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Abstract
A systematic construction method of orthonormal basis on self-similar sets is given by

the use of representations of the Cuntz algebras. We introduce two kinds of orthonormal
basis of self-similar sets including explicit description for the Cantor set, the Sierpiński
gasket and the Sierpiński carpet.

1 Introduction

It is well known that Fourier analysis is one of the most important tools for the analysis
and geometry on manifolds. In a sense of generalization of this, there are several studies
of self-similar sets according to the aim of applications of analysis of Laplacians on them
([Ki1, Ki2, Sa, Tep]). On the other hand, we have interest in Fourier analysis on self-similar
sets in a sense of harmonic analysis. In this paper we shall give a method of constructing
orthonormal basis of the L2-space with respect to the Hausdorff measure on the self-similar
set systematically by using the representation theory of the Cuntz algebra. Our main result
can be stated in the following:

Theorem 1.1. (Main theorem) Let K be a self-similar set with contractions {σi}Ni=1, N ≥ 2,
contraction ratios {λi}Ni=1, the similarity dimension D, and the Hausdorff measure µD on
K. Put L2(K,µD) the Hilbert space of all complex valued square integrable functions on K.

Choose a unitary matrix g = (gij)Ni,j=1 ∈ U(N) such that g1j = λ
D/2
j for j = 1, . . . , N .

Put a subset of multiindices consisting of 1, . . . , N by

ΛN ≡ {1, . . . , N} ∪
⋃
k≥2

(
{1, . . . , N}k−1 × {2, . . . , N}

)
(1.1)

and symbols KJ ≡ σJ(K), σJ = σj1 ◦ · · · ◦ σjk , λJ = λj1 · · ·λjk when J = (j1, . . . , jk) ∈
{1, . . . , N}k, and denote χKJ the characteristic function of KJ for J ∈ {1, . . . , N}k, k ≥ 1.

Then the followings hold:
‡e-mail : kawamura@kurims.kyoto-u.ac.jp.
§e-mail : osuzuki@am.chs.nihon-u.ac.jp.
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(i) There are two kinds of complete orthonormal basis(=CONB) on L2(K,µD):

(a) A CONB {EI : I ∈ ΛN} of L2(K,µD) is given by

EI ≡
∑

J∈{1,...,N}k
cI,JχKJ

for I ∈ ΛN ∩ {1, . . . , N}k, k ≥ 1 where

cI,J ≡ λ−D/2J

k∏
l=1

g∗jl,il

when I = (i1, . . . , ik) ∈ ΛN , J = (j1, . . . , jk) ∈ {1, . . . , N}k, k ≥ 1.
(b) A CONB {HI : I ∈ ΛN} of L2(K,µD) is given by

Hi ≡
N∑
l=1

λ
−D/2
l g∗li χKl , HJ,j ≡ λ−D/2J χKJ ·Hj ◦ σ−1

J

for i = 1, . . . , N and j = 2, . . . , N , J ∈ {1, . . . , N}k, k ≥ 1.

(ii) For φ ∈ L2(K,µD), we have the following expansions:

(a)
φ =

∑
I∈ΛN

aIEI , (1.2)

where
aI =

∑
J∈{1,...,N}k

cI,J

∫
KJ

φ(x)dµD(x) (1.3)

when I = (i1, . . . , ik) ∈ ΛN .
(b)

φ =
∑
I∈ΛN

bIHI , (1.4)

where

bi =
N∑
l=1

λ
−D/2
l gil

∫
Kl

φ(x)dµD(x), bJ,j = λ
−D/2
J

N∑
l=1

λ
−D/2
l gjl

∫
KJ,l

φ(x)dµD(x)

(1.5)
when i = 1, . . . , N , j = 2, . . . , N and J ∈ {1, . . . , N}k.

In § 2, we review generalized permutative representations and the Hausdorff represen-
tations of the Cuntz algebra on self-similar sets and show the construction of orthonormal
basis. In § 3, we give examples of complete orthonormal basis by g ∈ U(N) arising from the
N -th root of unity for self-similar sets with the common contraction ratio. In the cases of
the Cantor set, the Sierpiński gasket and the Sierpiński carpet, we give concrete formulae
of basis in an explicit manner. In § 4, we construct basis for several examples by orthogonal
matrix. In Appendix C, we show relations between states and representations associated
with self-similar sets.
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2 GP representations and Hausdorff representations of the
Cuntz algebra and basis

For N ≥ 2, a C∗-algebra with generators s1, . . . , sN which satisfy the following relations

s∗i sj = δijI (i, j = 1, . . . , N),
N∑
i=1

sis
∗
i = I (2.1)

is called the Cuntz algebra([C]) and is denoted by ON . ON is non commutative, infinite
dimensional, separable, simple and unique up to isomorphisms. Hence there is no finite
dimensional representation except 0-representation. We notice that these relations give an
algebraic description of the division of the total space into N -parts.

We denote
sJ ≡ sj1 · · · sjk , s∗J ≡ s∗jk · · · s

∗
j1

for a multi index J = (j1, . . . , jk) ∈ {1, . . . , N}k, k ≥ 1. In this paper, a representation
always means a unital ∗-representation on a complex Hilbert space.

2.1 GP representations of ON with 1-cycle

We show only the 1-cycle case about GP representations of Cuntz algebras with cycle in
[Ka1]. Let S(CN ) ≡ {z ∈ CN : ‖z‖ = 1} be the complex sphere in a complex vector space
CN .

Definition 2.1. (H, π,Ω) is the GP(= generalized permutative) representation of ON by
z = (z1, . . . , zN ) ∈ S(CN ) if (H, π) is a cyclic representation of ON and Ω is the unit cyclic
vector which satisfies the following equation:

π(z1s1 + · · ·+ zNsN )Ω = Ω. (2.2)

We denote GP (z) ≡ (H, π,Ω).

For two representations (H1, π1) and (H2, π2) of ON , (H1, π1) ∼ (H2, π2) means the unitary
equivalence between (H1, π1) and (H2, π2).

Theorem 2.2. (Characterization of GP representation with 1-cycle)

(i) (Existence and Uniqueness) For any z ∈ S(CN ), GP (z) exists uniquely up to unitary
equivalences.

(ii) (Irreducibility) For any z ∈ S(CN ), GP (z) is irreducible.

(iii) (Equivalence) For z, z
′ ∈ S(CN ), GP (z) ∼ GP (z

′
) if and only if z = z

′
.

