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Abstract

In the theory of two-sided matching markets there are two standard
models called the stable marriage model, due to Gale and Shapley, and
the assignment model, due to Shapley and Shubik. Recently, Eriksson and
Karlander have introduced a hybrid model of these two and Sotomayor also
considered the hybrid model with full generality. In this paper, we propose a
common generalization of these models by utilizing a framework of discrete
convex analysis introduced by Murota, and verify the existence of a stable

solution in our general model.
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1. Introduction

In the theory of two-sided matching markets, there are two standard models called
the stable marriage model, due to Gale and Shapley [8], and the assignment model,
due to Shapley and Shubik [21]. Great difference between the stable marriage
model and the assignment model is that the former does not include money or
transferable utilities and the latter permits payments (see [20] for details of these
models).

In the original stable marriage model, there are two sets of n men and » women,
and each person arbitrarily gives a strict preference order on persons of the opposite
gender. A matching is a set of n disjoint pairs of men and women, and is called
stable if there is no pair whose members prefer each other to their partners in
the matching. Gale and Shapley [8] gave a constructive proof of existence of a
stable matching in 1962. Since the advent of their paper a lot of variations and
extensions have been proposed in the literature. Recently, a remarkable extension
has been made by Fleiner [4] (also see [5]). Fleiner [4] extended the stable marriage
model to the framework of matroids, showed existence of a stable solution, and
examined a lattice structure and a polyhedral characterization of stable solutions
in his matroidal model. Fleiner [5] also gave a strong framework to show existence
of a stable solution and a lattice structure of stable solutions by utilizing the
Knaster-Tarski fixed point theorem. While in the model of Fleiner [4] preference
of each person is described by a linear utility function on a matroidal domain,
Eguchi and Fujishige [2] extended the matroidal model [4] to the framework of
discrete convex analysis which was recently developed by Murota [12, 13, 15, 16]
as a unified framework of discrete optimization. In their model, each agent can
express his/her preference by a discrete concave function, called an M!-concave
function (see Section 2 for M*-concavity).

In the assignment model, if man ¢ and woman j form a partnership, then
they gain an income c;; and divide it into ¢; and r; such that ¢; + 7; = ¢;; and
¢, > 0. An outcome (g, 7; X) consisting of payoff vectors ¢ and r and a matching
X formed by partnerships is called stable if ¢; + 7; > ¢;; for all man-woman pairs
(4,7). Shapley and Shubik [21] showed existence of a stable outcome by using
linear programming duality. Many extensions of the assignment model have also
been proposed. Sotomayor [22] showed existence of stable outcomes in a model
in which each person is permitted to form several partnerships with persons of
the opposite set without repetition of the same pair. Sotomayor [24] also verified
nonemptiness of the core in an extended model in which each firm can employ
several units of labor-time, each worker can supply several units of time, each pair
can earn a specified amount of money per unit time, and each pair is permitted

to form partnerships with multiple units. Kelso and Crawford [11] introduced a
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many-to-one labor market model in which a utility function of each firm has the
gross substitutability and a utility function of each worker is strictly increasing
(not necessarily linear) in a salary. Danilov, Koshevoy, and Murota [1] provided
the first model based on discrete convex analysis.

On the other hand, there has been made research toward unifying the stable
marriage model and the assignment model. Kaneko [10] gave a general model
including two kinds of models by means of characteristic function and proved
nonemptiness of the core. Eriksson and Karlander [3] proposed a hybrid model of
the stable marriage model and the assignment model, and verified the existence of
a stable matching. In this model, the agents are partitioned into two categories,
called flexible agents and rigid agents. The rigid agents do not get side payments,
that is, they behave like ones in the stable marriage model, while the flexible agents
behave like ones in the assignment model. Thus, it is assumed that there is no
side payment between rigid agents and between a flexible agent and a rigid agent.
Sotomayor [23] also made further investigation of the hybrid model of Eriksson
and Karlander with full generality.

In this paper, we provide a general two-sided model including many of the
above models as special cases (see Section 3) by following the ideas of Eguchi and
Fujishige and of Eriksson and Karlander. Our model has the following features

(also see a model in Remark 1 in Section 2):

e the preference of agents on each side over the agents on the other side is

expressed by an M"-concave function,

e cach agent is permitted to form partnerships with many agents on the op-
posite side,

e cach pair is permitted to form multiple partnerships,

e the set of pairs is partitioned into a set of flexible pairs and that of rigid

pairs.

Our main theorem claims that there always exists a stable solution in this general
model.

This paper is organized as follows. Section 2 explains M"-concavity together
with its properties and describes our model based on discrete convex analysis.
Section 3 gives several existing models that are special cases of our model. In
Section 4 we propose an algorithm for finding a stable solution and prove its
correctness, which shows our main theorem on existence of a stable solution in our

general model.
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2. A General Model

2.1. Preliminaries

We first introduce an M%-concave function. Let V be a nonempty finite set, and
Z and R be the sets of integers and reals, respectively. We define the positive
support and negative support of z = (z(v) : v € V) € ZV by

suppf(z) ={veV | z(v) >0}, supp (z)={veV ]| z(v) <0} (2.1)
For any z,y € Z", the vectors x Ay and z V 4 in ZV are defined by
z Ay(v) = min{z(v),y(v)}, zVy(v)=max{z(v),y(v)} (veV).  (22)

For each S C V', we denote by g the characteristic vector of S defined by

)1 (ves)
XS(U)—{O (weV\s) (2.3)

and write simply x, instead of xy,) for each u € V. For a vector p € RY and a
function f : Z¥ — RU{—o0}, we define functions (p,z) and f[p](z) in z € ZV by

(p,x) = p)z(v) and [flpl(z) = f(z)+ (p,z) (z€ZV), (24)

veV

where p(v) and z(v) denote the v-th components of p and z, respectively. Also
define arg max, the set of maximizers, of f on U C ZY and the effective domain
of f by

argmax{f |y e Ut ={z €U |VyeU: f(z)> f(y)}, (2.5)
dom f={zxe€Z"| f(z)> —oco}. (2.6)

A function f : ZV — R U {—oc} with dom f # @ is called M*-concave [17] if it

satisfies
(—M*-EXC) Vz,y € dom f, Vu € supp*(z — y), Jv € supp (z — y) U {0} :
f@) + fy) < flx—xu+ x0) + FY + Xu — X0), (2.7)
where yq is a zero vector.
Two simple examples of M"-concave functions are given as follows.

Example 1: Let 7 be the family of independent sets of a matroid on V and
w € RY. Then, a function f:Z" — R U {—o0o} defined by

f(z) = { Yeerw(v) (fz=x;for I €7)

—00 (otherwise) (v €27) (28)

is M-concave.
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Example 2: Let z € ZV be a positive vector, and for each v € V let f, : R = R
be a concave function. Then, a function f: ZV — R U {—oc} defined by

f(.’l?) _ { ZveV fu(l‘(v)) (lf 0<z< Z) ($ c ZV) (29)

—00 (otherwise)

is Mt-concave.

