
Sequent Calculi for Process Verification:

Hennessy-Milner Logic for an Arbitrary GSOS

Alex Simpson∗

LFCS, School of Informatics, University of Edinburgh, UK

Abstract

We argue that, by supporting a mixture of “compositional” and “structural”
styles of proof, sequent-based proof systems provide a useful framework for the
formal verification of processes. As a worked example, we present a sequent calculus
for establishing that processes from a process algebra satisfy assertions in Hennessy-
Milner logic. The main novelty lies in the use of the operational semantics to derive
introduction rules, on the left and right of sequents, for the operators of the process
calculus. This gives a generic proof system applicable to any process algebra with
an operational semantics specified in the GSOS format. Using a general algebraic
notion of GSOS model, we prove a completeness theorem for the cut-free fragment
of the proof system, thereby establishing the admissibility of the cut rule. Under
mild (and necessary) conditions on the process algebra, an ω-completeness result,
relative to the “intended” model of closed process terms, follows.

∗Research supported by an EPSRC Postdoctoral Research Fellowship (1994–1995), an EPSRC Ad-
vanced Research Fellowship (2001–), and a visiting professorship at RIMS, Kyoto University (2002–2003).

1

Contents

1 Introduction 3

2 Proof rules for modalities and process operators 6

3 Technical preliminaries 8

4 The sequent calculus 15

5 Proof of completeness 23

6 The intended model and ω-completeness 33

7 Conclusions 37

8 Epilogue 37

2

1 Introduction

This paper is concerned with the construction of proof systems for the formal verification
of programs, specifcally of concurrent processes. The main thesis is that Gentzen’s
sequent calculus [13] provides an ideal foundation upon which to base such systems.
This is illustrated by a substantial worked example: a sequent-based proof system for
establishing that processes with operational semantics specified in the GSOS format [5]
satisfy properties of Hennessy-Milner logic [15]. We end the paper with a discussion
of how the approach extends to other programming paradigms and to more powerful
logics.

There are several desirable properties that one might require of any proof system for
program verification. First, concerning the basic logical properties of the system:

Soundness: everything provable is true. We take this as the sine qua non of formal
verification.

Completeness: everything true is provable. For expressive programming languages
and logics this will be unachievable. Nevertheless, it is vital that the proof system is
sufficiently complete to establish verification goals that occur in practice. Moreover,
informative restricted completeness theorems may be available as a mathematical indi-
cation of the power of the system.

Of practical importance is that the proof system should permit useful methods of
reasoning. We identify three independent requirements here.

Compositional reasoning. Often, in order to verify that a compound program
satisfies a property, one would like to verify that its component subprograms indepen-
dently satisfy properties that are together sufficient to establish the original goal. For
example, to verify that a parallel composition p|q satisfies a property A, one might verify
that p satisfies some property B1 and that q satisfies some property B2, where these two
facts together imply that p|q indeed satisfies A. The importance of such compositional
reasoning is that it allows the verification task to be split up into independent goals
that can be verified separately. This possibility provides a foundation for the modular
development and verification of software.

Structural reasoning. It should be possible to verify a goal by breaking the goal
down into subgoals obtained via a canonical decomposition of the original goal based
on its syntactic structure. Such structural methods support a natural goal-directed
approach to proof construction. They are thus important in the provision of proof
support by proof assistants and theorem provers, and especially vital to the efficient
implementation of proof search algorithms.

Natural resoning. In addition, one would like the proof system to support natural
and intuitive methods of reasoning. Ideally, it should be possible for a formal proof of
correctness to closely adhere to the natural informal argument justifying correctness

We believe that it is important for a proof system to fulfill all three requirements.
Indeed, significant though compositional methods undoubtedly are, there is no reason
at all to require every proof step to be compositional. Compositionality should be used

3

at natural points, where a program divides into modules, and where the independent
verification of these modules is desirable. But, within the verification of any individual
module itself, it may well be useful to maintain logical dependencies between subcompo-
nents, and these dependencies might be less easily expressed if compositional methods
were enforced throughout the verification process. Furthermore, there need be no gen-
eral guarantee that compositional reasoning is always applicable. For example, there
is no reason for it to always be possible to reduce a goal “p|q satisfies A” to two in-
dependent goals of the form “p satisfies B1” and “q satisfies B2”. Thus, although it is
essential for a proof system to support compositional reasoning, this should not be the
only method of verification permitted.

Finally, another general concern is that, preferably, the proof system should be
derived from the programming language and logic in a principled way. In such cases
there is better chance of being able to adapt or extend the system to deal with new
programming language features and different logical primitives.

We now present a very general argument that sequent calculus provides an excellent
foundation for the development of proof systems with the above properties. Suppose
we have a language for expressing processes (or programs), and a logic for expressing
properties of them. Then the basic relation of interest is the satisfaction relation be-
tween processes and properties: process p satisfies property A. We outline the potential
virtues of having a proof system based on sequents of the form Γ =⇒ ∆ where Γ and
∆ are sets of assertions, including a basic assertion form, p : A, expressing the above
satisfaction relation. As usual, a sequent Γ =⇒ ∆ should be understood as expressing
the implication: if all the assertions in Γ are true then so is at least one of the assertions
in ∆.

First, the sequent-based formalism is rich enough to express diverse types of verifi-
cation goal.

Ordinary goals. The ordinary verification goal, of establishing that process p
satisfies property A, is expressed by the sequent =⇒ p :A. The verification task is then
to construct a proof of this sequent.

Parametrized goals. By allowing variables ranging over processes in assertions,
one can express parametrized verification goals of the form

x1 : B1, . . . , xn :Bn =⇒ p(x1, . . . , xn) :A (1)

This sequent states that if the parameters x1, . . . , xn in p are instantiated with pro-
cesses q1, . . . , qn satisfying B1, . . . , Bn respectively, then the resulting compound process
p(q1, . . . , qn) satisfies A.

Further, sequent-calculus-based proof systems address the various stylistic require-
ments concerning reasoning methods.

Compositional reasoning. Parametrized verification goals can be used to support
compositional reasoning. By combining the familiar cut and substitution rules from

4

sequent calculus, one obtains derived rules of the form

=⇒ q1 : B1 . . . =⇒ qn : Bn x1 : B1, . . . , xn : Bn =⇒ p(x1, . . . , xn) :A

=⇒ p(q1, . . . , qn) : A

The above rule reduces the goal of showing that a compound process p(q1, . . . , qn) satis-
fies property A to individual subgoals for its component subprocesses q1, . . . , qn, together
with an additional parametrized goal required to justify the choice of B1, . . . , Bn. This
approach to compositionality was proposed by Stirling in [24], who presented a proof
calculus based on primitive decomposition rules of this form for CCS parallel composi-
tions q1|q2. In our approach, such rules arise automatically as a consequence of having a
sequent-based proof system allowing the expression of general parametrized verification
goals.

Structural reasoning. The primitive proof rules of sequent calculus are intro-
duction rules, on the left and right of sequents, for logical connectives. Such proof
rules exactly support a structural, goal-directed form of reasoning. Moreover, if a cut-
elimination theorem is available then structural reasoning is sufficient for establishing
any provable goal.

Natural resoning. Each primitive proof rule of sequent calculus embodies in a
direct way the meaning of the logical connective that the rule represents. This feature
makes it plausible that natural informal proofs that a process satisfies a property, whose
primitive steps should all be self-explanatory, might have close formal analogues. Indeed,
a wide body of research, undertaken using the many proof assistants based on sequent
calculi, suggests that such systems do allow direct formalizations of natural arguments,
modulo the minor convolution of writing proofs in a goal-directed sequent style, rather
than in a natural deduction style.

There is one major issue, however, that has not been addressed in the discussion
above. We have argued that the compositional, structural and naturalness aspects
of sequent-based proof follow from properties of the basic sequent calculus rule set,
including “structural rules”1 (e.g. cut) and logical rules. However, we are here envisaging
an applied sequent calculus with sequents composed of verification assertions, rather
than a pure logical calculus. Such a system cannot be based on logical rules alone.
One also needs rules to relate processes (or programs) to their logical properties. The
question thus arises as to whether it is possible to provide such applied proof systems
without breaking the fundamental structural properties of sequent calculus.

In this paper we show that this is indeed possible, at least for processes with an
operational semantics specified in the GSOS format, and for propositional modal logic
(Hennessy-Milner logic [15]). Our method of approach concerns adding introduction

1There is a slightly unfortunate clash between our use of “structural reasoning” and the sequent
calculus notion of “structural rule”. For us, structural reasoning is implemented by the non-structural
rules of sequent calculus. Our terminology is chosen to be consistent with the sense of “structural” in
“structural operational semantics”, in which the premises of a rule are obtained by a similar syntactic
decomposition of the conclusion.

5

rules, on the left and right of sequents, for process operators, in addition to the standard
rules for the logical connectives. These proof rules for process operators are derived in a
principled way directly from the operational semantics. Thus the approach also provides
a modular proof system, easily adaptable to a range of process algebras.

At the end of the paper we include an epilogue discussing work that has been done,
since the research in this paper was first carried out, towards adapting our approach to
richer program logics and other programming paradigms.

2 Proof rules for modalities and process operators

In this section we present an informal introduction to our approach of incorporating
proof rules for modalities and process operators into the sequent calculus. A detailed
technical treatment is given in Section 4.

As motivated in Section 1, the proof system is a sequent calculus with sequents of
the form Γ =⇒ ∆ where Γ and ∆ are finite sets of assertions. Our main assertion
form in p : A, where p is term representing a process and A is a formula of Hennessy-
Milner logic [15]. For illustrative purposes, we use CCS [17] as the process language in
this section. As discussed in Section 1, we allow process terms to contain free process
variables.

The task we address is how to give proof rules for the logic and for the process
operators. We consider each issue in turn.

For the formulas of Hennessy-Milner logic we need proof rules both for the propo-
sitional connectives and for the modalities. The rules for the former are standard. For
the modalities, we give rules which reflect in as direct a way as possible their meanings.
For example, in the case of the necessity modality, we have that p satisfies [a]A (where
a is some action) if and only if, for every process q such that p can perform a to become
q (notation p

a→ q), it holds that q satisfies A. In order to translate this in terms of
primitive rules it is necessary to have a further assertion form expressing that p

a→q for
processes p and q. Then one has natural rules:

Γ =⇒ p
a→q, ∆ Γ, q : A =⇒ ∆

Γ, p : [a]A =⇒ ∆

Γ, p
a→x =⇒ x :A, ∆

Γ =⇒ p : [a]A, ∆
(2)

where, in the right-hand rule, x is a variable (ranging over processes) that does not
appear in the concluding sequent of the rule, thus x represents an arbitrary process to
which p can evolve via a.

The rules for process operators are derived from the operational semantics of the
process algebra, making crucial use of the presence of p

a→ q assertions. Indeed, the
right-hand rules are copied directly from the operational semantics. For example, the
rules for the CCS prefix and sum operators [17] are:

Γ =⇒ a.p
a→p, ∆

Γ =⇒ p
a→p′, ∆

Γ =⇒ p + q
a→p′, ∆

Γ =⇒ q
a→q′, ∆

Γ =⇒ p + q
a→q′, ∆

6

The rules for introducing process operators on the left express that an action
f(p1, . . . , pk)

a→r may only happen if it is derivable via one of the operational rules for f .
For example, for the prefix, zero and sum operators of CCS, this property is expressed
by the following rules:

Γ[p, r] =⇒ ∆[p, r]

Γ[r, p], a.p
a→r =⇒ ∆[r, p]

a �= b

Γ, a.p
b→r =⇒ ∆

Γ, 0 a→r =⇒ ∆
Γ, p

a→r =⇒ ∆ Γ, q
a→r =⇒ ∆

Γ, p + q
a→r =⇒ ∆

where we write Γ[p, r] for Γ[p/x, q/y]. Incidentally, we have not mentioned a right-hand
rule for zero because it does not have one.

All the rules we have discussed so far have the properties we identified in Section 1
as being desirable of structural reasoning. In the modality rules, the formula [a]A in the
rule conclusion is decomposed to the formula A in the premise. In the operational rules,
a conclusion involving a process f(p1, . . . , pk) is derived from premises mentioning only
its arguments p1, . . . , pk.

One would like some further assurance that the left and right rules for process op-
erators are well chosen. One yardstick by which this can be judged, is whether they
properly complement each other in the sense of supporting local cut-elimination steps.
Unfortunately, the rules formulated above do not support such proof reductions. For
example, the following derivation just uses the above process rules and cut:

b.0 c→0 =⇒
c.0 c→0, a.b.0 a→c.0 =⇒ =⇒ c.0 c→0

cut
a.b.0 a→c.0 =⇒

but there is no way of eliminating cut from the derivation. The sequents
a.b.0 a→x, a.c.0 a→x =⇒ and a.b.0+ c.d.0 a→x, a.b.0+ c.d.0 c→x =⇒ give other examples
of similar phenomena. This failure of cut-elimination does not seem to be a result of the
particular formulation of the rules, but rather an unavoidable problem for the sequents
considered above. As seems reasonable, all the rules are sound (in a sense explained
in Section 4) relative to models in which bisimilar processes are identified. So the only
way to show the impossibility of a.p

a→q is to show that p and q are not bisimilar. This
involves considering the hereditary behaviour of p and q, and a cut will be required to
remove the resulting contradiction.

Rather than changing the rules, we address this problem by restricting the class of
sequents. Serendipitously, it turns out that if one imposes certain natural structural
requirements on sequents (excluding, amongst others, the sequents above) then, not
only are local cut reductions available, but a full cut-elimination result holds for the
proof system. This means that structural reasoning is alone sufficient for establishing

7

any goal. Of course this result in no way devalues the importance of compositional
reasoning, which does require cut. The situation is analogous to that for ordinary
logic, where the cut rule is essential for structuring proofs using lemmas, and where the
eliminability of cut in no way undermines the usefulness of lemmas in proofs.