(iv) (State) For z = (z1, . . . , zN ) ∈ S(CN ), GP (z) is equivalent to the GNS-representation
by a state ρ of ON (that is, ρ is a linear functional on ON such that ρ(I) = 1, ρ(x∗) =
ρ(x), ρ(x∗x) ≥ 0, for x ∈ ON ) which is defined by

ρ(sJs∗J ′ ) ≡ zJzJ ′ (2.3)

where J, J
′ ∈ ∪k≥0{1, . . . , N}k, |J | + |J ′ | ≥ 1, zJ ≡ zj1 · · · zjk when J = (j1, . . . , jk),

and sJ = I, zJ = 1 when J = ∅.
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Proof. For (i),(ii),(iii) see Appendix A.
(iv) Assume that (H, π,Ω) is GP (z). Let ρ(x) ≡< Ω|π(x)Ω > for x ∈ ON . Then ρ

satisfies (2.3). On the other hand, a state ρ of ON is uniquely determined by (2.3). By the
uniqueness of GNS-representation and the cyclicity of GP (z), the GNS-representation of ρ
is equivalent to GP (z).

Next we proceed to two kinds of constructions of orthonormal basis for general GP
representations.

Proposition 2.3. For z ∈ S(CN ), if (H, π,Ω) = GP (z), then we have the following two
complete orthonormal basis(=CONB) of H which depends on g ∈ U(N) under the condition
g1j = zj for j = 1, . . . , N .

(i) (Construction A) Put
EI ≡

∑
J∈{1,...,N}k

g∗J,Iπ(sJ)Ω (2.4)

and

g∗J,I ≡
k∏
l=1

g∗jl,il

when J = (j1, . . . , jk) ∈ {1, . . . , N}k and I = (i1, . . . , ik) ∈ ΛN . Then {EI : I ∈ ΛN}
is a CONB of H.

(ii) (Construction B) Put

Hi ≡
N∑
l=1

g∗liπ(sl)Ω (i = 1, . . . , N),

HJ,j ≡ π(sJ)Hj (J ∈ {1, . . . , N}k, j = 2, . . . , N, k ≥ 1).

(2.5)

Then {HI : I ∈ ΛN} is a CONB of H.

Proof. (i) By expanding results in Lemma A.5, we have (2.4). (ii) Note Hi = Ei for
i = 1, . . . , N . Hence H1, . . . ,HN are mutually orthonormal by (i). By (2.1), we can show
< π(sJ)Hj |π(sJ ′ )Hj′ >= δj,j′ δJ,J ′ .

Note that sums in (2.4) and (2.5) are always finite.

Remark 2.4. Both constructions of basis in Proposition 2.3 depend on the choice of g ∈
U(N). On the other hand, the representation is unique up to unitary equivalences for any
g ∈ U(N) which satisfies (??). In general, g is taken from the mapping group {g : N →
U(N)} in [Ka4]. By using g in this set, we can make more complicated orthonormal basis
for GP (z). In this paper, we treat only two cases in them.
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2.2 Hausdorff representations of ON on self-similar sets

We proceed to representations of the Cuntz algebras on self-similar sets. For this purpose,
we start from general construction of a representation of the Cuntz algebra on a measure
space([BJ, QM1]).

Let (X,µ) be a measure space and N ≥ 2.

Definition 2.5. A family f = {fi}Ni=1 is a (measure theoretical)branching function system
on (X,µ) if fi : X → X is a measurable injective map such that there exists Φi ≡ d(µ◦fi)

dµ > 0

a.e. on X for i = 1, . . . , N , µ (fi(X) ∩ fj(X)) = 0 when i 6= j, and µ
(
X \

⋃N
i=1 fi(X)

)
= 0.

Lemma 2.6. For a branching function system f = {fi}Ni=1 on (X,µ), define operators
πf (si) : L2(X,µ)→ L2(X,µ) by

(πf (si)φ)(x) ≡


{

Φi(f−1
i (x))

}−1/2
φ
(
f−1
i (x)

)
(x ∈ fi(X)),

0 (otherwise)
(2.6)

for φ ∈ L2(X,µ) and i = 1, . . . , N . Then (L2(X,µ), πf ) is a representation of ON .

Proof. We can show that {πf (si)}Ni=1 satisfies relations (2.1) directly.

Next we recall some basic facts on self-similar sets by [F, H].
We consider a self-similar set (K, {σi}Ni=1) with contraction ratios {λi : 0 < λi < 1, i =

1, . . . , N} which satisfies the following conditions: K is a compact subset of Rn and σi is
a contraction on K with contraction ratio λi for i = 1, . . . , N with respect to the Euclid
distance in Rn and this data satisfies

N⋃
i=1

σi(K) = K, µD (σi(K) ∩ σj(K)) = 0 (i 6= j), (2.7)

where µD is the Hausdorff measure on K which satisfies µD(K) = 1. A positive real number
D which satisfies the following condition

λD1 + · · ·+ λDN = 1 (2.8)

is called the similarity dimension of K. Here we put the following notations:

KJ ≡ σJ(K) (2.9)

where σJ ≡ σj1 ◦ · · · ◦ σjk for J = (j1, . . . , jk) ∈ {1, . . . , N}k and k ≥ 1. For (K, {σi}Ni=1), let
L2(K,µD) be the Hilbert space of complex valued square integrable functions on K by µD.
Because a family σ ≡ {σi}Ni=1 on a measure space (K,µD) satisfies the condition of branching
function system in Definition 2.5, we have the following representation (L2(K,µD), πσ) of
ON :

(πσ(si)φ) (x) ≡

 λ
−D/2
i φ

(
σ−1
i (x)

)
(x ∈ σi(K)),

0 (otherwise),
(i = 1, . . . , N) (2.10)
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for φ ∈ L2(K,µD). From this, we have (πσ(si)∗φ) (x) = λ
D/2
i φ(σi(x)) for i = 1, . . . , N ,

x ∈ K and φ ∈ L2(K,µD).

The representation (L2(K,µD), πσ) of ON which is defined in (2.10) is called the Haus-
dorff representation of ON on (K, {σi}Ni=1)([MSW] and see Appendix B). Let 1 be the
constant function on K with value 1. By assumption µD(K) = 1, ‖1‖ = 1. Note

πσ(si)1 = λ
−D/2
i χKi (i = 1, . . . , N). (2.11)

From this we have
πσ(sJ)1 = λ

−D/2
J χKJ (2.12)

for J = (j1, . . . , jk) ∈ {1, . . . , N}k where λJ = λj1 · · ·λjk .

Lemma 2.7. The Hausdorff representation (L2(K,µD), πσ) is a cyclic representation of
ON with the unit cyclic vector 1.

