex set.

The organization of this paper is: Section 2 shows Theorem 2, and Section 3
proves Theorems 3, 4 and 5, and Section 3 also gives elementary proofs of two

results on the convolution of L-convex functions.

2 Proof of Our Main Result

In this section, we give a proof of Theorem 2. Before giving it, we introduce four

technical results.

Proposition 6 Assume that ¢ = ¢g10gy for some functions ¢, and g, such that

91(q + 1) = g1(q) + 1 and g2(q+ 1) = g2(q) + 72 for all g € ZV. If g(p) € R for
some p € ZV, then r1 = 7y holds, and furthermore, g(q¢ + 1) = g(q) + 1 for any
qeZVv.

Proof. It follows from g(p) € R that there exist p; € dom ¢; and p; € dom g,
with p; 4+ ps = p. Then, we have

glp) < inf{gi(p1 + a11) + ga(ps + al) | a1 + a2 = 0, a1, 0 € Z}

= inf{gi(p1) + roq + g2(p2) + r202 | 01 + 2 =0, o, 0 € Z}
= gi1(p1) + g2(p2) + inf{(r; — ro)a; | oy € Z}.

This says that if g(p) € R then r; = 75 must hold. Analogously, for any q € ZV,

we have

g(¢g+1) < inf{g(gr + 1)+ ga(gg+2l) |1+ =¢ oqg+ay=1}
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= g(q) + 71,
g(g) < inf{gi(qn + 1)+ g(@+al)|ag+q@p=q9g+1, a;+ay=—1}
= glg+1)—r1.
Hence, g(q + 1) = g(q) + r1 holds for any ¢ € ZV. |

In the sequel, we assume that g : Z¥ — RU{#oc} is defined as the convolution

of two L-convex functions g; and g,, and assume that g(p) € R for some p, i.e.,

ap+1) =g +r, gp+1)=gp+r (VpeZ’) (3)

by Proposition 6. We define the positive support of a vector p € ZV by

supp’(p) = {v € V | p(v) > 0}.

For any p,q € dom ¢g; + dom gy with p < ¢, we say that ¢ is adjacent to p if ¢ # p
and there exists no nonempty subset S of supp* (¢ — p) such that

g—xs € dom g; +dom gs, g—xs # P

Proposition 7 For any p,q € dom g; +dom g, with p < q, there exists a sequence
(¢ =q0,91,---,qm = D) of points in dom g; + dom g9 such that ¢; 1 is adjacent to
g fori=1,....,m.

Proof. Since there is nothing to prove if ¢ is adjacent to p, we assume that
q is not adjacent to p. Thus, there exists a nonempty subset S of supp™(q — p)
such that ¢ = ¢ — x5 € dom ¢; + dom ¢, and ¢; # p. Moreover, if S is minimal
among such nonempty subsets of supp™(q — p), then ¢ must be adjacent to ¢;. By

repeating the above process, a required sequence is obtained because ¢; > p and

llgr = plls < [lg = plh- N
In order to show a statement

“if a property P holds for some p € dom ¢g; + dom go then P also holds
for all points ¢ € dom g; + dom g with ¢ > p,”

it is enough, by Proposition 7, to show that P holds for ¢ adjacent to p. A necessary
condition for adjacency is given as follows.

Since dom ¢g; and dom g, are an L-convex set, for two points p,q € dom ¢g; +
dom g, with p < ¢, there exist decompositions of p and ¢ such that

PL+p2=p, G1t+aq@=4q p1<q, P2 (g, ()
P1,q1 € dom gy, p2,qy € dom gs.
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Proposition 8 For any points p,q € dom g; + dom g, with p < q, if q is adjacent
to p then ||g — pllc = 1 and qi(u) — pi(v) = q1(v) — p1(v) for any p1, p2, ¢ and
qa satisfying (4) and for any u,v € supp™(q — p).