In Section 4, we present our approach in detail. There, we formulate a sequent
calculus for any process algebra whose operational semantics is specified in the GSOS
format [5]. The choice of GSOS format is motivated by its wide expressivity. As is argued
in [5], the GSOS format apparently forms the largest class of operational rule that enjoys
certain basic sanity properties. In particular, GSOS rules generate transition systems
with finite image, and strong bisimulation is a congruence relative to any GSOS operator.
In this paper, a further benefit of the use of GSOS systems is that their generic rule
format allows us to explicitly exhibit the uniformity in our method of deriving sequent
calculus proof rules from operational semantics.

The main result of Section 4 is a completeness theorem for the sequent calculus (The-
orem 2), relative to a natural algebraic notion of GSOS model introduced in Section 3.
The completeness theorem is for a cut-free proof system. Thus the admissibility of the
cut rule is obtained as a corollary of completeness (Corollary 1). Proving completeness
is the central technical task of the paper, and Section 5 is devoted to this.

For the purpose of process verification, one is interested in having completeness
relative to the “intended” model, given by the process calculus itself, rather than relative
to a general class of models. In Section 6, we show that, for certain sequents, the
proof system is indeed complete for deriving truth in the intended model (Theorem 3).
Furthermore, we give necessary and sufficient conditions for an ω-completeness result to
hold (Theorem 4). The latter result implies, as a special case, that the sequent calculus
is complete for deriving parametrized verification goals (1), see Section 1

3 Technical preliminaries

This section provides the technical background for the rest of the paper. We review the
GSOS rule format for specifying the operational semantics of processes [5], we introduce
a general algebraic notion of GSOS model, we recall the stratified definition of strong
bisimilarity, we review Hennessy-Milner logic and its relationship to bisimilarity [15],
and we establish basic properties of the class of finite processes.

First some notational and terminological preliminaries. Given a binary relation R,
we write R+ for its transitive closure. We say that R is well-founded if there is no infinite
sequence (xi) with xi+1Rxi for all i. Given a set X we write P(X) for the powerset
of X, and Pfin(X) for the finite powerset. We say that a property holds for almost all
natural numbers, to mean that it holds for all but finitely many numbers.

We use x, y, z, . . . to range over a countably infinite set, Vars, of process variables.
We use f, g, . . . to range over a countable set of operator symbols each of which has
an associated arity ≥ 0. We use p, q, r, . . . to range over process terms built from the

8

operators and variables in the standard way, respecting arities. We write r(�x) to mean
that all the variables of r are contained in the vector of distinct variables �x; in which
case, given a vector of process terms, �p, of the same length as �x, we write r(�p) for
the process term obtained by the evident substitution. We write Vars(p) for the set of
variables appearing in p. We say that p is closed if Vars(p) = ∅. For V ⊆ Vars, we write
TermsV for the set of all terms p with Vars(p) ⊆ V .

A substitution function, σ, is a total function from variables to process terms. We also
write σ for the unique homomorphism on process terms determined by a substitution
function. Thus σ(p) means the term obtained by substituting σ(x) for each variable x
in p.

The operational semantics is to be specified by a GSOS system [5]. We use a, b, c, . . .
to range over a finite set, Act, of actions. A GSOS rule has the form:

{xi
aij→yij}1≤i≤k

1≤j≤mi
{xi

bij
�}1≤i≤k

1≤j≤ni

f(x1, . . . , xk)
c→r(�x, �y)

(3)

where: all the variables are distinct; �x and �y are the vectors of all xi and yij variables
respectively; mi, ni ≥ 0; and k is the arity of f . We say that f is the operator of the rule
and c is its action. A GSOS system, R, is given by a set of GSOS rules containing, for
each operator-action pair f, c, only a finite number of rules with operator f and action
c. Henceforth, we assume given a fixed GSOS system, R.

Normally a GSOS system is used to determine a labelled transition system between
closed processes giving their operational behaviour. We shall be interested in this tran-
sition system as one intended model amongst a wider class of models, see Definition 3.1
below. First, some preliminary definitions. A (labelled) transition system is a structure
of the form T = (|T |, { a→T }a∈Act) where: |T | is a set (of states); and a→T is a binary
relation on |T | for each action a. We use s, t, . . . to range over states of transition sys-
tems, and we often write s ∈ T rather than s ∈ |T |. We write s

a
�T if there does not

exist t such that s
a→T t. For s ∈ T define succa(s) = {t | s

a→T t}. We say that T is
image finite if, for each state s ∈ T , the set

⋃
a∈Act succa(s) is finite.

A premodel is a structure T = (|T |, { a→T }, {fT }) where: (|T |, { a→T }) is a transition
system; and fT is a k-ary function on |T | for each operator f of arity k. Given premod-
els S, T , we say a binary relation R ⊆ |S| × |T | is a generalized congruence if, for all
s1, . . . sk ∈ |S| and t1, . . . , tk ∈ |T |, and k-ary f , it holds that R(fS(s1, . . . , sk), fT (t1, . . . , tk))
whenever R(si, ti) for all i ∈ {1, . . . , k}.

Given a premodel T , an environment is a function from process variables to |T |.
Given an environment γ, we write γ[x �→ t] for the environment obtained from γ by
updating the value at x to t. An environment γ induces a function mapping each
process term p to a state γ(p) ∈ |T |, defined inductively by

γ(f(p1, . . . , pk)) = fT (γ(p1), . . . , γ(pk)),

9

for each operator f . Clearly γ(p) depends only on the values taken by γ on Vars(p).
Often, rather than dealing with environments directly, we shall more conveniently write
p(t1, . . . , tk) for the value γ(p) of a term p(x1, . . . , xk) in any environment γ with γ(x1) =
t1 and . . . and γ(xk) = tk.

Definition 3.1 (GSOS model) We say that a premodel T is a model if it holds that
f(s1, . . . , sk)

c→T s′ if and only if there exists a rule in R, of the form (3) above, and
there exist states {tij}1≤j≤ni

1≤i≤k such that:

1. for all i, j with 1 ≤ i ≤ k and 1 ≤ j ≤ mi, it holds that si
aij→T tij ;

2. for all i, j with 1 ≤ i ≤ k and 1 ≤ j ≤ ni, it holds that si
bij
�T ; and

3. s′ = r(�s,�t).

The above definition essentially implements the soundness and witnessing properties of
[5, §4.3] within a general algebraic framework.

Of particular interest are term models. The existence and uniqueness of these is
given by the result below.

Proposition 3.2 For any V ⊆ Vars, and B ⊆ V ×Act×TermsV , there is a unique model
T satisfying: |T | = TermsV ; for each operator f of arity k, it holds that fT (p1, . . . , pk) =
f(p1, . . . , pk); and x

a→T p if and only if (x, a, p) ∈ B.

PROOF. One shows, by an easy structural induction on a term p, that the transitions
out of p are uniquely determined by the initial data. �
The V = ∅ case is just Lemma 4.3.9 of [5]. We refer to this model as the closed
term model, and we write TR for it. In cases in which one thinks of R as specifying
a complete self-contained language, it is natural to think of the closed term model as
the “intended” operational model of R. Our general notion of model also includes
all quotients of the closed term models of disjoint extensions of R, in the sense of [1,
Def. 2.11], by congruence relations contained in bisimilarity. Of course, there are many
non-term models too.

In Theorem 5.1.1 of [5], it is observed that the closed term model is image finite.
This property does not, of course, hold for arbitrary models. So we shall avoid making
assumptions that depend upon image finiteness.

One of the basic results about GSOS systems is that bisimulation is a conguence on
closed terms, [5, Theorem 5.1.2]. We shall need a stratified generalization of this result
to arbitrary GSOS models, Proposition 3.4 below. Accordingly, we recall the relation
∼ of (strong) bisimilarity between states of transition systems, and its ordinal-indexed
approximations ∼α, see e.g. [17, §10.4]. For transition systems S and T and ordinals α,

10

the relation ∼ST
α between |S| and |T | is defined by:

s ∼ST
α+1 t iff s

a→S s′ implies ∃t′ such that t
a→T t′ and s′ ∼ST

α t′, and

t
a→T t′ implies ∃s′ such that s

a→S s′ and s′ ∼ST
α t′,

s ∼ST
λ t iff for all α < λ, s ∼ST

α t, when λ is a limit ordinal.

Note that, vacuously, s ∼ST
0 t always holds. Also s ∼ST

α t implies s ∼ST
α′ t, for all

ordinals α′ ≤ α. Bisimilarity is defined by:

s ∼ST t iff for all ordinals α, s ∼ST
α t.

Note that the bisimilarity relation ∼ST always coincides with ∼ST
α for some sufficiently

large α; for example, take α to be the smallest cardinal strictly greater than the cardinal-
ity of P(|S| × |T |).2 This allows results about ∼ST to be inferred easily from properties
of the ∼ST

α relations. For example, one obtains the fixed-point property of ∼ST .

s ∼ST t iff s
a→S s′ implies ∃t′ such that t

a→T t′ and s′ ∼ST t′, and
t

a→T t′ implies ∃s′ such that s
a→S s′ and s′ ∼ST t′.

(4)

Similarly, one immediately derives the analogues for ∼ST of Propositions 3.3 and 3.4
below.

Proposition 3.3

1. For all s ∈ S, it holds that s ∼SS
α s.

2. If s ∼ST
α t then t ∼TS

α s.

3. If s ∼SS′
α s′ and s′ ∼S′S′′

α s′′ then s ∼SS′′
α s′′.

The proof is both standard and routine, so omitted.

Proposition 3.4 If S and T are models then ∼ST
α is a generalized congruence.

In the proof, and henceforth, we shall drop superscripts on the ∼ST
α (and ∼ST) relations,

as they can always be inferred from the context. PROOF. By transfinite induction on
α. The case for a limit ordinal is trivial, as generalized congruences are closed under
intersection. To show the result for successor ordinals, assume that ∼α is a generalized
congruence and suppose si ∼α+1 ti, for all i with 1 ≤ i ≤ k. We must show that
f(s1, . . . , sk) ∼α+1 f(t1, . . . , tk).

Suppose f(s1, . . . , sk)
c→S s′. We must find t′ such that f(t1, . . . , tk)

c→T t′ and
s′ ∼α t′. By the definition of model, there exists a rule in R of the form (3) above and
there exist {s′′ij}1≤j≤ni

a≤i≤k such that:
2If S and T are image finite then α can be taken to be ω, see [15, Theorem 2.1].

11

1. si
aij→S s′′ij , for all i, j with 1 ≤ i ≤ k and 1 ≤ j ≤ mi;

2. si
bij
�S , for all i, j′ where 1 ≤ i ≤ k and 1 ≤ j′ ≤ ni; and

3. s′ = r(�s, �s′′).

For each i, j as above, we have si ∼α+1 ti, so, by 1, there exists tij such that ti
aij→S t′′ij

and s′′ij ∼α t′′ij . Also, for each i, j′, we have ti
bij
�T , again because si ∼α+1 ti. Thus, by

the definition of model, t
c→T r(�t, �t′′). Moreover, by the induction hypothesis,

r(�s, �s′′) ∼α r(�t, �t′′), i.e. s ∼α r(�t, �t′′). Thus r(�t, �t′′) is the state t′ we are looking for.
A similar argument establishes that fT (t1, . . . , tk)

c→T t′ implies that there exists s′

with f(s1, . . . , sk)
c→S s′ and s′ ∼α t′. �

Theorem 5.1.2 of [5] follows, as it is just the special case of the Proposition 3.4 in which
∼α is the relation ∼ between the closed term model TR and itself. Also, it follows that,
for any closed process p and models S, T , we have pS ∼ pT , where pS (resp. pT) is the
interpretation of p in S (resp. T).

Next we review Hennessy-Milner logic [15]. We use A, B, C, . . . to range over formu-
las, which are given by the grammar:

A ::= � | ¬A | A ∧ B | 〈a〉A.

The other connectives and the [a] modality can be defined by:

⊥ = ¬� A ∨ B = ¬(¬A ∧ ¬B) [a]A = ¬〈a〉¬A.

Given a labelled transition system, T = (|T |, { a→T }), the satisfaction relation, �T ,
relating states of T and formulas, is defined as usual:3

t �T � always holds
t �T ¬A iff t ��T A

t �T A ∧ B iff t �T A and t �T B

t �T 〈a〉A iff if there exists t′ such that t
a→T t′ and t′ �T A.

The modal depth, md(A), of a formula A is defined by:

md(�) = 0 md(A ∧ B) = max(md(A), md(B))
md(¬A) = md(A) md(〈a〉A) = 1 + md(A).

Proposition 3.5 If S, T are transition systems then, for any s ∈ S and t ∈ T , the
following are equivalent:

3We use the symbol � rather than |=, because, for us, T is the model, rather than t. Moreover, the
symbol |= is already “overloaded” by other uses in Section 4.

12

1. s ∼m t.

2. For all A with md(A) ≤ m, it holds that s �S A if and only if t �T A.

Theorem 2.2 of [15] states a similar result, but the setting is slightly different. In [15],
T is required to be image finite, but Act is allowed to be infinite. The proof of the
(1) =⇒ (2) direction in [15] does not use the assumption of image finiteness, and
thus establishes this implication of Proposition 3.5. However, the proof in [15] of the
(2) =⇒ (1) implication does make essential use of image finiteness. Indeed, when Act
is infinite, such an assumption is necessary. Nevertheless, for finite Act, the (2) =⇒ (1)
implication holds without any restrictions on T, s and t. We include a proof of this at
the end of the section.

The final goal of this section is to establish various basic results about finite processes,
which will be required in Section 6. Define:

F0 = {∅} Fi+1 = P(Act × Fi) F =
⋃
i≥0

Fi.

Note that i ≤ j implies Fi ⊆ Fj . Also, because Act is finite, each u ∈ F is a finite set.
Indeed, F is the smallest set such that F = Pfin(Act×F). We consider F as a transition
system, with the transition relation:

u
a→F u′ iff (a, u′) ∈ u.

We call the states in F the finite processes. If u ∈ Fi then u is a finite process of depth
at most i.

Proposition 3.6 For every transition system T and t ∈ T :

1. There exists a unique ut
m ∈ Fm such that t ∼m ut

m.

2. For every u ∈ Fm, if t ∼m+1 u then t ∼ u.

PROOF. We first prove statement 1 by induction on m. When m = 0, we have ∅ is
the unique element of F0 and trivially t ∼0 ∅. When m > 1, for each a ∈ Act and
t′ ∈ succa(t) we have, by the induction hypothesis, a unique ut′

m−1 ∈ Fm−1 such that
t′ ∼m−1 ut

m−1. Define

ut
m = {(a, ut′

m−1) | a ∈ Act and t′ ∈ succa(t)}.

