CLASSIFICATION OF LOG DEL PEZZO SURFACES OF INDEX TWO

NOBORU NAKAYAMA

ABSTRACT. In this article, a log del Pezzo surface of index two means a projective nor-
mal non-Gorenstein surface S such that (.5,0) is a log-terminal pair, the anti-canonical
divisor —Kg is ample and that 2Kg is Cartier. The log del Pezzo surfaces of index two
are shown to be constructed from data (X, E, A) called fundamental triplets consisting
of a non-singular rational surface X, a simple normal crossing divisor E of X, and an
effective Cartier divisor A of E satisfying a suitable condition. A geometric classification
of the fundamental triplets gives a classification of the log del Pezzo surfaces of index
two. As a result, any log del Pezzo surface of index two can be described explicitly as a
subvariety of a weighted projective space or of the product of two weighted projective
spaces. This classification does not use the theory of K3 lattices, which is essential for
the classification by Alexeev—Nikulin [3]. The comparison between two classifications is

also discussed.
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In this article, we work in the category of algebraic schemes (or algebraic spaces) over

an algebraically closed field k. A del Pezzo surface is a non-singular projective surface

with ample anti-canonical divisor, by definition. Studying del Pezzo surfaces is one of the

main topics in the classification theory of algebraic surfaces or in the theory of rational
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surfaces (cf. [9]). We shall study a generalization of the notion of del Pezzo surface to the



singular normal surface case. From the point of view of logarithmic birational geometry,
it is natural to consider the pairs (S, B) such that S is a normal projective surface (or a
normal complete algebraic space of dimension two) and B is an effective Q-divisor on S
with —(Kg + B) being ample in some sense. The precise definition of such pairs is given
in Section 3.1/ below, and the pairs are called del Pezzo pairs. It is also natural to require
the pair (S, B) to have only log-terminal (or log-canonical) singularities in many cases.
According to the paper [1] of Alexeev—Nikulin, a log del Pezzo surface is defined to be
a normal projective surface S such that (5,0) is a del Pezzo pair with only log-terminal
singularities. The index of a log del Pezzo surface S is the minimum positive integer ¢
with K s being Cartier. Note that if the characteristic chark is zero, then, for a normal
surface S, the pair (5,0) has only log-terminal singularities if and only if S has only
quotient singularities.

A log del Pezzo surface S of index one is a normal projective surface S with only rational
double points as singularities and with ample anti-canonical divisor. The surfaces S are
studied in many papers such as [7], [9], [12], [13], [30], [31], [32]. By the minimal resolution
a: M — S of singularities, the classification of S is equivalent to that of non-singular
projective surfaces M with nef and big anti-canonical divisor —Ky;.

The next non-trivial case should be the case of index two. The log del Pezzo surfaces
of index at most two defined over the complex number field k = C have been studied by
Alexeev-Nikulin [3] (cf. [1], [2]) by a method of K3 lattice. The paper [3] is an English

version of the old paper [1] written in Russian, and has been published recently as
Del Pezzo and K3 surfaces, MSJ Memoirs Vol. 15, Math. Soc. Japan, 2006.

The argument of [3] begins with proving the SMOOTH DIVISOR THEOREM: a general
member Cs € |—2Kg| is a non-singular curve of genus > 2. Let X — S be the double-
covering étale outside C'sUSing S and let X — X be the minimal desingularization. Then
X is a K3 surface and the covering involution # induced on X is non-symplectic in the
sense that #*w = —w for a nowhere vanishing holomorphic 2-form w of X. The quotient
surface Y = X' /(0) is non-singular and X — ) is branched along a non-singular divisor
Cy + FEy, where Cy is the total transform of Cs by the induced birational morphism
Y — S, and Ey is a union of (—4)-curves. The birational morphism ) — S is called the
right resolution of S in [3], which is nothing but the canonical resolution in the sense of
Horikawa. A non-Gorenstein point of S is a singularity of type K,, (cf. Section|4.4), whose
minimal desingularization has a chain of rational curves as the exceptional divisor. The
right resolution is just the blowing up at the nodes of the chains. The pair (Y, Cy + Ey)
is called a right DPN pair of elliptic type in [3]. By comparing three objects (.S, Cs),



(Y,Cy+ Ey), and (X, 0), the classification of log del Pezzo surfaces index at most two is
reduced (in some sense) to that of K3 surfaces with non-symplectic involution.

The invariant lattice S = H?(X*", Z)?" by the induced action §* on the K3 lattice
H? (X Z) plays an important role in [3]. The sublattice S naturally contains the Néron-—
Severi group NS()) = H*(Y™,Z) as a finite index subgroup. Moreover, S is shown to be
an even, hyperbolic, and 2-elementary lattice. Such a lattice is determined by the main
invariants (r,a,d) by a result of Nikulin. The main invariants for all the sublattices S are
classified into 50 types, where 40 are for the case of index two. Another important notion
called root invariant is used for determining the nef cone of ) inside S ® R. Especially,
the dual graph of the curves on ) with negative self-intersection number is determined
by the root invariant. Applying the Torelli theorem and the surjectivity of period maps
for K3 surfaces to S and to the nef cone of ), the classification of S is reduced to that
of root invariants. The latter is reduced to the extremal case, where S has an extremal
root invariant if the Picard number is minimal among the log del Pezzo surfaces with
the same S. Therefore, the log del Pezzo surfaces of index at most two are classified by
the main invariants and the root invariants, up to suitable deformation equivalence. In
the case of index two with Picard number one, they succeeded in the classification up to
isomorphism, where the number of isomorphism classes is 18.

However, the results of [3] are far from geometric description of the log del Pezzo sur-
faces because of the use of Torelli type theorems. Recently, Kojima [19] has geometrically
classified the log del Pezzo surfaces of index two with Picard number one by a method of
the theory of open surfaces.

In this article, we present a geometric classification of log del Pezzo surfaces of index
two over an algebraically closed field k of any characteristic. The idea of our method
comes from a technique used in [14]. By the idea, we can classify furthermore all the
isomorphism classes of del Pezzo pairs of index at most two. In the most essential part

of the classification, we consider the following three objects:

e A del Pezzo pair (S, B) of index at most two of a certain class discussed from
Section 3.2.

e A basic pair (M, E)yr) consisting of a non-singular projective rational surface M
and an effective divisor F); satisfying the condition C in Definition [3.13.

o A fundamental triplet (X, E,A) consisting of a rational surface X isomorphic
to a Hirzebruch surface F,, or P2, of an effective divisor £ of X, and of a zero-

dimensional subscheme A C E which satisfy the conditions in Section 4.1.

These objects are related as follows: From a del Pezzo pair (S, B) of index two in the class

above, we have a basic pair (M, FEys) by the minimal desingularization a: M — S and by



the formula —2K,; = a*(—2(Ks+ B))+ Ey. For a basic pair (M, E)yy), the linear system
|Las| is base point free for Ly, = —2K; — Ejy by Theorem [3.18] which gives another
proof of the SMOOTH DI1VISOR THEOREM in [3] when chark = 0. The linear system
|Las| defines the minimal desingularization ac: M — S of a normal projective surface S
in which (S, B) is a del Pezzo pair of the class above for B = (1/2)a.E). By the cone
and the contraction theorems (cf. [22]) in the minimal model theory, from a basic pair
(M, Eyr), we have a minimal basic pair (X, E) (cf. Section(3.2) and a birational morphism
¢: M — X with Ky, + Ly = ¢*(Kx + L) for L =—-2Kx — E. Here, X is a Hirzebruch
surface F,, or P2. There exists a zero-dimensional subscheme A C E such that vp(A) =1
for any P € A (cf. Definition 2.2) and that ¢ is expressed as the elimination of A (cf.
Definition [2.5] Proposition 2.9). The triplet (X, F, A) is a quasi-fundamental triplet (cf.
Definition [4.1)), but we can replace the birational morphism ¢: M — X so that (X, E, A)
to satisfy the additional condition required for fundamental triplets. The fundamental
triplet (X, F, A) is determined uniquely by the basic pair (M, E)y;) with the exception
mentioned in Theorem 4.9 (cf. Example[4.12). The minimal basic pairs are classified by
an elementary calculation (cf. Section [3.3). The fundamental triplets are classified also
by an information of A, which is done in Theorem [4.6. The type of the fundamental
triplet (X, £, A) defined in Theorem 4.6 depends only on the associated del Pezzo pair
(S, B) (cf. Theorem [4.9). The list of types gives essentially the geometric classification
of del Pezzo pairs of the class.

The information on fundamental triplets enables us to study the structure of del Pezzo
pairs in detail. For example, we can determine the dual graph of exceptional divisors of
the minimal desingularization of S for any the rational del Pezzo pairs (S5, B) of index two
(cf. Section [4.3)), and also we can study several deformation types on (S, B), (M, Ey),
and on (X, E,A) (cf. Section 5). For a log del Pezzo surface S of index two, we shall
show in Theorem [5.16/ that S is deformed to a non-singular del Pezzo surface of the same
genus ¢ = KZ + 1 under a Q-Gorenstein deformation. The author was informed the
result from Yongnam Lee in the case of chark = 0. For the positive characteristic case,
we need a local Q-Gorenstein smoothing of the singularity of type K,,, which is prepared
in Section [4.4.

There are exactly 41 types for the log del Pezzo surfaces S of index two, which are
listed in TABLE [6. The list of types corresponds to the list of equi-singular deformation
types of (M, E)y) with one exception: basic pairs of type [2;1,2], and of type [0; 1, 1]o
are connected by equi-singular deformation (cf. Theorem Proposition [5.10). We can
show in Theorem [6.28 below that if chark # 2, then the equi-singular deformation type
of a log del Pezzo surface S of index two is determined by the type of S and by the dual

graph of curves on M with negative self-intersection number.



By TABLE 6, we infer that the list of equi-singular deformation type of (M, E)ys) cor-
responds to the list of the main invariants (r,a,d) of S given in [3]. The numerical
information of A for a given E seems to correspond to the root invariant of S. It is
interesting to define a root invariant directly from the data of fundamental triplet for the
comparison between the classification of [3] and our classification by fundamental triplets.
By Theorem [6.28, it is almost true that Alexeev and Nikulin have classified in [3] not the
isomorphism classes but the equi-singular deformation types of log del Pezzo surfaces of
index two.

We can describe a log del Pezzo surface of index two as a subvariety of a weighted
projective space or of the product of two weighted projective spaces with explicit defining
equations (cf. Section (7). The idea of description follows from a description of the blowing
up of X along A as a divisor of a P!-bundle over X (cf. Section[2.3). We have a morphism
from S into a toric variety W by a certain linear system on the P'-bundle. If the nef
divisor Kx + L = —(Kx + F) is big, then the morphism is an embedding, and if Kx + L
is not big, then it is a double-covering. In some cases, W is a weighted projective space
or is realized as a subvariety of a weighted projective space. In the case where FE is a
minimal section of X ~ IF,,, the description of S and W seems to be complicated, and
we consider another method of description. In this case, S is obtained as the blowing
up of P(1,1,4) along a zero-dimensional subscheme of degree 4 — n (cf. Proposition 7.1).
In particular, S ~ P(1,1,4) is case n = 4. For other n, S is realized as a subvariety
of the product P(1,1,n) x P(1,1,4) in case n > 0, and of the product P* x P(1,1,4) in
case n = 0. In the case where S — W is a double-covering, W is P(1,1,4) or P(1, 1, 2).
Using some ad hoc method, we can describe S as a divisor of a weighted projective space
of dimension three. In the recent paper [15], we find another method of describing the
defining equations of S in a weighted projective space when chark = 0 and the genus is
small.

In many arguments in our study, the case of type [1;2,2]o and the case of chark =
2 appear as exceptional cases. The log del Pezzo surfaces in the cases seem to have
interesting and complicated structure.

This article is organized as follows: The notion of elimination is introduced in Sec-
tion 2. The notions of del Pezzo pair and basic pair are introduced in Section (3, where
the minimal basic pairs are classified, and the anti log-canonical rings of del Pezzo pairs
of index at most two are studied. The notion of fundamental triplet is introduced and
the fundamental triplets are classified by types in Section [4.2. Here, in TABLES 3 and
4, the list of the dual graphs of exceptional divisors for the minimal desingularization of
non-Gorenstein singular points of S is given. Section 5 is devoted to the study of deforma-

tion. Especially, deformations of fundamental triplets, and equi-singular deformations of



(M, Epr) and of (S, B) are studied. In Sections|6/and[7, we consider only the log del Pezzo
surfaces of index two. The structure of the minimal desingularization M is studied in
Section |6, Here, we determine all the curves on M with negative self-intersection number.
Using it, we study the equi-singular deformations of (M, E)s) and of S. The comparison
with the classification by Alexeev—Nikulin [3] is explained in Section Section 7] is
devoted to giving an explicit description of the log del Pezzo surface from the data of

fundamental triplet.
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Notation and terminology. We work in the category of algebraic schemes (or algebraic
spaces) over a fixed algebraically closed field k. A scheme (or an algebraic space) proper
over k is called complete. If k is the complex number field C, then the completeness is

equivalent to the compactness of the associated analytic space.



First, we explain things on divisors on a normal variety. Let X be a normal variety.

e A divisor on X means a Weil divisor. Thus a Q-divisor is a linear combination
D =3 a;I'; of prime divisors I'; with rational coefficients a;. The Q-divisor D is
called effective and we write D > 0 if all a; > 0. A Q-divisor D is called Q- Cartier
if some positive multiple mD is a Cartier divisor.

e For a reflexive sheaf £ of rank one, a global section ¢ of £ defines a homo-
morphism Ox — L. If & # 0, then the image of the dual homomorphism
LY =Homo, (L,0x) — Ox is the ideal sheaf of an effective divisor. The divisor
is denoted by div(§) = div(§)e. If D = div(€),, then £ is called a defining equa-
tion of D in L. In this case, there is an injection from £ into the sheaf of germs
of rational functions of X sending £ to 1. The image is just the sheaf Ox (D)
of germs of rational functions f with div(f) + D > 0. The cohomology group
H'(X, Ox(D)) is denoted by H'(X, D), for short.

e Suppose that X is complete. A Cartier divisor D is called nef if DC' > 0 for any
irreducible curve C', where DC denotes the intersection number of D and C. A
Cartier divisor D is called big if some positive multiple mD is linearly equivalent
to A+ FE for an ample divisor A and an effective divisor E. Note that a nef Cartier
divisor D is big if and only if D™ > 0 for n = dim X. The intersection theory is

generalized to divisors on normal surfaces by the Mumford pullback (cf. Section

3.1).

Second, we explain things related to surfaces. Let S be a non-singular surface.

e An irreducible complete curve v on S is called a negative curve if the self-
intersection number 72 is negative. If ¥ ~ P! in addition, then ~ is called a
(—d)-curve for d = —~2.

e The dual graph of a reduced divisor D = Y D; on S is defined as follows in the
case where irreducible components D; are all non-singular: A vertex corresponds
to an irreducible component D;. Let v; be the vertex corresponding to D;. If
D,D; = 0 for two irreducible components D;, D;, then there is no edge joining v;
and v;. If D;D; = 1, then v; and v; are joined by a (simple) line. If D;D; =k > 1,
then v; and v; are joined by a thick line with the numbered box : If the vertices
v; are written as black circles labelled by D;, then

D; Dj D; Dj
@ —©® incase D;D; =1, in case D;Dj =k > 1.
The set of vertices of such a dual graph I" is denoted by Ver(I').
e In the dual graphs of divisors, a vertex corresponding to a (—d)-curve is expressed

as follows:



(—1)-curve | (—2)-curve | (—3)-curve | (—4)-curve | (—d)-curve

O o ® © @

On the other hand, an arbitrary irreducible curve is expressed by the symbol )
when it is not necessarily a (—d)-curve.
e A straight chain of non-singular curves of length n on a non-singular surface means
a divisor D = D; + Dy + -+ + D,, such that
(1) any irreducible component D; of D is a non-singular projective curve,
(2) D;,ND; =0 for |i — j| > 1,
(3) D1Dy = DyD3 = --- =D, 1D, = 1.
The dual graph of D is written as:

D, Dy D3 D, D,
O—0— O—

e Let IF,, — P! denote the P'-bundle associated with the locally free sheaf O & O(n)
of P! for n > 0. The surface F, is called the Hirzebruch surface of degree n. A

section 0 C F,, with 02 = —n is called a minimal section. If n > 0, then the
minimal section is called the negative section since it is a unique negative curve
on F,. The contraction of the negative section is denoted by F,, — TF,. Here,
F,, is isomorphic to the weighted projective space P(1,1,n). A section 0., with
0N0os = 0, which is necessarily linearly equivalent to o +n/ for a fiber £, is called
a section at infinity.

Finally, we explain additional things.

e A weighted projective space P(ag, ay,...,q;) over k is defined as Proj R for the
graded polynomial ring R = k[Xo, X1, ..., X;] where X; is a homogeneous element
of degree a; for 1 < i < [. The tautological sheaf O(n) for n € Z is defined as
R(n)~. If a; | n for any i, then O(n) is invertible. A homogeneous coordinate
(Yo, ...,Y;) of P(ay, . ..,a;) means that Y; is a global section of O(q;) for any 7 and
P(ag,...,a) ~ Projk[Yo, ..., Y.

e A lattice S means a free abelian group S of finite rank together with a non-
degenerate symmetric integral bilinear form (., .): S x S — Z.

e The intersection C' N E of subschemes C, E C X means the scheme-theoretic

Intersection.



2. ELIMINATION OF ZERO-DIMENSIONAL SUBSCHEMES

We introduce the notion of elimination for a zero-dimensional subscheme of a non-
singular surface satisfying a suitable condition. A typical example of such a subscheme is
the scheme-theoretic intersection C'N E of a non-singular curve C' and an effective divisor
E with C' ¢ E. The notion of elimination is a generalization of the notion of separation
introduced in [14].

2.1. Succession of blowups. Let X be a non-singular surface and let A be a zero-

dimensional subscheme of X. The defining ideal sheaf of A is denoted by Za.

Definition 2.1 (weak transform). Let f: Z — X be a proper birational morphism from

a non-singular surface.

(1) Then the image ZaoOy of f*In — Oy is written as Oz(—G)J for an effective
f-exceptional divisor G of Z and an Ogz-ideal J defining a subscheme of Z of
dimension < 0. The ideal J is called the weak transform of . Similarly, the
subscheme Ay defined by 7 is called the weak transform of A.

(2) Let E be an effective divisor on X. We define E2 to be the effective divisor
f*E — f*E NG, where G is the f-exceptional divisor in (1) and

fFENG = ZF min{multr(f*E), multr(G)}T.

Remark. If A is a subscheme of an effective divisor F, i.e., Ox(—FE) C Za C Ox, then the
weak transform Ay is a subscheme of E?. In fact, the inclusion Oz(—f*E) C ZoOyz =
JOz(—@G) implies that £2 = f*E — G >0 and Oz(—E2) CJ =1Ia,.

The following is related to the notion of multiplicity of A at a point:

Definition 2.2. Let P be a point of the zero-dimensional subscheme A.

(1) The multiplicity multp(A) at P is defined as the length of the Artinian local ring
O p.

(2) The degree deg A coincides with h’(Oa) = X pea multp(A).

(3) Let us define another invariant vp(A) by

vp(A) =max{r € N|Zy C mp},
where mp C Ox is the maximal ideal at P.

Remark. For an effective divisor D and for a point P, we have
max{v € N| Ox(—D) C m%}}

= min{multp(C N D) | a non-singular curve C' ¢ D passing through P}.



10

This number is called the multiplicity of D at P and is denoted by multp(D). For two
effective divisors D;, Dy with no common irreducible components, the local intersection
number (D1, Ds)p at a point P is defined by multp(D; N Dy).

Remark. vp(A) = 1 if and only if A is an effective divisor of a non-singular curve over a
neighborhood of P. In fact, if vp(A) = 1, then Za p = (z,y*) for a system of parameters
(x,y) of the regular local ring Ox p and for k = multp(A).

Lemma 2.3. Assume that Supp A is a point P with vp(A) =1 and k = multp(A) > 2.
Let V. — X be the blowing-up along A. Then V is normal and has a unique singular

point Q) € V', which is an Ay_1-singularity.

Proof. We may assume that X = Speck|[x,y] and Zpx = (x,y*). Then V =V, UV} for
Vo ~ Specklx,y,2]/(xz —y*) and V; ~ Speck|x,y,w]/(x — uy®).

Here, V; is non-singular and V; has the unique singular point (0,0,0) of type Ax_;. O

In what follows in Sections[2.1H2.3] we assume that vp(A) =1 for any P € A.

We shall investigate the weak transform of A by blowups. Let p: Y — X be the
blowing-up at a point P € A. If multp(A) = 1, then ZoOy = Oy (—I) for the exceptional
curve | = p~1(P) and hence the weak transform Ay is empty. If multp(A) > 1, then
IaOy = Oy(—l) ® Zp, and L N Ay = {P'} for a point P’, where vp/(Ay) = 1 and
multp (Ay) = multp(A) — 1. In fact, if Za p = (z,y*) for a local coordinate (x,y), then
k1)

In, pr = (2y and (x,y) = (2'y,y’) for a local coordinate (z’,y") around P’. For an

effective divisor £ on X, we have B2 = u*E — [ in case P € E and E2 = p*E in case
P&FE.

By the argument above on the blowing-up at a point, we infer that if deg(A) = n < oo,
then there exists a succession of blowups

(2*1) QSM:YN_)YH—I_)_)Yl—)%:X

such that
(1) the weak transform Ay. of A in Y; is not empty for i < n and Ay, = 0,
(2) Y41 — Y; is the blowing-up at a point P; € Ay, for i < n.
In particular, the weak transform of A is eliminated by the succession of blowups (2-1).

Lemma 2.4. The non-singular surface M in (2-1) is isomorphic over X to the minimal

desingularization of the blowup V' of X along A.

Proof. By construction, ZAOy; = Op(—G) for the ¢-exceptional effective divisor G ~
Ky — ¢*Kx. By the universality of blowing up, there is a morphism A\: M — V over
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X such that A*Oy (1) ~ Oy (—G), where Oy (1) denotes the tautological invertible sheaf
associated to the graded Ox-algebra @,,50Zx. In particular, Ky, ~ A*Ky. Hence,

A: M — V is the minimal desingularization. U

Definition 2.5 (elimination). Let M — V be the minimal desingularization for the

blowing up V" along A. The composite ¢: M — X is called the elimination of A.

Even though the definition of elimination can be applied to arbitrary zero-dimensional

subscheme A, we consider only the case where vp(A) =1 for any P € A.

Remark 2.6. The elimination ¢: M — X of A is characterized by the following two

conditions:

(1) The weak transform of A is empty;

(2) Ky ~ ¢*Kx + G for the effective divisor G determined by ZpoOy = Oy (—G).
In fact, there is a birational morphism A\: M — V by (1) and X is the minimal desingu-

larization by (2). Conversely, the elimination ¢: M — X satisfies these two conditions
by Lemma 2.4.

Lemma 2.7. Let ¢: M — X be the elimination of A.
(1) Let A" be a subscheme of A. Then ¢ factors through the elimination of A'.

(2) Let E be an effective divisor on X containing A\ as a subscheme. Then E%) is a
unique effective divisor of M such that ¢, E5; = E and Ky + B ~ ¢*(Kx + E).

(3) For an effective divisor E on X, let M' — X be the elimination of AN E. Then
E% is the total transform of E%,. In particular, if E is non-singular at AN E,
then EZ%, is the proper transform of E in M.

(4) Let E be an effective divisor on X such that ANE consists of finitely many points.
Then the difference © = ¢*E — E%; is a complete ¢-exceptional effective divisor
satisfying

—0% = —0OK); = OF%, = deg(ANE).

(5) For two complete effective divisors D and E on X,

D5 ES, = DE —deg(ANDNE).

Proof. (1): In the expression (2—1) of the elimination ¢ of A as a succession of blowups
at points, we can choose the center of blowing-up Y;1; — Y; from points of the weak
transform of A’ whenever the weak transform is not empty. Hence ¢ factors through the
elimination of A’

(2): Let G be the effective divisor on M such that Oy (—G) = ZaoOy. Then G < ¢*E
by Ox(—FE) C Za. Since G ~ Ky —¢*Kx, we have Bf; = ¢*E—G ~ ¢*(Kx + E) — K.
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(3): ZaneOnr = Opnp(—G') for the ¢'-exceptional effective divisor G’ on M’ with
Ky ~ ¢ Kx+G'. The equality ZaOyp +Onp (— ¢ E) = TanpOyp implies Ay NES, =
(). For the induced morphism ¢": M — M’, there is an effective divisor G” such that
In,,, On = Oy (—G") and G = ¢""G' + G". Hence, ES = ¢ B

(4): © is complete by the assumption and it coincides with ¢”*G’ in the proof of (3).
Thus —0% = —G"* = deg(A N E), and

—OKy = -0G = -0?=0(—¢*'E + E5,) = OF%,

by the equality G = ¢"*G’ + G".
(5): We may assume A C D by (3). Thus ¢*D — D5, = G. Hence, by (4), we have

DYES = (¢*D — G)(¢*E —0) = DE+ GO = DE —deg(ANDNE). O

Remark. Let C be a non-singular curve and let £ be a non-zero effective divisor with
C ¢ E. Then the scheme-theoretic intersection A = C'N E satisfies vp(A) = 1 for any
P € A. The separation of C' and E defined in [14] is nothing but the elimination of A.

The following well-known result is important for showing some vanishing of coho-
mologies and for showing the base point freeness of some linear systems, especially in

characteristic p > 0 (cf. [4], [5]):

Lemma 2.8. Let E be a one-dimensional projective scheme satisfying H' (E, Og) = 0. If
L is a nef invertible sheaf of E, then L is generated by global sections and H'(E, L) = 0.

Proof. Let E4, Es, ..., E; be the one-dimensional irreducible components of E. We may
assume that E is connected, and hence E = J\_, E;. Let J; C Og be the ideal sheaf
defining F;. Then J" is a skyscraper sheaf for n > 0. We set

W(B)=Y 3 ranke, JP/JrL
Note that a(F) is an invariant for any one-dimensional algebraic scheme E. We also set
d; = deg(L],) > 0.
We first consider the case where £ is numerically trivial; we shall show that if d; = 0

for any i, then £ ~ Og. There is an exact sequence
0—-L®J, —L—0g —0

for any E;, since E; ~ P!. Note that J; is regarded as an Op,-module for a subscheme
D; C E such that dim D; < 0 or that dim D; = 1 with a(D;) = a(E) — 1. By using
the induction on a(E), we may assume £ ® J; ~ J;. The surjection H(E,Op) —
H(E;, Op,) ~ k and the vanishing H'(E, Op) = 0 induce H'(.J;) = 0. Therefore, the
restriction map

T . HO(Eaﬁ) - HO(EMOEZ)
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is surjective for any 7. There is a section s € H(E, £) such that 7;(s) # 0 for any i. Let
F be the cokernel of the homomorphism O — £ sending 1 to s. Then 7 ® Op, = 0 for
any ¢. Thus Op — L is surjective, and is isomorphic.

Next, we consider the general case. For any 7, let us take an arbitrary point P; € F;
not contained in other irreducible components £j. Then there is an effective Cartier
divisor B; of E with Supp B; = {P;} and B;
U of P; can be regarded as a subscheme of an affine space A and there is a regular
function f on A with div(f) N E; NU = P,. Therefore the invertible sheaf £ ® Op(—B)
is numerically trivial for the effective Cartier divisor B = Y d;B;. Hence, £ ~ Og(B).

g, = P;. In fact, an open neighborhood

Thus £ is generated by global sections by the freeness of the choice of {F;}. Since
0— Op — L~ 0Op(B) — Op — 0 is exact, we have H'(E, £) = 0. O

Remark. In Lemma 2.8, we have H'(E’, Op/) = 0 for any subscheme E’ C E. In partic-
ular, if £ is an effective divisor of a non-singular surface, then F..q = > F; is a simple

normal crossing divisor consisting of rational curves whose dual graph is a tree.

Proposition 2.9. Let ¢: M — X be a non-isomorphic proper birational morphism of
non-singular surfaces such that — Ky is ¢-nef. Let G be the ¢p-exceptional effective divisor
with G ~ Ky — ¢*Kx and let A C X be the zero-dimensional scheme defined by the ideal
In = ¢.0pM(—G). Then vp(A) =1 for any P € A, and ¢ is the elimination of A. If
Ey be an effective divisor of M such that Ky + Ey is o-numerically trivial, then A is

a subscheme of the non-zero effective divisor E = ¢, Ey and Ey = E%.

Proof. First, we shall show the following two properties to be satisfied for any ¢-nef
divisor D:

(1) R' ¢.0m(D) = 0;

(2) Op(D) is ¢-generated, i.e., *¢.On (D) — Op (D) is surjective.
Let B be a ¢-exceptional effective divisor of M. Then H'(Op) = 0 by R! ¢.Oy; = 0. Thus
H' (O ® Oy(D)) = 0 by Lemma2.8. Hence, we have the vanishing R' ¢,Oy(D) = 0 by

the theorem of holomorphic functions:

(R!6.0u (D))" ~ lim H(O,5 ® O (D)),

where x is an arbitrary point of X and B is an effective divisor of M with Supp B =
¢~ (). Since D — G ~ D — Ky + ¢*Kx is ¢-nef, R' $,0y(D — G) = 0, $,0p(D) —
$+0c(D|q) is surjective, and Og(D|g) is generated by global sections (cf. Lemma [2.8)).
Hence, Oy (D) is ¢-generated, since Supp G is the exceptional locus of ¢.
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Second, we shall show that ¢ is the elimination of A by the characterization in Re-
mark 2.6l Since Oy (—G) is ¢-generated, ZaOy = Oy (—G). In particular, the weak
transform of A in M is empty. Since Ky ~ ¢*Kx + G, ¢ is just the elimination of A.

Finally, we shall show the remaining thing. It is derived from 0 < F,; = ¢*E — G.
In fact, it induces Ox(—FE) C Za; hence A is a subscheme of E and Ey = Ef; by
Lemma 2.7, (2). O

2.2. Transformation of an effective divisor. Let E be a non-zero effective divisor of
X containing A as a subscheme, i.e., Ox(—FE) C Za. Note that A is a Cartier divisor of
E if and only if T /Ox(—E) is a locally free Og-module. We shall study the divisor E%;
for the elimination ¢: M — X of A.

The following is easily derived from Lemma 2.7:

Lemma 2.10. Suppose that E is non-singular and A is supported on a point P of E.
Then, for the elimination ¢: M — X of A, the set-theoretic inverse image ¢~ (P) is a
straight chain Z?:l [, of non-singular rational curves, E%; is the proper transform of E

in M, and the dual graph of $~'(E) is as follows (cf. Notation and terminology):

I, Iy I In Ef
o e —© O—Q

Lemma 2.11. If A is supported on a singular point P of E, then there exists a non-
singular curve C' on an open neighborhood of P in X such that A C CNE. If furthermore

A is a Cartier divisor of E, then one can choose the non-singular curve C' so that A =

CNE.

Proof. For a local defining equation 7 of E around P, we have € m% for the maximal
ideal mp at P. Thus the ideal Za contains 1 and another function & € mp \ m%, since
vp(A) = 1. Hence the divisor C' = div(§) is non-singular at P and A C CNE. If Ais
a Cartier divisor of E, then we can choose £ so that Za is generated by n and &; thus
A=CNE. d

Lemma 2.12. Suppose that E = E1 + Ey for non-singular divisors E1, Ey and that F,
and FEy intersect transversally at a unique point P = E; N E,. Suppose also that the
zero-dimensional subscheme A is supported on P. Then A is contained in an effective
Cartier divisor A of E supported on P with vp(A) = 1. In particular, min{multp(A N
Ey), multp(ANEy)} = 1. Furthermore, the following conditions are mutually equivalent:
(1) A is a Cartier divisor of E;
(2) A is neither a subscheme of Ey nor Es;
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(3) multp(A) = multp(A N Ey) + multp(A N Ey).

Proof. We may assume that div(z;) = E; for a regular function z; of X for i = 1, 2. Since

vp(A) =1, ZTa p contains a function £ € mp \ m%. We may assume that
£ = )\1.3(7;”2 + >\2x;n1

for unit functions Ay, Ay at P and for positive integers my, my with min{my, my} = 1. Let
A be the subscheme div(§)NE, i.e., the subscheme defined by the ideal (¢, z125). Then A
satisfies the required property. Moreover, mult p(ﬁ) = my +mgy, and mult p(A NE;) =m;
for i = 1, 2. Suppose that m; = 1 and A # A. Then Iap = (&, 2129, 2F) = (2, 29)

multp(A N Ey) = k. Thus the condition: A = A, is equivalent to all the conditions
(1)—(3) above. O

Corollary 2.13. In the situation of Lemma 2.12, suppose that A is a Cartier divisor of
E. If ' C A is a Cartier divisor of E, then A =0 or A" = A.

Lemma 2.14. Suppose that E = FE1+ FEs satisfies the same assumption as in Lemmal2.12.
Suppose furthermore that A is an effective Cartier divisor of E supported on P with

multp(AN FE) =1 and multp(A N Ey) = b > 1. Then, for the elimination ¢ of A, the

b+1
J=1

curves, Eﬁ =B+ By + Z?Zl I'; for the proper transform E; p of E; fori =1, 2,
and the dual graph of ¢~*(E) is as follows:

set-theoretic inverse image ¢~ (P) is a straight chain 3711 T'; of non-singular rational

Ei v I I'y—y Iy Es v
2, o— —© 2,

|

Proof. Let ¢*: M* — X be the elimination of A N Ey. By Lemma (¢")"H(P) is a
straight chain 22:1 Fg- of non-singular rational curves. For the proper transform Ef of E;
for i = 1, 2, the dual graph of the union (¢*)~'(P) U E! U E% is written as follows:

Bf T i, 1, B

2, o —© O %,

The weak transform A, of A in M? is just a point P* € TE\ (I, U E%), where T} = Ef
in case b = 1. The elimination M of A is obtained as the blowing-up M — M?* at P
Therefore, the expected dual graph of ¢! (E) is obtained. Here, I'y,; is the exceptional
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curve for M — M?*, and Ei vy Eon, I for j < b are the proper transforms in M of E?,
Eg, Fg-, respectively. The divisor E%, is just By + Eg s + E?Zl L;. U

Remark 2.15. In the situation of Lemma [2.14, the ideal Zx is expressed as
b

Therefore, A is determined by a point P! lying on Fg \ (F2—1 U Eg) The point P* €
I corresponds to the point (A (P): A(P)) € P! for Ay, Ay appearing in the proof of
Lemma 2.12

Lemma 2.16. Suppose that A is supported on a point P of E and that E = mEy for a
non-singular divisor Ey and for a positive integer m. Then multp(A) < mmultp(ANEY),

where the equality holds if and only if A is a Cartier divisor of E.

Proof. We may assume that m > 2 and that Ey = div(z) for a regular function z. Then
2™ € Ia. By using the induction on m, we may assume that 2™~ & Zx. There is another
regular function £ such that (§,2™) C Za and € € mp \ m%. If A is a Cartier divisor of
E, then we can choose £ so that Za = (§,2™) by Lemma|[2.11!

Suppose that multp(ANEy) = 1. Then we may assume that & = y for a local coordinate
system (z,y) around P. Then Za = (z™,y) since 2™ 1 & Zx. Thus A is a Cartier divisor
of E with multp(A) =m, multp(AN Ey) = 1.