Proof. Let @« = max{q(v) — p1(v) | v € supp(¢ — p)} and S = {v €
suppt (¢ — p) | ¢1(v) — p1(v) = a}. Since g # p holds, we have o > 1 and S # 0.
We will show the following claim.

CrAam: If o > 2 then p+xs,q—xs € dom g; + dom gs.

By using the claim, we can complete the proof of Proposition 8. If ||¢g — p||eo > 2
or S is a proper subset of supp™ (¢ — p), then @ > 2 and ¢ — x5 # p must hold. By
the claim, however, this contradicts that ¢ is adjacent to p.
We now prove the above claim. Assume that « > 2 and let § = o — 1. We
consider points defined by
Pi=(@+pL)Vaq, py=p2—PF1)Ag, p =pi+p,
=P+ AG, G=@=-PF)Ve, =q+d

Obviously, p', ¢' € dom ¢g; + dom gy and p' + ¢’ = p + ¢ hold. We will show that
pP'=p+xs

which also implies ¢’ = ¢ — xs. By the definitions of p| and p),, we have

p(v)+ 62> q) = pi(v)=pv)+ 85,

n@)+68<qa) = pi(v)=aq), (5)
p2(v) — B < (v) = py(v) = pa(v) — B,

p2(v) = B> go(v) = py(v) = q2(v)

for each v € V. Let v be any element of V. We divide into three cases. (i) If
p(v) = q(v) holds, then

p1(v)+ 682> qv) = pv) =0 < ga(v),
@)+ 08 <aqa(v) = pa(v) = B> g

)
hold, and therefore, p'(v) = p(v) is satisfied by (4) and (5). (ii) If p(v) < ¢(v)
and pi(v) + 8 > q1(v), then v € S and py(v) — 3 < g2(v) must hold, and hence,
p'(v) = p(v). (iii) Assume that p(v) < ¢(v) and p1(v)+0 < ¢1(v). By the definition
of 3, the latter implies pi(v) + f = q1(v) — 1, i.e,, v € S. Moreover, we have
p2(v) — B < go(v); since otherwise, we would obtain p;(v)+pe(v) > q1(v)+¢2(v)—1
which contradicts the assumption p(v) < ¢(v). Thus, p'(v) = ¢1(v) + p2(v) — B =
p1(v) + p2(v) + 1 = p(v) + 1 holds. From the above discussion, p’ = p + xs- |

We emphasize that in Proposition 9 below we do not exclude the possibility

that ¢ is equal to —oo at some point of dom g; + dom gs.
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Proposition 9 For two points p € dom g and q € dom ¢g; + dom gy with p < g,

we assume that q is adjacent to p. If points p1, ps and a positive number v satisfy

g(p) +v > gi(p1) + g2(p2) > g(p), p1+pa=p, p1 €domg;, p; € dom g,

then, for any q1 and g with
@1+q=q, q €domg;, g€ dom gy,

there exist ¢ and ¢, such that

91(q1) + 92(q2) + 277 > 91(¢Y) + 92(¢5),
@i +93=¢, ¢qf €domg;, ¢y €dom gy, (6)

[p1—d <1, [[p2—¢5 [lo< 1.

Proof. By (3), we can assume that p; < ¢; and py > ¢o without loss of
generality. Let a = max{q(v) — p1(v) | v € supp™(¢ — p)} and S = {v €
suppt(¢—p) | ¢1(v) —p1(v) = a}. It follows from Proposition 8 that || ¢—p ||coc= 1
and S = suppt (¢ — p).