It is easily verified that t ∼m ut
m. For uniqueness, consider any u ∈ Fm such that

t ∼m u. Whenever t
a→T t′, there exists u′ such that u

a→F u′ and t′ ∼m−1 u′. But then
u′ = ut′

m−1, by the uniqueness of ut′
m−1. Hence u

a→F ut′
m−1, i.e. (a, ut′

m−1) ∈ u. This
shows that ut

m ⊆ u. For the converse inclusion, suppose that (a, u′) ∈ u, i.e. u
a→F u′.

Then there exists t′ such that t
a→T t′ and t′ ∼m−1 u′. Again, by the uniqueness of ut′

m−1,

13

we have u′ = ut′
m−1. Thus indeed (a, u′) ∈ ut

m, by the definition of ut
m. So u = ut

m, as
required.

Statement 2 is also proved by induction on m. Observe that, for α > 0, we have
∅ ∼ t if and only if t

a
�T for all actions a ∈ Act if and only if ∅ ∼1 t. The m = 0

case is now immediate as ∅ is the unique element of F0. For m > 0, take any u ∈ Fm,
and suppose that t ∼m+1 u. We show that t ∼ u. Suppose first that t

a→T t′. Then
there exists u′ such that u

a→F u′ and t′ ∼m u′. But u′ ∈ Fm−1. So, by the induction
hypothesis, t′ ∼ u′. Also, if u

a→F u′ then there exists t
a→T t′ such that t′ ∼m u′. Then

u′ ∈ Fm−1. So, again by the induction hypothesis, t′ ∼ u′. Thus, by (4), indeed t ∼ u.
�

An important property of finite processes is that each has a characteristic formula
up to ∼m and ∼, in the sense of the proposition below. Statement (2) of the proposition
is based on [14, Theorem 1].

Proposition 3.7

1. For all u ∈ Fm, there exists a formula χm(u) with md(χm(u)) ≤ m such that, for
all transition systems T and t ∈ T , it holds that t �T χm(u) if and only t ∼m u.

2. For all u ∈ F , there exists a formula χ(u) such that, for all transition systems T
and t ∈ T , it holds that t �T χ(u) if and only t ∼ u.

PROOF. Statement 1 is proved by induction on m. When m = 0, the only u ∈ F0

is u = ∅. Define χ0(∅) = �. Then t �T χm(∅) always holds, as does t ∼0 ∅. Suppose
m > 0, and consider any u ∈ Fm. Define

χm(u) = (
∧

(a,u′)∈u
〈a〉χm−1(u′)) ∧ (

∧
a∈Act

[a] (
∨

u′∈{u′|(a,u′)∈u} χm−1(u′))).

N.b. an empty conjunction is � and an empty disjunction is ⊥. We have md(χm(u)) ≤ m
because each md(χm−1(u′)) ≤ m − 1, by induction hypothesis.

To prove that t �T χm(u) implies t ∼m u, assume that t �T χm(u). Suppose t
a→T t′.

Then, because t �T χm(u), it holds that t′ �T
∨

u′∈{u′|(a,u′)∈u} χm−1(u′). So, for some u′

with (a, u′) ∈ u, we have t′ �T χm−1(u′). Thus, by the induction hypothesis, t′ ∼m−1 u′.
Also u′ a→F u′ because (a, u′) ∈ u. Thus t

a→T t′ implies there indeed exists u′ with
u

a→F u′ and t′ ∼m−1 u′. For the other implication in the definition of ∼m, suppose
u

a→F u′, i.e. (a, u′) ∈ u. Then t �T 〈a〉χm−1(u′). Thus there exists t′ such that t
a→T t′

and t′ �T χm−1(u′). By the induction hypothesis t′ ∼m−1 u′ as required. Thus indeed
t �T χm(u) implies t ∼m u.

For the converse implication, assume that t ∼m u. We show that t �T χm(u). To
establish that t �T

∧
(a,u′)∈u 〈a〉χm−1(u′), consider any (a, u′) ∈ u. Then u

a→F u′.
So, as t ∼m u, we have t

a→T t′ for some t′ such that t′ ∼m−1 u′. By the induction
hypothesis, t′ �T χm−1(u). So t �T 〈a〉χm−1(u′), as required. To establish that
t �T

∧
a∈Act [a] (

∨
u′∈{u′|(a,u′)∈u} χm−1(u′)), consider any a ∈ Act and suppose that

14

t
a→T t′. Because t ∼m u, we have u

a→F u′ for some u′ with t′ ∼m−1 u′. By the induction
hypothesis, t′ �T χm−1(u′). Also, (a, u′) ∈ u, so t′ �T

∨
u′∈{u′|(a,u′)∈u} χm−1(u′), as

required. This proves statement 1.
Statement 2 now follows easily. Consider any u ∈ F . Then there is a least m such

that u ∈ Fm. Define χ(u) = χm+1(u). We then have t �t χ(u) iff t �t χm+1(u) iff (by 1
above) t ∼m+1 u iff (by Proposition 3.6(2)) t ∼ u. �

Having obtained the above results, we can now establish the (2) =⇒ (1) implication
of Proposition 3.5, as promised above.
PROOF of Proposition 3.5 (2) =⇒ (1). Suppose that s �S A if and only if t �T A,
for all A with md(A) ≤ m. By Proposition 3.6(1), there exists a unique us

m ∈ Fm such
that s ∼m us

m. By Proposition 3.7(1), s �S χm(us
m). As md(χm(us

m)) ≤ m, we have, by
assumption, that t �T χm(us

m). Thus, by Proposition 3.7(1), t ∼m us
m. We have that

s ∼m us
m and t ∼m us

m. It follows, by Proposition 3.3, that s ∼m t, as required. �

4 The sequent calculus

In this section we present our applied sequent calculus. As motivated in Section 2, it
has different assertion forms: logical assertions p : A; and action assertions p

a→ q. In
addition, as the operational semantics allows negative premises, we include inaction
assertions of the form p

a
�. We use J, K, . . . to range over assertions and Γ, ∆, . . . to

range over (possibly infinite) sets of assertions.
Assertions have interpretations in arbitrary premodels. A relation T |=γ J between

premodels T , environments γ and assertions J is defined by:

T |=γ p
a→q iff γ(p) a→T γ(q),

T |=γ p
a
� iff γ(p) a

�T ,

T |=γ p :A iff γ(p) �T A.

Observe that T |=γ p
a
� if and only if T |=γ [a]⊥. Thus the inclusion of inaction

assertions is, expressivity wise, unnecessary. Nevertheless, we find it convenient to
include them, as it allows a clean separation between (in)action assertions, used in
formalizing the operational semantics, and logical assertions.

We write Γ |=T ∆ to mean that, for all environments γ, if, for all J ∈ Γ, it holds
that T |=γ J then there exists K ∈ ∆ such that T |=γ K. We write Γ |= ∆ to mean
that Γ |=T ∆ for all models T .

The sequent calculus uses sequents of the form Γ =⇒ ∆, where Γ and ∆ are finite,
which are to be read as expressing that Γ |= ∆. As we saw in Section 2, there are
problems in obtaining a cut-free system for arbitrary sequents. We avoid these problems
by defining a proof system operating on a restricted class of sequents. This restricted
class is obtained by imposing conditions on the left-hand set of assertions.

15

Definition 4.1 (Assumable set) A (possibly infinite) set of assertions, Γ, is said to
be assumable if it satisfies the following three conditions.

(A1) If p
a→q ∈ Γ then q is a process variable.

(A2) If p
a→x ∈ Γ and q

b→x ∈ Γ then p = q (syntactic identity) and a = b.

(A3) The relation, �Γ, on process variables, defined by x �Γ y if there exists p
a→y ∈ Γ

such that p contains x, is well-founded.

Note that any subset of an assumable set is itself assumable.

Definition 4.2 (Admissible sequent) We call a sequent Γ =⇒ ∆ admissible if Γ is
assumable.

Our sequent calculus will work with admissible sequents.
Conditions (A1)–(A3) above are the simplest we could find with which we could

obtain completeness and cut-elimination theorems. The three counterexamples from
Section 2 are ruled out by conditions (A1) and (A2). Condition (A3) prevents, for
example, assertions p

a→x from occurring in Γ when x ∈ Vars(p). For p containing arbi-
trary GSOS operators (involving negative premises) it may be impossible to satisfy such
assertions for reasons to do with the nonexistence of solutions to arbitrary unguarded
recursion equations. As in Section 2, one can find examples of such assertions for which
the sequent p

a→x =⇒ apparently requires cut to be derivable.
The conditions on assumability are also intuitively motivated in the following way.

They amount to being able to construct Γ from the empty set by (transfinitely) adding
assertions one at a time, subject to the restriction that, whenever an action assertion
p

a→ x is added, x neither occurs in p nor in any of the assertions already included.
Thus, at the time of adding p

a→ x, the variable x is unconstrained and represents an
arbitrary process to which p can evolve. There is an analogy here with the declaration
of variables in dependent type theories. Indeed, if one reads p

a→q as an assertion that q
has “type” p

a→, then the conditions on assumability are just an infinitary generalization
of the usual dependency requirements on contexts.

We now give the proof rules for the sequent calculus. In the rules we adopt standard
notational conventions, using comma for set union, omitting the emptyset and omitting
delimiters from singleton sets. Each rule is to be read as applying only when the premises
and conclusion are all admissible sequents.

We present two proof systems: a basic proof system, and a full proof system. The
rules for the basic system are contained in Figs. 1–3. Additional rules for the full system
are listed in Fig. 4

The rules for logical assertions are presented in Fig. 1. These rules essentially form a
sequent calculus for a multi-modality version of the minimal modal logic K, albeit with
the extra baggage of process terms and (in)action assertions.

16

(�R)
Γ =⇒ p :�, ∆

Γ =⇒ p :A, ∆
(¬L)

Γ, p :¬A =⇒ ∆

Γ, p :A =⇒ ∆
(¬R)

Γ =⇒ p :¬A, ∆

Γ, p :A, p :B =⇒ ∆
(∧L)

Γ, p :A ∧ B =⇒ ∆

Γ =⇒ p : A, ∆ Γ =⇒ p :B, ∆
(∧R)

Γ =⇒ p :A ∧ B, ∆

Γ, p
a→x, x :A =⇒ ∆

(〈a〉L)∗
Γ, p : 〈a〉A =⇒ ∆

Γ =⇒ p
a→q, ∆ Γ =⇒ q : A, ∆

(〈a〉R)
Γ =⇒ p : 〈a〉A, ∆

∗Restriction on (〈a〉L): the variable x must not occur in the rule conclusion.

Figure 1: Rules for logical assertions

Γ =⇒ p
a→q, ∆

(a
�L)

Γ, p
a
� =⇒ ∆

Γ, p
a→x =⇒ ∆

(a
�R)

∗
Γ =⇒ p

a
�, ∆

∗Restriction on (a
�R): the variable x must not occur in the rule conclusion.

Figure 2: Rules for inaction assertions

(c→Ax)
Γ, y

c→x =⇒ y
c→x, ∆

{Γ =⇒ pi
ahij→ qhij , ∆}1≤i≤k

1≤j≤mhi
{Γ =⇒ pi

bhij
� , ∆}1≤i≤k

1≤j≤nhi (f c→R)hΓ =⇒ f(p1, . . . , pk)
c→rh(�p, �q), ∆

{
Γ[rh(�p, �y)/x], {pi

ahij→ yij}1≤i≤k
1≤j≤mhi

, {pi
bhij
� }1≤i≤k

1≤j≤nhi
=⇒ ∆[rh(�p, �y)/x]

}
1≤h≤lfc (f c→L)

∗
Γ, f(p1, . . . , pk)

c→x =⇒ ∆

∗Restriction on (f c→L): all of the variables yij are distinct and do not occur in the rule
conclusion.

Figure 3: Rules for action assertions

17

(Ax)
Γ, J =⇒ J, ∆

Γ =⇒ ∆
(WkL)

Γ, J =⇒ ∆

Γ =⇒ ∆
(WkR)

Γ =⇒ J, ∆

Γ =⇒ ∆
(Sub)

Γ[p/x] =⇒ ∆[p/x]

Γ, J =⇒ ∆ Γ =⇒ J, ∆
(Cut)

Γ =⇒ ∆

Γ, p
c→x =⇒ ∆ Γ[q/x] =⇒ p

c→q, ∆[q/x]
(c→Cut)

Γ[q/x] =⇒ ∆[q/x]

Figure 4: Additional rules for the full proof system

The rules for inaction assertions are presented in Fig. 2. They are a straightforward
implementation of the definition of a

� in terms of a→.
The rules for action assertions are presented in Fig. 3. The rationale behind them is

that the method of deriving an action assertion p
c→q depends on the structure of p. If p

is a variable y, then the only applicable rule is the (c→Ax) rule. This is just an instance
of the familiar identity axiom of sequent calculus. It is the only instance of the identity
axiom included in the basic proof system.

When p is of the form f(p1, . . . , pk), for some operator f , then the rules for deriving
p

c→q are determined by the GSOS system R. Suppose that R contains exactly lfc rules
with operator f and action c, so for each h with 1 ≤ h ≤ lfc we have a distinct rule:

{xi
ahij→ yij}1≤i≤k

1≤j≤mhi
{xi

bhij
� }1≤i≤k

1≤j≤nhi

f(x1, . . . , xk)
c→rh(�x, �y)

(5)

Then we include lfc rules in the sequent calculus for introducing action assertions of
the form f(p1, . . . , pk)

c→ r on the right of sequents, namely the rules (f c→R)1, . . . ,
(f c→R)lfc

; and we include one rule introducing such assertions on the left, namely the

rule (f c→L). Note that in any application of (f c→L), when lfc > 0, it must be the case
that f(p1, . . . , pk)

c→x �∈ Γ, as otherwise the premises would not be admissible. We give
examples of the rules generated by some specific process operators below.

