Deconvolution of an L₂-convex Function [†]

Akihisa Tamura

Abstract

 L_2 -convex functions, which are the convolution of two L-convex functions, constitute a wide class of discrete convex functions in discrete convex analysis, a unified framework of discrete optimization, proposed by Murota. This paper shows a technical result that any L_2 -convex function can be represented by the convolution of two L-convex functions attaining the infimum in the definition of the convolution. This result gives simple proofs for several known results on L_2 -convex functions.

Akihisa Tamura

Research Institute for Mathematical Sciences,

Kyoto University, Kyoto 606-8502, Japan.

phone: +81-75-753-7236, facsimile: +81-75-753-7272

e-mail: tamura@kurims.kyoto-u.ac.jp.

[†] This work is supported by a Grant-in-Aid of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

2

1 Introduction

In the area of discrete optimization, nonlinear optimization problems have been investigated as well as linear optimization problems. "Discrete convex analysis," proposed by Murota [6, 7], is being recognized as a unified framework of discrete optimization problems with reference to existing studies on submodular functions [3], valuated matroids [2, 8] and convex analysis [13]. Discrete convex analysis is not only a general framework but also a fruitful one with applications in the areas of mathematical economics and engineering [1, 4, 9, 10, 11]. The concepts of Lconvex and M-convex functions play central roles in discrete convex analysis, and these are extended to wider and important classes of discrete convex functions, called L₂-convex and M₂-convex functions that are relevant to the matroid intersection problem. Given a pair of two matroids defined on a common ground set V, the matroid intersection problem is to find a common independent set of maximum size, and is a variant of M₂-concave function maximization. On the other hand, it is well-known that the maximum size of a common independent set is characterized by the minimum of $\rho_1(X) + \rho_2(V \setminus X)$ over all subsets X of V, where ρ_1 and ρ_2 are rank functions of the given matroids. The function $g(Y) = \min_{X \subseteq Y} (\rho_1(X) + \rho_2(Y \setminus X))$ is an L₂-convex function in disguise. See [7, 9] for details.

This paper focuses on L_2 -convex functions, and gives several new results and simple proofs of known results on L_2 -convex functions. We introduce the definitions L-convex and L_2 -convex functions and our results below.

Let V be a nonempty finite set. We denote by \mathbf{Z} and \mathbf{R} the sets of all integers and reals respectively, and by \mathbf{Z}^V the set of all integral vectors $p = (p(v) : v \in V)$ indexed by V. For any $p, q \in \mathbf{Z}^V$, the vectors $p \wedge q$ and $p \vee q$ in \mathbf{Z}^V are such that

$$(p \wedge q)(v) = \min\{p(v), q(v)\}, \quad (p \vee q)(v) = \max\{p(v), q(v)\} \quad (v \in V).$$

Given a function $g: \mathbf{Z}^V \to \mathbf{R} \cup \{\pm \infty\}$, the effective domain of g is defined by

$$\operatorname{dom} g = \{ p \in \mathbf{Z}^V \mid g(p) \neq \pm \infty \}.$$

A function $g: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$ is said to be *L-convex* if dom $g \neq \emptyset$ and it satisfies the following two conditions:

(SBF) g is submodular, i.e.,

$$g(p) + g(q) \ge g(p \land q) + g(p \lor q) \quad (\forall p, q \in \mathbf{Z}^V),$$

(TRF) there exists $r \in \mathbf{R}$ such that

$$g(p+1) = g(p) + r \quad (\forall p \in \mathbf{Z}^V),$$

where 1 denotes the vector of all ones.

For any functions $g_1, g_2 : \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$, the infimal convolution (or simply convolution) of g_1 and g_2 , denoted by $g_1 \square g_2 : \mathbf{Z}^V \to \mathbf{R} \cup \{\pm\infty\}$, is defined by

$$(g_1 \square g_2)(p) = \inf\{g_1(p_1) + g_2(p_2) \mid p_1 + p_2 = p, \ p_1, p_2 \in \mathbf{Z}^V\} \quad (p \in \mathbf{Z}^V).$$
 (1)

It is easy to show that if $g_1 \square g_2 > -\infty$ then the effective domain of $g_1 \square g_2$ coincides with the Minkowski sum of the effective domains of g_1 and g_2 , i.e.,

$$dom (g_1 \square g_2) = dom g_1 + dom g_2 \equiv \{ p_1 + p_2 \mid p_1 \in dom g_1, p_2 \in dom g_2 \}.$$

A function $g: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$ is said to be L_2 -convex if dom $g \neq \emptyset$ and $g = g_1 \square g_2$ for some L-convex functions $g_1, g_2: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$. For an L-convex function $g: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$ with g(p+1) = g(p) + r ($\forall p \in \mathbf{Z}^V$), let us consider an L-convex function $h: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$ defined by $h(p) = r\alpha$ if $p = \alpha \mathbf{1}$ for some $\alpha \in \mathbf{Z}$; otherwise $h(p) = +\infty$. Then, we have $g = g \square h$, and hence, the class of L₂-convex functions contains that of L-convex functions. On the other hand, it is known that the convolution of two L-convex functions is not necessarily L-convex [6]. Thus, the class of L₂-convex functions is properly larger than that of L-convex functions.

Before stating our main result, we give an example.

Example 1 Let $g_1, g_2 : \mathbf{Z}^2 \to \mathbf{R}$ be the functions defined by

$$g_1(p) = \exp(p(2) - p(1)), \quad g_2(p) = \exp(p(1) - p(2)) \quad (p = (p(1), p(2)) \in \mathbf{Z}^2).$$

We can easily show that g_1 and g_2 are L-convex and that L_2 -convex function $g = g_1 \square g_2$ is identically zero. On the other hand, for any $p_1, p_2 \in \mathbf{Z}^2$, $g_1(p_1) + g_2(p_2) > 0$ holds. This says that there do not necessarily exist points attaining the infimum in the right hand side of (1). However, L-convex functions g'_1 and g'_2 with $g'_1(p) = g'_2(p) = 0$ for all $p \in \mathbf{Z}^2$ satisfy

$$g(p) = \min\{g'_1(p_1) + g'_2(p_2) \mid p_1 + p_2 = p, \ p_1, p_2 \in \mathbf{Z}^2\} \quad (p \in \mathbf{Z}^2),$$

and hence, there exists a "deconvolution" of g into g'_1 and g'_2 attaining the infimum in (1).

Our main result says that such a deconvolution of an L_2 -convex function is generally possible.

Theorem 2 For any L_2 -convex function $g: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$, there exist two L-convex functions g_1' and g_2' such that

$$g(p) = \min\{g_1'(p_1) + g_2'(p_2) \mid p_1 + p_2 = p, \ p_1, p_2 \in \mathbf{Z}^V\} \quad (p \in \mathbf{Z}^V). \tag{2}$$

Theorem 2 affords simple proofs of several known or extended results on L₂-convex functions, e.g., an optimality criterion, a proximity property and a characterization of the set of all minimizers of an L₂-convex function as follows.

For a function $g: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$, we denote by $\arg \min g$ the set of all minimizers of g, i.e.,

$$\arg\min g = \{ p \in \mathbf{Z}^V \mid g(p) \le g(q) \ (\forall q \in \mathbf{Z}^V) \}.$$

A minimizer of an L₂-convex function can be characterized by a local optimal criterion below.

Theorem 3 ([12]) For an L_2 -convex function $g: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$ and $p^* \in \text{dom } g$, we have

$$p^* \in \arg \min g \iff \begin{cases} g(p^*) \le g(p^* + \chi_S) & (\forall S \subseteq V), \\ g(p^* + \mathbf{1}) = g(p^*), \end{cases}$$

where χ_S denotes the characteristic vector of S defined by

$$\chi_S(v) = \begin{cases} 1 & (v \in S) \\ 0 & (v \notin S) \end{cases} \quad (v \in V).$$

The original proof of Theorem 3 in [12] utilizes an argument similar to the proof of Proposition 8 in Section 2. By applying Theorem 2, we can easily prove it (see Section 3).

