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Abstract

In algebraic quantum field theory the (inverse) temperature is shown
to be a macroscopic order parameter arising from the broken scale in-
variance associated with renormalization group to parametrize mutu-
ally disjoint thermal sectors.

This is accomplished in a mathematical formalism for the consistent
treatment of explicitly broken symmetries such as broken scale invari-
ance, on the basis of a clear-cut criterion for the symmetry breakdown
in a unified scheme for sectors proposed recently by the author.

1 Introduction

The purpose of the present paper is to give the explanation and the proof
of the following statement:

Theorem 1 In the standard setting up of algebraic quantum field theory,
the inverse temperature β := (βµβµ)1/2 is a macroscopic order parameter
for parametrizing mutually disjoint sectors in the thermal situation arising
from the broken scale invariance under the renormalization-group trans-
formations, where βµ is an inverse temperature 4-vector of a relativistic
KMS state ωβµ describing a thermal equilibrium in its rest frame.

This is obtained in my recent attempts to facilitate smooth accesses to the
mathematical methods of algebraic quantum field theory (QFT for short)
for their use in the actual problems in physics in such forms as

a) a mathematical formulation of explicitly broken symmetries such as
the above mentioned broken scale invariance, and,

b) an attempt for the mathematical understanding of mutual relations
among quantum, thermal and geometrical aspects embodied in QFT in var-
ious physical contexts involving such key notions as renormalization group
and order parameters, etc.

∗Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502,
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In the following the above two results crucial for the explanation of the
main theorem are shown to be naturally understood in a unified scheme
proposed in my recent projects for controlling the mutual relations between
the micro- and macroscopic aspects involved in quantum physics from the
viewpoint of superselection structures. For this purpose, first let me start
with a brief survey of the essence of the results obtained in [18], in combina-
tion with some standard basic materials and tools available in the algebraic
QFT necessary for our purpose.

The proposed scheme in [18] is meant for treating general sector struc-
tures on the basis of selection criteria. It has been extracted from a general
formulation of non-equilirium local states [5] and adapted to the discussions
of the sector structures arising from internal symmetries without and with
their spontaneous breakdown. In the original Doplicher-Roberts (DR) the-
ory [9], the global gauge group G of an internal symmetry and the field
algebra F consisting of G-non-singlet quantum fields ϕ̂i(x) are shown to be
recovered from the algebra A = FG of G-singlet observables in combination
with the data on states of physical relevance on A selected by the Doplicher-
Haag-Roberts (DHR) criterion [8] as states with localizable charges. Previ-
ously, this theory was satisfactorily formulated only in the cases with unbro-
ken symmetries, and its general significance was not properly understood
owing to its mathematical sophistication. In [18], such general essence ex-
tracted from this theory has been extended not only to the broken symme-
tries but also to such thermal situations as involving non-equilibrium local
states in QFT [5]; through these results a unified theoretical scheme to con-
trol micro-macro transitions is seen to emerge, on the basis of categorical
adjunctions as matching conditions between selected states and reference
states for comparison which are realized by ‘solving’ the selection criteria.
By these attempts, it has turned out that the proposed scheme allows one to
treat various different physical theories specialized to each specific domain
in nature, in quite a homogeneous and unified way, such as QFT in the
vacuum situation, statistical mechanics of quantum fields at finite tempera-
tures and their non-equilibrium states with non-trivial space-time dependent
structures and behaviours in the following forms:

1. DHR-DR superselection theory [8, 9] and its reformulation [18],

2. extension to the situations with a spontaneously broken internal sym-
metry [18],

3. general formulation of non-equilibrium local states in QFT [5, 16, 17].

According to a suitable choice of a selection criterion, we select all the
physical states of relevance to each physical domain or aspects of interest
to be described theoretically, from the set of all generic states on the net of
quantum local observables or the algebra of quantum fields. The meaningful
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choices of the selection criteria have turned out (see [18]) to involve some
standard reference systems, such as the group dual Ĝ in the above case
of DHR-DR superselection theory controlling the mutual relations between
the observable algebra A = FG with a specified family T of physical states
with localizable charges and the non-commutative dynamical system F �

G with the group of internal symmetry G = Gal(F/A) given as a Galois
group. In the case of non-equilibrium local states, such a role is played
by the space BK of thermodynamic parameters (β, µ) and that M+(BK) of
probability measures ρ on BK describing the fluctuations of (β, µ). Through
the comparison of a generic unknown state ω with members of standard
states ωρ = C∗(ρ) equipped with parameters ρ belonging to the reference
system, we can judge whether ω satisfies the criterion or not. If the selection
criterion and the standard reference system are suitably set up, we can solve
an “inverse” of a map C∗ (c→q channel) from the reference system to the
set of generic quantum states as a kind of “left adjoint” (q→c channel) in
the categorical adjunction which provides us with the interpretation of a
generic selected state ω in terms of the vocabulary of the standard known
object ρ belonging to the reference system. Here what plays crucial roles
is the relation (Sec.3) between the superselection sectors arising from the
classification of states and representations of the algebra of quantum physical
variables and the spectrum of the centre (of the universal representation
containing all the selected relevant ones), the latter of which plays the roles
of macroscopic order parameters to distinguish among different sectors on
the basis of their mutual disjointness.

If this kind of machinery works appropriately, then it will allow us to
analyze in terms of the selection criteria the mutual relations among differ-
ent theories to describe different physical domains or aspects, on the basis
of which we can attain a framework to allow one specific form of a theory
adapted to a fixed scale region in the physical world to be freely transferred
to another one, according to the changes in length scales and aspects rel-
evant to the problems in question. At this point, however, we note that
all the above results are obtained in the essential use of the basic notions
and mathematical techniques developed on the notions of vacuum states
(characterized by the spectrum condition) and/or KMS states (based on
the KMS condition), which have been adopted as they stand without being
re-viewed from the novel viewpoint of the proposed scheme. Namely, one of
the most important family of KMS states (including the vacuum states as a
special case of β =∞ or T = 0) as standard reference systems has been left
untouched without having acquired a physically natural reformulation. It is
clear that we cannot attain the aim of a unified scheme in a self-consistent
way unless this family is successfully incorporated in the framework briefly
explained above.

For this purpose, we start to approach to this question by examining the
geometric and algebraic meanings of the temperatures, asking ourselves a
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question, “Is a temperature a priori parameter or physical quantity?”. As
will be examined in the next section, the most useful hint can be found in
the famous Takesaki theorem [22] showing the mutual disjointness ωβ1

�◦ωβ2

between KMS states at different temperatures, β1 �= β2, for a quantum
C*-dynamical system with type III representations in its KMS states.