An M!-concave function has nice features as a utility function from the point
of view of mathematical economics. A utility function is usually assumed to be
concave in mathematical economics. For any M%-concave function f : Z¥ — R U
{—o0}, there exists a concave function f : RV — RU{—oc} with f(z) = f(z) for
any x € Z" [12], that is, any M-concave function on Z" has a concave extension on
RY. A utility function usually has decreasing marginal returns, which is equivalent
to submodularity in the discrete case. This is also the case for M*-concave functions
[18], i.e., any Mf-concave function f on Z" satisfies

fl@x)+ fly) > flavy) + flz Ay) (x,y € dom f). (2.10)

We next consider natural generalizations of the gross substitutes condition and the
single improvement condition which were originally proposed for set functions by
Kelso and Crawford [11], and Gul and Stacchetti [9], respectively.

(—=ME-GS) For (pg, p), (g0,q) € RI® and z € dom f such that (po,p) < (g0, q),
x € argmax f[—p + pol], and argmax f[—q + qo1] # 0, there exists y €
argmax f[—q + go1] such that

y(v) 2 z(v) i p(v) =q(v), (2.11)
Soy(v) <Y x(v) if po= g, (2.12)

(—=ME-ST) For p € RY and z,y € dom f with f[—p](z) < f[-p](y),

fl=pl(z) < weouni B0y vesum B oy | [=pl(z = Xu + X0)-  (2:13)
Here we assume that V' and p denote the set of indivisible commodities and prices
of units of commodities and that f(z) represents a utility of a consumer for con-
sumption z of commodities. Then the above conditions are interpreted as below.
(—M"-GS) says that when prices increase (p < g and py = o), the consumer wants
a consumption such that the numbers of the commodities whose prices remain
the same do not decrease and the total number of commodities does not increase.
(—ME-GS) also says that when all prices decrease by the same amount (p = ¢

and po < ¢o), the consumer wants at least the same number of each commodity.
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(—M"-SI) guarantees that the consumer can bring consumption z nearer to any
better consumption y by changing the consumption for at most two commodities.
The equivalence between the gross substitutes condition and the single improve-
ment condition for set functions was first pointed out by Gul and Stacchetti [9],
and the equivalence between the single improvement condition and M"-concavity
for set functions was by Fujishige and Yang [7]. Murota and Tamura [19] showed
that an Mf-concave function satisfies (—M*-GS) and (—M?!-SI), and conversely, M-
concavity is characterized by these conditions under a certain natural assumption.

M!-concavity also implies substitutability (see Lemma 4.2).

2.2. Model Description and the Main Theorem

Now we introduce our model that generalizes two-sided matching markets. Let
M and W denote two disjoint sets of agents and V' be a finite set. In our model,
utilities of M and W over V are described by Mi-concave functions fus, fi :
ZV — R U {—c0}, respectively. In the exemplary models described in Section 3
M and W denote disjoint sets of agents, and we have V- = M x W, where fy,
and fy can be regarded as aggregations of utilities of M-agents and W-agents in
these models, respectively (see Remark 1 given below). We also assume that V' is
partitioned into two subsets I (the set of flexible elements) and R (the set of rigid
elements). (Recall that in the hybrid model due to Eriksson and Karlander [3] M
and W are, respectively, partitioned into {Mp, Mg} and {Wr, Wx}, and we have
F=MpxWpand R=V \ F, where V.= M x W.) Furthermore, we assume
that fyr and fy satisfy the following condition:

(A) Effective domains dom fj; and dom fy, are bounded and hereditary, and have
a common minimum point. Without loss of generality, we have 0 € dom f;,;N
dom fyy and 0 < 77 < zy € dom fy, (respectively dom fy ) implies z; €
dom f; (respectively dom fy).

We say that x € dom fy; N dom fy is an fur fur-stable solution with respect to
(F, R) or simply farfw-stable solution if there exist p € RY, disjoint subsets Ry,
and Ry of R, zpr € Z%v | and zy € Z™W such that

plr = O, (2.14)
v e argmax{fu[+pl(y) | ¥y €ZY, ylr, < zu}, (2.15)
z € argmax{fw[-pl(y) | yv€Z", ylr, < 2w}, (2.16)

where p|r denotes the restriction of p on R. In the present model, p means side
payments, and hence, (2.14) is equivalent to that there is no side payment for each

rigid element. Since dom fj; and dom fy, are bounded due to Assumption (A), we
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see that x € dom fy; Ndom fy is an fy fyr-stable solution with respect to (F, R) if
and only if there exist p € R and 2y, 2z € Z% satisfying (2.14) and the following
(2.17)~(2.19) for a sufficiently large vector z € ZV:

ZlR = ZMVZW, (217)
z € argmax{fu[+p](y) | v € Z", ylr < 2u}, (2.18)
z € argmax{fw[-pl(y) | y€Z", ylr < 2w} (2.19)

In the sequel we will use (2.17)~(2.19) instead of (2.15) and (2.16).
Our main result claims nonemptiness of the set of fi; fy-stable solutions of our
model.

Theorem 2.1 (Main Theorem): For any M*-concave functions fu, fw : ZV —
R U{—o0} satisfying (A) and for any partition (F, R) of V, there always exists an
farfw-stable solution with respect to (F, R).

A proof of the main theorem will be given in Section 4.

Remark 1: In our model given above each of M and W is regarded as a single
aggregate agent but it can be interpreted as a set of agents as follows. Let M =
{1,---;m}, W = {1,---,w}, and V = M x W. Also define V; = {i} x W
(¢t € M)and V; = M x {j} (j € W). Suppose that each agent ¢ € M has an
M!-concave utility function f; : Z% — RU{—o0} on V; and that each agent j € W
has an M*-concave utility function f; : Z% — R U {—o0o} on V;. Aggregations
fu(@) = Tien filzly,) and fw(z) = Zjew filzly,) (¢ € ZV) are also M*-concave.
Moreover, V' can be arbitrarily partitioned into two sets of flexible pairs and rigid
pairs of M-agents and W-agents. It should be noted that this modified model is
equivalent to our original model. O

Remark 2: When M and W are, respectively, a set of workers and a set of firms, p
expresses salaries from firms to workers, and hence, it should be nonnegative. Our
model, however, does not impose such a condition, since the nonnegativity of p is a
property that should be derived from an individual problem setting. For example,
suppose that fy(z) denotes the total income of the firms obtained by assignment z
between workers and firms, and that dom f,; is the set of assignments acceptable
for workers and f,, is identically zero on dom fy,. Then, for any fu/ fw-stable

solution z and for a flexible element v with z(v) > 0 we have p(v) > 0 because
Ful+pl(@) = ful+pl(z — xo) and fu(2) = fu(z = x0) = 0. =

Remark 3: In the case when V = F, ¢ € dom fj; Ndom fy is an fy, fiw-stable
solution if there exists p € RY such that
ful+pl(x) = max{fu[+pl(y) | y € 2"}, (2-20)
fwl=pl(z) = max{fw[-pl(y) | y€Z"}. (2.21)
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It is a direct consequence of the following theorem that the set of all f,;fi-stable

solutions coincides with that of all maximizers of fi; + fu -

Theorem 2.2 ([12]): For M*-concave functions fi, f; : ZV — RU{—oc} and a

point £* € dom f; Ndom f,5, we have

hi@) + fo(a™) > fil2) + fo(z) (Yo € ZY) (2.22)

if and only if there exists p* € RY such that

AlE") > fil+p7(z) (Vo e ZY), (2.23)
fal=p"l(=") > Al-p(z) (Yo eZY), (2.24)

and furthermore, we have
argmax(fi + fo) = arg max(f1[+p*]) N arg max(fo[—p*]) (2.25)

for such p*.