The second application of Theorem 2 is a proximity theorem for L₂-convex functions, which guarantees that for a minimal solution p of a "scaled" function, there exists a minimizer p^* of the original function near p.

Theorem 4 Let $g: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$ be an L_2 -convex function with g(p+1) = g(p) ($\forall p \in \mathbf{Z}^V$) and let $\alpha \in \mathbf{Z}_{++}$. If $p \in \text{dom } g$ satisfies

$$g(p) \le g(p + \alpha \chi_S) \quad (\forall S \subseteq V),$$

then $\arg\min g \neq \emptyset$ and there exists $p^* \in \arg\min g$ with

$$p \le p^* \le p + 2(n-1)(\alpha-1)\mathbf{1}.$$

Here n = |V| and \mathbf{Z}_{++} denotes the set of all positive integers.

A proximity theorem for L₂-convex functions was first stated in [12], but it is weaker than Theorem 4 in the sense that it assumes an essential boundedness of g, where an L₂-convex function g is said to be essentially bounded if dom $g \cap \{p \in \mathbf{Z}^V \mid p(v) = 0\}$ is bounded for some $v \in V$. The proximity theorem free from this restrictive assumption can be proved easily by Theorem 2 (see Section 3).

The third application of Theorem 2 is a characterization of the set of all minimizers of an L₂-convex function. It is shown in [7] that for two L-convex functions $g_1, g_2 : \mathbf{Z}^V \to \mathbf{Z} \cup \{+\infty\}$, $\arg \min(g_1 \square g_2)$ is either an empty set or equal to $\arg \min g_1 + \arg \min g_2$, and furthermore, if $\arg \min(g_1 \square g_2) \neq \emptyset$ then it is an L₂-convex set. Here, a set $P \subseteq \mathbf{Z}^V$ is called an L-convex set if it is nonempty and satisfies

$$p, q \in P \implies (p \land q), (p \lor q), p \pm 1 \in P,$$

and the Minkowski sum of two L-convex sets is called an L_2 -convex set. The above former result relies on the integrality of the range of functions g_1 and g_2 . For example, the statement does not hold for two L-convex functions g_1 and g_2 in Example 1 because $\arg \min g = \mathbf{Z}^2$ and $\arg \min g_1 = \arg \min g_2 = \emptyset$. However, Theorem 2 extends the above latter result to the following theorem.

Theorem 5 For an L_2 -convex function $g: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$, if $\arg \min g \neq \emptyset$ then $\arg \min g$ is an L_2 -convex set.

The organization of this paper is: Section 2 shows Theorem 2, and Section 3 proves Theorems 3, 4 and 5, and Section 3 also gives elementary proofs of two results on the convolution of L-convex functions.

2 Proof of Our Main Result

In this section, we give a proof of Theorem 2. Before giving it, we introduce four technical results.

Proposition 6 Assume that $g = g_1 \square g_2$ for some functions g_1 and g_2 such that $g_1(q+1) = g_1(q) + r_1$ and $g_2(q+1) = g_2(q) + r_2$ for all $q \in \mathbf{Z}^V$. If $g(p) \in \mathbf{R}$ for some $p \in \mathbf{Z}^V$, then $r_1 = r_2$ holds, and furthermore, $g(q+1) = g(q) + r_1$ for any $q \in \mathbf{Z}^V$.

Proof. It follows from $g(p) \in \mathbf{R}$ that there exist $p_1 \in \text{dom } g_1$ and $p_2 \in \text{dom } g_2$ with $p_1 + p_2 = p$. Then, we have

$$g(p) \leq \inf\{g_1(p_1 + \alpha_1 \mathbf{1}) + g_2(p_2 + \alpha_2 \mathbf{1}) \mid \alpha_1 + \alpha_2 = 0, \ \alpha_1, \alpha_2 \in \mathbf{Z}\}\$$

$$= \inf\{g_1(p_1) + r_1\alpha_1 + g_2(p_2) + r_2\alpha_2 \mid \alpha_1 + \alpha_2 = 0, \ \alpha_1, \alpha_2 \in \mathbf{Z}\}\$$

$$= g_1(p_1) + g_2(p_2) + \inf\{(r_1 - r_2)\alpha_1 \mid \alpha_1 \in \mathbf{Z}\}.$$

This says that if $g(p) \in \mathbf{R}$ then $r_1 = r_2$ must hold. Analogously, for any $q \in \mathbf{Z}^V$, we have

$$g(q+1) \le \inf\{g_1(q_1+\alpha_11)+g_2(q_2+\alpha_21) \mid q_1+q_2=q, \alpha_1+\alpha_2=1\}$$

$$= g(q) + r_1,$$

$$g(q) \leq \inf\{g_1(q_1 + \alpha_1 \mathbf{1}) + g_2(q_2 + \alpha_2 \mathbf{1}) \mid q_1 + q_2 = q + \mathbf{1}, \ \alpha_1 + \alpha_2 = -1\}$$

$$= g(q + \mathbf{1}) - r_1.$$

Hence, $g(q+1) = g(q) + r_1$ holds for any $q \in \mathbf{Z}^V$.

In the sequel, we assume that $g: \mathbf{Z}^V \to \mathbf{R} \cup \{\pm \infty\}$ is defined as the convolution of two L-convex functions g_1 and g_2 , and assume that $g(p) \in \mathbf{R}$ for some p, i.e.,

$$g_1(p+1) = g_1(p) + r, \quad g_2(p+1) = g_2(p) + r \quad (\forall p \in \mathbf{Z}^V)$$
 (3)

by Proposition 6. We define the positive support of a vector $p \in \mathbf{Z}^V$ by

$$supp^{+}(p) = \{ v \in V \mid p(v) > 0 \}.$$

For any $p, q \in \text{dom } g_1 + \text{dom } g_2$ with $p \leq q$, we say that q is adjacent to p if $q \neq p$ and there exists no nonempty subset S of supp⁺(q - p) such that

$$q - \chi_S \in \text{dom } g_1 + \text{dom } g_2, \quad q - \chi_S \neq p.$$

Proposition 7 For any $p, q \in \text{dom } g_1 + \text{dom } g_2 \text{ with } p \leq q$, there exists a sequence $(q = q_0, q_1, \ldots, q_m = p)$ of points in dom $g_1 + \text{dom } g_2 \text{ such that } q_{i-1} \text{ is adjacent to } q_i \text{ for } i = 1, \ldots, m$.

Proof. Since there is nothing to prove if q is adjacent to p, we assume that q is not adjacent to p. Thus, there exists a nonempty subset S of $\operatorname{supp}^+(q-p)$ such that $q_1 = q - \chi_S \in \operatorname{dom} g_1 + \operatorname{dom} g_2$ and $q_1 \neq p$. Moreover, if S is minimal among such nonempty subsets of $\operatorname{supp}^+(q-p)$, then q must be adjacent to q_1 . By repeating the above process, a required sequence is obtained because $q_1 \geq p$ and $||q_1-p||_1 < ||q-p||_1$.

In order to show a statement

"if a property P holds for some $p \in \text{dom } g_1 + \text{dom } g_2$ then P also holds for all points $q \in \text{dom } g_1 + \text{dom } g_2$ with $q \geq p$,"

it is enough, by Proposition 7, to show that P holds for q adjacent to p. A necessary condition for adjacency is given as follows.

Since dom g_1 and dom g_2 are an L-convex set, for two points $p, q \in \text{dom } g_1 + \text{dom } g_2$ with $p \leq q$, there exist decompositions of p and q such that

$$p_1 + p_2 = p, \quad q_1 + q_2 = q, \quad p_1 \le q_1, \quad p_2 \ge q_2,$$

 $p_1, q_1 \in \text{dom } g_1, \quad p_2, q_2 \in \text{dom } g_2.$ (4)

Proposition 8 For any points $p, q \in \text{dom } g_1 + \text{dom } g_2$ with $p \leq q$, if q is adjacent to p then $||q - p||_{\infty} = 1$ and $q_1(u) - p_1(u) = q_1(v) - p_1(v)$ for any p_1 , p_2 , q_1 and q_2 satisfying (4) and for any $u, v \in \text{supp}^+(q - p)$.

