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Abstract

Let G O H be Lie groups, g D h their Lie algebras, and pr: g* —
h* the natural projection. For coadjoint orbits OF C g* and OF C p*,
we denote by n(O%, Of) the number of H-orbits in the intersection
O%Npr—H(OM). In the spirit of the orbit method due to Kirillov and
Kostant, one expects that n(O%, OH) coincides with the multiplicity
ofre H occurring in the restriction 7| if 7 € G is ‘attached’ to OF
and 7 € H is ‘attached’ to OH. Such a result is known for nilpotent
Lie groups and certain solvable groups, however, very few attempts
have been made so far for semisimple Lie groups.

In this paper, we give a sufficient condition on O so that
n(O% 07 <1 for any coadjoint orbit O c p*,

for a semisimple symmetric pair (G, H). Our assumption on O cor-
responds to a multiplicity-free theorem of branching laws of unitary
representations obtained recently in [7], [8] by one of the authors.



1 Introduction

The celebrated Gindikin-Karpelevi¢ formula on the c-function gives an
explicit Plancherel measure for the Riemannian symmetric space G/K of
non-compact type. Implicitly important in this formula is the following:

Fact 1.1. The regular representation on L?(G/K) decomposes into irre-
ducible unitary representations of G with multiplicity free.

Let us fix some notation. Suppose G is a non-compact semisimple Lie
group with maximal compact subgroup K. We write g = € + p for the
corresponding Cartan decomposition of the Lie algebra g of G. We take a
maximal abelian subspace a of p, and denote by ¥(g, a) the restricted root
system. We fix a positive root system 3% and write a? for the dominant
Weyl chamber. Let m, be the dimension of the root space g(a;a) for each
a € X(g,a), and we define Xy := {a € X(g,a) : § ¢ (g, a) }.

Spherical unitary principal series representations of G are parametrized
by A € ai, which we shall denote by 7, (€ G). Then a qualitative refine-
ment of Fact 1.1 (multiplicity free result) is given by the following direct
integral decomposition into irreducible unitary representations (an abstract
Plancherel formula):

®
L*(G/K) ~ / Ta dA. (1.1)
o
A further refinement of (1.1) is the Gindikin-Karpelevi¢ formula on the
c-function ([2], see also [3]),
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which enriches (1.1) with quantitative result, namely, an explicit Plancherel
density for (1.1) with respect to the spherical Fourier transform. Here ¢ is
a normalized constant.

On the other hand, one can also enrich Fact 1.1 and (1.1) from another
viewpoint, namely, with geometry of coadjoint orbits, motivated by the phi-
losophy of the orbit method due to Kirillov. One way to formulate this is
to regard L?*(G/K) as an induced representation (see [9], Example 5). An-
other way is to use the restriction of some other representation of G such



that G O G. We shall take the latter viewpoint, which then leads us to
interesting geometric results on coadjoint orbits in much wider settings.

In this paper, we first recall a multiplicity free theorem in the branching
problem in §2 ([7], [8]) which contains Fact 1.1 as a special case (for classical
groups), and then formulate its (predicted) counterpart in the orbital geom-
etry. We shall see in §3 that it turns out to be true (Theorems A and B),
and illustrate them by lower dimensional examples in §4. A detailed proof
of Theorems A and B will be given elsewhere.

2 Multiplicity-one decomposition and
branching laws

There are several different approaches to prove Fact 1.1 (a multiplicity free
result). A classical approach due to Gelfand is based on the commutativity
of the convolution algebra L*(K\G/K).

Another approach is based on the restriction of a representation of an
overgroup G. For instance, consider a symmetric pair

(G,G) = (Sp(n, R), GL(n, R)).
Then we have a natural embedding G/K — G / K, namely,
GL(n,R)/O(n) < Sp(n,R)/U(n). (2.1)

Via the embedding (2.1), G/K becomes a totally real submanifold in a
complex manifold G / K. Let 7 be a holomorphic discrete series represen-
tation of scalar type of G. Then 7 is realized in the space of holomorphic
sections of a certain holomorphic line bundle over G/K. The restriction of
the representation 7 to G factors through that of holomorphic sections to a
totally real submanifold, and its abstract Plancherel formula coincides with
that of L?*(G/K) (see [4], [6], [10]). This representation 7|g is essentially
known as a canonical representation in the case of Vershik-Gelfand-Graev.
Thus the multiplicity one property in Fact 1.1 can be formulated in a much
more general framework of the branching laws, namely, irreducible decom-
positions of the restrictions of unitary representations to subgroups.

In this direction, one of the authors proved the following theorems (see
7], [8]) (we shall replace the above pair (G,G) by (G, H)): Suppose G is
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a semisimple Lie group such that G/K is a Hermitian symmetric space of
non-compact type. Then

Theorem 2.1. Let m be an irreducible unitary highest weight representation
of scalar type of G, and (G, H) an arbitrary symmetric pair. Then the restric-
tion w|g decomposes into irreducible representations of H with multiplicity
free.