Proof. By (2.12), {χKJ : J ∈ {1, . . . , N}k, k ≥ 1} ⊂ Lin < {πσ(sI)1 : I ∈ ΛN} >.
Hence πσ(ON )1 = L2(K,µD).

Theorem 2.8. Let (L2(K,µD), πσ) be the Hausdorff representation of ON on (K, {σi}Ni=1)
with contraction ratios {λi}Ni=1 and the similarity dimension D. Then the followings hold:

(i) (L2(K,µD), πσ,1) is GP (z) for z = (λD/21 , . . . , λ
D/2
N ).

(ii) (L2(K,µD), πσ) is irreducible.

Proof. By (2.8), z = (λD/21 , . . . , λ
D/2
N ) ∈ S(CN ). According to (2.11), the following

holds:

πσ(s(z))1 =

(
N∑
i=1

λ
D/2
i πσ(si)

)
1 =

N∑
i=1

χKi = 1.

By Lemma 2.7, (L2(K,µD), πσ,1) is GP (z). Hence (i) is proved. By Theorem 2.2 (ii) and
Theorem 2.8, (L2(K,µD), πσ) is irreducible. Therefore (ii) is proved.

Remark 2.9. (Contraction ratios and invariants of representations) In this paper, we treat
only the case of self-similar sets with constant contraction ratios. By Theorem 2.8 and
[MSW], it seems that constant ratios are always important to characterize representation
as the parameter z of GP representation. However, we can show that a representation of
O2 associated with non constant case in [QM1] is equivalent to some GP representation.
In this sense, the contraction ratio is independent in the invariant of representation of the
Cuntz algebra in general.

Relations between Hausdorff representations and states of ON are explained in Appendix
C.
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2.3 Construction of orthonormal basis on self-similar sets

We shall give a construction method of orthonormal basis on self-similar sets and prove
Theorem 1.1.

Lemma 2.10. Let (K, {σi}Ni=1) be a self-similar set with contraction ratios {λi}Ni=1 and the
similarity dimension D. Take g = (gij) ∈ U(N) which satisfies

g1j = λ
D/2
j (j = 1, . . . , N). (2.13)

We have two kinds of complete orthonormal basis(=CONB) of L2(K,µD) as follows:

(i) A CONB {EI : I ∈ ΛN} of L2(K,µD) is given by

EI ≡
∑

J∈{1,...,N}k
λ
−D/2
J g∗J,I χKJ (2.14)

for I ∈ ΛN ∩ {1, . . . , N}k. Specially, E1 = 1.

(ii) A CONB {HI : I ∈ ΛN} of L2(K,µD) is given by

Hi ≡
N∑
l=1

λ
−D/2
l g∗li χKl , HJ,j ≡ λ−D/2J χKJ ·Hj ◦ σ−1

J (2.15)

for J ∈ {1, . . . , N}k, i = 1, . . . , N and j = 2, . . . , N . Specially, H1 = 1.

Proof. (i) By Proposition 2.3 (i) and Theorem 2.8, we have a CONB {EI : I ∈ ΛN}
for L2(K,µD). A function EI on K is computed by (2.4) and (2.12) as follows:

EI =
∑

J∈{1,...,N}k
g∗J,Iπσ(sJ)1 =

∑
J∈{1,...,N}k

g∗J,Iλ
−D/2
J χKJ

for I ∈ ΛN∩ ∈ {1, . . . , N}k.
(ii) By Proposition 2.3 (ii) and Theorem 2.8, we have a CONB {HI : I ∈ ΛN} for

L2(K,µD).

Proof of Theorem 1.1
(i) is shown by Lemma 2.10. The second assertion is a direct consequence of the orthonor-
mality condition: When we expand a function φ ∈ L2(K,µD) by {EI : I ∈ ΛN}:

φ =
∑
I∈ΛN

aIEI , (2.16)

we have
aI =< EI |φ >=

∫
K
φ(x)EI(x)dµD(x).

Note g∗J,I = gI,J . Hence (ii) (a) holds. (ii) (b) follows in the same way.
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3 Examples of orthonormal basis by N-th root of unity

In this section and next, we give several examples of orthonormal basis of L2(K,µD) in
Theorem 1.1 (i) by choosing a unitary matrix g ∈ U(N). In this section, we treat g arising
from N -th root of unity for self-similar sets with common contraction ratio.

3.1 Construction of unitary matrix arising from N-th root of unity and
basis

Assume that (K, {σi}Ni=1) is a self-similar set with common contraction ratio λ with the
similarity dimension D. Then automatically, λD = 1

N by (2.8). By taking the N -th root
ξ = e2π

√
−1/N of unity, we can make the following unitary matrix g = (gij) ∈ U(N) in

Theorem 2.8 by

gij ≡
1√
N
ξ−(i−1)(j−1) (i, j = 1, . . . , N). (3.1)

Note that g is symmetric in this case. For example, when N = 5, ξ = e2π
√
−1/5,

g∗ =
1√
5


1 1 1 1 1
1 ξ ξ2 ξ3 ξ4

1 ξ2 ξ4 ξ ξ3

1 ξ3 ξ ξ4 ξ2

1 ξ4 ξ3 ξ2 ξ

 .

Denote

(I|J) ≡
k∑
l=1

(il − 1)(jl − 1) (3.2)

for I = (i1, . . . , ik), J = (j1, . . . , jk) ∈ {1, . . . , N}k. Then EI in Theorem 1.1 (i) (a) by g is
given by

EI =
∑

J∈{1,...,N}k
ξ(I|J)χKJ (3.3)

for I ∈ ΛN ∩ {1, . . . , N}k. We discuss meaning of this basis in § 3.5 in detail.
Let ZN ≡ {e2π

√
−1L/N : L = 0, . . . , N − 1}.

Proposition 3.1. Let (K, {σi}Ni=1) be a self-similar set with common contraction ratio and
the Hausdorff measure µD. Then there is a complete orthonormal basis of L2(K,µD) which
consists of ZN -valued functions on K.

This proposition is a special case of Theorem 1.1. However it is effective to explain the
non-triviality of our construction of basis. In general, it is difficult to construct a basis which
consists of ZN -valued functions in a L2-space according to ordinary orthogonalization(Gram-
Schmidt and so on) of vectors in a Hilbert space.
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3.2 The Cantor set

The Cantor set is defined as a unique compact set K such that K = f1(K) ∪ f2(K) where
contractions f1, f2 are defined by f1(x) ≡ 1

3x, f2(x) ≡ 1
3(x + 2) on R. Specially K

is a subset of a closed interval [0, 1]. Then KJ = K ∩ [aJ , bJ ] where aJ ≡ fJ(0) and
bJ ≡ fJ(1). Note λD1 = λD2 = 1

2 . Take ξ = −1. In this case, Λ2 = {1, 2} ∪ {(1, 2), (2, 2)} ∪
{(1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 2)} ∪ · · · .