Proof. Let $\alpha = \max\{q_1(v) - p_1(v) \mid v \in \operatorname{supp}^+(q - p)\}$ and $S = \{v \in \operatorname{supp}^+(q - p) \mid q_1(v) - p_1(v) = \alpha\}$. Since $q \neq p$ holds, we have $\alpha \geq 1$ and $S \neq \emptyset$. We will show the following claim.

CLAIM: If $\alpha \geq 2$ then $p+\chi_S, q-\chi_S \in \text{dom } g_1 + \text{dom } g_2$.

By using the claim, we can complete the proof of Proposition 8. If $||q-p||_{\infty} \geq 2$ or S is a proper subset of $\operatorname{supp}^+(q-p)$, then $\alpha \geq 2$ and $q-\chi_S \neq p$ must hold. By the claim, however, this contradicts that q is adjacent to p.

We now prove the above claim. Assume that $\alpha \geq 2$ and let $\beta = \alpha - 1$. We consider points defined by

$$p'_1 = (p_1 + \beta \mathbf{1}) \lor q_1, \quad p'_2 = (p_2 - \beta \mathbf{1}) \land q_2, \quad p' = p'_1 + p'_2,$$

 $q'_1 = (p_1 + \beta \mathbf{1}) \land q_1, \quad q'_2 = (p_2 - \beta \mathbf{1}) \lor q_2, \quad q' = q'_1 + q'_2.$

Obviously, $p', q' \in \text{dom } g_1 + \text{dom } g_2 \text{ and } p' + q' = p + q \text{ hold.}$ We will show that

$$p' = p + \chi_S$$

which also implies $q' = q - \chi_S$. By the definitions of p'_1 and p'_2 , we have

$$p_{1}(v) + \beta \geq q_{1}(v) \implies p'_{1}(v) = p_{1}(v) + \beta,$$

$$p_{1}(v) + \beta < q_{1}(v) \implies p'_{1}(v) = q_{1}(v),$$

$$p_{2}(v) - \beta \leq q_{2}(v) \implies p'_{2}(v) = p_{2}(v) - \beta,$$

$$p_{2}(v) - \beta > q_{2}(v) \implies p'_{2}(v) = q_{2}(v)$$
(5)

for each $v \in V$. Let v be any element of V. We divide into three cases. (i) If p(v) = q(v) holds, then

$$p_1(v) + \beta \ge q_1(v) \implies p_2(v) - \beta \le q_2(v),$$

$$p_1(v) + \beta < q_1(v) \implies p_2(v) - \beta > q_2(v)$$

hold, and therefore, p'(v) = p(v) is satisfied by (4) and (5). (ii) If p(v) < q(v) and $p_1(v) + \beta \ge q_1(v)$, then $v \notin S$ and $p_2(v) - \beta \le q_2(v)$ must hold, and hence, p'(v) = p(v). (iii) Assume that p(v) < q(v) and $p_1(v) + \beta < q_1(v)$. By the definition of β , the latter implies $p_1(v) + \beta = q_1(v) - 1$, i.e., $v \in S$. Moreover, we have $p_2(v) - \beta \le q_2(v)$; since otherwise, we would obtain $p_1(v) + p_2(v) > q_1(v) + q_2(v) - 1$ which contradicts the assumption p(v) < q(v). Thus, $p'(v) = q_1(v) + p_2(v) - \beta = p_1(v) + p_2(v) + 1 = p(v) + 1$ holds. From the above discussion, $p' = p + \chi_S$.

We emphasize that in Proposition 9 below we do not exclude the possibility that g is equal to $-\infty$ at some point of dom $g_1 + \text{dom } g_2$.

Proposition 9 For two points $p \in \text{dom } g$ and $q \in \text{dom } g_1 + \text{dom } g_2$ with $p \leq q$, we assume that q is adjacent to p. If points p_1 , p_2 and a positive number γ satisfy

$$g(p) + \gamma \ge g_1(p_1) + g_2(p_2) \ge g(p), \quad p_1 + p_2 = p, \quad p_1 \in \text{dom } g_1, \quad p_2 \in \text{dom } g_2,$$

then, for any q_1 and q_2 with

$$q_1 + q_2 = q$$
, $q_1 \in \text{dom } q_1$, $q_2 \in \text{dom } q_2$,

there exist q_1'' and q_2'' such that

$$g_{1}(q_{1}) + g_{2}(q_{2}) + 2\gamma \geq g_{1}(q_{1}'') + g_{2}(q_{2}''),$$

$$q_{1}'' + q_{2}'' = q, \quad q_{1}'' \in \text{dom } g_{1}, \quad q_{2}'' \in \text{dom } g_{2},$$

$$\parallel p_{1} - q_{1}'' \parallel_{\infty} \leq 1, \quad \parallel p_{2} - q_{2}'' \parallel_{\infty} \leq 1.$$

$$(6)$$

Proof. By (3), we can assume that $p_1 \leq q_1$ and $p_2 \geq q_2$ without loss of generality. Let $\alpha = \max\{q_1(v) - p_1(v) \mid v \in \operatorname{supp}^+(q-p)\}$ and $S = \{v \in \operatorname{supp}^+(q-p) \mid q_1(v) - p_1(v) = \alpha\}$. It follows from Proposition 8 that $\|q-p\|_{\infty} = 1$ and $S = \operatorname{supp}^+(q-p)$.

If $\alpha = 1$ then we put $q_1' = q_1$ and $q_2' = q_2$; otherwise, we construct q_1' and q_2' as below. Since $S = \text{supp}^+(q - p)$ and $\alpha \geq 2$, we have $q_1(v) - p_1(v) \geq 2$ for any $v \in S$ and $\beta = \alpha - 1 \geq 1$. We consider points defined by

$$p'_{1} = p_{1} \wedge (q_{1} - \beta \mathbf{1}), \quad p'_{2} = p_{2} \vee (q_{2} + \beta \mathbf{1}), q'_{1} = p_{1} \vee (q_{1} - \beta \mathbf{1}), \quad q'_{2} = p_{2} \wedge (q_{2} + \beta \mathbf{1}).$$

$$(7)$$

Obviously, $p'_1, q'_1 \in \text{dom } g_1 \text{ and } p'_2, q'_2 \in \text{dom } g_2$. We will show that

$$q'_1 + q'_2 = q, \quad p_1 \le q'_1, \quad p_2 \ge q'_2, \quad q'_1(v) = p_1(v) + 1 \ (\forall v \in S).$$
 (8)

Trivially, $p_1 \leq q_1'$ and $p_2 \geq q_2'$ are satisfied. We divide into two cases. If $v \notin S$ then $p_1(v)+p_2(v)=(q_1(v)-\beta)+(q_2(v)+\beta)$ holds, and hence, $q_1'(v)+q_2'(v)=p(v)=q(v)$. If $v \in S$ then $q_1'(v)=p_1(v)+1$ and $q_2'(v)=p_2(v)$ hold because $q_1(v)=p_1(v)+\beta+1$ and $q_2(v)=p_2(v)-\beta$. Thus, (8) is satisfied. Furthermore, we have $p_1'+p_2'=p$ because $p_1'+p_2'+q_1'+q_2'=p+q$ by (7) and because $q_1'+q_2'=q$ by (8). On the other hand, the L-convexity of q_1, q_2 and (3) say that

$$g_1(p_1) + g_1(q_1) + g_2(p_2) + g_2(q_2) = g_1(p_1) + g_1(q_1 - \beta \mathbf{1}) + g_2(p_2) + g_2(q_2 + \beta \mathbf{1})$$

$$\geq g_1(p_1') + g_1(q_1') + g_2(p_2') + g_2(q_2'). \tag{9}$$

By (9) and the hypothesis, we obtain

$$g(p) + g_1(q_1) + g_2(q_2) + \gamma \geq g_1(p'_1) + g_2(p'_2) + g_1(q'_1) + g_2(q'_2)$$

$$\geq g(p) + g_1(q'_1) + g_2(q'_2),$$

where the second inequality follows from $p'_1 + p'_2 = p$. Therefore,

$$g_1(q_1) + g_2(q_2) + \gamma \ge g_1(q_1') + g_2(q_2') \tag{10}$$

must hold. From the above discussion, q'_1 and q'_2 satisfy (8) and (10), whether $\alpha = 1$ or $\alpha \geq 2$.