If « = 1 then we put ¢ = ¢; and ¢} = ¢o; otherwise, we construct ¢ and ¢
as below. Since S = supp™(¢ — p) and « > 2, we have ¢;(v) — p1(v) > 2 for any
veSand f=a—12>1. We consider points defined by

Pi=pA(@—B1), py=p> V(g +B1), 7)
@ =p1V(q—B1), g=p2A(q+ 1)
Obviously, p!, ¢; € dom g; and p}, ¢) € dom g,. We will show that
G+d=q¢ p<q, p2>g¢, ¢v)=pv)+1(VeS). (8)

Trivially, p; < ¢} and py > ¢ are satisfied. We divide into two cases. If v ¢ S then
p1(v)+p2(v) = (¢1(v)—B)+(g2(v)+0) holds, and hence, ¢} (v)+¢5(v) = p(v) = ¢(v).
If v € S then ¢} (v) = p1(v)+1 and ¢} (v) = pa(v) hold because ¢;(v) = p1(v)+F+1
and ¢2(v) = pa(v) — B. Thus, (8) is satisfied. Furthermore, we have p| + pj) = p
because p| + py + ¢} + ¢4 = p+ ¢ by (7) and because ¢} + ¢, = ¢ by (8). On the
other hand, the L-convexity of g;, g2 and (3) say that

91(p1) + g1(q1) + 92(p2) + 92(22) = g1(p1) + G1(1—P1) + g2(p2) + g2(q2+51)
> g1(p)) + g1(q1) + g2(ph) + 92(g5)- 9)

By (9) and the hypothesis, we obtain

9g@) + oi(@) + 92(@) +v > () + 92(p5) + 91(dh) + 92(&5)
> g(p) + 91(q1) + 92(g3),
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where the second inequality follows from p} + p), = p. Therefore,

91(q1) + 92(q2) +7 > 91(q1) + 92(q3) (10)

must hold. From the above discussion, ¢} and ¢} satisfy (8) and (10), whether
a=1ora>2.

If ¢i(v) — p1(v) <1 for any v € V'\ S, then ¢f = ¢} and ¢, = ¢, satisfy (6). In
the sequel, we assume that max{q;(v) — p1(v) | v € V'\ S} > 2. We now consider
points p!, py, ¢ and ¢} defined by

=@ +1)Vdg, py=(p2—1)Ag,
G=m+1)Nqg, ¢=@p—1)Vd.

Obviously, pY, ¢] € dom g; and pj, ¢5 € dom go. We will show that
Pl+Dy=p, @+ =q (11)

Ifv ¢ S then (py(v)+1)+(p2(v)—1) = ¢1(v)+¢5(v) holds, and hence, p}(v)+ph(v) =

1(v) + ¢ (v) = p(v) = q(v). It v € S then pi(v) = ¢{(v) = ¢1(v), Py (v) = pa(v) —1
and ¢ (v) = ¢5(v) hold by (8), and hence, (11) holds. Furthermore, the L-convexity
of g1, g2 and (3) yield

91(p1) + 91(q1) + 92(p2) + 92(q3) > 1 (0Y) + 91(at) + 92(¥5) + 92(3)- (12)

By (10) and (12), we have

9@) + g1(q) + 92(@2) + 27 > () + g2(p3) + 91(dY) + 92(45)
> g(p) + o1(q)) + 92(q3)-

Thus, we have
gi(q1) + 92(q2) + 27 > q1(q)) + 92(g3).

Moreover, by the definitions of ¢f and ¢} and (8), we have || p1 — ¢} ||o< 1 and
|| P2 — ¢4 ||oo< 1. Therefore, ¢} and ¢} satisfy (6). [

We start a discussion about Theorem 2. In the rest of this section, we assume
that an Ly-convex function ¢ is defined by L-convex functions ¢; and g,. We note
that dom ¢ = dom ¢; + dom ¢ holds because g > —oc.

Here we arbitrarily fix a point p € dom g. By the definition of g(p), there exists

a sequence of pairs of points {(p¥, p%)}rez,, such that

9(@) + ;1 = 9(PF) + 92(05) > 9(p),

(13)
pllc+p’2€:p> plf €d0m91, pg GdomgQ
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Furthermore, by (3), we can assume, in addition, that
py<pit (k€ Zyy). (14)

Since p* + p& = p holds, (14) is equivalent to p§ > pi*! for all k € Z,,. We will
give several propositions to prove Theorem 2.