Suppose that multp(A N Ey) = [ > 2. Then we may assume that ¢ = x + ey for a
local coordinate system (x,y) around P and a unit function ¢ at P. Here, (z+ ¢y, 2™) =
(z + eyt y™). Thus Za = (x + ey, y*) for a positive integer k& with (m — 1)l < k < ml,
since (z + eyl 2™ 1) = (x + eyt,ym D).
multp(A) = k. Moreover if k£ = ml, then A is a Cartier divisor of E. 0

Hence, the required inequality follows from

Lemma 2.17. In the situation of Lemma 2.16, let Eyar C M be the proper transform
of Eqy for the elimination ¢: M — X of A. Then

B =mEou+ Y itm =)0+ 30 (ml— )T

for the straight chain ¢~'(P) = Y% T'; of non-singular rational curves, where k =
multp(A) and | = multp(A N Ey). If k = 1, then the dual graph of ¢~ (Ey) is the
same graph as in Lemma [2.10. If k > I, then the dual graph of ¢~'(Ey) is written as

follows:
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I I | 'y

Eom

Proof. The inverse image ¢~ (P) is a straight chain ¥ | I'; of non-singular rational curves
where an end curve T, is the unique (—1)-curve of the chain. Let ¢*: M* — X be the
elimination of AN Ey and let ¢': M — M?* be the induced morphism. Then the curves I;
for ¢ > [ are ¢’-exceptional and the images Ff = ¢'(I';) for i < form the straight chain
(¢*)~1(P) = X!, T'¥ of rational curves. The proper transform Ej C M? of Ey intersects
only the unique (—1)-curve I' in the chain (¢*)~*(P). Here, we have

(¢) B = Ef+ Y, il
Efys = (6 (mEo) — (Knp: — () Kx) = mE§ + 3, (m — 1)il’,

Thus we are done in the case where k = [, since A C E, and ¢ = ¢*. Hence, we may
assume k > [. Then the morphism ¢’ is the elimination of the weak transform A* c M*
of A. The weak transform Af is supported on a point P* of F? which is not contained in
other components of (¢*)*Ey. Thus

Efy = ((m - 1)zr§)fj + (&) (Efys — (m = 1)IT}).

Let us consider the special case where k = m and [ = 1. Then Zp = (2™,y) and
Ey = div(z) for a local coordinate system (x,y) around P. Thus ¢*: M* — M is nothing
but the blowing up at P. Thus there is a local coordinate (z*,y*) around P* such that
I = div(z?) and Zx: = ((2f)™ 1, y!). Thus we have

by induction on m.

For a general case, by the proof of Lemma 2.16, we may assume Zn = (x,%"*) and
Ey = div(z — ey') for a local coordinate system (z,%) around P and for a unit function e
at P. Then there is a local coordinate system (2, 4%) around P? such that I'! = div(a!)
and Zn; = ((z)¥1 y") around P!. Thus the situation A* C (k — I)T? belongs to the
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special case above. Hence,
#

((m = 1ir8)> = (i = k)(&)"(T]) + ((k = OTF)
= (mi — k) (Fl + Z'fj‘ rlﬂ-) + (k= DT+ 3 (=1 = )T

= —1lFl+Z —1l—j)rl+]
Thus we are done. O

2.3. Global description. Assume that A is an effective Cartier divisor of a non-zero
effective divisor E of X and that there is a divisor L of X with L|g ~ A, i.e., Ox(L)|g ~
Og(A). We shall describe the blowup V' — X along A explicitly under the assumption.

We have an extension
(2-2) 0—-0x(L—F)—=&—0x—0

of locally free sheaves which makes the commutative diagram
0 —— Ox(L—FE) —— ZIAOx(L) —— Op —— 0
0 — Ox(L—-FE) — & — Ox — 0
of exact sequences, where the top sequence is derived from Ox(—FE) C Za and from the
isomorphism Ox(L)|g ~ Og(A). The diagram induces another exact sequence
(2*3) 0— Ox(—E) — & — IAOX(L) — 0.

Let p: P := Px(£) — X be the P'-bundle associated with £ and let Og(1) denote the
tautological line bundle of P with respect to €.

Lemma 2.18. The blowing up V' of X along A is realized as a Cartier divisor of P with
Op(V) ~ Oc(1) @ p*Ox (E).

Proof. By the exact sequence (2-3), we infer that @, Z4 is a quotient algebra of the
symmetric algebra of the locally free sheaf £ ® Ox(—L). Hence, V is isomorphic to a
closed subspace of P. The inclusion Ox(—F) C & of (2-3) defines an irreducible Cartier
divisor D C P with Op(D) ~ Op(1) ® p*Ox(F) and V C D. Thus V = D. O

Proposition 2.19. The extension (2-2) is split if and only if div(§)NE = A for a global

section & of Ox(L). In the split case, V is isomorphic to the divisor

V(& m) = div (p"(§)v — p*(n)u) C P

for a defining equation n of E, where the section v € H'(P,O¢(1) ®@ p*Ox(E — L))
corresponds to the injection Ox (L — E) — & of (2-2) and the section u € H°(P, Og(1))

corresponds to a splitting Ox — £.
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Proof. 1f such a section £ of Ox (L) exists, then & gives an injection Oy — ZaOx (L)
inducing a splitting Ox — & of (2-2).

Next, suppose that (2-2) is split. Then we have & = Ox(L — E)v & Oxu. For
the injection Ox(—FE) — &£ of (2-3) and for the surjection & — Ox of (2-2), the
composite n: Ox(—FE) — & — Oy is an injection defining E. Thus 7 is regarded as
a defining equation of E. For the other projection & — Ox(L — E)v, the composite
Ox(—F) — & - Ox(L — E)v defines a section & of Ox(L). Replacing £ with —¢, we
infer that

e the twist Ox — £ ® Ox(FE) of the injection Ox(—F) — & of (2-3) is given by
1 +— nu—¢&v, and
e the surjection & — ZpoOx (L) in (2-3) is given by

Ox<L — E) D OX > (81,52) — (8177+ 825).

Therefore, V =V (§,n) and div(§) N E = A. O

Remark. If HY(X, L — E) = 0 and if Bs |L — E| = ), then ZoOx (L) is generated by global
sections. In fact, (2-2) is split by H'(X,L — E) = 0, and thus & is generated by global
sections by Bs|L — E| = (). Hence, ZAOx (L) is so by the exact sequence (2-3).

2.4. Simultaneous elimination.

Lemma 2.20. Let X — T be a smooth family of surfaces over a non-singular curve
T and let A C X be a subscheme such that A — T is finite and flat and that the
fiber Ay = A xp {t} satisfies vp(A,) = 1 for any point P € A, as a zero-dimensional
subscheme of the fiber X, = X xr {t} over any t € T. Then there exist a finite ramified
covering T: T' — T from another non-singular curve T' and a simultaneous elimination
M — X xp T of A x4 T" in the following sense: M is smooth over T' and the fiber of
M s {t'} over any point t' € T is the elimination of Ay C X, fort = 7(t').

Proof. Taking a succession of base changes I' — T from the normalizations I of irreducible
components I of Supp A, we may assume that any irreducible component of A is a section
of X — T. For a point P € A, we have a local coordinate system (x,y,t) of X such that
X — T is given by (x,y,t) — t and that the defining ideal I3 pof A at P contains y.
Thus, locally on T, A is a subscheme of a divisor £ C X which is smooth over 7. Then
A is regarded as an effective divisor ) n;I'; of E for sections I'; of E—T. Hence, we
may write
Ixp =y, x" )

for a regular function ¢ at P, where {x =y = 0} = I'y and > ;5o n,['; is defined by
p =y =0. Let u: Y — X be the blowing-up along the section I'y. Then Y — T is
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smooth and the weak transform Af, of A is defined by

ni—1 x
(v, ¥ ')
for a coordinate system (x',y’,t) of Y satisfying p*x = %/, u*y = x'y/, p*t = t. Thus
A; — T is finite and flat, and the degree of A; — T is less than the degree of A — T by

one. Hence, we have a simultaneous elimination by taking a succession of blowups along

sections. O

Proposition 2.21. Suppose that E is a complete simple normal crossing divisor of a
non-singular surface X. Let Ay and Ay be zero-dimensional subschemes of E such that
(a) deg(Ay N E;) =deg(Aq N E;) for any irreducible component E; of E,
(b) multp(A;) = multp(Aq) and multp(A; N E;) = multp(Ag N Ej) for any node P
of E and for any Ej,
(c) vp,(A;) =1 for any P, € A; fori=1, 2.
Then there exist a connected curve T, a subscheme A of E x T flat and finite over T,
and two points t1, to € T satisfying the following properties where A; is the restriction
AN(E x{t}) forteT:
(1) Ay, = Ay and Ay, = As.
(2) deg(A; N E;) = deg(Ay N Ej) foranyt € T and E;.
(3) multp(A;) = multp(Aq) and multp(A; N E;) = multp(Ay N E;) for anyt € T,
E;, and for any node P of E.
(4) vp,(Ay) =1 foranyt € T and P, € A,.
In particular, there is a birational morphism gg: M — X x T such that M is smooth over

T and the fiber

¢

is the elimination of A; fori =1, 2.

b Mxp{t} — X x{t;} =X

Proof. Let As C A; N Ay be the subscheme supported on nodes of E such that
multp(As) = max{multp(A; N E;) | P € E;}

for any node P of E. Note that if P € E1NEy and multp(A;NE;) = 1, then Az = AjNE;
near the point P. Let ¢*: M? — X be the elimination of As. Let A’ be the weak

transform of A; in M* for i = 1, 2, and set
Ef = B34 ~ ¢ (Kx + E) — K.

Then A§ is empty or an effective divisor supported on the non-singular part E*\ Sing E*
by Lemma [2.12] (cf. Remark [2.15). Since the degrees of Aii and Ag on an irreducible

component of E* coincide, the divisors Ai} and Ag of E* are algebraically equivalent to
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each other. Therefore, we have a connected non-singular curve 7" and a relative effective
Cartier divisor Af C E* x T such that A} = At (B x {t;}) for a suitable point ¢; € T
for i = 1, 2. By Lemma 2.20, we have a simultaneous elimination M — M x T of Al by
replacing T’ with a finite ramified covering of T. The subscheme A C X x T defined by
the ideal

(¢* x idT)*I’A‘EOMﬁXT(_Eﬁ x T) C Oxxr

satisfies the required conditions and qz M — M!xT — X x T is the simultaneous

elimination. O

Lemma 2.22. Let E,, E5 be non-singular prime divisors of a non-singular surface X
which intersect transversely at one point P. Let A be a zero-dimensional subscheme of
E = Ey+ E, supported at { P} with vp(A) = 1, multp(ANE;) = 1, and multp(ANE,) =
k > 1. Then there exist a connected non-singular curve T', a point 0 € T, a subscheme
A C E x T satisfying the following conditions:

(1) A — T is flat and finite;

(2) A is isomorphic to the fiber Ag = A x1 {0} over the point 0 € T;

(3) P & A for the fiber A, = A xr {t} over any point t # 0.

Proof. Let (x,y) be a local coordinate system of X around P such that E; = div(x) and
E, = div(y). We may assume that the defining ideal Zx is one of the following two ideals
by the proof of Lemma[2.12:

(1) Za=(y.x");  (2) Za=(xy,y+ex"),

where ¢ is a unit function at P. Let T be the affine line A! = Speck[t]. We choose

mutually distinct non-zero constants ay, as, ..., a, € k. In case (1), the subscheme A of
X x T defined by the ideal

(wIT,_, - am)
satisfies the required conditions. In case (2), the subscheme A of X x T defined by the
ideal
(Xy, y+e Hle(x - ajt)>

satisfies the required conditions. O

Lemma 2.23. Let Ey be a non-singular prime divisor of a non-singular surface X and
let A be a zero-dimensional subscheme of E = mkFEy for some m > 1 such that A is
supported at one point P € Fy. Then there exist a connected non-singular curve T, a

point 0 € T, a subscheme A C E x T satisfying the following conditions:
(1) A = T is flat and finite;
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(2) A is isomorphic to the fiber Ay = A xr {0} owver the point 0 € T}
(3) Ar N Ey is reduced for the fiber Ay = A xr {t} over any point t # 0.

Proof. Let (x,y) be a local coordinate system of X around P such that Ey = div(x). We
may assume that A ¢ (m—1)Ey and multp(ANEy) =1 > 2. If m = 1, then the defining
ideal Zo p at P can be written as (x,y'). If m > 2, then, by the proof of Lemma [2.16]
we may assume that the defining ideal Za p at P is written as (x + ey, y¥) for an integer
(m—1)l < k < ml and for a unit function € at P. Let T be the affine line A = Speck([t].
We choose mutually distinct non-zero constants ay, as, ..., a; € k. In case m = 1, the
subscheme A of X x T defined by the ideal

(x, Hizl(y - ait))

satisfies the required condition. In case m > 2, the subscheme A of X x T defined by
the ideal

(x +e Hizl(y —a;t), <Hi:1(y — aﬁ:))ml Hj:m_l)l(y _ ajt>>

satisfies the required condition. O
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3. DEL PEZZO PAIRS AND BASIC PAIRS

We introduce the notions of del Pezzo pair and of basic pair in this section. The first
one is a generalization of the notion of del Pezzo surface to pairs (S, B) of surfaces S and
Q-divisors B, where the del Pezzo property for (S, B) are considered in the most general
situation. If (.5, 0) is a log-terminal del Pezzo pair, then S is called a log del Pezzo surface.
The notion of basic pair naturally comes from studying the minimal desingularization of
S for del Pezzo pairs (S, B) of index at most two. The set of isomorphism classes of
basic pairs is in one-to-one correspondence with the set of isomorphism classes of rational
del Pezzo pairs (S, B) of index at most two and of genus at least two which are not (.5, 0)
of index one. Applying a kind of minimal model program to a basic pair, we have a
birational morphism to a minimal basic pair, which is expressed as the elimination of a
zero-dimensional subscheme. The minimal basic pairs are classified by some numerical
data.

3.1. Definition of del Pezzo pairs. Let S be an irreducible normal algebraic space of
dimension two proper over Speck. There is a birational morphism «: M — S from a non-
singular algebraic surface projective over Speck, by Chow’s lemma and by the resolution
of singularities of algebraic surfaces. We may assume that there is no (—1)-curve of M
contracted to a point by a. Then « is uniquely determined up to isomorphism and is
called the minimal resolution of singularities (or the minimal desingularization) of S.

Let © be a Q-divisor of S. The Mumford pullback a*© (cf. [23]) is defined to be a
Q-divisor of the form

On + Z a; E,

where O, is the proper transform of © in M, E; is an irreducible component of the excep-
tional locus of «, and the coefficients a; are rational numbers determined by the condition:
OnE; = 0 for any 7. We say that © is numerically Cartier if a*© is Cartier. For another
Q-divisor ©" of S, the intersection number ©0’ is well-defined to be (a*©)(a*®’). We
say that © is nef if OI' > 0 for any irreducible curve I' on S. Similarly, we say that © is
numerically ample if ©OT' > 0 for any irreducible curve I' on S and if the self-intersection
number ©? is positive.

We recall the following results related to rational singularities (cf. [4, Theorem (2.3)]):

Theorem 3.1. If S has only rational singularities, i.e., R' a,Oy = 0, then S is a
projective scheme over Speck. For the minimal desingularization a: M — S and for any
a-nef divisor L of M, R* a,Op (L) = 0 and a*a, Oy (L) — Opr(L) is surjective.

Proof. First, we shall show the latter half assertion. Let Z be the fundamental cycle, i.e.,

the smallest non-zero effective divisor supported on the a-exceptional locus | E; such
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that —ZF; > 0 for any 7. Note that Supp Z = U E; and L — nZ is a-nef for any n > 0.
Thus H'(O,z(L)) = 0 by Lemma 2.8 Hence, the vanishing R' o, Oy (L) = 0 follows
from the theorem of holomorphic functions for algebraic spaces (cf. [18]). Applying the

vanishing for L — Z to the exact sequence

we infer that ., Op (L) — a.Oz(L) is surjective. Let G(L) be the image of a*a,Op (L) —
On(L). By Lemma 2.8] Oz(L) is generated by global sections. Thus G(L) C Oy (L) —
Oz(L) is surjective. Since Oy (L)/G(L) is supported in U E;, we have G(L) = Oy (L).

Next, we shall prove the projectivity of S. Let A be a very ample divisor of M with
H'(M,A) = 0 and let H be the pushforward a,A. Then the Mumford pullback of H is
written by

o'H=A+ Z a; B;

for positive rational numbers a;. By multiplying A, we may assume a; are all integral;
thus o*H is Cartier. By the previous argument, we infer that Oz(a*H) ~ Oz and
a,Oy(a*H) — a,Oy is surjective. In particular, there is an effective divisor D on a
Zariski-open neighborhood U of a connected component of Z such that D ~ o*H|y and
DN Z = (. This implies that H is Cartier and o*H coincides with the pullback as a
Cartier divisor. We shall show that H is an ample divisor of S. Let E be the effective

divisor Y a;F;. From the exact sequence
0— Op(A) = Oy(aH) = Og(aH) ~ O — 0

and the vanishing H' (M, A) = 0, we infer that |H| is base point free. If Ca*H = 0 for
an irreducible curve C' C M, then C' C E. Hence, |H| defines a finite morphism from S

into a projective space. Therefore, H is ample and S is projective. U

Definition 3.2. Let B be an effective Q-divisor of S.
(1) The index of (S, B) is defined to be the minimum positive integer a with a(Kg+ B)

being numerically Cartier.

(2) Let f: Z — S be a birational morphism from a non-singular projective surface Z
such that the union of f~'(B) and the f-exceptional locus is a normal crossing
divisor }_ F;. The pair (S, B) is called log-terminal (resp. log-canonical) if §; > —1
(resp. 6; > —1 ) for any J; for the formula

Kz = f"(Ks+ B)+Y_&§E;.

Note that the condition does not depend on the choice of f: Z — S.
(3) (S, B) is called a del Pezzo pair if —(Kg + B) is numerically ample.
(4) A del Pezzo pair (S, B) is called rational if S is a rational surface.
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(5) If (S,0) is a log-terminal del Pezzo pair, then S is called a log del Pezzo surface.

Note that a del Pezzo surface is a non-singular projective surface with ample anti-

canonical divisor, which is always rational.

Proposition 3.3 (cf. [26, Proposition 4.4]). Let M be a non-singular projective surface
with K(—Ky;) = 2. Then M has only finitely many negative curves. If p(M) > 2 in
addition, then the cone NE(M) of numerical classes of effective 1-cycles on M (cf. [22])

is generated by the numerical classes of negative curves.

Proof. —Kj; is Q-linearly equivalent to A+ D for an ample Q-divisor A and an effective
Q-divisor D. Let I" be a negative curve. If Ky, I" < 0, then I'is a (—1)-curve. If Ky I' > 0,
then I' is an irreducible component of D.

Assume that there are infinitely many (—1)-curves C; on M. By the cone theorem [22],
we may assume that the limit .

¢= }Lfglo TC’Z[CI]

exists in NE(M) with Ky;¢ = 0. Since A = 1, DC; < 0 for infinitely many ¢. This is a
contradiction, since C; C Supp D. Therefore, M has only finitely many negative curves.

Suppose that p(M) > 3. Then any extremal ray R C NE(M) with KyyR < 0 is

generated by the class of a (—1)-curve by [22]. Let

be the polyhedral cone generated by the set {I';} of negative curves on M. Assume that
there is an element z € NE(M) \ A. By the cone theorem [22], there exists an element
(1 € A satisfying 2—(, € NE(M) and Kj;(2—(;) > 0. Since z # (1, we have A(z—¢;) > 0
and D(z — () < 0. Thus the negative part of the Zariski-decomposition of z — ¢; is not
zero. Hence z — (; — (3 € NE(M) for some ¢, € A\ {0}. Therefore, 0 < ¢(z) < Az for
the number
c(z) =sup{Ay |y € A,z —y € NE(M)}.

Let {y;} be a sequence of elements of A such that z —y; € NE(M) and lim; ., Ay; = c(2).
Then we have an accumulation point y., € A of {y;}. Since z — yo, € NE(M) \ A, we
have a contradiction by 0 < ¢(z — yu) < ¢(2) — Ay, = 0. Hence NE(M) = A. 0

Corollary 3.4. Let (S, B) be a del Pezzo pair and let ac: M — S be the minimal desin-
gularization. Then M has only finitely many negative curves. If a negative curve I' is

not a-exceptional, then I' is a (—1)-curve or o(I') C Supp B.

Proof. For the nef and big Q-divisor L = —a*(Kg + B), there is an effective Q-divisor
E with —Ky; ~¢ L+ E. Thus x(—Kj;) = 2. Hence, M has only finitely many negative
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curves by Proposition [3.3. Suppose that I" is neither an a-exceptional curve nor a (—1)-
curve. Then Ky I' > 0 and LI" > 0. Hence, ET' < 0 and «(I") C Supp B. O

Proposition 3.5. Let (S, B) be a rational del Pezzo pair of index a and let a: M —
S be the minimal desingularization. Then S is a projective surface with only rational
singularities, —a(Kg + B) is an ample Cartier divisor, and the a-exceptional locus is a

simple normal crossing divisor whose dual graph is a tree.

Proof. Let By be the proper transform of B. Let b be a positive integer such that abKg
and abB are numerically Cartier. For the a-exceptional locus | F;, we define effective

divisors F(1), E(2) supported on the locus by
abKM - &*(abKS> - E(l), abBM = &*(abB) — E(g).

Then —E(;) and —FE|9) are both a-nef. We set L := —aa*(Kg+ B) and E := Eq)+ E(y).
Then L is nef and big, LE = 0, and —ab(Ky; + By) = bL + E. Moreover,

(Ky+ E)L = Ky L < (Ky + By)L = —a ' L* < 0.

In particular H(M, Ky + E) = 0. By duality, we have H*(M,—FE) = 0 and thus
H'(E, Op) = 0 from the exact sequence 0 — Oy (—E) — Oy — O — 0. Thus Supp F
is a simple normal crossing divisor whose dual graph is a tree. Since —F is a-nef, Supp £
is the inverse image of a finite set of S and H'(E, —jE|g) = 0 for any j > 0 by Lemma/2.8|
Hence H'(mE, O,,g) = 0 for any m > 1 by the exact sequences

0— Op(=(m—1)E) = Ong — Ow-1)g — 0,

and we infer that S has only rational singularities by applying the theorem of holomorphic
functions to R' a,Oy;. In particular, S is projective by Theorem 3.1 and Oy;(L) is the
pullback of an invertible sheaf of S. Hence —a(Kg + B) is Cartier. O

Proposition 3.6. Let (S, B) be a del Pezzo pair.
(1) If (S, B) is log-terminal, then S is rational.
(2) Assume that S is not rational. Let ¢: M — X be a birational morphism from the
minimal desingularization M of S into a P*-bundle X over a non-singular curve
C of genus g > 1. Then X — C has a negative section I' with —I'? > 2g — 2.
If (S, B) is log-canonical in addition, then C' is an elliptic curve and the proper

transform Uy of T in M is exceptional for M — S.

Proof. Suppose that S is not rational. Let a: M — S be the minimal desingularization
and m: X — C be the P-bundle. Then —Kj,; ~q Ly + Eyr for the nef and big Q-
divisor Ly, = —a*(Kg + B) and for an effective Q-divisor Ej;. Thus —Kx ~g L+ E
for the nef and big Q-divisor L = ¢, L), and the effective Q-divisor £ = ¢,FE);. Since
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(—Kx)*= —8(g—1), E is not nef. Hence, there is a negative curve I on X with ET" < 0.
Moreover, I is a unique negative curve of X since the cone NE(X) is spanned by I and
a fiber ¢ of m. Since I" dominates C, we have (Kx + I')[' = 2p,(I') =2 >2g —2 > 0. We
set ¢ = multp(F) € Q. Then

0<Ll=(—Kx—EY<(~Kx —cl){=2—cIY,
0<IT=(—Kx —ENl<(-Kx —cI)T' = —(Kx +T)[ + (1 — )T

Hence, 1 < ¢ < 2 and T is a section of 7. In particular, (S, B) is not log-terminal, and
(S, B) is log-canonical only when ¢ = 1.

Suppose that ¢ =1. Then g =1, LI' =0, and £ =I' + D for an effective Q-divisor D
with DN T =0, D¢ < 1. In particular, 0 < Ly 'y, < LT =0 and a(T"y,) is a point.

If c > 1, then 29 — 2 < (¢ — 1)(-T?) < -T2 If ¢ =1, then 0 = 2g — 2 < —T'?. Thus

we are done. O

Remark 3.7. Let X — C be a P!-bundle over a non-singular curve C' of genus g > 1
admitting a negative section o with —o? > 2g — 2. Then X ~ Pc(Oc @ Oc(A)) for an
ample divisor A with O¢(A) ~ O,(—0c). Thus there is a section o4 with o N oy = 0,
i.e., a section at infinity. Here Bs|mos| = 0 for m > 2, since deg(mA — K¢) > 2. For
the contraction morphism p: X — V of o, V is a projective surface of Picard number

one, and Oy (1140+) is an ample generator.
In what follows, we consider only del Pezzo pairs (S, B) of index at most two.

Convention 3.8. For a del Pezzo pair (S, B) of index at most two, let a: M — S denote
the minimal desingularization of S. Then we can write

for &; € (1/2)Zsg, where | E; is the union of a~*(B) and the a-exceptional locus. We
introduce two Cartier divisors on M by

Note that Ey; is effective, Ky + Ly = — Ky — Eyy and 2(Kyy + Lyy) = Ly — B
The genus g = ¢(S, B) is defined by 2g — 2 = (Kj; + Ly)Ly. In other words, g =
(Ks + B)(Ks + 2B) + 1. If —=2(Kg + B) is Cartier and |—2(Kg + B)| contains an
irreducible and reduced curve C, then the arithmetic genus p,(C) equals g(S, B).

Remark 3.9. Suppose that Fy; = 0. Then B = 0 and Ky, ~ a*Kg. Thus —Kg is
ample and S has only rational double points as singularities; in other words, S is a log

del Pezzo surface of index one. If (5,0) is a rational del Pezzo pair of index one, then S
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has only rational double points by Proposition[3.5, and hence S is a log del Pezzo surface
of index one. The log del Pezzo surfaces S of index one have been studied by many people
as a degenerate case of del Pezzo surfaces (cf. [7], [9], [12], [13], [30], [31], [32]). Here,
2 < g= K2+ 1 <10 and the minimal desingularization M is obtained as the blowing

up of P? at 10 — g points in a general position in certain sense.

Lemma 3.10. Let (S, B) be a del Pezzo pair of index at most two. Assume that the
minimal desingularization M is a P'-bundle over a non-singular projective curve C of
genus g > 1. Then S is projective, M has a negative section o, and one of the following
cases occurs:

(1) C is an elliptic curve, Eyy = 20, Ly ~ 204 for a section oo, at infinity, and «
is the contraction morphism of o. In particular, B =0 and (S, 0) is log-canonical
of index one with g(S,0) = Kz +1=2.

(2) C is an elliptic curve, Eyy = 20 4 0o, Ly ~ 000 for a section 0. at infinity, and
« is the contraction morphism of o. In particular, B = (1/2)a.0 and (S, B) is
log-canonical of index two with ¢(S, B) = 1.

(3) Eyp = 30 + A for the projection w: M — C' and for an effective divisor A on
C with —o* > 4g — 4 + deg(A). In particular, (S, B) is of index two but not
log-canonical, and g(S, B) = g(C). Here, a contracts o if and only if —0? =
4g — 4 + deg(A).

Proof. By the proof of Proposition 3.6, we infer that M admits a negative section o
with m := mult,(Fy) € {2,3} and admits a section o, at infinity (cf. Remark [3.7)).
In particular, S is always projective. Let D be the effective divisor Ej; — mo. By the
calculation of (1/2)Lyy = (—Ky — (1/2)Ey )y for v = £ and v = o in Proposition [3.6]

we have
0<2—(m/2)—(1/2)D¢ and 0< —(29—2)+ (1 - (m/2))o* — (1/2)Do.

If m=2,then g =1, Do =0, and D¢ < 1; hence, D = 0 or D = 0, for a section o4,
with 0 Nos = 0. If m =2 and D = 0, then Ly, ~ 20, for a section o, at infinity;
this is in the case (1). If m = 2 and D = 0, then Ly ~ 04; this is in the case (2). If
m =3, then D¢ =0 and —0? > 49 — 4+ Do; thus D = 7*A for an effective divisor A on
C,and Ly ~ 00 + 7% (A—2K¢c — A) for a divisor A of C' with O¢(A) ~ O,(—0). Thus
the case (3) occurs. Since —o? > 2g — 2, S is projective (cf. Remark 3.7). 0

Remark. In the case (3) of Lemma [3.10, suppose that « contracts 0. Then Kg + B is
Q-Cartier if and only if A ~g 2K + A. Here, the Cartier index of Kg+ B is the double
of the order of A —2K¢ — A in Pic(C).
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Proposition 3.11. If Ky, + Ly is not nef, then (S, B) is one of the following:
(1) S ~P? and deg(2B) € {4,5}.
(2) S ~TF, and 2B € |30 + (2n +4 — b){| forn < b < 2n + 4.
(3) S ~P(1,1,n) for n > 2 and 2B € |(n + 4){| for a generating line (.
(4) The case (2) of Lemmal3.10.
(5) The case (3) of Lemmal3.10.

In any case above, the genus g(S, B) coincides with the irreqularity of M.

Proof. There exists an extremal ray R C NE(M) with (K + Ly)R < 0 by [22]. If R
contains the class of a (—1)-curve v, then Ky = —1 and Lyy = 0. This contradicts
the minimality of a.. Hence, either M ~ P? with deg(Ky; + Lys) < 0 or X is a Pl-bundle
over a non-singular curve C' with (K + Lys)l < 0 for a fiber /.

Suppose that M ~ P2. Then (M, (1/2)Ey) ~ (S, B) and Ky + Ly corresponds to
—Kg — 2B. Thus deg(Ks + B) < 0 and deg(Ks + 2B) > 0. Hence, 3 < 2degB < 6.
Since 2B is Cartier, deg(2B) € {4,5}; equivalently, deg Ly; = 1 or 2. Thus g = 0.

Suppose that M ~ F, for n > 0. Then Ly = 1 for a fiber ¢. Hence, Ly, ~ o + bl
for a minimal section ¢ and b > n. In particular, ¢ = 0. If n = 0, then b > 0. Here,
Ey = —2Ky — Ly ~30+(2n+4—>0)¢. Thusn < b <2n+4. If b > n, then Ly,
is ample and a: M — S is isomorphic. If b = n, then n > 0 and S is isomorphic to
the cone F,, ~ P(1,1,n) and 2B ~ (n + 4){. Here, the case n = 1 does not occur since
(Kpr + La)o = —1 for the negative section o.

Suppose that M is a P-bundle over C' of genus ¢ > 1. Then (M, Eyy) is in one of the
three cases in Lemma [3.10. Here, (K + Las)¢ = 0 in the case (1), (Ky + Ly )l = —1 in
the cases (2) and (3). We have ¢(S, B) = ¢ by Lemma 3.10. O

Lemma 3.12. If Ky + Ly is nef and g(S, B) = 1, then S is a log del Pezzo surface of

index one and 2B ~ —Kg.

Proof. By the Hodge index theorem, we infer that Kj; + Ly, is numerically trivial. In
particular, —K,; is nef and big, which implies that M is rational. Thus S is a log

del Pezzo surface of index one. Since Ey; ~ Ly ~ —Kj;, we have the assertion. O

3.2. Definition of basic pairs. For the classification of del Pezzo pairs of index at most
two, there remains the case where Fy; # 0, Ky + Ly is nef, and g(S, B) > 2. In order

to study the case, we introduce the following notion of basic pairs:

Definition 3.13. Let X be a non-singular projective surface and let £ be a non-zero
effective divisor of X satisfying the following three conditions (C1)—(C3) for the divisor
L=-2Kyxy—F:
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(C1) Kx + L is nef;
(C2) (Kx+ L)L > 0;
(C3) LE; > 0 for any irreducible component E; of E.

If X is rational, then (X, E) is called a basic pair. The positive integer g > 2 defined by
29 — 2= (Kx + L)L is called the genus of (X, E).

For a del Pezzo pair (S, B) of index at most two of the remaining case, the pair (M, E)y)
satisfies (C1)—(C3) and g(S, B) coincides with the genus of (M, Eyy).

Lemma 3.14. Let (X, E) be a pair satisfying (C1)—~(C3). Then the following two condi-

tions are also satisfied:
(C3) L = —-2Kx — E is nef and big;
(C4) K% > 0.
If X s rational, then the following condition is also satisfied:

(€5) H'Y(E, O) = 0.

Proof. We have L? > 0 by 0 < 2(Kx + L)L = L* — LE < L?. Thus either L or —L is
big by the Riemann-Roch formula for x(X,mL). Now (Kx + L)L > 0 for the nef divisor
Kx + L. Thus L is big. If L is not nef, then Ly = (L — E)vy 4+ Ev < 0 for an irreducible
curve v. Since L — E = 2(Kx + L) is nef, 7 is an irreducible component of E, which
contradicts the condition (C3). Hence, L is nef and (C3') is satisfied. The condition (C4)
is satisfied by

(3-4) K% =(Kx+L)’+LE>LE >0.

Suppose that X is rational. We have H*(X, Kx + F) ~ H*(X, —Kx — L) = 0 by (C1),
(C2), and (C3'). The Serre duality, the exact sequence 0 — Ox(—FE) — Ox — O — 0,
and the rationality of X imply the vanishing H*(X, —E) ~ H'(E, Og) = 0. Thus (C5) is
satisfied. 0

Corollary 3.15. Let (X, E) be a pair satisfying (C1)—(C3). Suppose that X is irrational.

Then X is a P'-bundle over an elliptic curve and E = 20 for a negative section o.
Proof. 1t follows from (C4) and Lemma [3.10. O

Corollary 3.16. An irrational del Pezzo pair (S, B) of index at most two is one of the

three cases in Lemma 3.10. In particular, S is projective.

The rational del Pezzo pairs (S, B) of index at most two are classified by genus ¢ as
follows (cf. Remark [3.9):

o If g =0, then (S, B) is a pair in (1)—(3) of Proposition 3.11
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e If g =1, then (S, B) is a pair in Lemma [3.12;
o If g > 2, then (5, B) is either the pair (.5, 0) for a log del Pezzo surface S of index

one or has a basic pair as the minimal desingularization.

Therefore, the classification of del Pezzo pairs of index at most two is reduced to the
classifications of log del Pezzo surfaces of index one, and of basic pairs.

Let (X, E) be a basic pair and set L = —2Kx — E. Suppose that —Ey = (2Kx+L)y <
0 for a (—1)-curve . Then (Kx+ L)y =0and Ly = Ey = 1. Let 7: X — Z be the blow-
down of v to a point P € Z. Then Ez := 7.(FE) is not zero and Kx + L = 7*(Kz + Lyz)
for the divisor Ly = —2K,; — Ey. Therefore, (Z, Ez) is a basic pair. Here, the genus of
(X, E) equals the genus of (Z, Ez) since (Kx + L)L = (Kz + Lz)Ly.

A basic pair (X, E) is called minimal if —E~y = (2Kx + L)y > 0 for any (—1)-curve v
of X. By the theory of extremal rays [22], if (X, F) is minimal, then there is an extremal
ray R C NE(X) with (2Kx + L)R < 0 such that the contraction morphism of R is either
the structure morphism of a P'-bundle over P! or the trivial morphism from X ~ P? to
a point.