The general and physical meanings contained in the mathematical no-
tions of disjointness will be explained in Sec.3 in combination with the re-
lated important and basic notions such as quasi-equivalence of representa-
tions, folia and the role of the spectrum of the centre in classifying mutually
disjoint representations and states. On the basis of these preparations, the
criterion for symmetry breakdown is presented in Sec.4. To adapt the above
ingredients to the situation with the broken scale invariance in thermal sit-
uations, an augmented algebra as a composite system of a genuine quantum
system and a classical macroscopic system is constructed in Sec.5 to ac-
commodate spontaneously and/or explicitly broken symmetries unifying the
viewpoint presented in Sec.4 and the notion of scaling nets and algebras due
to Buchholz and Verch [6]. In use of the mappings to relate states on the
original quantum system and the augmented one, the claimed result on the
role of (inverse) temperature as an order parameter of broken scale invari-
ance is proved in Sec.6. The final section summarizes these consequences
and briefly mentions the related interesting problems in this context to be
further investigated.

2 Temperature: a priori parameter or physical
quantity?

When an object in thermal equilibrium with respect to its rest frame is
moving relative to our frame, we observe in it such non-equilibrium features
as heat current just for the kinematical reason. This means that the thermal
equilibrium is meaningful only in reference to the frame in which the object
is at rest, and it can be shown [14] to imply the spontaneous breakdown of
Lorentz boost symmetry in the context of (special-)relativistic QFT. In this
situation, a Lorentz 4-vector βµ of inverse-temperature is shown to be a key
member of necessary parameters for specifying a thermal equilibrium state:

βµ = βuµ ∈ V+, β := (βµβµ)1/2 = (kBT )−1, (1)

where V+ denotes the (open) forward lightcone in the Minkowski space de-
fined by V+ := {(xµ) ∈ R4;x · x = x0x0 − �x · �x > 0, x0 > 0}, and kB

and T are the Boltzmann constant and a temperature, respectively. Such a
thermal state ω(βµ) parametrized by βµ is shown [3] to be characterized by
a relativistic KMS condition, a relativistic extension of the standard KMS
condition [2], and will be called a relativisitc KMS state or simply a KMS
state hereafter.
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From the above explanation, the timelike unit vector uµ := βµ/β (uµuµ =
1) is seen to describe a relative velocity for specifying the rest frame in
which the relativisitc KMS state ω(βµ) exhibits its genuine thermal equi-
librium nature, and it represents an order parameter associated with this
spontaneous symmetry breaking (SSB) of Lorentz boosts [14]. In the con-
text of non-equilibrium local states [5], a non-trivial spacetime-dependent
temperature distribution x �−→ βµ(x) ∈ V+ is allowed to appear, in which
x �−→ uµ(x) = βµ(x)/β(x) becomes a time-like member of the vierbein field
to specify the rest frame at each spacetime point x. Putting this geometric
aspect in a more general context of QFT formulated in a curved spacetime
(i.e., non-equilibrium states in a curved background spacetime [17, 15]), we
will encounter interesting mathematical-physical problems at the boundary
of geometry and thermodynamics.

The problem to be discussed here is, however, a question concerning
another factor β = (βµβµ)1/2 in the formula βµ = βuµ ∈ V+, the inverse
temperature itself as a Lorentz scalar: is β any kind of order parameter
related with a certain symmetry similarly to the case of uµ? What is sug-
gestive in this context is the following famous theorem due to Takesaki [22]
(see, for instance [2]):

Theorem 2 (Takesaki) Let (A �
α

R) be a C*-dynamical system, and sup-
pose that ω1 and ω2 are KMS-states corresponding to two different values
β1, β2 ∈ R. Assume that πω1(A)′′ is a type-III von Neumann algebra.
It follows that the states ω1 and ω2 are disjoint.

This mathematical fact suggests the following physical picture for such
quantum systems as QFT with infinite degrees of freedom, which intrinsi-
cally involve type-III von Neumann algebras (as representation-independent
local subalgebras and/or in thermal situations): according to standard re-
sults [7, 21] in the representation theory of C*-algebras, a family of disjoint
representations generate a non-trivial centre in the representation containing
them as subrepresentations, whose elements can be regarded as macroscopic
order parameters because of their mutual commutativity and of their role in
discriminating among different representations within the family according
to its spectrum. Since all the GNS representations of the KMS states of
QFT except for β = 0,∞ are known to be type-III von Neumann algebras,
we are naturally led to a situation with continuous superselection sectors
formed by KMS states at different temperatures, distinguished mutually by
macroscopic central observables (in a representation containing all the KMS
states) among which the (inverse) temperature β is found. Namely, β be-
comes in this situation a physical macro-variable running over the space
of all possible thermal equilibria, instead of being an a priori given fixed
parameter as is treated in the standard approach to statistical mechanics.

Starting from this observation, it will be shown in the following that

5



β is a physical order parameter corresponding to the spontaneously or ex-
plicitly broken scale invariance under the renormalization-group transfor-
mations; namely, β’s not only parametrize continuous sectors of thermal
equilibria at different temperatures, but also are mutually interrelated by
the renormalization-group transformation associated with the broken scale
invariance, which clarifies the geometric structure of the thermodynamic
classifying space identified with the spectrum of the above centre of the
representation universal within the KMS family.

3 Classification of representations and states: cen-
tral spectrum as classifying space of sectors

Just for convenience’ sake, let us briefly recall and summarize the basic
mathematical notions relevant to the present context in the following form.

1) Folium / disjointness / quasi-equivalence:
Let A be a unital C*-algebra and denote E� the set of all states on A

defined as normalized positive linear functionals. All representations (π,H)
are to be understood here as unital *-representations in the sense that π(1) =
1�, π(A∗) = π(A)∗.

Definition 3 (Folium) Given a representation (π,H) of A, a state ϕ ∈ E�
is called π-normal if there exists a density operator in H s.t. ϕ(A) =
Tr(σ π(A)) (∀A ∈ A). Totality f(π) of π-normal states is called a folium
of π:

f(π) := {A � A �−→ Tr(σ π(A)); σ: density operator in H}. (2)

A folium f(ω) of a state ω ∈ E� is defined by f(ω) := f(πω) w.r.t. the GNS
representation πω of ω.

From the definition, it is clear that the linear span of a folium gives the
predual (π(A)′′)∗ of the von Neumann algebra π(A)′′, consisting of σ-weakly
continuous linear functionals on π(A)′′: Lin(f(π)) = (π(A)′′)∗, Lin(f(π))∗ =
π(A)′′. In terms of this notion, the definitions of disjointness and quasi-
equivalence of representations can be understood in clear-cut way, as follows.