Observe that the basic system contains none of the usual “structural rules” of sequent
calculus. The exchange and contraction rules are redundant because sequents are built
from finite sets. The full system is obtained from the basic system by extending it with
the rules of Fig. 4, all of which may be reasonably described as “structural rules”. These
rules include the standard weakening rules (WkL) and (WkR), and the standard axiom
rule (Ax). Note that, in these rules, admissibility considerations require that any action
assertion p

a→q, appearing as J on the left-hand side of a sequent, must be of the form
p

a→ x. The substitution and cut rules, (Sub) and (Cut), are as expected. However,

18

for action assertions, we also include a natural combination of the two, (c→Cut), which
allows one to cut out an arbitrary action assertion from the right-hand side of a sequent
in a way that is consistent admissibility requirements.

The ethos behind the separation of the basic and full proof systems is as follows.
Each rule in the basic system is associated to a single logical connective or operational
primitive. Moreover, the premises of the rule are obtained by decomposing a formula or
process term in a principled way depending on the associated primitive. Furthermore,
each rule embodies, as directly as possible, a basic logical property of its associated
notion. Thus the rules of the basic system directly implement structural and natural
reasoning in the sense of Section 1. On the other hand, the rules of the extended system
implement general properties of logical consequence, useful for modularizing proofs, and
essential for formalizing compositional verification methods.

Before stating our main results we give some illustrative examples of the induced
rules for particular process operators. For the prefix, zero and sum operators, the right-
hand rules are the same as those given earlier in Section 2. The left-hand rules differ in
that they are specifically tailored to admissible sequents. The new versions are (modulo
trivial variable renamings):

Γ[p/x] =⇒ ∆[p/x]

Γ, a.p
a→x =⇒ ∆

a �= b

Γ, a.p
b→x =⇒ ∆

Γ, 0 a→x =⇒ ∆
Γ, p

a→x =⇒ ∆ Γ, q
a→x =⇒ ∆

Γ, p + q
a→x =⇒ ∆

All the rules are special cases of their earlier counterparts. We remark that the renaming
and restriction operators of CCS can also be dealt with easily.

Parallel operators are more interesting. First, we consider the interleaving (non-
communicating) parallel, p||q, whose operational rules are:

x
a→x′

x||y a→x′||y
y

a→y′

x||y a→x||y′

The derived sequent rules for || are therefore:

Γ =⇒ p
a→p′, ∆

Γ =⇒ p||q a→p′||q, ∆

Γ =⇒ q
a→q′, ∆

Γ =⇒ p||q a→p||q′, ∆

Γ[x||q / z], p
a→x =⇒ ∆[x||q / z] Γ[p||y / z], q

a→y =⇒ ∆[p||y / z]

Γ, p||q a→z =⇒ ∆

where in the last rule, the variables x and y must not appear in the concluding sequent.
This rule nicely illustrates the difference between structural and compositional proof

19

methods. The rule is manifestly structural, as the premises are obtained via syntactic
decompositions of the conclusion. In particular, the assertion p||q a→z in the conclusion
is broken down into assertions p

a→x and q
a→y in the premises. However, the rule is not

compositional, because each premise contains both the process terms p and q.
The communicating parallel p|q of CCS is slightly more complicated, due to the fact

that a silent τ action can be triggered by a synchronization on any non-τ action. Thus
the left-hand rule for p|q τ→z assertions is

Γ1, p
τ→x =⇒ ∆1 Γ2, q

τ→y =⇒ ∆2 {Γ3, p
a→x, q

a→y =⇒ ∆3}a∈Act\{τ}
Γ, p|q τ→z =⇒ ∆

where: Γ1, ∆1 are obtained from Γ, ∆ using the substitution [x|q / z]; the sets Γ2, ∆2

are obtained using [p|y / z]; the sets Γ3, ∆3 are obtained using [x|y / z]; and x, y do not
appear in the rule conclusion. Similar complexities in the handling of communicating
parallel were encountered by Stirling [24]. In our setting, a natural way of reducing the
complexity would be to include an algebra of action variables and terms (e.g. (·) should
be a unary operator on actions), together with a new assertion form stating equality
between action terms. However, to properly incorporate these features, similar such
modifications must also be made at the level of the GSOS rule specifications. In this
paper, we content ourselves with dealing with ordinary GSOS specifications, based on
a finite set of actions.

None of the example operators above exploits the GSOS feature of allowing negative
premises (inaction assertions) in operational rules. For an example involving inaction
assertions, the reader is referred to the original conference version of this paper [22].

To show the basic proof system at work, we give in Fig. 5 an example derivation
of the sequent x : 〈b〉�, x : [a]〈b〉� =⇒ x||y : [a]〈b〉�. For readability, we write [a] as a
primitive modality, using the proof rules (2) from Section 2. When [a] is defined in
terms of 〈a〉, these proof rules are easily derived via a combination of the rules for 〈a〉
and negation. We also avoid including extraneous assertions in the sequents in Fig. 5.
The full derivation involves evident weakenings of the written sequents.

We end this section with the main results. For assumable (possibly infinite) Γ and
arbitrary ∆ we write Γ �b ∆ to mean that there exist finite subsets Γ′ ⊆ Γ and ∆′ ⊆ ∆
such that the sequent Γ′ =⇒ ∆′ (which is admissible) is derivable in the basic proof
system. Similarly, we write Γ �f ∆ to mean that for some finite subsets Γ′ ⊆ Γ and
∆′ ⊆ ∆ the sequent Γ′ =⇒ ∆′ is derivable in the full proof system. Trivially Γ �b ∆
implies Γ �f ∆.

Theorem 1 (Soundness of the full proof system) If Γ�f ∆ then Γ |=∆.

PROOF. We prove, by induction on derivations, that if Γ =⇒ ∆ is derivable in the
full proof system then Γ |= ∆. We consider three illustrative cases involving action
assertions.

20

Subderivation (A):

=⇒ x′′||y :�
x′ b→x′′ =⇒ x′ b→x′′

x′ b→x′′ =⇒ x′||y b→x′′||y
x′ b→x′′, x′′ :� =⇒ x′||y′ : 〈b〉�

x′ : 〈b〉� =⇒ x′||y : 〈b〉� x
a→x′ =⇒ x

a→x′

x : [a]〈b〉�, x
a→x′ =⇒ x′||y : 〈b〉�

Subderivation (B):

=⇒ x′||y′ :�
x

b→x′ =⇒ x
b→x′

x
b→x′ =⇒ x||y′ b→x′||y′

x
b→x′, x′ :� =⇒ x||y′ : 〈b〉�

x : 〈b〉�, y
a→y′ =⇒ x||y′ : 〈b〉�

Main derivation:

··· (A)

x : [a]〈b〉�, x
a→x′ =⇒ x′||y : 〈b〉�

··· (B)

x : 〈b〉�, y
a→y′ =⇒ x||y′ : 〈b〉�

x : 〈b〉�, x : [a]〈b〉�, x||y a→z =⇒ z : 〈b〉�
x : 〈b〉�, x : [a]〈b〉� =⇒ x||y : [a]〈b〉�

Figure 5: Example derivation of x : 〈b〉�, x : [a]〈b〉� =⇒ x||y : [a]〈b〉�.

21

Case 1. Suppose we have derived Γ =⇒ f(p1, . . . , pk)
c→ rh(�p, �q), ∆ as a result

of an application of the (f c→R)h rule. Then, by the induction hypothesis, we have

Γ |= pi
ahij→ qhij , ∆, for all i, j with 1 ≤ i ≤ k and 1 ≤ j ≤ mhi; and Γ |= pi

bhij
� , ∆, for all

i, j with 1 ≤ i ≤ k and 1 ≤ j ≤ nhi. We must show that Γ |= f(p1, . . . , pk)
c→rh(�p, �q), ∆.

Consider then any model T and environment γ such that, for all J ∈ Γ, it holds that
T |=γ J and, for all K ∈ ∆, it holds that T �|=γ K. We must show that T |=γ

f(p1, . . . , pk)
c→ rh(�p, �q). By the induction hypothesis, T |=γ pi

ahij→ qhij and T |=γ pi
bhij
� ,

for all relevant i, j; i.e. γ(pi)
ahij→ T γ(qij) and γ(pi)

bhij
� T . Thus, by Definition 3.1, we

have γ(f(p1, . . . , pk))
c→T γ(rh(�p, �q)), i.e. T |=γ f(p1, . . . , pk)

c→rh(�p, �q), as required.
Case 2. Suppose we have derived Γ, f(p1, . . . , pk)

c→ x =⇒ ∆, as a result of an
application of the (f c→L) rule. Then, by the induction hypothesis, we have

Γ[rh(�p, �y)/x], {pi
ahij→ yij}1≤i≤k

1≤j≤mhi
, {pi

bhij
� }1≤i≤k

1≤j≤nhi
|= ∆[rh(�p, �y)/x] ,

for each h with 1 ≤ h ≤ lfc. We must show that Γ, f(p1, . . . , pk)
c→x |= ∆. Consider any

model T and environment γ such that T |=γ f(p1, . . . , pk)
c→x and, for all J ∈ Γ, it holds

that T |=γ J . We must show that T |=γ K for some K ∈ ∆. As T |=γ f(p1, . . . , pk)
c→x,

we have γ(f(p1, . . . , pk))
c→T γ(x). So, by Definition 3.1, there exists h with 1 ≤ h ≤ lfc,

and there exist {tij}1≤j≤ni

1≤i≤k such that: for all i, j with 1 ≤ i ≤ k and 1 ≤ j ≤ mi, it holds

that γ(pi)
ahij→ T tij ; for all i, j with 1 ≤ i ≤ k and 1 ≤ j ≤ ni, it holds that γ(pi)

bhij
� T ;

and γ(x) = r(γ(�p),�t). Define γ′ = γ[�y �→ �t]. Then γ(x) = γ′(rh(�p, �y)), because none of
the �y variables occurs in �p. Also, for every J ∈ Γ ∪ ∆, none of the �y variables occurs
in J , so T |=γ′ J [rh(�p, �y)/x] if and only if T |=γ J . Therefore: for all J ∈ Γ, it holds

that T |=γ′ J [rh(�p, �y)/x]; for all relevant i, j, it holds that T |=γ′ pi
ahij→ yij ; and, for all

relevant i, j, it holds that T |=γ′ pi
bhij
� . Thus, by the induction hypothesis, there exists

K ∈ ∆ such that T |=γ′ K[rh(�p, �y)/x]. So indeed T |=γ K.
Case 3. Suppose we have derived Γ[q/x] =⇒ ∆[q/x] as a result of an application

of the (c→Cut) rule. Then, by the induction hypothesis, Γ, p
c→x |= ∆ and Γ[q/x] |=

p
c→q, ∆[q/x]. We must show that Γ[q/x] |= ∆[q/x]. Accordingly, consider any model

T and environment γ. Suppose, for contradiction that: for all J ∈ Γ, it holds that
T |=γ J [q/x]; and, for all K ∈ ∆, it holds that T �|=γ K[q/x]. Then, because Γ[q/x] |=
p

c→q, ∆[q/x], we have T |=γ p
c→ q. Define γ′ = γ[x �→ γ(q)]. Then, for all J ∈ Γ, it

holds that T |=γ′ J ; and, for all K ∈ ∆, it holds that T �|=γ′ K. So, as Γ, p
c→x |= ∆,

we have T �|=γ′ p
c→x. But x �∈ Vars(p), because Γ, p

a→x is assumable, so γ′(p) = γ(p).
Therefore T �|=γ p

c→q. This gives the desired contradiction.
Remaining cases. These are similar, and are left to the reader. �

Theorem 2 (Completeness of the basic proof system) If Γ is assumable and Γ |=
∆ then Γ �b ∆.

22

The proof of this theorem is given in Section 5 below.
We state two immediate corollaries of Theorems 1 and 2.

Corollary 1 (Equivalence of the basic and full systems) Γ �b ∆ if and only if
Γ �f ∆.

Thus all the proof rules in Fig. 4 are admissible in the basic system, including, in
particular, the (Cut) and (c→Cut) rules. It would be interesting to obtain a syntactic
proof of this fact. We have not carried out such a proof, but we have checked that the
“local” proof reductions all go through. Interestingly, these local reductions confirm the
naturalness of including the (c→Cut) rule as primitive in conjunction with (Cut).

Corollary 2 (Compactness) If Γ |= ∆ then there exist finite subsets Γ′ ⊆ Γ and
∆′ ⊆ ∆ such that Γ′ |= ∆′.

5 Proof of completeness

This entire section is dedicated to the proof of Theorem 2. As usual we prove the con-
trapositive. Suppose that Γ0 ��b ∆0 where Γ0 is assumable, and where, for convenience
in the proof, we assume, without loss of generality, that there are infinitely many vari-
ables not contained in Vars(Γ0 ∪ ∆0). We shall construct a model Tc together with an
environment γc showing that Γ0 �|= ∆0.

To help construct the model, we define a sequence of 4-tuples (Γi, ∆i, σi, Di), for
i ≥ 0. In doing so, we ensure that Γi is assumable and that Γi ��b ∆i. The sequence is
constructed by eventually breaking down all compound assertions in Γi (resp. ∆i) into
components that witness their truth (resp. falsity) in the constructed model. This much
will be familiar to anyone who has previously seen a direct proof of completeness for a
cut-free sequent calculus or tableau system. In our case, there are added complications
to do with maintaining the assumability of Γi. To deal with this, we simultaneously
build substitution functions σi (see Section 3) recording the sequence of term substitu-
tions made when decomposing action assertions in the process of generating Γi and ∆i

from Γ0 and ∆0. We also record the domains Di ⊆ Vars on which these substitution
functions are nontrivial. The main technical difficulty is to show that the sequence of
substitution functions converges to a limiting substitution function, required to define
the environment γc, see Lemma 5.7.

In defining the sequence, we write Ui for the set
⋃

j≤i Vars(Γj∪∆j), and Vi for Ui\Di.
We also write ε for an empty vector (of process terms).