Lemma 3.17. Any basic pair (X, E) satisfies the following stronger condition than (C1)
for L= -2Kx — F:

(C1") Bs|Kx + L| = 0.
Moreover, H*(X, m(Kx + L)) = 0 for any m > 0.
Proof. By successive contractions of (—1)-curves v with (2Kx + L)y < 0, we may assume
that (X, E) is minimal. Then X ~ P? or X ~ F,. It is well known that H'(X, D) = 0

and Ox (D) is generated by global sections for any nef divisor D of X. Thus we are
done. 0

Theorem 3.18. Bs|L| = 0 for L = —2Kx — E for any basic pair (X, E). Moreover
HY(X,mL — jE) =0 for anym > j > 0.

Proof. Since 2(Kx + L) = L — E, we have Bs|L — E| = () and H'(X,L — E) = 0
by Lemma [3.17. Hence the base point freeness follows from the exact sequence 0 —
Ox(L—FE) — Ox(L) — Og(L|g) — 0 and from Lemma 2.8. By the exact sequences

0—Ox(mL—(j+1)E) — Ox(mL —jE) — Og((mL — jE)|g) — 0

and by Lemma [3.17) the vanishing of H' (X, mL — jE) is reduced to the vanishing of
HY(E, (mL—3jE)|g), which follows from Lemmal[2.8 since mL—jE = (m—j)L+j(L—E)
is nef. (]

Proposition 3.19. Let (M, Eyr) be a basic pair. Then there ezist a rational del Pezzo
pair (S, B) of index at most two with g(S, B) > 2 such that (M, Eyy) is obtained as the
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minimal desingularization a: M — S. Here, (S, B) is log-terminal if and only if Eyy is

reduced; (S, B) is log-canonical if and only if L(1/2)Ey2 is reduced.

Proof. Let ®: M — |Ly|¥Y = P(H°(M, Lys)) be the morphism associated to the linear
system |Lp|. Let a: M — S be the Stein factorization of ®. Then S is a normal

projective surface and Ly, ~ a*Lg for an ample divisor Ly of S. Since Ly, = —2Ky;— Fyy,
we have Ly ~ —2(Kg + B) for B = (1/2)a.Ey. Then —(Kg + B) is ample and

(3-5) K ~g o (Ks + B) — (1/2)Eyr.

Hence, (S, B) is a rational del Pezzo pair of index at most two. If B = 0, then the index
of (S, B) is two by Ej; # 0. Since Ky + Ly is nef, « is the minimal desingularization.

The log-terminal and log-canonical properties follow from (3-5) and (C5). O

Corollary 3.20. Let (S, B) be a del Pezzo pair of index at most two. Suppose either that
S is rational or that (S, B) is log-canonical. Then the indez of (S, B) coincides with the
Cartier indez of Ks+ B and Bs|—2m(Kgs+ B)| =0 form > 2. If Bs|-2(Kgs+ B)| # 0,
then (S, B) is one of the following:
(1) S is a log del Pezzo surface of index one with K% =1 and 2B ~ —Kg;
(2) M is a PL-bundle over an elliptic curve with a negative section o and a section
0w at infinity such that 0> = —1, B = (1/2)a.04, where a: M — S is the
contraction of o.

In particular, |-2(Kg + B)| contains a non-singular member if chark = 0.

Proof. It M is irrational, then Bs|L),| can be analyzed by Lemma[3.10. Here, we have
the exceptional case (2) above, where a0 is a non-singular member of |-2(Kg + B)|.
Thus, we may assume M to be rational. If Fy; = 0, then the property Bs|—2Ky/| = 0
is well-known. If Ky + Lj; is not nef, then M ~ P? or M ~ F, by Proposition [3.11],
and hence Bs|Ly/| = 0 for the nef divisor Ly,. If Ky + Ly is nef and g(S, B) = 1, then
Ly ~ — Ky by Lemmal3.12. In this case, it is well known that Bs |- K| = 0 for K3, > 1
and that, in chark = 0, |— K| contains a non-singular member even if Bs|—Ky| # 0.

The assertion for the remaining case follows from Theorem [3.18. 0

Remark. A similar result to Corollary[3.20 has been proved as SMOOTH D1VISOR THE-
OREM in [3] in the case where B = 0, E) is reduced, and chark = 0, by the use of
Kawamata—Viehweg’s vanishing theorem ([16], [28]). The SMOOTH DIVISOR THEOREM
asserts that a general member of |-2K| is non-singular for a log del Pezzo surface S
of index < 2. Even if chark > 0, it holds for S with K2 > 2 by Theorem below.
However, it does not hold for certain S with K% = 1 in case chark = 2 as in Example(7.22

below.
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3.3. Minimal basic pairs. We shall classify all the minimal basic pairs. Let (X, E) be
a minimal basic pair and set L = —2Kx — E. Then, either X ~ P? or X is a P!-bundle
over PL. In the latter case, (2Kx + L){ = —FE{ < 0 for a fiber £ of the P'-bundle structure
X — P

Lemma 3.21. Let (X, E) be a minimal basic pair with X ~P?. Then deg E =1 or 2.
Proof. This follows from deg L + deg F = deg(—2Kx) =6 and (Kx + L)L > 0. O

Lemma 3.22. Let (X, E) be a minimal basic pair with X ~ Fo =P x P'. Let {; be a
fiber of the i-th projection p;: X — P! fori =1, 2. Let (e, es) be the pair of non-negative

integers determined by E ~ el + egly. Assume that e; > es. Then

(e1,e2) € {(1,0), (1, 1), (2,0), (2, 1)},

In particular, E has at most three irreducible components.

Proof. Since Kx ~ —201 — 20y and L ~ (4 — e1)l1 + (4 — e3)ls, we have 4 > e; > e5, and
0<(Kx+L)L=2(e; —3)(ea —3) — 2.

Hence, e; < 2 and ey < 1. Thus we are done. O

Convention 3.23. In what follows, for a minimal basic pair (X, F) with X ~ [F,, we fix
a Pl-bundle structure 7: X — P! such that £ ~ ejo + eof with e; > ey for a fiber
¢ and for a minimal section o of w. Here, we express a fiber of 7 as ¢ and a fiber of
another projection to P! as 0. The projection 7 is uniquely determined except for the

case (e1,e9) = (1,1).

Lemma 3.24. Let (X, E) be a minimal basic pair with X ~F,, forn > 1. Let 0 C X be
the negative section and let € be a fiber of the Pl-bundle structure m: X — PL. Let (eq, es)
be the pair of non-negative integers determined by E ~ ejo +exl. If E # 20, thenn < 4

and (e, ez) is one of the following:

Casen=1: (1,0),(1,1),(2,1),(2,2)
Casen=2: (1,0),(1,1),(1,2),(2,2),(2,3)
Casen=3: (1,0),(1,1),(2,3),(2,4)
Casen=4: (1,0),(2,4)

If E > 20, thene; =2 and 0 < ey < min{n+1,4}. The number of irreducible components

of E is at most 3 in case £ # 20, and is at most 5 in case £ > 20.
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Proof. The formula —Kx ~ 20 + (n 4 2)¢ implies L ~ (4 —e1)o + (2n + 4 — e9)l
and Kx + L = (2—e1)o+ (n+2—eg)l. Here, 2—¢; > 0 by (Kx + L) > 0, and
ey = FEl>0by (2Kx + L)¢ < 0. Hence e; € {1,2}. The condition (C1) is equivalent to:
n+2—eq > n(2—e;p). Similarly, (C3') is equivalent to: 2n+4 —ey > n(4—e;). Therefore

. min{2,4 —n}, in case e; = 1;
(3-6) ey <min{n(e; —1)+2,n(e; —2) +4} =
min{n + 2,4}, in case e; = 2.
The genus g of (X, F) is calculated as follows:
29—2: (Kx+L)L
=-—n2—e)d—e)+2—€e)2n+4—e3)+ (4 —e1)(n+2—e3)
=2—-e)(nler—1)+2—e)+(2—e1)4d—e2) +2(n+2—e2).

Therefore, we have

n+3 — eq, in case e; = 2;
(3-7) 2<g=
n+6 — 2ey, in case e; = 1.
Comparing with the inequality (3—6]), we have a new inequality e; < n+1 in case e; = 2,
but no new inequalities in case e; = 1.
If £ 2o,thencE=ey—ne; >0. If E Do but E # 20, then E = o+ D for a divisor

D 5 o; thus 0D = e3 — n(e; — 1) > 0. Combining with and (3-7), we have
n <e; <min{2,4 —n}, incasee;=1,F po;
0 <e; <min{2,4 —n}, incasee; =1,F D o;
2n <ey < min{n + 1,4}, incasee; =2, F 2 o;
n <es <min{n + 1,4}, in case e; = 2, E % 20;
0 <e; <min{n+ 1,4}, incasee; =2, F > 20.

Therefore, n < 4 in case E # 20, and the list of (eq,eq) is obtained for n > 2. In case
n = 1, the minimality of (X, E) requires another condition: 0 < (2Kx + L)o = —Eo =
e; — e9. Hence the case (eq,e2) = (1,2) is erased and the list is obtained.

Finally, we bound the number kg of irreducible components of E. If £ > 20, then
E =20+ Y a;l; for fibers ¢; with > a; = es < 4; thus kg < 5. Suppose that E % 20. If
e; = 1, then E is a section of 7w or the union of ¢ and at most two fibers, since ey < 2;
thus kp < 3. The remaining case satisfies £ 7 20, e; = 2, and 4 > ey € {n,n+ 1}. If

es = n, then E = 0 + 0, for a section o, at infinity; thus £ is the disjoint union of two

copies of P! and kp = 2. If e5 = n + 1, then we have the following three possibilities:

(A) Epo.
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(B) E =0+ D for a section D ~ o+ (n+ 1){ of 7.

(C) E =0+ 04 + £ for a section o, at infinity and for a fiber ¢y of 7.
Then kg = 2 in case (B), and kg = 3 in case (C). In case (A), we have n = 1 and kg < 2.
In fact, if £ ~ 20+ 2{ is reducible, then E = Dy + D, for two sections D;, D at infinity,
where DDy = 1. O

We can classify the minimal basic pairs (X, F) by the following types:
[e]: X ~P? and deg F = e € {1,2}.

[n;eq,e]: X ~ T, with E ~ ejo + exl. Here, o is a minimal section and ¢ is a fiber
for the P'-bundle structure 7: X — P! (cf. Convention [3.23).

The types of minimal basic pairs are listed in TABLE [1 with the invariants g, LE, and
(Kx + L)? by the results in Lemmas|3.21]13.22,13.24. We note that K% = (Kx+L)>+LE
(cf. (3-4)).

Corollary 3.25. Let (X, E) be a minimal basic pair and set L = —2Kx —FE. If Kx+ L
is ample, then it is very ample. If Kx + L is not ample but big, then (X, E) is of type
12;1,2]. If Kx+ L is not big, then (X, E) is of type [n;2, es] with 0 < es < min{n+1,4}.

Proof. An ample divisor on X is always very ample for X = P? or X = F,. If X = P?,
then Kx+ L is ample. Thus we have only to determine when K x + L is ample for X = TF,,.
If we write Kx + L ~ dyo + dol, then di = 2 — €1, dy = n+ 2 — ey. Here, Kx + L is
ample if and only if dy > nd; and d; > 0. Thus Kx + L is not bigife; =2. If e; =1
and Kx + L is not ample, then (X, F) is of type [2;1,2]. O

3.4. Anti log-canonical rings. For a graded k-algebra R = ,,> I%;,, the m-th piece
R,,, denotes the module of homogeneous elements of degree m. The n-th truncation R
for n > 0 is defined by R = D.>0 Bom, 1., (R™),, = Ryp.

For a normal complete variety Z and a Q-divisor D, we define a graded k-algebra by

R(Z,D)=@, . R(Z D)n= _ H(Z . mD,)
(cf. [10]), where L-J stands for the round-down. Here, R(Z, D)™ ~ R(Z,nD) for n > 0.

Let (S, B) be a del Pezzo pair of index at most two. We consider the anti log-canonical
ring R[S, B] := R(S, —Kg— B) and its second truncation R[S, B]® = R(S, —2(Ks+ B)).
The latter is isomorphic to R(M, Lar). We set By = (1/2)Ey . Then Ey — 2Ej, is a

reduced divisor or zero. Note that E5, = 0 if (S, B) is log-terminal.

Lemma 3.26. There is an isomorphism
R[S, Blor-1 = H* (S, —(2k — 1)(Ks + B)) ~ H*(M, Ky + B3, + kL)

for any positive integer k.
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TABLE 1. The types of minimal basic pairs (X, F)

Type |g|LE | (Kx+ L)*| Type g |LE|(Kx+L)?
1] 6| 5 4 3: 1, 0] 9 |1 7
2] 3] 8 1 3: 1, 1] 7 |3 5
0:1,0]] 6] 4 4 3; 2, 0] 6 | 8 0
0:1,1] 4] 6 2 3; 2, 1] 5 | 8 0
0:2,0] 3] 8 0 3: 2, 2] 1|8 0
0:2,1] 2] 8 0 3: 2, 3] 3 |8 0
1:1,0 7] 3 5 3; 2, 4] > |8 0
1 1,15] 5 3 [4; 1, 0] 0 | o 8
;2,0 4] 8 0 [4; 2, 0] 7 18 0
1:2,1] ]3] 8 0 [4; 2, 1] 6 | 8 0
1:2, 2] 2] 8 0 [4; 2, 2] 5 | 8 0
2:1,0|8| 2 6 [4; 2, 3] 4 |8 0
2:1,1]]6] 4 1 [4; 2, 4] 3 |8 0
2:1,2] 4] 6 2 m>520 |n+3| 8 0
2:2,0 5] 8 0 m>521|n+2| 8 0
2:2,1 4] 8 0 m>522|n+1] 8 0
2:2,2] 3] 8 0 m>523| n |8 0
2:2,3 2] 8 0 m>524 | n-1]| 8 0

Proof. Let D be a Q-divisor on M which is relatively numerically trivial with respect to
the minimal desingularization av: M — S. Then «,Op (D) is a reflexive sheaf. This
is shown as follows: We may replace S with an open subset freely since the property is

local. If it is not reflexive, then ,.Op(LD1) € a.Opn(LDo+ E') for an a-exceptional

effective divisor £’. A section of a,Op(LD1+ E’) defines an effective Q-divisor D’ on
M such that (D) = (D) and D' — (D + E') = D'y — (LD1+ E') is linearly equivalent
to 0. Then D' > E’, since DE] = E'E] for any irreducible component E; of E’. This
argument says essentially that the negative part of the relative Zariski-decomposition of
D + E' is E'. Therefore, the section defining D’ comes from a section of a,Op(LDJ).
Thus, Oy (LDJ) is reflexive.

We can apply the reflexive property to the Q-divisor Ky, + (1/2)Ey + kLyy, since

Ky + (1/2)En + kLpy = (k — (1/2)) Ly is a-numerically trivial. Hence,
OJ*OM (LKM+(1/2)EM+I€LM_J) >~ OS( (2]{)— 1)(KS+B)_I> s
since a, Lpy ~ —2(Kg + B) and (1/2)a.Ey = B. O
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Therefore, R[S, B] is isomorphic to the graded ring

0 0 o
69m:Zk,kZOI_I (M’ kLM) © @WZQk’—l,kz21H <M7 KM + EM + kLM)7

where R[S, Blo—1 ® R[S, Blai—1 — R[S, Blak4i-1) is induced from

HY(M, 2Ky +2E5, + (k +1)Lay)
=H"(M, —Ey +2E3, + (k+1—1)Ly) C H' (M, (k+1—1)Ly).
Suppose that Ky, + Ly is nef. For a positive integer k with R[S, Blar_1 # 0, equiva-

lently, |Ky + ES; + kL| # 0, let us consider the set Sy, of effective divisors N < EY, such
that Ky, + Ey; + kL — N is nef. Then E}; € §;. We define

N® .= Zr min{multp(N) | N € §;}T".
Then N® € ;. In fact, for an irreducible curve v on M, there is an effective divisor
N € 8, with mult,(N) = mult,(N®) and (N — N®)y > 0; hence
(Kpy + B3y + kL — N®)y = (Kyy + ES + kL — N)y + (N — N®)y > 0.
We define EWY := E3, — N® if R[S, Bly_1 # 0: and E\¥ := 0 if R[S, B]y_1 = 0. Then

E](\f[) < E](\Tl) and Ky + E](\? + kL), is nef for any k£ > 0. We also define EJ(\;}O) to be E](\?
for £ > 0. Then K + E](\;o) is a-nef with an isomorphism

0Oy (K + EY) ~ 0.0u(Kyy + E3p) ~ Os (Ks + (1/2)B,) .
Lemma 3.27. If Ky, + Ly is nef, then there is an isomorphism
R[S, Blar—1 = H* (S, —(2k = 1)(Ks + B) ) ~ H (M, Ky + By + kL)
for any positive integer k > 0.
Proof. Assume the contrary. Then R[S, Blax—1 # 0 and Ef, # E](\? by Lemma[3.26. Let

D < ES, — E](\? be any non-zero effective divisor. Then (K, + E](\? + D'+ kLy)y <0

for an irreducible curve . Here, D' > ~ and
HO(M, Ky + E\Y + (D' — ) + kLy) =~ HO(M, Ky + BV + D' + kLy).
By induction on deg D’, we have a contradiction. U

Lemma 3.28 (cf. [11, Lemma 1.8]). Let Z be a scheme and D an effective Cartier divisor.
For two invertible sheaves £ and M on Z, the multiplication map H*(Z, L)@H°(Z, M) —
H°(Z, £ ® M) is surjective provided that the following three conditions are satisfied:

(S1) H'(Z,L(-D)) = 0;

(S2) HY(D, L|p) @ H*(Z, M) — H%(D, L ® M|p) is surjective;

(S3) H°(Z, L(—D)) @ H(Z, M) — H°(Z, L ® M(—D)) is surjective.
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Proof. By the three conditions, we have a commutative diagram
H(L(-D)) ® H* (M) —— H(L) ® H*(M) —— H°(L|p) ® H'(M) —— 0

J J l

H (L& M(-D)) —— H(L&®M) —— HY((LDM)|p)
of exact sequences in which the left and right vertical arrows are surjective. Thus the

middle vertical arrow is also surjective. U

Lemma 3.29. Let Z be a one-dimensional projective scheme with H(Z,0z) =0, L a
nef invertible sheaf, and let F be a coherent sheaf on Z generated by global sections. Then
the multiplication map H*(Z, L) @ H*(Z, F) — H(Z, L ® F) is surjective.

Proof. By the proof of Lemma|[2.8, there is an effective Cartier divisor D of Z such that
L~ Oz(D) and F — F ® Ogz(D) is injective outside a closed subset of dimension < 0.
Let F' be the image of F — F ® Oz(D). Then H(Z, F) — H%(Z, F') is surjective. As
in the proof of Lemma we have a commutative diagram

H°(0z) @ H'(F) —— H(Oz(D)) @ HY(F) —— H°(O4(D)|p) ® H*(F) —— 0

l J l

H°(F") —— H(Oz(D)®F) —— H%Oz(D)®F Op)
of exact sequences, where the left vertical arrow is surjective, and the right vertical arrow
is surjective, since dim D = 0 and F is generated by global sections. Thus the middle

one is also surjective. U

Lemma 3.30. For a basic pair (M, Ey;), the following properties hold:
(1) HY(M, mLy + j(Kar + Lag)) = 0 for any m, j > 0.
(2) HY(M, Ky + mLy — jEy) = 0 and HY(M, Ky + B\ + mLy) = 0 for any
m > 7 > 0.
(3) If Ky + Lay is big, then HY(M, j(Kyr + L) — Epr) = 0 for j > 0.
(4) HY(M, Ky + Lag)®™ — HOY (M, m(Ky + Lag)) is surjective for m > 1.
(5) If Ky + Ly is not big, then
HO(M, j (K + L) + Ex) @ HO (M, Ky + L) — HY(M, (j 4+ 1)(Ky + L) + En)

18 surjective for j > 3.
(6) If Ky + Ly is not big with (Ky + Ly )Ly > 2, then

(3-8) HY(M, j(Ky + L)) @ H(Ey, Op,, ) — H(Eag, 5 (Ky 4 Lag) | 5yy),
(3-9)  HY(M,j(Ky + L)) @ H (B, Liy|g,) — H(Ear, (K + (G + 1) L) | 5,,)

are surjective for 7 > 0.
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(7) If Ky + Ly is not big with (Ky + Ly )Ly = 2, then
(3-10) HY(M,j(Ky + L)) @ H(Ear, (Kar + Lt By
— H(Eu, (j + 1) (K + Lar) ),
(3-11) H(M, j(Ky + Lar)) @ H(Ear, (Kar + 2Lw) |5y,
— H(Eu, (4 1)Ky + (5 + 2) L) |ey)
are surjective for j > 0.
Proof. Let ¢: M — X be a birational map such that (X, E) is a minimal basic triplet
for £ = ¢.(Ey) and that Ky + Ly ~ ¢*(Kx + L). Since X ~ P! or F,,, we have a
non-singular member C' € |Kys + Ly|. If Ky + Ly is big, then C ~ P, If Ky + Ly is

not big, then C is a union of copies of P!, which are fibers of To¢: M — X — PL.
(1): The vanishing follows from

0 — H'(M,mLy + (i —1)C) — HY (M, mLy +iC) — H(C, (mLy; +iC)|¢) =0

for 1 <4 < j and the vanishing Hl(]\/[, mLyr) = 0 by Theorem [3.18!
(2): The first vanishing follows from (1), since

For the second, we may assume EJ(\Z” # 0. Then HI(E](\T), Opem) = 0 by E](\ZI) < Ey,
M
and K s + E](\}n) + mLy; is nef. Therefore,
H'(E}y”, (Ku + Ejp” + mLag)| g ) = 0

by Lemma (2.8, Combing with the first vanishing for j = 0, we have the second vanishing.
(3): We have

H' (M, j (K + L) — Ex) = H (M, (§ + 1)(Ky + L) + Ku)
~H'(X,(j+1)(Kx + L) + Kx).

Since Ky + L is nef and big, this cohomology group vanishes for j > 0 if chark = 0.
Since X ~ P? or F,,, X is a toric variety and thus this cohomology group is described by
combinatorial data which do not depend on chark. Thus we have the vanishing.

(4): The homomorphism is isomorphic to
HY(X, Kx + L)*™ — HY(X,m(Kx + L))

If X ~ P2 then this is surjective. If X ~ F,, then Kx + L ~ dyjo + dy/ for d; € {0,1}
and dy > nd;. If dy = 0, then the surjectivity follows from that of

HO(P!, O(1))®*™ — H°(P', O(m)).
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If dy = 1, then it also follows from the surjectivity of
Sym™ H%(P', O(dy) ® O(dy — n)) — H(P', Sym™(O(dy) & O(dy — n))).

(5): We have Kx + L ~ dy/ for an integer dy > 0. Since H'(M, Ly, — Ep + Eyy) = 0,
we have
H' (P, O(2dy) ® T Orr(En)) = 0.
Hence, m,0.On(En) ~ Oar) @ O(az) ® O(as) for integers a; > —2dy — 1. If jdo+a; > 0

for any 4, (this is satisfied for j > 3), then the multiplication map in question is surjective

since so is
H0<P17 O(]dg + CL1>> &® HO(Pl, O(dg)) — HO(Pl, O((] + 1)d2 + al))
(6): Asin (5), we have Ky + Ly ~ do¢™C. Then dy > 1 by (Ky + Las)Las > 2. For

the commutative diagram

H(j(Ky + Lar)) © H(Og,,) —— H°(j(Ky + Lar)) © H (= Ey)

l l

the horizontal arrows are surjective with the isomorphic kernels. The surjectivity of (3-8)

follows from that of the right vertical arrow, which is just the H' of the surjection
HO(M, §(Kar + Lag)) @k Onr(—Enr) — On(5(Kar + Lag) — Eap).
Since we have an exact sequence
(3-12) 0 — O(=1)®" — H(P', O(m)) ® Op — O(m) — 0
for m > 1, the expected surjectivity follows from
H*(M, —¢*0 — Ey) = HY(M, Kyr + Ey + ¢"0)Y ~ H°(M, (1 — dy)¢*¢)Y = 0.

For the homomorphism (3-9), it is enough to prove that the composite

HO(Maj(KM + LM)) ® HO(M> LM) & HO(EMa OEM)
— HY(M, j (K + Lar)) @ H(Eyy, Lt |g,,) — B (Ear, (K0 + (G + 1) L) ey,

is surjective. This is also written as the composite

HY(M, j (K + Lar)) © H'(M, Lyy) @ H(Ey, O, )
— H(Enr, j(Ky+ L) | gy ) @H° (M, Lag) — H(Eag, j(Ky+ L) gy ) ©HY (B, Lt | 2y,)
— HYEy, Ky + (4 1) L) gy )-

This is surjective by the surjectivity of (3-8), H'(Ly; — Eyr) = 0, and by Lemma[3.29!
(7): We have Ky + Lys ~ ¢*¢ by assumption. For the commutative diagram
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HO(j (K + L)) H(j (K + L))

———

@ H'((Ky + L) | Eay) @ H'(Ky + Ly — Er)

| l

H(( + V)(Kym + Lad)ley)  ——  HYG + D(Ew + La) — En),
the horizontal arrows are surjective, and a surjection is induced between the kernels by
(4). Hence, the surjectivity of (3—10) follows from that of the right vertical arrow, which

is just the H' of the surjection
HO(M, j(Kn + Lar)) @x One(Knr + Lar — Eng) — On((+ 1) (K + L) — Enp).
The kernel of the sheaf homomorphism is isomorphic to the direct sum of some copies of
Oy (=) @Oy (Kpyr+ Ly — Eny) =~ Op(—Ey) by the exact sequence for m = j.
Since
H2(M, —Ey) ~ HO(M, Ky + Ey)Y = HO(M, —¢*0)Y =0,
the expected surjectivity follows. For the homomorphism (3-11), it is enough to show
the composite
— H(M, (K + Lar)) @ H(Bnr, (Kas + 2Lw1) | 8,,)
— H(Enr, (5 + DEw + (7 +2) L) y,)

is surjective. This is written also as the composite

HY(M, j (K + L)) @ HY (M, Lar) @ HY (B, (K + Lia) | 2,,)
— H(Ey, (7 + DKy + L) |gy,) @ H(M, L)
— HY(Ewn, (G + VK + (5 + 2)Lar) |y )-

This is surjective by the surjectivity of (3-10), H'(Ly;—FEys) = 0, and by Lemma/3.29. O
Proposition 3.31. Let (M, Ey;) be a basic pair. Then the multiplication maps

fi . HO (M, mLys) @ HY(M, Lys) — H°(M, (m + 1)Lyy),

s HO (M, Ky +mLy) @ HY(M, Lys) — HY(M, Ky + (m + 1) Lyy)

Wl HOM, Ky + EUY + mLy) @ HO(M, Ly) — HO(M, Ky + ES + (m + 1) Lay)

are surjective for m > 2. If (Ky + Ly )Ly > 2, then these are surjective for m > 1. If

(K + Lag) Ly = 2, then the following homomorphism is also surjective:

" (HO(M, Ky + Lag) ® HO(Kog + 2Lag) ) & HO(M, Lyy)® — HO(M, 2Lyy).
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Proof. We have the following three cases of (M, Eyy):
(i) Kar + Lag is big;

(ii) Ky + Ly is not big and (K + Ly )Ly > 2;

(iii) (K + Lar)Las = 2.
Note that (Knr+ La) Ly > 2 if Ky + Ly is big (cf. TABLE[1). In the proof below, Step 1
gives a reduction for the proof related to p,, and u! . We shall show the surjectivity of
tm and g in the cases (i) and (ii) in Step 2. The same thing in the case (iii) is shown
in Step 3. The surjectivity of u! is shown in Step 4, and that of p” in Step 5.

Step 1: Let us consider the following multiplication maps:
fimj: HO(M,mLy — jEy) @ HO(M, Ly) — HY(M, (m + 1)Ly — jEu),
pir i HO(M, Kap +mLys — jEy) @ HO(M, Lyy) — HO(M, Kyp + (m + 1) Lag — jEu)
for 0 < j < m. We have H'(M,mLy; — jEy) = 0 for m > j > 0 and H (M, Ky, +
mLy — jEy) = 0 for m > 7 > 0 by Lemma [3.30, (1), (2). We infer that the natural
homomorphisms
H(Enr, (mLas — jEw) gy ) @ H(M, Lag) — H(Ear, ((m + 1) Lar — 5Ew)|my,),
HO(EM7 (KM + mLM - ]EM)|EM) ® H0<M7 LM)
— H(Ewr, (K + (m+ 1)Ly — jBu),,)
are both surjective by Lemma|(3.29 and by H' (M, Ly, — Ey) = 0. Applying Lemma [3.28
to the case Z = M, D = Ey, L =0O(mLy — jEM), M = Opn(Ly), for 0 < j < m, we
infer that the surjectivity of j,, is reduced to that of p, ; for j < m. Similarly, applying
Lemma [3.28/to the case Z = M, D = Ey;, L= O(Ky +mLy — jEyN), M = Oy (Ly),
for 0 < j < m, we infer that the surjectivity of y, is reduced to that of y, ; for j < m.
Step 2: We consider the cases (i) and (ii). We shall check the surjectivity of fim,
for m > 1 by applying Lemma [3.28/ to the case Z = M, D = Ey, L = Oy (Luy),
M = Oy (m(Ly — Eyr)). Here, the condition (S1) is satisfied by H' (L — Eyy) = 0. The

homomorphism of (S2) is
H (M, m(Ly — Enr)) @ BB, Llg,,) — H(Ear, ((m+ 1) Las = mEy)|gyy),
which is surjective by Lemma [3.30) (3)), and Lemma 3.29 for the case (i), and by the
surjectivity of (3=9) for the case (ii). The homomorphism of (S3) is
H(M,m(Ly — En)) @ HY (M, Lyy — Eyy) — HY (M, (m + 1) (Ly — Eyr)),

which is also surjective by Lemma (3.30, (4). Thus f, ., and p, are surjective.
Still in the cases (i) and (ii), we shall check the surjectivity of u, ., for m > 1 by
applying Lemma [3.28 to the case Z = M, D = Ey, L = Oy (Ly), M = Op(Kpyy +
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mLy; — (m — 1)Eyy)). Here, (S1) is satisfied by H'(Ly; — Eyr) = 0. The homomorphism

of (S2) is written as
H* (K +mLa —(m—1)En))®H(Enr, Llg,,) — B (Ky+(m+1) Ly — (m—1) Enr) |,,)
and it is surjective. In fact, in the case (i), it follows from the vanishing

HY (M, Ky +m(Ly — Ey)) ~ HY (X, (2m — 1) (Ky + Lag) — Ey) =0
shown in Lemma [3.30, (3)), and from Lemma 3.29; in the case (ii), it is just the homo-
morphism (3-9) for j = 2m — 1. The homomorphism (S3) is

HY(Kp +mLy — (m —1)Ey)) @ H(Ly — Epy) — HY(Kpy + (m 4+ 1)Ly — mEy),
which is surjective by Lemma 3.30, (4). Thus, y;, ,,  and p;, are surjective. Hence, we
are done for yu,, and yu,, in the cases (i) and (ii).

Step 3: We consider the case (iii). We shall check the surjectivity of fi,,—1 for
m > 2 by applying Lemma [3.28| to the case Z = M, D = Ey, L = Op(Ly), M =
Oy (mLy—(m—1)Ey;). Here, (S1) is satisfied by H'(Ly;— Ejs) = 0. The homomorphism
of (S2) is

HY(mLyr — (m = 1)Exr)) @ H(Ear, Llg,,) = H(((m + 1) Lar = (m = 1) Ex)lgy,),
which is surjective by Theorem [3.18 and Lemma [3.29. The homomorphism of (S3) is
H(mLy — (m — 1)En)) @ HY(Ly — Ey) — HY((m 4+ 1)Ly — mEwy),

which is surjective for 2m > 3 by Lemma [3.30, (5). Thus, fim,m—1 and p,, are surjective
for m > 2.

We shall check the surjectivity of u,,,, o for m > 2 by applying Lemma [3.28 to the
case Z =M, D = Ey, L=0p(Ly), M= On(Ky +mLy — (m —2)Eyy). Here, (S1)
is satisfied by H'(Ly; — Ej;) = 0. The homomorphism of (S2) is

H(Ky +mLy — (m —2)Ex)) @ H(Ew, Lig,,) — B ((m + 1) Las — (m — 2) E)|,,) ,
which is surjective by Lemma/[3.30, (1) and Lemma/[3.29. The homomorphism of (S3) is
HY (K +mLy — (m—2)Ey)) @ H(Ly — Epy) — HY(Kpyp 4 (m 4 1)Ly — (m — 1) Eyy),

which is surjective by (4), (5) of Lemma[3.30, since Ky, + mLy — (m — 2)Ey = (2m —
1) (K + L) + Ey. Hence, piy,, ., o and p;, are surjective for m > 2. Therefore, we are
done for fi,,, and p),,.

Step 4: We shall show the surjectivity of p, for m > 1 in the cases (i), (ii), and
for m > 2 in the case (iii). We apply Lemma [3.28| to the case Z = M, D = E](\T),
L= OM(KM%—EJ(\ZL)%—mLM), M = Oy (Lyy). Here, (S1) is satisfied by Lemmal3.30, (1).
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The homomorphism of (S3) is nothing but the surjection y, ,, ;. By HY(Ly — Ey) =0,
(S2) is derived from the surjectivity of

HO(ES, (Kar + B3+ mLa) o) © HO(Bar, Lt )
— HUES, (Kor + E5p) + (m+ 1) Lar) | yom)

Here, F = Opn(Ky + E](\Zl) + mLM)|E1(&n) is generated by global sections, since (K +
E](\Zl) + mLM)|E1(\T) is nef and HI(OEEZ”)) = 0 (cf. Lemma 2.8). Since Ly/|g,, is nef, the
homomorphism above is surjective by Lemma[3.29. Therefore, p is surjective.

Step 5: Since the composite H(M, L;)®? — H(M,2Ly;) — H°(Ey, Llg,,) is surjec-

tive, it is enough to show the surjectivity of
HO(M, Ky + L) @ HY (M, Ky + 2Ly) — H°(M, 2Ky + 3Ly) ~ HY(M, 2Ly — Eyy).

By Lemma [3.28| applied to the case Z = M, D = Ey, L = Oy(Ky + 2Ly), M =
On(Kyr + Lyr) and by HY(Ky; + 2Ly — Eyy) = 0, this is also reduced to showing the

surjectivity of
HY(Ky + L) @ HO(Kyy + 2Ly — Ey) — HY(2K )y + 3Ly — Ey)  and
HO(M, Ky + La) @ HY(Eyr, (Ko 4 2La) | 5y,) — H(Ear, (2K 4 3L) |5y, )-

The first one is surjective by Lemma[3.30, (4), and the second one is just the surjection
(3-11) for j = 1. Thus we are done. U

Theorem 3.32. Let (S, B) be a del Pezzo pair of index at most two obtained from a basic
pair (M, Ey). Let m* be the minimum positive integer m such that Ky + E](\;O) +mLyy
s nef.
(1) If L Bu=0, then m* = 1. If LB is reduced, then m* < 2.
(2) If g(S, B) > 2, then R[S, B]® is simply generated. In particular, —2(Kg + B) is
very ample and |Lys| contains a non-singular member.
(3) Suppose that g(S, B) > 2. Then R[S, Blay_1 R[S, Bl = R[S, Blaxs1 for k > m*.
In particular, R[S, B] is generated by homogeneous elements of degree at most
max{2,2m* — 1}.
(4) If g(S, B) = 2, then R[S, B]® is generated by homogeneous elements of degree at
most 2. If B =0 in addition, then —2(Ks + B) is not very ample and R[S, B]®
18 not simply generated.
(5) Suppose that g(S,B) = 2. Then R[S, B]s = (R[S, Bl2)? + R|S, B]:R|S, B]3 and
R[S, Blak—1 R[S, Bls = R[S, Blog+1 for k > max{2,m*}. In particular, R[S, B] is

generated by homogeneous elements of degree at most max{2,2m* — 1}.
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Proof. (1): Suppose that L B, = 0. Then E](\EO) is a-exceptional and hence (K, + E](\ZO) +
Lys)vy > 0 for any irreducible component v of EJ(\;O). Thus Ky, + E](\;O) + Ly is nef, and
m* = 1. Suppose next that LB is reduced. If v is an irreducible component of E](\;O)

with Ly > 0, then multv(E](Jo)) =1 and
(K + ES + 200y > =2+ 2Ly > 0.