Definition 4 (Disjointness) [7] Two representations (π1,H1), (π2,H2) of

A are said to be disjoint and written as π1
�◦ π2, if and only if they have

no pair ρ1, ρ2 of unitarily equivalent non-trivial subrepresentations 0 �=
ρ1 ≺ π1, 0 �= ρ2 ≺ π2, Likewise, states ω1, ω2 ∈ E� with disjoint GNS
representations πω1

�◦ πω2 are said to be disjoint and written as ω1
�◦ ω2.
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According to the standard results (see [7]), the defined disjointness is
rephrased into the following equivalent forms:

π1
�◦ π2 ⇐⇒ f(π1) ∩ f(π2) = ∅

⇐⇒ H�(π2 ← π1) = 0
⇐⇒ c(P (π1)) ⊥ c(P (π2)), (3)

where H�(π2 ← π1) is the set of intertwiners from π1 to π2 defined by

H�(π2 ← π1) := {T ∈ B(H1,H2); Tπ1(A) = π2(A)T (∀A ∈ A)} (4)

and P (πi) ∈ π(A)′ = H�(π ← π) (i = 1, 2) are projections corresponding to
πi regarded as subrepresentations of a common representation π (e.g., π =
π1⊕π2) and c(P ) denotes the central support c(P ) := min{F : projection ∈
π(A)′′∩π(A)′;F ≥ P} of a projection P (∈ π(A)′ or π(A)′′). If π1, π2 are both

irreducible，disjointness π1
�◦π2 means simply their unitary inequivalence. If

both π1, π2 can be uniquely decomposed into irreducible components, π1, π2

have no common irreducible components.
The ‘opposite’ situation to the disjointness is given by the notion of

quasi-equivalence defined next on the basis of the following proposition:

Proposition 5 ([7]) The following conditions for representations π1, π2 of
A are all equivalent:

(i) No non-trivial subrepresentation of π1 is disjoint from π2 and no non-
trivial subrepresentation of π2 is disjoint from π1[negation of dis-
jointness];

(ii) ∃Φ : π1(A)′′ → π2(A)′′: isomorphism of von Neumann algebras
s.t. π2(A) = Φ(π1(A)) for ∀A ∈ A;

(iii) ∃n1, n2: cardinals s.t. n1π1
∼= n2π2 where n1π1 and n2π2 are, respec-

tively, multiples of π1 and of π2 [i.e., unitary equivalence up to
multiplicities];

(iv) f(π1) = f(π2) for the folia of π1, π2.
If π1, π2 are subrepresentations of a representation π with the corre-
sponding projections P (π1), P (π2) ∈ π(A)′, the above (i)-(iv) are also
equivalent to the next (v):

(v) c(P (π1)) = c(P (π2)) for the central supports of P (π1), P (π2).

Definition 6 (Quasi-equivalence) Two representations π1, π2 satisfying
one (and hence, all) of the conditions (i)-(v) are said to be quasi-equivalent,
and written as π1 ≈ π2. States ω1 and ω2 are said to be quasi-equivalent if
the corresponding GNS representations πω1 and πω2 are quasi-equivalent.
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2) Pure phase vs. mixed phase; superselection sectors and order parameter
While KMS states ωβ describing thermal equilibria are all mixed states

(except for the case of vacuum with β =∞), their decompositions into pure
states are highly non-unique for quantum dynamical systems with infinte
degrees of freedom because of their type-threeness. Therefore, it is more
legitimate to understand a KMS state as an entity in itself without reference
to pure states. For this purpose, we need to know the minimal units of KMS
states in order for a generic one to be decomposed canonically. Such a unit is
known to be found in a thermodynamic pure phase ω ∈ E� characterized by
ergodicity, or equivalently by factoriality defined by the triviality of centre
Zω(A) = πω(A)′′∩πω(A)′ = CI�ω as a condition equivalent to the extremality
in the set Kβ of all KMS states at β on A �

α
R [2].

Along this line, we call pure phases any factor states ω or factor repre-
sentations with trivial centre. If a given state ω is not a pure phase, it is
called a mixed phase whose GNS representation πω has a non-trivial centre
Zω(A). As a commutative algebra, the centre Zω(A) admits a “simultane-
ous diagonalization” due to the well-known Gel’fand theorem expressing it
as a function algebra L∞(Spec(Zω(A))) on the spectrum Spec(Zω(A)) con-
sisting of characters or maximal ideals. Corresponding to this, ω and πω

are canonically decomposed (= central decomposition) into factor states (=
pure phases) and factor subrepresentations (= sectors):

ω(A) =
∫

Sp(�ω(�))
ωλ(A)dµ(λ), (5)

πω(A) =
∫ ⊕

Sp(�ω(�))
πωλ

(A)dµ(λ). (6)

According to the above proposition, any pair of factor states or fac-
tor representations are either quasi-equivalent or disjoint and if pure phases
ω1, ω2 are disjoint, there exists ∃C ∈ Zπ(A) s.t. ω1(C) �= ω2(C) within a rep-
resentation π containing πω1 ⊕πω2. In this sense, each point of Spec(Zω(A))
represents a realized value of parameters to distinguish among different
pure phases contained in a mixed phase ω, and hence, each central element
C ∈ Zω(A) can be identified with a macroscopic order parameter.

Therefore, a mixed phase represents just the situation of a superselection
rule consisting of sectors each of which is identified with a folium of pure
phases or its factor representations labelled by a point in Spec(Zω(A)).

3) Scheme for classifying microscopic sectors by means of macroscopic order
parameters

The above observations naturally lead to a “unified scheme for general-
ized sectors based upon selection criteria” [17] which can be schematized
as follows:
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i)
[
(q :)

generic objects
to be selected

]
=⇒
↑
↑

ii)
[

standard reference system with
classifying space of sectors

(: c)
]

iii) comparison of i) with ii)
⇑ ⇓

iv)

[
selection criterion:

ii) =⇒
c-q channel

i)

]
categorical

�
adjunction

[
interpretation of i) in

terms of ii): i) =⇒
q-c channel

ii)

]

The applicability of this scheme has been confirmed in [18] in three ma-
jor situations, the DHR superselection rule [8, 9] to explain the operational
origin of internal symmetries, its extension to SSB cases [18] and the for-
mulation of non-equilibrium local states in QFT [5, 16, 17]. In all three
cases, the item i) is given by the set of states on the net O �−→ A(O) of
local observables or its global algebra A to be explained in the next sec-
tion (or, a version of it slightly restricted w.r.t. the energy spectrum in the
case of non-equilibrium local states [17, 18]). The item ii) is chosen in the
discussion of non-equilibrium local states the set K := Conv(∪β∈V+Kβ) of
all the convex combinations of (relativisitc) KMS states ∈ Kβ at all pos-
sible inverse temperatures β ∈ V+. In contrast, the corresponding choices
in the DHR-DR theory and its extension to SSB are not known a priori,
which turn out through the analyses to be, respectively, the group dual Ĝ
(or functions l∞(Ĝ) on it) of the group G of the arising internal symme-
try and the sections l∞(�gH∈G/HgĤg

−1) of a fibre bundle related with the
group H of unbroken remaining symmetry and that G of the spontaneously
broken symmetry. The item iii) is just to compare a given unknown generic
state ω in i) with those special states in i) sent from the standard reference
system ii) by the embedding map as a c-q channel ii)=⇒i). If ω is judged to
be identified with one of such embedded reference states, then the ‘inverse’
map as a q-c channel i)=⇒ii) provides the interpretation of ω in terms of ii).
In this way, the G-charge contents of ω in the DHR-DR case is described in
terms of the (fluctuation probability over) unitary equivalence classes ⊂ Ĝ,
and, in the SSB case, in terms of the data of gH ∈ G/H specifying the
position (within the family of degenerate vacua parametrized by G/H) of a
vacuum sector (e.g., the spatial direction of the magnetization in the exam-
ple of a Heisenberg ferromagnet) to which ω belongs, in combination with
the H-charge contents of ω. In the case of non-equilibrium local states, ω is
characterized as such a state if it shows the agreement for certain restricted
class of pointlike quantum thermal observables (defined by some asymptotic
limits of elements in the local net O �−→ A(O) converging to a spacetime
point x ∈ R4) with a standard state of such a form as ωρ =

∫
BK

dρ(β, µ)ωβ,µ

with ρ ∈ M+(BK) describing the statistical fluctuations of thermodynamic
parameters (β, µ) ∈ BK over various thermodynamic pure phases. In this
case, dρ(β, µ) gives the thermal interpretation of a generic non-equilibrium
state ω at a point x.
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Since all these are in use of some systematic techniques available for vac-
uum states and/or KMS states based upon their mathematical formulation,
it is quite important to try the possibility to treat all the KMS states (in-
cluding β = ∞ as a vacuum) themselves just according to the same spirit
as above.