Then we have the following functions in (3.3):

EI =
∑

J∈{1,2}k
(−1)(I|J)χKJ (I ∈ Λ2 ∩ {1, 2}k).

From this, we have
E1 = 1, E2 = χK1 − χK2 ,

E12 = χK1,1 − χK12 + χK2,1 − χK22 , E22 = χK11 − χK12 − χK21 + χK22 .

3.3 The Sierpiński gasket I

The Sierpiński gasket is defined as a unique compact set K such that K = f1(K) ∪
f2(K) ∪ f3(K) where the branching function system f = {fi}3i=1 is defined by fi : R3 →
R3; fi(x) ≡ 1

2(x+ ci) for i = 1, 2, 3 where {ci}3i=1 is the canonical basis of R3. Specially,
K is a subset of the 2-simplex ∆2 ≡ {(x1, x2, x3) ∈ R3 : 0 ≤ xi, x1 + x2 + x3 = 1}. Then
λDi = 1

3 for each i = 1, 2, 3. For ξ ≡ e2π
√
−1/3, g in (3.1) is

g =
1√
3

 1 1 1
1 ξ2 ξ
1 ξ ξ2

 .

The basis {EI : I ∈ Λ3} in (3.3) is given by

E1 = 1, E2 = χK1 + ξχK2 + ξ2χK3 , E3 = χK1 + ξ2χK2 + ξχK3 .

We illustrate them by using the identification KJ and fJ(∆2) for J ∈ Λ3 as follows:

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

E1

1

1 1

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

E2

1

ξ ξ2

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

E3

1

ξ2 ξ
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In the same way, we have the followings:

E12 = χK11 + ξχK12 + ξ2χK13 + χK21 + ξχK22 + ξ2χK23 + χK31 + ξχK32 + ξ2χK33 ,

E22 = χK11 + ξχK12 + ξ2χK13 + ξχK21 + ξ2χK22 + χK23 + ξ2χK31 + χK32 + ξχK33 ,

E32 = χK11 + ξχK12 + ξ2χK13 + ξ2χK21 + χK22 + ξχK23 + ξχK31 + ξ2χK32 + χK33 ,

E13 = χK11 + ξ2χK12 + ξχK13 + χK21 + ξ2χK22 + ξχK23 + χK31 + ξ2χK32 + ξχK33 ,

E23 = χK11 + ξ2χK12 + ξχK13 + ξχK21 + χK22 + ξ2χK23 + ξ2χK31 + ξχK32 + χK33 ,

E33 = χK11 + ξ2χK12 + ξχK13 + ξ2χK21 + ξχK22 + χK23 + ξχK31 + χK32 + ξ2χK33 .

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

E12

1

ξ ξ2

1

ξ ξ2

1

ξ ξ2

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

E22

1

ξ ξ2

ξ

ξ2 1

ξ2

1 ξ

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

E32

1

ξ ξ2

ξ2

1 ξ

ξ

ξ2 1

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

E13

1

ξ2 ξ

1

ξ2 ξ

1

ξ2 ξ

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

E23

1

ξ2 ξ

ξ

1 ξ2

ξ2

ξ 1

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

�
�
�

A
A
A

E33

1

ξ2 ξ

ξ2

ξ 1

ξ

1 ξ2

3.4 The Sierpiński carpet

The Sierpiński carpet is defined as a unique compact set K such that K = f1(K)∪· · ·∪f8(K)
where the branching function system {fi}8i=1 is defined by fi : R2 → R2; fi(x) ≡ 1

3(x+ci)
for i = 1, . . . , 8 where (ci)8

i=1 = ((0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (1, 2), (0, 2), (0, 1)). Specially
K is a subset of [0, 1]2 ≡ [0, 1]×[0, 1]. Let a ≡ eπ

√
−1/4. We have the basis which is illustrated

as follows:
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E1

1 1 1

1 1

1 1 1

E2

1 a a2

a3

a4a5a6

a7

E3

1 a2 a4

a6

1a2a4

a6

E4

1 a3 a6

a

a4a7a2

a5

E5

1 a4 1

a4

1a41

a4

E6

1 a5 a2

a7

a4aa6

a3

E7

1 a6 a4

a2

1a6a4

a2

E8

1 a7 a6

a5

a4a3a2

a

In this case, the Hausdorff representation (L2(K,µD), πf ) of O8 on K is GP (z) for z =(
1

2
√

2
, . . . , 1

2
√

2

)
∈ S(C8).

3.5 Fourier analysis on self-similar sets by the Cuntz algebra

Harmonic analysis of self-similar sets is studied in [Ki1, Ki2]. We consider this subject in
the point of view of representation theory of the Cuntz algebra. More precisely, we try
to consider the meaning of our basis which are obtained by representations of the Cuntz

11



algebra as harmonic analysis style.
Recall § 3.1. We construct a basis {EI : I ∈ ΛN} of L2(K,µD) for a self-similar set

(K, {σi}Ni=1) with common contraction ratio. EI in (3.3) can be rewritten by

EI(x) = e2π
√
−1δI(x) (3.4)

for x ∈ K where

δI : K →
{
i

N
: i = 0, 1, 2, . . .

}
; δI(x) ≡ 1

N

∑
J∈{1,...,N}k

(I|J) · χKJ (x)

for I ∈ ΛN ∩ {1, . . . , N}k. By this parameterization, every value of (3.4) belongs to a
finite set ZN . According to the expansion formula (2.16) in this case, we have a unitary
transformation

ˆ: L2(K,µD)→ l2(ΛN ); φ̂(I) ≡
∫
K
e−2π

√
−1δI(x)φ(x) dµD(x)

which seems Fourier transformation on K in usual harmonic analysis by replacing the or-
dinary symmetry of group by that of the Cuntz algebra ON , for example, this situation is
similar to the harmonic analysis between T1 ≡ {z ∈ C : |z| = 1} and Z.

This is an answer of our question in § 1. In this way, a self-similar set K and the discrete
space ΛN of symbols are dual in a sense of classical harmonic analysis. In consequence, the
basis EI seems as a character of K with index I ∈ ΛN which is a map from K to ZN . On
the other hand, the inverse transformation of ·̂ is given by

ˇ: l2(ΛN )→ L2(K,µD); ψ̌(x) ≡
∑
J∈ΛN

e−2π
√
−1δJ (x)ψ(J).