Thus Ky + E](\Zo) + 2Ly is nef, and m* < 2.

(2) follows from the surjectivity of p,, for m > 1 shown in Proposition[3.31. Here, the
existence of non-singular member of |Ly| follows from the Bertini Theorem applied to
the very ample divisor —2(Kg + B) of a variety S with only isolated singularities.

(3): By the surjectivity of p! for m > 1 shown in Proposition [3.31, we infer that
R[S, Blax_1R[S, Bls = R[S, Blaxs1 if and only if EY = E*Y. Thus the assertion holds.

(4): The first assertion also follows from Proposition 3.31. If B = 0, then L3, = 4 and
dim H°(M, L) = x(M, L) = 4. If —2(Kg + B) is very ample, then S is realized as a
quartic surface in P?, contradicting that S has a non-Gorenstein singular point.

(5) follows from the surjectivity of p” and p! shown in Proposition 3.31 and by the

same argument as in the proof of above. U

Example 3.33. There is an example (M, F)s) of basic pairs such that LB is reduced
and m* = 2. We use results in Section [4/in order to describe the example: Let (X, E, A)
be a fundamental triplet of type [n;2,3]s for n > 2 in which A = 0 and F = 20 + F
for the union F of three fibers of 7: X — P!. Then M = X = S, Lo = 1, and
Y = EJ(\?[O) = 1By = 0. Thus Ky, + E](\ZO) + kLy is nef if and only if £ > 2. Hence,

m* = 2.
By using the classification of fundamental triplets in Section below, we have:
Proposition 3.34. m* < 2 for any basic pair (M, Eyy).

Proof. A basic pair (M, E)) is obtained from a fundamental triplet (X, E, A) by the
elimination of A. We may assume that _B_ is not reduced. Let I' C M be the proper
transform of an irreducible component of LB_ with multiplicity > 1. We set mp =
multp(Eys). Then mp > 4 and

multp(LBo) = multp(Ey,) = multr(EYY) = (1/2)mr, > 1.

Let kr be the minimum positive integer k with (K + E](\;O) + kLpy)I' > 0. It is enough
to show that kpr < 2 for any such I'.

Case 1. T'is not ¢-exceptional: Then ¢(I') an irreducible component of £ with mul-
tiplicity mr > 4. By Theorem the type of (X, E,A) is [n;2,4]s for n > 3, mp = 4,
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E =20 +4¢(T), ¢(T') is a fiber of X =F,, — P!, and 2 = L¢(T") > deg(AN@(T)). Thus
—1<TI?<0. IfI'? =0, then Ly ' =2 and

(K + B + Ly)T > (K + 2T + Ly)T = 0.

Hence, kr < 1. Suppose that I? = —1. Then E); = 20y + 31 + 4" for the proper
transform oy; C M of o and a ¢-exceptional curve I'y by Lemma [2.17. Here, Ly;oy = 0,
I? = —1, and Lyl = LyTy = 1. Thus E3, = B = oy + Iy + 2T, In particular,
(K + Ej(\jo) + Ly)I' = 0, and hence kp = 1.

Case 2. T is ¢-exceptional: Let Ey C E be the irreducible component containing the
point P = ¢(I'). Note that Ej is unique and mg := multg, (F) > 2 and that my < 4 by
Theorem 4.6, Let Epp C M be the proper transform of Ey. Since (Kj + Ly )l = 0,
I'is a (—=1)-curve and Ly’ = 1. Since (K + EJ(VOIO) + kL)l = (k—1)+ E](&O)F, it is
enough to show E](\;O)F > —1.

We set kp = multp(A) and I[p = multp(A N Ep). Over an open neighborhood of
¢ Y (P), ¢~ '(Ep) is a the union of Eyj and a straight chain Ty + Ty + -+ + Ty, of
non-singular rational curves where the dual graph of ¢~'(Ep) is the same as that of
¢ '(Ep) in Lemma [2.17. Here, LyT'; = 0 except for i = kp. Thus I' = I'y,. Therefore,
mr = multr(Ey) = lpmg — kp by Lemma[2.17.

Subcase 2A. mo = 2: Then lp > 4. In particular, deg(A N Ey) > 4. Thus, (X, E,A) is
of type [2]2 and Supp(A) = {P} with [p = 4, by Theorem 4.6. Thus kp = 4 and

EM == 2EO,M + Fl + 2F2 + 3F3 + 4F

by Lemma 2.17. Here, Ly Eoy = Lyl'; = 0 for 1 < ¢ < 3. It implies that Ef, =
Eoar +Ta+ T+ 2T and B = Ey  + T's + 2T Therefore, E\'T = 0.

Subcase 2B. mg = 3: Then (X, E, A) is of type [n; 2, e]y with e € {3,4} and n > 2, Ey
is a fiber of 7: X — P! and F = 20 + 3E, + F for an effective divisor F' ~ (e — 3)FEj
by Theorem [4.6. Since mr > 4 and deg(A N Ey) < 2, we have kp = lp = 2 and mp = 4.
Thus Ey = 20y + 3Eg M + 2y + 4T + F' for the proper transform oy C M of o
and for an effective divisor F’ with ¢, /" = F. Then Ef; = oy + Eou + 't + 21" and
E\PT = B3 =0,

Subcase 2C. mg = 4: Then (X, E, A) is of type [n;2,4], for n > 3, and Ej is a fiber of
7m: X — P! with £ > 20 + 4E by Theorem 4.6/ Since mr > 4 and deg(A N Ep) < 2, we
have [p = 2 and mp < 6. Note that the proper transform o)y C M of o, and Ej s are
a-exceptional.

Suppose that mp = 6. Then kp = 2 and Ey = 20 + 4Eyy + 301 + 61", Thus
E3, = ou + 2Eg + Ty 4 31, Hence, B = E, and ESOT = 0.
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Suppose that mp = 5. Then kp = 3 and Ey = 20 + 4E p + 31y + 60 + 5I'. Thus
By = oy + 2Eo 0 + 11 + 305+ 2T and B = 0y + Egar + 'y 4 2T + 2T, Therefore,
ECIT = 0.

Suppose that mp = 4. Then kp = 4 and Ey = 20y + 4Eo ar + 311 + 60y + 5I's + 4T
Thus EY, = 04 +2E0 0+ T1 43054203+ 20 and B\ = o+ Eg p+T1 + 2T+ 205+ 2T
Therefore, E](\ZO)F = 0.

Thus, we are done. Il

Hence, we have the following by Theorem 3.32 and Proposition 3.34:

Theorem 3.35. If (S, B) is a del Pezzo pair obtained from a basic pair (M, Eyr), then
R[S, B] is generated by homogeneous elements of degree at most 3, and R[S, B]® is

generated by homogeneous elements of degree at most 2.

Next, we consider the rings R[S, B] and R[S, B]® for a del Pezzo pair (S, B) of index

at most two which is not obtained from any basic pair.

Proposition 3.36. Let (S, B) be an irrational del Pezzo pair of index < 2. If (S, B)
is log-canonical, then R[S, B] is generated by homogeneous elements of degree at most 6,
and R[S, B]® is generated by homogeneous elements of degree at most 3. However, in
the non-log-canonical case, R[S, B] is not always finitely generated. Furthermore, there is

no bound of degrees of minimal generators of R[S, B] even if R[S, B] is finitely generated.

Proof. (S, B) is in one of the cases in Lemma 3.10l For the minimal desingularization
a: M — S, M has a Pl-bundle structure 7: M = Pc(Oc ® Oc(A)) — C over a non-
singular projective curve C' of genus > 1 for an ample divisor A.
Let o be the negative section and let o, be a section at infinity on M. We can calculate
R[S, B] in each case of Lemma as follows:
Case (1) of Lemma [3.10: Then, C' is an elliptic curve, Ey = 20, Ly ~ 204, and
B = 0. Thus,
R[S, B] ~ R(M,0+) ~ R(C, A)[t]
for a variable t of degree one. Thus R[S, B] is generated by homogeneous elements of
degree at most 3 by the following well-known result for an elliptic curve C' and an ample
divisor A:
e If deg A > 3, then R(C, A) is simply generated.
o If deg A =2, then R(C, A) is generated by homogeneous elements of degree < 2.
o If deg A =1, then R(C, A) is generated by homogeneous elements of degree < 3.
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Case (2) of Lemma[3.10t Then, C'is an elliptic curve, Ey; = 20 + 0, for a section o,
at infinity, Ly ~ 000, B = (1/2)a.000, and E5; = 0. Since Ky + Ef; ~ —04, we have
R[Sv B] = R(Mv (1/2)000> = R<C> A)W? t]/(92 o f)
for two variables 6, t, where f € R[S, B], = HY(M, 04,) is a defining equation of o, and
(R(C,A)[0,t])m = @Qkﬂﬂ,:m R(C, A)x0't’.
Thus R[S, B] (resp. R[S, B]?) is generated by homogeneous elements of degree at most
6 (resp. 3).

Case (3) of Lemma [3.10: Then, Ey = 30 + 7*A for an effective divisor A on C
with deg(A — 2K¢c — A) > 0 and Ly ~ 0 + 724 — 2K — A). We can choose the
effective divisor A so that O¢(A — 2K¢ — A) is a non-torsion element of Pic’(C). In
this case, « is the contraction morphism of o, but —(Kg + B) is not Q-Cartier; hence
R[S, B]® and R[S, B] are not finitely generated. On the other hand, we can take A so
that O¢(A —2K¢c — A) is a torsion element of Pic’(C') with sufficiently large order. Thus

we can not bound the degree of homogeneous generators of R[S, B|, even if R[S, B] is

finitely generated. O

Proposition 3.37. Let (S, B) be a del Pezzo pair of index at most two with g(S, B) = 0.
Then R[S, B]® is simply generated, and R[S, B] is generated by homogeneous elements

of degree at most 5.

Proof. (S, B) is described as one of the cases (1), (2), (3) of Proposition We first
consider the case (1). Then M ~ S ~ P? and (deg(Lys),deg(Ey)) € {(1,5),(2,4)}.
Thus R[S, B]® ~ R(M, Ly) is simply generated. Since deg(Ky + E5; + kL) > k — 3,

HY(Ky + B3, + kLy) @ HY(Lyy) — HO (K + ES, + (K +1)Lyy)

is surjective for k > 3. Thus R[S, B] is generated by homogeneous elements of degree at
most 5.

Next, we consider the cases (2) and (3). Then M ~ F,, Ey ~ 30 + (2n + 4 — b)(,
Ly ~ o + bl for a minimal section ¢ and a fiber ¢ of 7: X — P!, and for a positive
integer b with n < b < 2n + 4. Thus

R[S, B)® ~ R(M,Ly) ~ @ __ H(P',Sym™(O(b) ® O(b — n)))
is simply generated. If we write £}, ~ eJo 4 e3¢, then

Ky + EYy+kLy ~(E—2+¢€))o+ (kb— (n+2) + e5)Y,
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and hence

HY(M, Ky + E5p + kL)
~ H" (P!, Sym" 2" (O(kb — 2n — 2+ €3) ® O(kb — n — 2+ ¢3)))

for £ > 2. Since b > n for the case 0 < n < 1, we have kb —2n — 2 +¢e5 > 0 for k > 3.
Thus R[S, B] is generated by homogeneous elements of degree at most 5. U

Proposition 3.38. Let (S, B) be a rational del Pezzo pair of index at most two with
g(S,B) = 1. Then R[S, B]® is generated by homogeneous elements of degree at most 3,

and R[S, B] is generated by homogeneous elements of degree at most 6.

Proof. S is alog del Pezzo surface of index one and 2B € |—Kg| (cf. Lemma/3.12). Hence,
R[S, B]® ~ R(S,—Kg), which is known to be generated by homogeneous elements of
degree at most 3 (cf. [9, Chapter V, Proposition 2]). Since Ky + Ly ~ 0 is nef, we
can define E](\Zl) for m > 1 as above, i.e., E](\ZI) is the maximum divisor < Ej, with
E](\T) — (m — 1)K being nef.

Suppose that a.E3, = By = 0. Then E](\Zl) = EJ(\;}O) = 0 for any m > 1, and
R[S, Blor—1 ~ H°(M, —(k — 1)Ky) for k > 1. Since R[S, B]; ® R[S, Blar, — R[S, Blogs1
is just the isomorphism H°(M, Q) @ HY(M, —kKy;) ~ H*(M, —kK) for k > 1, R[S, B]
is generated by homogeneous elements of degree at most 6.

Next, suppose . Ey; # 0. Then E](\Zo) # 0. The dualizing sheaf wg,, is isomorphic to
Og,,, since Ey ~ —K);. Furthermore, Hl((’)EM) ~ H*(M, Ky;) ~ k. From the exact
sequence

0— W) = Wy = Og,, — (’)EM_EJ(JO) — 0,
we have the vanishing
H (Op0) = B () = 0.
An inequality K2, = (=Kpy)Ey > 2Ly ESY > 2 follows from Ey > 2EC°. Hence,
R[S, B]®® = R(S, —Kg) is generated by homogeneous elements of degree at most 2.

Let v be an irreducible curve with E](\f)v < 0. Then ~ is a (—1)-curve, since any
(—2)-curve is a-exceptional. We set b = b, = mult, (E},). Since —Ky ~ Ey > 2B\
and M has a (—1)-curve, we have 8 > K3, > 2b.

We shall show b < 2. First, we consider the case where KJZ\/[ = 8 Then M ~ I,
and v = 0. Since —K); — 2bv is linearly equivalent to an effective divisor, we have
(—Ky —2bo)l =2—2b >0 for a fiber £ of m: M — P'. Hence, b < 1. Next, we consider
the case where K%, < 7. Then there is a birational morphism M — T, for 0 < n < 2.
Here, we may assume that v is contained in a fiber of the composite M — F,, — P!. Thus,

by replacing the birational morphism M — T, if necessary, we may also assume that ~ is
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the proper transform of a fiber £ of X =T, — P'. Since —Kx —2bf ~ 20 + (n + 2 — 2b){
is linearly equivalent to an effective divisor, we have 2b < n + 2 < 4. Hence, b < 2.

Therefore, K+ ES® +kLy ~ B — (k— 1)Ky is nef and E\¥ = EC for k > 3. In
order to show R[S, Blox_1 R[S, Bla = R[S, Blag1 for k > 3, we shall apply Lemma[3.28 to
the case Z = M, D = B\ £ = Op(=(k— 1)Ky +ES), M = Oy (—Kyy). Here, (S1)
follows from H'(M, —(k — 1)Kj;) = 0 for k > 1. The homomorphism of (S3) is nothing
but HY(M, —(k — 1)K ) @ H* (M, —Kj) — H°(M, —kK), which is surjective for k > 3,
since K2 > 2. The restriction map H°(M, —Ky) — H(Ey, —Kalp,,) is surjective by
HY (M, — Ky — Ey) = HY(—2K);) = 0. Thus (S2) is derived from the surjectivity of

H(BYY, (—(k — DKy + B3y o) © BBt = Koa,y)
— BB, (—kEy + B yeo )

which is shown by Lemma [3.29. Therefore, R[S, Blox—1 R[S, Blo = R[S, Blag1 for k > 3,

and R[S, B] is generated by homogeneous elements of degree at most 6. U

Finally, we consider a rational del Pezzo pair (S5, B) of index at most two of genus
g(S,B) > 2 which is not obtained from any basic pair. Then S is a log del Pezzo
surface of index one and B = 0. Thus, R[S, B] = R(S,—Kgs). Hence, by [9, Chapter V,
Proposition 2], R[S, B]® (resp. R[S, B]) is generated by homogeneous elements of degree
at most 2 (resp. 3), respectively.

Therefore, we have proved the following:

Theorem 3.39. Let (S, B) be a del Pezzo pair of index at most two. Suppose either that
S is rational or that (S, B) is log-canonical. Then R[S, B] is generated by homogeneous
elements of degree at most 6, and R[S, B]®® is generated by homogeneous elements of

degree at most 3.
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4. FUNDAMENTAL TRIPLETS

In this section, the notion of fundamental triplet is introduced. Any basic pair is shown
to be obtained as the elimination of a fundamental triplet. The fundamental triplets are
classified by their types. The uniqueness of fundamental triplet for a given basic pair
does not hold in general but the type is uniquely determined. By the list of types, we
can classify all the non-Gorenstein singularities on S for rational del Pezzo pairs (S, B)

of index at most two.

4.1. Definition of fundamental triplet.

Definition 4.1. A triplet (X, E, A) is called a quasi-fundamental triplet if the following
conditions (F1)—(F3) are satisfied:
(F1) (X, E) is a minimal basic pair;
(F2) A is empty or a zero-dimensional subscheme of X with vp(A) =1 for any P € A;
(F3) A is asubscheme of E such that LE; > deg(ANE;) for any irreducible component
E; of E, where L = —2Kx — E.

Lemma 4.2. (1) Let (X, E,A) be a quasi-fundamental triplet and let ¢: M — X be
the elimination of A. Then (M, E%)) is a basic pair.
(2) If (M, Ey) is a basic pair, then there ezist a quasi-fundamental triplet (X, E, A)
and a birational morphism ¢: M — X such that ¢ is the elimination of A and
Ey = E%.

Proof. (1): We set Ey = Ef;. By Lemma 2.7, (2), Ky + Ey ~ ¢*(Kx + E). Hence,
Ky + Ly ~ ¢"(Kx + L) for Ly = —2K; — Ey. Let G be the ¢-exceptional effective
divisor determined by ZaoOy = Oy (—G). Then Ly = ¢*L — G and .0y (—G) =~ Za.
If E; ps is the proper transform of an irreducible component E; of E, then E; )y = (El)ﬁ

and GE; yy = deg(A N E;) by Lemma[2.7; thus

Since — Ky is ¢-nef, Ly I' = —KyI' > 0 for any ¢-exceptional irreducible component I'
of Ey. Therefore, the conditions (C1)—(C3) are all satisfied for (M, Ey).

(2): If (M, Epy) is minimal, then (M, Ey;, A) is the expected quasi-fundamental triplet
for A = . If (M, Ey) is not minimal, then by successive contractions of (—1)-curves,
we have a minimal basic pair (X, F) and a birational morphism ¢: M — X such that
E =¢.Ey and Ky + Ey ~ ¢*(Kx + E). Hence Ky + Ly ~ ¢*(Kx + L) for nef divisors
Ly = —2Ky — FEyand L = —2Kx — E. Thus ¢ is the elimination of a zero-dimensional
subscheme A C E with vp(A) =1 for any P and E)y; = E%, by Proposition 2.9. For an
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irreducible component E; of E and for the proper transform E; p; in M, we have
Hence, (X, E,A) is a quasi-fundamental triplet. O

For a quasi-fundamental triplet (X, E/, A), the basic pair (M, E)s) obtained as above
by the elimination of A is called the elimination of (X, E,A).

Let (M, Eyr) be a basic pair and set Ly = —2Ky — Ejy.

Suppose that Ky, + Ly, is big. Then the quasi-fundamental triplet (X, E, A) whose
elimination is (M, Ey/) is unique up to isomorphism. In fact, if the type of (M, Ey)
is not [2;1,2], then elimination ¢: M — X of A is associated to the complete linear
system | K + Ly|, since Ky + Ly ~ ¢*(Kx + L) for the very ample divisor Kx + L
(cf. Corollary [3.25). If the type is [2;1,2], then |Ky 4+ Ly| gives a birational morphism
into Fy ~ P(1,1,2); thus the morphism ¢ into the minimal desingularization X of F is
uniquely determined.

On the other hand, if K+ L) is not big, then the quasi-fundamental triplet (X, E, A)
whose elimination is (M, E);) is not necessarily unique as in the proof of Proposition 4.4
below. In this case, X ~ [, and Kx + L is linearly equivalent to a multiple of fiber of 7.
Thus the linear system |K s + Lj| defines only the composition M — X — P

The notion of fundamental triplet below is introduced for establishing similar unique-
ness also for the non-big case; However, the uniqueness does not hold in general even for
the artificial notion (cf. Theorem Example 4.12).

Definition 4.3. A quasi-fundamental triplet (X, E, A) is called a fundamental triplet
either if Kx + L is big or if Kx + L is not big and the following three conditions (F4)—
(F6) are satisfied:
(F4) ANo =0 for a minimal section o; In particular, A = @) if X ~ F,.
(F5) If E > o + D for a minimal section o and a section D # o, then D? +n >
deg(A N D), where X ~T,.
(F6) If E does not contain a minimal section o and if E is either reducible or non-
reduced, then A = ().

Proposition 4.4. Any basic pair is obtained as the elimination of a fundamental triplet.
For the proof, we need the following:

Lemma 4.5. Let f: Y — T be a proper surjective morphism from a non-singular surface

Y into a non-singular curve T such that a general fiber is isomorphic to P*. Let E CY
be a section of f. Then Oy (F) is f-generated and F = f.Oy(E) is a locally free sheaf of
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rank two. In particular, there is a birational morphism p:Y — Pp(F) over T such that
E = p*D for a section D of Pr(F) — T.

Proof. Y is a blowup of a P'-bundle over T. Hence, f.Oy ~ Op and R' .0y = 0. Thus,

from the exact sequence 0 — Oy — Oy (E) — Og(E) — 0, we have an exact sequence
0— Or - F = f.0y(E) — f.Op(FE) — 0.

Since E is a section, F is locally free of rank two. The surjectivity of f*F — Oy (FE)
follows from the commutative diagram
0 — f*Or — f[*F — f*f.Op(F) — 0

J J l

0 — Oy — Oy(E) —— Og(E) —— 0
of exact sequences. The surjection defines the birational morphism g and the injection

Or — F defines the section D with p*D = E. O
We shall prove Proposition [4.4.

Proof. Let (M, Ey) be a basic pair and let (X, E,A) be a quasi-fundamental triplet
whose elimination is (M, F);). We may assume that Kx + Lx is not big, i.e., the type
of (X, E) is [n,2,es]. Applying Lemma [4.5] we want to replace (X, E, A) with another
quasi-fundamental triplet (X', ', A’) which satisfies some conditions on fundamental
triplet.

Step 1: We can find a quasi-fundamental triplet (X, E,A) satisfying (F4).

Let oy € M be the proper transform of a minimal section of o with o N A # 0.
By Lemma 4.5, there is a birational morphism ¢': M — X' = F,, over P! with n’ =
—(om)? = n+deg(ANo) > n such that o)y is the total transform of the negative section
o' of X’ — P! Since K + E)y is linearly equivalent to a multiple of a fiber of M — P!,
Ky + Ey ~ ¢"(Kx + E') for the effective divisor £’ = ¢, E);. By Proposition
we infer that ¢ is the elimination of a zero-dimensional subscheme A’ C E’. We infer
also that (X', E', A') is a quasi-fundamental triplet whose elimination is (M, Fy,). Here,
o' N A" = () since ¢ is an isomorphism around o’. Thus (F4) is satisfied.

Step 2: The case where E contains a minimal section.

We may assume n > 0, A # ), 0 N A = () for the negative section . Suppose that
E > o+ D for a section D # o with D* + n < deg(A N D). Then n' := —D3%, =
—D? + deg(A N D) > n for the proper transform Dy, C M of D. By Lemma there
is a birational morphism ¢': M — X’ = TF,, over P! such that D, is the total transform
of the negative section ¢’ of X’. By the same argument as in Step 1, (M, E)) is the
elimination of a quasi-fundamental triplet (X', E'; A’) satisfying (F4), where E' = ¢ F);.
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For the proper transform o),y C M of o, D' = ¢,0) is a section with £’ > ¢’ 4+ D’. Since
o2, = 0% = —n, we have —n = D”?* — deg(A’ N D'). Thus (X', E', A’) satisfies also (F5).
Since E’ contains o', (X', E', A’) is a fundamental triplet.

Final step: The case where E does not contain a minimal section.

We may assume that n > 0, A # (), and that (X, E,A) satisfies the condition (F4).
Then E > Dy + Dy for sections Dy # o, Dy # 0. Then 2n < es < min{n + 1,4} by
the proof of Lemma [3.24. Hence, n = 1, e = 2, and E = Dy + D, for the sections Dy,
D, at infinity. We may assume D; N'A # (). Let Dy C M be the proper transform
of Dy. Then —n/ := D} ), = D} —deg(AND;) < 0. Let ¢: M — X' ~ F,, be the
birational morphism such that D; s is the total transform of a minimal section ¢’ of
X' — P! Then (M, Ey) is the elimination of a quasi-fundamental triplet (X', E’, A).
Let D) C X’ be the proper transform of Dy. Then E' > ¢’ + D;. By Step 1, Step 2, we
have a fundamental triplet (X", E”, A”) whose elimination is (M, Ej). O

4.2. Classification of fundamental triplets. Let (X, E, A) be a fundamental triplet
and let ¢: (M, Ey) — (X, E, A) be the elimination. We set Ey; = Efy, L = —2Kx — E,
and Ly = —2Ky — Ey. Let (S, B) be the del Pezzo pair associated to (M, Eyy) (cf.
Proposition 3.19). Here, the birational morphism «: M — S given by the linear system

|Las| is the minimal desingularization of S, and B = (1/2)a.Ey.

Theorem 4.6. The fundamental triplets (X, E,A) are classified by the types defined as
follows:
The case X = P?:
[1]o: E is a line and deg A < LE = 5.
[2]o: E is a non-singular conic and deg A < LE = 8.
[2]4(b): E =ty + Ly for two lines ly, by, and deg(ANY;) < Ll; =4 fori=1, 2. For
P =/{1N{y,

b = max{multp(A N ¢ ), multp(ANdy)} €{0,1,2,3,4}.
[2]o: E =20 for a line £ and deg(AN{) < L{ = 4.

For X =F,, let 1: X — P! be the P'-bundle structure, o a minimal section, oo a
section at infinity, and ¢ a fiber of w (cf. Convention [3.23).
The case X = :
[0;1,0]0: E =0 and deg A < LE = 4.
[0;1,1]p: E ~ o+ ¢ is non-singular and deg A < LE = 6.
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[0;1,1]4(b): E = 0+ {, deg(ANo) < Lo = 3, and deg(ANY{) < L{ = 3. For
P = Jﬁfg,

b = max{multp(ANo),multp(AN{)} €{0,1,2,3}.

[0;2,0]p0: E = 01 4 09 for two distinct minimal sections o1 and o3, and A = ),
where Loy = Loy = 4.

[0;2,0]5: E =20 and A =0, where Lo = 4.

[0;2,1]p: E ~ 20 + { is non-singular and A = (), where LE = 8.

[0;2,1]4: E = 0 4+ D for a section D ~ o+ {, and A = 0, where Lo = 3 and
LD =5.

[0;2,1], 4t E = 01 4 02 + L for two distinct minimal sections o1, o9, and A = ),
where Loy = Loy = 3 and L{ = 2.

[0;2,1]2: E =20+ ( and A =), where Lo = 3 and L{ = 2.

The case X =T :

[1;1,0]0: E =0 and degA < LE = 3.

[1;1,1]o: E ~ o+ ¢ is non-singular and deg A < LE = 5.

[1;1,1]4(a,b): E=0+/{, deg(ANo) < Lo =2, and deg(AN¥) < L{ = 3. For
P=on/¥,

(a,b) = (multp(ANo),multp(AN¥)) e {0,0),(1,1),(2,1),(1,2),(1,3)}.

[1;2,e]p: 0 < e <2, E =20+ F for an effective divisor F ~ el, ANo =), and

deg(A DE) < L6 =2 for any fiber { < F, where Lo = 4 — e.

[1;2, 1]0 =0+ 04 and A C 04 with deg A < 2, where Lo = 3 and Loy, = 5.

[1;2,2]0: E ~ 20 + 20 is non-singular and deg A < LE = 8.

[1,2,2]X. E = 04 + 0l for two distinct sections o, o at infinity, and A = (),
where Lo, = Lol = 4.

[1;2,2]200: E =204 and A =10, where Loy, = 4.

[1;2,2]4: E=0+D for a section D ~ o +2( and A C D\ o with deg A < 4, where
Lo =2 and LD = 6.

[1;2,2]44(a,b): E=0+00+{, ANo =0, deg(ANos) <2, and deg(ANY) <2,
where Lo = 2, Loy, =4, and L{ = 2. For P=o0,N¥,

(a,b) = (multp(ANL),multp(ANoy)) € {(0,0),(1,1),(2,1),(1,2)}.

The case X =Ty :
[2;1,0]p: =0 and degA < LE = 2.
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2;1,1]4(a,b): E =0+ (, deg(ANo) < Lo =1, and deg(AN¥) < L¢ = 3. For
P=on/¥,

(a,b) = (multp(ANo),multp(AN¥)) e {(0,0),(1,1),(1,2),(1,3)}.

[2;1,2]p: E =04 and degA < LE =6.

[2;1,2], 1 E = o+ly+Ly for two distinct fibers {1 and by, ANo = O and deg(ANY;) <
Lt; =3 fori1=1, 2, where Lo = 0.

[2;1,2]04: E =0+ 20 for a fiber ¢, and ANo =0 and deg(ANYL) < LL = 3, where
Lo = 0.

[2;2,¢e]p: 0 < e <3, E =20+ F for an effective divisor F ~ el, ANo =), and
deg(ANY) < Ll =2 for any fiber { < F, where Lo =4 — e.

[2;2,2]p0: E =0+ 0 and A C 04 with deg A < 4, where Lo = 2 and Loy, = 6.

2;2,3]4: E=0+D for a section D ~ o +3( and A C D\ o with deg A <6, where
Lo=1and LD =T.

12;2,3]44(a,b): E=0+00+{, ANo =0, deg(ANow) <4, and deg(ANY) <
L{ =2, where Lo =1 and Loy, =5. For P =0, N/,

(a,b) = (multp(ANYL), multp(ANoy))
€ {(0,0),(1,1),(2,1),(1,2),(1,3),(1,4)}.
The case X =F;5:

[3;1,0]0: E =0 and deg A < LE = 1.

3;1,1],: E=0+/{, ANo =10 and deg(A) < L{ = 3, where Lo = 0.

[3;2,e]p: 0 < e <4, E =20+ F for an effective divisor F ~ el, ANo =), and
deg(ANY) < Ll =2 for any fiber { < F, where Lo =4 — e.

[3;2,3Jp0: £ =0+ 00 and A C 0o with deg(A) < 6, where Lo =0 and Los, = T.

[3;2,4]1: E = o0+D for a section D ~ o+4¢, ANo = 0, and deg(AND) < LD =38,
where Lo = 0.

3;2,4]14(a,0): E = 0 + 0o + ¢, ANo = 0, deg(A Noy) < Lo, = 6, and
deg(ANY{) < L{ =2, where Lo =0. For P =0, N,

(a,b) = (multp(ANL),multp(ANos))
€ {(0,0),(1,1),(2,1),(1,2),(1,3),(1,4),(1,5),(1,6) }.
The case X =F, :
[4;1,0]p: E =0 and A =0, where LE = 0.
[4;2,e]p: 0 < e <4, E =20+ F for an effective divisor F ~ el, ANo =), and

Ja:
deg(A ﬂE) < Ll =2 for any fiber £ < F', where Lo = 4 — e.
[4;2,4])00t E =04 000, A C 000, and deg A < Lo, = 8, where Lo = 0.
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The case X =F,, forn >5:
[n;2;e]e: 0 < e <4, E=20+F for an effective divisor F' ~ el, ANo =), and
deg(ANY) < Ll =2 for any fiber { < F, where Lo =4 — e.
Here, [e] indicates that X ~ P? and deg E = e; [n; ey, es] indicates that X ~ T, and

E ~ eyo0 + exl. The subscripts o, 00, +, <+, 2, x have the following meaning:
o : E 1s non-singular and trreducible oy : E is non-singular with two components
1 F has exactly one node 11 : F has exactly two nodes

o E is not reduced « . E has exactly one node .
The subscript « is used for distinguishing the type [1;2,2]y from [1;2,2].

Proof. We consider the structure of fundamental triplet (X, E,A) from properties of
(X, E).

We first consider the case X = P2. If (X, E) is of type [1], then degA < LE = 5;
thus (X, E,A) is of type [1]o. Suppose that (X, E) is of type [2]. If E is irreducible and
reduced, then E is a non-singular conic (even if chark = 2), and deg A < LE = 8; this
case is of type [2]. If E is not reduced, then F = 2¢ for a line ¢ and deg(ANY{) < L{ = 4;
this case is of type [2]o. Suppose F is reducible and reduced, then E = ¢; + /5 for two lines
¢; with deg(AN¥;) < Lé; =4 for i =1, 2. Since min{multp(AN¢;), multp(ANty)} <1
by Lemma(2.12; the type is [2](b) for 0 < b < 4.

Next, we consider the case X = ,,. Then one of the following subcases occurs:

(1) E =0+ F for an effective divisor I’ supported on fibers of ;

(2) E =0+ D+ F for asection D # o and an effective divisor F' supported on fibers;
(3) E =20+ F for an effective divisor F' supported on fibers;
(4) E is irreducible and reduced with E # o;
(5)

5) E # o and F is either non-reduced or reducible.

Case (1): (X, E) is of type [n;1,¢€] for e = Fo with 0 < e < min{2,4 — n}; if n =0,
then e < 1 by Convention If e=0, then £ = ¢ and deg A < Lo = 4 — n; this case
is of type [n;1,0]p for 0 < n < 4.

Suppose that e = 1. Then n < 3 and E = o + /¢ for a fiber ¢ with deg(A No) <
Lo =3 —n,deg(ANY{) < L =3. This case is one of types [0;1,1](b), [1;1,1](a,b),
12;1,1]4(a,b), and [3;1, 1];. Note that (a,b) = (0,0) or min{a, b} = 1 by Lemma|[2.12!

Suppose that e = 2. Then n = 2, since [1; 1, 2] is not a type of (X, E) (cf. Lemma(3.24).
Note that c N A =0 by Lo = 0. Thus this case is of type [2;1,2].4 or [2;1,2]sy

Case (2): (X, FE) is of type [n;2,¢€] for n < e < min{n + 1,4}, where D ~ ¢ + m/{ for

n<m<e.
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Suppose that m =n+ 1. Thene =n+1,n < 3, and £ = ¢ + D, where Do = 1.
Here, A C D by (F4), A =0 for n =0 by (F4), and deg A < D* +n = 2n+ 2 by (F5).
This case is of type [n;2,n + 1]y for 0 < n < 3.

Suppose that m = e = n. Then F = 0 + 0, for a section D = o, at infinity. Here
A C 0 by (F4) and deg A < 2n by (F5). This case is of type [n;2,n]p for 0 <n < 4.

Suppose that m = n and e =n+ 1. Then n < 3 and E = 0 + 0, + ¢ for a section
D = 04 at infinity and a fiber . Here, ANo = 0 by (F4), A =0 for n = 0 by (F4),
deg(A Noy) < 2n by (F5), and deg(AN¥) < L¢ = 2. Thus the case is one of types
02,1041, [1:2,2)4(0,0), [2:2,3]4+(a,8), 32,41, (a, D).

