Finite generation of the Nagata invariant rings in
A-D-FE cases

Shigeru MUKAT *

Let G, 'V = @?:1 V; be the direct sum of n copies Vi, ..., V, of the 2-
dimensional standard unipotent action of the 1-dimensional additive group
G,. The induced action on the polynomial ring Sy, = Clx1, ..., Ty, Y1, - -5 Yn)
is as follows:

Li — T

(tl,...,tn)GC 5% S2n:C[xln-"axn7y17"'7yn]7 {yz'—>tzxz+y27

The restriction of this action to a general linear subspace G C C" is called
an action of Nagata type. In [M], generalizing the result of Nagata [N1]
(r =3 and n = 16), we proved the infinite generation of the invariant ring
S% in the case where the inequality 1/2+41/(n —r)+1/r < 1 holds, where
r is the codimension of G. In this article, we shall show the converse:

Theorem The invariant ring S¢ of Nagata type is finitely generated if
1/24+1/(n—7r)+1/r > 1.

This inequality is equivalent to the finiteness of the Weyl group of the
Dynkin diagram 75, ,_, with three legs of length 2, » and n —r. There are
four infinite series [1]-[4] and five exceptional cases [5]-[9] for which this
holds:

) 21 B 4 5] (6] [7] [8 9]

Cartan’s symbol BDII DIII | EIII EVII EVI EIX EVIII
T 1 2 3 3 4 3 5)
n—r 1 2 3 4 3 5 3

diagram A, A, D, D, | Es E- E; Ej Eg

In the cases [1] and [3], the invariant ring is very explicit and the proof
is immediate ([M, §1]). The case [2] is classical and the invariant ring S¢ is
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the homogeneous coordinate ring of the Grassmannian variety G(2,n + 1).
We assume s := dim GG > 2 in the sequel.

In the rest of cases, we start the proof with the following key fact on
the Nagata invariant ring: S is isomorphic to the total coordinate ring

TC(X):= P HUX Ox(ah—bey—--—bye,)~ @ HX, L)

a,by,... ,.bp,€Z LePic X

of the variety X = Bl, P! ([M, §1], [N1, §3] in the case r = 3).
More precisely, X is the blow-up of the (r — 1)-dimensional projective
space P,(C"/G) with center the n points py, ... ,p, corresponding to the
standard basis of C". In the case r = 3, X is a del Pezzo surface and the
theorem follows from [BP].

We make use of the fact that X is the moduli spaces of certain vector
bundles in the case s = 2 and 3. Note that G C C” and the standard basis
determine the n points ¢i,...,q, on the projective space P,G ~ P*~!
also. We reduce the finite generation of 7C(X) to a geometry of the n-

pointed projective space (P*L:q,... ,q,), which is the Gale transform of
(P Lpy,...,ps) ([DO, 1], [EP]). Let I, C Op be the ideal sheaf of

geee

the set of n points {q1,- - ,¢,} C P*!. Then we obtain a family of exact
sequences of coherent sheaves of Op-modules

E,:0—Op()®I,. 4 — E.——Op—0 (1)

on P*! parameterized by z € P.H'(Op(1) ® I,,...,,) = P"'. By the
exact sequence

0 — H'(Op(1)) — H (P Cp)) = C" — H'(Op(1)@1y,..4,) — 0,

HY (P! Op(1)®1,,.. ,,) is isomorphic to the vector space C"/G including
the assignment of bases. The exact sequence E,, splits outside ¢; for every
1 <17 <mn, that is, I, contains a subsheaf ~ I, on which 7 is nonzero.

In the case s = 2, E, is regarded as a quasi-parabolic rank 2 vector
bundle on the n-pointed projective line (P;qy,... ,¢,). By the correspon-
dence x — E,, the moduli space U(«) of parabolic 2-bundles with a certain
weight o is isomorphic to P™™! (§1). The moduli space () is isomorphic
to the blow up X¢ for another weight o’/. We apply the result of Bauer|B]
on the variation of the moduli spaces U(«) to determine the movable cone



of them. Then the finite generation follows from the GIT construction of
such moduli spaces by Mehta-SeshadriMS] and a result of Zariski.