If $q_1'(v) - p_1(v) \le 1$ for any $v \in V \setminus S$, then $q_1'' = q_1'$ and $q_2'' = q_2'$ satisfy (6). In the sequel, we assume that $\max\{q_1'(v) - p_1(v) \mid v \in V \setminus S\} \ge 2$. We now consider points p_1'' , p_2'' , q_1'' and q_2'' defined by

$$p_1'' = (p_1 + 1) \lor q_1', \quad p_2'' = (p_2 - 1) \land q_2',$$

 $q_1'' = (p_1 + 1) \land q_1', \quad q_2'' = (p_2 - 1) \lor q_2'.$

Obviously, $p_1'', q_1'' \in \text{dom } g_1 \text{ and } p_2'', q_2'' \in \text{dom } g_2$. We will show that

$$p_1'' + p_2'' = p, \quad q_1'' + q_2'' = q. \tag{11}$$

If $v \notin S$ then $(p_1(v)+1)+(p_2(v)-1)=q_1'(v)+q_2'(v)$ holds, and hence, $p_1''(v)+p_2''(v)=q_1''(v)+q_2''(v)=p(v)=q(v)$. If $v \in S$ then $p_1''(v)=q_1''(v)=q_1'(v)$, $p_2''(v)=p_2(v)-1$ and $q_2''(v)=q_2'(v)$ hold by (8), and hence, (11) holds. Furthermore, the L-convexity of g_1, g_2 and (3) yield

$$g_1(p_1) + g_1(q_1') + g_2(p_2) + g_2(q_2') \ge g_1(p_1'') + g_1(q_1'') + g_2(p_2'') + g_2(q_2'').$$
 (12)

By (10) and (12), we have

$$g(p) + g_1(q_1) + g_2(q_2) + 2\gamma \ge g_1(p_1'') + g_2(p_2'') + g_1(q_1'') + g_2(q_2'')$$

> $g(p) + g_1(q_1'') + g_2(q_2'')$.

Thus, we have

$$g_1(q_1) + g_2(q_2) + 2\gamma \ge g_1(q_1'') + g_2(q_2'').$$

Moreover, by the definitions of q_1'' and q_2'' and (8), we have $||p_1 - q_1''||_{\infty} \le 1$ and $||p_2 - q_2''||_{\infty} \le 1$. Therefore, q_1'' and q_2'' satisfy (6).

We start a discussion about Theorem 2. In the rest of this section, we assume that an L₂-convex function g is defined by L-convex functions g_1 and g_2 . We note that dom $g = \text{dom } g_1 + \text{dom } g_2$ holds because $g > -\infty$.

Here we arbitrarily fix a point $p \in \text{dom } g$. By the definition of g(p), there exists a sequence of pairs of points $\{(p_1^k, p_2^k)\}_{k \in \mathbb{Z}_{++}}$ such that

$$g(p) + \frac{1}{k} \ge g_1(p_1^k) + g_2(p_2^k) \ge g(p),$$

$$p_1^k + p_2^k = p, \quad p_1^k \in \text{dom } g_1, \quad p_2^k \in \text{dom } g_2.$$
(13)

Furthermore, by (3), we can assume, in addition, that

$$p_1^k \le p_1^{k+1} \quad (k \in \mathbf{Z}_{++}).$$
 (14)

Since $p_1^k + p_2^k = p$ holds, (14) is equivalent to $p_2^k \ge p_2^{k+1}$ for all $k \in \mathbb{Z}_{++}$. We will give several propositions to prove Theorem 2.

Proposition 10 There exist a sequence $\{(p_1^k, p_2^k)\}_{k \in \mathbb{Z}_{++}}$ and a partition (V_0, V_∞) of V with $V_0 \neq \emptyset$ that satisfy (13), (14) and

$$p_1^k(v) = p_1^{k+1}(v) \quad (v \in V_0, \ k \in \mathbf{Z}_{++}),$$

$$\lim_{k \to \infty} p_1^k(v) = \infty \quad (v \in V_\infty),$$
(15)

where the condition (15) says that $p_1^k(v)$ is fixed for $v \in V_0$ and diverges for $v \in V_{\infty}$.

Proof. Let $\{(p_1^k, p_2^k)\}_{k \in \mathbb{Z}_{++}}$ be a sequence satisfying (13) and (14), and let $\beta_k = \min\{p_1^k(v) - p_1^1(v) \mid v \in V\}$ and $F^k = \{w \in V \mid p_1^k(w) - p_1^1(w) = \beta_k\}$. Then, there exists $u \in V$ belonging to infinitely many F^k s. We regard the sequence

$$\left\{ \left(p_1^k - \beta_k \mathbf{1}, \ p_2^k + \beta_k \mathbf{1} \right) \right\}_{k \in \{ j \in \mathbf{Z}_{++} | u \in F^j \}}$$

as a new $\{(p_1^k, p_2^k)\}_{k \in \mathbb{Z}_{++}}$, which satisfies (13), $p_1^1 \leq p_1^k$ and $p_1^k(u) = p_1^{k+1}(u)$ for all $k \in \mathbb{Z}_{++}$.

We initially put $V_0 = \{u\}$ and $V_{\infty} = \emptyset$, and modify these and $\{(p_1^k, p_2^k)\}_{k \in \mathbf{Z}_{++}}$ by repeating the following process: for $v \in V \setminus (V_0 \cup V_{\infty})$, if there exists an infinite subsequence of $\{(p_1^k, p_2^k)\}_{k \in \mathbf{Z}_{++}}$ such that $p_1^k(v) \leq M$ holds in the subsequence for some $M \in \mathbf{Z}$, then we add v to V_0 and replace $\{(p_1^k, p_2^k)\}_{k \in \mathbf{Z}_{++}}$ by the subsequence; otherwise, we add v to V_{∞} . Thus, the sequence $\{(p_1^k, p_2^k)\}_{k \in \mathbf{Z}_{++}}$ finally obtained by the above process has (13). Moreover,

$$L \le p_1^k(v) \le U \quad (v \in V_0, \ k \in \mathbf{Z}_{++}),$$
$$\lim_{k \to \infty} p_1^k(v) = \infty \quad (v \in V_\infty)$$

must hold for some $L, U \in \mathbf{Z}$. This guarantees the existence of a subsequence possessing (13), (14) and (15) of $\{(p_1^k, p_2^k)\}_{k \in \mathbf{Z}_{++}}$.

Proposition 11 If there exist two sequences satisfying (13), (14) and (15) for two partitions (V_0, V_∞) and $(\hat{V}_0, \hat{V}_\infty)$ of V, respectively, then there also exists such a sequence satisfying (13), (14) and (15) for $(V_0 \cup \hat{V}_0, V_\infty \cap \hat{V}_\infty)$.