Theorem 2.2. Let my, my be unitary highest (or lowest) weight representa-
tions of scalar type. Then m & my decomposes with multiplicity free.

3 Multiplicity-one theorem in the orbit method

The object of this paper is to provide a ‘predicted’ result in the orbit philos-
ophy corresponding to Theorems 2.1 and 2.2.

For this, let us recall an idea of the orbit method in unitary representation
theory of Lie groups.

Let g be the Lie algebra of G' and g* the linear dual of g. Let us con-
sider the contragradient representation Ad* : G — GL(g*) of the adjoint
representation of G, Ad : G — GL(g). This non-unitary finite dimensional
representation often has a surprisingly intimate relation with the unitary
dual G, which consists mostly of infinite dimensional representations.

For example, let us first consider the case where GG is a connected and
simply connected nilpotent Lie group. Then Kirillov ([5]) proved that the
unitary dual G is parametrized by g* /G, the set of coadjoint orbits. We shall

write the corresponding coadjoint orbit O, C g* for 7 € G. Let H be a
subgroup of GG. Then the restriction 7|y is decomposed into a direct integral
of irreducible representations of H

®
| g Q/A M (T)Tdp(7) (branching law), (3.1)
2]

where dp is a measure on H. Then, Corwin and Greenleaf proved that
the multiplicity m,(7) in (3.1) is given by the ‘mod H’ intersection number
n(O%, Of) defined as follows:

(02,08 = 1 (02 npr02) /1) (32
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Here, O¢ C g* and OF C h* are the coadjoint orbits corresponding to 7 € G
and 7 € H, respectively, under the Kirillov correspondence, and

pr:g°-—b"

is the natural projection. n(OY, OH) is sometimes referred as the Corwin-
Greenleaf multiplicity function

Contrary to nilpotent Lie groups, it has been observed by many specialists
that the orbit method does not work very well for a non-compact semisim-
ple Lie group (e.g. [11]); there is no reasonable bijection between G and (a
subset of) g*/G. Therefore, it is not obvious if an analogous statement of
Corwin-Greenleaf’s theorem makes sense for a semisimple Lie group G. But,
the orbit method still gives a good approximation of the unitary dual G. For
example, to an ‘integral’ elliptic coadjoint orbit O = Ad*(G)\ C g*, one can
associate a unitary representation, denoted by my, of G as a generalization
of the Borel-Weil-Bott theorem due to Schmid and Wong, combined with
a unitarization theorem of Vogan and Wallach. Furthermore, 7y is nonzero
and irreducible for ‘most’ A (see [6] for a survey). Namely, to such a coad-
joint orbit Of, one can naturally attach an irreducible unitary representation
7 € G. In particular, if G /K is Hermitian, associated to an (integral) coad-
joint orbit that goes through ([t €] + p)* (C g*), the corresponding unitary
representation is a highest weight module of scalar type.

From now on, we shall identify g* with g. Then the above coadjoint orbit

corresponds to
0% .= Ad(G) -z C g,

where z is a central element in €. We also write pr : g — b for the projection
instead of pr: g* — b*.

Then in the spirit of the Kirillov-Kostant orbit method, Theorem 2.1
predicts that the Corwin-Greenleaf multiplicity function n(O%, OH) is either
0 or 1 for any coadjoint orbit O# in h*. Since unitary representations only
correspond to integral or admissible orbits (even if the orbit method works),
this prediction might look a little optimistic. However, it turns out to be
true:

Theorem A. If (G, H) is a symmetric pair, then the intersection

O Npr—*(O*)



is a single H-orbit for any adjoint orbit OF C b, whenever it is non-empty.

Correspondingly to Theorem 2.2 in the tensor product ([7], [8]), we also
expect a geometric result in the (co)adjoint orbits. Let us consider the pro-
jection

1
prig@g—g (X.Y)— (X +Y).
Let ngzf = Ad(G x G)(z,2) C g @ g. Then we have the following
Theorem B. The intersection

ngzf N pr_l(OG)

is a single G-orbit for any adjoint orbit OY C g, whenever it is non-empty.

Likewise, the intersection

(’)(GXG N pr_l((’)G)

z,—%)

is a single G-orbit for any adjoint orbit OY C g, whenever it is non-empty:.

4 Examples and Remarks

Let us illustrate our main results (Theorems A and B) by a number of ex-
amples of lower dimensions.
First, let G = SU(2), and we identify g* with

g~su(2)={X = <m;"il . miixl%) : Xy, X, 3 € R}

Then the adjoint representation Ad(g) : X — gXg~' preserves the determi-
nant of X, that is, 27+ 3 +23. In fact, by an easy computation, each adjoint
orbit OF is identified with a sphere {(zy, 29, 73) € R? : 22+ 23+ 22 = n?} for
some n € R>g. For an integer n, the orbit method ‘attaches’” an irreducible
(n + 1)-dimensional representation of G to this sphere. As it is well-known,
the restriction of 7, to a subgroup K = SO(2) decomposes into a multiplicity

free direct sum of irreducible representations:

7Tn|so(2) ~ @ Xm- (4.1)

m=—n
m=n mod 2
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Here, each one dimensional representation x,, of SO(2) occurs with multi-
plicity free.
In the orbit picture, pr: g* — h* is identified with the projection:

Rg — R, (l’l, T2, ZL’3) = T3.