Proposition 10 There exist a sequence {(p%, p§)}rez,, and a partition (Vy, Vi)
of V with Vo # O that satisfy (13), (14) and

piv) = it (v) (v e Vo, k€ Zyy),
Jlim pi(v) =00 (v € Vo),

(15)

where the condition (15) says that p*(v) is fized for v € Vi and diverges for v € V.

Proof. Let {(p¥,p5)}rez,. be a sequence satisfying (13) and (14), and let
Br = min{pt(v) — pi(v) |v € V} and F* = {w eV | pi(w) - pl(w) = ﬂk}. Then,
there exists u € V belonging to infinitely many F*s. We regard the sequence

{ (0} = Be1, p§ + Bi1)}

as a new {(p¥, p%)}rez, ., which satisfies (13), p! < p¥ and p¥(u) = p{*'(u) for all
keZ,..

We initially put Vo = {u} and Vi, = 0, and modify these and {(p¥, p5)}icz, .
by repeating the following process: for v € V'\ (Vo U V), if there exists an infinite
subsequence of {(p¥, p%)}rez,, such that p¥(v) < M holds in the subsequence for
some M € Z, then we add v to V; and replace {(p¥, p%)}rez,, by the subsequence;
otherwise, we add v to Vi. Thus, the sequence {(p¥, p§)}rez,, finally obtained by
the above process has (13). Moreover,

L < P]f(v) < U (U € %: k€ Z++)a
lim pf(v) =00 (v € Vi)

k—o0
must hold for some L,U € Z. This guarantees the existence of a subsequence
possessing (13), (14) and (15) of {(p¥, p%)}rez, ., - |

Proposition 11 If there exist two sequences satisfying (13), (14) and (15) for two
partitions (Vy, Vo) and (170,1700) of V', respectively, then there also exists such a
sequence satisfying (13), (14) and (15) for (Vo U Vg, Vao N Vao).

Proof.  Let {(p¥, p§)}rez,, and {(P%,P5)}rez,, be sequences having (13), (14)
and (15) for (Vp, Vao) and (V, Vo), respectively. Since p¥ + pk = p¥ + pk = p holds,
we have

(Y ABY) + (5 V B5) = (Y V BY) + (05 A 75) = p.
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Obviously, p¥ A p¥ < p*t A p¥™ holds for any k& € Z,,. By (14) and (15) for
{(pllcapg)}kez++ and {(pl’pg)}kEZ_H_; we have

klim (p’f /\ﬁ’f)(v) = 00 (veEVen ‘700),

(f AN (W) = PV ARTT(0)  (veVouTh, k2 k)

for a sufficiently large number k' € Z, . Furthermore, the L-convexity of g; and

g2 yields
2
29(p) + 5 2 a1 (0Y) + 92(05) + 91 (BY) + 92(P%)
> g1 (pf ADY) + 9205 V B5) + g1 (0F V BY) + g2(ph A D5)
> g(p) + g:1(p} ABY) + g2(p5 v D5).

Thus, there exists a subsequence of {(p¥ A ¥, p§ V p%) }rez, . having (13), (14) and
(15) for (Vo U Vo, Vi N Vo). |

For each p € dom g, Proposition 11 guarantees the existence of the maximum
Vb and the minimum V,, with respect to set-inclusion such that there is a sequence
satisfying (13), (14) and (15) for (Vp, V). Here we denote by V;(p) and V(p) the
maximum V; and the minimum V,, respectively, for p € dom g.

Proposition 12 For any p,q € dom g, Vo(p) = Vo(q) and Vie(p) = Vo(q) hold.

Proof. By Proposition 7, without loss of generality, we deal with the case where

q > p and ¢ is adjacent to p. Let {(p¥, p§) }eez,, and {(¢}, ¢5)}rez,, be sequences
satisfying (13), (14) and (15) for (V4(p), Veo(p)) and (V4(q), Vo (q)), respectively.