Proof. Let $\{(p_1^k, p_2^k)\}_{k \in \mathbf{Z}_{++}}$ and $\{(\hat{p}_1^k, \hat{p}_2^k)\}_{k \in \mathbf{Z}_{++}}$ be sequences having (13), (14) and (15) for (V_0, V_∞) and $(\hat{V}_0, \hat{V}_\infty)$, respectively. Since $p_1^k + p_2^k = \hat{p}_1^k + \hat{p}_2^k = p$ holds, we have

$$(p_1^k \wedge \widehat{p}_1^k) + (p_2^k \vee \widehat{p}_2^k) = (p_1^k \vee \widehat{p}_1^k) + (p_2^k \wedge \widehat{p}_2^k) = p.$$

Obviously, $p_1^k \wedge \hat{p}_1^k \leq p_1^{k+1} \wedge \hat{p}_1^{k+1}$ holds for any $k \in \mathbf{Z}_{++}$. By (14) and (15) for $\{(p_1^k, p_2^k)\}_{k \in \mathbf{Z}_{++}}$ and $\{(\hat{p}_1^k, \hat{p}_2^k)\}_{k \in \mathbf{Z}_{++}}$, we have

$$\lim_{k \to \infty} (p_1^k \wedge \hat{p}_1^k)(v) = \infty \qquad (v \in V_{\infty} \cap \hat{V}_{\infty}),$$
$$(p_1^k \wedge \hat{p}_1^k)(v) = (p_1^{k+1} \wedge \hat{p}_1^{k+1})(v) \qquad (v \in V_0 \cup \hat{V}_0, \ k \ge k')$$

for a sufficiently large number $k' \in \mathbf{Z}_{++}$. Furthermore, the L-convexity of g_1 and g_2 yields

$$2g(p) + \frac{2}{k} \geq g_1(p_1^k) + g_2(p_2^k) + g_1(\widehat{p}_1^k) + g_2(\widehat{p}_2^k)$$

$$\geq g_1(p_1^k \wedge \widehat{p}_1^k) + g_2(p_2^k \vee \widehat{p}_2^k) + g_1(p_1^k \vee \widehat{p}_1^k) + g_2(p_2^k \wedge \widehat{p}_2^k)$$

$$\geq g(p) + g_1(p_1^k \wedge \widehat{p}_1^k) + g_2(p_2^k \vee \widehat{p}_2^k).$$

Thus, there exists a subsequence of $\{(p_1^k \wedge \widehat{p}_1^k, p_2^k \vee \widehat{p}_2^k)\}_{k \in \mathbb{Z}_{++}}$ having (13), (14) and (15) for $(V_0 \cup \widehat{V}_0, V_{\infty} \cap \widehat{V}_{\infty})$.

For each $p \in \text{dom } g$, Proposition 11 guarantees the existence of the maximum V_0 and the minimum V_∞ with respect to set-inclusion such that there is a sequence satisfying (13), (14) and (15) for (V_0, V_∞) . Here we denote by $V_0(p)$ and $V_\infty(p)$ the maximum V_0 and the minimum V_∞ , respectively, for $p \in \text{dom } g$.

Proposition 12 For any $p, q \in \text{dom } g$, $V_0(p) = V_0(q)$ and $V_{\infty}(p) = V_{\infty}(q)$ hold.

Proof. By Proposition 7, without loss of generality, we deal with the case where $q \geq p$ and q is adjacent to p. Let $\{(p_1^k, p_2^k)\}_{k \in \mathbb{Z}_{++}}$ and $\{(q_1^k, q_2^k)\}_{k \in \mathbb{Z}_{++}}$ be sequences satisfying (13), (14) and (15) for $(V_0(p), V_{\infty}(p))$ and $(V_0(q), V_{\infty}(q))$, respectively. By Proposition 9 and (13), for any $k \in \mathbb{Z}_{++}$, there exists \hat{q}_1^k and \hat{q}_2^k satisfying

$$g(q) + \frac{3}{k} \ge g_1(\hat{q}_1^k) + g_2(\hat{q}_2^k),$$

$$\hat{q}_1^k + \hat{q}_2^k = q, \quad \hat{q}_1^k \in \text{dom } g_1, \quad \hat{q}_2^k \in \text{dom } g_2,$$

$$\parallel p_1^k - \hat{q}_1^k \parallel_{\infty} \le 1, \quad \parallel p_2^k - \hat{q}_2^k \parallel_{\infty} \le 1.$$

This and the hypothesis, that $\{(p_1^k, p_2^k)\}_{k \in \mathbf{Z}_{++}}$ satisfies (14) and (15), guarantee the existence of a subsequence of $\{(\widehat{q}_1^k, \widehat{q}_2^k)\}_{k \in \mathbf{Z}_{++}}$ satisfying (13), (14) and (15). Since $\|p_1^k - \widehat{q}_1^k\|_{\infty} \leq 1$, we must have $V_0(p) \subseteq V_0(q)$. Since $V_0(p) = V_0(p+1)$ holds, we also obtain $V_0(q) \subseteq V_0(p)$ by the symmetric argument.

By Proposition 12, for all $p \in \text{dom } g$, we can denote $V_0(p)$ and $V_{\infty}(p)$ by V_0 and V_{∞} , respectively, without reference to a particular point p. For the L₂-convex function g in Example 1, we have $(V_0, V_{\infty}) = (\{2\}, \{1\})$.

Proposition 13 For $p_1 \in \text{dom } g_1$ and $p_2 \in \text{dom } g_2$, the following statements hold.

- (a) For any $\alpha \in \mathbf{Z}_{++}$, $p_1 + \alpha \chi_{V_{\infty}} \in \text{dom } g_1 \text{ and } p_2 \alpha \chi_{V_{\infty}} \in \text{dom } g_2$.
- (b) Functions $g_1^{p_1}, g_2^{p_2}: \mathbf{Z}_{++} \to \mathbf{R}$ defined by

$$g_1^{p_1}(k) = g_1(p_1 + k\chi_{V_{\infty}}), \quad g_2^{p_2}(k) = g_2(p_2 - k\chi_{V_{\infty}}) \quad (k \in \mathbf{Z}_{++})$$

satisfy

$$g_1^{p_1}(k_1) + g_1^{p_1}(k_2) \geq g_1^{p_1}(k_1 + l) + g_1^{p_1}(k_2 - l),$$

$$g_2^{p_2}(k_1) + g_2^{p_2}(k_2) \geq g_2^{p_2}(k_1 + l) + g_2^{p_2}(k_2 - l)$$

for $k_1, k_2 \in \mathbf{Z}_{++}$ with $k_1 < k_2$ and $l \in \mathbf{Z}_{++}$ with $0 \le l \le k_2 - k_1$. (The above inequalities say that there exist piecewise linear convex functions $\overline{g}_1^{p_1}, \overline{g}_2^{p_2}$: $\mathbf{R} \to \mathbf{R}$ such that $\overline{g}_1^{p_1}(k) = g_1^{p_1}(k)$ and $\overline{g}_2^{p_2}(k) = g_2^{p_2}(k)$ for any $k \in \mathbf{Z}_{++}$.)

- (c) $g_1^{p_1} + g_2^{p_2}$ is a non-increasing function bounded by $g(p_1 + p_2)$ from below.
- (d) There exists a constant $c \in \mathbf{R}$ such that $\lim_{k\to\infty} (g_1^{p_1}(k+1) g_1^{p_1}(k)) = c$ and $\lim_{k\to\infty} (g_2^{p_2}(k+1) g_2^{p_2}(k)) = -c$. Furthermore, c is independent of the choice of p_1 and p_2 .
- (e) Let $\tilde{g}_{1}^{p_{1}}(k) = g_{1}^{p_{1}}(k) ck$ and $\tilde{g}_{2}^{p_{2}}(k) = g_{2}^{p_{2}}(k) + ck$. Then, $\{\tilde{g}_{1}^{p_{1}}(k)\}_{k \in \mathbb{Z}_{++}}$ and $\{\tilde{g}_{2}^{p_{2}}(k)\}_{k \in \mathbb{Z}_{++}}$ converge to certain reals.

Proof. Here we assume $V_{\infty} \neq \emptyset$.