We also note that each coadjoint orbit in h* is a singlton, say {m}, because
H is abelian. Then the intersection of OF with pr—({m}) is given by

{(z1, 29, 23) € R®: 23 + 25 + 23 = n*} N {(21, 22, m) : 71, 72 € R},

which is a circle as in the Figure 4.1 if |m| < n. This is obviously a single
orbit of K. This geometry of coadjoint orbits reflects the multiplicity one
property of the branching law (4.1).

Figure 4.1

In the figure below (which does not come from any representation of
SU(2)), the intersection consists of two disconnected parts. Such a figure
does not arise in the setting of our theorems.

PN

o

Figure 4.2

Next, let us consider infinite dimensional representations, with which our
main concern is. Suppose G = SL(2,R) and K = SO(2). We identify g*

with g = sl(2,R) = {( ** *27%

: x1,29, 23 € R}. A holomorphic
Ty + T3  —y 1, T2, T3 } b
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discrete series representation w7 (n = 2,3,4,---) is an irreducible repre-

sentation of G realized in the space of square integrable and holomorphic
sections of a G-equivariant holomorphic line bundle G xg x, — G/K. We

put z := ((1) _01>, which lies in the center of € = s0(2). The representation

77 is a unitary highest weight module of scalar type, and is supposed to be
attached to the coadjoint orbit OF, = Ad*(G)(nz). We have

G v T To — T3\ _ 0 —n
O, ={X = (xz vz ) :det X = det (n 0 ) , 23 >0} (4.2)
~{(z1, 79, 73) € R® : 2} + 25 — 25 = —n? 23 > 0},

a connected component of a hyperboloid of two sheets.

We put y := ((1) _01), and A := expRy. Let us use the identifications

~

K ~7, x, < n; and A~ R, x¢ <> &. Then, the branching laws of 7} € G
with respect to the one-dimensional subgroups K = SO(2) and A are given
respectively by

> (&)
ﬂ—r—HK = Z Xn+2ks (43)
k=0
@
mila= [ xeds (1.4)
R

The first formula (4.3) is discretely decomposable, while the second one
(4.4) consists only of continuous spectrum. But in both branching laws,
the multiplicity is free (this is a special case of Theorem 2.1). In the orbit
pictures, the intersection of the hyperboloid (4.2) with a hyperplane, z3 =
constant, is a circle, which is a single orbit of K = SO(2) (see Figure 4.3);
while that with another hyperplane, z; = constant, is a hyperbolic curve,
which is a single orbit of A ~ R (see Figure 4.4).



Figure 4.3 Figure 4.4

What Theorem A asserts is a higher dimensional generalization of Figures
4.3 and 4.4.

Finally, let us mention other representations which are not treated in
our main theorems. For instance, let us consider a spherical principal series
representation, denoted by my, of G = SL(2,R), which is ‘attached’ to a
coadjoint orbit

Of, = Ad(G)(y) = {(a1, 22, 25) € B 1 2 + 2] — 2} = N},

by a real polarization. We note that Ofy (A # 0) is a hyperboloid of one
sheet.

The branching laws of m, when restricted to K and A are given respec-
tively by

WA}K = Z@ X2ns (4.5)

nez
®
7r,\}A 2/ 2xe dE. (4.6)
R

It happens that the first formula (4.5) is multiplicity free, and this prop-
erty is reflected by the orbit picture (Figure 4.5), namely, the intersection
is a circle which is a single orbit of K = SO(2). On the other hand, the
multiplicity in (4.6) is two, and this property is reflected by the orbit picture
(Figure 4.6), namely, the intersection consists of two hyperbolic curves on
which A acts with two orbits.



Figure 4.5 Figure 4.6

For higher dimensional generalizations of the last two examples, we should
remark that the multiplicity is not finite in general. Correspondingly, the
intersection O N pr=!(OH) may consist of infinitely many H-orbits, that
is, n(Of§,0) can be infinite for some coadjoint orbit OF C h*. This is

A1
A2 O
the case if G = SL(n,R) and K = SO(n) and if A =

0 A
(O>-XN =0), with \; # X; (i # j) and n > 3. (The orbit method attaches
Of to a spherical principal series representation of G by a real polarization.)

This counterexample indicates an important role of our assumption on the
coadjoint orbit OF, that is, the condition that z lies in the center of €.

To end this paper, we pin down some questions for further research:

1) Generalize Theorems A and B, of which a counterpart in unitary rep-
resentation theory has not been known.

2) Find a feedback of (1) to unitary representation theory (namely, prove
new multiplicity free results of branching laws of unitary representa-
tions which are predicted by the orbit method).

3) Find a refinement of Theorems A and B in the orbit method corre-
sponding to the explicit Plancherel measure (description of its support
and the Plancherel density).
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