Since (A) guarantees that dom (fas+ fw) is nonempty and bounded, fis+ fw has a
maximizer, which implies the existence of an fy, fyy-stable solution with respect to
(V,0). We also give an algorithm for finding an fy f-stable solution with respect
to (V,0) in Section 4.2. O

3. Existing Special Models

In this section we explain some existing models that are special cases of our model.
In these models there are two disjoint sets of agents M = {1,---,m} and W =
{1,---,w}. The pairs of agents in M and W may be recognized as men/women,
workers/firms, and so on. We denote by V' the set of all pairs of agents of M and
W,ie,V =M x W. For each pair (¢,j) € V, a pair (a;;, b;;) is given, where a;;
and b;; can be interpreted as utilities (or profits) of ¢ and j, respectively, provided
that they are paired. Here, we assume that a;; > 0 if j is acceptable to ¢, otherwise

a;j = —00, and b;; > 0 if ¢ is acceptable to j, otherwise b;; = —o0.

3.1. The Stable Marriage Model and Its Extensions

Even if there are several variations of stable marriage model, we explain one of
comprehensive variations. In this model each agent ranks the agents on the oppo-
site side, where unacceptability and indifference are allowed. In our context, agent
t € M prefers ji to jo if a;, > aij,, and j; and jo are indifferent for agent ¢ if
a;j, = a;j, (similarly, preferences of each j € W are defined from b;;’s). The model
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deals with the stability of matchings, where a matching is a subset of V' such that
every agent appears at most once in the subset. Given a matching X, ¢ € M
(resp. 7 € W) is called unmatched in X if there exists no j € W (resp. i € M)
such that (7,7) € X. A pair (7,7) ¢ X is said to be a blocking pair for X if ¢ and
j prefer each other to their partners or being alone in X. A matching X is called
stable if each pair (4,7) in X is acceptable for 7 and j, and if there is no blocking
pair for X. The stability of matchings is interpreted as follows. Agent i € M is
assigned value ¢; and j € W is assigned r;. A matching X is stable if and only if

(ml) ¢ =a;; > —oo and r; = b;; > —oo for any (4,j) € X,
(m2) ¢; =0 (resp. 7; = 0) if ¢ (resp. j) is unmatched in X,
(m3) ¢; > a;; or r; > b;; for any (i,j) € V.

It is well-known that any instance of the above model has a stable matching,
originally proved by Gale and Shapley [8].

Recently, Fleiner [4] has generalized the above model to matroids. A triple
M = (V,Z,>) is called an ordered matroid, if (V,7) is a matroid on ground set
V' with family Z of independent sets and > is a linear order on V. A subset X of
V' dominates element v € V if v € X or there exists an independent set Y C X
such that {v} UY & 7 and u > v for all u € Y. The set of elements dominated
by X is denoted by D (X). Given two ordered matroids My = (V,Zar, > )
and My = (V,Zw,>w) on the same ground set V, a subset X of V is called
an My My -kernel if X is a common independent set of M, and My, and if
any element v € V is dominated by X in M, or My, that is, if the following
condition holds:

(m4) X € Ty N Ty and Dag,, (X) U Dpg, (X) = V.

For example, given a stable marriage instance (M, W, {a;;}, {b;;}) without indif-
ferent preferences, we can construct an equivalent instance in terms of matroids as
follows. Let V' be the set of pairs (4, j) with a;;, b;; > —oco. Assume that (V,Zy) is
the partition matroid on V defined by the sets V; of pairs containing each i € M
and that (V,Zy ) is the partition matroid on V defined by the sets V; of pairs
containing each 7 € W. Thus, X is a matching if and only if X € Z,; N Zy. We
next define linear orders >, and >y on V so that (i,71) >um (4, j2) whenever
aij, > @ij,, and that (41,7) >w (i2,j) whenever b;,; > b;,;. By the definitions
of the linear orders, matching X is an M My -kernel if and only if for any pair
(1,7) € X there exists either (7, j') or (i, 7) in X such that either (7, j') > (4, 7) or
(7',7) >w (i, 7). Thus, the set of My Myy-kernels coincides with the set of stable

matchings. The matroidal model also includes a many-to-many stable matching
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model, called stable b-matching model. We remark that the matroidal model can
easily be modified so that indifference in preferences is admissible. Fleiner [4]
showed that any instance of the matroidal model has an M, My -kernel.

Quite recently, Eguchi and Fujishige [2] proposed a model in terms of M-
concavity, which is a set version of our model with V' = R and dom f,;, dom fy C
{0,1}V. For convenience, we idenfity a subset of V' and its characteristic vector.
The matroidal model above can be recognized as a special case of this model with
linear utility functions. Let My, = (V,Zar, >u) and My = (V, Iy, >w) be an
instance of the matroidal model. We describe linear orders >,, and >y by positive
numbers {a,} and {b,} such that a, > a, <= u > v and b, > b, <= u >w v,
and define functions fy; and fy by

ZUEX Ay (X € IM)

ZUEX bv (X € IW)

“w (xgzy), OV

fu(X) = { Jw(X) = {
which are Mf-concave because these are linear on independence families of ma-
troids. For an independent set X of M, and Z C V with X C Z, we have that
X € argmax{fy(Y) | Y C Z} if and only if Z C Dy, (X) by the optimality
criterion of maximum weight independent sets of a matroid (the same statement
for My, also holds). Thus, a subset X of V' is an My Myy-kernel if and only if
it is far fw-stable. Eguchi and Fujishige [2] showed that any instance of the above
model has an f; fy-stable solution.

Therefore, our model with V' = R includes all of the above models. Moreover,
our model admits multiplicity for each element of V. For example, our model
naturally deals with the following problem. The same numbers of men and women
attend a dance party at which each person dances a waltz k times and he/she can
dance with the same person of the opposite gender time after time. The problem
is to find an “agreeable” assignment of dance partners, in which each person is
assigned at most k persons of the opposite gender with possible repetition. If
preferences of assignments of dance partners for each person can be expressed
by an M%concave function (see Remark 1 in Section 2), then our model gives a

solution.