4 Criterion for symmetry breakdown

To show that the inverse temperature appears as an order parameter of
broken scale invariance, we need to give precise formulations of

a) the scale transformations which may possibly be allowed to involve
explicit breaking effects such as the presence of non-vanishing mass
terms,

and of

b) a criterion for symmetry breakdown,

and then to exhibit

c) the role of the inverse temperature as an order parameter for this
broken scale invariance.

For this purpose, we start here with the criterion for a spontaneous
symmetry breaking (SSB), as a special case of b) applicable to the symme-
tries described by a strongly continuous automorphic action τ of a locally
compact group G on the C*-algebra F of quantum fields: G �

τ
F. To be

more precise, the algebraic formulation of QFT is usually not based upon
a C*-algebra F of quantum fields which are in general not directly observ-
able owing to their non-trivial behaviours under the group G of an internal
symmetry. Instead, the basic ingredient to play the principal roles is a net
O �−→ A(O) of local observables with each local subalgebra A(O) defined as
a W*-algebra; any self-adjoint element A = A∗ ∈ A(O) is supposed to corre-
spond to a physical quantity, experimentally observable within a spacetime
region O chosen from a suitable family of spacetime regions which consti-
tute a directed set w.r.t. the inclusion relation, the typical choice being the
family K := {(b+V+)∩(c−V+); a, b ∈ R4} of double cones in the Minkowski
spacetime R4. The common properties to be naturally satisfied by this net
are taken as follows (see, for instance, [11]):

i) “Isotony”: for O1,O2 ∈ K, the inclusion relation O1 ⊂ O2 should
imply A(O1) ⊂ A(O2), on the basis of which the global algebra A =

∪
K�O↗�4

A(O)
||·||

of observables can be defined as the C*-inductive limit of

all the local subalgebras A(O), O ∈ K.
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ii) Relativistic covariance: the family K can be regarded as a category

consisting of objects as double cones O ∈ K and of arrows O (a,Λ)→ (a,Λ)O
defined by the elements (a,Λ) ∈ P↑

+ = R4 � L↑
+ of the Poincaré group

acting on the Minkowski spacetime R4 and K, respectively, by [(a,Λ)x]µ =
Λµ

νxν + aµ, (a,Λ)O = ΛO + a. Then, the local net O �−→ A(O) should
constitute a functor A : K → Alg [15, 4] from the category K to the category
Alg of W*-algebras whose arrows are (normal) *-homomorphisms:

K � O → A(O) ∈ Alg
(a,Λ) ↓ � ↓ α(a,Λ) := A(a,Λ)
ΛO + a → A(ΛO + a) (7)

iii) Local commutativity (as a mathematical formulation of Einstein
causality): for spacelike separated regionsO1,O2 ∈ K (i.e., (x−y)·(x−y) < 0
(∀x ∈ O1,∀y ∈ O2)) the local subalgebras A(O1) and A(O2) are commuta-
tive in the sense of AB = BA (∀A ∈ A(O1),∀B ∈ A(O2)).

The basic standpoint of the algebraic QFT (though not completely im-
plemented yet) is to regard the algebra F of unobservable quantum fields
acted upon by a group G of internal symmetry as a kind of mathematical
device constructed by the method of Galois extension from A by ‘solving
some equations’ identified with a suitably chosen criterion to select out a
family of physically relevant states [8, 9]. This strategy has definite merits
in providing a clear picture for the mutual relations between the two as-
pects involving spacetime(=external) and internal symmetries, treating the
former in such a form as the spacetime dependence of the net O �−→ A(O)
and the latter in terms of an abstract non-commutative version of Tannaka-
Krein duality between an internal symmetry group G and the representation
category RepG realized in the superselection sectors of A, respectively, and
then combining two aspects in the form of the dynamical system F � G.
In the next section, the former aspect in relation with the scale changes is
focused by means of the above net O �−→ A(O) of local observables. Con-
cerning the problem of a symmetry breaking, what is to be in focus is the
global aspects in which the differences of symmetries between internal and
external become largely irrelevant.

With this understanding, we treat, as the algebra of the system under
consideration, the C*-algebra F of qunatum fields acted upon by a group
G which is supposed to represent all the possible kinds of symmetries char-
acterizing the physical system. In the case of unbroken internal symmetry,
the emerging group G is verified to be a compact Lie group, whereas there
is no guarantee of such a characterization of G in the case of SSB. However,
we assume here for technical reasons such a restriction on G that it should
be a locally compact group.

Now, the traditional treatment of SSB is just based on the so-called
Goldstone commutators expressing the non-invariance ω(δ(F )) �= 0 (∃F ∈
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F) of a state ω under the infinitesimal transformations δ(∈ Der(F): densely
defined *-derivations on F) in the directions of symmetry breaking; while
this is a necessary condition for SSB in a pure (or more generally, factor)
state, its sufficiency can be assured only for spatially homogeneous states
such as vacuum ones. For instance, if factoriality of the representation is
not required, one can easily obtain a G-invariant state even in the situation
of SSB by averaging over a G-noninvariant factor state, which evades the
necessity of ω(δ(F )) �= 0. On the other hand, such a representation (π,H)
can exist that in spite of the absence of G-invariant states in H the symmetry
is descibed by a unitary representation G � g �−→ U(g) ∈ U(H) satisfying
the so-called covariance condition π(τg(F )) = U(g)π(F )U(g)∗. A general
criterion for SSB can be given in the following form of definition so as to
avoid these kinds of complications and to incorporate more general situations
in an intrinsic way:

Definition 7 [17] A symmetry described by a strongly continous automor-
phic action τ of a locally compact group G on a (global) C*-algebra F of
quantum fields is said to be unbroken in a given representation (π,H) of
F if the spectrum of centre Zπ(F) := π(F)′′∩ π(F)′ is pointwise invariant
(µ-a.e. w.r.t. the central measure µ for the central decomposition of π into
factor representations) under the action of G induced on Spec(Zπ(F)). If the
symmetry is not unbroken in (π,H), it is said to be broken spontaneously
there.