We already have Γ0 and ∆0. Define σ0 to be the identify function, and D0 = ∅.
To define the rest of the sequence let {τ0, τ1, . . . } be an enumeration of all 3-tuples

(J, �q, m), where J is an assertion, �q is a (possibly empty) vector of process terms and
m ≥ 0, so that each such 3-tuple appears infinitely often in the enumeration. Define
Γi+1 = Γi, ∆i+1 = ∆i, σi+1 = σi and Di+1 = Di, unless one of the following conditions
holds:

23

• τi = (p :¬A, ε, 0) and p :¬A ∈ Γi, in which case ∆i+1 = ∆i ∪ {p : A};
• τi = (p : A ∧ B, ε, 0) and p :A ∧ B ∈ Γi, in which case Γi+1 = Γi ∪ {p :A, p :B};
• τi = (p : 〈a〉A, ε, 0) and p : 〈a〉A ∈ Γi, in which case Γi+1 = Γi∪{p a→x, x :A} where

x is a chosen variable not contained in Ui;

• τi = (p a
�, q, 0), and p

a
� ∈ Γi and also Vars(q) ⊆ Vi, in which case ∆i+1 =

∆i ∪ {p a→q};
• τi = (f(p1, . . . , pk)

c→x, ε, 0) and f(p1, . . . , pk)
c→x ∈ Γi, in which case:

Γi+1 = (Γi\{f(p1, . . . , pk)
c→x})[rh(�p, �y)/x] ∪
{pi′

ahi′j→ yi′j}1≤i′≤k
1≤j≤mhi′

∪ {pi′
bhi′j
� }1≤i′≤k

1≤j≤nhi′

∆i+1 = ∆i[rh(�p, �y)/x]
σi+1 = z �→ (σi(z))[rh(�p, �y)/x]
Di+1 = Di ∪ {x}.

where �y is a chosen vector of distinct variables not contained in Ui and h is chosen
with 1 ≤ h ≤ lfc so that Γi+1 ��b ∆i+1;

• τi = (p :¬A, ε, 1) and p :¬A ∈ ∆i, in which case Γi+1 = Γi ∪ {p :A};
• τi = (p : A ∧ B, ε, 1) and p : A ∧ B ∈ ∆i, in which case ∆i+1 = ∆i ∪ {p : A} if

Γi ��b p :A, ∆i, and ∆i+1 = ∆i ∪ {p :B} otherwise;

• τi = (p : 〈a〉A, q, 1) and p : 〈a〉A ∈ ∆i and also Vars(q) ⊆ Vi, in which case if
Γi ��b q : A, ∆i then ∆i+1 = ∆i ∪ {q : A}, otherwise ∆i+1 = ∆i ∪ {p a→q}.

• τi = (p a
�, ε, 1) and p

a
� ∈ ∆i, in which case Γi+1 = Γi∪{p a→x} where x is a chosen

variable not contained in Ui;

• τi = (f(p1, . . . , pk)
c→rh(�p, �q), �q, h), where 1 ≤ h ≤ lfc, and Vars(�q) ⊆ Vi, and also

f(p1, . . . , pk)
c→rh(�p, �q) ∈ ∆i, in which case: if there exist i′, j with 1 ≤ i′ ≤ k and

1 ≤ j ≤ mhi′ such that Γi ��b pi′
ahi′j→ qi′j , ∆i then ∆i+1 = ∆i ∪ {pi′

ahi′j→ qi′j} for a

chosen such i′, j; otherwise ∆i+1 = ∆i ∪ {pi′
bhi′j
� } for a chosen i′, j with 1 ≤ i′ ≤ k

and 1 ≤ j ≤ nhi′ such that Γi ��b pi′
bhi′j
� , ∆i;

where, in the action assertion cases, it is assumed that the rules in R with operator f
and action c have the form in (5) of Section 4, and that the vectors �y and �q have the
appropriate length. (Similar assumptions are made below without further comment.)

Lemma 5.1 The weakening rules (WkL) and (WkR) are admissible in the basic proof
system.

24

PROOF. A straightforward induction on the structure of derivations. �

Lemma 5.2 The sequence (Γi, ∆i, σi, Di) is well defined, each Γi is assumable and
Γi ��b ∆i.

PROOF. We prove by induction on i that: (Γi, ∆i, σi, Di) is well defined; Γi is assum-
able; Γi ��b ∆i, and there are infinitely many variables not contained in Ui. The base
case i = 0 is trivial. For i > 0, the result is also trivial if none of the τi−1 clauses applies.
If one of the τi−1 clauses does apply, then the proof splits into a case analysis, one for
each clause. In each case the argument is similar. We illustrate the general pattern, by
considering the two most interesting cases.

Case 1: τi = (f(p1, . . . , pk)
c→x, ε, 0). We give the argument for this case in detail.

For each h with 1 ≤ h ≤ lfc, define:

Γ′
h = (Γi−1\{f(p1, . . . , pk)

c→x})[rh(�p, �y)/x] ∪
{pi′

ahij′→ yi′j}1≤i′≤k
1≤j≤mhi

∪ {pi′
bhi′j
� }1≤i′≤k

1≤j≤nhi′

∆′
h = ∆i−1[rh(�p, �y)/x]

selecting the yi′j from the infinitely many variables not contained in Ui−1. We show
that each Γ′

h is assumable. Conditions (A1) and (A2) are immediate. For the well-
foundedness of the �Γ′

h
relation, suppose, for contradiction, that . . .�Γ′

h
z2 �Γ′

h
z1 �Γ′

h
z0

is a descending sequence of variables. For any l ≥ 1, it holds that zl ∈ Vars(Γi−1)\{x}
(note that z0 may be one of the yi′j variables). For variables z, z′ ∈ Vars(Γi−1)\{x},
it holds that z′ �Γ′

h
z iff: either z′ �Γi−1 z; or z′ �Γi−1 x �Γi−1 z. Thus, it holds that

. . . �+
Γi−1

z3 �+
Γi−1

z2 �+
Γi−1

z1, contradicting the well-foundedness of �Γi−1 . So Γ′
h is

indeed assumable.
Next, suppose, for contradiction, that Γ′

h �b ∆′
h for each h. Then there exist finite

subsets Γ′′
h ⊆ Γ′

h and ∆′′
h ⊆ ∆′

h such that, each sequent Γ′′
h =⇒ ∆′′

h is derivable. Define

Γ†
i−1 = {J ∈ Γi−1 | for some h, J [rh(�p, �y)/x] ∈ Γ′′

h}
∆†

i−1 = {J ∈ ∆i−1 | for some h, J [rh(�p, �y)/x] ∈ ∆′′
h}

Γ′′′
h = Γ†

i−1[rh(�p, �y)/x] ∪ {pi′
ahi′j→ yi′j}1≤i′≤k

1≤j≤mhi
∪ {pi′

bhi′j
� }1≤i′≤k

1≤j≤nhi′

∆′′′
h = ∆†

i−1[rh(�p, �y)/x]

Then Γ†
i−1 and ∆†

i−1 are both finite sets (because, for any assertion K, there are only
finitely many assertions J that satisfy J [rh(�p, �y)/x] = K). Thus Γ′′′

h and ∆′′′
h are also

finite. Also Γ†
i−1, f(p1, . . . , pk)

c→x is assumable because it is a subset of Γi−1, and Γ′′′
h

is assumable because it is a subset of Γ′
h. Moreover, Γ′′′

h ⊇ Γ′′
h and ∆′′′

h ⊇ ∆′′
h. So, each

sequent Γ′′′
h =⇒ ∆′′′

h is derivable, by the admissibility of weakening. However, together
these sequents form the premises for an application of the (f c→L) rule, with concluding

25

sequent Γ†
i−1, f(p1, . . . , pk)

c→x =⇒ ∆†
i−1. Because Γ†

i−1, f(p1, . . . , pk)
c→x ⊆ Γi−1 and

∆†
i−1 ⊆ ∆i−1, it follows that Γi−1 �b ∆i−1, which contradicts the induction hypothesis.

We have shown that there exists h such that Γ′
h ��b ∆′

h. Thus (Γi, ∆i, σi, Di) is
well-defined with, for a chosen such h,

Γi = Γ′
h σi = z �→ (σi−1(z))[rh(�p, �y)/x]

∆i = ∆′
h Di = Di−1 ∪ {x}.

We have already established that Γi is assumable, and we have ensured that Γi ��b ∆i.
Also Ui = Ui−1 ∪ {yi′j}1≤i≤k

1≤j≤mhi
, so clearly there are infinitely many variables not in Ui.

This completes case 1.
Case 2: τi = (f(p1, . . . , pk)

c→ rh(�p, �q), �q, h), where 1 ≤ h ≤ lfc. We have
f(p1, . . . , pk)

c→rh(�p, �q) ∈ ∆i−1 where Vars(�q) ⊆ Vi−1. For each i′, j with 1 ≤ i′ ≤ k and
1 ≤ j ≤ mhi′ define:

Γ′
i′j = Γi−1 ∆′

i′j = ∆i, pi′
ahi′j→ qi′j .

Also, for each i′, j with 1 ≤ i′ ≤ k and 1 ≤ j ≤ nhi′ define:

Γ′′
i′j = Γi−1 ∆′′

i′j = ∆i, pi′
bhi′j
�

By the induction hypothesis, each Γ′
i′j and ∆′′

i′j is assumable.
Suppose, for contradiction, that Γ′

i′j �b ∆′
i′j and Γ′′

i′j �b ∆′′
i′j , in every case. Then,

using the admissibility of weakening, as in the treatment of case 1 above, we have,
by an application of the (f c→R)h rule, that Γi−1 �b ∆i−1, contradicting the induction
hypothesis.

Thus: either Γ′
i′j ��b ∆′

i′j for some i′, j with 1 ≤ i′ ≤ k and 1 ≤ j ≤ mhi′ ; or
Γ′′

i′j ��b ∆′′
i′j for some i′, j with 1 ≤ i′ ≤ k and 1 ≤ j ≤ nhi′ . In the first case,

(Γi, ∆i, σi, Di) is well-defined with Γi = Γ′
i′j and ∆i = ∆′

i′j for a chosen i′j such that
Γ′

i′j ��b ∆′
i′j . If the first case does not apply, then (Γi, ∆i, σi, Di) is well-defined with

Γi = Γ′′
i′j and ∆i = ∆′′

i′j for a chosen i′j such that Γ′′
i′j ��b ∆′′

i′j . In either case it holds
that Γi is assumable and Γi ��b ∆i. Also, because Vars(�q) ⊆ Vi−1, we have Ui = Ui−1.
So, by the induction hypothesis, there are indeed infinitely many variables not contained
in Ui. This completes the argument for case 2.

Remaining cases. These are similar, and are left to the reader. �

Lemma 5.3

1. Di ⊆ Ui and Di ⊆ Di+1.

2. z �∈ Di implies σi(z) = z.

3. z ∈ Ui implies Vars(σi(z)) ⊆ Vi.

26

4. Vars(Γi ∪ ∆i) ⊆ Vi.

5. If j ≥ i then σj = σj ◦ σi.

6. If j ≥ i and J ∈ Γi then either σj(J) ∈ Γj or J is p
c→x with x ∈ Dj.

7. If j ≥ i and J ∈ ∆i then σj(J) ∈ ∆j.

PROOF. Statements (1)–(4) are proved by induction on i. We omit the easy arguments.
Statements (5)–(7) are proved by induction on j − i.

For (5), suppose j − i = 0. If z �∈ Ui then σi(z) = z, by (1) and (2), so σi(σi(z)) =
σi(z). If z ∈ Ui then, by (3), σi(z) ∈ Vi = Ui\Di, so, by (2), σi(σi(z)) = σi(z). Thus
indeed σi ◦ σi = σi.

If j − i > 0 then we have σj−1 ◦ σi = σj−1, by the induction hypothesis. In the case
that σj = σj−1, the result is immediate. Otherwise σj(z) = σj−1(z)[rh(�p, �y)/x] for some
term rh(�p, �y) and variable x. So:

σj(σi(z)) = σj−1(σi(z))[rh(�p, �y)/x] = σj−1(z)[rh(�p, �y)/x] = σj(z).

Thus indeed σj ◦ σi = σj .
For (6), suppose J ∈ Γi. By (4), Vars(J) ⊆ Vi. Thus, by (2), σi(J) = J . Thus the

base case, j = i, is trivial.
If j − i > 0 then, by the induction hypothesis, either σj−1(J) ∈ Γj−1 or J is p

a→ z
with z ∈ Dj−1. In the latter case z ∈ Dj and we are done. In the former, we have
σj−1(J) ∈ Γj−1, and we may assume that J is not of the form p

a→ z with z ∈ Dj−1.
There are now many subcases. If σj = σj−1 then, however Γj is constructed, we have
Γj−1 ⊆ Γj . So indeed σj(J) ∈ Γj . Otherwise we have σj = z �→ (σj−1(z))[rh(�p, �y)/x]
and Dj = Dj−1 ∪ {x}. There are now three possibilities. If J is of the form p

a→x, then
we have x ∈ Dj as required. The second possibility is that J is p

a→z for some z �= x. By
the earlier assumption, z �∈ Dj−1 hence σj−1(z) = z �= x. Thus σj−1(p) a→z ∈ Γj−1 and
so σj−1(p)[rh(�p, �y)/x] a→z ∈ Γj , i.e. indeed σj(J) ∈ Γj . The third possibility is that J is
not an action assertion. In this case, we have immediately that σj−1(J)[rh(�p, �y)/x] ∈ Γj ,
i.e. σj(J) ∈ Γj . This proves statement (6).

The proof of statement (7) is similar, but easier. �
We now define the required model Tc. We write Dω for

⋃
i Di and Uω for

⋃
i Ui.

Define Vω = Uω\Dω. The model Tc is determined as the unique model such that:
|Tc| = {p | Vars(p) ⊆ Vω}; the operators are interpreted using the term algebra structure;
and x

a→TC
q holds if and only if, for almost all j, it holds that x

a→ q ∈ Γj (in which
case q must be a process variable). The existence and uniqueness of Tc is guaranteed by
Proposition 3.2.