In the case s > 3, the sheaf E, is not locally free at ¢,...,q, but
determines uniquely a vector bundle Ex on the blow-up S = Bl . 7an3_1.
Especially, In the cases [9] and [7], the correspondence z — E, ® Og(1)
gives rise to an isomorphism

P! Mg (2, —Ks,co = 2) (2)

of the (r—1)-dimensional projective space to the moduli space of 2-bundles
with the above described invariants on a del Pezzo surface S (of degree 1
and 2) which are stable with respect to a certain ample divisor L. The blow-
up X¢ is isomorphic to Mg /(2, —Kg, co = 2) for another ample divisor L'.
The finite generation essentially follows from the ampleness of —Kg (§2).

§1 Moduli of parabolic 2-bundles on P!

Let C' be a complete algebraic curve. A pair (E' C E) of an (algebraic)
vector bundle E of rank 2 on C' and its subsheaf E’ of rank 2 is called
a quasi-parabolic 2-bundle. The inclusion det E/ C det £ determines an
effective divisor on C', which we denote by A. E’ coincides with E outside
the support of D. Let q1, ... , g, be aset of distinct n pointson C. (E' C E)
with A = ¢+ - -+¢, is called a quasi-parabolic 2-bundle on the n-pointed
curve (C;q1, ... ,q,). A pair (E' C E;«a) of a quasi-parabolic 2-bundle and
an n-tuple @ = (a4, ... ,a,) of real numbers in the closed interval [0, 1] is
called a parabolic 2-bundle.

Definition 1 A parabolic 2-bundle (E' C E;«) is semi-stable if

n 1 n
degL — ) ajlength, L/(LNE') < S(deg B — ; ;)

1=1

holds for every line subbundle L C E. It is stable if the strict inequality
holds for every line subbundle L C E.

We only need the case C = P!, Let ¢1,....,q, € P and py,... ,p, €
P73 be as in the introduction. We denote by U () the moduli space of
semi-stable parabolic 2-bundles (E' C F;«) on the n-pointed projective
line (P! : q1,...,q,) with det E ~ Op(1). Since the 2-bundle E, in (1)

3



is a subsheaf of the direct sum Op(1) ® Op, we obtain a quasi-parabolic
2-bundle (E, C Op(1)® Op) for each x € P"3. First we consider the case
where the weight « is diagonal, that is, « = (a,... ,a), for a € [0,1]. By
[B], we have the following:

Proposition 1 (1) If 1/n < a < 1/(n — 2), then (E, C Op(1) ® Op) is
stable for every x € P" 3 and the classification morphism

P*Hl(OP(l)@)[qh...,qn) = Pn_3 — U(CL, cee Ja)a T = (Ex - OP(1)®OP)

is an isomorphism. (The moduli space is empty if 0 < a < 1/n and consists
of one point if a =1/n.)

(2) U(a, ... ,a) is isomorphic to the blow-up X = Bl,, . , P"? ifn >
5and1/(n—2) <a<1/(n—4).

In order to describe the moduli space U(«a) for a general weight a, we
need the family of hyperplanes

H[,k . ZO&j —|—Z(1 — Oéi) =k
Gl icl
in the hypercube [0, 1]", where [ is a subset of {1,... ,n} and k is an integer
with |I| =k + 1mod 2. A connected component of the complement of the
union of all these hyperplanes is called a chamber. The hyperplane Hj
coincides with Hye,_x, where ¢ is the complement of I. Hence we assume
k < n/2 in the sequel. We recall some results of [B, §2] for our proof.

Proposition 2 (1) Let C be a chamber. Then the moduli space U(B) with
B € C is smooth of dimension n — 3. Moreover, their isomorphism classes
do not depend on 3. We denote the isomorphism class by Ue.

(2) For each o € C, there exists a (contraction) morphism fe. : Ue —
U(a).