This definition exhibits the essence of SSB as the conflict between fac-
toriality of (π,H) and unitary implementability of G in it; in the usual ap-
proaches, the former point is respected at the expense of the latter. Taking
the opposite choice to respect implementability we are led to the non-trivial
centre which provides convenient tools for analyzing sector structure
and flexible treatment of macroscopic order parameters to distinguish
different sectors, as explained in the previous section: the central spectrum
Spec(Zπ(F)) physically means macroscopic order parameters appearing in
low-energy infrared modes, and hence, the physical essence of this definition
can be found in the“infrared instability” of the representation (π,H) along
the direction of G-action which is in harmony with the intuitive physical
picture of SSB.

Note, however, that this definition admits the coexistence of unbroken
and broken subrepresentations in a given representation π suffering from
SSB, according to which the central spectrum Spec(Zπ(F)) can further be
decomposed into G-invariant subdomains. In view of the requirement of G-
invariance, each such minimal subdomain is characterized by G-ergodicity,
which means central ergodicity in the whole system. Therefore, π is decom-
posed into the direct sum (or, direct integral) of unbroken factor represen-
tations and broken non-factor representations, each component of which is

12



centrally G-ergodic. In this way we obtain a phase diagram on the spectrum
of centre.

We can now construct a covariant representation of (F �
τ
G) implement-

ing broken G minimally in the sense of central G-ergodicity as follows:

1) Let H be the maximal closed subgroup of G unbroken in (π,H) with a
covariant representation (π,U,H) of a C*-dynamical system F �

τ�H

H sat-

isfying π(τh(F )) = U(h)π(F )U(h)∗ for ∀h ∈ H. An augmented algebra
F̂ := F � (H\G) [18] is defined by a C*-crossed product of F with the ho-
mogeneous space H\G which is realized as the algebra of continuous cross
sections of C*-algebra bundle G×H F→ H\G:

F̂ = F � (H\G) = Γ(G×H F). (8)

This can conveniently be identified with the algebra CH(G,F) ofH-equivariant
continuous functions F̂ on G satisfying the condition

F̂ (hg) = τh(F̂ (g)) for ∀g ∈ G,∀h ∈ H. (9)

In what follows the identification of a cross section of G ×H F → H\G
with an H-equivariant continuous function on G is always understood and,
without changing the notation, we freely move from one version to another.
The product structure of F̂ is simply given by the pointwise product,

(F̂1F̂2)(ġ) := F̂1(ġ)F̂2(ġ), (10)

for F̂1, F̂2 ∈ F̂, ġ ∈ H\G, which is equivalent to (F̂1F̂2)(g) := F̂1(g)F̂2(g) in
the version of H-equivariant continuous functions on G consistently with the
constraint ofH-equivariance: (F̂1F̂2)(hg) = F̂1(hg)F̂2(hg) = τh(F̂1(g))τh(F̂2(g)) =
τh((F̂1F̂2)(g)). The action τ̂ of G on F̂ ∈ F̂ is defined by

[τ̂g(F̂ )](ġ1) = F̂ (ġ1g), (11)

or equivalently, [τ̂g(F̂ )](g1) = F̂ (g1g) forH-equivariant functions. The fixed-
point subalgebra F̂G of F̂ under the action τ̂ of G is given by the constant
section F̂ : g �−→ F ∈ FH because of the H-equvariance condition: F =
F̂ (hg) = τh(F̂ (g)) = τh(F ):

F̂G ∼= FH . (12)

Then from a representation (π,U,H) of a C*-dynamical system F �
τ�H

H,

a representation (π̂, Ĥ) is induced of the crossed product F̂ in the following
way.
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2) With the left-invariant Haar measure dξ on G/H (with left G-action),
the Hilbert space Ĥ is given by L2-sections of G×H H:

Ĥ =
∫ ⊕

ξ∈G/H
(dξ)1/2H = ΓL2(G×H H, dξ), (13)

which can be identified with the L2-space of H-valued (U,H)-equivariant
functions ψ on G,

ψ(gh) = U(h−1)ψ(g) for ψ ∈ Ĥ, g ∈ G, h ∈ H. (14)

On this Ĥ, the representations π̂ and Û of F̂ and G are defined, respectively,
by

(π̂(F̂ )ψ)(g) := π(F̂ (g−1))(ψ(g)) for F̂ ∈ F̂,ψ ∈ Ĥ,g ∈ G, (15)

(Û (g1)ψ)(g) := ψ(g−1
1 g) for g, g1 ∈ G, (16)

and satisfy the covariance relation:

π̂(τ̂g(F̂ )) = Û(g)π̂(F̂ )Û(g)−1. (17)

3) F is embedded into F̂ by ı̂H\G : F ↪→ F̂ given by

[̂ıH\G(F )](g) := τg(F ), (18)

which is consistent with the H-equivariance condition: [̂ıH\G(F )](hg) =
τhg(F ) = τh([̂ıH\G(F )](g)). This embedding map intertwines the G-actions
τ on F and τ̂ on F̂,

ı̂H\G ◦ τg = τ̂g ◦ ı̂H\G (∀g ∈ G), (19)

and hence, we have

[̂ıH\G(F)]G = ı̂H\G(FG) ⊂ ı̂H\G(FH) = F̂G. (20)

The mutual relations among (sub)algebras and mappings can be depicted
by

F̂ = Γ(G×
H

F)
ı̂G ↗↙m̂G ı̂H\G

↖↘m̂H\G

FH ∼= ı̂H\G(FH) = F̂G
iH
�
mH

F

iG/H
↖↘mG/H

iG ↗↙mG

FG

, (21)
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where the maps iG and mG, etc., are, respectively, the embedding maps
(of a C*-algebra into another) and the conditional expectations defined as
operator-valued weights to extract fixed points, such as

mG/H : FH � B �−→ mG/H(B) :=
∫

G/H
dġ τg(B) ∈ FG. (22)

4) Combining ı̂H\G with π̂, we obtain a covariant representation (π̄, Û , Ĥ),
π̄ := π̂ ◦ ı̂H\G, of F �

τ
G defined on Ĥ by

(π̄(F )ψ)(g) := π(τg−1(F ))ψ(g) (F ∈ F, ψ ∈ Ĥ) (23)

and satisfying

π̄(τg(F )) = Û(g)π̄(F )Û (g)−1. (24)

5) The sector structure is determined by the following information on the
relevant centres:

Proposition 8 When the von Neumann algebra π(F)′′ has a trivial centre, Zπ(F) =
C1, the centres of π̂(F̂)′′ and π̄(F)′′ are given by

Zπ̄(F) = L∞(H\G;dġ) = Zπ̂(F̂). (25)

This can be seen as follows: From the definition of F̂ ⊂ C(H\G,F) ∼=
C(H\G)⊗̄F it is clear that the commutative algebra C(H\G) is contained
in the centre of the C*-algebra F̂. If this centre is bigger than C(H\G), it
contains a function F̂ on H\G whose image F̂ (ġ) at some point ġ ∈ H\G
is not be a scalar multiple of the identity, which does not commute with
some element F1 ∈ F because of the triviality of the centre of F due to
Zπ(F) = C1: [F̂ (ġ), F1] �= 0.