3.2. The Assignment Model and Its Extensions

The assignment model includes side payments, which is different from the stable
marriage model. An outcome is a triple of payoff vectors ¢ = (¢; | i € M) € RM,
r=(r;| j€W)eRY, and a subset X C V, denoted by (¢,7; X). An outcome
(g,7; X) is called stable if

(al) X is a matching,
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(a2) ¢ +7; = a;j + b;; for any (i, j) € X,
(a3) ¢; =0 (resp. r; = 0) if ¢ (resp. j) is unmatched in X,
(ad) ¢>0,r>0,and ¢; +7; > a;; + b;; for any (i,j) € V,

where p;; = b;j — 7; = ¢; — a;; means a side payment from j to 7 for each (i,j) €
X. The stability says that no pair (i,7) ¢ X will be better off by making a
partnership. Shapley and Shubik [21] proved existence of stable outcomes by
linear programming duality. The maximum weight bipartite matching problem
with weights (a;; + b;;) and its dual problem are formulated by linear programs as

follows:

Maximize Y (as; + byj)ws;

(1.5)eV
subject to > z;; <1 (i€ M)
JEW (3.2)
Yoai; <1 (jew)
ieM

zi; >0 ((¢,5) €V),
Minimize Z q; + Z T

e jew
subject to ¢, +71; > a;; +bi; ((3,5) €V) (3.3)
>0 (ieM)

7"]'20 (]GW)

Thus, (¢,7; X) is a stable outcome if and only if z = xx, ¢ and r are optimal
solutions of the above problems, because (al) and (a4) require the primal and
dual feasibility and because (a2) and (a3) mean the complementary slackness.

Furthermore, in our model, by defining M¥-concave functions fj; and fy as

S aimy (ifz€{0,1}V and Vie M : ¥ e 245 < 1)

fu@) = { v 0
NS (otherwise),
> bz (fre{0,1} andVj € W: Ticp vy < 1)
fu@) = { ooiv >
— 00 (otherwise),

a stable outcome (q,7; X) gives an fysfy-stable solution z = yx together with
p such that p;; = b;; — r; for all (4,5) € V. Conversely, an f fw-stable solution
x = xx with p leads us to a stable outcome (g, r; X) such that ¢, = a;; + p;; and
r; = bjj — pij for (i,7) € X and ¢; = r; = 0 for 7 and j unmatched in X.
Sotomayor [22] showed the existence of a stable outcome in a two-sided market
model in which each agent can form several partnerships with agents of the opposite

set without repetition of the same pair. Recently, Sotomayor [24] proposed an



12 S. FUJISHIGE and A. TAMURA:

extension of the model in which M and W denote a set of firms and that of
workers, respectively, and each firm ¢ € M can employ «; > 0 units of labor-
time, and each worker j € W can supply §; > 0 units. The pair (7,7) can earn
cij(= a;; + bj;) per unit time. Instead of considering matchings, let x;; be the
number of time units for which 7 hires j, and we call z a labor allocation. A labor
allocation z € ZM*W ig called feasible if z > 0 and the following two hold:

Z Tij < ('l € M), (36)

For any subsets M’ C M and W’/ C W, let P(M',W') denote the maximum
of > ienr 2 jewr CijTs; over all feasible labor allocations z, that is, the payoff of
coalition M"UW’. On the other hand, we say that the pair of ¢ € R™ and r € RY
is a money allocation, and that it is feasible if ¢ > 0, r > 0, and ¢(M) +r(W) <
P(M, W), where q(M) = > ;cpr ¢; and (W) = X 7. A money allocation (g, 7)
is said to be in the core if it is feasible and if ¢(M') + r(W') > P(M',W') for all
coalitions M’ C M and W' C W. Sotomayor [24] showed that an element of the
core is derived from a dual optimal solution of the transportation problem:
Maximize Y ¢ xi; subject to  (3.6), (3.7), z > 0, (3.8)
(i,5)EV
which implies the nonemptiness of the core. Therefore, in our context, by defining
MP-concave functions fj; and fy as
> cijzy  (if x € ZV satisfies (3.6) and z > 0)
fu(z) = { Gpev (3.9)
—00 (otherwise),
0 (if z € ZV satisfies (3.7) and = > 0)

3.10
—o0o  (otherwise), (3.10)

fw(z) = {

an fu fw-stable solution x together with p gives a money allocation (¢, 7) in the
core defined by

¢ = Z (cij +pij)rs; (1 € M), (3.11)
Jirij>0

ri o= Y (=pyzy (GEW). (3.12)
1:24; >0

However, the converse does not necessarily hold, as Sotomayor [24] pointed out
that the core may be strictly greater than the set of dual optimal solutions (see
[24, Example 2]).

Kelso and Crawford [11] introduced a many-to-one labor market model in which
a utility function of each firm has the gross substitutability and a utility function
of each worker is strictly increasing (not necessarily linear) in a salary. Our model

is closely related to this model since both adopt M!-concavity.
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3.3. A Hybrid Model

Eriksson and Karlander [3] proposed a hybrid model of the stable marriage model
and the assignment model. In this hybrid model, the agents are partitioned into
two categories, called flexible agents and rigid agents, that is, M and W are par-
titioned into (Mp, Mg) and (Wg, Wg). According to the partitions of agents, the
set V of all pairs is partitioned into F' and R as
R = {(i,j)eV | i€ Mgorje€ Wg}, (3.13)
F = {(i,j)eV | i€ Mpand j € Wg}. (3.14)
An outcome (g,7; X) is called stable if
(h1) X is a matching,
(h2) g+ 1 =a;+ bij for any (’L,]) € X,
(h3) ¢ = aij > —o0 and 7; = b;; > —oo for any (7,j) € X N R,
(h4) ¢; =0 (resp. 7; = 0) if ¢ (resp. j) is unmatched in X,
(h5) ¢> 0,7 >0, and ¢; +1; > a;; + b;; for any (i, j) € F,
(h6) ¢; > a;; or r; > by; for any (i,7) € R.

When V = R (or V = F), Conditions (hl)~(h6) are obviously equivalent to
(m1)~(m3) (or (al)~(ad)). Eriksson and Karlander [3], and Sotomayor [23]
showed the existence of a stable outcome. As is seen from the discussion in the

previous subsections, our model includes this hybrid model as a special case.

4. Proof

In this section we prove our main theorem, Theorem 2.1. We divide arguments
into the following three cases: (i) a case that includes the stable marriage model
(i.e., F = 0), (ii) a case that includes the assignment model (i.e., R = ), and (iii)
the general case (i.e., F, R # ).