By summarizing these consideration and (3.3), we have the following:

Theorem 3.2. Let (K, {σi}Ni=1) be a self-similar set with common contraction ratio and the
Hausdorff measure µD. Then any φ ∈ L2(K,µD) has the following expansion

φ(x) = c0 +
∑
k≥0

∑
I∈{1,...,N}k×{2,...,N}

cIe
2π
√
−1δI(x)

where
c0 ≡

∫
K
φ(x) dµD(x), cI ≡

∫
K
e−2π

√
−1δI(x)φ(x) dµD(x).

The transformation rule of the basis {EI : I ∈ ΛN} by the branching function system
{σi}Ni=1 is given as follows:

Proposition 3.3. Let {EI : I ∈ ΛN} be the basis of L2(K,µD) by e2π
√
−1/N for a self-

similar set (K, {σi}Ni=1) with common contraction ratio in (3.3). Then

Ei ◦ σj = e2π
√
−1(i−1)(j−1)/N1, EI ◦ σj = e2π

√
−1(i1−1)(j−1)/NEI′

for i, j = 1, . . . , N and I = (i1, . . . , ik) ∈ ΛN , k ≥ 2 where I
′

= (i2, . . . , ik).

12



Proof. Let I = (i1, . . . , ik) ∈ ΛN . Assume that k ≥ 2. By (3.4),

EI ◦ σi = e2π
√
−1δI◦σi , δI ◦ σi =

1
N

∑
J∈{1,...,N}k

(I|J) · χKJ ◦ σi.

Note σi(x) ∈ KJ ⇔ x ∈ σ−1
i (KJ) ⇔ j1 = 1 when J = (j1, . . . , jk). Hence the sum

in the rhs in the above remains only J which satisfies j1 = i, and χKJ ◦ σi = χK
J
′ when

J
′

= (j2, . . . , jk). By definition of (I|J) in (3.2),

(I|J) =
k∑
l=1

(i1 − 1)(j1 − 1) = (i1 − 1)(j1 − 1) + (I
′ |J ′).

Therefore

δI ◦ σi =
1
N

 ∑
J ′∈{1,...,N}k−1

(
(i1 − 1)(i− 1) + (I

′ |J ′)
)
χK

J
′


=

1
N

(i1 − 1)(i− 1)×
∑

J ′∈{1,...,N}k−1

χK
J
′ +

∑
J ′∈{1,...,N}k−1

(I
′ |J ′)χK

J
′


=

1
N

{
(i1 − 1)(i− 1)1 + δI′

}
.

Hence
EI ◦ σi = e2π

√
−1(i1−1)(i−1)/Ne2π

√
−1δ

I
′ = e2π

√
−1(i1−1)(i−1)/NEI′ .

In the same way, k = 1 case follows.

Corollary 3.4.

EI ◦ σJ =



e2π
√
−1(I1|J)/NEI2 (|I| > |J |, I = (I1, I2), |I1| = |J |),

e2π
√
−1(I|J)/N1 (|I| = |J |),

e2π
√
−1(I|J1)/N1 (|I| < |J |, J = (J1, J2), |I| = |J1|),

where |I| means the length of I ∈ ΛN . Specially E1 ◦ σJ = E1 = 1 for each J ∈
{1, . . . , N}k, k ≥ 1.

Proposition 3.3 shows that the transformation by the branching function system brings
the multiplication of a phase factor belonging to ZN and transformation rule gives the
recursive construction of the basis {EI : I ∈ ΛN} from single function 1 by {σi}Ni=1. In this
sense, we can always construct these basis without information of a representation of the
Cuntz algebra.
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4 Examples of orthonormal basis by orthogonal matrix

We give examples in Theorem 1.1 (i) (b) where g ∈ U(N) is chosen in the orthogonal group
O(N).

4.1 Construction of orthogonal matrix associated with contraction ratios
and basis

Assume that (K, {σi}Ni=1) is a self-similar set with contraction ratios {λi}Ni=1 and the simi-
larity dimension D. We construct orthogonal matrix g ∈ O(N) under the condition (2.13).
If N = 2, then put

g =

(
λ
D/2
1 λ

D/2
2

λ
D/2
2 −λD/21

)
.

Assume that N ≥ 3. In this case, put g = (gij) ∈ O(N) by

g1j ≡ λ
D/2
j ,

g2j ≡


ε1λ

D/2
1 (j = 1),

−ε′1λ
D/2
j (2 ≤ j ≤ N),

gij ≡



0 (1 ≤ j ≤ i− 2),

εi−1λ
D/2
i−1 (j = i− 1), (3 ≤ i ≤ N),

−ε′i−1λ
D/2
j (i ≤ j ≤ N),

for j = 1, . . . , N where

εi ≡

√
λDi+1 + · · ·+ λDN

λDi
(
λDi + · · ·+ λDN

) , ε
′
i ≡

√
λDi(

λDi + · · ·+ λDN
) (
λDi+1 + · · ·+ λDN

)
for 1 ≤ i ≤ N − 1.

Then HI in Theorem 1.1 (i) (b) by g in the above is given by

H1 = 1, Hj = εj−1χKj − ε
′
j−1

N∑
l=j+1

χKl , HJ,j = λ
−D/2
J ·Hj ◦ σ−1

J (4.1)

for j = 2, . . . , N and J ∈ {1, . . . , N}k. In this way, we have a complete orthonormal basis
{HI : I ∈ ΛN} by g. We see that every coefficients in (4.1) is real. Therefore {HI : I ∈ ΛN}
is a basis consisting of real valued functions on K.

Proposition 4.1. {HI : I ∈ ΛN} defined in (4.1) is a complete orthonormal basis of
L2(K,µD; R) which is the Hilbert space of all real valued square integrable functions on K.
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4.2 Interval dynamical systems

We consider interval dynamical systems as examples of self-similar set with the integral
similarity dimension 1.

In case of N = 2, let K = [0, 1] and f ≡ {f1, f2}, f1(x) ≡ 1
2x and f2(x) ≡ 1

2x+ 1
2 . Then

([0, 1], {f1, f2}) is a self similar set with common contraction ratio 1
2 and the similarity

dimension 1. In this case, we have so called the Haar basis on the interval by (4.1), the
following g ∈ U(2) and ε1, ε

′
1:

g =
1√
2

(
1 1
1 −1

)
, ε1 =

√
2, ε

′
1 =
√

2.

This construction is same in the case of § 3.1 for N = 2. The Hausdorff representation of
O2 by f is equivalent to that in § 3.2.