In view of 3), F1 can be embedded in F̂ satisfying ı̂H\G(F1)(ė) = F1, and
hence, we have τ̂g−1 ı̂H\G(F1)(ġ) = F1, which shows the relation [F̂ , τ̂g−1 ı̂H\G(F1)](ġ) =
[F̂ (ġ), F1] �= 0. Thus, we have Z(F̂) = C(H\G). Using the similar ar-
guments for π̂(F̂)′′ combined with Zπ̄(F) ⊂ L∞(H\G,dġ)⊗̄π(F)′′, we see
Zπ̂(F̂) = L∞(H\G;dġ). The equality Zπ̄(F) = L∞(H\G;dġ) comes from

the mutual disjointness π
�◦ (π ◦ τg) for g ∈ G�H and Zπ(F) = C1.

Since the homogeneous space H\G as the spectrum of the centre Zπ̄(F)
is transitive under the right action G which is just the action induced on the
central spectrum from τ̂ , the representation (π̄, Ĥ) of the dynamical system
F �

τ
G is centrally G-ergodic, to which the criterion for SSB can be applied.
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Adapting the above formulation to the GNS representation (π = πβ,H =
Hβ) of a KMS state ωβ=(βµ) with H = R4 �SO(3), G = R4 �L↑

+, we can re-
produce the results on the SSB of Lorentz boosts: Zπ̄(F) = L∞(SO(3)\L↑

+) =
L∞(R3) through the identification βµ/

√
β2 = uµ = ( 1√

1−v2/c2
, v√

1−v2/c2
)←→

v ∈R3.

5 How to formulate broken scale invariance?

As noted at the beginning, the above discussion of symmetry breakdown was
concerning the spontaneous breakdown of a symmetry described by a group
G acting on the field algebra F by automorphisms. In contrast, the notion
of the broken scale invariance is usually understood in a physical system
with such explicit breaking terms as non-vanishing mass, which seem to
cause difficulties in treating scale transformations as automorphisms acting
on the algebra describing the system. However, the results on the scaling
algebra in algebraic QFT due to Buchholz and Verch [6] shows that the
above negative anticipation can safely be avoided.

Their results can be summarized as follows. Let the following require-
ments be imposed on all the possible renormalization-group transformations
Rλ:

(i) Rλ should map the given net O → A(O) of local observables at
spacetime scale 1 onto the corresponding net O → Aλ(O) := A(λO) at a
scale λ, i.e.,

Rλ : A(O)→ Aλ(O) (26)

for every region O ⊂ R4. Since both time and space are scaled by the same
λ, the light velocity c remains unchanged as their ratio.

(ii) In the Fourier-transformed picture, the subspace Ã(Õ) of all (quasi-
local) observables carrying energy-momentum in the set Õ ⊂ R4 is trans-
formed as

Rλ : Ã(Õ)→ Ãλ(Õ), (27)

where Ãλ(Õ) := Ã(λ−1Õ). In view of the duality between spacetime coor-
dinates xµ and energy-momenum pµ involved in the Fourier transformation,
this requirement implies the invariance of the quantity pµx

µ = Et − �p · �x
called “action” in physics, as a consequence of which the Planck constant �

with the dimension of action also remains invariant.
(iii) Rλ should be bounded continuous maps uniformly in λ (even if they

may not be isomorphisms): concerning the possibility of non-isomorphisms,
Buchholz and Verch in [6] remark “In the case of dilation invariant theories
the transformations Rλ are expected to be isomorphisms, yet this will not
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be true in general since the algebraic relations between observables may
depend on the scale.” In contrast to their focus on the high-energy limits
in the context of vacuum situations, our interest here is in the thermal
situations involving all the possible temperatures. But the similar point to
the scale dependence of the basic algebraic relations should be expected to
show up especially in the direction to the low temperature side, because of
the increasing complexity of phase structures arising from the bifurcating
processes of phase transitions. In view of the seemingly ad hoc choices
of the starting dynamics and the algebras of relevant physical variables in
the standard approaches to phase transitions, it should be certainly one
of the non-trivial important questions whether all the variety of different
thermodynamic phases can be totally attributed to that of the realized states
and representations of one and the same fixed dynamical system with a fixed
algebra of observables and a fixed dynamics acting on the former.

Then, the scaling net O → Â(O) corresponding to the original local net
O → A(O) of observables is defined as the local net consisting of scale-
changed observables under the action of all the possible choice of Rλ satisfy-
ing (i)-(iii). With the derivation process referred to [6], the obtained results
on the structure of Â(O) can be reformulated into the identification of Â(O)
with the algebra Γ(�λ∈�+Aλ(O)) of sections R+ � λ �−→ Â(λ) ∈ Aλ(O)
of algebra bundle �λ∈�+Aλ(O) � R+ over the multiplicative group R+ of
scale changes:

Â(O) = Γ(�λ∈�+Aλ(O)) � Â := (R+ � λ �−→ Â(λ) ∈ Aλ(O)). (28)

The scaling algebra Â playing the role of the global algebra is defined by
the C*-inductive limit of all local algebras Â(O) on the basis of the isotony
Â(O1) ⊂ Â(O2) for O1 ⊂ O2.

The algebraic structures to make Â(O) a unital C*-algebra are defined
in a pointwise manner by

(c1Â1 + c2Â2)(λ) := c1Â1(λ) + c2Â2(λ),
(Â1Â2)(λ) := Â1(λ)Â2(λ),
1̂(λ) := 1 = 1�,

(Â∗)(λ) := Â(λ)∗, (29)

(for Â1, Â2, Â ∈ Â(O), c1, c2 ∈ C) and the C*-norm by

|| Â || := sup
λ∈�+

|| Â(λ) ||. (30)

From the scaled actions Aλ �
α(λ)

P↑
+ of the Poincaré group on Aλ with α(λ)

a,Λ =

αλa,Λ, an action of P↑
+ is induced on Â by

(α̂a,Λ(Â))(λ) := αλa,Λ(Â(λ)) , (31)
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in terms of which the essence of the condition (iii) is expressed simply as the
continuity of the action of the Poincaré group at its identity: || α̂a,Λ(Â) −
Â || →

(a,Λ)→(0,1)
0. The so-defined scaling net O → Â(O) is shown to satisfy

all the properties to characterize a relativisitc local net of observables if the
original one O → A(O) does.