Case (3): (X, E) is of type [n; 2, ¢] for e = Fo with e < min{n+1,4}. Here ANo =
by (F4) and deg(AN¥¢) < L¢ = 2 for any fiber ¢ < F'. This case is of type [n;2,¢e]y for
0 <e<min{n+ 1,4}, n > 0.

Case (4): Suppose that (X, F) is of type [n; 1, e]. Then [n; 1, €] is one of [0;1, 1], [1; 1, 1],
and [2;1,2] by Lemma[3.24. Here E is non-singular. Thus the type is one of [0; 1, 1]o,
[1;1, 1o, and [2; 1, 2]o.

Suppose that (X, F) is of type [n,2,¢e]. Then 2n < e < min{n + 1,4} by the proof of
Lemma [3.24. Hence [n;2, €] is [0;2,1] or [1;2, 2], where E is non-singular. Thus the type
is [0;2,1]o or [1;2,2].

Case (5): This case is treated essentially in Final step of the proof of Proposition
By the proof of Lemma [3.24, the case is of type [1;2,2]x or [1;2, 2]

Thus we are done. O

Corollary 4.7. (1) For a fundamental triplet, the associated del Pezzo pair is log-
terminal if and only if the type is one of the followings:

1o, [2]o, [2]+(b),
0;1,0Jo, [0; 1, 1]o, [0; 1, 1]+ (b), [05 2, Ooo, [0; 2, 1], [05 2, 1]+, [0; 2, 1] 4.+,
151,00, [151,1]o, [1; 1, 1]+ (@, b), [15 2, oo,

Ix> 1152, 2]+, [1; 2, 2] (a, b),

]

27170}07 [27171 -‘r( ) [27172]07[2;172]-0—4-7
2;2 2}00’ [27 2, 3]+> [2; 2, 3]++(av b)7
37170}07 [37171] [3 2 3]007 [3;274]+7[3;274]++(avb>7

[
[
[
[1;2, 2o, [1;2,2
[
[
[
[4; 1, 0]o, [4;2, 4]0o.
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TABLE 2. The fundamental triplets with LE = deg A

Type deg A || Type deg A || Type deg A
[1]o 5 || [151,0] 30021, 244 6
2]o 8 || [151,1]o 5 131,000 1
2]+ (b) 8 L 14(ab) | 5 (31,1 3
2, s 12,2 s B4, 3
[0; 1,0 4 ][251,0]0 2 | 13:2,4]44(a,b) 8
(01, 1]o 6 211 b | 2 [[451,00 0
0;1,1]4(b) | 6 | [21,2]o 6 | [452,4oo 8
n;2,4]s (n>3)| 8

(2) For a fundamental triplet, the associated del Pezzo pair is log-canonical but not

log-terminal if and only if it has one of the following types with extra condition:
2]y with multp(ANL) <2 for any P € (,
) 27 0}27 [Oa 27 1]07 [Oa 27 1]2a [1a 2> 6]2 fO’f’ 0 S (& S 27 [17 2a 2]2007

[
[0
12;1,2]o4 with multp(ANE) <2 for any P € ¢,
[n;2,€ly forn>2e <2

[

n;2,ely forn > 2,e >3 with multy F' < 2 for any ¢ < F.

(3) For a fundamental triplet (X, E, A), the associated del Pezzo pair (S, B) has B = 0
if and only if it belongs to one of the types with extra condition on deg A listed in
TABLE [2l Here, if the type is not [2]y nor [n;2,4]s, then the fundamental triplet

18 log-terminal, i.e., defining a log del Pezzo surface of index two.

Proof. For a fundamental triplet (X, E, A) and its elimination (M, Ey/), the log-terminal
condition is equivalent to that E); is reduced. This also equivalent to that E is re-
duced by Lemmas [2.10 and 2.141 Thus the list of (1) is obtained from Theorem 4.6
The log-canonical condition is equivalent to that the multiplicity of F,; along any irre-
ducible component is at most two. If (X, E,A) is not log-terminal but log-canonical,
then max{multg, (E)} = 2 for the irreducible components F; C E. In this case, by The-
orem [4.6] A does not contain any node of Eiq. By Lemma 2.17, we infer that (X, E, A)
is log-canonical if and only if max{multg,(£)} = 2 and multp(A N E;) < 2 for any irre-
ducible component E; C E with multg, (F) = 2. Thus we have the list of (2). For (3),
we note that the three conditions: B = 0, Ly Ey = 0, and LE = deg A are mutually
equivalent. Thus we have TABLE O
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Theorem 4.8. A del Pezzo pair (S, B) of index one with B # 0 is one of the following:
(1) S =P? and deg B € {1,2}.
(2) S =T, and B is a minimal section of F, — P! forn > 0.
(3) S =T, and B ~ o+{ for a minimal section o and a fiber { of F,, — P! forn > 0.
(4) S =P(1,1,n) and B ~ 2¢ for a generating line £ for n > 2.

Proof. We infer that S is rational by Lemma[3.10, Proposition 3.11} and Corollary [3.16.
Moreover, if g(S, B) = 0, then S = P? with deg B = 2 by Proposition

Suppose that g(S, B) = 1. Then S is a log del Pezzo surface of index one and —Kg ~
2B by Lemma 3.12. For the minimal desingularization ao: M — S, Ky, ~ a*Kg is
divisible by two; hence M has no (—1)-curve. Thus M = F,, for m € {0,2}. If m = 0,
then (S, B) belongs to the case (3) with n = 0. If m = 2, then (S, B) belongs to the case
(4) with n = 2.

Therefore, we may assume that (S, B) is obtained from a fundamental triplet (X, £, A),
where (1/2)E), is Cartier for the elimination (M, Eyy) of (X, E,A). Then A does not
contain any nodes of F,.q by Theorem Furthermore, A = () by Lemma By
Theorem 4.6, we have only the following types of possible (X, E, A = ():

According to the cases (a), (b), (c), (d), (e), the associated del Pezzo pair (S, B) belongs
to (1)), (2), (3), (3), (4). Hence, we have the list of (S, B # (}) of index one. O

Theorem 4.9. Let (X, E, A) be a fundamental triplet and let (M, Epr) be the elimination.
Then the type of the fundamental triplet (X, E,A) and deg(A) depend only on (M, Eyy).
Moreover, the isomorphism class of (X, E,A) depends only on (M, Eyy) except for the

following two cases:
o (X, E,A) is of type [1;2,2].
o (X,E,A) is of type [n;2,n + 1]44(1,b) for 1 <n <3, where

deg(ANoy)=2n and multp(A)+deg(ANl)=2+b
for the irreducible decomposition £ = 0 + 04 + ¢ and for the node P = o, N {.

The proof needs the following:

Proposition 4.10. Let f: Y — T be a proper surjective morphism from a non-singular

surface Y into a non-singular curve T such that a general fiber is isomorphic to P'. Let
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E: and E5 be two sections of f such that E1 N Ey =0 and Ky + E) + Ey is f-numerically
trivial. Let ¢: Y — X = Pp(f.Oy(Ey)) be the morphism defined in Lemma 4.5 for E.
Then E; x == ¢(E;) is a section of X — P fori =1, 2 with By x N Ey x =0 and ¢ is the
elimination of a zero-dimensional subscheme A C Ey x. In particular, there is an action
of the algebraic group G, = Speck[t,t™!] on Y such that it fires every point of Ey U Ey
and that it acts non-trivially on every irreducible component of any fiber of f. Moreover,
if f.Op, (F1) ~ f.Og,(Es), then the following assertions hold:

(1) Let £ be a non-singular fiber of f and let Py, Py be any points of £\ (FE1 U Ey)
including the case P, = P,. Then there exists an involution v of Y over T such
that (Ey) = Ey and (Py) = P;.

(2) Let I'y and T'y be irreducible components of a reducible fiber F' of f with E\I'; =
E>Ty = 1. Then, for any points Py € T'1\ (E1USing F') and P, € T'y\ (E,USing F),
there is an involution v of Y over T' such that 1(Ey) = Ey and 1(Py) = Ps.

(3) Let I'y + 'y be a fiber of f, Y =Y the blowing up along the intersection point
I''NTy, G the exceptional curve for the blowing up, T; the proper transform of T';
inY fori=1,2, and let P, Py be any points of G\ (fl U f‘g) Then there is an
involution i of Y over T such that i(Ty) = Ty and i(P,) = P;.

Proof. Ey = ¢*E; x by Lemma[4.5. Thus ¢ is the elimination of a subscheme A C Ej x
by Proposition 2.9 We have a natural action of G, on the P!-bundle X which fixes
every point of Ey y U Ej x. Since G, fixes the subscheme A, the action lifts to Y, by the
following observation:

Let A% = Speck[u, v] be an affine plane with an action of G, = Speck|[t, t™!] given by
(w,v) — (tu,v). Then every point of {u = 0} is fixed by the action. Let U — A? be the
blowing up at the origin. Then U = U;UU, for two affine open subsets U; = Speck|uy, v1],

U, = Speck[uy, vo], where the morphism to A? is described as
(u1,vq) — (u,v) = (ug,wyvy) and  (ug,va) — (u,v) = (ugvy, va).
Here, {u; = 0} U {vy = 0} is the exceptional divisor. Then the action of Gy lifts to U as
(ug,vi) — (tu;,t 7 'vy) and  (ug,vy) — (tug, va).

If we consider the blowing up of U at the point (uz,ve) = (0,0) € Us, then the action
also lifts to the blowing up in the same way.

Therefore, G, acts on Y, and acts non-trivially on every irreducible component of a fiber
of f. Let ®;: Y — Y be the action of t € G,(k) =k\ {0}. Let (x:y) be a coordinate of a
non-singular fiber Y, = f~1(0) ~ P! of f such that £, NY, = div(x) and E,NY, = div(y).

Then we may assume that @, induces the automorphism (x:y) — (tx:y) on Y.
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Let £ be an invertible sheaf on T" and suppose that f,Op,(F;) ~ L for i = 1, 2. Then
we have an isomorphism
X: [xOp 15, (E1 + E2) =~ f.O0p,(Ey + E) @ f.O0p,(Ey + Ey) = L2

For A € k\ {0}, let L%? — L be the homomorphism given by (z,y) — Ar — y and let
M, C f.Op, 1k, (E1 + E5) be the subsheaf isomorphic via x to the kernel of £L%2 — L.

Then we have a locally free subsheaf £, of f.Oy(E; + E;) and a commutative diagram

0 Or &y _ My —s 0
0 OT f*Oy(El +E2) E— f*OE1+E2(E1—|—E2) — 0

of exact sequences. Note that, under the isomorphism
.0y (E| + BEy) @ k(o) ~ kx* + kxy + ky?,

the fiber £, ® k(o) corresponds to the subspace k(Ax? + y?) + kxy. Hence, ®;&, = &p2,.
The natural homomorphism f*E, — Oy (E;+ E») is surjective since the projection M —
[+Og,(E1+ E») is surjective for ¢ = 1, 2. Hence, we have a morphism hy: Y — P = Pp(&))
over T and a section X of P — T' such that hiY = F; + E>. We may assume that the
restriction of hy to Y, is described as (x:y) — (Ax* + y*:xy). Let Y — Y’ — P be the
Stein factorization. Then Y’ — P is a separable double-covering and Y is the minimal
desingularization of Y’. Thus the Galois involution ¢, acts on Y as an automorphism,
where () (E;) = E,. Moreover the restriction of ¢y to Y, is described as (x:y) — (y: Ax).
Hence,
tx0 Py =Dyouey =ty

For the assertions (1)—(3), it is enough to find an involution ¢y with ¢y\(P;) = P,. The
existence of \ is shown as follows:

(1): Since the action of G, on the fiber ¢ is non-trivial, ®;(P;) = P, for some t. Hence,
tx(Py) = P, for some A.

(2): Since the action of G, on I'y is non-trivial, ®; 01, (P;) = P, for some A and ¢. Thus
L-1\(P) = P.

(3): The involution ¢y lifts to an involution ) of Y, since ¢, fixes the intersection
point I'y N I'y. Similarly, G, acts on Y. We infer that G, acts non-trivially also on the

exceptional divisor G by the observation above. Hence, i,(P;) = P, for some A. ]
We shall prove Theorem 4.9.

Proof. We may assume that Ky, + Ly is not big and A # (). Then (X, E) is of type
[n;2,¢e] forn >0 and e <n-+1. Let T be the type of the fundamental triplet (X, E, A).
Let (X', E', A’) be another fundamental triplet of type T” whose elimination is (M, Eyy).
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Let [n/; 2, €] be the type of (X', E'). We may assume that mo¢ = 7’'o¢’ for the elimination
morphisms ¢: M — X, ¢': M — X', and the P-bundle structures 7: X — P!, 7': X' —
P!, since wo¢ is just the morphism M — P! associated with the linear system | K+ L.
Let o and o’ be the negative sections of X and X', respectively.

By Theorem one of the following three cases occurs:
(1) E > 20; (2) E > o0+ D for a section D # o; (3) T =11;2;2].

Case (1): T = [n,2,¢e]s by Theorem and E,; > 20, for the total transform oy,
of 0 in M. Thus E' = ¢_Ey > 2¢L oy for the section ¢ oy, Then o' = ¢Loy and
T = [n';2, €]y by Theorem In particular, oj; is also the total transform of ¢’ and
n =n'. By Lemmal4.5] ¢ ~ ¢ over P!, and hence (X, F,A) ~ (X', E', A).

Case (2): D*+n > deg(AND) by (F5). Hence Ey > oy + Dy for the total transform
oy C M of o and the proper transform Dy C M of D, where D3, > —n. Moreover, T

is one of
n;2,m)e0 (1 <n<4), [m2,n+1;: (1<n<3), [n;2,n+1]14(a,b) (1 <n<3),

by the proof of Theorem 4.6. Since E' = ¢/ E); is also reducible and A’ # (), E' > o' + D’
for a section D’ # ¢’ by (F6). In particular, Ey, > o), + D}, for the total transform
ohy € M of ¢’ and the proper transform D}, C M of D', where D > —n'. If o)y = o,
then ¢ ~ ¢’ and (X, FE,A) ~ (X', E',A’) by Lemma [4.5. Thus we may assume that
oy # o). Therefore, n =n' = —D3, = —D%, oy = DYy, and oy = D). In particular,
one of the following cases occurs:
(2-1) T = [n;2,n]oo and deg A = 2n;
(2-ii)) T =[n;2,n + 1] and deg A = 2n + 2;

(2-iii) T =[n;2,n+ 1]14(a,b) and deg(oo N A) = 2n for D = 0.

Subcase (2-1): Applying Proposition [4.10/to w0 ¢: M — T = P! and two sections oy,
Dy, we infer that t(oy) = Dy for an involution of M over P!. Hence, ¢/ ~ ¢ o1 and
(X,E,A)~ (X', E' A).

Subcase (2-ii): Let Y — M be the blowing up at the point P = ¢3;N Dy and let Y — M
be the contraction of the proper transform ¢y C Y of the fiber £ of M — P! passing
through P. Let ¢ and D be the proper transforms of o, and Dy in M , respectively.
Then 6 N D =0 and K T o+ Dis relatively numerically trivial over P!. Let { be the
fiber of M — P! over the point 7 o ¢(P) and let Q € { be the image of (y. Applying
Proposition4.10 to M — P!, two sections &, D, and to the point (), we have an involution
i of M over P! such that i(6) = D and #(Q) = Q. Thus i induces an involution ¢ of M
over P! with «(oy;) = Dys. Hence, ¢’ ~ ¢por and (X, E,A) ~ (X', E', A).
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Subcase (24iil): Then E = 0 + 0o + ¢ for D = 0 and for a fiber ¢ of m. Let P be the
node oo, N¢. We write Dy = 000,

If (a,b) = (0,0), then we have an involution ¢ of M over T with t(op) = Toonr by
Proposition[4.10 as above. Thus we may assume that (a,b) # (0,0).

Suppose that (a,b) = (2,1), i.e.,, multp(A N¥¢) = 2. Then A N ¢ is supported on
P. Let ¢*: M* — X be the elimination of the subscheme (A \ P) U (A N¥). Then
ol = F + 2F§ + I’g for the proper transform ¢ C M?* of ¢, a (—1)-curve I’%, and for
a (—2)-curve Fg such that % + F% + Fg is a chain of rational curves and that Fg only
intersects the proper transform of oo, in M*. Suppose that A is not a Cartier divisor of
E at P. Then M = M*, and by Proposition [4.10, (3), there is an involution ¢ of M over
P! satisfying t(oys) = oo . Thus ¢ ~ ¢po v and (X, E,A) ~ (X', E'; A’). Suppose next
that A is a Cartier divisor of E at P. Then M — M? is given as the blowing up along
a point P, € I' \ (¢FU I‘g) Thus by Proposition [4.10, (3), there is an involution ¢ of M
over P! satisfying t(ops) = 0oor- Thus ¢ ~ povand (X, E,A) =~ (X', E', A).

Suppose that a = 1, i.e., multp(AN¥) = 1. Let ¢fF: M* — X be the elimination
of AN os. Then ¢*0 = 0% + Fi} + -+ Fg is a chain of rational curves for the proper
transform ¢ € M? of ¢, (—2)-curves I'? for i < b, and for a (—1)-curve I'}, such that I'}
only intersects the proper transform of oo in M?*.

If A is not a Cartier divisor of E at P and if deg(A N¢) = 1, then M ~ M* and
t(on) = 0o for an involution of M by Proposition [4.10, (2). Thus, ¢’ >~ ¢ o+ and
(X,E,A)~ (X', E' A).

If A is a Cartier divisor of F at P and if deg(AN¢) = 2, then M — M? is the blowing
up at certain two points P} € ¢ and P! € T%, and hence t(o4) = 0ooar for an involution
of M by Proposition[4.10, (2). Thus, ¢ ~ ¢ o and (X, E,A) ~ (X', E', A").

Therefore, it remains only the case where multp(A) + deg(A N¥¢) = b+ 2. This is

divided into the following two cases:

(A) A is a Cartier divisor of F at P and deg(AN¢) = 1;
(B) A is not a Cartier divisor of E at P and deg(AN¥) = 2.

We shall show that if (X, £, A) belongs to the case (A), then (X', E’, A’) is also of type
[n;2,n + 1]44+(1,b) belonging to the case (B), and vice versa.

Suppose that (X, E,A) belongs to the case (A). Then M — M?* is the blowing-up
at a certain point PIE € Fg. By Proposition (2)), there is an involution i* of M?*
which interchanges the proper transforms of ¢ and o4 in M*. Thus ¢': M — X’ is the
composite of M — M* and ¢ o (*. Hence, (X', B/, A'\ ') ~ (X, E, A\ {) for the fiber ¢
over ¢(¢), and (X', E', A') is of type [n;2,n + 1]+ (1,b) belonging to (B).
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Similarly, if (X, E,A) belongs to (B), then (X', E', A’) is of type [n;2,n + 1], (1,b)
belonging to (A).

Case (3): We have T’ = [1;2, 2]y by the results in the cases (1) and (2). Thus, we are
done. .

There are some ideas of dividing the type [1;2, 2], into suitable subtypes by properties
related to the double-covering 7|g: E C X — P!. For example, 7|z is not necessarily

separable if chark = 2. For the type [1;2, 2], (X, E) has the following explicit description:

Lemma 4.11. For the ruled surface m: X =F; — P!, let E C X be a non-singular curve
linearly equivalent to 20+ 2¢ for the negative section o and a fiber ¢ of m. Then there exist
a homogeneous coordinate (X:Y:Z) of P? and an isomorphism from X to the blowing up
of P? at the point (0:0:1) such that 7 is induced from the projection (X:Y:Z) — (X:Y)
and E corresponds to the total transform of the one of following curves:

(1) {z% =xv}

(2) {Z* +XZ + Y? = 0}.
If chark = 2, then w|g: E — P! is inseparable in case (1), and separable in case (2)). If
chark # 2, then (1) and (2) define the same (X, E) up to isomorphism.

Proof. Let g be a defining equation of o and £ be a defining equation of a section o

at infinity. Let (s,t) denote a homogeneous coordinate of P'. A defining equation
n € HY(X, 20 + 2() of E is written by

n=1f>+a(s,t)fg + b(s, t)g’

for homogeneous polynomials a(s, t) and b(s,t) of degree 1 and 2, respectively. We can
replace £ with £ + ¢(s,t)g for a linear form ¢ = ¢(s,t). By the replacement, (a,b) is
changed to (a + 2¢,b + ac + ¢?). Thus we may assume one of the following two cases
occurs:

(i) a=0; (ii) b=1b7 for a linear form b;.
In fact, this is shown as follows: If chark # 2, then the case (i) can be occur since
a + 2c = 0 for some ¢; If chark = 2 and a # 0, then we can take (a,b) = (s, A\t?) for a

non-zero constant A € k. If (i) and (ii) occur at the same time, then we have
£2 +afg + bg® = (f +V—1big)(f — V—1big),

which contradicts the irreducibility of E. In case (i), we may assume b = st by a
suitable coordinate change of (s, t), and thus we have the case (1). In case (ii), we may

assume similarly @ = s and b = t%, and thus we have the case (2). If chark # 2, then
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(a,b) = (s,t?) is changed to
(a+2¢,b+ac+c) = (0, (t+ (1/2)s)(t — (1/2)s))
by ¢ = —(1/2)a; thus (1) and (2)) define the same (X, E) up to isomorphism. O

Even if chark # 2, the uniqueness of fundamental triplet (cf. Theorem [4.9) does not
hold in general for the type [1;2,2]y as follows:

Example 4.12. Let (X, F,A) be a fundamental triplet of type [1;2,2]y with a fiber ¢
of m: X — P! such that £ N E consists of two points Py, P,. We set multp, (A) = m; for
1 =1, 2, and assume that m; > 2, ms > 0.

We shall show the existence of a section o, at infinity with multp (6, N E) = 2. In

fact, from the exact sequence
0— H(X,—0 —¢) - HYX,0+ () — H(E, (0 + {)|p) ~ H(P', O(2)) — 0,

there is an effective divisor D ~ o + ¢ with D|g = 2P, on E. If D is reducible, then
D =0+ ¢ but { N E # 2P;; this is a contradiction. Thus D is a section at infinity.

Let ¢~ Y(P;) = PO Fy) be the chain of ¢-exceptional curves over P; for i = 1, 2;
however we do not consider ¢~!(P,) in case my = 0. Here, ') is an end (—1)-curve and
others are (—2)-curves. For the proper transform ¢y, C M of ¢, the inverse image ¢~ ()
is a straight chain of rational curves written as

ST 4 0+ 22 T i my > 0;

ST 4l if my = 0,
where /), intersects only 1“51) and ng) in the chain ¢~'(¢) when my > 0, and intersects
only Fgl) when my = 0. The proper transform o ps of 0o in M intersects only Fgl) in the
chain ¢~ !(¢). Note that the section o s of M — P! is a (—1)-curve with oo ;N Epy = 0.
Let ¢': M — X' be the morphism of Lemma (4.5 defined for the section oo s, and let
o' C X' be the image ¢'(0ooar). Then oo s = ¢*(0”). Therefore, X' >~ Fy, ¢’ contracts
any irreducible component of ¢~1(¢) except for Fgl), and o' N ¢'(Ep) = 0. Thus ¢ is
the elimination of a fundamental triplet (X', E’; A’) of type [1;2, 2]y which is isomorphic
to (X, E,A) over P!\ 7(¢). Furthermore, for the fiber £’ of X’ — P! over 7({), we have
U'NE" = {P], P} with multp/(A") = m; — 2 and multp;(A") = my +2. Thus (X', £/, A')
is not isomorphic to (X, E, A).

4.3. Non-Gorenstein exceptional graphs.

Lemma 4.13. Let (X, E,A) be a fundamental triplet, (M, Ey;) the elimination of A,
and let (S, B) be the associated del Pezzo pair of index two. An irreducible curve I' C M

1s exceptional for a: M — S if and only if one of the following conditions is satisfied:
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(1) T is a (—2)-curve contracted by the elimination ¢: M — X of A;
(2) T is the proper transform in M of an irreducible component E; C E with LE; =
deg(A N E;);
(3) T is the total transform in M of o in the case of type [2;1,2]o;
(4) T is the proper transform in M of a fiber £ of w: X — P! with deg({ N A) =2 in
the case of type [1;2,2]y.
Moreover, if an irreducible component I' of Eys is a-exceptional, then m = multy Eyy < 4

and the following properties hold:
(i) If m = 1, then T? > —4, where the equality holds if and only if T is a connected

component of Fyy.
(ii) In case m = 1, T? = =3 if and only if (Eyy — T)T = 1.
(iii) In case m = 2, I'? = —n > —4 if and only if T is the proper transform of o in the
case of type [n;2,4],.
(iv) If m = 2 and T'? = —3, then T is one of the following curves:
(a) The proper transform of { in the case of type [2]s;
(b) The proper transform of o in the case of type [3;2,4]s;
(¢) The proper transform of ¢ in the case of type [2;1,2]ay.
(v) If m > 3, then I'? = —2.

Proof. We fix an irreducible curve I' € M with I'> < 0. Note that I' is a-exceptional if
and only if Ly, I’ = 0. Since —2K; = Ly + E)y, it is also equivalent to —2Ky,I' = EyT.
If I is a-exceptional and ¢-exceptional, then I' is not a (—1)-curve by the minimality of
a, hence it is a (—2)-curve. Conversely, if I is a ¢-exceptional (—2)-curve, then Ly [ =0
by Ky + Ly ~ ¢*(Kx + L). Therefore, it is enough to consider only the case where I is
the proper transform in M of an irreducible curve v of X. Then, by Lemmal2.7, we have

I? =~% —deg(yNA), Lyl'=Ly—deg(yNA), and Eyl = Ey—deg(yNA).

Suppose that v C E. Then m = multy £y, = mult, £ < 4 by Theorem [4.6. If m = 4,
then v is a fiber of 7: X — P! in the case of type [n;2,4], for n > 3, and I'* > —2. If
m = 3, then ~ is also a fiber in the case of type [n;2, €], for n > 2, ¢ > 3, and I'? > —2.
In particular, the property (v) holds. If m = 2 and I' is a-exceptional, then one of the
following cases occurs:

e ~ = ( in the case of type [2], and deg(A NY{) = 4.

e 7 = o in the case of type [2;1,2]5

e v = [ in the case of type [2;1,2]o; with deg(AN¥) = 3.

e v = ( in the case of type [n;2, €]y for n > 1, e > 2 with deg(AN¢) =2
e v = o in the case of type [n;2, 4], for n > 3.
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Thus the properties (iii) and (iv) hold. If m = 1 and I' is a~exceptional, then Ly ' =0

induces
2= (Ky+D) = —(1/2)EyT + T2 = —(1/2)(Ey — )T + (1/2)12 < (1/2)T2

Thus the properties (i) and (ii) hold.

Then there remains only the case: v ¢ E. Assume that I' is a-exceptional. Then
Kyl > 0and Ey L > 0 imply that T'is a (—2)-curve and Ly = Ey = 4?42 = deg(yNA).
In particular, Ky + L is not ample, since 2(Kx + L) = L— E. If (X, F) is of type [2; 1, 2],
then (X, E, A) is of type [2;1,2]p and v = 0. If Kx + L is not big, then 7 is a fiber ¢ of
m: X — P! with deg(AN¥) = 2; such a fiber ¢ exists only in the case of type [1;2, 2]y by
Theorem 4.6.

Conversely, assume that v is the curve ¢ in (3)) or the curve ¢ in (4). Then

Lyl =Ly —deg(yNA) = (Kx + L)y — Kxy —deg(yNA) =2+~% —deg(yNA) = 0.
Hence, I is a-exceptional. Thus, we are done. U

Theorem 4.14. For a rational del Pezzo pair (S, B) of index at most two, the dual graph
of the exceptional divisors for the minimal desingularization of a non-Gorenstein singular

point of S is one of the graphs listed in TABLES 3| and 4.

The singularities having the graph K; are discussed in Section 4.4 below.

Proof. We may assume that (S, B) is constructed from a fundamental triplet (X, E, A)
by Proposition 3.11 and Lemma [3.12. Let ¢: (M, Ey) — (X, E, A) be the elimination
and let a: M — S be the minimal desingularization. Let = = =g be the reduced
divisor a~}(Q) for a non-Gorenstein point Q € S. Then = < FEj; by the equality
Ky = a*(Ks+ B)—(1/2)E). Hence, E is a connected component of the reduced divisor
o«F consisting of the irreducible components of E); exceptional for a. Conversely, a
connected component of ,E)s is the exceptional divisor Z¢ for a non-Gorenstein point
QeSs.

Since = defines a non-Gorenstein point, there is an irreducible component £; C E such
that the proper transform FE; s in M is contained in = and Ef u < —3. By Theorem 4.6]

we can divide the argument into the following seven cases of (X, E, A):

(1) E = B,.

(2) E = E; + B, for another irreducible component FEs.

(3) The type [2;1,2];4 with deg(AN¥¢;) =3 fori=1or 2.
(4) The type [3;2,4]++(a,b).

(5) The type [2]p with deg(ANY) = 4.

(6) The type [2;1,2]o4 with deg(AN¥¢) = 3.
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(7) The type [n;2, 4], for n > 3.
Case (1): Eyy is a (—4)-curve by Lemmal4.13. Hence the dual graph of = = E); is K.

Case (2): Let Eyp C M be the proper transform of Ej.

Subcase (2-1) Ey N Ey =: Then = = E; 5y for i = 1 or 2 and the dual graph of = is
K by Lemma 4.13.

In case E1 N Ey # ), let P denote the intersection point E; N Es.

Subcase (2+2) P ¢ A: Then Ey = Eyar + Eap or By . Hence, the dual graph of
== .Eyis Ky or Ai(3).

In case P € A, we may assume that b = multp(A N Ey) > multp(A N Ey) = 1. Here
b < 4 and the maximum is attained when the type is [2], (4) by Theorem [4.6.

Subcase (2+3) A is a Cartier divisor of £ at P: If Es ), is also a-exceptional, then the
dual graph of ,E)s is of type Ko, since o Ey consists of Ey y, Eapr, and of the (—2)-

curves contained in ¢~(P). If Ey ) is not a-exceptional, then the dual graph of ,F) is
Api1(3).

Subcase (2+4) A is not a Cartier divisor of E at P: Then multp(A) = b. Hence E)y
has two connected components; one is £ 5 and the other component consists of Ej p/
and of the (—2)-curves contained in ¢~ !(P). Hence the dual graph of = is A;(3) or Ay(3).

Case (3): We may assume E; = ¢; and deg(A N¢;) = 3. If deg(A N ¥y) = 3, then the
dual graph of ,F) is Ks. If deg(A N #y) < 3, then the dual graph of ,E) is Ax(3).

Case (4): We may assume E) = 0. We set Ey =, E3 = 0, and P = Ex N E3. Let E; p
be the proper transform of F; in M for 1 <i < 3.
Subcase (4+1) E5pr and Es py are a-exceptional:

Subcase (4-1-1) A is a Cartier divisor of E: Then E); is a-exceptional and connected.

If (a,b) = (0,0), i.e., P ¢ A, then the dual graph of E), is Ks. If (a,b) # (0,0), then the
dual graph is K, 412. Hence, we have K; for [ < 9.

Subcase (4-1-2) A is not a Cartier divisor of E: Then (a,b) # (0,0) and multp(A) =

a+b— 1. Hence, E) has two connected components; one contains E y + Es ps and the

other contains Fj 5. Thus the dual graph of = is A;(3) for [ < 7, where the maximum
[ =7 is attained in the case (a,b) = (1,6).
Subcase (4+2) Es s a-exceptional but Es pr is not: Then b < deg(ANow) < 6.
Subcase (4-2-1) A is a Cartier divisor of E: Then ,F)s is connected and the dual
graph is Ay(3) if (a,b) = (0,0), and A11.4+(3) if (a,b) # (0,0). Thus we have A;(3) for

[ <7, where the maximum [ = 7 is attained in the case (a,b) = (1,5).
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Ky
Ks
Ki

Ai(n) :
As(n) -
Al(n) :

(The bounds of I:

TABLE 3. Exceptional graphs of types K, A, D and D (n>3)

©
©—®
© @ —@® (>3 vertices)
@

@

O @——@—@ (>3 vertices)

(= Ai(4)

Ky for 1 <9; Ay(n) for ]

D, .T@ Dr(n)
Dy(n)’ kﬁa D7 (n)’
Ds(n) W Dg(n)
Ds(n)’ 'gaw Da(n)
Ds(n)” 0T@4 Ds(n)
Ds(n)"” Ofﬂ De(n)
Ds(n) T@w Do (1)’
Ds(n)’ Tﬂ D7(n)
De(n)" rr@ﬂ Ds(n)
De(n)"” »?044

As(n)’ | Oy
As(n)’ 00
As(n)’ o000

> >
[©2
22 2EEE

>
3

<5incasen >4; A)3)forl <7)
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TABLE 4. Exceptional graphs of types E and E (n>3)

Es(n) - @&rma

Er(n) : W
Es(n) W

i

Subcase (4-2-2) A is not a Cartier divisor of E: Then (a,b) # (0,0) and multp(A) =
a+b—1. Thus ,E), is connected and its dual graph is A;(3) for [ < 6, where the maximum
[ = 6 is attained in the case (a,b) = (1,5).

Subcase (4+3) Es pr is a-exceptional but Ej ps is not: Then = = Ej p or = contains
Es . Thus the dual graph of = is Aj(3) for 1 < [ < 7, where the maximum [ = 7 is
attained in the case (a,b) = (1,6).

Subcase (4+4) Espr and Ejp are not a-exceptional: Then = = Ejj; and the dual
graph is A;(3).

Case (5): Now E; = (. In fact, the proper transform of ¢ is an a-exceptional (—3)-curve
contained in Z. The dual graph of = is obtained by using Lemma [2.17 as follows.

Subcase (5+1) AN ¢ = 4P for a point P: Then 4 < k = multp(A) < 8 and the dual

graph of = is as follows:
Ea s e |7 |8
Graph [ A(3) | As(3) | Do(3) | E:(3)" | Ex(3)"

Subcase (5-2) AN{ =3P+ P’ for points P # P’: Then 3 <k <6 and 1 <k <2 for
k = multp(A) and &' = multp(A’). The dual graph of = is as follows:
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k) | G162 @] @2 ] 6,1 ] 6.2 ]61) )62
Graph | A1(3) | Ax(3) | Ai(3) | As(3)' | Ds(3) | Ea(3)” | Eol3) | Eo(3)
Subcase (5+3) AN{C=2P 4 2P’ for points P # P': Then 2 < k, k' < 4 for k =

multp(A) and &' = multp(A’). We may assume k£ > k’. Then the dual graph of =

is as follows:

k&) | 22| 62| 3:3) | @2 | 4.3) | 449
Graph || Au(3) | As(3) | As(3)" | Du(3) | Da(3)" | Ds(3)

Subcase (5-4) ANl =2P+ P+ P” for three points P, P’, P": Then 2 < k < 4 and
1<K, E"<2for k =multp(A), k¥ = multp (A), & = multpr(A). Weset | = k' +k"—2.
Then the dual graph of = is as follows:

kD 0@ 22 6.0 61D 632 |0 41) | (42
Graph | A1(3) | Ax(3) | As(3)' | As(3) | Au(3)' | Ds(3)” | Du(3) [ Ds(3)" | B (3)

Subcase (5-5) A N ¢ consists of 4 points: Then 1 < multp(A) <2 for P € AN/, Let [
be the number of points P € A N ¢ with multp(A) = 2. Then the dual graph of Z is as

follows:

oo |1 | 2 | 3] 4
Graph || Au(3) | Aa(3) | As(3)' | Du(3) | Du(3)

Case (6): Now E; = ¢. The proper transform of E'is M is a-exceptional whose dual graph
is Ay(3). It is contained in = and the dual graph of = is obtained by using Lemma 2.17

as follows.