(3) Let C and C' be two adjacent chambers separated by the hyperplane
Hpy Assume that Yoo+ 3 e (1 — ai) — k non-positive on C and non-
negative on C'. Then the two moduli spaces Ue and Ue are related in the
following way.

i) If k =2, then U is the blow-up of Ue at a point.

ii) If 3 < k(< n/2), then Ue is a flop of Ue. Let ag be a general
point of C N C'. The morphism fe.ay : Ue — U(ay) contracts a subvariety
isomorphic to P*=2 to a singular point and fer ., contracts a subvariety
~ P"*=2 o the same point. Both fc.ao and fer o, are isomorphisms outside
the subvarieties.



We also need the behavior of U(«) in the neighborhood of the facets
of [0,1]", which is described by the neglect of the parabolic structure
at a (parabolic) point. Let (E' C FE) be a parabolic 2-bundle on (P! :
qQ,---,qn) and E; the subsheaf of E which is £’ outside ¢; and E' itself
in the neighborhood of ¢;. Then (E; C F) is a parabolic 2-bundle on the
(n —1)-pointed projective line (P : q1,... ,Gi, ... ,q,). Similarly, let E* be
the subsheaf of E which is F outside ¢; and E’ in the neighborhood of g;.
Then (E' C E') is also a parabolic 2-bundle.

Proposition 3 Let C' be a chamber with o; = 0 as its supporting hyper-
plane. Then the neglect (E' C E) — (E; C F) defines a morphism Uo —
U' onto a moduli spaces of parabolic 2-bundles on (PY:qy,... i, ... ,qn).
A general fiber is isomorphic to P'. Similarly if C has a; = 1 as its
supporting hyperplane, then (E' C E) — (E' C E') defines a morphism
Uc — U" whose general fiber is also P!.

This is a moduli theoretic interpretation of the following birational ge-
ometry in the case s = 2:

Example 1 The projection P"~!... — P" 2 with center p, induces a
rational map X¢ = Bl,P"!'--- — Bl,_1P" 2 to the blow-up of P"? at
the image of (n — 1) points p1,... ,p,_1. This image is the Gale transform
of q1,...,q,_1 € P71 The indeterminacy of this rational map is resolved
by the flop with center the strict transforms of the n — 1 lines joining p,
and p;, 1 <i <n — 1. The resulting morphism is a P!-bundle.

Let II be the polytope in [0, 1]" defined by the system of 2"~ ! inequalities
> jer &+ e (1—a;) > 2 for the subsets I C {1,... ,n} with [I] odd. Let
IT be its interior. By virtue of (3) of Proposition 2, U(/3)’s with g € II are
isomorphic to each other in codimension one. So they have the common
Picard group and the common total coordinate ring.

The polytope IT is empty if n = 3 and consists of one point (1/2,--- ,1/2)
if n = 4. So we assume n > 5. The diagonal weight (a,...,a) with
1/(n —2) < a < 1/(n—4) is contained in II. Hence, by Proposition 1,
U(B) is isomorphic to X¢ in codimension one for every interior point [ of
IT.

For our proof we need a fact from the construction in [MS] also. The
moduli space U, 4. (@) is a GIT quotient of the product of a suitable
Quot scheme and Grassmannians by suitable linearization. Since U(«) is
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the projective spectrum Proj R of a graded ring R, it carries a natural am-
ple (Cartier) divisor, which we regard as a divisor on X by Proposition 2
and denote by D,,. The choice of linearization in [MS] is linear with respect
to the weight a. Hence we have

Lemma 1 If weights o, o/, " € 11 are colinear, then the divisors Dy, Dy, Don
€ Pic X¢ are linearly dependent.

Proof of Theorem. Let II be the cone generated by D, with o € II in
Pic X¢ ® R. For a chamber C, we denote the subcone generated by D,
with @ € C by C. Then D, is semi-ample on the moduli space Us by
(2) of Proposition 2. Since C' is finitely generated, so is C' N Pic X¢ by
Lemma 1. Therefore, by a lemma of Zariski ([HK, Lemma 2.8]), the C-
part @ ccnpic x, H(L) of the total coordinate ring 7C(X¢) is finitely

generated (over C). Since II is the union of finitely many C, the II-part of
TC(X¢) is also finitely generated.