We generalize this as follows: Fix 0 < a < 1. Let f = {f1, f2} on [0, 1] by f1(x) ≡
ax, f2(x) ≡ (1 − a)x + a. Then their contraction ratios are a and 1 − a. Data for
construction of basis in § 4.1 are given by

g =
( √

a
√

1− a√
1− a −

√
a

)
, ε1 =

√
1− a
a

, ε
′
1 =

√
a

1− a
.

Note that the representation (L2[0, 1], πf ) ofO2 by f isGP (z) for z = (
√
a,
√

1− a) ∈ S(C2).
Hence a ∈ (0, 1) is corresponded to an equivalence class of irreducible representations of O2

and representations associated with any two different points in the open interval (0, 1) are
inequivalent by Theorem 2.2 (iii).

Next we treat N = 3 case. Fix 0 < a, b, c < 1 such that a + b + c = 1. Consider a
branching function system f = {fi}3i=1 on [0, 1] defined by

f1(x) ≡ ax, f2(x) ≡ bx+ a, f3(x) ≡ cx+ 1− c.

��
��
��
��
��
��
����

��
��
��

��
��
����

��
��
��

��
��
��

10

a

b

c

︸︷︷︸
︸︷︷︸

︸︷︷︸

1

Then their contraction ratios are given by a, b, c. Then we have

g =


√
a

√
b

√
c

√
1− a −

√
ab

1−a −
√

ac
1−a

0
√

c
b+c −

√
b
b+c

 ,
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ε1 =

√
1− a
a

, ε
′
1 =

√
a

1− a
, ε2 =

√
c

b(b+ c)
, ε

′
2 =

√
b

c(b+ c)
.

The representation (L2[0, 1], πf ) of O3 by f is GP (z) for z = (
√
a,
√
b,
√
c) ∈ S(C3). a =

b = c = 1
3 if and only if (L2[0, 1], πf ) is equivalent to the representation of O3 in § 3.3.

We treat a representation of O2 arising from an interval dynamical system by a real
quadratic transformation in [QM1]. Interval dynamical systems by piecewise linear trans-
formations are treated in [CKR] in detail.

4.3 The Sierpiński gasket II

In § 4.1, when N ≥ 3 and λDj = 1
N for each j = 1, . . . , N , we have the following orthogonal

matrix g = (gij) for construction of basis:

g1j =
1√
N

(j = 1, . . . , N), g2j =



√
N − 1
N

(j = 1),

−1√
(N − 1)N

(2 ≤ j ≤ N),

gij =



0 (1 ≤ j ≤ i− 2),√
N − i+ 1
N − i+ 2

(j = i− 1),

−1√
(N − i+ 1)(N − i+ 2)

(i ≤ j ≤ N),

for 3 ≤ i ≤ N . For example, when N = 3,

g =


1√
3

1√
3

1√
3

2√
6
−1√

6
−1√

6

0 1√
2
−1√

2

 , ε1 =
√

2, ε
′
1 =

1√
2
, ε2 = ε

′
2 =

√
3
2
.

The basis on the Sierpiński gasket are given as follows by the same style of illustration in §
3.3:

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

H1

1

1 1

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

H2

√
2

− 1√
2

− 1√
2

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

H3

0

√
3
2 −

√
3
2

Note that basis in the above are different in that in § 3.3 clearly. This difference occurs that
of two constructions and parameter g.
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4.4 A kind of the Sierpiński carpet

We consider a self-similar set (K, {fi}8i=1) with two different contraction ratios λi = 2
5 ,

i = 1, 2, 3, 4 and λi = 1
5 , i = 5, 6, 7, 8. Define fi : [0, 1]2 → [0, 1]2;

fi(x) ≡ 1
5

(2x+ ci) (i = 1, 2, 3, 4), fi(x) ≡ 1
5

(x+ ci) (i = 5, 6, 7, 8),

where (ci)8
i=1 = ( (0, 0) , (3, 0) , (3, 3) , (0, 3) , (2, 0) , (4, 2) , (2, 4) , (0, 2) ). The following fig-

ure(correctly, the limit of this kind of figure) is a unique set K such that K = f1(K)∪ · · · ∪
f8(K):

The similarity dimension D of (K, {fi}8i=1) is a solution of the equation 4(2D + 1) = 5D.
Ingredients g ∈ O(8), {εi, ε

′
i}7i=1 to construct orthonormal basis of L2(K,µD) by (4.1)

are given by

g =



a a a a b b b b

ε1a −ε′1a −ε′1a −ε′1a −ε′1b −ε
′
1b −ε

′
1b −ε

′
1b

0 ε2a −ε′2a −ε′2a −ε′2b −ε
′
2b −ε

′
2b −ε

′
2b

0 0 ε3a −ε′3a −ε′3b −ε
′
3b −ε

′
3b −ε

′
3b

0 0 0 ε4a −ε′4b −ε
′
4b −ε

′
4b −ε

′
4b

0 0 0 0 ε5b −ε′5b −ε
′
5b −ε

′
5b

0 0 0 0 0 ε6b −ε′6b −ε
′
6b

0 0 0 0 0 0 ε7b −ε′7b


,

ε1 =
√

1− a2

a
, ε

′
1 =

a√
1− a2

, ε2 =
√

1− 2a2

a
√

1− a2
, ε

′
2 =

a√
(1− a2)(1− 2a2)

,

ε3 =
√

1− 3a2

a
√

1− 2a2
, ε

′
3 =

a√
(1− 2a2)(1− 3a2)

, ε4 =
2b

a
√

1− 3a2
, ε

′
4 =

a

2b
√

1− 3a2
,
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ε5 =
√

3
2b
, ε

′
5 =

1
2
√

3b
, ε6 =

√
2√
3b
, ε

′
6 =

1√
3b
, ε7 = ε

′
7 =

1√
2b

where a ≡ (2
5)D/2, b ≡ (1

5)D/2. In this case, the Hausdorff representation (L2(K,µD), πf ) of
O8 on K is GP (z) for z = (a, a, a, a, b, b, b, b) ∈ S(C8).

Appendix

A Proof of Theorem 2.2

Results in Theorem 2.2 are included in [Ka1]. For convenience, we show the proof of Theorem
2.2 here.

A.1 The standard representation of ON
We show examples of GP representations in order to prove Theorem 2.2. Let l2(N) be
the Hilbert space with the canonical basis {en : n ∈ N}, N = {1, 2, 3, . . .}, and make the
following representation (l2(N), πS) of the Cuntz algebra ON which is called the standard
representation of ON ([AK]):

πS(si)en ≡ eN(n−1)+i (i = 1, . . . , N, n ∈ N). (A.1)

From this, we have πS(si)∗eN(n−1)+j = δijen for i, j = 1, . . . , N and n ∈ N. Note that this
is a permutative representation of ON by [BJ]. By (A.1),

πS(s1)e1 = e1. (A.2)

Proposition A.1. Let (l2(N), πS) be the standard representation of ON which is defined in
(A.1).