(a): Let $\{(q_1^k, q_2^k)\}_{k \in \mathbb{Z}_{++}}$ be an arbitrary sequence having (13), (14) and (15) for (V_0, V_∞) and a certain point $q \in \text{dom } g$. By (3), we can assume that $q_1^k(v) < p_1(v)$ and $q_2^k(v) > p_2(v)$ for any $v \in V_0$ and $k \in \mathbb{Z}_{++}$. For any sufficiently large number $k \in \mathbb{Z}_{++}$ such that $\alpha < \min\{q_1^k(v) - p_1(v) \mid v \in V_\infty\}$ and $\alpha < \min\{p_2(v) - q_2^k(v) \mid v \in V_\infty\}$, the L-convexity of g_1 and g_2 yield

$$g_{1}(p_{1}) + g_{1}(q_{1}^{k}) \geq g_{1}(p_{1} \wedge q_{1}^{k}) + g_{1}(p_{1} \vee q_{1}^{k}),$$

$$g_{1}(p_{1} \vee q_{1}^{k}) + g_{1}(p_{1} + \alpha \mathbf{1}) \geq g_{1}(p_{1} + \alpha \chi_{V_{\infty}}) + g_{1}(q_{1}^{k} - \alpha \chi_{V_{\infty}} + \alpha \mathbf{1}),$$

$$g_{2}(p_{2}) + g_{2}(q_{2}^{k}) \geq g_{2}(p_{2} \wedge q_{2}^{k}) + g_{2}(p_{2} \vee q_{2}^{k}),$$

$$g_{2}(p_{2} \wedge q_{2}^{k}) + g_{2}(p_{2} - \alpha \mathbf{1}) \geq g_{2}(p_{2} - \alpha \chi_{V_{\infty}}) + g_{2}(q_{2}^{k} + \alpha \chi_{V_{\infty}} - \alpha \mathbf{1}).$$

$$(16)$$

- (16) guarantees the assertion.
 - (b): Here we show the assertion for $g_1^{p_1}$. The assertion is obtained as follows:

$$g_{1}^{p_{1}}(k_{1}) + g_{1}^{p_{1}}(k_{2}) = g_{1}(p_{1} + k_{1}\chi_{V_{\infty}}) + g_{1}(p_{1} + k_{2}\chi_{V_{\infty}})$$

$$= g_{1}(p_{1} + k_{1}\chi_{V_{\infty}} + l\mathbf{1}) + g_{1}(p_{1} + k_{2}\chi_{V_{\infty}}) - lr$$

$$\geq g_{1}(p_{1} + (k_{1}+l)\chi_{V_{\infty}}) + g_{1}(p_{1} + (k_{2}-l)\chi_{V_{\infty}} + l\mathbf{1}) - lr$$

$$= g_{1}^{p_{1}}(k_{1} + l) + g_{1}^{p_{1}}(k_{2} - l),$$

where r is the constant defined in (3).

(c): By summing up inequalities in (16), $g_1(p_1 + \alpha \chi_{V_{\infty}}) + g_2(p_2 - \alpha \chi_{V_{\infty}})$ is bounded by

 $2g_1(p_1) + 2g_2(p_2) + \frac{1}{\iota} - g_1(p_1 \wedge q_1^k) - g_2(p_2 \vee q_2^k)$

from above, where $p_1 \wedge q_1^k$ and $p_2 \vee q_2^k$ are independent of k because k is sufficiently large. Thus, $g_1^{p_1} + g_2^{p_2}$ is bounded from above, and furthermore, it must be nonincreasing by (b). Obviously, $g_1^{p_1}(k) + g_2^{p_2}(k) \ge g(p_1 + p_2)$ holds. Since g is L_2 -convex, $g(p_1 + p_2)$ must be a finite value. Hence $g_1^{p_1} + g_2^{p_2}$ is bounded from below.

(d): By (c), we can assume $g_1^{p_1}$ is non-increasing without loss of generality. Then, we have

$$0 \ge g_1^{p_1}(k+1) - g_1^{p_1}(k) \ge g_1^{p_1}(k) - g_1^{p_1}(k-1),$$

where the second inequality follows from (b). Since $\{g_1^{p_1}(k+1) - g_1^{p_1}(k)\}_{k \in \mathbb{Z}_{++}}$ is bounded from above and is non-decreasing, it converges to some $c \in \mathbf{R}$. It follows from (c) that

$$\lim_{k \to \infty} ((g_1^{p_1} + g_2^{p_2})(k+1) - (g_1^{p_1} + g_2^{p_2})(k)) = 0.$$
 (17)

Hence, $\lim_{k\to\infty} (g_2^{p_2}(k+1)-g_2^{p_2}(k))=-c$ must hold. Furthermore, (17) holds for any $p_1 \in \text{dom } g_1$ and $p_2 \in \text{dom } g_2$. Thus, c is independent of the choice of p_1 and p_2 .

(e): The assertion (b) says that $g_1^{p_1}(k+1) - g_1^{p_1}(k)$ and $g_2^{p_2}(k+1) - g_2^{p_2}(k)$ are non-decreasing. Furthermore, by (d), we have

$$g_1^{p_1}(k+1) - g_1^{p_1}(k) \le c, \quad g_2^{p_2}(k+1) - g_2^{p_2}(k) \le -c,$$

and hence, $\widetilde{g}_1^{p_1}(k+1) - \widetilde{g}_1^{p_1}(k)$ and $\widetilde{g}_2^{p_2}(k+1) - \widetilde{g}_2^{p_2}(k)$ are non-positive for any $k \in$ \mathbf{Z}_{++} . Namely, $\widetilde{g}_1^{p_1}$ and $\widetilde{g}_2^{p_2}$ are non-increasing. On the other hand, $\widetilde{g}_1^{p_1} + \widetilde{g}_2^{p_2} =$ $g_1^{p_1} + g_2^{p_2}$ is bounded from below by (c). Hence, the assertion must hold.

Proposition 14 Let \hat{g}_1 and \hat{g}_2 be functions defined by

$$\widehat{g}_{1}(p_{1}) = \begin{cases}
\lim_{k \to \infty} (g_{1}(p_{1} + k\chi_{V_{\infty}}) - ck) & (p_{1} \in \text{dom } g_{1}) \\
+ \infty & (p_{1} \notin \text{dom } g_{1})
\end{cases} (p_{1} \in \mathbf{Z}^{V}),$$

$$\widehat{g}_{2}(p_{2}) = \begin{cases}
\lim_{k \to \infty} (g_{2}(p_{2} - k\chi_{V_{\infty}}) + ck) & (p_{2} \in \text{dom } g_{2}) \\
+ \infty & (p_{2} \notin \text{dom } g_{2})
\end{cases} (p_{2} \in \mathbf{Z}^{V}),$$

$$\widehat{g}_2(p_2) = \begin{cases} \lim_{k \to \infty} (g_2(p_2 - k\chi_{V_{\infty}}) + ck) & (p_2 \in \text{dom } g_2) \\ +\infty & (p_2 \notin \text{dom } g_2) \end{cases} \quad (p_2 \in \mathbf{Z}^V),$$

where c is the constant in (d) of Proposition 13. Then, \hat{g}_1 and \hat{g}_2 are L-convex.