To define the required environment γc takes some work. The crucial fact here is that
the sequence (σi) of substitution functions converges to a limiting substitution function,

27

see Lemma 5.7 below. In order to prove this, it is useful to assign ordinals < ωω to
process terms. Recall that any such ordinal has a unique normal form

ωl.nl + · · · + ω.n1 + n0, (6)

where l, nl, . . . , n0 are natural numbers with nl > 0 or l = 0. The order relation on such
ordinals is given by ωl.nl + · · · + ω.n1 + n0 > ωl′ .n′

l′ + · · · + ω.n′
1 + n′

0 iff: either l > l′;
or l = l′ and nm > n′

m where m ≤ l is the greatest number such that nm �= n′
m. We

recall some basic operations of ordinal arithmetic. For an ordinal α with normal form
(6) above, the ordinals α + 1, α + ω and ω.α, using the standard non-commutative
ordinal operations, have normal forms:

α + 1 = ωl.nl + · · · + ω.n1 + (n0 + 1)

α + ω = ωl.nl + · · · + ω.(n1 + 1) + 0

ω.α = ωl+1.nl + · · · + ω2.n1 + ω.n0 + 0.

To each term p we assign an ordinal |p|i < ωω, depending on the structure of Γi. The
assignment is defined by:

|x|i =

{
0 if there is no assertion p

a→x in Γi

ω.|p|i if p
a→x ∈ Γi

|f(p1, . . . , pk)|i = max(|p1|i, . . . , |pk|i) + 1.

This is easily shown to be well-defined using the well-foundedness of �Γi . In particular,
when defining |x|i in the case that p

a→x ∈ Γi, we are given, by the induction hypothesis,
that |y|i is defined for all variables y occurring in p, hence |p|i is indeed defined.

Lemma 5.4 For any term p(x1, . . . , xk):

1. |ql|i ≤ |p(q1, . . . , qk)|i for each l ∈ {1, . . . , k}.
2. |p(q1, . . . , qk)|i < max(|q1|i, . . . , |qk|i) + ω.

3. If |ql|i ≤ |q′l|j, for all l ∈ {1, . . . , k}, then |p(q1, . . . , qk)|i ≤ |p(q′1, . . . , q′k)|j.
PROOF. By easy inductions on the structure of p. �

The next lemma is the reason for the particular choice of ordinal assigment.

Lemma 5.5 If x ∈ Di+1\Di, with σi+1(x) = rh(�p, �y), then the following hold.

1. |rh(�p, �y)|i+1 < |x|i.
2. If z ∈ Vi then |z[rh(�p, �y)/x]|i+1 ≤ |z|i.

28

PROOF. If x ∈ Di+1\Di, with σi+1(x) = rh(�p, �y), then there is some assertion
f(p1, . . . , pk)

c→x in Γi. So

Γi+1 = (Γi\{f(p1, . . . , pk)
c→x})[rh(�p, �y)/x] ∪
{pi′

ahi′j→ yi′j}1≤i′≤k
1≤j≤mhi

∪ {pi′
bhi′j
� }1≤i′≤k

1≤j≤nh′ .

Define V = {z | z�+
Γi

x}. By the well-foundedness of �Γi , we have x �∈ V . We show that,
for any process term p with Vars(p) ⊆ V , it holds that |p|i+1 = |p|i. To see this, observe
that if z ∈ V and p

a→ z ∈ Γi then Vars(p) ⊆ V , so p
a→ z ∈ Γi+1. Conversely, suppose

that z ∈ V and p
a→z ∈ Γi+1. Then z is not any of the yi′j , because these are not in Ui,

so not in V . Thus p must be p′[rh(�p, �y)/x] where p′ a→z ∈ Γi. But then Vars(p′) ⊆ V , so
p′ = p′[rh(�p, �y)/x] = p. Thus p

a→z ∈ Γi. We have shown that if y ∈ V then p
a→y ∈ Γi

if and only if p
a→y ∈ Γi+1. It is now straightforward from the definitions of | · |i+1 and

| · |i that Vars(p) ⊆ V implies |p|i+1 = |p|i.
To prove statement (1), suppose that max(|p1|i, . . . , |pk|i) has the normal form

ωl.nl + · · · + ω.n1 + n0. Then

|x|i = ω.(max(|p1|i, . . . , |pk|i) + 1) = ωl+1.nl + · · · + ω2.n1 + ω.(n0 + 1) + 0.

By the fact shown above, we have |pi′ |i = |pi′ |i+1 for each i′ ∈ {1, . . . , k}. Thus, for each
yi′j , we have

|yi′j |i+1 = ω.|pi′ |i+1 = ω.|pi′ |i ≤ ωl+1.nl + · · · + ω2.n1 + ω.n0 + 0.

Clearly, we also have

|pi′ |i+1 = |pi′ |i ≤ ωl+1.nl + · · · + ω2.n1 + ω.n0 + 0.

So, by Lemma 5.4(2),

|rh(�p, �y)|i+1 < max({|p1|i+1, . . . , |pk|i+1} ∪ {|yi′j′ |i+1}1≤i′≤k
1≤j≤mhi

) + ω

≤ (ωl+1.nl + · · · + ω2.n1 + ω.n0 + 0) + ω

= ωl+1.nl + · · · + ω2.n1 + ω.(n0 + 1) + 0
= |x|i.

Thus indeed |rh(�p, �y)|i+1 < |x|i.
Statement (2) is proved by induction over the well-founded relation �Γi . There are

three possibilities for |z[rh(�p, �y)/x]|i+1.
In the first case, z = x, in which case |z[rh(�p, �y)/x]|i+1 = |rh(�p, �y)|i+1 < |x|i = |z|i,

by statement (1).
In the second case, z �= x and z does not appear in any assertion q

a→z in Γi+1. Then
z does not appear in any assertion q′ a→z in Γi, for otherwise q′[rh(�p, �y)/x] a→z would be
in Γi+1. Thus we have

|z[rh(�p, �y)/x]|i+1 = |z|i+1 = 0 = |z|i.

29

In the third case, z �= x and z does appear in some assertion q
a→ z in Γi+1. As z ∈ Vi,

it is not equal to any of the yi′j , so there must be an assertion q′ a→ z ∈ Γi with q =
q′[rh(�p, �y)/x]. For each z′ ∈ Vars(q′), we have z′ �Γi z, so, by the induction hypothesis,
|z′[rh(�p, �y)/x]|i+1 ≤ |z′|i. Then, by Lemma 5.4(3), we have |q′[rh(�p, �y)/x]|i+1 ≤ |q′|i, i.e.
|q|i+1 ≤ |q′|i. But then

|z[rh(�p, �y)/x]|i+1 = ω.|q|i+1 ≤ ω.|q′|i = |z|i.
Thus, in all three cases, |z[rh(�p, �y)/x]|i+1 ≤ |z|i. �

Lemma 5.6 If x ∈ Vi and i ≤ j then |σj(x)|j ≤ |x|i.

PROOF. By induction on j − i. When j = i, by Lemma 5.3(2), σj(x) = x. If j − i > 0
then, by the induction hypothesis, |σj−1(x)|j−1 ≤ |x|i.

If σj = σj−1, then it is easily checked that each possible case for the definition of Γj

has the property that |z|j = |z|j−1 for all z ∈ Vj−1. Thus, by Lemma 5.4(3), for all p with
Vars(p) ⊆ Vj−1, we have |p|j = |p|j−1. So |σj(x)|j = |σj−1(x)|j = |σj−1(x)|j−1 ≤ |x|i.

Alternatively, there exists z ∈ Dj\Dj−1, with σj(x) = σi(x)[rh(�p, �y)/z] By Lemma 5.5(2),
we have, for each z′ ∈ Vars(σj−1(x)) that |z′[rh(�p, �y)/z]|j ≤ |z′|j−1. So, by Lemma 5.4(3),
|σj−1(x)[rh(�p, �y)/z]|j ≤ |σj−1(x)|j−1. Therefore |σj(x)|j = |σj−1(x)[rh(�p, �y)/z]|j ≤
|σj−1(x)|j−1 ≤ |x|i.

Thus indeed |σj(x)|j ≤ |x|i. �

Lemma 5.7 For every variable x, there exists j such that σj′(x) = σj(x) for all j′ ≥ j.

PROOF. For x �∈ Uω, the statement is trivial. Otherwise we prove: for all ordinals
α < ωω, and all x ∈ Uω, if there exists i with x ∈ Vars(Γi ∪∆i) and |x|i = α then there
exists jx such that σj′(x) = σjx(x) for all j′ ≥ jx. The proof is by transfinite induction
on α. Suppose that x ∈ Vars(Γi ∪ ∆i) and |x|i = α. There are two cases.

If x �∈ Dj for all j, then the result is trivial, as σj(x) = x for all j.
Otherwise, x ∈ Dj+1\Dj for some j. Moreover, j ≥ i because, by Lemma 5.3(4),

for j′ > j, we have x �∈ Vars(Γ′
j ∪ ∆j′). By, Lemma 5.6, we have |x|j ≤ |x|i = α. Also,

σj+1(x) = rh(�p, �y). By, Lemmas 5.4(1) and 5.5(1), for all z ∈ Vars(rh(�p, �y)), we have
|z|j+1 ≤ |rh(�p, �y)|j+1 < |x|j ≤ α. So, by the induction hypothesis, for each such variable
z, there exists jz such that σj′(z) = σjz(z) for all j′ ≥ jz. There are only finitely many
variables z1, . . . , zm in Vars(rh(�p, �y)). Define jx = max(jz1 , . . . , jzm , j + 1). Take any
j′ ≥ jx. We must show that σj′(x) = σjx(x).

For all variables z ∈ Vars(rh(�p, �y)), it holds that σj′(z) = σjx(z). So, as σj′ and σjx

are homomorphisms, σj′(rh(�p, �y)) = σjx(rh(�p, �y)). Moreover, because j′ ≥ j+1, we have
σj′ = σj′ ◦ σj+1, by Lemma 5.3(5). Thus indeed:

σj′(x) = σj′(σj+1(x)) = σj′(rh(�p, �y)) = σjx(rh(�p, �y)) = σjx(σj+1(x)) = σjx(x).

�

30

Lemma 5.7 allows us to define the limiting substitution function, σω, by:

σω(x) = the unique p such that σi(x) = p for almost all i.

Lemma 5.8

1. z �∈ Dω implies σω(z) = z.

2. z ∈ Uω implies Vars(σω(z)) ⊆ Vω.

3. σω = σω ◦ σi.

4. If J ∈ Γi then either σω(J) ∈ Γj for almost all j, or J is p
a→x with x ∈ Dω.

5. If J ∈ ∆i then σω(J) ∈ ∆j for almost all j

PROOF. All statements follow easily from the definition of σω, using the analogous
statements for the various σi in Lemma 5.3. �

We can now finally define the required environment. Define γc(x) to be σω(x) if
x ∈ Uω and an arbitrary element of |Tc| otherwise. This is indeed an environment for
Tc, by Lemma 5.8(2) above.

It follows immediately from the lemma below that Γ0 �|= ∆0. This lemma thus
completes the proof of Theorem 2.

Lemma 5.9

1. J ∈ Γi implies Tc |=γc J .

2. J ∈ ∆i implies Tc �|=γc J .

PROOF. First the lemma is proved for assertions p
c→ q and p

c
�, by induction on the

structure of σω(p).
Case 1: p

c→x ∈ Γi. If x �∈ Dω then, by Lemma 5.8(1&4), it holds that σω(p) c→x ∈
Γj for almost all j ≥ i. But then σω(p) must be a variable y, as otherwise for some τj

of the form (σω(p) c→x, ε, 0) we would have x ∈ Dj+1, a contradiction. So y
c→Tc x, by

the definition of Tc. Thus indeed Tc |=γc p
c→x.

Otherwise, if x ∈ Dω then for some j ≥ i, we have x ∈ Dj+1\Dj . Thus, by
Lemma 5.3(6), σj(p) c→ x ∈ Γj and τj = (σj(p) c→ x, ε, 0) where σj(p) has the form
f(p1, . . . , pk). So, for some h, we have

{pi′
ahi′j→ yi′j}1≤i′≤k

1≤j≤mhi′
∪ {pi′

bhi′j
� }1≤i′≤k

1≤j≤nhi′
⊆ Γj+1.

By Lemma 5.8(3), σω(p) = σω(σj(p)) = f(σω(p1), . . . , σω(pk)). So, by the induction

hypothesis, Tc |=γc pi′
ahi′j→ yi′j and Tc |=γc pi′

bhi′j
� , for all appropriate i′, j. Then,

31

as Tc is a model of R, we have Tc |=γc f(p1, . . . , pk)
c→ rh(�p, �y). By Lemma 5.8(3),

γc(x) = σω(x) = σω(σj+1(x)) = σω(rh(�p, �y)). Thus indeed Tc |=γc p
c→x.

Case 2: p
c→ r ∈ ∆i. By Lemma 5.8(5), σω(p) c→ σω(r) ∈ ∆j for almost all j.

Suppose, for contradiction, that Tc |=γc p
c→r, i.e. that σω(p) c→Tc σω(r).

If σω(p) is a variable x then x
c→Tc σω(r), so, by the definition of Tc, we have that

σω(r) is a variable y and x
c→y ∈ Γj for almost all j. But, for almost all j, we also have

x
c→y ∈ ∆j . Thus, by the (c→Ax) rule, Γj �b ∆j for almost all j, a contradiction.
If σω(p) = f(p1, . . . , pk) then f(p1, . . . , pk)

c→Tc σω(r). So there exist h and �q, with
Vars(�q) ⊆ Vω, such that σω(r) = rh(�p, �q) and:

1. for all i′, j′ with 1 ≤ i′ ≤ k and 1 ≤ j′ ≤ mhi′ , pi′
ahi′j′→ Tc qi′j′ ; and

2. for all i′, j′ with 1 ≤ i′ ≤ k and 1 ≤ j′ ≤ nhi′ , pi′
bhi′j′
� Tc .

Now σω(p) c→σω(r) ∈ ∆j and Vars(�q) ⊆ Vj , for almost all j. So for some τj =

(σω(p) c→ σω(r), �q, h) it holds that either pi′
ahi′j′→ qi′j′ ∈ ∆j+1 or pi′

bhi′j′
� ∈ ∆j+1 for

some suitable i′, j′. Then, by the induction hypothesis, either Tc �|=γc pi′
ahi′j′→ qi′j′ or

Tc �|=γc pi′
bhi′j′
� . Thus either way contradicts 1 or 2 above.