4.1. The Stable Marriage Case

In this subsection we give an algorithm for finding z, 7w € ZV and 2z, 2 € Z8
such that

2l = zZm Voew, (4.1)
vy € argmax{fu(y)| vy €ZY, ylr < 2m}, (4.2)
rw € argmax{fw(y)| y€ZY, ylr < 2w}, (4.3)
zvlr = zwlr (4.4)
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Here it should be noted that {F, R} can be any partition of V and that if F = () and
if there exist zys, 2w € ZY satisfying (4.1), (4.2), and (4.3) with zy = zw = z,
then z € dom fy; N dom fy is an fu; fy-stable solution. Hence the algorithm
proposed below can find an fy fyr-stable solution with respect to (0, V).

Before describing the algorithm, we show three fundamental properties of M?-
concave functions as Lemmas 4.1, 4.2, and 4.3, which hold without Assumption

(A).

Lemma 4.1 ([14], see also [16]): Let f : Z¥ — R U {—occ0} be an M"-concave
function and U be a nonempty subset of V. Define a function fU : ZV — RU{+o0}
by

fU(z) =sup{f(y) | yeZ', ylv =2} (z€Z") (4.5)

If fY(z) < +o0 for eachx € ZY, then fU is an M*-concave function. In particular,
if dom f is bounded, then fU is M'-concave.

Lemma 4.2: Let f : ZV — RU{—00} be an M*-concave function and 2,z € Z"
be such that z; > z9, argmax{f(y) | y <z} #0, and argmax{f(y) | v < 2} #
0.

(a) For any 1 € argmax{f(y) | y < z1}, there exists x5 such that

xzo €argmax{f(y) | y <z} and 2z Az <o (4.6)

(b) For any xs € argmax{f(y) | y < 23}, there exists x1 such that

zy €argmax{f(y) | y<z} and 2Nz < s (4.7)

Proof. (a): Let zy be an element in argmax{f(y) | v < 2} that minimizes
Y {z1(v) — x9(v) | v € supp™((22 A 1) — z2)}. We show 29 A 21 < x9. Suppose,
to the contrary, that there exists u € V' with min{zs(u),z1(u)} > x9(u). Then
u € suppt (z; — 25). By (—M*-EXC), there exists v € supp ™ (z; — ) U {0} such
that

f(@1) + fz2) < f(@1 — Xu + Xo) + F(T2 + Xu — Xo)- (4.8)

If v # 0, then z;,(v) < z2(v) < 29(v) < 21(v). Hence we have z1 — x, + X» < 21,
which implies f(z1) > f(21 — Xu + Xv)- This together with (4.8) yields f(z) <
f(z2+ Xy — Xv)- Moreover, since zo(u) > xo(u), we have xh = To+ xu — Xo < 22. It
follows that z, € argmax{f(y) | y < 29} and x4(v) > min{z9(v),z1(v)} if v # 0,
which contradicts the minimality condition of z,.

(b): Let x1 be an element in arg max{f(y) | vy < 2z} that minimizes > {x(u)—
xo(u) | u € supp™ ((22A21)—x2)}. We show 23 Az < 5. Suppose, to the contrary,
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that there exists v € V with min{zs(u), z1(u)} > z2(u). Then u € supp™(z1 — x2).
By (—M"-EXC), there exists v € supp ™ (z1 — x2) U {0} such that

F(@) + f@2) < f(@1 = Xu + x0) + (22 + Xu = Xo)- (4.9)

Since z5(u) < 2z9(u), we have x5 + Xy — X» < 29, which implies f(z3) > f(zo +
Xu — Xov)- This together with (4.9) yields f(z1) < f(x1 — Xu + Xo). Obviously
) = x1 — Xu + Xo < 21. However, this contradicts the minimality condition of z
because x2(v) > min{zy(v), x| (v)} if v # 0. [

Lemma 4.3: For an M*-concave function f : ZV — R U {—oc} and a vector
z1 € ZV suppose that argmax{f(y) | y < z1} # 0. For any x € argmax{f(y) |
y < 21} and any z € ZV such that (1) 2o > 21 and (2) if z(v) = 2z1(v), then
29(v) = 2z1(v), we have x € argmax{f(y) | y < z2}.

Proof. Assume to the contrary that the assertion is not satisfied. Let z' be
a point such that 2’ < 2o, f(2') > f(z), and 2’ minimizes > {z'(v) — 2z1(v) |
v € supp’ (2’ — z1)} among such points. By the assumption, there exists u € V
with z'(u) > 2 (u) > z(u). By (-M*-EXC) for z’, z, and u, there exists v €
supp~ (2’ — ) U {0} such that

f@')+ f(@) < f@" = xu+ Xo) + F(@ 4+ Xa — Xo)- (4.10)

Since & + Xu — Xo < 21, we have f(x) > f(z + xu — Xv), Which implies f(z') <
f(z" — xu + X»)- Obviously, 2’ — xy, + X» < 22, However, this contradicts the

minimality condition of 2’ because if v # 0, then z,(v) > z(v) > z'(v). |

It should be noted that Lemma 4.3 holds for any function f on ZV that has a
concave extension on RY.

To describe an algorithm for finding 7, zw € ZY and 2z, 2w € Z¥ satisfying
(4.1), (4.2), (4.3), and (4.4), we assume that we are initially given zs, 2w € ZY
and zy7, 2w € Z% satisfying (4.1) and the following:

zy € argmax{fu(y)| ylr < zm}, (4.11)
aw € argmax{fw(y) | ylr < 2w Vaulr}, (4.12)

In the case when R =V, we can easily compute such vectors by setting 2z, = z,

zw = 0, and by finding z,, and xw such that

xy € argmax{fy(y) | y < zm}, ow € argmax{fw(y) | y <znm}.  (4.14)

The algorithm is given as follows.
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Algorithm 1(fy, fw, za, Tw, 201, 2w)
Input: MP-concave functions fas, fir and
Tn, Twy 2, 2w satisfying (4.1), (4.11), (4.12), (4.13) ;
Step 1: repeat {
let 25, be any element in arg max{fa(y) | zw|r < ylr < z2m} ;
let zy be any element in argmax{fw(v) | v|r < zm|r};
for each v € R with zp(v) > zw(v) {
am(v) — zw (V) ;
2w (v) — 2(v) ;
}i
}until xy|g = zwlr ;

return (Z‘M,.Tw,ZM,ZW V -TM|R)

It should be noted here that because of Assumption (A) xp, and zy are well-
defined within the effective domains and that Algorithm_1 terminates after at most
> wer 2(v) iterations, because Y ,cp zap(v) is strictly decreased at each iteration.
In order to show that the outputs of Algorithm 1 satisfy (4.1), (4.2), (4.3), and
(4.4), we will show two lemmas, Lemmas 4.4 and 4.5.