By Proposition 9 and (13), for any k € Z ., there exists g¥ and ¢} satisfying

9(q) + 3 > q1(@F) + 92(B),
Q\{C_FQ\’QC:qa é\fedomgla (jgedomgb
| P8 — @ o< 1, | P& — @ [|oo< 1.

This and the hypothesis, that {(p}, p§)}rez, ., satisfies (14) and (15), guarantee the
existence of a subsequence of {(gf, @) }rez, . satisfying (13), (14) and (15). Since
| p% — @F ||o< 1, we must have Vy(p) C Vi(q). Since Vo(p) = Vo(p + 1) holds, we
also obtain V4(q) C Vo(p) by the symmetric argument. i

By Proposition 12, for all p € dom g, we can denote V;(p) and V(p) by Vj and V.,

respectively, without reference to a particular point p. For the Ls-convex function
¢ in Example 1, we have (Vp, Vo) = ({2}, {1}).

Proposition 13 For p; € dom g; and ps € dom gy, the following statements hold.
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(a) Forany a € Zy,, p1 + ayy, € domg; and ps — axy,, € dom gs.

(b) Functions ¢i*, g5 : Z, . — R defined by

g7 (k) = g1(p1 + kxv)s 95 (k) = ga(p2 — kxv,) (K€ Z4y)

satisfy

g (k) + gt (ko) > gt (ke + 1) + g7 (ke = 1),
95" (k1) + g5° (ko) > gy (ky +1) + g5° (ko = 1)

for ki ke € Z | withky <ky andl € Z, with0 <1 <ky—ky. (The above
inequalities say that there exist piecewise linear convex functions G.', gy :
R — R such that gi* (k) = ¢7" (k) and g5 (k) = ¢5*(k) for any k € Z.)

(c) gi* + gb? 1s a non-increasing function bounded by g(p1 + p2) from below.

(d) There exists a constant ¢ € R such that limg_ (g7 (k +1) — ¢" (k) =
and limg_, (957 (k + 1) — ¢5>(k)) = —c. Furthermore, ¢ is independent of
the choice of p1 and p,.

(e) Let gi' (k) = gi' (k) — ck and §5°(k) = ¢5° (k) + ck. Then, {g7" (k)}rez,, and
{5 (k) }rez,, converge to certain reals.

Proof.  Here we assume V, # 0.

(a): Let {(qf, ¢%)}rez,, be an arbitrary sequence having (13), (14) and (15) for
(Vo, Vao) and a certain point ¢ € dom g. By (3), we can assume that ¢f(v) < pi(v)
and ¢¥(v) > py(v) for any v € V; and k € Z, . For any sufficiently large number
k € Z, such that o < min{g¥(v) — p1(v) | v € Voo } and a < min{py(v) — ¢5(v) |
v € V!, the L-convexity of g; and g yield

g1(p1) + 91(at) = gilpi Agt) + gi(pr V dF),
a1V al) +gip+al) > gilpr+axv,) + ai(dF — axv., +al), (16)
92(p2) + 92(a5) > ga(p2 A @3) + g2(pa V 65),
92(p2 N G5) + g2(p2 — 1) > ga(p2 — axvie) + 92(@f + axv,, — al).
(16) guarantees the assertion.
(b): Here we show the assertion for gi*. The assertion is obtained as follows:

gi* (k1) + g1' (k2) = gi(pr + kixve,) + g1(p1 + kaxvie )

91(p1 + kixv,, +11) + g1(p1 + kaxv,) — I

91(pr + (ki +)xve,) + 91(p1 + (k2= xv,, +11) = Ir
g (k1 + 1) + ¢ (ke — 1),

(AVARNT
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where 7 is the constant defined in (3).
(c): By summing up inequalities in (16), g1(p1 + axv.,) + g2(p2 — axy,,) is
bounded by

1
201(p1) + 202(p2) + 2 — 1 (p1 A @) — g2(p2 V ¢5)

from above, where p; A ¢* and p, V ¢§ are independent of k because k is sufficiently
large. Thus, ¢ + ¢5” is bounded from above, and furthermore, it must be non-
increasing by (b). Obviously, ¢7*(k) + ¢5*(k) > g(p1 + ps2) holds. Since g is
Ly-convex, g(p; + p2) must be a finite value. Hence ¢}* + ¢5* is bounded from
below.