Subcase (6-1) AN?¢=3P: Then 3 < k = multp(A) < 6 and the dual graph is as

follows:
k|l s | 4| 5 | 6
Graph || As(3) | As(3) | Ea(3)" | Bo(3)

Subcase (6-2) AN¢ = 2P + P’ for two points P, P’ € {: Then 2 < k = multp(A) <4
and 1 < k' = multp (A) < 2. The dual graph is as follows:

kK D] e 6] 62 | @ |32
Graph || As(3) | As(3) | A4(3)" | Ds(3)" | D5(3)" | Da(3)

Subcase (6-3) A N ¢ consists of three points: Then 1 < multp(A) < 2 forany P € AN/.
Let [ be the number of points P with multp(A) = 2. Then the dual graph is as follows:

Lo |1 ] 2 | o3
Graph | As(3) | Ay(3)' | Di(3) | Da(3)
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Case (7): We may assume E); = 0. The proper transform Fj p; C M is a (—n)-curve.

Subcase (7+1) F = 40 for a fiber ¢ of m: Then deg(AN{) = 2, and the proper transform
in M of F is a-exceptional which is contained in =.
Subcase (7-1-1) AN¢ = 2P for a point P € {: Then 2 < k = multp(A) < 8 and the

dual graph of = is as follows:
N 20 N 20 N - A A O
Graph || As(n) | Au(n) | Ds(n) | Eo(n) | Ex(n) | Es(n) | Ex(m)

Subcase (7+1-2) AN{¢ = P+ P’ for two points P, P’ € ¢: Then 1 < k, k' < 4 for
k = multp(A) and &' = multp (A). We may assume k > k'. The dual graph of Z is as
follows:
kK| len|e|ey] 6263 wy] @] 1ws) | 1
Graph | As(n) | As(n) | Da(n) | Au(n) | Ds(n)’ | Es(n)' | As(n) | Do) | Ex(n)” | Ex(n)

Subcase (7+2) F = 301 + {5 for two fibers {1, {5 of 7:
Subcase (7-2-1) AN ¢y = 2P for a point P € ¢, and deg(AN¥y) =2: Then 2 < k =
multp(A) < 6 and the dual graph of = is as follows:
2 2 O O U OO
Graph | Ag(n) | As(n)' | Do(n) | Ex(n)' | Ex(n)

Subcase (7-2-2) AN{ = 2P for a point P € ¢; and deg(AN¥¢y) <2: Then 2 < k =
multp(A) < 6 and the dual graph of Z is as follows:

k| o2 | 3] 4| 5 | 6
Graph || Ag(n) [ Aq(n) [ Ds(n) | Eq(n) | Ex(n)

Subcase (7+2-3) ANy = P+ P’ for two points P, P’ € {1 and deg(AN¥ty) =2: We
may assume 3 > k > k' > 1 for k = multp(A) and &/ = multp/(A). Then the dual graph

of = is as follows:
(k, k) H (1,1) \ (2,1) \ (2,2) \ (3,1) \ (3,2) \ 3,3)
Craph || Ay(n)’ | Au(n)' | Ds(n)" | As(n) | Eo(n)" | E;

6(n)

Subcase (7+2-4) ANty = P+ P’ for two points P, P’ € ¢; and deg(AN¥y) < 2: We
may assume 3 > k > k' > 1 for k = multp(A) and &' = multp(A). Then the dual graph
of = is as follows:

(k&) |12 @2)] 6] 62
Graph | As(n) [ As(n) | Da(n) | Ay(n) | Ds(n)’
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Subcase (7-2-5) deg(A N {ly) < 2: If deg(AN¥y) = 2, then the dual graph of = is Ay(n).
If deg(A N¥{y) < 2, then it is Ay (n).

Subcase (7+3) F' = 2, + 2{5 for two fibers (1, 5 of 7:

Subcase (7-3-1) AN ¢y = 2P, and AN ¥{y = 2P, for points P, € {1, Py € {5: Then2 <
k; = multp (A) < 4 for ¢ = 1, 2. We may assume k; > ky. Then the dual graph is as

follows:
(hko) | 22) | 3.2) | 3:3) [ (42 [ (43) ] (49
Graph | As(n) | As(n)' | As(n) | Ds(n) | Ds(n) | Dun)

Subcase (7-3-2) ANty =2P, and AN{y = P, + P for a point P, € ¢; and for two
points P, Py € l5: Then 2 < ky = multp (A) < 4 and 1 < ko, k) < 2 for ky = multp,(A)
and ky = multp(A). Let [ = kg + k5 — 2. Then the dual graph is as follows:

kD) | 20 | 21D ] 22 | 606D ] 62| 40|41 ] 42
Graph || As(n) | Au(n)' | Ds(n)" | As(n) | As(n)' | Dr(n)' | D(n) | Dz(n) | Dr(m)

Subcase (7-3-3) A N ¢ consists of two points and A N ¢, consists of two points: For
i =1, 2, let [; be the number of points P € A N ¢; with multp(A) = 2. We may assume
[y > l. Then the dual graph is as follows:

(ht) | ©0) | o @] oy | ey ]|e
Graph || As(n)’ | As(n)' | As(n)" | Ds(n)" | De(n)" | Do(n)

Subcase (7-3-4) AN ¢y = 2P for a point P € {1 and deg(A N¥y) < 2: Then 2 < k =
multp(A) < 4 and the dual graph is as follows:

k| o2 | 3 | 4
Graph || As(n) | Ay(n) | Ds(n)

Subcase (7-3-5) A N ¢y consists of two points and deg(A N ¢y) < 2: For the number [
of points P € AN /¢, with multp(A) = 2, the dual graph is as follows:

Cooo |1 | 2
Graph || Ag(n) | Ag(n) | Da(n)

Subcase (7-3-6) deg(AN{y) <2 and deg(AN¥y) < 2: Then = = E) py and the dual
graph is A;(n).
Subcase (T+4d) F = 201 + {5 + {3 for three fibers (1, {5, {3 of 7:
Subcase (7-4-1) AN ¢y = 2P for a point P € {: Then 2 < k = multp(A) < 4. Let [
be the number of fibers ¢; for i = 2, 3 with deg(A N ¥¢;) = 2. Then the dual graph is as

follows:
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kD) |20 ]G0 @yl ey 6y ey 2] 62 |1
Graph H As(n) ‘ A (n) ‘ Ds(n) ‘ As(n) | As(n)’ ‘ Dg(n) ‘ Dy(n)’ | Dg(n)"” [76(71)’

Subcase (7-4-2) A N ¢y consists of two points: Let [ be the number of points P € ¢,
with multp(A) = 2 and I’ be the number of fibers ¢; for i = 2, 3 with deg(AN¥¢;) = 2.
Then 0 < [,I' < 2 and the dual graph is as follows:

@) 0000 @o] 0|6y @y | 02)] 1) |22
Graph || As(n) | Ag(n) | Dy(n) | Ag(n)' [ As(n) | Ds(n)" | Datny | Ds(n)" | Ban)

Subcase (7+4-3) deg(A N¢y) < 2: Let [ be the number of fibers ¢; for ¢ = 2, 3 with
deg(A N¥¢;) = 2. Then the dual graph is as follows:
oo |1 | e
Graph H Ai(n) ‘ As(n) ‘ As(n)’

Subcase (T+5) F = {1 + o + {3 + £4 for 4 fibers ¢; (1 < i < 4) of m: Let [ be the number
of fibers ¢; with deg(A N ¢;) = 2. Then the dual graph is as follows:

oo | ]2 | s |
Graph || Ay (n) | As(n) | As(n)' | Dy(n) | Dan)

Thus we are done. O

4.4. Remarks on two-dimensional log-terminal singularity of index two. We
note on two-dimensional log-terminal singularities in arbitrary characteristics. Let S be
a germ of normal surface at a point () and let a: M — S be the minimal desingularization.
Suppose that 2K is numerically Cartier and let Ej; be the effective divisor supported
in ™ (Q) determined by 2K, ~ o*(2Kgs) — Ey.

Lemma 4.15. Under the situation, the following conditions are mutually equivalent:
(1) (S,0) is log-terminal of index two;
(2) Ey is a non-zero reduced divisor;

(3) En is a straight chain of non-singular rational curves whose dual graph is K,
defined below (cf. Notation (1)):

Kl : @7 K2: @—@7
Ki:@® o—-- o ® (consisting of | > 3 wvertices).

If the conditions above are satisfied, then S has only rational singularities.

The same symbol K,, is used in TABLE
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Proof. (1) = (2) is trivial.
(2) = (3): Any irreducible component E; y; of E); is isomorphic to P! by

(K + Ein)Eine = —(1/2)EyEsng + EZ yp = —(1/2)(Ey — Eing) B + (1/2)E7 < 0.
Moreover, we have
(4-13) Ely = =4+ (BEy — Ein)Eiy > —4.

If Eyy is irreducible, then Ej; is a (—4)-curve, thus the dual graph is K;. Hence we may
assume that F)s is reducible.

If there are two irreducible components F; s, Eop with Ey pE9 pp > 2, then Ef,M =
E227M = =2, By p Es = 2 by (4=13); this induces (Fy y + Eo)* = 0 contradicting that
the intersection matrix (E; pE; ) is negative definite. Thus E; y E; v < 1 for any i, j.

Suppose that there are three irreducible components E as, Eo ar, E3 . which contain
the same point P. Then Fy yNEsy = Ey yNEsy = Es N Eyy = {P} and B}y = —2
for 1 <4 < 3 by (4-13). Thus we have a contradiction by (Ey s + Fau + E3a)? = 0.
Therefore, E,; is a simple normal crossing divisor consisting of non-singular rational
curves I; pr such that F; pEj a < 1 for any 1, j.

Suppose that EZM = —2 for any i. Then (Ey — E; ) Eipm = 2 and the dual graph of
Eyy is a circle. Thus we have a contradiction by E%, = 0.

Hence, there is an irreducible component E; 5, with E12 u = —3. Let Ej5 5 be the unique
irreducible component with Ey jrEs p = 1. If EQQ,M = —3, then Ey; = Ey p + E3 p and
the dual graph is Ky. If E% v = —2, then there is a unique irreducible component Es s
with By Es v = 0 and Es pEs = 1. In this way, we can show that the dual graph of
FEyis K,

(3) = (1): The fundamental cycle of S is E)ys since EpE;pp = 0 if EﬁM = —2, and
EyEin = =2if B}y = —3. Since (K + En)Ey = (1/2)E3; = —2, S has only rational
singularities. Furthermore, (2K, + Ey)E; 3 = 0 for any i. Thus 2K, + Ey ~ oL for
a Cartier divisor by Theorem 3.1l Hence 2Kg ~ L is Cartier and (S, 0) is log-terminal of

index two. O

Definition 4.16. If the conditions in Lemma [4.15 are satisfied and if the number of

irreducible components of Ej; is n, then the singularity of S is called of type K,.

Example 4.17. Let N be a free abelian group of rank two with a basis (e;,e2) and let

M be the dual Hom(N,Z). For a positive integer n, we set
1
N'=N+ Z4—(61 +(2n—1)es) CN®Q and M =Hom(N',Z).
n

For the first quadrant o = R>ge; + Rsgeq, let X = X (N, o) be the affine toric variety
Speck[oY NM'] associated with (N’, o). Let x, y be the generators of the polynomial ring
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k[o¥ N M] in which (x,y) corresponds to the basis of M dual to (e, ez). Then the toric
variety X (N, o) is isomorphic to A? and the natural morphism A? ~ X(N,o) — X is
regarded as the quotient map for the following action of the algebraic subgroup p,, =
Speck[¢]/(¢*™ — 1) of G, = Speck[(, ('] on A%

(x,y) — (¢x,¢*"y).

In fact, k[o¥ N M'] is isomorphic to the invariant ring k[x, y|#s», which is generated by

five monomials

4n an 2.2 2n+1 2n+1
Yy, Xy, X y, Xy )

over k. Note that ¢*" # —1 if chark = 2. We write X = X((1,2n — 1)/(4n)) and
kx,y* = R((1,2n — 1)/(4n)). Actually, X is a cyclic quotient singularity of type

X

(1,2n — 1)/(4n) if 4n and chark are coprime. We define vy = ey, v, 41 = €1, and

92i — 1 1 2i-1
Vi = j4n @ (2_ j4n )626'\',

for 1 < j < n. Furthermore, we set ; = R>ov;_1 + R5pv; for 1 < j < n + 1. Since

Zvj_1 + Zvj =N for any 1 < j <n+1, X(N,o;) is non-singular and the toric variety
X = X(N',{o;}) = UX(N', o) is a desingularization of X. Let I'; be the prime divisor
of X corresponding to the ray Rxqv;. Then I'; ~ P! and 3T, is a simple normal crossing
divisor whose dual graph is K,,. Thus X — X is the minimal desingularization and the

singularity of X at the origin is K,,.

Proposition 4.18. For a singularity S of type K,, and for the minimal desingularization
a: M — S, suppose that Pic(M) — Pic(Ey) ~ Z®" is surjective. Then there is an
étale morphism from S into X((1,2n — 1)/(4n)) in Example 4.17. In particular, the

Henselization of a singularity of type K, is unique.

Proof. We may assume that S = Spec R for a two-dimensional local ring R essentially of
finite type over k.

First, we treat the case: n = 1. Then Oy (—FEy) ~ L®* for an invertible sheaf L,
by assumption. Then |L£| is base point free by Theorem [3.1. Hence, we can choose two
sections s1 and sy of £ such that div(s;) Ndiv(se) N Ey = 0. Let y be a defining equation
of Ey, i.e., y is a section of Oy (FE)yy) with div(y) = Ep. Then we have the following five

regular functions

Ei=s1y, & =sy, O=sisy, m=sisy, h=s15y
over S. Since these five functions satisfy the same relation as the five generators of
R((1,1)/4), there is a ring homomorphism R((1,1)/4) — R, and equivalently a morphism
S — X((1,1)/4). Since E) is the fundamental cycle, the maximal ideal m of R is regarded
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as a, Oy (—Eyr) and m/m? is identified with HY(Ey;, Og,,(—Ear)) (cf. [5, Theorem 4]).
Therefore, the five regular functions above form a basis of m/m? which implies that
R((1,1)/4) — R is étale.

Next, we treat the case n > 1. By assumption, there exist invertible sheaves Ly and
L1 on M with deg Lo|g, ,, = 015 and deg Ly11|p,,, = Ony for 1 < j < n. Fori =0,
n+ 1, |£;| has no base points by Theorem [3.1l Thus there exist a section sy of £y and
a section s,41 of L, 41 such that div(sg) intersects Fj js transversely, div(s,1) intersects
E, v transversely, div(so) N Ejy = 0 for 7 # 1, and div(sp1) N Eja = 0 for 7 # n. Note
that

o1 2j—1 0o 2j—1
£0+Zj:1 (2— 4n )Ej,M and £n+1+2j:1?E]’,M

are numerically trivial. Let y; be a defining equation of Ej 5;. Then we have five regular

functions

2n—2j+1 noo9j1 n
- Son HJ 1 ]n o ’ 52 = 8;4111 H':l yj] ’ 0= SOSn-i-l -1 Ys,
. :
m=sg" sn+1HJ 1 nH, T)2 —sosiﬂl lej
over S. Hence, by the same argument as in the case of n = 1, there is an étale morphism
S — X((1,2n — 1)/(4n)). The remaining assertion on Henselization follows from [20),

Lemma 14.3]. O

Proposition 4.19. There exists a Q-Gorenstein smoothing (of index two) of the singu-
larity K,, at the origin of X ((1,2n —1)/(4n)).

Proof. In Example |4.17, we can consider another subgroup
1
N'=N+Z (1,20 —1) € N
and the associated toric variety Y = X(N”, o). Then k[e¥ N M"] for the dual M" =
Hom(N”,Z) is the invariant subring of kje¥ N M] = k[x,y] by the action (x,y) —

(¢*x,(%y) of ¢, which is generated by three monomials xy, x**, y?". Thus the invariant
subring may be written as R((1, (2n —1))/(2n)) and is isomorphic to

k[z,u,v]/(z*" — uv),

by z — xy, u +— x**, and v — y?*. In particular, Y has a singularity of type Ay, at the
origin. The action of ¢ on k[x,y] induces an action on R((1,(2n — 1))/(2n)), which is
expressed as

(z,u,v) = (C*"z, (*"u, (*"v).
Thus the quotient group p, = Speck[¢]/(€%2 — 1) of py, acts on the polynomial ring
k[z,u, v] by the same way, where (*" is replaced with £. Note that X = X ((1,2n—1)/(4n))
is the quotient of Y by the action of p,. The invariant ring A = k[z,u,v]*2 has a
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singularity only at the origin and it is a toric terminal singularity of index two. We
define a k-algebra homomorphism k[t] — A by t +— z?" —uv. For a constant ¢ € k,
let k[t] — k be the k-algebra homomorphism given by t — ¢ and let A, be the tensor
product A @y k. Then Ay ~ R((1,2n —1)/(4n)). It is enough to show that Spec A, is
nonsingular for any ¢ # 0. Note that Spec A, is covered by three open subsets {z* # 0},
{u? # 0}, and {v? # 0}, since ¢ # 0.

The localization A.[z72] contains u/z and v/z. Thus it is isomorphic to

k[z, 27t u,v]/ (2" — uwvz — c)

2 u s u/z, v+ v/z. If the ring is not regular, then, by the Jacobian criterion,

by z — z
u=v=mnz""' =2"—c=0 has asolution, but it is impossible. Hence, A.[z"?] is regular.
The localization A.[u™?] contains z/u and v/u. Thus it is isomorphic to

k[u,u™t, z,v]/(22"u"™ — uv — c)

by u + u?, z +— z/u, v — v/u. By the Jacobian criterion, the ring is regular since

2(zQ"u" —uv —c¢) = —u #0.

ov

Similarly, the localization A.[v™?] is also regular. Thus we are done. O
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5. DEFORMATIONS

We shall study deformation of fundamental triplets, of basic pairs, and of del Pezzo

pairs of index at most two. The notion of equi-singular deformation is introduced.

5.1. Deformation of several objects.

Definition 5.1. (1) Let 7: X — T be a proper surjective smooth morphism into a

connected curve T, E C X an effective divisor flat over T , and let A c X be
a subscheme finite and flat over T. If (X;, E;, A;) is a fundamental triplet for
the fibers X; = 77(t), By = ENnX, and A, = AN X, over any closed point
t €T, then 7: (Y,E,A) — T is called a family of fundamental triplets. If two
fundamental triplets appear as fibers of a family of fundamental triplets over a
connected curve, then the fundamental triplets are called deformation equivalent
to each other.
Let h: M — T be a proper surjective smooth morphism into a connected curve
T and let E C M be an effective divisor flat over T. If (M, E;) is a basic pair
for the fibers M; = h™'(t) and E; = E N M, over any closed point ¢ € T, then
h: (]\A/f ,E) — Tis called a family of basic pairs. If two basic pairs appear as fibers
of a family of basic pairs over a connected curve, then the basic pairs are called
deformation equivalent to each other.
Let f: S — T be a proper surjective flat morphism from a normal variety S into
a connected non-singular curve 7' and let B be an effective Q-divisor of S such
that Kg—l—é is Q-Cartier and Supp B is flat over T'. If, for any closed point t € T,
(S, By) is a del Pezzo pair for the fiber S; = f~1(t) and for the Q-divisor B;
defined by
(Kz+ B)j,, = Ks, + B,

then f: (S, B) — T is called a family of del Pezzo pairs.

e The index of the family (S, B) — T is defined to be the Q-Cartier index of

Kz + B.
e If the index of Kg, + B; for any closed point ¢t € T is equal to the index k of
Kz + B, then (S, B) — T is called to have the constant index k.

Two del Pezzo pairs (51, By) and (Ss, Bs) are called deformation equivalent to each
other if there exist finitely many families (S(j), é(j)) — T;) of del Pezzo pairs over

connected non-singular curves ¢, (1 < j <) and points ) tl(’j) € T;) such that
(S1, B1) = (Syag: Baygg), (82, B2) = (Sgy, Byye), and

(S(j%t? ’ B(j)vt?) = (S(jH)’t?H ' B(jH)’t?H )
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for 1 < j <1—-1. If any (g(j),é(j)) — T{;) has the same index (resp. con-
stant index) equal to k, then (S, B1) and (S3, By) are called to be connected by

deformations of index (resp. constant index) k.

Remark. The genus g is a deformation invariant for fundamental triplets (X, E, A), basic

pairs (M, Eyr), and for del Pezzo pairs (S, B) of index two, where

for L = —2Kx—FE and Ly; = —2K;— Ey;. Moreover, LE and L? are deformation invari-
ants for fundamental triplets (X, E,A); and Ly Ey and L3, are deformation invariants

for basic pairs (M, Epy).

Lemma 5.2. (1) If two fundamental triplets are deformation equivalent to each other,
then their eliminations are also deformation equivalent to each other as basic pairs.

(2) For a family h: (M,E) — T of basic pairs over a smooth connected curve T,
there exist a family f: (g, E’) — T of del Pezzo pairs of index at most two and a

birational morphism a: M — S over T such that
—2K 5 =a*(-2(Kg+ D))+ E

and that, for any closed point t € T, the restriction oy = &|pr,: My — Sy of @ to
the fibers My = h=1(t) and Sy = f~1(t) is the minimal desingularization.

Proof. (1) follows from Lemma/(2.20
(2): We set L= —2K g — E and Ly := —2K};, — E;. By Theorem [3.18 and by the

upper semi-continuity theorem, we have an isomorphism

(5-14) h.Os(mL) @ k(t) ~ H(M,,mLy,)

for any closed point ¢ € T" and for any m > 0. Hence the natural homomorphism
(5-15) W*h.Os(mL) — O (mL)

is surjective for any m > 0 by Theorem3.18. Since L, is big, there exist a proper surjective
morphism f: S — T from a normal variety S, and a birational morphism @&: M — S
over T such that L is linearly equivalent to the pullback of an f-ample divisor of S. Then
—2K3 — a,F is the f-ample divisor. The morphism & is induced from the surjection
(5-15) for sufficiently large m. Hence, by the base change property (5-14), any fiber
S; = f7Y(t) is a normal variety, and a; = &y, : M; — S; is isomorphic to the birational
morphism into the del Pezzo pair constructed in Proposition [3.19. Thus f: (S,B) — T
is a family of del Pezzo pairs of index at most two for B = (1/2)a. . O
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Lemma 5.3. (1) A fundamental triplet (X, E,A) is deformation equivalent to the
fundamental triplet (X, E,A") for a zero-dimensional subscheme A" C E such
that A’ contains no nodes of E and that A" N Eq is reduced.

(2) A fundamental triplet (X, E,A) is deformation equivalent to the fundamental
triplet (X, E',A") for an effective divisor E' linearly equivalent to E and for a
reduced zero-dimensional subscheme A" C E' such that A" contains no nodes of
E'" and that E" is reduced along A'.

(3) For a fundamental triplet (X, E,A), suppose that E = EY + E@ for effective
divisors EY and E® such that AN E® = 0 and that EWY is linearly equiva-
lent to a non-singular divisor. Then (X, E,A) is deformation equivalent to the
fundamental triplet (X, E' + E@® A') for a non-singular divisor E' and a reduced
subscheme A" C E'.

Proof. (1): If A contains a node of F, then F is reduced by Theorem [4.6. Thus the
assertion follows from Lemmas 2.22 and [2.23.

(2): By (1) and Theorem [4.6] we may assume that A N Eq is reduced and that the
type of (X, E,A) is one of [2]o, [2;1,2]24, and [n;2,¢€]s for n > 1, 2 < e < min{n + 1,4}.
Let T be an irreducible component I' with A N T # () such that multr(E) = m > 2 and
that T' # o if the type is [n;2,¢e|o. Thus T is a line of P? or a fiber of the Hirzebruch
surface F,,. There exists an effective divisor D C X x T for an open neighborhood T of
0 of the affine line A! = Speck[t] such that D, = D N (X x {t}) is a non-singular divisor
for t # 0 and that Dy = mI". We may assume that A NT" is reduced by (1). For a point
P e ANT, Ais locally defined by the ideal (x™,y) for a local coordinate system (x,y) of
X at P, where I' is defined by x = 0. Thus, for a suitable choice of IN), we infer that the
divisor div(y) intersects transversely with D; for any ¢ # 0 on a neighborhood of P. By
replacing A with div(y) N D, for ¢ # 0 around P, we have a deformation to a fundamental
triplet (X, E', A") satisfying the required condition.

(3): We may assume that A is reduced and is supported on the non-singular part
of EM. There exist a non-singular connected curve T with a point 0 and an effective
divisor D of X x T such that D — T is flat, the fiber D, = D N (X x {t}) over t € T is
non-singular for ¢ # 0, and that Dy = E®). Since D — T is smooth along A x {0}, there
exists a non-singular curve A C D smooth over T such that the fiber of A — T over 0 is

A. Thus (X, E,A) is deformed to (X, D; + E®) A,) for t # 0. O

We introduce a relation < for the types of fundamental triplets, as follows: T; < Ty
means that any fundamental triplet of type T; is deformation equivalent to a fundamental

triplet of type Ts.
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TABLE 5. A list of types of fundamental triplets

genus g | Type genus g | Type
2 [0;2,1]o, [1;2,2]0, [2;2,3]+ 7 [1;1,0]o
3 2o, [052,0]00, [1,2,1]oo, 8 [2;1,0]p
12; 2, 2]00, [3;2, 300, [4;2, 400
[0;1,1]o 9 [3:1, 0]
[1;1,1]o 10 [4:1, 0]
[1]o, [0;1, 0] n+3—e|[n;2e forn > 1,
e <min{n — 1,4}

Proposition 5.4. A fundamental triplet is deformation equivalent to a fundamental

triplet of one of the types listed in TABLE |5.

Proof. Let (X, E,A) be a fundamental triplet. By Lemma (5.3, we may assume that A is
reduced and that either E is non—singular or E = EW + E® for a non-singular divisor
EW and an effective divisor £ with ANE® = ). More explicitly, we have the following

relations by Lemma 5.3:

;1,14 (a,b) < [1;1,1]0; [n:2,n+1]44(a,b) <[n;2,n+ 1], for 1 <n < 3;

[ ]
[n;2,m)e < [n;2,njgo for 0 <n <4; [n;2,n+ 1y <[n;2,n+ 1], for 1 <n <3;
2]+ (0) <[2]o;  [22 <[2]o; [0;1,1]4(0) < [0;1, 1]o;  [152,2]4 < [1;2,2]o;

(1,2, 2200 < [152, 2] < [1;2,2]0;  [052,1]5 < [0;2, 1] 14 < [0;2,1]4 < [0;2, 1o;

21, 1]4(a,0) < (21,10, (0,0); (251, 2]a < [2:1,2],4 < 251, 2],
In order to obtain TABLE 5| it is enough to show the following relations in addition:
13;1,1]4 <[1;1,0]p; [2;1,1]4(0,0)<[0;1,0]0; [2;1,2]p<[0;1,1]0; [3;2,4]+ <[1;2,2]o.

These are shown in Proposition [5.10, (1) below, in which Lemma 5.5/ and Corollary [5.6

are required. O

In order to construct some interesting deformations, we note the following well-known:

Lemma 5.5. For positive integers n, a, b with a + b = n, there exists an exact sequence
0— piOpt — &€ — piOpi(n) — 0

on the product P* x A, where p; denotes the projection P x A' — P!, such that E is
isomorphic to pt(O(a)®O(b)) over P' x (A'\{0}) and that the restriction of £ to P* x {0}
is isomorphic to O & O(n).
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Proof. Let us take global sections ¢; € H°(P',O(a)) and { € HY(P',O(b)) so that
div(¢1) Ndiv(¢z) = 0. Then we have a short exact sequence 0 — O — O(a) @ O(b) —
O(n) — 0 over P!, where the surjection O(a)®O(b) — O(n) is given by (z,y) — xlo—y(
and the injection O — O(a) ® O(b) is given by z — (2(1, 2(3). Let n € Ext!(P'; O(n), O)
be the extension class associated with the exact sequence above and let € be the locally

free sheaf of rank two given by the extension class
n®t € Ext (P On),0) @ H(A', O) ~ Ext' (P! x A'; piO(n), p;0),

where A’ = Specklt]. Then & restricted to P! x {0} is O @ O(n). The extensions defined
by 7 ® t and by n ® 1 are mutually isomorphic over P! x (A'\ {0}). Thus & restricted
to P! x (A'\ {0}) is isomorphic to p;(O(a) ® O(b)). O

Corollary 5.6. Let n and a be positive integers with n > 2a. Then there is a P'-bundle
X — P! x Al such that the fiber X; of)A(/ — Al over t € Al is isomorphic to F,_sq if
t #0 and to F, if t = 0. Moreover, there exist a section ¥(1,n) and rational sections
Y(1,a), (1,n — a)s of the P -bundle X — P! x Al satisfying the following conditions:

(1) ¥(1,a) ~ 2(1,n) + p;O(a —n), E(1,n — a)sw ~ X(1,n) + p;O(—a), and X(1,n)
18 a tautological divisor with respect to E.

(2) Suppose that t # 0. Then X(1,a)|x, is a minimal section "2 of X; = F,_sa,
Y(1,n)|x, ~ 02 4 (n—a)l for a fiber £ of X, — P!, and 2(1,n — a)o|x, 5 @
section at infinity.

(3) X(1,n)|x, is a section at infinity of Xo = F,, 2(1,a)|x, = ¢™ + Fy, and (1,n —

(n

a)oolx, = 0™ + Fy for a negative section o™ and effective divisors Fy ~ al,

Fy ~ (n—a)l with Fy N Fy =0 for a fiber { of Xo — PL.

Proof. The P'-bundle defined by X = P(€) for the locally free sheaf € of Lemma 5.5
for b = n — a satisfies the first required condition. The section defined by the surjection
£ — prO(n) satisfies the condition of X(1,n). In order to find other rational sections, we
look at the isomorphism between £ and pi(O(a) ® O(n—a)) over P* x (A*\ {0}) shown in
Lemmal5.5. Let (1, a)* and 3(1,n—a)*, be the sections over P! x (A'\{0}) corresponding
to the surjections to piO(a) and to p;O(n — a), respectively. Here ¥(1,a)* N X(1,n) is
isomorphic to div(¢;) x (A'\ {0}) for the section ¢; € H°(P',O(a)) in Lemma
Similarly, ¥(1,n — a)%, N X(1,n) is isomorphic to div((y) x (A!\ {0}) for the section
(G € H' (P, O(n — a)). Let ¥(1,a) and %(1,n — a)s be the closures of ¥(1,a)* and
2(1,n—a)%, in X, respectively. Then 2(1,a)|x, = 0™ +7*div(¢;) and 2(1,n—a)so|x, =
o™ + 7 div(¢,) for the projection 7: Xy = IF,, — P'. Thus we are done. O

Example 5.7. Applying Corollary [5.6 to the case n = 4, a = 2, we have a P!-bundle
M — P! x A! and a tautological divisor ¥ = ¥(1,4) such that M; ~ Fy and Y|y, is
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ample for the fiber M; of M — A! over t # 0 and that My ~ F, and Xy, is a section
at infinity. There is a birational morphism M — V into a normal variety V over Al
such that > is linearly equivalent to the pullback of a relatively ample divisor of V' over
A'. Thus we have a flat surjective morphism V — A! whose fiber V; over t € Al is
isomorphic to X; ~ Fy if t # 0 and to Fy ~ P(1,1,4) if t = 0. Note that P(1,1,4) is a
log del Pezzo surface of index two defined by the fundamental triplet (Fy, o, d) of type
[4;1,0]o. However, V is not Q-Gorenstein since the exceptional locus of M — V is just
the negative curve 0¥ of My ~ Fy and Ky0® > 0. Therefore, (V,0) — Al is not a
deformation of del Pezzo pairs in the sense of Definition 5.1. Indeed, K ‘24 =84 K ‘2/0 =9
for t # 0.

The following generalizes the construction called sweeping out the cone with hyperplane
sections due to Pinkham [25, Remarks (7.6), iii)]:

Lemma 5.8. Let S be a non-singular projective variety and let A C S be an effective
ample divisor. Then there exist a proper flat morphism m: S — P! and a point 0 € P!
such that 7= 1(t) = S fort # 0 and that 7=(0) =~ Proj R for the image R of the restriction

homomorphism

D, B’ (S, Sym*(0s @ O5(A))) — P, 1 (A, Sym* (04 @ 04(4))).

In particular, if A is a non-singular variety and if H*(S, Os(mA)) = 0 for m > 0, then

7=1(0) is normal and is a cone over A.

Proof. Let p: Z — S be the Pl-bundle associated with ¥V = Og @ Og(A) and let H
be a tautological divisor with respect to V. Let X and W C Z be the sections of p
corresponding to the first projection V — Og and the second projection V — Og(A),
respectively. Let A be the linear system consisting of the members of |H| containing
B:=p 1 (A)NW. Then A ~ P! and Bs A = B. Let 0 € A correspond to p*A + ¥. Then
any another member of A corresponds to a section of p. The complete linear system
|mH]| for suitable m > 0 defines a birational morphism p: Z — Z’ into the normal
variety Z' = Proj @0 H(S, Sym”*(V)) such that u(X) is a point, & = p~1(1(¥)), and
that p is an isomorphism outside Y. Thus A can be regarded as a linear system on Z’.
Let S — Z' be the blowing up along p(B). Then the induced morphism 7: S — Ais
flat, and the fiber over a point ¢ € A is isomorphic to the corresponding member of A as a
divisor of Z’. In particular, 7—!(t) ~ S for ¢ # 0 and 7—(0) is isomorphic to the image of
p '(A) = P4(V|4) under the morphism p. Thus 7—!(0) ~ Proj R. If A is a non-singular
variety and H'(S,Os(mA)) = 0 for m > 0, then R ~ @0 H’(A, Sym"(V)|4). Thus we

are done. 0
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Example 5.9. Applying Lemma 5.8/ to S = P? and a non-singular conic A, we have
a proper flat morphism 7: S — P! such that 77'(0) ~ P(1,1,4) and 7~ (t) ~ P? for
t # 0. Here, S has a unique singular point, which is obtained by contracting a divisor
isomorphic to P? with the normal bundle O(—2). Hence, the singularity of S is terminal
of index two and (S,0) — P' is a family of del Pezzo pairs of index two. The morphism

7 gives a (Q-Gorenstein smoothing of the rational singularity of type Kj.