Let xg\?, xg[,), z](\?, and z&} be zu, Tw, zum, and zy obtained after the 4th
iteration in Step 1 of Algorithm_1 for ¢ =1,2,---,¢, where ¢ is the last to get the
outputs. For convenience, let us assume that :cg\(/)[), :c%,?,), 25\3), and zI(,B) are the input

vectors.

Lemma 4.4: For each1=20,1,---,t, we have
x%fl) € argmax{fM(y) | ylr < z](\?} ) (4.15)

Proof. We prove (4.15) by induction on i. For ¢ = 0, (4.15) holds from (4.11)
and (4.13). We assume that for some [ with 0 <1 < ¢ (4.15) holds for any ¢ < [,
and we show (4.15) for i = { + 1. Since z\;™" € max{fu(y) | ylz < 22} and
z](\f[) > zy; , Lemma 4.2 (a) guarantees the existence of an x € argmax{fa(vy) |

(+1)
ylr < z](\ffl)} with 2\, Axs\l/f+1)|R < z|g, which implies (4.15) for i = [+ 1 because

z](\f;rl) A a:g\lfl)|R = x%,l[,+1)|R by the modification of 2. [
Lemma 4.5: For eachi=20,1,---,t, we have
2\ € arg max {fw(y) | ylr < 20 vl R} . (4.16)

Proof. We show (4.16) by induction on 7. For i = 0, (4.16) holds by (4.12). We
assume that for some [ with 0 < [ < ¢ (4.16) holds for any 7 < [, and we show
(4.16) for i = 1+ 1. By the definition of z,s, we have

23R > 2. (4.17)
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By Lemma 4.2 (b) and the assumption, there exists z such that

z € argmax { fw(y) | ylr < 20V (@W1r) vV @5 ])} (4.18)
and
(z‘(,l[,) vzt R) ANz|p < x%} R (4.19)

From (4.17), (4.18), and (4.19), we have x|z < 2| and hence we have fy (z) =
fW(x%,H)). If zﬁ,ﬂ) = zg,), then we immediately obtain (4.16) for i = [+ 1. So, we
assume that zg,ﬂ) # zl(,f,) By the modification of zy,, we have z‘(,lv)(v) < zl(,f,H)(v)
if and only if 25" (v) < 2 (v). Hence it follows from Lemma 4.3 that (4.16)

holds for s =1+ 1. [ |

The correctness of Algorithm 1 follows from Lemmas 4.4 and 4.5.

Theorem 4.6: The outputs of Algorithm 1 satisfy (4.1), (4.2), (4.3), and (4.4).

Proof. From Lemmas 4.4 and 4.5 we have for 1 = ¢

vy € argmax{fu(y) | ylz <247}, (4.20)
Tw € argmax{fw(y) | ylr < zg,) vzl R}, (4.21)

By the way of modifying z;, zw, and z,,, we have

z](\f[) v (zg,) % x%[)|R) = z|g. (4.23)
This completes the proof of this theorem. [ |

The following is a direct consequence of Theorem 4.6 when F' = {).

Theorem 4.7: For any M*-concave functions far, fwv : Z¥ — R U {—o00} satisfy-
ing (A), there always exists an fur fw -stable solution with respect to (0, V).

4.2. The Assignment Case

In this subsection we explain a successive shortest path algorithm for finding a
maximizer of fys + fi, i.e., an fys fyr-stable solution with respect to (V,0) (cf. the
discussion in Section 3.2). The algorithm presented here will give a basic procedure
for finding a stable solution for our general model.

Before describing the algorithm, we give several known results on M%concave

functions.
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For an M'-concave function f : Z¥ — R U {—oo}, we define f : Z{OW —

RU{—c0} by

f(yo,9) ={ i(;g Eftﬁ;i;g(v)) ((yo,y) € ZOY), (4.24)

where y(V') denotes the sum of all components of y. Function f is called an

M-concave function and can be characterized by the following exchange property
[12, 13]:
(—=M-EXC) Vz,y € dom f,Yue supp™(z — y), Jv € supp (z — y) :

F@) + Fy) < F(@—xu+X0) + £+ Xu — Xo)- (4.25)

In particular, an M-concave function is also M*-concave. Here we denote {0} UV
by V. For any vector z € RV, we denote by & the vector (—z(V),z) € RV. For a
vector (pg,p) € RV, we have

z € argmax f[p — pol] < & € argmax f[(po,D)]. (4.26)

Thus, the problem of finding an fj, fy-stable solution with respect to (V,0) is
equivalent to that of finding a maximizer of fM -+ fW (see Remark 3 and Theo-
rem 2.2 in Section 2).

The maximizers of an M-concave function have a good characterization.

Theorem 4.8 ([12, 13]): For an M-concave function f : ZV — R U {—occ} and
z € dom f, z € argmax f if and only sz(:):) > f(:v — Xu + Xo) for allu,v € V.

The following property is a direct consequence of (—M-EXC).
Lemma 4.9: For any M-concave function f, arg maxf satisfies:
(B-EXC) Va,y € argmax f, Yu € supp™(z — y), Jv € supp~(z — y) -

x_Xu'i'Xva y+Xu_Xv Gargmaxf' (427)

A set B of integral vectors satisfying (B-EXC) is called an M-convez set, (the
set of integer points of) an integral base polyhedron. It is known that an M-convex

set has a property called “no-short cut lemma” below.

Lemma 4.10 ([6]): Suppose that B is an M-convez set, x € B, and that uy, vi, us,
Vg, ", Up, Uy are distinct. If T— Xy, +Xo; € B fori=1,...,17 and £ —xu;, + X0, € B
fori<j, theny=2—Y_(Xu; — Xv;) € B.
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Let zj; and Zw be arbitrary maximizers of fM and fW, respectively. We
construct a directed graph G = (V, A) and an arc length £ € R4 as follows. Arc
set A consists of two disjoint parts:

Ay = {(u,) | wv €V, u#v, &y —Xu+Xo €dom frr},  (4.28)
Aw = {(w,u) | w,v eV, u#v, Iw — Xu+ Xo € dom fir},  (4.29)

and ¢ € R4 is defined by

(4.30)

f(a) = { Pu(@ar) = fu(in = xo+x0) (@ = (u,0) € Au)
fw(@w) = fw(@w — Xu + Xo) (@ = (v,u) € Aw).

The length function ¢ is nonnegative due to Theorem 4.8.

For a specified vertex s of V, let d : V — R U {+0o0} denote the shortest
distance from s to each vertex with respect to £. Let ¢ be an arbitrary vertex of
V reachable from s and define p € RV by p(v) = min{d(v), d(t)} for each v € V.
It follows from the nonnegativity of ¢ that

l(a) +p(0ta) —p(d a) >0 (4.31)

for every arc a € A, where 0*a and 0~ a denote the initial vertex and the terminal

vertex of a, respectively. The system of inequalities (4.31) is equivalent to

T (@) = faur(@mr — Xu + Xo) + 2(u) — p(v)

>0 N
N R _ (Vu,v € V), (4.32)
Tw(@w) = fw(@w — Xu + Xo) — p(u) +p(v) >0
which is further equivalent to
iy € argmax f[+p], iw € argmax f[—p), (4.33)

by Theorem 4.8. Note that ¢,(a) = ¢(a)+p(0"a) — p(0~a) is the length of arc a in
a directed graph defined in the same way as above for fu[+p], fw[—p], Zm, and
Zw. Also note that we have £,(a) = 0 for any arc a in a shortest path from s to .