(i) (l2(N), πS , e1) is GP (z) for z = (1, 0, . . . , 0) ∈ S(CN ).

(ii) (l2(N), πS) is irreducible.

Proof. (i) Since (A.2) and the cyclicity of (l2(N), πS), the statement holds by the
comparison with (2.2) in Definition 2.1. (ii) By [BJ], this representation is irreducible.

Lemma A.2. Let (H, π,Ω) be GP (1, 0, . . . , 0). Then {π(sI)Ω : I ∈ ΛN} is an orthonormal
family in H.

Proof. We denote |I| the length of I ∈ ΛN . Put I, J ∈ ΛN .
If |I| = |J |, then < π(sI)Ω|π(sJ)Ω >= δI,J .
Assume that |I| > |J |. Put I = (i1, . . . , ik+l) and J = (j1, . . . , jk), k, l ≥ 1. Then

< π(sI)Ω|π(sJ)Ω >= δI1,J < π(sI2)Ω|Ω >= δI1,J < π(sI2)Ω|π(sl1)Ω >

where we use π(sl1)Ω = Ω and I1 = (i1, . . . , ik) and I2 = (ik+1, . . . , ik+l). By choice of I,
I2 6= (1, . . . , 1). Hence < π(sI2)Ω|π(sl1)Ω >= δI2,J0 = 0 where J0 ≡ (1, . . . , 1︸ ︷︷ ︸

l

). Therefore
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< π(sI)Ω|π(sJ)Ω >= 0. From this, we obtain < π(sI)Ω|π(sJ)Ω >= δI,J for each I, J ∈ ΛN .

Proposition A.3. GP (1, 0, . . . , 0) is unique up to unitary equivalences.

Proof. Let (H, π,Ω) be GP (1, 0, . . . , 0). Because Ω is a cyclic vector, the linear span
of {π(sIs∗J)Ω : I, J} is dense in H. Because π(s1)Ω = Ω, {π(sIs∗J)Ω : I, J} = {π(sI)Ω :
I ∈ ΛN}. Hence {π(sI)Ω : I ∈ ΛN} is a complete orthonormal basis of H by Lemma A.2.
In this way, we know that any GP (1, 0, . . . , 0) always has such basis. Therefore we have
a natural unitary between any two representations which are GP (1, 0, . . . , 0). Therefore
GP (1, 0, . . . , 0) is unique up to unitary equivalences.

A.2 Existence, uniqueness and irreducibility

For g = (gij) ∈ U(N),

αg(si) ≡
N∑
j=1

gjisj (i = 1, . . . , N) (A.3)

gives an action α of U(N) on ON . Note that for a representation (H, π) of ON and g ∈
U(N), (H, π ◦ αg) is a representation of ON , too. For z = (z1, . . . , zN ) ∈ S(CN ), put
s(z) ≡ z1s1 + · · ·+ zNsN .

Let (l2(N), πS) be the standard representation of ON in (A.1).

Lemma A.4. Fix z = (z1, . . . , zN ) ∈ S(CN ). Put g = (gij) ∈ U(N) such that g1j = zj for
j = 1, . . . , N . Then (l2(N), πS ◦ αg, e1) is GP (z).

Proof. Since (l2(N), πS) is irreducible, (l2(N), πS ◦ αg) is irreducible, too. Therefore
(l2(N), πS ◦ αg) is cyclic. Hence

(πS ◦ αg)(s(z))e1 = (πS ◦ αg)(αg∗(s1))e1 = πS(s1)e1 = e1.

Therefore (l2(N), πS ◦ αg, e1) satisfies the condition of GP (z).
By this lemma, we finish to show the existence of GP (z) for each z ∈ S(CN ).

Lemma A.5. If (H, π,Ω) is GP (z), then there is g ∈ U(N) such that {(π ◦αg∗)(sI)Ω : I ∈
ΛN} is a complete orthonormal basis of H.

Proof. Choose g ∈ U(N) such that g1j = zj for j = 1, . . . , N . Put π
′ ≡ π ◦ αg∗ .

By Lemma A.4, we know that (H, π′ ,Ω) satisfies π
′
(s1)Ω = Ω. Since (H, π,Ω) is cyclic,

(H, π′ ,Ω) is GP (1, 0, . . . , 0). Then (H, π′ ,Ω) has a complete orthonormal basis {π′(sI)Ω :
I ∈ ΛN} = {(π ◦ αg∗)(sI)Ω : I ∈ ΛN} by the proof of Proposition A.3.

By Lemma A.5 and the similar argument in the proof of Proposition A.3, GP (z) is
unique up to unitary equivalences. By Lemma A.1, Lemma A.4 and uniqueness, GP (z) is
irreducible. We finish to show Theorem 2.2 (i), (ii).
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A.3 Equivalence

Lemma A.6. Let (H, π) be a representation of ON . For z, z
′ ∈ S(CN ), assume that there

are cyclic vectors Ω,Ω
′ ∈ H which satisfy π(s(z))Ω = Ω and π(s(z

′
))Ω

′
= Ω

′
. Then z = z

′
.

Proof. Note < Ω|Ω′ >=< π(s(z)))Ω|π(s(z
′
))Ω

′
>=< z|z′ >< Ω|Ω′ >. Hence <

Ω|Ω′ >= (< z|z′ >)n < Ω|Ω′ > for each n ∈ N. < Ω|Ω′ >6= 0 if and only if z = z
′

since
z, z

′ ∈ S(CN ).
Assume that z 6= z

′
. Then < Ω|Ω′ >= 0. Because of cyclicity and Lemma A.5, there is

J ∈ {1, . . . , N}k such that < π(sJ)Ω|Ω′ >6= 0. If J = (j1, . . . , jl), l ≥ 1, then

< π(sJ)Ω|Ω′ >=< π(sJ)Ω|{π(s(z
′
))}lΩ′ >= z

′
j1 · · · z

′
jl
< Ω|Ω′ >= 0.

This contradicts the choice of J . Hence z = z
′
.

Lemma A.7. If z ∈ S(CN ), z 6= (1, 0, . . . , 0), then GP (z) is not equivalent to the standard
representation.