We have shown that Tc |=γc p
c→r, whatever the structure of σω(p). This completes

case 2.
Remaining cases. There are two more cases: one for assertions p

c
�∈ Γi and one

for assertions p
c

�∈ ∆i. These are proved using similar, though easier, arguments to
the above.

Having now established the lemma for action and inaction assertions, it remains to
deal with logic assertions p : A. For such assertions, the proof is by induction on the
structure of A.

Case 1: p : 〈a〉A ∈ Γi. For almost all j we have σω(p) : 〈a〉A ∈ Γj . Thus for some
τj = (σω(p) : 〈a〉A, ε, 0) we have {σω(p) a→x, x : A} ⊆ Γj+1. Then Tc |=γc σω(p) a→x and
Tc |=γc x :A, the latter by the induction hypothesis. So Tc |=γc p : 〈a〉A.

Case 2: p : 〈a〉A ∈ ∆i. For almost all j we have σω(p) : 〈a〉A ∈ ∆j . Suppose, for
contradiction, that Tc |=γc p : 〈a〉A. Thus there exists q with Vars(q) ⊆ Vω, such that
σω(p) a→Tc q and Tc |=γc q : A. For almost all j, Vars(q) ⊆ Vj . Thus for some τj of the
form (σω(p) : 〈a〉A, q, 1) we have that either q : A ∈ ∆j+1 or σω(p) a→ q ∈ ∆j+1. In the
first case, by the induction hypothesis, Tc �|=γc q : A. In the second case Tc �|=γc σω(p) a→q,
i.e. σω(p) � a→Tc q. Either alternative contradicts the selection of q. Thus indeed Tc �|=γc

p : 〈a〉A.
Remaining cases. The cases for the propositional connectives are straightforward,

and thus omitted. �

32

6 The intended model and ω-completeness

The completeness theorem is relative to entailment over the class of all models of R.
Usually one is interested in truth in the intended model TR, defined after Proposition 3.2.
In this section we give conditions under which useful forms of completeness do indeed
hold relative to TR.

The first such completeness theorem is motivated by the fact, remarked upon after
Proposition 3.4, that, in any model, the state interpreting a closed process p is bisimilar
to the state p in TR. As we shall see, the proof system is complete for deriving the
truth in TR of sequents containing only closed process terms. Actually, a stronger result
holds. It is enough that every process variable in a sequent is forced to represent a state
interpreting a closed process. A simple syntactic condition guarantees that this is the
case. We say that a pair of sets of assertions, (Γ, ∆), is closed generated if Γ is assumable
and also every variable x ∈ Vars(Γ ∪ ∆) appears in an assertion of the form p

a→x ∈ Γ.
This condition ensures that each minimal variable x under �Γ appears in an assertion
of the form p

a→x ∈ Γ where p is closed, and thus, by the well-foundedness of �Γ, each
variable is a descendent of a closed process term.

Theorem 3 If (Γ, ∆) is closed generated and Γ |=TR ∆ then Γ � ∆.

Here, in view of Corollary 1, we write Γ � ∆ to mean Γ �b ∆ or Γ �f ∆.
PROOF. Suppose that (Γ0, ∆0) is closed-generated and Γ0 �� ∆0. Let Tc be the model
constructed in the proof of Theorem 2. By Lemma 5.9, we have Γ0 �|=Tc ∆0. We use the
construction of Tc from Section 5 to show that Tc = TR.

First, observe that, by a straightforward induction on i, each (Γi, ∆i) is closed-
generated. One then proves easily, by well-founded induction on �Γi that, for each
x ∈ Vars(Γi ∪ ∆i), it holds that |x|i > 0, where |x|i is the ordinal assigned in Section 5.

Next, we show that x ∈ Uω implies that σω(x) is closed. Suppose for contradiction
that there exists some x ∈ Uω such that Vars(σω(x)) �= ∅. Using the ordinal assigment,
select x and i with |x|i minimal such that x ∈ Vars(Γi ∪ ∆) and Vars(σω(x)) �= ∅. As
(Γi, ∆i) is closed-generated, there is some assertion q

c→x ∈ Γi. By Lemma 5.8(4): either
(i) x ∈ Dω; or (ii) σω(q) c→x ∈ Γj for almost all j.

In case (i), there exists j ≥ i such that x ∈ Dj+1\Dj , where σj(q)
c→ x ∈ Γi

and σj+1 = z �→ (σj(z))[rh(�p, �y)/x]. By Lemmas 5.4(1), 5.5(1), and 5.6, for each
z ∈ Vars(rh(�p, �y), we have

|z|j+1 ≤ |rh(�p, �y)|j+1 < |x|j = |σj(x)|j ≤ |x|i.
By the minimality assumption on |x|i, for each such z, it holds that σω(z) is closed.
Thus σω(rh(�p, �y)) is closed. By Lemma 5.8(3), we have

σω(x) = σω(σj+1(x)) = σω(rh(�p, �y).

Thus σω(x) is closed, contradicting the choice of x.

33

In case (ii), σω(q) c→ x ∈ Γj for almost all j, and x �∈ Dω. Then σω(q) must be
a variable y, as otherwise for some τj of the form (σω(p) c→ x, ε, 0) we would have
x ∈ Dj+1, a contradiction. Therefore q is itself a variable z, with σω(z) = y. But then,
by the definition of the ordinal assignment, |x|i = ω.|z|i > |z|i, with the latter inequality
because 0 < |z|i < ωω. Thus, by the minimality assumption on |x|i, we have σω(z) is
closed, contradicting σω(z) = y.

We have proved that, for every x ∈ Uω, it holds that Vars(σω(x)) is closed. Therefore,
by Lemma 5.8(1), Uω = Dω. Thus Vω = ∅. So |Tc| is the set of closed processes. By
Proposition 3.2, it follows that Tc = TR. Thus indeed Γ0 �|=TR ∆0. �

Given Theorems 1 and 2, an equivalent statement to Theorem 3 is that, when (Γ, ∆)
is closed-generated, then Γ |=TR ∆ implies Γ |= ∆. It is interesting to note that condi-
tions (A1) and (A2) on the assumability of Γ are essential for this implication to hold.
For example, we have that a.0 a→0 + 0 |=TR but not that a.0 a→0 + 0 |=, because 0 and
0+0 have the same denotation in the model obtained by quotienting TR by bisimilarity.

The restriction to closed generated consequences does not fully exploit the expres-
sivity of sequents containing open terms. One would also like a completeness result
for sequents in which the variables need not derive from closed processes. Indeed such
sequents are used crucially to express the parametrized verification goals discussed in
Section 1. What we seek is a form of ω-completeness, i.e. completeness relative to all
environments interpreting process variables as closed processes in TR. In order to obtain
such a result, it is necessary to make some very mild expressivity assumptions on the
GSOS system R. Recall the definition of the transition system F of finite processes
from Section 3.

Definition 6.1 We say that R represents every finite process if, for every u ∈ F there
exists p ∈ TR such that u ∼ p.

To motivate this definition, let us consider what happens when R does not represent
every finite process. Accordingly, suppose that there exists some finite process u ∈ F for
which there is no p ∈ TR with u ∼ p. Let χ(u) be the characteristic formula of u, given
by Proposition 3.7(2). Then we have |=TR x :¬(χ(u)). However, clearly �� x :¬(χ(u))
because one can find models in which states bisimilar to u do exist. Thus ω-completeness
fails. Therefore, a necessary condition for ω-completeness, for even the simplest non-
closed-generated sequents, is that R represents every finite process. Surprisingly, this
turns out to be a sufficient condition for ω-completeness to hold for a very wide class of
sequents.

Theorem 4 (ω-completeness) Suppose that R represents every finite process. Then,
for finite Γ, ∆ such that Γ is assumable and ∆ contains no action assertions, Γ |=TR ∆
implies Γ � ∆.

The condition that R represents every finite process is rather mild. For example, it is
satisfied by any process algebra containing prefix, zero and sum.4

4These operators are assumed present in the definition of GSOS system in [5].

34

The restrictions on Γ and ∆ in Theorem 4 are necessary. The finiteness condition is
required because the consequence relation � is compact, whereas |=TR need not be. For
example, take R to be the GSOS containing just the prefix, zero and sum operators.
Then it holds that |=TR {x : [a]n⊥ | n ≥ 0}, but it is clear that �� {x : [a]n⊥ | n ≥ 0},
because one can find models containing processes able to perform infinite sequences of
a transitions. For an example showing why ∆ is required to contain no action assertion,
observe that it possible to construct a GSOS system, containing the prefix and zero
operators, that represents every finite process and in which the only closed process term
bisimilar to the zero process is 0 itself (so there is necessarily no sum operator). If R is
such a system then {x : [a]⊥ | a ∈ Act} |=TR a.0 a→x, but the corresponding sequent is
not provable, because one can find models in which there are two distinct states bisimilar
to 0. Note that this type of counterexample does not work for those GSOS systems in
which every finite process is represented by an infinite number of distinct closed terms
(such as any system with prefix, zero and sum). It seems possible that, for such systems,
ω-completeness might hold for arbitrary finite ∆.

Theorem 4 is proved by establishing that, under the conditions of the theorem,
Γ �|= ∆ implies Γ �|=TR ∆. Suppose then R represents every finite process and that we
have T and γ such that, for all J ∈ Γ, T |=γ J and, for all K ∈ ∆, T �|=γ K. We
must define a TR-environment γ′ such that, for all J ∈ Γ, TR |=γ′ J and, for all K ∈ ∆,
TR �|=γ′ K.

We shall define γ′ so that, for each x, it holds that γ′(x) ∼m γ(x) for some m de-
pending on x, using the m-th approximation to bisililarity from Section 3. To determine
m we assign a depth, d(p), to each process term p by:

d(x) =
{

d(p) + 1 if p
a→x ∈ Γ,

0 otherwise,

d(f(p1, . . . , pk)) = max{d(p1), . . . , d(pk)}.
It follows from the well-foundedness of �Γ that d(p) is well-defined. Define

n = max({d(p) + 1 | p
a→x ∈ Γ or p

a
� ∈ Γ ∪ ∆} ∪

{d(p) + md(A) | p :A ∈ Γ ∪ ∆}),
using the finiteness of Γ and ∆. By a trivial induction on the structure of terms, one
sees that, for any term p, it holds that n ≥ d(p).

Lemma 6.2 There exists a TR-environment γ′ such that:

1. γ′(p) ∼n−d(p) γ(p), and

2. p
a→y ∈ Γ implies γ′(p) a→TR γ′(y).

PROOF. For each m ∈ {0, . . . , n}, we define γ′(x) on variables x with d(x) = m,
assuming it already defined on variables y with d(y) < m. Moreover, we ensure that: (i)

35

property (1) holds for all p with Vars(p) ⊆ {y | d(y) ≤ m}; and (ii) property (2) holds
whenever d(y) ≤ m. Accordingly, let x be any variable with d(x) = m.

When m = 0, by Proposition 3.6(1), there exists a finite process u ∈ Fn such that
γ(x) ∼n u. Because R represents every finite process, there exists q ∈ TR such that
q ∼ u. By Proposition 3.3, it follows that q ∼n γ(x). Define γ′(x) = q. We thus have
γ′(x) ∼n−d(x) γ(x). Also note that there is no assertion p

a→x ∈ Γ because d(x) = 0.
When m > 0, we use as induction hypothesis that (i) holds when m is replaced

by m − 1. As d(x) > 0, we have p
a→ x ∈ Γ for some p. So γ(p) a→T γ(x). But

d(p) = d(x) − 1 so, for all y ∈ Vars(p), we have d(y) < m. Thus, by the induction
hypothesis, γ′(p) ∼n−(d(x)−1) γ(p), i.e. γ′(p) ∼(n−d(x))+1 γ(p). As γ(p) a→T γ(x), there
exists q ∈ |TR| such that γ′(p) a→TR q and q ∼n−d(x) γ(x). Define γ′(x) = q. Thus we
have γ′(x) ∼n−d(x) γ(x) and γ′(p) a→TR γ′(x)

We now have γ′ defined on all variables x with d(x) ≤ m. We must show that (i) and
(ii) hold. By the definition of γ′(x) above, we have ensured that γ′(x) ∼n−d(x) γ(x) and
also that p

a→x ∈ Γ implies γ′(p) a→TR γ′(x). It remains to show that γ′(p) ∼n−d(p) γ(p)
for any p with Vars(p) ⊆ {x | d(x) ≤ m}. Consider any such p. Then, for each
x ∈ Vars(p) we have γ′(x) ∼n−d(x) γ(x). But d(x) ≤ d(p) so also γ′(x) ∼n−d(p) γ(x).
Thus, by Proposition 3.4, indeed γ′(p) ∼n−d(p) γ(p). �

Lemma 6.3 For all J ∈ Γ, TR |=γ′ J and, for all K ∈ ∆, TR �|=γ′ K.

PROOF. We consider the various cases in turn.
If p

a→x ∈ Γ then, by Lemma 6.2(2), γ′(p) a→TR γ′(x), i.e. TR |=γ′ p
a→x.

If p
a
� ∈ Γ then T |=γ p

a
�, i.e. γ(p) a

�T . By Lemma 6.2(1), γ′(p) ∼n−d(p) γ(p). By
the definition of n, we have n−d(p) ≥ 1. Thus, γ′(p) ∼1 γ(p). It follows that γ′(p) a

�TR ,
i.e. TR |=γ′ p

a
�.

If p :A ∈ Γ then T |=γ p :A, i.e. γ(p) �T A. Therefore, by Lemma 6.2(1), γ′(p) ∼n−d(p)

γ(p). By the definition of n, we have n − d(p) ≥ md(A). Thus, γ′(p) ∼md(A) γ(p). So,
by Proposition 3.5, γ′(p) �TR A, i.e. TR |=γ′ p :A.

The cases for inaction and logic assertions in ∆ are similar to the corresponding
cases for Γ above. �

Lemma 6.3 states that Γ �|=TR ∆. This completes the proof of Theorem 4.
As far as we are aware, there is no precursor to Theorem 4 in the literature. The

closest work is that of Stirling, who, in his proof system for CCS [24], used special
sequents A, B � C for stating parametrized goals of the form x : A, y : B =⇒ x|y : C.
Using such sequents, Stirling obtained completeness for ordinary verification goals p :A.
However, he did not obtain the completeness of his proof system for the sequents
A, B � C. In our approach, sequents expressing parametrized goals arise in a uniform
way and are available for all process operators in the language. Moreover, Theorem 4
shows that our proof system is complete for establishing all such sequents.