Remark. The formal moduli space of the cone P(1,1,4) has been shown to be reduced
with two components, of dimension 3 and 1 meeting transversely, by Pinkham [24], [25, (8.
6)]. Here, the 3-dimensional component corresponds to the deformation in Example [5.7

and the 1-dimensional component to the deformation in Example
Proposition 5.10. (1) The following relations hold:
[3a171]+<[171a0]07 [2a171]+(0a O)<[Oa170]0a [27172]0<[0a171]07 [372a4]+<[1a272]0

(2) If (X,E,A) is a fundamental triplet of type [2;2,3]. with A = (), then it is
deformation equivalent to a fundamental triplet of type [0;2,1]o.
(3) If (X, E,A) is a fundamental triplet of type [2;2,3], with A # 0, then its elim-
wation is deformation equivalent to the elimination of a fundamental triplet of
type [1;2,2].
(4) The del Pezzo pair associated with a fundamental triplet of type [4;2, 4]0 is de-
formation equivalent to the del Pezzo pair associated with a fundamental triplet
of type [2lo.
Proof. (1): For [3;1,1],, applying Corollary [5.6/to n = 3 and a = 1, we have a family
X — T of ruled surfaces and a rational section ¥ = ¥(1,1) such that X|x, = 0® + ¢
and Y|y, = oM for t # 0 for the fiber X; over ¢t € T; moreover the zero-dimensional
subscheme A of a fundamental triplet of type [3; 1, 1], on the central fiber X, extends to
a subscheme A of X which is finite and flat over 7. Therefore [3;1,1]; < [1:1,0]. For
2;1,1]4(0,0) < [0;1,0]o, it is similarly proved by applying Corollary [5.6/ to n = 2 and
a = 1, and by considering 3 = (1, 1). For [2;1,2]y < [0;1, 1], it is similarly proved by
applying Corollary [5.6/to n = 2 and a = 1, and by considering > = (1, 2).

For [3;2,4], < [1;2,2]p, we need more complicated argument. Let (X, E,A) be a
fundamental triplet of type [3;2,4],. Then X ~ Fs3, E = ¢® + D for the negative
section 0 and a section D ~ ¢ 4 4¢ for a fiber £ of 7: X — P!, and A € D\ ¢®,
Let ¢; be the fiber passing through D N o¢® and let ¢, be another fiber with £, N A = (.
We set P; = 7(¢;) for i = 1, 2. Then there exists a member © € |¢®® + 3/| such that

O©|p = 4¢3 N D as divisors on D by the exact sequence

0=HX,—¢) - H(X,0® + 30) — H(D,0(4)) — H'(X, —¢) = 0.



87

Note that 03 £ © since ¢® N D ¢ © N D. Thus O is a section at infinity. The exact
sequence above shows that D is a member of the pencil spanned by ¢® +4¢, and © + ¢;.
Let X — P! x A! be the P'-bundle obtained by applying Corollary/5.6 ton = 3 and a = 1.
Let h, g, and f be defining equations of the rational sections (1, 3), 3(1,1), and (1, 2)
of the P'-bundle, respectively. We may assume that ¥(1,3)|x, = ©, %(1,1)|x, = c® 441,
and X(1,2)a|x, = 0@ + 20y, Thus E = div(£2 + cgh)|x, for a non-zero constant ¢ € k.
For t # 0, X(1,3)|x, ~ oM +2¢is a section, ¥(1,1)|x, = o, and X(1,2) ], is a section
at infinity, where the point $(1,3) NX(1,1) N X; lies on the fiber of X; — P! over P;, and
¥(1,3) N %(1,2)s N X, is a zero-dimensional subscheme of multiplicity two supported on
the fiber of X; — P! over P,. If we consider X; as the blowing up at a point P of P2, then
div(f)|x, is the pullback of a line v not containing the center P, and div(gh)|x, is the
total transform of a non-singular conic C' containing P, where 7 is a tangent line of C.
Hence, div(£% + cgh)|x, is isomorphic to div(z? + ¢(x* 4+ yz)) for a suitable homogeneous
coordinate (x,y,z) of P2. Therefore, the divisor E := div(£2 + cgh) of X is smooth over
A"\ {0}. Moreover, A is a fiber of a subscheme A C E which is finite and flat over A' by
Lemma 2.23. Thus we have a family (j(v B, A) — A of fundamental triplets, and hence
3:2, 4], < [1;2, 2o

(2) and (3): Let (X, E,A) be a fundamental triplet of type [2;2,3],. Then X ~ Fy,
E = 0® 4 D for a section D ~ ¢® + 3¢ for a fiber £ of 7: X — P', and A € D\ ¢®@,
Let ¢; be the fiber passing through D N ¢ and let ¢, be another fiber with £, N A = (.
We set P; = 7(¢;) for i = 1, 2. Then there exists a member © € |¢(®) + 2/| such that

O©|p = 30, N D as divisors on D by the exact sequence
0=HX,—¢) — H(X,0® +20) — H (D, 0(3)) — H'(X, —¢) = 0.

Note that ¢® £ © since 0¥ N D ¢ © N D. Thus O is a section at infinity. The exact
sequence above shows that D is a member of the pencil spanned by ¢® + 3¢, and © + ¢;.
Let X — P! x A! be the P-bundle obtained by applying Corollary 5.6 to n = 2 and
a=1. Then X; ~ F, for t € A'\{0}. Let h, g, and £ be defining equations of the rational
sections %(1,2), 3(1,1), and 3(1, 1) of the P'-bundle, respectively. We may assume that
(1,2)|x, = O, B(1,1)]x, = 0@ + 4, and 2(1, 1)o|x, = 0@ + €. Let s be a defining
equation of /5, in other words, P, € P! is defined by s = 0. Then E = div(sf?+cgh)|x, for
a non-zero constant ¢ € k. For t # 0, X(1,2)|x, ~ 0 + £ is a section, ¥(1,1)|x, = ¢(©,
and X(1,1)|x, is a section at infinity, where the point ¥(1,2) N %(1,1) N X} lies on the
fiber of X; — P! over P, and the point $(1,2) N (1, 1)s N X; lies on the fiber over Ps.
Let A be the pencil on X; generated by 23(1,1)s|x, + ¢2+ and X(1,2)|x, + 2(1,1)|x,,
where /5, is the fiber of X; — P! over P,. Then A is a sublinear system of |20(0) + /¢

having no fixed components. We infer that a member of A is a section for the other
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projection 7': X; ~ Fy — P! except for 25(1,1)u|x, + f2s and 3(1,2)|x, + X(1,1)]x,-
Thus div(sf? + cgh)|x, is a section of 7/. Therefore, the divisor £ = div(sf? + cgh)
of X is smooth over Al \ {0}. Moreover, A is a fiber of a subscheme A C E which is
finite and flat over A!, by Lemma [2.23. Thus we have a family (E(V E, A) — A of quasi-
fundamental triplets, and is a family of fundamental triplets of type [0; 2, 1]o when A = .
When A # (0, for the family of quasi-fundamental triplets, we also have a family of basic
pairs by taking the simultaneous eliminations as in Lemma 5.2, (1) (cf. Lemma [2.20).
If (X',E',A") is a quasi-fundamental triplet such that X’ ~ Fy, E' ~ ¢® + 2/ is a
non-singular divisor, and A’ # (), then its elimination is the basic pair obtained from a
fundamental triplet of type [1;2,2]y by Proposition[4.4. Thus the assertion is proved.
(4): For a fundamental triplet (X, F, A) of type [4;2,4]p0, £ = 0+ 0 and A C 0, for
the negative section o and a section o, at infinity of X ~ [F,. Hence, the del Pezzo pair
associated with (X, £, A) is constructed from the elimination of ¢(A) for the contraction
morphism ¢: X — P(1,1,4) of 0. Here, q(04) is a cross section of the cone P(1,1,4). We
consider the deformation V = S — P! in Example/5.9] Here, we may assume that there is
an effective divisor Q C V such that QQ — P! is smooth and that the fiber Q; over ¢t € P!
is a non-singular conic of V; ~ P? for ¢t # 0 and that Qy ~ ¢(04) for an isomorphism
Vo ~ P(1,1,4). Since A can be assumed to be reduced, it extends to an effective divisor
A of an open neighborhood of V4 in @ which is smooth over P! (cf. Lemmal|2.23). Hence,
(Vo,q(00),q(A)) is deformed to a fundamental triplet of type [2]o. Thus the associated
del Pezzo pair with (X, E, A) is deformation equivalent to the del Pezzo pair associated

with a fundamental triplet of type [2]o. O

5.2. Equi-singular deformations. We shall consider the equi-singular deformation

types of del Pezzo pairs of index two.

Definition 5.11. (1) A family h: (M, E) — T of basic pairs over a connected non-
singular curve T is called equi-singular if E is a relative simple normal crossing
divisor over T, i.e., any irreducible component Ej of E is smooth over T, any
non-empty intersection E; N Ej of two irreducible components is smooth over T,
and any intersection E;N Ej N E}, of three irreducible components is an empty set.

(2) A family f: (S, B) — T of del Pezzo pairs over a connected non-singular curve T
is called equi-singular if there exist a proper smooth morphism h: M — T and a
birational morphism a: M — S with h = f o a such that

(a) My = h™*(t) — S; = f~!(t) is the minimal desingularization for any closed
point t € T,
(b) the union of the exceptional locus of & and @ ' (Supp B) is a relative simple

normal crossing divisor over 7.
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If f:(S,B) — T is an equi-singular family of del Pezzo pairs whose fibers (S;, By)
are constructed from basic pairs, then f is constructed from an equi-singular family
h: (M ,E) — T of basic pairs by Lemma [5.2] (2). However, the family of del Pezzo
pairs constructed from an equi-singular family of basic pairs by Lemma 5.2, is not
necessarily equi-singular.

Two basic pairs are called equi-singular deformation equivalent to each other if they are
connected by equi-singular families of basic pairs. Similarly, two del Pezzo pairs are called
equi-singular deformation equivalent to each other if they are connected by equi-singular

families of del Pezzo pairs.

Remark. Let (S, B) be a del Pezzo pair of index at most two associated with a basic
pair (M, Eys). Then the number k of irreducible components of F), is an equi-singular
deformation invariant both for (M, E),) and for (S, B).

Definition 5.12. Let 7: (j(v, E, A) — T be a family of fundamental triplets over a non-
singular connected curve T'. The family is called equi-singular if the following conditions

are satisfied:

(1) E is a relative simple normal crossing divisor over T’
(2) AN E; is flat over T for any irreducible component E; of E;
(3) ANE;N Ej are flat over T for any two irreducible components FE; and Ej.

If the following conditions are also satisfied, then the family 7 is called strongly equi-
singular:
(4) Any two fibers of AN Ej — T are isomorphic to each other for any j;
(5) If a fiber (Xy, Ey, A;) of 7 is of type [2;1, 2]y, then any fiber is of type [2;1, 2]o;
(6) Suppose that a fiber (X;, £y, A;) of 7 is of type [1; 2, 2]p. Then there is an effective
divisor L ¢ X smooth over T such that L N E is flat over T and that L N X; is
the union of fibers ¢ of X; — P! with deg(A; N¢) = 2.

Two fundamental triplets are called equi-singular (resp. strongly equi-singular) defor-
mation equivalent to each other if they are connected by equi-singular (resp. strongly

equi-singular) families of fundamental triplets.

Lemma 5.13. Let (X, E,A) be a fundamental triplet of type [1;2,2]o and let ¢: (M, Epr)
— (X, E,A) be the elimination. For a reducible fiber F of M — X — P, the dual graph
of Exp+ F is one of the following, where the number of black vertices is at most 7 in (3),

and is at most 8 in (4):

» Y ole U4 o o
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Proof. The image ¢ = ¢(F) is a fiber of m: X — P! with /N A # 0, and F = ¢~ 1((). If
¢ N E consists of two points @1, (2, then the dual graph of F' 4+ FE), is either (1) or (3)
above, and the number of black vertices is multg, (A) + multg, (A) — 1. If £ intersects E
tangentially at a point P, then P € A and the dual graph of F' + E); is one of (1), (2),
and (4) above. Here the number of black vertices equals multp(A) if multp(A) > 2, and
equals 0 if multp(A) = 1. Thus, we are done. O

Lemma 5.14. Let (X, E) be a minimal basic pair and Ay, Ay be two zero-dimensional
subschemes of X such that
(1) (X, E,Ay) and (X, E,As) are fundamental triplets of the same type,
(2) deg(A1 N E;) =deg(Ay N E;) for any irreducible component E; of E,
(3) multp(Ay) = multp(Ay) and multp(Ay N E;) = multp(Aq N E;) for any node P
of E and for any irreducible component E; > P.
Then (X, E, A1) and (X, E, Ay) are equi-singular deformation equivalent to each other.
They are strongly equi-singular deformation equivalent if the following conditions are
satisfied in addition:
(4) Ay N (E; \ {node of E}) ~ AyN (E; \ {node of E}) as schemes for any Ej;
(5) Suppose that (X, E) is of type [1;2,2], E is non-singular, and w|g: E — P! is
separable. Let L; C X be the union of fibers £ of m with deg({ N A;) = 2 for
i =1, 2. Then there is an isomorphism A1 >~ As inducing Ay N Ly = EN Ly ~
Ao N Ly=FENLs.

Proof. By Proposition [2.21, we have an equi-singular family (X x T,E x T,A) — T
of fundamental triplets over a connected non-singular curve 7. Thus the first assertion
follows. Suppose that the latter two conditions are satisfied. Then, by (4), the subschemes
Aﬁ and Ag in the proof of Proposition 2.21lare isomorphic to each other on any irreducible
components of Ef. Thus A, = AN (X x {t}) is isomorphic to A; for any ¢, and the
condition (4) of Definition [5.12 is satisfied. Since the condition (5) of Definition [5.12
is automatically satisfied, we may assume that (X, E) is of type [1;2,2] and E is non-
singular.

Suppose that 7|g is inseparable. For i =1, 2, and m > 1, let AE”‘] be the set of points

P with multp(A;) = m. Then we can write

Al = Zle mA[lm], AQ = Zle mA[gm}
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Here A[lm] is linearly equivalent to A[Qm] for any m > 1, since Ay ~ A,. Hence, we have a
smooth family Al ¢ X x T of reduced effective divisors for m > 1 over a non-singular
connected curve T such that A" = Almn (X x{t;}) for suitable point t; € T for i = 1, 2.
We set A = Y om>1 mA™ . For the union L; of fibers ¢ of  with deg(/NA;) =2fori=1,
2, we have Li N E = L; N A = 25,5, A", Thus, for the family (X x T, E x T,A) — T
of fundamental triplets, we have an effective divisor L € X x T satisfying the condition
(6) of Definition

Suppose that 7| is separable. Then the set R of the ramification points of 7| consists
of one point if chark = 2, and two points if chark # 2, by Lemma[4.11. If multg(4A;) =
m > 2 for a point Q) € R, then ¢ N E = 2(Q) for the fiber ¢ of 7 containing (), and hence,
by (5), multg(Az) = m or multy (Ag) = m for the other point Q)" € R. If chark # 2,
then, by Lemma|4.11, we have an involution of X preserving E and 7, and interchanging
@ and @'. Thus we may assume that if multg(A;) = m > 2 for a point € R, then
multg(As) = m. Let L be the union of fibers ¢ of 7 passing through a point Q € R with
multg(A) > 2 fori=1,2. Then L =L and LENE=LENA, = LENE=LENA,
by the assumption. We set Ay to be the divisor

D pepp ultp(A)P =37 multp(Ag) P,

In order to construct a divisor L C X x T satisfying the condition (6) of Definition [5.12]
it is enough to consider the restrictions of A; and Ay to E'\ Supp Ag. Note that the
Galois involution ¢ associated with the double-covering 7|p: E — P! acts on £\ R
freely. We have a finite number of morphisms P;: T'— E \ (LN E) from a connected
non-singular curve 7" with fixed points ¢, t2, and natural numbers m; > 1 such that
A; =Y m;Pj(t;) + A for i = 1, 2. By the condition (5) and by replacing 7" with an open
subset, we may assume that, for a natural number k£ and for any t € T,

Pi(t) # Py(t) for any j # J'

Py(t) ¢ R for 1 < j < 2k,

Lo Pj(t) = Pjy(t) for 1 < j <k,

Lo P;(t) # Pj(t) for j, j' > 2k, except for the case where j = j' and P;(t) € R.
Let A € X x T be the effective divisor > m,;I'; + (Ag x T), where T; is the graph
of P;. Then, for the family (X x T, E x T, A) — T, we can find an expected divisor
LCXxE. 0

Theorem 5.15. Let 7: (j(v, E, A) — T be an equi-singular family of fundamental triplets
over a connected non-singular curve I'. Then there is a simultaneous elimination M—X

of A over T if T is replaced with a finite covering over T. Moreover the induced family
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h: (]\7 , EM) — T of basic pairs is equi-singular. If T is strongly equi-singular, then h

induces an equi-singular family f: (g, E) — T of del Pezzo pairs.

Proof. The existence of the simultaneous elimination is shown by Lemma 2.20 and by
a similar argument to the proof of Proposition 2.21. By (1)—(3) of Definition [5.12, we
infer that £ 77 1s a relative simple normal crossing divisor over T'. In order to show the
equi-singularity of f, we apply Lemma 4.13. The exceptional curves for the eliminations
and E +; form a relative simple normal crossing divisor over 1" by (4) of Definition [5.12!
In case (X3, Ey, Ay) is of type [2;1, 2]y, then the negative section o on X; forms a divisor
of M smooth over T which does not intersect EM If (X, Ey, Ay) is of type [1;2, 2]y, then
the proper transform of the divisor L in M is smooth over T and is away from E - Thus

the induced family (S, B) — T is equi-singular. O

5.3. Deformation of log del Pezzo surfaces of index two. Recall that S is called
a log del Pezzo surface if (5,0) is a log-terminal del Pezzo pair. By a deformation of a
log del Pezzo surface S, we mean a deformation of the del Pezzo pair (.5, 0) in the sense
of Definition 5.1, (3). If the index of S is at most two, then the genus g is a deformation
invariant, since 2g — 2 = (K + Ly )Ly = 2K2. The author has learned the following

result in the case of characteristic zero from Yongnam Lee.

Theorem 5.16. A log del Pezzo surface of index two is deformation equivalent to a
(non-singular) del Pezzo surface by a deformation of index two of log del Pezzo surfaces
in the sense of Definition 5.1. In particular, a log del Pezzo surface of index at most two

admits a Q-Gorenstein smoothing.

Proof. A non-Gorenstein singular point of a log del Pezzo surface S of index two is of type
K, for n <9 by Theorem[4.14, Moreover, the local ring of the singularity is isomorphic to
the local ring at the origin of X ((1,2n—1)/(4n)) of Example(4.17. In fact, the morphism
to X((1,2n — 1)/(4n)) in Proposition is birational by construction of the minimal
desingularization M. Thus, the singularity admits a Q-Gorenstein smoothing (of index
two) by Proposition [4.19.

In order to show that the smoothing extends to a global deformation of S, it is enough
to prove that H?(S, T) = 0 for Ts = Hom(Qk, Os) (cf. [29, Proposition 6.4], [21, Lemma
1]). In fact, we have a formal global deformation by the vanishing, which is algebraizable
by H?(S,0g) = 0. Note that H?(S,Ts) is dual to Homg(7Ts,wg) for the dualizing sheaf
ws ~ Os(Kg) and that a member of |—Kg| induces an injection wg < Og. Thus
H?(S, Ts) = 0 follows from another vanishing Homg(Ts, Og) ~ H(S, (25)V") = 0. Since

S has only toric singularities, the double-dual (Q2%)VV is isomorphic to a.Q}, (cf. [8]).
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Thus the vanishing is established by H°(M,Q},) = 0. Hence, S admits a Q-Gorenstein
smoothing.

Let S; be a smooth surface obtained as a smooth fiber of the Q-Gorenstein smoothing.
Since —2Kg is an ample Cartier divisor, —Kg, is also ample. Thus S; is a del Pezzo

surface. O

Since the genus ¢ can be taken between 2 and 10, any del Pezzo surface degenerates
into a log del Pezzo surface of index two by a Q-Gorenstein deformation.

For deformations of constant index two (cf. Definition [5.1, (3)), we have the following
result by Proposition 5.4 and Proposition [5.10.

Lemma 5.17. If two log del Pezzo surfaces of index two have the same genus g # 6,
then they are connected by deformations of constant index two. A log del Pezzo surface
of index two and of genus g = 6 is connected to a log del Pezzo surface of type [1]o or

[0;1,0]¢ by deformations of constant index two.

In the case of g = 6, we have exactly two deformation equivalence classes for deforma-

tions of constant index two by:

Lemma 5.18. Let f: S — T be a flat family of normal surfaces over a non-singular
connected curve T' such that 2Kg is Cartier and that any fiber S; = F7Y¢) is a log
del Pezzo surface of index two. If a fiber S, is of type [1]o, then so is any fiber S;.

Proof. The type of a fiber S; is one of [1]o, [0;1,0]o, [2;1, 1]+ (a,b), since these are the

types with genus 6. We have isomorphisms

ws, ~ 6'xté,§((’)gt,w§) ~wz®0s and Og(2Ks,) ~ 05(2K35) @ Os,

for any t € T'. Since —Kg, = Kg, + (—2K,), we have

OSt(_KSt) ~ Og(—Kg) & OSt'

We also have the base change isomorphism
f.O05(—K3) ®o, k(t) ~ H'(S,, —K,)

by H'(S;, —Kg,) = 0. Let P1(£) — T be the projective bundle associated with the locally
free sheaf & = f.Og(—K3) and let ®: S = Pr(&) be the rational map over T associated
with the homomorphism f*f.£ — Oz(—K3). Then the restriction of ® to S; coincides
with the rational map associated with the linear system |—Kg,|. Thus ®(S,) ~ P? and

Fo, if S; is of type [0; 1, 0]o;
Fy, if Sy is of type [2;1,1]4(a,b).

O(S;) ~
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Let V' C Pr(€) be the image of the rational map ®. Then a general fiber V; of V- — T is
just the image ®(5;). For a tautological divisor H of Pr(£) with respect to £, we have
®(S;)H? = 6, since ®|g, is birational to the morphism associated with | Ky, + L;| for the
minimal desingularization o;: M; — S; and for L, = aj (—2Kj,). Therefore, V; = ®(.S;)

for any t. Moreover, V; ~ P2, since V, ~ P2, Hence, S; is of type [1]o for any t. Il

Therefore, the number of the deformation types of log del Pezzo surfaces of index two

with respect to the deformations of constant index two is 10.
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6. THE STRUCTURE OF LOG DEL PEZZO SURFACES OF INDEX TWO

In the remaining part of this paper, we consider only log del Pezzo surfaces S of index
two. In this section, the negative curves on the minimal desingularization M are studied.
We shall show that the dual graph of negative curves on M and the type of S almost
determine the equi-singular deformation equivalence class of S. We shall also compare
the classification of log del Pezzo surfaces of index two by the types of fundamental triplet
with the classification by Alexeev—Nikulin [3].

6.1. Types of log del Pezzo surfaces of index two. For a log del Pezzo surface S
of index two, let a: M — S be the minimal resolution of singularities. Then —2K,; ~
a*(—2Ks) + Ey for a non-zero a-exceptional simple normal crossing divisor E);, and
(M, Eyy) is a basic pair with Ly Ey = 0 for Ly = —2K ), — Eyy. Conversely, S is deter-
mined by M since |-2K ;| = |Ly| + Ey and since « is given as the Stein factorization
of the morphism associated with the base point free linear system |L|.

Let (X, F,A) be a fundamental triplet whose elimination ¢: M — X of A defines the
basic pair (M, Ey) by Ey = E%,. Here, E is also a non-zero simple normal crossing
divisor and LE = deg(A) for L = —2Kx — E.

There is an isomorphism a,Oy(Ky + Ly) ~ Og(—Ks) by Ky + Ly ~ Ky +
a*(—2Kg). Thus the morphism M — P|K); + Ly| associated with the base point
free linear system |[Kj; 4+ Ly| is birational to the rational map ®_g: S - P|—Kg|
associated with the anti-canonical linear system |— K|, even though — K5 is not Cartier.

If Kx + L is ample, then X is the image of ®_g, and E is the image of the non-
Gorenstein locus of S. If Kx + L is not ample but big, then the rational map ®|_g,
induces the contraction morphism X ~ F, — Fy ~ P(1,1,2) of the negative section
o C X. If Ky + Ly is not big, then the morphism 7o ¢: M — X — P! is obtained as
the Stein factorization of the composite ®|_g o a.

A log del Pezzo surface S of index two determines the isomorphism class of the basic
pair (M, Eyr), and moreover, the isomorphism class of the fundamental triplet (X, E, A)
except for the case where (X, E, A) is of type [1; 2, 2]y, by Theorem 4.9 (cf. Example4.12]).
In particular, the type of (X, E, A) depends only on S. Thus we define the type of S to
be the type of (X, E,A). Let T be the type of S. Then the genus gt is defined as the
genus of the minimal basic pair (X, F), but it equals the genus of the basic pair (M, Ey)
and also the genus of the del Pezzo pair (S,0). In particular, gr = K2 + 1.

The number of irreducible components of E); also depends on the type T, which is
denoted by kt. In Section 6.3 below, we shall introduce another invariant ét, which is
calculated in Proposition 6.14. We have TABLE 6 of the list of types T of log del Pezzo

surfaces of index two together with the invariants gt, k1, and 7.
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TABLE 6. The types of log del Pezzo surfaces of index two

Type T | gr |kt |07 Type T gt |kt | o7 Type T gr |kt | o7
[1]o 61110 [1;1,1]o 5|1 |1 (3;1,0]o 9111
2]o 31| 1|[1;1,1]4(0,0]5]2]1 (3;1,1]+ 71210

[2]+(0) 3121 | [LL1(L,n)]5]3]1 (3;2,4]+ 21211

[2](1) 3131 | [L1,1]4(2,1) ] 5] 4]0 |[32,4]44(0,0)| 2|3 |1

2]4(2) 314 |1 | [L1,1]4(1,2) | 541 |[324..(1,1)] 2]4]1

[2]+(3) 305 1| [LL,1(L,3) 551 ([324]:++(2,1)] 2]5]0

2]+ (4) 31610 [1;2,2]o 2 0111 |[32,4,:4(1,2) 25 |1

[0;1,0]o 6 11 (2;1,0]o 811 |[32,4,.(1,3)2]6 |1

[0;1,1]o 4111 |[21,1]5(0,0) ] 6 [ 2|1 |[32,4]44(1,4)| 2| 7|1

0;1,1],(0) | 4 | 2 | 1 [[21,1](1,1)1 63 ]1][32,4:+(1,5 2|8 |1

0;1,1).(1) | 4 {3 |1 |[21,1]:(1,2)| 6|4 |1][324++(1,6)] 2|90

0;1,1].(2)| 4|4 |1 |[21,1]:(1,3)| 6|50 [4;1,0]o 10{11]0

0;1,1],3)| 4 | 5|1 12;1,2]o 41111 4; 2, 4] 00 31210
[1;1,0]o 71111 12;1,2] 4 41310

By TABLE 6, we shall show in Lemma 6.15/ below that d1+ depends on the equi-singular
deformation equivalence class of basic pairs (M, Eys) with Ly Ey = 0. In particular, we

have:

Theorem 6.1. The list of types of fundamental triplets coincides with the list of equi-
singular deformation equivalence classes of basic pairs defining log del Pezzo surfaces
of index two with one exception; The two types [0;1,1]g and [2;1,2]y define the same

equi-singular deformation equivalence class.
6.2. The negative curves on M.

Proposition 6.2. A negative curve v on M is a (—d)-curve for 1 < d < 4. Moreover,

the (—d)-curves are classified as follows:

(1) A (—4)-curve is a connected component of Ey; and is the proper transform of an
irreducible connected component of E. A (—4)-curve exists if and only if E is
non-singular.

(2) A (—3)-curve 7y is the proper transform of an irreducible component Ey of E with
(E— Ey)Ey =1. Here, (Eyy —v)y = 1.

(3) A ¢-exceptional (—2)-curve is a ¢-exceptional irreducible curve vy satisfying v N
Ey =0 or~y CEy. IfyNEy =0, then ¢(v) is a non-singular point of E. If
v C Ey, then ¢(7y) is a node of E.
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(4) A (=2)-curve which is not ¢-exceptional is the proper transform of one of the

following curves on X ~T,:

(a) The section o when the type is [2;1,2] or [2;1, 2], 1;

(b) A fiber £ of m with £ N E C A when the type is [1;2,2]y.

(¢) The fiber ¢ of w contained in E when the type is [3;2,4] 14 (a,b).

(5) A ¢-exceptional (—1)-curve is either the curve I'y in the situation of Lemma(2.10
or the curve I'yy 1 in the situation of Lemma(2.14.

(6) A (=1)-curve vy with Lyy = 1 which is not ¢-exceptional is the proper transform
of a fiber { of m: X ~ F, — P! such that E{ =2, { ¢ E, and deg(ANY{) = 1.
Here, v N Ey is a non-singular point of Eyy.

(7) A (=1) curve v with Lyy # 1 satisfies Lyy = 2 and Ey Ny = 0, and is the
proper transform of one of the following curves:

(a) A line £ of P? with deg(A N{) =2 when deg E = 2;

(b) A fiber £ of m with deg(AN¥) =1 when X ~F,, and El = 1;

(¢) A minimal section o with o N E C A when the type is [0,1, 1] or [0; 1, 1] (b);

(@)

)

(e) A section © at infinity with © N E C A in the case where the type is one
of [3:2,4]+, [3:2,4]14(0,0), [3;2,4] 14 (1, 1), [3;2,4]44(1,2), [3;2,4]44(1,3).
Here, for a giwen Cartier divisor A" C A of E with A" ~ (0 + 3()|g, there
exists uniquely the section © at infinity with © N E = A/;

The negative section o when the type is [1; 1, 1]o;

(f) The negative section o when the type is [1;2,2]o;

(g) A section © ~ o+ ml of m with ©NE C A for 1 < m < 4 when the type
is [1;2,2]g. Here, for a given Cartier divisor A’ C A of E with deg A" = 2m
such that ENC ¢ AN for any fiber £ of w, there exists uniquely the section ©
with © N E = A,

Note that the a-exceptional curves are classified in Lemma [4.13] for any basic pairs

(M, Eyr). However, here, we consider only the basic pairs with Ly Ey = 0. A part of

the proof below overlaps with the proof of Lemma [4.13|

Proof. 1f 7 is ¢-exceptional, then v is a (—1)-curve or a (—2)-curve, and the assertions
(3) and (5) have been shown in Lemmas[2.10 and [2.14.
We have the following properties (i)—(iv) of a negative curve vy on M:

(i) If v is not ¢-exceptional, then the equality
7= ¢(7)? — deg(A N d(v))

holds, by Lemma (2.7
(ii) If v ¢ Eyy, then 7y is a (—1)-curve or a (—2)-curve, by —2K ;v = Lyy+ Epyy > 0.
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(iii) Suppose that ¢(7) is an irreducible component E; of E in M. Then
—4<y*=—4+(E—E)E, < -3,
which is derived from
v = E} —deg(ANE,)=E? - LE, = E} — (-2Kx — E)E,
=2(Kx+ E1)Ey+ (E— E)E, = -4+ (F — E))E,.

In particular, 7 is a (—3)-curve or a (—4)-curve.
(iv) If v C Er, then Lyy =0 and

—4=2(Ky +7)y = —Eny — Luy + 292 =7° = (Bmy — 1)y <7°

The properties above show that v ~ P! with 42 > —4. The assertions (1) and (2)
follow from (iii), (iv). Note that if F has an irreducible connected component, then E is
non-singular by Theorem 4.6.

In the proof of (4), (6), (7) below, let e;, es be the integers with £ ~ e;0 + eof when
X ~F,.

(4): Let v be the (—2)-curve. Then Lyy = Eyy = 0 by —2Ky = Ly + Ey and
Ly Ey = 0. In particular, (Ky + Ly )y = (Kx + L)¢(y) = 0. Hence, Kx + L is not
ample. If Ky + L is big, then the type of (X, E, A) is [2; 1, 2]y or [2;1,2], 4, and ¢(7y) = 0.
Conversely, the proper transform of o in the case [2;1,2]y or [2;1,2], is a (—2)-curve
since A No = (). This is the case of (4a).

Suppose that Ky + L is not big. Then e; = 2. Since Kx + L ~ (n+ 2 — e3)l, ¢(7) is
a fiber ¢ of w. Conversely, if 7 is the proper transform of ¢ in the case e; = 2, then v is a
(—2)-curve if and only if deg(AN¥¢) =2, by (i). Here, if ¢ ¢ E, then the type is [1;2, 2]y
by 2 = deg(ANY{) < E¢, and we have N E C A by E{ < 2. This is the case of (4b). If
¢ C E, then the type is [3;2, 4], (a,b) and the fiber ¢ is unique, where deg(A N¢) = 2.
This is the case of (4c).

(6): Now ¢(vy) ¢ E by (iii) and Kyy = Lyy = Eyy = 1. Hence, (Kx + L)o(y) = 0.
Thus Kx+ L is not ample. If Kx+ L is big, then X ~ [Fy and ¢(v) = o, which contradicts
(i). Hence, Kx + L is not big. Thus e; = 2 and ¢(7) is a fiber ¢ of w. Conversely, if = is
the proper transform of a fiber £ ¢ FE in the case e; = 2, then 42 = —deg(A N ¢) by (i).
Thus 7 is a (—1)-curve if and only if deg(A N¥¢) = 1. If E has a node, then the type is
3;2,4], or [3;2,4] 14 (a,b), but a fiber £ ¢ E with AN ¢ # () does not contain the nodes
of E.

(7): The curve v is not ¢-exceptional by (5), and ¢(v) ¢ E by (iii). The equality
2 = —2Kyy = Ly + Eyy implies that Lyy = 2 and Eyy Ny = (. In particular,
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(Kx + L)¢(v) = 1. We consider the proof in the following cases:
(A) X ~P?% (B) X ~F,and e = 1; (C) X ~F, and e; = 2.

Case (A): deg E = 2 and ¢(v) is a line ¢ by deg(Kx + L) = 3 — deg E. Conversely, if
~y is the proper transform of a line ¢ and if deg £ = 2, then v is a (—1)-curve if and only
if deg(AN¥¢) =2, by (i). This is the case of (7a).

Case (B): Kx + L ~ 0+ (n+ 2 — ey)l with e; < 2. Note that e = 2 only in the case
21, 2] 4+

If ¢(7) is a fiber £ of 7, then deg(ANY) = (> —~% = 1. Conversely, the proper transform
of a fiber ¢ with deg(AN¢) =11is a (—1)-curve. This is the case of (7b).

If ¢(y) is a minimal section o', then e; = 1, ¢/ ¢ E, and deg(c’ N A) = —n + 1; hence,
the type is [0;1,1]o, [0;1,1].(b), or [1;1,1]o. For the types [0;1,1]y and [0;1, 1] (b), we
have o' E C A. This is the case of (7c). For the type [1;1, 1]y, ¢’ is the negative section
oand o N E =0NA = (. This is the case of (7d).

Assume that ¢(7y) is neither a fiber nor a minimal section. Then ¢(v)? > 0. By the

Hodge index theorem, we have

1= ((Kx + L)¢()* = (Kx + L)*6(7)* = (n + 4 — 2e5)$(7)* > 0.

Thus 2e; = n+ 3 and ¢(7)? = 1. Then n = 1 and ey = 2, which is a contradiction since
ey < 1 for n # 2.

Case (C): Then Kx+ L ~ (n+2—e3)¢, where 0 < eo < n+1. Since (Kx+L)o(vy) =1,
®() is a section © ~ o + m/l for some m and e = n + 1. Then the type is [1;2, 2],
3;2,4] 4, or [3;2,4] 4 (a,b). We treat the case of types [3;2,4]; and [3;2,4],4(a,b) in
Subcase (C1), and the case of type [1;2, 2]y in Subcase (C2) below.

Subcase (C1): This will corresponds to the case (7e). Here n = 3. Then m > 3, since
o C E and © ¢ E. Here,

2m —2 =07 —1*=deg(ANO) <O(E —0)=m+ 1.