Proof. Here we verify the L-convexity of \widehat{g}_1 . By (e) of Proposition 13, we have $\widehat{g}_1(p_1) \in \mathbf{R}$ for any $p_1 \in \text{dom } g_1$, and hence, $\text{dom } \widehat{g}_1 \supseteq \text{dom } g_1$. Since $\text{dom } \widehat{g}_1 \subseteq \text{dom } g_1$ obviously holds, we have $\text{dom } \widehat{g}_1 = \text{dom } g_1$. For $k \in \mathbf{Z}_{++}$, let us define g_1^k by

$$g_1^k(p) = \begin{cases} g_1(p + k\chi_{V_{\infty}}) - ck & (p \in \text{dom } g_1) \\ +\infty & (p \notin \text{dom } g_1) \end{cases} \quad (p \in \mathbf{Z}^V).$$

Trivially, dom $g_1^k = \text{dom } g_1 = \text{dom } \widehat{g}_1$ holds. For $p, q \in \mathbf{Z}^V$, we have

$$g_{1}^{k}(p) + g_{1}^{k}(q) = g_{1}(p + k\chi_{V_{\infty}}) + g_{1}(q + k\chi_{V_{\infty}}) - 2ck$$

$$\geq g_{1}((p + k\chi_{V_{\infty}}) \wedge (q + k\chi_{V_{\infty}})) + g_{1}((p + k\chi_{V_{\infty}}) \vee (q + k\chi_{V_{\infty}})) - 2ck$$

$$= g_{1}((p \wedge q) + k\chi_{V_{\infty}}) + g_{1}((p \vee q) + k\chi_{V_{\infty}}) - 2ck$$

$$= g_{1}^{k}(p \wedge q) + g_{1}^{k}(p \vee q).$$

The submodularity of g_1^k implies that of \hat{g}_1 . Obviously, \hat{g}_1 possesses (TRF). Thus, \hat{g}_1 is L-convex.

Proposition 14 shows Theorem 2.

Proof of Theorem 2. Suppose that $g = g_1 \square g_2$ but g_1 and g_2 do not satisfy (2). Let \hat{g}_1 and \hat{g}_2 be L-convex functions defined in Proposition 14. First, we show that $g = \hat{g}_1 \square \hat{g}_2$. Let p be any point in dom g and let $\{(p_1^k, p_2^k)\}_{k \in \mathbb{Z}_{++}}$ a sequence possessing (13), (14) and (15) for p, (V_0, V_∞) , g_1 and g_2 . It is enough to show that $\{(p_1^k, p_2^k)\}_{k \in \mathbb{Z}_{++}}$ also satisfies (13) for \hat{g}_1 and \hat{g}_2 . By (c) of Proposition 13, we have

$$g(p) + \frac{1}{k} \ge g_1(p_1^k) + g_2(p_2^k) \ge \hat{g}_1(p_1^k) + \hat{g}_2(p_2^k) \ge g(p)$$

for any $k \in \mathbf{Z}_{++}$, and hence, $g = \widehat{g}_1 \square \widehat{g}_2$.

In the same way as discussions for g_1 and g_2 , there exists a partition $(\widehat{V}_0, \widehat{V}_\infty)$ of V for \widehat{g}_1 and \widehat{g}_2 such that (15) and $\widehat{V}_0(p) = \widehat{V}_0(q)$ are satisfied for any $p, q \in \text{dom } g$. Next, we show that V_0 is a proper subset of \widehat{V}_0 . Let us consider the sequence $\{(p_1^k, p_2^k)\}_{k \in \mathbf{Z}_{++}}$ defined in the previous paragraph. We denote $\min\{p_1^k(v) - p_1^1(v) \mid v \in V_\infty\}$ by β_k for each $k \in \mathbf{Z}_{++}$. Without loss of generality, we assume that there is an element $u \in V_\infty$ with $p_1^k(u) - p_1^1(u) = \beta_k$ for all $k \in \mathbf{Z}_{++}$. By the definition of β_k , we have

$$(p_1^k - \beta_k \chi_{V_{\infty}})(u) = (p_1^{k+1} - \beta_{k+1} \chi_{V_{\infty}})(u),$$

$$(p_2^k + \beta_k \chi_{V_{\infty}})(u) = (p_2^{k+1} + \beta_{k+1} \chi_{V_{\infty}})(u),$$

for all k. On the other hand,

$$\lim_{k \to \infty} \left(g_1(p_1 + k\chi_{V_{\infty}}) + g_2(p_2 - k\chi_{V_{\infty}}) \right) = \hat{g}_1(p_1) + \hat{g}_2(p_2) \tag{18}$$

holds for any $p_1 \in \text{dom } g_1$ and $p_2 \in \text{dom } g_2$. Equation (18) guarantees that

$$\hat{g}_1(p_1 + \chi_{V_{\infty}}) + \hat{g}_2(p_2 - \chi_{V_{\infty}}) = \hat{g}_1(p_1) + \hat{g}_2(p_2).$$

Thus, the sequence

$$\{(p_1^k - \beta_k \chi_{V_{\infty}}, \ p_2^k + \beta_k \chi_{V_{\infty}})\}_{k \in \mathbf{Z}_{++}}$$
(19)

also satisfies (13) for \hat{g}_1 and \hat{g}_2 . In a manner similar to the proof of Proposition 10, there exists a subsequence of (19) such that (13), (14) and (15) hold for \hat{g}_1 and \hat{g}_2 . Furthermore, for any $v \in V_0 \cup \{u\}$, the v-th components of all points in the subsequence are fixed. Hence V_0 is a proper subset of \hat{V}_0 .

If $\hat{V}_{\infty} = \emptyset$ then we have L-convex functions \hat{g}_1 and \hat{g}_2 satisfying (2); otherwise, we repeat the modifications of L-convex functions defined in Proposition 14 until $\hat{V}_{\infty} = \emptyset$. Since V_0 is strictly enlarged, the above process is terminated in at most |V| iterations. Hence, there exist L-convex functions g'_1 and g'_2 satisfying (2).

3 Applications

This section gives proofs of three theoretical applications of Theorem 2, namely, Theorems 3, 4 and 5, and also gives elementary proofs of two results on the convolution of L-convex functions as applications of Proposition 9.

Proof of Theorem 3. The implication (\Rightarrow) is trivial. We prove the opposite direction. By Theorem 2, let us assume that g is defined by two L-convex functions g_1 and g_2 satisfying (2). By the hypothesis and Proposition 6, we have $g_1(q+1) = g_1(q)$ and $g_2(q+1) = g_2(q)$ for all $q \in \mathbf{Z}^V$. Let p_1^* and p_2^* be such that $g(p^*) = g_1(p_1^*) + g_2(p_2^*)$, $p_1^* + p_2^* = p^*$, $p_1^* \in \text{dom } g_1$ and $p_2^* \in \text{dom } g_2$. By the definition of the convolution, we have

$$g(p^* + \chi_S) \le \min \{g_1(p_1^* + \chi_S) + g_2(p_2^*), \quad g_1(p_1^*) + g_2(p_2^* + \chi_S)\}.$$

This inequality and the assumption that $g(p^*) = g_1(p_1^*) + g_2(p_2^*) \le g(p^* + \chi_S)$ yield

$$g_1(p_1^*) \le g_1(p_1^* + \chi_S), \quad g_2(p_2^*) \le g_2(p_2^* + \chi_S)$$

for any $S \subseteq V$. By an optimality criterion for L-convex functions [9], we have $p_1^* \in \arg \min g_1$ and $p_2^* \in \arg \min g_2$. This says that p^* must be a minimizer of g.

Proof of Theorem 4. By Theorem 2, let us assume that g is defined by two L-convex functions g_1 and g_2 satisfying (2). By the hypothesis and Proposition 6, we have $g_1(q+1) = g_1(q)$ and $g_2(q+1) = g_2(q)$ for all $q \in \mathbf{Z}^V$. Let p_1 and p_2 be

such that $g(p) = g_1(p_1) + g_2(p_2)$, $p_1 + p_2 = p$, $p_1 \in \text{dom } g_1$ and $p_2 \in \text{dom } g_2$. In the same way as the proof of Theorem 3, we can show that

$$g_1(p_1) \le g_1(p_1 + \alpha \chi_S), \quad g_2(p_2) \le g_2(p_2 + \alpha \chi_S)$$

for any $S \subseteq V$. By the proximity theorem for L-convex functions [5], there exist $p_1^* \in \arg\min g_1$ and $p_2^* \in \arg\min g_2$ such that

$$p_1 \le p_1^* \le p_1 + (n-1)(\alpha - 1)\mathbf{1}, \quad p_2 \le p_2^* \le p_2 + (n-1)(\alpha - 1)\mathbf{1}.$$

The above inequalities guarantee that $p^* = p_1^* + p_2^*$ satisfies $p \leq p^* \leq p + 2(n-1)(\alpha-1)\mathbf{1}$. Moreover, p^* must be a minimizer of g because $p_1^* \in \arg\min g_1$ and $p_2^* \in \arg\min g_2$.