Proof. Let (H, π,Ω) be GP (z) for z 6= (1, 0, . . . , 0). Assume that (H, π) is equiv-
alent to the standard representation (l2(N), πS). By unitary equivalence, we can identify
(H, π) = (l2(N), πS) and Ω ∈ l2(N). By applying Lemma A.6 for Ω

′
= e1 ∈ l2(N) and

z
′

= (1, 0, . . . , 0), we have z = z
′
. This is contradiction. Therefore (H, π) is not equivalent

to the standard representation.

Proof of Theorem 2.2 (iii).
It is sufficient to show that GP (z) 6∼ GP (z

′
) when z 6= z

′
. Assume that z, z

′ ∈ S(CN )
and z 6= z

′
.

We show by reduction to absurdity. Assume that GP (z) and GP (z
′
) are unitarily

equivalent. Then there is a unitary U such that AdU ◦ π2 = π1 where (AdU ◦ π2)(x) ≡
Uπ2(x)U∗ for x ∈ ON . Put g, g

′ ∈ U(N) such that g1j = zj , g
′
1j = z

′
j , j = 1, . . . , N ,

π1 ∼ πS ◦ αg and π2 ∼ πS ◦ αg′ by Lemma A.4. Then there is a unitary U
′

such that
AdU

′ ◦ πS ◦ αg′ = πS ◦ αg. From this, AdU
′ ◦ πS ◦ αg′g∗ = πS . On the other hand,

(g
′
g∗)1j =

N∑
k=1

g
′
1kg
∗
kj =

N∑
k=1

z
′
kg
∗
kj (j = 1, . . . , N).

By Lemma A.7, (H, πS ◦αg′g∗) is equivalent to the standard representation⇔ (g
′
g∗)1j = δ1j

⇔ z = z
′
. This is contradiction. Therefore GP (z) 6∼ GP (z

′
).

About GP representations in more detail, see [Ka1].
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B Another proof of the equivalence of Hausdorff representa-
tions

We give another proof of the following proposition in [MSW] by results of GP representa-
tions.

Proposition B.1. (The Kakutani’s dichotomy theorem)([MSW])
Let Ki be a self-similar set with contraction ratios {λi,j}Nj=1 and the similarity dimension
Di for i = 1, 2, respectively. Assume that (L2(Ki, µ

Di), πi) is the Hausdorff representation
of ON on Ki for i = 1, 2, respectively. Then (L2(K1, µ

D1), π1) and (L2(K2, µ
D2), π2) are

equivalent if and only if the following conditions hold:

(λ1,j)D1 = (λ2,j)D2 (j = 1, . . . , N). (B.1)

Proof. By Theorem 2.8 (i), (L2(Ki, µ
Di), πi,1) is GP (z(i)) for z(i) = ((λi,1)Di/2, . . . ,

(λi,N )Di/2) for i = 1, 2, respectively. By Theorem 2.2 (iii), (L2(K1, µ
D1), π1) ∼ (L2(K2, µ

D2), π2)
⇔ GP (z(1)) ∼ GP (z(2)) ⇔ ((λ1,1)D1/2, . . . , (λ1,N )D1/2) = ((λ2,1)D2/2, . . . , (λ2,N )D2/2) ⇔
(λ1,j)D1 = (λ2,j)D2 for each j = 1, . . . , N .

Remark B.2. The equivalence does not imply that only the condition D1 = D2 holds
in Proposition B.1. A set of all invariants of Hausdorff representations is a proper sub-
set of invariants of GP representations with 1-cycle by Theorem 2.8. In fact, GP (z) by
z = (1, 0, . . . , 0) never appear as Hausdorff representation. In this sense, Hausdorff repre-
sentation is a kind of GP representation as equivalence class of representations of the Cuntz
algebra.

C States, Hausdorff representations and Hausdorff measures

Let (K, {σi}Ni=1) be a self-similar set with contraction ratios {λi}Ni=1 and the similarity
dimension D. Put XN a compact Hausdorff space which consists of infinite sequences of
symbols 1, . . . , N . Then there is the canonical surjective continuous map ϕ from XN onto K
associated with {σi}Ni=1([Dev]). From this, we have an injective ∗-homomorphism ϕ∗ from
C(K) to C(XN ) where C(K) and C(XN ) are C∗-algebras of complex valued continuous
functions on K and XN , respectively. Note that ON has an abelian subalgebra A ≡ C∗ <
{sIs∗I : |I| = k, k ≥ 1} > and there is the canonical isomorphism C(XN ) ∼= A which
is derived from χKJ 7→ sJs

∗
J . Therefore we have a ∗-embedding ϕ̂ of C(K) into ON by

identifying C(XN ) and A. The following is commutative:

ϕ∗

C(K)
ϕ̂
↪→ ON

↪→
↪→

C(XN ) ∼= A.
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Theorem C.1. (i) The Hausdorff representation of ON on (K, {σi}Ni=1) is equivalent to
the GNS-representation by a state ρ defined by

ρ(sIs∗J) ≡ (λIλJ)D/2 (C.1)

where I, J ∈ ∪k≥0{1, . . . , N}k and the notation is same in Theorem 2.2 (iv).

(ii) Under the identification of C(K) as a subalgebra of ON by ϕ̂, the restriction of ρ in
(C.1) on C(K) is a state ρ0 of C(K) which is given by

ρ0(φ) =
∫
K
φ(x) dµD(x) (φ ∈ C(K)).

(iii) ρ in (C.1) is pure.

Proof. Put (L2(K,µD), πσ) the Hausdorff representation of ON on (K, {σi}Ni=1). Let
ρ be a state of ON defined by ρ(·) ≡< 1|πσ(·)1 >. By Theorem 2.2 (iv) and Theorem
2.8, (i) follows. Note that any element in C(K) is approximated by step functions over
{KJ : J ∈ {1, . . . , N}k, k ≥ 1}. If I = J , then ρ(sIs∗I) = λDI . When φ =

∑
I aIχKI is a step

function, then

ρ(φ) =
∑
I

aIρ(χKI ) =
∑
I

aIρ(sIs∗I) =
∑
I

aIλ
D
I =

∫
K
φ(x) dµD(x) = ρ0(φ).

Hence ρ(φ) = ρ0(φ) for each φ ∈ C(K). We obtain (ii). Since any Hausdorff representation
is irreducible by Theorem 2.8 (ii), ρ is pure. (iii) is proved.

By Theorem C.1, the Hausdorff representation is uniquely determined by ρ up to unitary
equivalences.

Specially, if every contraction ratio of (K, {σi}Ni=1) is same, then we have

ρ(sIs∗J) =
1

N (|I|+|J |)/2 .
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