(d): By (c), we can assume g¢}' is non-increasing without loss of generality.

Then, we have
0> g/ (k+1)— g7 (k) 2 91" (k) — gi" (k — 1),

where the second inequality follows from (b). Since {gi*(k + 1) — ¢i" (k) }rez,, is
bounded from above and is non-decreasing, it converges to some ¢ € R.. It follows
from (c) that

Tim (g8 +8") (K + 1) = (g1 +98") (k) = 0. (1)
Hence, limy_ o, (g5°(k + 1) — ¢5?(k)) = —c must hold. Furthermore, (17) holds for
any p; € dom g; and py € dom ¢go. Thus, ¢ is independent of the choice of p; and

P2.
(e): The assertion (b) says that ¢i' (k+1) — ¢¥" (k) and ¢5*(k+1) — ¢5*(k) are
non-decreasing. Furthermore, by (d), we have

aik+1)—gi"(k) <c, g (k+1)—g5"(k) < —c,

and hence, @' (k+1) — g7* (k) and g5°(k+1) — g5°(k) are non-positive for any k €
Z,.. Namely, gt* and g}* are non-increasing. On the other hand, @' + 5> =
gt + g5 is bounded from below by (c). Hence, the assertion must hold. [

Proposition 14 Let g, and g be functions defined by

_ lim (g1(p1 + kxv,) — ck) (p1 € domgy)

a(p) = E (p1 € ZV),
+00 (p1 ¢ dom g7)

_ lim (ga(p2 — kxv,,) +ck) (p2 € dom gy)

G2(p2) = koo 0 i (pr € ZY),
“+00 (P2 ¢ dom 92)

where c is the constant in (d) of Proposition 13. Then, §; and §s are L-convez.
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Proof. Here we verify the L-convexity of g;. By (e) of Proposition 13, we have
g1(p1) € R for any p; € dom gy, and hence, domg; O domg;. Since domg; C
dom g; obviously holds, we have dom g, = dom ¢;. For k € Z, ., let us define g~
by
gt (p) = { ol kxv) — ek (0 € doman) o vy
+00 (p & dom gy)

Trivially, dom ¢¥ = dom ¢g; = dom g; holds. For p,q € ZV, we have

91(p+kxv,) + 91(g+kxv,,) — 2k

g1((p+kxve,) A (g+kxve)) + g1((p+kxv.) V (g+kxv., ) — 2¢k
(PN ) +kxve) +a1((pVq) + kxv,) — 2ck

A g) +atpVa).

gt (p) + g5 (q)

v

The submodularity of g¥ implies that of §;. Obviously, g, possesses (TRF). Thus,

g1 is L-convex. [ |
Proposition 14 shows Theorem 2.

Proof of Theorem 2. Suppose that ¢ = g;0gs but ¢g; and g, do not satisfy
(2). Let g; and g» be L-convex functions defined in Proposition 14. First, we show
that ¢ = 10g>. Let p be any point in dom g and let {(p¥, p§)}rez,, a sequence
possessing (13), (14) and (15) for p, (Vo, Vo), g1 and go. It is enough to show that
{(p%, p%) }rez,, also satisfies (13) for g; and g. By (c) of Proposition 13, we have

g9(p) + ,1 > g1(p%) + g2 (0%) > 51 (0%) + Ga(ph) > 9(p)

for any k € Z,,, and hence, g = g;09,.