Let P be a shortest path from s to ¢t in G with a minimum number of arcs.

Since £,(a) = 0 for any a € P, we have

EM = Xu + Xo € arg max fus[+p] (V(u,v) € PN Ay),

N 4.34
Tw — Xu + Xo € argmax fy[—p] (V(v,u) € PN Aw). ( )

Since P has a minimum number of arcs, we have

M — Xu T Xw ¢ arg max fM[+p]a Tw — Xw + Xu & arg max fW[_P] (4.35)

for any vertices v and w of P such that (u,w) ¢ P and u appears earlier than w

in P. Furthermore, arcs of Ay, and Ay alternatively appear in P. For otherwise
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assume that consecutive two arcs (u,v), (v,w) € P belong to Ay and then, by
(—M-EXC) we have

fM(iM + Xu — Xo) + fM(i'M + Xo — Xw) < ]EM(»%M) + fM(i“M + Xu — Xw), (4.36)

which yields
Lu,v) + L(v,w) > Lu,w), (4.37)

a contradiction to the minimality of P. Consequently,

ai,a9 € PﬂAM, a1 7é a9y — 8+a1 75 (9_a2,

) (4.38)
a1,09 € PﬁAw, aq 7éCLQ —— 3*@1 756 as.

From Lemmas 4.9 and 4.10 together with (4.34), (4.35), and (4.38), we have

Bv— Y, (w—X) € argmax fu[+p], (4.39)
(u,w)EPNA )

iw— Y (w—x) € argmaxfw[-p]. (4.40)
(v,u)EPNAw

Now, a successive shortest path algorithm for finding a maximizer of fM + fW

is described as below.

Algorithm 2
Step 0: find 7, € argmax fM and Ty € argmaxfw, p<—0;
Step 1:if 2, = Zw then stop ;
Step 2: construct G and compute £ for fa[+p], fw|—p|, &, and Zy ;
S« supp"(Znm — Tw), T < supp (Ty — Tw) ;
Step 3: compute the shortest distance d(v) from S to each v € V in G
with respect to /£ ;
let P be a shortest path from S to T" with a minimum number of arcs ;
Step 4: for each v € v
p(v) — p(v) + min{d(v), e p l(a)} ;
for each arca € P {
a€Ay = Iy(0ta) — &y (0Ta)—1, ZTp(07a) — Tp(07a)+1,
a€Aw = Ew (0 a) — Iw(0"a)—1, Zw(0Ta) — Tw(0ta)+1;
¥

goto Step 1 ;

Under Assumption (A), a shortest path P in Step 3 always exists because if
there is no shortest path from supp™(&a — &w ) to supp™ (Zn — Zw ), then dom fi N
dom fy must be empty (see [16]). By (4.39) and (4.40), the algorithm preserves

Ty € arg max fM[-i-p], Tw € argmax fW[—p]. (4.41)
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Thus, if Algorithm_2 terminates, then it finds a maximizer of fM + fW, that is, an
farfw-stable solution with respect to (V, (). Furthermore, since P is a path from
suppt(Zar — Tw) to supp (Za — Tw), ||Tam — Twl|1 is decreased by two after each
execution of Step 4, which guarantees the termination of Algorithm 2.

For the case when R = (), we can relax (A) into that dom fp; N dom fy is
nonempty and bounded as we see from the above discussion.

Theorem 4.11: For any M"-concave functions fur, fwr : Z¥ — R U {—o0} such
that dom fyr N dom fy is nonempty and bounded, there always exists an farfw-

stable solution with respect to (V,0).

4.3. The General Case

In this subsection, we give an algorithm for finding an f,; fy-stable solution in the

case when both F' and R are nonempty. The algorithm consists of two phases:

(1) Phase 1 finds zp,zw € ZY, p € RY, and 2, 2w € ZT satisfying (2.14),
(2.17), (4.4), and the following:

xy € argmax{fu[+p](v) | vlr < zm}s (4.42)
zw € argmax{fw[-pl(y) | ylr < 2w}, (4.43)
vy < Tw. (4.44)

(Note that if we further get xp; = zw in (4.44), then z = (23 = zw) is an
far fw-stable solution.)

(2) Phase 2 finds an fj, fyy-stable solution by applying Phase 1 in a modified way.
By interchanging the roles of M and W Phase 2 executes part of Phase 1
with the inputs being the outputs of Phase 1. The detail will be given below.

We first give a lemma.

Lemma 4.12: Let f : ZV — R U {—o0} be an M'-concave function. For an
element uw € V let 21,29 € ZV be vectors such that z; = 29 + Xy, argmax{f(y) |
y <z} #0, and argmax{f(y) | v < 2o} #0. Then, the following two statements
hold:

(a) For any x € argmax{f(y) | vy < z1}, there exists v € {0} UV such that
T — Xu+ Xo € argmax{f(y) | v < 29} (4.45)
(b) For any x € argmax{f(y) | y < 23}, there exists v € {0} UV such that

T+ Xu— Xo €argmax{f(y) | v<z} (4.46)
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Proof. (a) If x € argmax{f(y) | y < 22}, then it suffices to set v = u. Hence we
assume that x ¢ argmax{f(y) | ¥ < z2}. Then we have z(u) = 21(u) = zo(u) + 1.
Let 2’ be any element of argmax{f(y) | v < 22}. By (=M*-EXC) for z, #/, and
u, there exists v € {0} Usupp™(z — 2’) such that

f@)+ f(@') < f@— xu+ x0) + F(@" + xu — X0)- (4.47)

Since 2’ + Xy — Xo < 21 and x € argmax{f(y) | y < 2}, the above inequality
implies f(z') < f(z — Xu + Xo), that is, 2 — xu + X» € argmax{f(y) | y < 2}.

(b) If x € argmax{f(y) | v < z1}, then it suffices to set v = u. Hence we
assume that x ¢ argmax{f(y) | v < z1}, i.e., there exists 2’ € argmax{f(y) |
y < 2z} with 2/(u) = 2 (u). Then, by (—M*-EXC) for 2/, x, and u, there exists
v € {0} Usupp~ (2’ — z) such that

f@) + f(zx) < fa" = xu+ x0) + F(@ + Xu — X0)- (4.48)

Since 2’ — xu + Xo < 29 and z € argmax{f(y) | y < 2}, the above inequality
implies f(z') < f(x 4+ xu — Xv), that is, x + xu — X € argmax{f(y) | y < z1}. 1

Next, we give the procedure for Phase 1, where fi¥ and fj¥ are M'-concave

functions defined by

u (z) { fuue)  (if 2l < 2a0) (4.49)

M —oo  (otherwise),

v —oo0  (otherwise).