The supporting hyperplanes of the polytope II are H r2’sand a; = 0,1
for 1 < ¢ < n. Let C' C II be a chamber with H;» as its supporting
hyperplane. Let 3; be a general point of the intersection C' N H r2. Then
Uc — U(Pr) is a one-point blow-up by Proposition 2. Let e; be the ex-
ceptional divisor and Z; the line in it. Then (D,.Z;) is positive for every
a € C and zero for « € C' N Hrs by (3) of Proposition 2. Therefore, by
Lemma 1, the intersection number (D.Z;) is non-negative for every D € II
and (D.Z;) = 0 is a supporting hyperplane of II.

Let C' C II be as in Proposition 3 and let F; be a general fiber of the
morphism Ue — U’. The intersection number (D,.F") is positive for
every o € C and zero for o € C N {a; = 0}. Therefore, by Lemma 1, the
intersection number (D.F}) is non-negative for every D € I and (D,.F}) =
0 is a supporting hyperplane of 1.

Now let D be a divisor of X¢g. If a = (ayq,...,q,) € R" does not
belong to II, then either > ;o + > ,c;/(1 — a;) < 2 holds for a subset
Iof{1,...,n} or a; <0 ora; >1holds for 1 <i <n. By Lemma 1,

if D does not belong to II, then either (D.Z;) < 0 holds for some I or
(D.F;) < 0or (D.F]) <0 holds for 1 <i < n, where F/ is a general fiber
of the morphism Uy — U"” in Proposition 3. Assume that D is effective.
Then the latter is impossible. Hence an effective divisor D & I1 contains
the exceptional divisor e; as irreducible component for some I. Therefore,



TC(X¢) is generated as ring by its f[—part and the canonical global sections
1 € H(Ox(er)) of the 2" exceptional divisors e;’s.

82 Moduli of certain 2-bundles on a del Pezzo surface

Let pi,...,pn € P and q1,... ,g, € P*"!, r +5 = n, be as in the
introduction. They are the Gale transform of each other. Let X = X4 and
S = Sg be their blow-ups. We need a certain linear isomorphism between
Pic X ® Q and Pic S ® Q for our proof.

Generally the correspondence e; — e;1 1 +— €11 — e, for 1 < 7 <
nand h — > 1e; — h — > ]e; gives an isomorphism from the Dynkyn
diagram 715 ., of X to 15,5 of S, and hence an isometry ¢y between two
lattices (—Kx)* C Pic X and (—Kg)* C PicS with respect to the inner
product defined in [M, §3]. We identify the two Weyl groups W (75 5,—s)
and W (1%, ,—,) by this correspondence. The following is easily verified:

Proposition 4 Let U be the standard Cremona transformation of P57t
with center the s points qi,...,qs and V' that of P"~' with center the r
POINts Psii, ... ,Pn. Then

g1, - y(Qs, qj(QS—}-l); S 7‘1](Qn) S Ps_l

and
\Ij/(pl)y S 7\Pl<ps)7ps+17 Y 20 € Pr_l

are the Gale transform of each other.

Now we assume that s = 3 and extend the isometry ¢y to a linear
isomorphism ¢ : Pic X ® Q — Pic S ® Q by setting p(Kx) = 2Kg. The
following is easily calculated:

ple;) =h—e;, @(h)=(n—-2)h—e (3)

Remark Though ¢ is not an isometry, (p(D)?) = (D?)— (Ks.D)?/4 holds
for every D € Pic S.

The main tool of our proof is vector bundle as in previous section. More
precisely we consider torsion free sheaves E on S with

r(E)=2,c(F)=—-Kg and c(F)=2. (4)



For an ample divisor L on S, we denote by Mg the moduli space of such
torsion free sheaves FE which are semi-stable with respect to L in the sense
of Gieseker [G]. It contains the moduli space Mgy, of stable bundles as an
open set. Mgy is smooth of dimension n — 4 by the general theory. We
study the variation of Mg as L moves. See [EG], [FQ] and [MW] for the
general theory.

We further assume that n = (6,)7,8. Then S is a del Pezzo surface,
that is, a surface with ample —Kg. The degree (K?2) is equal to 9 — n.

Lemma 2 FEvery member of E € MS’L has a nonzero global section.