36

7 Conclusions

Previous work on compositional proof systems for process algebras (see, e.g., [29, 24, 2])
has often involved ingenious ideas that work for the operators under consideration. In
this paper we have shown how such proof systems may be derived in a uniform way for
any GSOS system. Our use of GSOS systems may be seen as analogous to that of [1],
where it is shown how to derive complete equational axiomatizations of bisimilarity from
arbitrary GSOS rule specifications. In this paper, we have pursued a similar programme
for modal properties rather than equations.

Crucial to our approach is the use of a sufficiently expressive form of sequent, permit-
ting the incorporation of operational semantics into the proof rules. In addition to the
general completeness and cut-elimination theorems, a particularly important improve-
ment on previous work has been the proof of an ω-completeness theorem for a wide class
of sequents, including those expressing parametrized verification goals.

Regarding possible improvements to our work, there are several limitations inherent
in the use of GSOS systems. One is the restriction to a finite set of actions. There are
straightforward generalizations to infinite action sets which, however, involve the use of
infinitary rules. It would be interesting to develop a natural class of finitary rules for
dealing with infinite action sets, perhaps by using proof rules based on an algebra of
action terms. A further limitation is that we have not included a recursion operator
in the GSOS system. As remarked in [5], any process defined by guarded recursion
can be incorporated by including a new process constant for the process and giving it
explicit operational rules. However, it would be better to include direct proof rules for
guarded recursion in the sequent calculus. Although the definition of such an extension
of our proof system is not difficult, it seems a nontrivial task to extend our proof of
completeness to cover it, although in principle it should be possible to do so.

A severe practical limitation of our work is the use of Hennessy-Milner logic, which
is too weak to express interesting temporal properties of programs. Since the research in
this paper was first carried out, there has been significant progress on the extension of
the methods in this paper to richer logics, such as Kozen’s modal µ-calculus [16]. This
work is surveyed in Section 8 below.

More generally, the idea of deriving Gentzen-style rules from operational semantics
is by no means restricted to GSOS-specified process algebras. Indeed, since the research
in this paper was first carried out, there have been several applications to richer pro-
cess languages and other programming paradigms. Once again, these are surveyed in
Section 8 below.

8 Epilogue

The research in this paper was first presented at the 1995 IEEE Logic in Computer
Science conference, under the title: “Compositionality via cut-elimination: Hennessy-
Milner logic for an arbitrary GSOS” [22]. The choice of title was unfortunate, as the

37

slogan “compositionality via cut-elimination” is, to put it charitably, misleading. At the
time of the original conference submission (December 1994), I was failing to distinguish
between compositional and structural reasoning, and the original title was based on a
conflation of the two. By the time of the LICS conference (June 1995), I had realised
my mistake, and I publicly retracted the title during my talk. But that was too late for
the proceedings version! The introduction to the present paper presents what I believe
is a correct account of compositional and structural reasoning and their relationship
to sequent calculus. Thus, in spite of the title of [22], the cut rule is essential for
compositional verification.

Instead, the significance of the admissibility of cut is twofold. First, it demonstrates
that the left and right rules for process operators properly complement each other, and so
justifies the formulation of these rules. Second, it shows that structural reasoning alone
suffices to establish any goal. It is unclear, however, whether or not the admissibility of
cut can (or even should) be maintained in extensions of the proof system to richer logics
and programming languages (for example, the extensions discussed below). Indeed, even
if cut is not admissible in such systems, its admissibility in the system of this paper still
amounts to justification of the formulation of the rules. Of course, structural reasoning
is then no longer sufficient on its own. But this is rather a fact of life than a problem. As
discussed in Section 1, one anyway expects to use a combination of reasoning methods
in program verification.

The other main contributions of the original paper were:

1. The notion of GSOS model.

2. The use of sequent calculus as a formalism for process verification.

3. The derivation of proof rules from operational semantics.

4. The completeness and ω-completeness results.

We end by discussing these within the context of subsequent developments.
In [22], the notion of GSOS model was used purely as a technical tool, needed to

establish a general completeness result (Theorem 2 of the present paper). Nevertheless,
it seemed a natural notion. This was later substantiated by Turi and Plotkin in their
category-theoretic account of the operational and denotational semantics of GSOS sys-
tems [26, 27]. In their work, a GSOS system gives rise to a monad on the category
of transition systems with functional bisimulations as morphisms. The algebras of this
monad turn out to be exactly the GSOS models in the sense of Definition 3.1.

The idea of using sequent calculus for process verification was proposed indepen-
dently by Dam in [6], written at the same time as [22]. Dam was also concerned with
obtaining compositional proof systems allowing natural forms of reasoning. However, in
contrast to [22], Dam used the much more expressive modal µ-calculus of Kozen [16],
and concentrated on soundness results (which are nontrivial in that setting) rather than
completeness results (which are unachievable for the µ-calculus, see below).

38

There are two alternative approaches to extending the approach of this paper to the
modal µ-calculus. The most obvious is to include induction and coinduction rules for
least and greatest fixed points respectively. For example, natural proof rules for the
greatest-fixed-point operator are given by:

Γ, p :A[νX.A/X] =⇒ ∆

Γ, p : νX.A =⇒ ∆

Γ, x :B =⇒ x : A[B/X], ∆ Γ =⇒ p :B, ∆

Γ =⇒ p : νX.A, ∆

where, in the right-hand rule, x must not appear in the rule conclusion. The right-hand
rule is a coinduction rule, based on using a formula B, representing a post-fixed point
for the operator X �→ A, as a coinduction hypothesis. Dual rules are applicable to least
fixed points.

Unfortunately, such rules on their own appear too weak to establish any interesting
properties of processes. The problem is that the induction and coinduction hypotheses
required in practice, which often involve syntactic closure conditions on classes of pro-
cesses, are not expressible in the modal µ-calculus. In his MSc dissertation [4], Beattie
showed that by moving to a first-order µ-calculus, including processes as terms, such in-
duction and coinduction rules can be used to prove interesting properties, including use-
ful parametrized verification goals. However, there are two drawbacks to this approach.
First, the proofs using induction and coinduction turn out to be long and awkward.
Second, moving to a first-order logic with process terms amounts to a paradigm shift
from an endogenous logic to an exogenous logic, in the sense of Pnueli [18]. In endoge-
nous logics, such as Hennessy-Milner logic and the modal µ-calculus, the language of
properties (logical formulas) is independent of the language of programs (process terms).
One would like proof systems for such logics to maintain this desirable separation.

The second approach to including fixed-points in the logics is to adopt a tableau-
based approach to derivations, influenced by local model checking [25]. Under this
approach, one simply includes unfolding rules for fixed points, e.g.

Γ, p : A[νX.A/X] =⇒ ∆

Γ, p : νX.A =⇒ ∆

Γ =⇒ p :A[νX.A/X], ∆

Γ =⇒ p : νX.A, ∆

The power of the method is achieved by identifying global combinatorial discharge con-
ditions on derivation trees, involving repetitions of sequents, that suffice for the con-
cluding sequent of a derivation to be valid. Such conditions do not require every leaf of
the derivation tree to be an axiom.

The adaptation of such tableau-based techniques to sequent calculus including cut
(required for compositionality) is nontrivial. Addressing this problem has been a main
concern of Dam [6, 7, 10]. In [10], Dam and Gurov suggest extending the modal µ-
calculus with primitives for explicit approximants of fixed points, implemented by adding
ordinal variables to the syntax. This approach has led to an elegant characterization
of sound discharge conditions in terms of Büchi automata over derivation trees [23]. In
related work, Schöpp and I have shown that explicit approximants can also be expressed

39

using a propositional extension of the modal µ-calculus with modalities for approximant
modification [20, 21]. These various extensions of the µ-calculus with explicit approxi-
mants all retain the desirable property of being endogenous logics.

When a proof system is formulated for an expressive temporal logic, such as the
modal µ-calculus, there is no hope of achieving a general completeness theorem, even
for basic sequents of the form =⇒ p : A with p a closed process. Indeed, whenever the
model checking problem, of whether p � A holds, is undecidable, completeness cannot
hold for any proof system in which derivable assertions are recursively enumerable,
because one would then be able to decide p � A via semidecision procedures for � p : A
and � p :¬A. Such undecidability, and hence incompleteness, results apply even to
simple process algebras containing parallel and recursion, such as BPP [11].

Because unqualified completeness results are unavailable, one instead seeks restricted
completeness results for cases in which such results are achievable in theory. Sequent
calculus has proved a successful platform for obtaining such results. The results of the
present paper deal comprehensively with the case in which the logic is restricted to
Hennessy-Milner logic. For the modal µ-calculus, sequent-based proof systems based
on tableau-style unfolding have yielded several restricted completeness theorems. By
a reduction to Walukiewicz’ completeness theorem for Kozen’s axiomatization of µ-
calculus validity [28], Dam and Gurov established completeness for sequents of the form
=⇒ x : A. Also, Dam showed that tableau-based methods yield completeness for the
model checking problem for finite state processes [6, 7]. Recently, Schöpp and I have
extended this latter result to important classes of infinite state processes: context-free
processes [19, 20] and pushdown processes [21].

Of equal importance to such theoretical completeness results is the question of prac-
tical completeness: does a proof system suffice to establish the verification goals needed
in practice? The only way to investigate this question is by means of case studies. Such
case studies have been carried out within adaptations of the sequent-based proof system
to richer process languages and other computational paradigms. For example, making
use of our general method of deriving proof rules from operational semantics, related
proof systems have been developed for the π-calculus [8], Erlang [9, 12] and JavaC-
ard [3]. As well as demonstrating the adaptability of the methods of the present paper,
this accumulating body of work does seem to confirm that sequent-based reasoning is a
viable approach to the formal verification of programs.

References

[1] L. Aceto, B. Bloom, and F. Vaandrager. Turning SOS rules into equations. Infor-
mation and Computation, 111:1–52, 1994.

[2] H.R. Anderson, C.P. Stirling, and G. Winskel. A compositional proof system for
the modal µ-calculus. In Proceedings of 9th IEEE Symposium on Logic in Computer
Science, pages 144–153, 1994.

40

[3] G. Barthe, D. Gurov, and M. Huisman Compositional Verification of Secure Applet
Interactions. In Proceedings of FASE’02, Springer LNCS 2306, pages 15–32, 2002.

[4] J. Beattie. A Sequent Calculus for Proving Properties of Processes. MSc disserta-
tion, School of Informatics, University of Edinburgh, 1997.

[5] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. J. Assoc.
Comput. Mach., 42:232–268, 1995.

[6] M. Dam. Compositional proof systems for model checking infinite state processes.
In International Conference on Concurrency Theory, pages 12–26, 1995.

[7] M. Dam. Proving properties of dynamic process networks. Information and Com-
putation, 140:95–114, 1998.

[8] M. Dam. Proof systems for π-calculus logics. In R. de Queiroz, editor, Logic for
Concurrency and Synchronisation. OUP, 2001.

[9] M. Dam, L. Fredlund, and D. Gurov. Toward parametric verification of open
distributed systems. In A. Pnueli H. Langmaack and W.-P. de Roever, editors,
Compositionality: the Significant Difference. Springer, 1998.

[10] M. Dam and D. Gurov. µ-calculus with explicit points and approximations. Journal
of Logic and Computation, 12:255–269, 2002.

[11] J. Esparza. Decidability of model-checking for infinite-state concurrent systems.
Acta Informatica, 34:85–107, 1997.

[12] L. Fredlund. A framework for reasoning about Erlang code. PhD Thesis, Swedish
Institute of Computer Science, 2001.

[13] G. Gentzen. Investigations into logical deduction. 1935. In M.E. Szabo, editor,
The collected papers of Gerhard Gentzen, pages 68–128. North Holland Publishing
Company, 1969.

[14] S. Graf and J. Sifakis. A modal characterization of observational congruence on
finite terms of CCS. Information and Control, 68:125–145, 1986.

[15] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
J. Assoc. Comput. Mach., 32:137–161, 1985.

[16] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27:333–354, 1983.

[17] R. Milner. Communication and Concurrency. Prentice Hall international series in
computer science. Prentice Hall, 1989.

41

[18] A. Pnueli. The temporal logic of programs. In Proceedings of 19th IEEE Symposium
on Foundations of Computer Science, pages 46–57, 1977.

[19] U. Schöpp. Formal verification of processes. MSc Dissertation, Division of Infor-
matics, University of Edinburgh, 2001.

[20] U. Schöpp and A.K. Simpson. Verifying temporal properties using explicit approx-
imants: completeness for context-free processes. In Proceedings of FOSSACS 2002,
Springer LNCS 2303, pages 372-386, 2002.

[21] U. Schöpp and A.K. Simpson. Verifying temporal properties using explicit approx-
imants: completeness for pushdown processes. In preparation, 2003.

[22] A.K. Simpson. Compositionality via cut-elimiation: Hennessy-Milner logic for an
arbitrary GSOS. In Proceedings of 10th IEEE Symposium on Logic in Computer
Science, pages 420–430, 1995.

[23] C. Sprenger and M. Dam A note on global induction mechanisms in a µ-calculus
with explicit approximations. In Proceedings of FICS’02, 2002.

[24] C.P. Stirling. Modal logics for communicating systems. Theoretical Computer
Science, 49:311–347, 1987.

[25] C.P. Stirling and D. Walker. Local model checking in the modal mu-calculus.
Theoretical Computer Science, 89:161–177, 1991.

[26] D. Turi. Functorial Operational Semantics and its Denotational Dual. PhD thesis,
Free University, Amsterdam, 1996.

[27] D. Turi and G.D. Plotkin. Towards a mathematical operational semantics. In
Proceedings of 12th IEEE Symposium on Logic in Computer Science, pages 280–
291, 1997.

[28] I. Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional µ-
calculus. Information and Computation, 157:142–182, 2000.

[29] G. Winskel. A complete proof system for SCCS with modal assertions. Fundamenta
Informaticae, IX:401–420, 1986.

42