Phase 1
Step 0: zps < z|g, 2w <0, p<—0;
let z5s be any element in arg max{fy(v) | v|lr < 2m} ;
let zy be any element in arg max{fw (v) | v|r < zm|r} ;
Step 1: (xar, Tw, 2um, 2w ) < Algorithm 1( far[+p], fw[—p], zar, 2w, 201, 2w) ;
Step 2: if zp < zw then return (za, zw, 20, 2w, P) ;
Step 3: construct G and compute £ for f2[+(0, p)], f2¥ [—(0,p)], &ur, and Zy ;
S« supp’(Zy — 3w) \ {0}, T — {0} URUsupp™(Zy — Iw) ;
Step 4: compute the shortest distance d(v) from S to each v € V in G
with respect to £ ;
let P be a shortest path from S to 7" with a minimum number of arcs ;
Step 5: for each v € V
p(v) — p(v) + min{d(v), {(P)} = €(P)  (where {(P) =¥ cp(a)) ;
for each arc a € P {
a€Ay = Ey(0Ta) — Ey(0Ta)-1, ZTp(0 @) — Ep(0 a)+1,
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a€Aw = ETw(07a) — Iw(0"a)—1, Zw(0Ta) — Tw(0Ta)+1;
}
Step 6: if the terminal u of P is in R then {
if the last arc of P is in Ay, then {
choose v € {0} UV such that
Tw + Xu — Xo € argmax{fw(y) | y|r < 2w Vzu|r};
Tw <~ ITw + Xu — Xv >
if v € {0} U F then goto Step 2 ;
else (v € R) goto Step 1 ;
}

goto Step 1 ;

}

goto Step 2 ;

In Step 6 of Phase 1 we can choose v € {0} UV such that zw + xu — xo €
argmax{ fw(v) | y|r < 2w V zap|r}, due to Lemma 4.12 (b).

We will discuss the correctness of Phase 1. Step 0 constructs (zar, Zw, 2ar, 2w)
satisfying (4.1), (4.11), (4.12), and (4.13) for fuy[+0] and fw[—0]. Therefore,
Step 1 at the first time finds (2, zw, zar, 2w) satisfying (4.1)~(4.4). Steps 3
through 5 are the same as Algorithm_2 except for the definitions of S, T', and p.
The difference is to achieve p|g = 0 and py = 0 that are required by (2.14) and
(4.26). Since {0} U R C T, the shortest distances from S to vertices in {0} U R is
greater than or equal to £(P), and hence, (po, p) updated in Step 5 satisfies p|r = 0
and po = 0. Hence (2.14) is preserved during Phase 1, where note that Algorithm 1
does not change p. Furthermore, z,; and 2y modified in Step 5 satisfy (4.42) and
(4.43) because (V) = Zw (V) = 0 guarantees that replacing (po, p) by (po, p)+1
does not destroy the optimality of z,, and Zy,. From the discussion of the previous
subsection, (4.42) and (4.43) are preserved through Steps 3~5.

Next, we consider the case when the terminal u of P belongs to R. In this case,
at the beginning of Step 6 we have z,(u) = 2w (u)+1 and z(v) = zw(v) for any
v € R\{u}. Hence, conditions (4.1), (4.11), and (4.13) are satisfied for fy[+p] and
fw[—p]- If the last arc a of P is in Ay, then zy V xp/|g is unchanged, and hence,
(4.12) also holds at the beginning of Step 6, which guarantees that Algorithm 1
correctly works when we go from Step 6 to Step 1. On the other hand, if a € Ay,
then (4.12) may not hold because zy V xp/|g is modified. In this case, we modify
Tw as Tw + Xu — Xo i Step 6. If v € {0} U F, then succeeding Steps 2 through
5 can be executed because zy|r = Tw|g; otherwise (v € R), succeeding Step 1
can be executed because (4.12) holds. Hence, conditions (2.17), (4.4), (4.42), and
(4.43) are satisfied in Step 2.
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The rest is to show that Phase 1 terminates in a finite number of iterations.
When we go from Step 6 to Step 1, we have either xy(u) > zy (u) or (when v
was chosen in Step 6) xa(v) > zw(v), so that we can decrease either zp(u) or
zy(v) by at least one by performing Algorithm 1 in Step 1. Therefore, Step 1
strictly decreases zj; and hence Step 1 is executed finitely many times, due to
Assumption (A). Moreover, every execution of Steps 3~5 strictly reduces the value
of X {zp(v) — zw(v) | v € S}. So, the cycle of Steps 2~6 formed by going from
Step 6 to Step 2 is executed consecutively finitely many times, and then Phase 1
terminates or we go to Step 1. Hence, Phase 1 must terminate in a finite number of
iterations with outputs (zar, Tw, 2m, 2w, p) satisfying (2.14), (2.17), (4.4), (4.42),
(4.43), and (4.44).

Phase 2 is the same as Phase 1 except that the roles of M and W are inter-
changed and that Phase 2 starts from Step 2, where the inputs to Phase 2 are
the outputs of Phase 1. Since we have zy, > x,, for the outputs of Phase 1, to
show that Phase 2 finds an fj, fy-stable solution, it suffices to verify that Phase 1

preserves

once we have this relation. Note that if relation (4.51) is preserved by Phase 1,
then Phase 2 with xw > xjs terminates in a finite number of iterations with
outputs * = xpr = Tw, 2m, 2w, and p satisfying (2.14), (2.17), (2.18), and (2.19).

It follows from the discussion of Section 4.2 that (4.51) holds after the execution
of Steps 3 through 5. We will show that we keep relation (4.51) while executing
Algorithm_1. We now consider the case when Step 1 is executed after Step 6. In
this case, at the beginning of Algorithm_1 we have zy(u') = zw (u') + 1 for some
v € R and zp(v) = xw(v) for any v € R\ {«'}. In Algorithm 1, we can apply
Lemma 4.12 (a) to update z;; and Lemma 4.12 (b) to update zy, respectively.
Hence, at the end of the I-th iteration (but not the final one) of Algorithm 1, we
have for some u € R

D) = 20w +1, 2Pw) =2Bw)  (we R\ {u}) (4.52)

Moreover, Algorithm 1 terminates when for v in Lemma 4.12 we have v € {0} UF.
If v € F, then either z,/(v) is increased by one or zw (v) is decreased by one.
Hence, relation (4.51) is preserved by Algorithm 1. We have thus shown our main
result.

Theorem 2.1: For any M:-concave functions far, fw : ZV — RU{—oc} satisfying
(A) and for any partition (F, R) of V, there always exists an fu fw -stable solution
with respect to (F, R).
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