Proof. By the Riemann-Roch formula, we have y(F) =9 —n > 1. Since
H*(E) ~ Hom (E, Og(Kg))" = 0, we have H(E) # 0. O

Let [ be a line, i.e., a smooth rational curve [ C S with (I. — Kg) = 1.
When L crosses crosses the hyperplane H;; : (20 + Kg.L) = 0 from the
positive side to the negative, the non-trivial extensions

0— OS(—KS — l) — F — OS(Z) — O,

which are parameterized by P79, are replaced by the opposite non-trivial
extensions

0— Os(l) — E' — Og(—Kg—1) — 0,

which are parameterized by P!, in the moduli spaces. We denote this P!
by Z;. In the case n = 8, —Kg belongs to the positive side and the moduli
space is flipped when L crosses the hyperplane H; ;.

Similarly, let C' be a conic, i.e., a smooth rational curve C' with (C. —
Kg) =2. When L crosses the hyperplane He : (2C + Kg.L) = 0 from the
positive side, the family of non-trivial extensions £ of Og(C') by Og(—Kg—
C) parameterized by P"~® is replaced by the unique non-trivial opposite
extension F¢. In fact, the moduli space is blow down to the point [E¢]. We
denote the exceptional divisor ~ P"™ parameterizing E’s in the moduli
space by ec.

Let II C PicS ® R be the cone of ample divisor classes L on .S such
that (L.2C' + Kg) > 0 for every conic C' C S.

Lemma 3 If E € Mgy is strictly u-semi-stable with respect to an ample
divisor L € I, then we have either (21 + Kg.L) = 0 for a line | or (2C +
Kg.L) =0 for a conic C.



Proof. E is an extension of a line bundle by another line bundle of the
same degree outside a finite set of points. By Lemma 2, one of these two
line bundles has a nonzero global section and is isomorphic to Og(D) for an
effective divisor D. By the strict p-semi-stability, we have (2D+Kg.L) = 0.
Assume that h°(Og(D)) = 1. Then D is supported by a disjoint union of
lines ly,... ,l,. Since 2= (l1. — Kg—11) < (D.— Ks—D) < c2(E) =2, we
have D = [;. Assume that h°(Og(D)) > 2. Then either |D + Kg| # 0 or
|D —C| # () for a conic C'. But the former contradicts to (2D + Kg.L) = 0.
The latter implies D — C' = 0 since L € II. O

Let C be a chamber of II, that is, a connected component of the com-
plement of | J; ., Hi1 in II. For every L € C, every member E € M& I is
stable. Hence all Mg (= MS’ 1), L € C, are isomorphic to each other. We
denote this isomorphism class by Mgc. In particular, Mg’s, L € II, are
isomorphic to each other in codimension one.

We relate Mg with the blow-up Xg. By the Riemann-Roch for-
mula, we have x(Hom (E,Og(h))) = 1. Since H*(S,Hom (E,Og(h))) ~
Hom (Og(h), E(Kg))" = 0, we have dim Hom (E, Og(h)) > 1 for every
semi-stable bundle £ € Mg . In particular, if (L. — Kg)/2 > (L.h), then
the moduli space Mg, is empty. For example, this applies if L = ah — Kg
and if @ > n — 3. In the range n — 5 < a < n — 3, a nonzero homomor-
phism f : E — Og(h) is surjective and unique up to constant multipli-
cation. Hence Mg is isomorphic to the (n — 4)-dimensional projective
space P.Ext'(Og(h), Os(2h — ¢)) ~ P,HY(P? I, . . (1)), where we put
e =Y 1 €;. This identification is nothing but (2) in the introduction.

Among these extensions E of Og(h) by Og(2h — e), there is a unique
E; which contains Og(h — ¢;) as its subsheaf for each 1 < i < n. E; is
nothing but £, ® Og(h) in the introduction. Hence Mgy, is the blow-up
X¢ of the P"* at the n points p, ... ,p, between a = n — 5 and the next
critical value (=n — 7). Since ah — Kg belongs to Il for n — 7 < a < n—75,
Mg is isomorphic to X¢ in codimension one for every chamber C C II.
When a =n — 7, we have (2l + Kg.ah — Kg) = 0 for every [ = h —e; — ¢,
1 <i<j<n. Infact, at a =n — 7 the moduli space Mg 4,k is flopped
with center the strict transforms of lines joining p; and p;.