Proof of Theorem 5. By Theorem 2, we assume that g is defined by two L-convex functions g_1 and g_2 satisfying (2). Obviously, $\arg \min g_1 + \arg \min g_2 \subseteq \arg \min g$ holds. Let p be an arbitrary element of $\arg \min g$. By (2), there exist $p_1 \in \operatorname{dom} g_1$ and $p_2 \in \operatorname{dom} g_2$ such that $g(p) = g_1(p_1) + g_2(p_2)$ and $p_1 + p_2 = p$. This says that p_1 and p_2 must belong to $\arg \min g_1$ and $\arg \min g_2$, respectively. Thus, we have

$$\arg\min g = \arg\min g_1 + \arg\min g_2.$$

We can easily show that $\arg \min g_1$ and $\arg \min g_2$ are L-convex sets. Hence, $\arg \min g$ is an L₂-convex set.

Finally, we give elementary proofs of two results on the convolution of L-convex functions. The first result, Theorem 15 below, says that if the convolution g of two L-convex functions g_1 and g_2 has a finite value at some point p, then it has a finite value at any point in dom g_1 + dom g_2 . The original proof of Theorem 15 in [7] utilizes the conjugacy between L-convexity and M-convexity and the Fenchel-type min-max identity, while our proof utilizes only Propositions 7 and 9.

Theorem 15 ([7]) Let $g_1, g_2 : \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$ be L-convex and $g = g_1 \square g_2$. If $g(p) \in \mathbf{R}$ for some $p \in \mathbf{Z}^V$, then

$$\begin{cases} g(q) \in \mathbf{R} & (q \in \text{dom } g_1 + \text{dom } g_2), \\ g(q) = +\infty & (otherwise). \end{cases}$$

Proof. It is sufficient to show $g(q) > -\infty$ for each $q \in \text{dom } g_1 + \text{dom } g_2$. By (3) and Proposition 7, it is enough to show $g(q) > -\infty$ for each $q \in \text{dom } g_1 + \text{dom } g_2$ such that $q \geq p$ and q is adjacent to p. Suppose to the contrary that $g(q) = -\infty$. Since $g(p) \in \mathbf{R}$ holds, for any $\gamma > 0$, there exist p_1 and p_2 such that

$$g(p) + \gamma \ge g_1(p_1) + g_2(p_2) \ge g(p), \quad p_1 + p_2 = p, \quad p_1 \in \text{dom } g_1, \quad p_2 \in \text{dom } g_2.$$

On the other hand, by the assumption $g(q) = -\infty$, for any positive number $M \in \mathbf{R}$, there exist q_1 and q_2 such that

$$-M \ge g_1(q_1) + g_2(q_2), \quad q_1 + q_2 = q, \quad q_1 \in \text{dom } g_1, \quad q_2 \in \text{dom } g_2.$$

Proposition 9 guarantees that there exist q_1'' and q_2'' satisfying

$$-M + 2\gamma \ge g_1(q_1'') + g_2(q_2''),$$

$$q_1'' + q_2'' = q, \quad q_1'' \in \text{dom } g_1, \quad q_2'' \in \text{dom } g_2,$$

$$\parallel p_1 - q_1'' \parallel_{\infty} \le 1, \quad \parallel p_2 - q_2'' \parallel_{\infty} \le 1.$$

This says that the neighborhood of either p_1 or p_2 must have a point whose function value is $-\infty$, because M is any positive number. However, this contradicts the fact that $g_1 > -\infty$ and $g_2 > -\infty$. Therefore, $g(q) > -\infty$ must hold.

The second result, Theorem 16 below, says that if the infimum in (1) is attained at some point p then the infimum in (1) is attained at any point, i.e., g_1 and g_2 satisfy (2).

Theorem 16 Let $g_1, g_2 : \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$ be L-convex and $g = g_1 \square g_2$. If there exist p_1 and p_2 for some $p \in \text{dom } g_1 + \text{dom } g_2$ such that

$$g(p) = g_1(p_1) + g_2(p_2), \quad p_1 + p_2 = p, \quad p_1 \in \text{dom } g_1, \quad p_2 \in \text{dom } g_2,$$
 (20)

then for any $q \in \text{dom } g_1 + \text{dom } g_2$ there exist q_1 and q_2 satisfying (20) with $\{p, p_1, p_2\}$ replaced by $\{q, q_1, q_2\}$.

Proof. By (3) and Proposition 7, it is sufficient to show that there exist q_1 and q_2 satisfying (20) for each $q \in \text{dom } g_1 + \text{dom } g_2$ such that $q \geq p$ and q is adjacent to p. Theorem 15 and Proposition 9 guarantee that for any $\gamma > 0$, there exist q_1^{γ} and q_2^{γ} satisfying

$$\begin{split} g(q) + \gamma &\geq g_1(q_1^{\gamma}) + g_2(q_2^{\gamma}) \geq g(q), \\ q_1^{\gamma} + q_2^{\gamma} &= q, \quad q_1^{\gamma} \in \text{dom } g_1, \quad q_2^{\gamma} \in \text{dom } g_2, \\ \parallel p_1 - q_1^{\gamma} \parallel_{\infty} \leq 1, \quad \parallel p_2 - q_2^{\gamma} \parallel_{\infty} \leq 1. \end{split}$$

Since γ is an arbitrary positive number, there must exist q_1 and q_2 satisfying

$$g(q) = g_1(q_1) + g_2(q_2), \quad q_1 + q_2 = q,$$

 $q_1 \in \text{dom } g_1, \quad g_2 \in \text{dom } g_2,$
 $\parallel p_1 - q_1 \parallel_{\infty} \le 1, \quad \parallel p_2 - q_2 \parallel_{\infty} \le 1.$

Hence, the assertion holds.

References

- [1] V. Danilov, G. Koshevoy, and K. Murota (2001). Discrete convexity and equilibria in economies with indivisible goods and money, *Math. Social Sci.*, **41**, 251–273.
- [2] A. W. M. Dress and W. Wenzel (1992). Valuated matroids, *Adv. Math.*, **93**, 214–250.
- [3] S. Fujishige (1991). Submodular Functions and Optimization, Annals of Discrete Mathematics 47, North-Holland, Amsterdam.
- [4] S. Fujishige and Z. Yang. A note on Kelso and Crawford's gross substitutes condition, *Math. Oper. Res.*, to appear.
- [5] S. Iwata and M. Shigeno. Conjugate scaling algorithm for Fenchel-type duality in discrete convex optimization, SIAM J. Optim., to appear.
- [6] K. Murota (1996). Convexity and Steinitz's exchange property, Adv. Math., 124, 272–311.
- [7] K. Murota (1998). Discrete convex analysis, Math. Program., 83, 313-371.
- [8] K. Murota (2000). Matrices and Matroids for Systems Analysis, Springer-Verlag, Berlin.
- [9] K. Murota (2001). Discrete Convex Analysis An Introduction (in Japanese), Kyoritsu Publ. Co., Tokyo.
- [10] K. Murota and A. Tamura. New characterizations of M-convex functions and their applications to economic equilibrium models with indivisibilities, *Discrete Appl. Math.*, to appear.
- [11] K. Murota and A. Tamura (2001). Application of M-convex submodular flow problem to mathematical economics. In: P. Eades and T. Takaoka (Eds.). Proceedings of 12th International Symposium on Algorithms and Computation, Lecture Notes in Computer Science, Vol. 2223, pp. 14–25. Springer-Verlag, Berlin.
- [12] K. Murota and A. Tamura (2002). Proximity theorems of discrete convex functions, RIMS Preprint 1358, Kyoto University.
- [13] R. T. Rockafellar (1970). Convex Analysis, Princeton University Press, Princeton.