In the same way as discussions for g; and g», there exists a partition (Vp, Vao) of
V for §; and g such that (15) and Vo(p) = Vi(q) are satisfied for any p, ¢ € dom g.
Next, we show that V4 is a proper subset of Vo. Let us consider the sequence
{(p%, p%) }rez,, defined in the previous paragraph. We denote min{p%(v) — pi(v) |
v € Vo } by b for each k € Z, . Without loss of generality, we assume that there
is an element u € V,, with p¥(u) — pl(u) = B for all k € Z,,. By the definition

of (B, we have

P = Bexv)(w) = 0¥ = Brraxv) (w),
(05 + Brxva) (@) = (B57" + Briaixva ) (w)

for all k. On the other hand,

Jim (g1(p1 + kxvee) + 92(p2 = kxve)) = G1(p1) + Ga(p2) (18)
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holds for any p; € dom ¢g; and p; € dom go. Equation (18) guarantees that

G1(p1 + xv) + G2(p2 — xvi,) = G1(p1) + G2 (p2)-

Thus, the sequence
{(P} = Brxvaor D5 + BrXveo) Yrezey (19)

also satisfies (13) for g; and g,. In a manner similar to the proof of Proposition 10,
there exists a subsequence of (19) such that (13), (14) and (15) hold for g, and
Go- Furthermore, for any v € Vo U {u}, the v-th components of all points in the
subsequence are fixed. Hence Vj is a proper subset of V.

If Voo = 0 then we have L-convex functions g; and g, satisfying (2); otherwise,
we repeat the modifications of L-convex functions defined in Proposition 14 until
1700 = (). Since Vj is strictly enlarged, the above process is terminated in at most

|V| iterations. Hence, there exist L-convex functions g; and g satisfying (2). §

3 Applications

This section gives proofs of three theoretical applications of Theorem 2, namely,
Theorems 3, 4 and 5, and also gives elementary proofs of two results on the con-

volution of L-convex functions as applications of Proposition 9.

Proof of Theorem 3. The implication (=) is trivial. We prove the opposite
direction. By Theorem 2, let us assume that g is defined by two L-convex functions
g1 and go satisfying (2). By the hypothesis and Proposition 6, we have ¢g;(¢+1) =
g1(q) and gy(q + 1) = go(q) for all ¢ € ZV. Let pt and p} be such that g(p*) =
a1 (p?) + 92(p3), P + ps = p*, p} € dom g; and p} € dom g,. By the definition of

the convolution, we have
9" + xs) < min {g1(p + xs) + 92(P3), 91(p7) + g2(p3 + Xx5)}-
This inequality and the assumption that g(p*) = g1(p?) + g2(p}) < g(p* + x5) yield

a1(p7) < g1(P} + xs),  92(03) < g2(P5 + Xx5)

for any S C V. By an optimality criterion for L-convex functions [9], we have

p} € argmin g; and pj € argmin g,. This says that p* must be a minimizer of g. i

Proof of Theorem 4. By Theorem 2, let us assume that ¢ is defined by two
L-convex functions g; and g, satisfying (2). By the hypothesis and Proposition 6,
we have g1(q¢ + 1) = g1(q) and g2(q + 1) = go(q) for all ¢ € ZV. Let p; and p, be
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such that g(p) = g1(p1) + g2(p2), P1 + P2 = p, p1 € dom g; and p; € dom g,. In the
same way as the proof of Theorem 3, we can show that

g1(p1) < g1(pr + axs),  G2(p2) < g2(p2 + axs)

for any S C V. By the proximity theorem for L-convex functions [5], there exist
p] € argmin ¢g; and p5 € arg min go such that

p1<pi <pi+(n=1)(a=1)1, p; <p; <py+ (n—1)(a—-1)1.