A line [ yields another 1-cycle other than Z;. Let w : S — S’ be the
blow-down of [ C S to a point ¢ on a smooth surface S’ and assume that
an ample divisor L is sufficiently near to the pull-back of an ample divisor



L' on S’. The direct image 7, E of a member E of Mg, is not locally free
at ¢ € S'. But its double dual belongs to Mg 1 and we get a morphism

MS,L — MS’,L’, E — (W*E)vv. (5)

This morphism is a P!-bundle ove the open set Mg 1, and interprets Ex-
ample 1 moduli theoretically in the case s = 3. We denote by F; a general
fiber of this morphism.

The following is a substitute for Lemma 1 in the cases [7] and [9].

Lemma 4 Let [ be a line. Then
2(Z,.D) = -2l + Kg.p(D)) and (F;..D) = (l.p(D))
hold for every divisor D on X.

Proof. We prove the case n = 8. Other cases are similar and easier.
The isomorphism ¢ is W ( Fg)-equivariant and the Weyl group W (Es) acts
transitively on the set of 240 classes of all lines. Hence, by Proposition 4,
it suffices to verify the assertion for one line [. For the first formula, we
take h — e; — ey as [. As we saw above, Z; is the strict transform of the
line passing through p; and p,. Hence we have (Zj.e1) = (Z.e5) = 1,
(Z1.¢;) = 0 for 3 < i < 8 and (4. — Kx) = —1. On the other hand
we have (I.Lh —e1) = (ILh —ey) =0, (.Lh —e¢;) =1 for 3 < i < 8 and
(I.—2Kg) = 1. Hence, we have the equality (Z;.D) = —(3Kg+1.p(D)) for
D =e,...,es,—Kx by (3). Since ey, ... ,es and —Kx generate Pic X ®Q,
the equality holds for every D.

For the second formula, we take eg as [. By Example 1, F; is the strict
transform of a general line passing through ps. Hence we have (Fj.e;) =0
for 1 <i¢ <7, (F.es) =1and (F}. — Kx) = 2. These intersection numbers
on X are equal to (es.h — ¢;) and (eg. — 2Kg), respectively. [

By the lemma, the hyperplanes H;; and H;o are mapped to those in
Pic X ® R defined by the 1-cycles Z; and F} by ¢! respectively. A similar
computation shows that Hc; is mapped to the hyperplane defined by Z¢
for every conic C.

Proof of Theorem. We prove the theorem by the induction on n = (6, )7 and
8. First we show the finite generation of 7C(X¢) over ¢ 'II C Pic X ® R.
This is equivalent to the following:
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Claim. The ¢ tC-part of TC(X¢) is finitely generated for every cham-
ber C in IIL.

Every facet II corresponds to either the blow-down of ec ~ P or a
generic P!-bundle over MS/, 1/, where S’ is the blow-down of a line from
S. The blow-down of ec is isomorphic in codimension one to Bl,_P" .
Hence, by induction and by the result of §1, ¢ !F-part of T7C(Xg) is
finitely generated for every facet F of II. Let Ry, ... , R, be the edges of C
contained in II. We choose an ample divisor L; on S from each R;. By the
GIT construction, Mg, carries a natural ample (Cartier) divisor, which
we denote by D;. Then D; is semi-ample on Mge. By the first formula of
Lemma 4, D; belongs to the ray ¢ 'R;. Therefore, by a lemma of Zariski
([HK, Lemma 2.8]), ¢ 'C-part of TC(X¢) is finitely generated. Thus the
claim is proved.

The cone ¢ 'I is defined by two kinds of supporting hyperplanes,
¢ 'Hcy’s of divisorial (contraction) type and ¢~ 'Hj¢’s of fiber type. By
the same argument as the case [4] in §1, 7C(X¢) is generated by its o 1TI-
part and @C:conic HO(OX(GC))‘ O
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