Then, the scale transformation is defined by an automorphic action σ̂ of
the group R+ of scale changes on the scaling algebra Â given for ∀µ ∈ R+

by

(σ̂µ(Â))(λ) := Â(µλ), λ > 0 , (32)

satisfying the properties:

σ̂µ(Â(O)) = Â(µO) , O ⊂ R4, (33)

σ̂µ ◦ α̂a,Λ = α̂µa,Λ ◦ σ̂µ , (a,Λ) ∈ P↑
+ . (34)

In this formulation, the roles of renormalization-group transformations
to relate observables at different scales are played by the scaling transfor-
mations σ̂�+ acting isomorphically on the scaling net O → Â(O). In view of
the algebra C(R+) of scalar-valued functions on R+ embedded in the centre
of the scaling algebra Â, C(R+) ↪→ Z(Â) ⊂ Â, it is no miracle for a broken
scale invariance caused by such explicit breaking terms as the mass m to be
restored as an “exact” symmetry described by an automorphic action σ̂ of
R+ when all the terms responsible for the explicit breaking can be treated
(as is common in practice) in terms of scale-dependent classical variables
like R+ � λ �−→ m(λ) = λdmm0. It is also remarkable that the final re-
sults obtained by Buchholz and Verch [6] through the complicated analysis
can naturally be seen just as a special case of the previous definition of
the augmented algebra F̂ := Γ(G ×H F) for treating SSB with the choice
of H := P↑

+, G = H � R+ (semidirect product of groups) in combination
with a slight modification due to the spacetime dependence described by
the local net structure: F =⇒ (O → A(O)) (upon which the group R+ of
scale changes acts). While this is the case found in the vacuum situations
which show the invariance under the Poincaré group P↑

+ = R4 �L↑
+ by

definition, the typical thermal situations relevant to our present contexts re-
quire more careful treatment because of the SSB of Lorentz boost symmetry
caused by temperatures. Here the Poincaré group P↑

+ of relativisitc symme-
try is broken down to R4 � SO(3) and, in the opposite direction, it is ex-
tended to a larger one P↑

+ �R+ involving the broken scale invariance, which
may possibly be extended at the critical points further to the conformal
group SO(2, 4). It is interesting to note that the series of group extensions
SO(3) ↪→ SO(1, 3) ↪→ SO(1, 3) � R+ ↪→ SO(2, 4) (or its doube covering
SU(2) ↪→ SL(2,C) ↪→ SL(2,C)�R+ ↪→ SU(2, 2)) can be understood in the
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context of the Kantor-Koecher-Tits construction of Lie algebras associated
with a symmetric space and the corresponding Jordan triple system [20],
the last member of which gives the analytic group of automorphisms of the
tube domain R4 + iV+ � xµ + iβµ. If we start from the choice of H := P↑

+,
G = H � R+ even in the thermal situation at T �= 0◦K, the starting rep-
resentation (π,H) with H as the group of unbroken symmetry should be
understood to contain already a non-trivial centre with SO(3)\L↑

+
∼= R3 as

its spectrum due to the SSB of P↑
+ down to R4 � SO(3). In this context,

the scaled actions α(λ)
a,Λ = αλa,Λ of Poincaré group on Aλ can be naturally

understood as the conjugacy change of the stability group H → gHg−1 from
the point He to Hg−1 on the base space H\G = R+: sλ(a,Λ)s−1

λ = (λa,Λ),
where sλ(xµ) = λxµ.

6 Scale changes on states

In relation with the centre Z(Â) = Z(Â(O)) = C(R+) arising from the bro-
ken scale invariance, we have a canonical family of conditional expectations
µ̂ from Â to A corresponding to probability measures µ on C(R+):

µ̂ : Â � Â �−→
∫
�+

dµ(λ)Â(λ) ∈ A. (35)

(We can consider the case with dµ(λ) chosen to be the Haar measure dλ/λ of
R+, which is, however, a positive unbounded measure but not a probability
one; the corresponding µ̂ becomes then an operator-valued weight whose
images are not guaranteed to be finite.) By means of µ̂, any state ω ∈ E�
can be lifted onto Â by

E� � ω �−→ µ̂∗(ω) = ω ◦ µ̂ = ω ⊗ µ ∈ E
�̂
, (36)

where we have used Â ⊂ C(R+,A) ∼= A⊗ C(R+).
In [6] the case of µ = δλ=1(: Dirac measure at the identity of R+) is

called a canonical lift ω̂ := ω ◦ δ̂1. The scale transformed state defined by

ω̂λ := ω̂ ◦ σ̂λ = ω ◦ δ̂λ (37)

describes the situation at scale λ due to the renormalization-group transfor-
mation of scale change λ.

Conversely, starting from a state ω̂ of Â, we can obtain its central de-
composition as follows: first, we call two natural embedding maps ι : A ↪→ Â

[[ι(A)] (λ) ≡ A] and κ : C(R+) " Z(Â) ↪→ Â. Pulling back ω̂ by κ∗ : E
�̂
→

EC(�+), we can define a probability measure ρω̂ := κ∗(ω̂) = ω̂ ◦κ = ω̂ �C(�+)

on R+, namely, ω̂ �C(�+) (f) =
∫
�+ dρω̂(λ)f(λ) for ∀f ∈ C(R+).

For any positive operator Â =
∫
adÊÂ(a) ∈ Â, we can consider the

central supports c(ÊÂ(∆)) ∈ Proj(Zπ̂ω̂
(Â)) of ÊÂ(∆) ∈ Proj(π̂ω̂(Â)′′) with
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a Borel set ∆ in Sp(Â) ⊂ [0,+∞) satisfying c(ÊÂ(∆))ÊÂ(∆) = ÊÂ(∆),
from which we see that ρ′′ω̂(c(ÊÂ(∆))) = 0 implies ω̂′′(ÊÂ(∆)) = 0, where
ω̂′′ and ρ′′ω̂ are the extensions of ω̂ and ρω̂ to π̂ω̂(Â)′′ and L∞(R+, dρω̂),
respectively. Thus, we can define the Radon-Nikodym derivative ωλ :=
dω̂
dρω̂

(λ) of ω̂ w.r.t. ρω̂ as a state on π̂ω̂(Â)′′ (in a similar way to [19]) so that

ω̂(Â) =
∫
dρω̂(λ)ωλ(Â(λ)) =

∫
dρω̂(λ)ωλ(δ̂λ(Â)) =

∫
dρω̂(λ)

[
ωλ ⊗ δ̂λ

]
(Â).

(38)

Then, the pull-back ι∗(ω̂) = ω̂ ◦ ι ∈ E� of ω̂ ∈ E
�̂

by ι∗ : E
�̂
→ E� is given

by

ι∗(ω̂) =
∫
dρω̂(λ)ωλ, (39)

owing to the relation

ι∗(ω̂)(A) = ω̂(ι(A)) =
∫
dρω̂(λ)ωλ(A) =

[∫
dρω̂(λ)ωλ

]
(A). (40)

Applying this relation to the scaled canonical lift, ω̂λ := ω̂ ◦ σ̂λ = (ω ◦ δ̂1) ◦
σ̂λ = ω ◦ δ̂λ, of a state ω ∈ E�, we can easily see ι∗(ω ◦ δ̂λ) = ι∗(ω̂λ) = ωλ[=
dω̂λ
dδλ

(λ)] = φλ(ω), where φλ is the isomorphism introduced in [6] between ω

and the canonical lift ω̂λ ∈ E�̂ projected onto Â/ker(π̂ω̂ ◦ σ̂λ).
Thus, we can lift canonically any state ω ∈ E� from A to ω̂ ∈ E

�̂
, and,

after the scale shfit σ̂λ on Â, return ω̂ ◦ σ̂λ back onto A: φλ(ω) = ωλ =
ι∗(ω ◦ δ̂λ), as result of which we obtain the scaled-shifted state ωλ ∈ E�
from ω ∈ E� in spite of the absence of scale invariance on A.