The above inequalities guarantee that p* = p} + p} satisfies p < p* < p +
2(n—1)(a—1)1. Moreover, p* must be a minimizer of g because p; € argmin g;

and pj; € arg min gs. [ |

Proof of Theorem 5. By Theorem 2, we assume that g is defined by two
L-convex functions g; and g, satisfying (2). Obviously, arg min g; + arg min go C
argmin g holds. Let p be an arbitrary element of argmin g. By (2), there exist
p1 € domg; and p; € dom gy such that g(p) = g1(p1) + g2(p2) and p1 + p2 = p.
This says that p; and p, must belong to argmin g; and argmin gy, respectively.
Thus, we have

arg min g = arg min g; + arg min gs.

We can easily show that argming; and argmin g, are L-convex sets. Hence,

argmin g is an Ly-convex set. [ |

Finally, we give elementary proofs of two results on the convolution of L.-convex
functions. The first result, Theorem 15 below, says that if the convolution g of two
L-convex functions g; and g, has a finite value at some point p, then it has a finite
value at any point in dom g; + dom go. The original proof of Theorem 15 in [7]
utilizes the conjugacy between L-convexity and M-convexity and the Fenchel-type

min-max identity, while our proof utilizes only Propositions 7 and 9.

Theorem 15 ([7]) Let g1,92 : ZV — R U {+00} be L-conver and g = g10gs. If
g(p) € R for some p € ZV, then

g(¢9) eR (g € dom g; + dom gy),
g(q) = 400 (otherwise).

Proof. It is sufficient to show g(¢q) > —oo for each ¢ € dom ¢g; +dom g5. By (3)
and Proposition 7, it is enough to show g(q) > —oo for each ¢ € dom g; + dom g5
such that ¢ > p and ¢ is adjacent to p. Suppose to the contrary that g(q) = —oc.
Since g(p) € R holds, for any v > 0, there exist p; and p, such that

9gp) +v > g1(p1) + 92(p2) > 9(p), p1+p2=p, p1€domg;, ps € domgs.
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On the other hand, by the assumption g(q) = —oo, for any positive number
M € R, there exist ¢; and ¢s such that

—M > gi(q1) + 92(q2), @1+q2=¢q, ¢ €domgi, ¢ € dom gs.

Proposition 9 guarantees that there exist ¢f and ¢} satisfying

—M 427 > g1(q)) + 92(&5),
¢ +d5=q, ¢/ €domg, ¢y € dom gy,

[P =@ o<1, [ P2 — @ [0S 1.

This says that the neighborhood of either p; or p; must have a point whose function
value is —oo, because M is any positive number. However, this contradicts the
fact that g > —oo and go > —o00. Therefore, g(¢) > —oc must hold. |

The second result, Theorem 16 below, says that if the infimum in (1) is attained
at some point p then the infimum in (1) is attained at any point, i.e., g; and g,

satisfy (2).

Theorem 16 Let g1, 90 : Z¥ — R U {+00} be L-conver and g = g;0g,. If there
exist p1 and ps for some p € dom ¢g; + dom g9 such that

g(p) = g1(p1) + 92(p2), p1+p2=p, p1 €domg;, ps € dom g, (20)

then for any q € dom g, +dom g, there exist g1 and gz satisfying (20) with {p, pi,p>}
replaced by {q,q1, ¢}

Proof. By (3) and Proposition 7, it is sufficient to show that there exist ¢; and
o satisfying (20) for each ¢ € dom g; + dom g, such that ¢ > p and ¢ is adjacent
to p. Theorem 15 and Proposition 9 guarantee that for any v > 0, there exist ¢f
and ¢, satisfying

9(q) +v > a1(q]) + 92(q3) > 9(q),
¢l +q =q, ¢l €domg, ¢y € dom g,

1P = o<1, [[P2— @ llo< 1.

Since 7 is an arbitrary positive number, there must exist ¢; and ¢, satisfying

9(0) = ai(q) + 92(®2), @+ =q,
¢ €domg;, go € dom gy,

|p1— @1 o<1, || P2 — @2 [|0< 1.

Hence, the assertion holds. | |
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