Now applying this procedure to ω = ωβ (: any state belonging to the
family of relativistic KMS states with the same (β2)1/2), we have a genuine
KMS state by going to their rest frames. Then we have ω̂λ = (ω̂β)λ = ωβ ◦ δ̂λ
which is shown to be a KMS state at β/λ:

(ωβ ◦ δ̂λ)(Âα̂t(B̂)) = ωβ(Â(λ)αλt(B̂(λ)))

= ωβ(αλt−iβ(B̂(λ))Â(λ)) = ωβ(αλ(t−iβ/λ)(B̂(λ))Â(λ))

= (ωβ ◦ δ̂λ)(α̂t−iβ/λ(B̂)Â), (41)

and hence, (ω̂β)λ ∈ K̂β/λ, φλ(ωβ) ∈ Kβ/λ.
As has been already remarked, the above discussion is seen to apply

equally to the spontaneous as well as explicitly broken scale invariance with
such explicit breaking parameters as mass terms. The actions of scale trans-
formations on such variables as xµ, βµ and also conserved charges are just
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straightforward, which is justified by such facts that the first and the sec-
ond ones are of kinematical nature and that the second and the third ones
exhibit themselves in the state labels for specifying the relevant sectors in
the context of the superselection structures [5, 18]. This gives an alterna-
tive verification to the so-called non-renormalization theorem of conserved
charges. In sharp contrast, other such variables as coupling constants (to
be read off from the data of correlation functions or Green’s functions) are
affected by the scaled dynamics, and hence, may show non-trivial scaling
behaviours with deviations from the canonical (or kinematical) dimensions,
in such forms as the running couplings or anomalous dimensions. Thus, the
transformations σ̂λ (as “exact” symmetry on the augmented algebra Â) are
understood to play the roles of the renormalization-group transformations
(as broken symmetry on the original algebra A).

As a result, we see that classical macroscopic observable β naturally
emerging from a microscopic quantum system is verified to be an order
parameter of broken scale invariance involved in the renormalization group
in relativisitc QFT.

7 Summary and outlook

To equip such expressions as “broken scale invariance” and its “order pa-
rameter” with their precise formulations, we have adopted a scheme to in-
corporate spontaneously as well as explicitly broken symmetries with the
criterion for symmetry breakdown on the basis of an augmented algebra
with a non-trivial centre in such forms as F̂ = Γ(G×H F) or O �−→ Â(O) =
Γ(�λ∈�+A(λO)), the latter of which is just a re-interpretation of the Buchholz-
Verch scaling net of local observables adapted to the former. As an algebra
of the composite system of a genuine quantum one together with classical
macroscopic one (embedded as the centre), the augmented algebra F̂ or Â

can play such important roles that

a) it allows a symmetry broken explicitly by breaking terms (such as non-
vanishing masses in the case of scale invariance) to be formulated in
terms of the symmetry transformations acting on Â through automor-
phisms ∈ Aut(Â) which is realized by the simultaneous changes of the
breaking terms belonging to the centre Z(Â) to cancel the breaking
effects,

a’) for a spontaneously broken symmetry, this augmented algebra natu-
rally accommodates its covariant unitary representation as an induced
representation from a subgroup of the remaining unbroken symmetry
(at the expense of the non-trivial centre characterizing the symmetry
breaking),
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b) the continuous behaviours of order parameters under the broken sym-
metry transformations is algebraically expressed at the C*-level of the
(C*-algebraic) centre Z(Â) in sharp contrast to the discontinuous ones
at the W*-level Zπ(Â) of representations owing to the mutual disjoint-
ness among representations corresponding to different values of order
parameters (as points on Spec(Zπ(A))). To this continuous order pa-
rameter some external field can further be coupled, like the coupling
between the magnetization and an external magnetic field in the dis-
cussion of a Heisenberg ferromagnet. Using this coupling, we can
examine, for instance, the mutual relations between the magnetiza-
tion caused by an external field and the spontaneous one, the latter
of which persists in the asymptotic removal of the former in combina-
tion with the hysteresis effects. Without introducing the augmented
algebra Â, it seems difficult for this kind of discussions to be adapted
to the case of QFT.

Then, the mutual relation between states on A and Â is clarified, on the
basis of which the verification of the statement on the behaviour of the in-
verse temperatures is just reduced to a simple computation of checking the
parameter shift occurring in the KMS condition under the scale transforma-
tion. What is interesting in this observation about the roles of the (inverse)
temperature β is that it exhibits the cross over between thermal and geo-
metric aspects expressed in βµ = βuµ and in the spacetime transformations
P↑

+ � R+ including the scale one, respectively.
While the above scale transformations in the real version cause actual

changes on equilibrium states with a temperature into another, there is also
a virtual version which does not change the real temperature but which
acts in the virtual direction of the interpolating family of non-commutative
Lp-spaces [1] to be built here on the von Neumann algebras M := πβ(A)′′,
defined as the GNS representation associated to a KMS state ωβ. A vir-
tual temperature τ associated with an Lp-space Lp(M;ωβ) is given here
as 0 ≤ τ = β/p ≤ β (or, T = (kBβ)−1 ≤ pT ≤ ∞: i.e., high temper-
ature side) because of the restriction of 1 ≤ p ≤ ∞. From the physical
viewpoint, this restriction can be naturally understood as the difficulty in
moving kinematically to the direction of lower temperatures caused by the
possible occurrence of phase transitions which cannot be treated without
the dynamical considerations.

This context of interpolation theory involves various interesting aspects,
such as the extension of some key notions in the (quantum) information ge-
ometry and statistical inference theory like α-divergences, relative entropy,
Fisher information, etc., which have been traditionally treated in quantum
systems with finite degrees of freedom, or even in the finite-dimensional ma-
trix algebras [13, 12]. On the present setting-up, it is quite natural to extend
the discussions in this context to a general quantum dynamical system with
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infinite degrees of freedom. For instance, with α := 1
q −

1
p �= ±1, 1

p + 1
q = 1,

we have an α-divergence

D(1/q−1/p)(T1||T2) = pq

[
||T1||pp
p

+
||T2||qq
q

− [T1, T2]φ0

]
, (42)

where [T1, T2]φ0 is the pairing between Lp and Lq w.r.t. a faithful nor-
mal semifinite weight φ0 (or, a faithful normal state such as ωβ) for T1 =
u1∆

1/p
ϕ1,φ0

∈ Lp(M, φ0), T2 = u2∆
1/q
ϕ2,φ0

∈ Lq(M, φ0), with ui: partial isome-
tries and ∆ϕi,φ0: relative modular operator from φ0 to ϕi ∈ M∗,+. The
problems related with this geometric aspect of temperature states will be
discussed elsewhere.
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