Hence, m = 3 and © N E C A. Conversely, let A’ C A be a Cartier divisor such that
A" ~ (0 + 30)|g. Since H?(X,0 + 3( — F) = H?(X, —0 — {) = 0 for any p, we have an
isomorphism

H°(X, 0+ 3¢) = HY(E, Og(c + 30)).
Here the subspace H(X, 3¢) of the left hand side is isomorphic to the kernel of

H(E, Og(o + 30)) — H(0,0,).

Since A N o = (), there exists a unique section © ~ ¢ + 3¢ at infinity with © N E = A’.

Furthermore, the proper transform of © in M is a (—1)-curve.
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We have to consider the existence of A’ ~ (o + 3()|g with A" C A. If the type is
[3;2,4]+, then A does not contain the node of E and hence any subscheme A’ C A with
deg A’ = 4 is linearly equivalent to (o + 3/)|g.

Suppose that the type is [3;2,4];1(a,b). Then E = o + { + 04 for a section o, at
infinity and for a fiber ¢ of m, where ANo = (. If (a,b) # (0,0), then A contains
the node P = ¢ N 0y and hence multp(A' N ¥¢) = a, multp(A’' N oy) = b for any
Cartier divisor A’ C A of E containing P by Corollary 2.13. If A" ~ (0 4 3()|g, then
deg(A'Noyw) =3 < deg(ANoy) =6 and deg(A'NY) =1 < deg(AN¥) =2. Therefore,
the Cartier divisor A" C A with A’ ~ (0 + 30)|g exists if and only if the type is one of
[3;2,4]54(0,0), [3;2,4]41.(1,1), [3;2,4]44(1,2), [3;2,4]4+(1,3).

Subcase (C2): This will corresponds to the cases (7f), (7g). Here, E ~ 20 + 2/ is

non-singular and ¢ N E = (). We have
2m = 0% —y* = deg(ONA) < OF = 2m.

Hence, ONE CAand 0 <m<4by2m=0FE <degA =8 If m=0, then ©=0. In
the case m > 0, O is determined by © N E. In fact, the vanishings H? (X, —o + j¢) = 0

for p, j € Z induce an isomorphism
H°(X, 0 +mf) = H(E,0(2m)).
Hence, for a given subscheme A’ C A of deg A’ = 2m such that N E ¢ A’ for any fiber

¢, the section © ~ o +mf with © N F = A’ exists uniquely. Thus we are done. O

Let ¢: Y — M be the blowing-up at all the nodes of Fj;. Then the proper transform
Ey of Epin Y is a disjoint union of (—4)-curves. Let G, be the 1-exceptional curve over
a node g of Ey. Then Ey = ¢*(Ey) — 2 G, and

(6-16) —2Ky =" (=2Ky) =2 Gy ~¢*(Ly + Eyn) =2 Gy = ¢"(Lu) + Ey.

Definition 6.3 (cf. [3]). The birational morphism § = ao: Y — S is called the right
resolution of S. If a non-singular projective surface ) is the right resolution of a log

del Pezzo surface of index two, then Y is called a DPN surface, for short.

In chark = 0, the notion of DPN surface above coincides with that of right DPN
surface of elliptic type in [3].

Lemma 6.4. For a DPN surface Y, suppose that there exists a negative curve v C )
such that v is not y-exceptional and 1(v)* > 0. Then the type of (X, E,A) is [3;2,4], v
is a (—1)-curve, and ¢ o 1(7) is the unique fiber of m: X — P passing through the node
of E.
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Proof. We have —2Ky~y > 0 by (6-16), since ¥(y) ¢ Ep. Since Ly(y) > 0 by the
Hodge index theorem, v is a (—1)-curve and Ly (y) + Eyy = 2. Then

Ly(vy) > Eyy+2> Gyy > Eyy,

since Ly — Ey is nef. Hence, Lyy = 2, Eyy = 0, and Y}, G,y = 1. It follows that
P(7)? =0 and ¢*(Kx + L)Y(y) = 0 by 2(Ky + Las) ~ Ly — Ey. Therefore, X ~ F,,,
Kx + L is not big, and ¢o() is a fiber ¢y of 7. Here, {oNA = () and ¢, contains a node
of E. Hence, the type of (X, E,A) is [3;2,4], and {; is the unique fiber passing through
the node of E. Conversely, the proper transform of the fiber /5 in ) is a (—1)-curve. O

Corollary 6.5. A negative curve on a DPN surface Y is a (—d)-curve for d =1, 2, 4.
(1) The set of (—4)-curves on Y coincides with the set of the proper transforms of

1rreducible components of Eyy.
(2) The set of (—2)-curves on Y coincides with the set of the total transforms of
(—2)-curves on M not contained in Ey;.
(3) The set of (—1)-curves on Y consists of the following curves:
(a) The v-exceptional curves;
(b) The total transforms of (—1)-curves on M;
(¢) The proper transform of the fiber containing the node of E when the type is
[3;2,4]4.

Proof. By Lemma 6.4, it is enough to consider the proper transforms of negative curves
on M. Then the proper transform of any irreducible component of E); is a (—4)-curve
by (1), (2), and (4) of Proposition [6.2. The proper transform in ) of a (—2)-curve not
contained in F); is a (—2)-curve by (3)) and (4) of Proposition 6.2l The proper transform
in Y of a (—1)-curve is a (—1)-curve by (5), (6), and (7) of Proposition 6.2. Thus we are
done. O

Corollary 6.6. The Picard number r = p(Y) of Y equals 11 — gt + kv for the type T of
S.

Proof. Ey is non-singular with kt components where any component is a (—4)-curve.
Hence, 4K = L3, —4kt by (6-16). Since (K + L)Ly = 2g7 —2 induces L3, = 4g7 —4,
we have r = 10 — K3, = 11 — g1 + k. O

Let n(E)s) be the number of nodes of Ey;. Then n(E);) = kt — 1 when the type is not
[4; 2, 4]00, and n(E)yr) = 0 when the type is [4;2,4]oo.
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Corollary 6.7. The Picard number p(M) equals 10 — (Kx + E)?. It is also calculated

as follows:
12 — g, if the type is not [4;2, 4]oo;

p(M) =11 — g1 + kt —n(En) =
13 — gr =10,  if the type is [4;2,4]oo.

Proof. The first equality follows from K%, = (Ky + Ly )* = (Kx + L)*> = (Kx + E)? by
(3=4). The second follows from Corollary 6.6. O

We have the following characterization for a rational projective surface to be a DPN

surface:

Lemma 6.8. A non-singular projective rational surface Y is a DPN surface if and only
if there is a non-zero non-singular divisor Ey such that Ly = —2Ky — Ey, is nef and big,
and LyEy = 0.

Proof. Tt is enough to show the ‘if’ part. Let §: ) — S be the birational morphism into
a normal complete algebraic space S of dimension two such that (-exceptional curves
are the curves v with Lyy = 0. Then S is a log del Pezzo surface of index two (cf.
Definition 3.2, Proposition[3.5). Let a: M — S be the minimal desingularization. Then
B = a o1 for a birational morphism ¥: Y — M and ¢*E)y = Ey + 2G for the -
exceptional divisor G ~ Ky — ¢*Ky. Let Y=Y, = Y,,.1 — -+ =Y, — Yy = M be
the succession of blowups at points representing ¢. For 0 <i <m —1, let ¥;: Y;11 — Y;
be the blowing up, G;;; C Y1 the 1;-exceptional divisor, and let E; C Y; be the
pushforward of Ey. Then ¢;E; = E;y1 + 2G4, for any ¢. In particular, the center of
¥;: Vi1 — Y, is a node of E;. Hence, ¢): Y — M is the blowing up at all the nodes of
Eyr. Therefore, 5: Y — S is the right resolution. U

6.3. Another invariant ). Let §: )J) — S be the right resolution and let v: ) — M be
the blowing up at all the nodes of M, as before. For an irreducible component E; 5; of
Er, let E;y be the proper transform in ), which is a (—4)-curve. The proper transform
Ey = Y E;y of Ey in Y is a disjoint union of the (—4)-curves. Moreover, Ey is the
union of all the (—4)-curves on ) by Corollary We infer that £y coincides with the
fixed part of the linear system |—2Ky| by the relation (6-16). Since Ly = —2Ky — Ey ~
V* Ly ~ §*(—2Kg), B: Y — S is induced from the morphism associated with |-2Ky|.
We have

(6-17)  dim H*(Y, —2Ky) = dim H°(S, —2Ks) = 3K2 + 1 = 3g7 — 2,
dimH' (Y, —2Ky) = dim H*(Y, —2K7y) — x(¥, —2Ky) = 3(K — K3,) = 3kr,
by Theorem [3.18, H*(Y, —2Ky) = 0, E5, = —4kt, and by .
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Definition 6.9. We introduce an invariant 6 € {0,1} for a DPN surface ) as follows:
For the number k of irreducible components of Ey and for a vector € = (¢4, ..., &) with
g; € {1,—1}, we set

By=Ly+Y cEiy.
Then we define § = 0 if there exists a vector € € {1, —1}* such that the numerical class
cl(B5) € NS(Y) is divisible by 4, i.e., cl(B5,) € 4NS(Y). If 6 # 0, then we define § = 1.

Note that ¢ can be considered as an invariant of S which depends only on the type of S.

Remark. The invariant 0 above is nothing but the geometric interpretation of ¢ of the
main invariants (r,a,d) for the invariant lattice S (cf. Section (6.6} [3, §2.3]).

Proposition 6.10. Let w: Y =T bea proper smooth morphism over a non-singular
connected curve T whose fibers J; = w'(t) are DPN surfaces. Then the invariant 6();)

18 constant on T .

Proof. We may replace T" with another curve étale over T', since T is connected. The

rationality of ), implies that the relative Picard scheme Pic;; / is étale over T'. Hence,

T
we may assume that the restriction map Pic())) — Pic()),) is surjective for a given point

o € T. The kernel of the restriction map is just the image of @w*: Pic(T") — Pic(}). In
fact, it is shown as follows: Suppose that M|y, ~ Oy, for an invertible sheaf M € Pic() )-
Then (M|y,)? = (Mly,) - (Aly,) = 0 for a w-ample invertible sheaf A on Y and for any
point ¢ € T. It implies that M|y, ~ Oy, by the Hodge index theorem and by the
rationality of );. Hence, w, M is an invertible sheaf and w*w, M ~ M.

By (6-17), we have the base change isomorphism
w,05(—2K5) @ k(t) ~ H' (W), —2Ky,).

Hence there exist a family f: S — T of log del Pezzo surfaces of index two, a birational
morphism 3: Y — S over T, and an effective divisor E5 C Y such that

(1) Bly,: Y — Sy = f~'(t) is the right resolution of S,

(2) E5ly, = Ey,,

(3) —2K3 — By ~ 3"(—2Kj).
Here, E3~] — T is smooth. Replacing T" with a curve étale over T', we may assume that
any irreducible component E, 5 of L5 is a P'-bundle over T. Thus E;y, = Ei,j}bit is an
irreducible component of Ey, for t € T

For a vector € = (g;), we consider a divisor

Bt = B‘% — ﬂ*(—QKg) + ZEiEi,f}'

Then B¢|y, = BS, for any t € T. Suppose that Bj, ~ 4L, for a divisor L, of J,.
Then Oy, (L,) ~ L|y, for an invertible sheaf £ of Y. Thus the invertible sheaf M =
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L2 ® (95(—35) of Y comes from T. Therefore, B3, is divisible by 4 in Pic();) for any
t € T. Thus ¢ is constant. O

The following result is useful for calculating ¢:

Lemma 6.11. Let f: Sy — Sy be a birational morphism between non-singular projective
varieties and let D be a divisor of S1. Then cl(D) € 4NS(S1) if and only if

(1) Dy € AZ for any f-exceptional curve v and,
(2) cl(f.D) € 4NS(Ss).

Proof. Since f is a succession of blowups at points, we may assume that f is the blowing-
up at a point. Let I be the exceptional divisor. It is enough to prove the ‘if’ part. If
the two conditions are satisfied, then f,D — 4L is numerically trivial for a divisor L, and
f*(f«D) — D = 4nT" for some n € Z; hence, D — 4(f*L — nI') is numerically trivial. O

Applying Lemma to po: Y — X, we have:

Lemma 6.12. § = 0 if and only if there exists a vector € = (g;) € {1, —1}* such that,
(1) ei+e5 =0 fori# jif Eipr O Ejau # 0,
(2) 1+¢; =0 if there is a (—1)-curve vy with v N E; pr # 0,
(3) ol (¢ (Las + X5 €iFinr) ) € 4NS(X).

Proof. An exceptional curve I' for ¢ o v is either a 1-exceptional curve or the proper
transform of a ¢-exceptional curve. In the former case, ByI' = ¢; +¢; if ¥(I') = Eja N
E; y. In the second case, if (') is a (—2)-curve, then Ly¢(I') = Eyyp(I)) = 0 and

J

B3I € 4Z. 1f (') is a (—1)-curve, then Ly(I') = Eytp(I') = 1 and BN = 1 +¢; for

the unique irreducible component E; 5; of Ey, intersecting ¢(I"). Thus, we are done. [

Corollary 6.13. Suppose that cl(B5) € ANS(Y) for a vector e € {1, —1}*.
(1) If Eyy is the proper transform of an irreducible component Ey of E with AN (Ey\
Sing E) # 0, then e, = —1.
(2) Let Ey and Ey be irreducible components of E intersecting with each other at a
point P such that multp(A N Ey) = 1 and multp(A N Ey) = b. Let E;y be the
proper transform of E; in' Y fori=1,2. Then e, = (—1)"*! and &5 = 1.

Proof. (1): By Lemma 2.10] there is a (—1)-curve I'y ¢ Ej; such that T'yEy = Ty By =
1 and I'yNEy 5 is a non-singular point of Ey;. Thus By (I'y) = LyTp+e; = 14¢, € 4Z.

(2): By Lemma[2.14, there is a straight chain Z?g I'; of non-singular rational curves
on M such that

o Fyy+ 22:1 I'; + Es p is a straight chain of rational curves contained in E,y,
e the end Pb+1 s a (—1)—CUI‘V€ with Fb—i—l N EM = Fb N Fb+1.
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Let I'; y be the proper transform of I'; in ) and let ¢[j] be the coefficient of € at I'; y, for
1 <j <b. Then By y = €[b] + 1 € 4Z. Thus €[b] = —1. By (1) of Lemma [6.12] we
have e[j] = (—=1)""J for 1 < j <b, e, = (—1)"" and g5 = 1. O

Proposition 6.14. (1) Suppose that E is irreducible. Then § = 1 except for the types
[1]o and [4;1,0]o.

(2) Suppose that E is non-singular and reducible. Then the type is [4;2,4]o0 and
0=0.

(3) Suppose that E is reducible and singular, and has no nodes P with P € A. Then
d =1 except for the types [2;1,2] .y and [3;1,1],.

(4) Suppose that E has exactly one node P and that multp(A N E;) =1, multp(A N
Ey) = b for the irreducible components Fy, Ey of E. Then § = 1 except for the
types (21, (4), [131,1]4(2,1), and [2:1,1],(1,3).

(5) Suppose that E has two nodes P and P' and that multp(ANEy) = 1, multp(AN
E3) = b for the irreducible components Ey, Es of E. Then § = 1 except for the
types [3;2,4]14(2,1) and [3;2,4]+1(1,6).

Proof. (1): If A = 0, then (X, E,A) is of type [4;1,0]p. In this case, X = M and
L+ FE ~ 4(c + 3(). Hence, 6 = 0. Suppose that A # (. Then there is a (—1)-
curve v C M contracted by ¢: M — X. By Lemma [6.12, Corollary 6.13, and by
Ly — Ey ~ —2¢0"(Kx + E), we infer that 6 = 0 if and only if cl(Kx + E) € 2NS(X).
Here, cl(Kx + E) ¢ 2NS(X) except for the type [1]o.

(2) follows from Ly — Ey ~ —2¢*(Kx + E) ~ 4¢*({).

(3): Let Ey, Ey be irreducible components of E with Fy N Ey # 0. Let E;y be the
proper transform of Ej; in ) for ¢ = 1, 2. Suppose that cl(B5,) € 4 NS(Y) for some ¢. If
deg(ANE;y) > 0 and deg(A N Ey) > 0, then ¢, = e5 = —1 by Corollary 6.13. But it
contradicts Lemma [6.12l Hence, it is enough to consider the types [2;1,2] 4, [3;2,4],
and [3;1,1];.

Case [2;1,2]44: E = {1 + ly + o for two fibers (1, {5 of m and for the negative section
o. Then L — ¢, —ly+ o ~ 4(0 + ¢). Here,

¢*¢*(L — 61 — EQ + O') = V,D*LM — 6173; — 5273) + O'y = Bi)

for a suitable ¢ € {1, —1}*, where ¢, y, {5y, and oy are the proper transforms in ). Thus

= 0.

Case [3;2,4],: E = o + D for the negative section ¢ and for a section D ~ o + 4(.
Let oy and Dy be the proper transforms in . Then cl(Bj,) € 4NS()) implies that
BS, = ¢*(Ly) — Dy + oy and hence cl(L — D +0) € 4NS(X) by Lemma 6.12. However,
c(L—D+o0)=cl(20 + 20) ¢ 4NS(X). Hence, 6 = 1.
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Case [3;1,1]4: E = o + ( for a fiber ¢ of m and for the negative section o. Then
L— {0+ 0~ 4(c+ 2(). Here,

Qs*w*(L—f—i—O') :’QD*LM—gy—i-O'y:Bi}

for a suitable ¢ € {1, —1}*, where £y and oy are the proper transforms in ). Thus ¢ = 0.

(4): Suppose that B, € 4NS()) and let €; be the coefficient of ¢ at the proper
transform E; y of E; for i = 1, 2. Then ey = 1 by Corollary [6.13. Thus deg(A N Ey) =b
also by Corollary [6.13. If deg(A N E;) > 1, then b is even since e; = —1 = (—1)"™! by
Corollary [6.13.

Suppose that deg(A N Ey) = 1 and deg(A N Ey) = b. Then the type is [2;1, 1],(1, 3).
Here, F; is the negative section o, Fs is a fiber of 7, and L ~ —2Ky — E ~ 30 + 7.
Then cl(L + Ey + Ey) € 4NS(X) by L+ Ey + Ey ~ 40 + 8. Thus

Cl(@/J*gb*(L + E1 + Ez)) — Cl(Ly + ELy + Egy — FLy + 1—‘273} — ng) c 4NS()/)

for the curves I'; y in the proof of Corollary (2). Hence, 6 = 0.
Suppose that deg(A N Ey) > 1 and deg(A N Ey) = b. Then b is even and the following
types remain: [2],(4), [0;1,1]+(3), [1;1,1]+(2,1), [1;1,1]4(1,3). We can write

€ * b —Jj
B)J = ¢ (LM) — El,y + E27y + Zj:l(_l)b+l JFj,y

for the curves I'; y is the proof of Corollary (2). Thus § = 0 if and only if cl(L —
B, + B,) € 4NS(X).

Case [2]4(4): Ey and Es are lines of P2. Here deg L = deg(L — E; + E») = 4. Hence
d=0.

Case [0;1,1]4(3): We may assume that E; is a minimal section o and Fj is a fiber.
Here L ~ 30 +3¢ and L — E; + Fy ~ 20 + 4¢. Hence § = 1.

Case [1;1,1]4(2,1): Ej is a fiber ¢ of m and E, is the negative section o. Here,
L~30+5¢and L — FE, + Ey ~ 40 + 4¢. Hence 6 = 0.

Case [1;1,1],(1,3): Ej is the negative section o and Es is a fiber ¢ of . Here L ~
30 +50 and L — By + Ey ~ 20 + 6£. Hence 6 = 1.

(5): The types in this case are [3;2,4] 4 (a,b). Here, E = 0 4+ { + 0 for the negative
section o, a fiber £, and a section o, at infinity, and furthermore P =/ No,. If 6 =0,
then (a,b) = (2,1) or (1,6) by the same argument as in the proof of (4) above.

Case (a,b) = (2,1): Then F| = 0o and Ey = £. We set E3 = 0. As in the proof of
(4), we infer that § = 0 if and only if cl(L — F} 4+ E; — E3) € 4NS(X). Now L ~ 20 + 6/
and L — E; + F3 — E3 ~ 4. Hence 6 = 0.
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Case (a,b) = (1,6): Then E; = ¢ and Ey = 0. We set E3 = 0. As in the proof
of (4), we infer that 6 = 0 if and only if cI(L — Ey + Ey + E3) € 4NS(X). Now
L —F,+ FEy+ E3~ 40 + 8. Hence § = 0. O

As a result, the invariant ¢ depends only on the type T of (X, E, A) and is calculated
as in TABLE [6.

Lemma 6.15. For a log del Pezzo surface S of index two, the deformation type of the
right resolution Y depends only on the equi-singular deformation type of the basic pair
(M, Eyp), and vice versa. The invariant § depends only on the equi-singular deformation

type of the basic pair.

Proof. Let h: (M , EM) — T be an equi-singular family of basic pairs over a connected
non-singular curve T whose fibers define log del Pezzo surfaces of index two. Then
there exist a family f: S — T of log del Pezzo surfaces of index two and a birational
morphism a: M — S over T by Lemma 5.2. Let ¢: Y — M be the blowing up along
the double locus U(E; N E;) of E = Y E;. Then the induced smooth family w: Y — T
is a simultaneous right resolution of f. Thus, if two such basic pairs are equi-singular
deformation equivalent, then the associated right resolutions are deformation equivalent,
and they have the same ¢ by Proposition [6.10. Conversely, if two basic pairs have the
same invariants g, k, 0, then by TABLE |6, we infer that either they have the same type
or they are of types [0;1, 1]p and [2;1,2]y. In both cases, the basic pairs are equi-singular
deformation equivalent by results in Section and by Proposition (1). O

6.4. The singular points of S. We consider the singular points on S. A connected
component of the exceptional locus for a: M — S'is written as a~*(Q) for a singular point
Q of S. If a™}(Q) C Eyy, then Q € S is a singular point of type K,,. If a™(Q) ¢ Ey,
then Q € S is a rational double point, and an irreducible component of a~1(Q) is one of

following (—2)-curves by Proposition [6.2:

e A ¢-exceptional (—2)-curve such that ¢(v) is a non-singular point of F;
e The proper transform of the negative section o when the type is [2; 1, 2]o;

e The proper transform of a fiber ¢ of 7 with /N E C A when the type is [1;2, 2]o.

Lemma 6.16. (1) If the type is not [4;2,4]00, then S has a unique non-Gorenstein
singular point, which is of type Ky for the number k of irreducible components of
Ey. If the type is [4;2,4]00, then S has two singular points, which are of type Kj.
(2) Suppose that the type is neither [1;2,2]g nor[2;1,2]y. Then a rational double point
Q € S is of type Aj_1 where a=(Q) is the mazimal straight chain of (—2)-curves
in ¢~L(P) for a non-singular point P of E with multp(A) = 1> 2. In particular,
[ <degA.
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(3) Suppose that the type is [2;1,2]g. Then the total transform of the negative section o
in M is a (—2)-curve defining an A,-singularity on S. The other rational double
points Q € S are of type Aj_1, where o *(Q) is the mazimal straight chain of
(—2)-curves in ¢~ *(P) for a point P € E with multp(A) =1 > 2.

(4) Suppose that the type is [1;2,2]y and that w|g: E — P! is separable. Then a
rational double point Q) € S is of type A; for 1 <1 <7 or of type D; for 4 <1 <8.

(5) Suppose that the type is [1;2,2]y and that 7|g: E — P! is inseparable. Then a
rational double point QQ € S is of type A, for 1 € {1,3} or of type D; for 4 <1 < 8.

Proof. (1): E)y is connected if and only if the type is not [4; 2, 4]go. If the type is [4; 2, 4]go,
then Ej/ is a disjoint union of two (—4)-curves. Thus (1) follows.

(2) and (3): If the type is neither [1;2, 2]o nor [2; 1, 2]g, then any (—2)-curve is contained
in ¢~'(P) for a non-singular point P of F with multp(A) > 2. If the type is [2;1,2]o,
then there is one more (—2)-curve which is the total transform of o.

(4) and (5): Any (—2)-curve is contained in a fiber of M — P!. Thus the assertion
follows from Lemmas5.13 and 4.11. O

Let I' = I'|M] = I'(S) = I'(X, E, A) be the dual graph of the negative curves on M.
The part [k is defined to be the subgraph consisting of the irreducible components of
Eyr. Another part Irpp is defined to be the subgraph consisting of the (—2)-curves not
contained in Ej;. Then a connected component of I'k corresponds to a non-Gorenstein
point on S, and a connected component of [gpp corresponds to a rational double point
on S. Thus I'k U I'grpp is the dual graph of the minimal resolution of singularities of S.
By Lemmal6.16, (1), if S is not of type [4; 2, 4]po, then I'k = Ky for k = kt; If S is of type
[4; 2, 4]00, then Ik is the disjoint union of two K;. Thus I'k depends on the type T of S.

Let a(i) be the number of singular points on S of type A; for i > 1. Similarly, let d(7)

be the number of singular points of type D; for ¢ > 4. The formal linear combination
D(S) =D(X,E,A) =) a()Ai + ) _d(j)D;

of Dynkin diagrams is called the distribution (of rational double points) of S. Then
I'(S)rpp is identified with D(S). We define o(5) = o(X, E,A) = Yia(i) + X jd(j).
Note that ¢(S) is not determined by the type T, in general.

The birational morphism a: M — S contracts kt + o(.S) rational curves. Hence, the
Picard number p(S) equals p(M) — kt — o(S), since S is Q-factorial. Therefore,

p(S) =10 — (Kx + E)* — kt — o(9)
12 — gt — kr — o(S), if the type is not [4;2, 4]go;
8 —o(9), if the type is [4;2,4]oo.
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TABLE 7. The maximum and minimum Picard numbers

Type T | pF™ | pf™ | TypeT [ p¢™[pf™ ||  TypeT | pp™ | pf™
1o 5 | 1 1;1, 1] 6 | 2 [3:1, 0] 2 | 2
2]o 8 | 1 |[1:1.1,0,0] 5 | 2 3:1, 1], 3 |1

21,0 | 7 [ 1 [muy,an] o4 | 3 3:2,4], 8 | 1

2. | 6 | 2 [munia@nl| 3 [ 2 [B:24..00] 7 | 1

2.2 | 5 | 2 [muye@2] 3 | 3 [B:i24.0,0)] 6 | 2

2.3 | 4 | 2 [mny.@3) | 2 [ 2 [B:24..020] 5 | 1

2,4 | 3 | 1 [1:2, 2] 9 | 1 [B:24.1,2)] 5 | 2

0;1,0[p | 5 | 2 [2:1,0]0 3 | 2 [ 324,13 4 | 2

01,1 | 7 | 2 |@2n1.00 ] 4 | 2 [[3:24,,01,4)] 3 | 2

0:;1,1.0 ] 6 | 2 [[2uy.a,0)] 3 | 2 324,05 2 | 2

0:1,1.(1)] 5 | 3 [[2L0.12)] 2 | 2 [[324..06] 1 [ 1

0:;1,1.2) | 4 | 3 [211.0,3)] 1 | 1 [4: 1,0, 1|1

0;1,1.(3)] 3 | 2 2:1, 2] 7|1 [4: 2, 4]0 8 | 1
[1;1,0]o 4 | 2 2;1,2]44 5 |1

Definition 6.17. For a type T of fundamental triplet, we define o™ (resp. o) to
be the maximum (resp. the minimum) of ¢(S) for the log del Pezzo surfaces S of index
two of type T. For a log del Pezzo surface S of type T, if 0(S) = o**, then S is called
extremal. If o(S) = o, then S is called generic. A fundamental triplet (X, E,A) is
called extremal (resp. generic) if the associated log del Pezzo surface S is so. We also
define p™ (resp. pwax

del Pezzo surfaces S of index two of type T.

) to be the minimum (resp. the maximum) of p(S) for the log

Remark. The notion of extremal in Definition [6.17]is slightly different from that used in
[3]; this is related to the equi-singular deformation equivalence between types [0; 1, 1]o
and [2;1,2]p in Theorem[6.11

By Lemma[6.16, (X, E, A) is generic if and only if
e A is reduced on F \ Sing E when T # [1;2, 2]y, and
e A is reduced and deg(A N¥¢) <1 for any fiber ¢ of 7 when T = [1;2, 2]o.

In particular, o" = 0 for any T. Thus o¥® = pmax — pmin = Jf T =£ [4:2 4]g, then

PR =12 — gr —kr — o™ and pp** = 12— gt —kt. If T = [4;2,4]go, then ppin = 8 — glpax

and pP®* = 8. The numbers p2® and p™i® are calculated as in TABLE (7} by:

Proposition 6.18.
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(1) Suppose that (X, E,A) is not of type [1;2,2]y. Then (X, E,A) is extremal if and
only if any irreducible component of E \ Sing E has at most one point contained
in A.

(2) Suppose that chark # 2 and that (X, E,A) is of type [1;2,2]g. Then (X, E,A)
1s extremal if and only if A = ny Py + no P for the ramification points Py, Py of
m|g: E — P where (max{ny,ny}, min{ni,ny}) = (8,0), (6,2), (5,3), or (4,4).

(3) Suppose that chark = 2, (X, E,A) is of type [1;2,2]o, and that w|g: E — P!
is separable. Then (X, E,A) is extremal if and only if A = 8P for the unique
ramification points P of 7|g.

(4) Suppose that chark = 2, (X, E,A) is of type [1;2,2]o, and that 7|g: E — P! is
inseparable. Then (X, E, A) is extremal if and only if multp(A) > 2 for any point
PeA.

Proof. (1): Suppose that Supp A N (E; \ Sing F) contains two points Py, P, for an ir-
reducible component E; C E. We set m; = multp,(A) for i = 1, 2 and set A’ =
A + mo(P, — P,) which is an effective Cartier divisor of E. Then multp, (A") = my + ms
and P, ¢ A’. Since the Dynkin diagram A,,, 1,1 contains the disjoint union of A, _1
and Ap,—1, I'(X, E, A)grpp is regarded as a subgraph of I'(X, E, A")gpp. In particular,
(X, E,A) is not extremal.

Next suppose that Supp AN(F;\Sing E') consists of at most one point for any irreducible
component F; C E, then I'(X, E, A)rpp is uniquely determined by Lemma Thus
(X, E,A) is extremal.

(2): We define

A=A+ ZPGA’P#H& multp(A) (P, — P).
Since A,,—1 C Dy, I'(X, E, A)gpp is a subgraph of I'(X, F, A")gpp by Lemma [6.16. In
particular, if Supp(A) ¢ {Py, P>}, then (X, E, A) is not extremal.

Suppose that A = ny Py + na P, for ny > ny. Then ny + ngy = 8. Then D(X, E, A) is
calculated as follows:

e Jol1] 2 | 3 |4
D(X, E,A) | Dg | Dy | Dg + 2A; | Ds + Ay | 2D,

Since D; C Dg, the case n; = 1 is not extremal. The other cases are extremal.
(3) and (4) follow from a similar argument to (2)) above and Lemma O

We define an extremal distribution of type T to be D(S) for an extremal log del Pezzo
surface S of type T.

If T #[1;2,2]o, then an extremal distribution Dt of type T is uniquely determined. In
fact, for an extremal fundamental triplet (X, E, A) of type T, AN (E; \ Sing E) consists
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TABLE 8. Extremal distributions

Type T Dt Type T Dt Type T Dt
1o A, 11, 1, A, 13:1,0]0 0
[2]o Az [1;1,1]4(0,0) | Az + A 3;1,1]+ As
2,00 | 2A |LLULD| A 324, | A
20 | 24 |LLILD| A | B24.0,0) | A+ A
2.0 [A+ALLILLY[ 0 | B24d.0)] A
2]+(3) Ay | [11,1]4(1,3) 0 3:2,414+(2,1) | A4
(2] (4) A, [1;2,2]o see *) below | [3;2,4];4(1,2) As
[0;1,0]o A3 2;1,0]o Ag 3;2,4]44(1,3) | Ay
(01, 1] As | [2:1,1].(0,0) A 3:2,4] . (1,4) | A
0;1,1].(0) | 2a; [ [2:1,1).(1,1) Ay 3:2,4],.(1,5)| 0
[0;1, 1] (1) 2A [2;1,1]4.(1,2) 0 [3:2,4]4+(1,6) 0
0;1,1]4(2) | Ar | [2,1,1]4(1,3) 0 [4;1,0] 0
0;1,1.3) | A 2;1, 2], As + A 142, 4]0 A;
[1;1,0]0 A, 2:1,2] 14 27,

*) Extremal distributions of type [1;2,2]o:

char k 7é 2 Dg, D6 + 2A1, D5 + Ag, 2D4
chark = 2 Dg, DG + 2A1, D5 + Ag, 2D4, D4 + 4A1, 2A3 + 2A1, 8A1

at most one point for any irreducible component F; C E, and hence D+ is the direct sum
Y452 Ag,—1 for the degree d; = deg(AN(£;\ Sing E)), where the numbers d; depend only
on T.

The extremal distributions of type [1;2, 2]y has been classified in Lemma6.18, (2), (3),
when 7|g: E C X — P! is separable. Let (X, F,A) be an extremal fundamental triplet
of type [1;2, 2] such that 7|g: E — P! is inseparable. Then A can be written as a divisor
Zﬁzl m; P; of E for m; > 2 with >>m; = 8. We may assume that m; > mgy > --- > my.

Then (my,...,m;) is one of
8), (6,2), (5,3), (44), (422), (3,3,2), (2,2,2,2).
Therefore, the extremal distributions are classified as in TABLE(8] where the case [1;2, 2],

is treated in *).

Corollary 6.19. The distribution D(S) of rational double points of a log del Pezzo surface
S of type T is realized as a subdiagram of an extremal distribution of type T. Conversely,

any subdiagram of an extremal distribution of type T is realized as D(S) for a log del Pezzo



112

surface S of type T, provided that T # [2;1,2]o. An extremal distribution of type [2;1,2]o
is Ky + As + Ay and any subdiagram containing the part Ky + Ay is realized as D(S) for
a log del Pezzo surface S of type [2;1,2].

Proof. The first assertion follows from Proposition [6.18. A subdiagram of A,,_; is also
a direct sum of A,,,_; with m > > m,. Similarly, a subdiagram of D,, is the sum of D,
and A,,,_1 with m > n+ > m;. If (X, E,A) is of type [2;1,2]o, then D(X, E, A) always
contains A; which corresponds to the total transform of the negative section ¢ C X.

Thus, we have the converse assertion. U

Theorem 6.20. For a given type T, an extremal fundamental triplet of type T is unique
up to isomorphism if T # [1;2,2]g. In case T = [1;2,2]y, the isomorphism class of ex-
tremal fundamental triplet is determined by the extremal distribution D either if chark
2 orif D ¢ {Ds,8A;}.

Proof. Suppose that the type T is not [2]o, [0; 1, 1]o, [1;2, 2o, [3;2,4]+, nor [3;2,4] .. (a,b)
with (a,b) # (0,0). Then for two extremal fundamental triplets (X, £, Ay), (X, E, Ay)
of type T, there exists an effective divisor E’ such that A; N E' = Ay N E’ = () and that
X\ (F+ E') C X is a torus embedding. Since every irreducible component is an orbit
of the torus, we have an automorphism f of X such that f(F;) = E; for any irreducible
component E; C E and f(A;) = Ay outside the nodes of E. Suppose that £ has a node
P contained in Ay. Then P = E; N Ey and E = E, + E, for two irreducible components

E; and E5. We may assume the following properties to be satisfied:

e There is an effective divisor £’ such that Supp(A;) \ P C E', Supp(Ay)\ P C F,
and X \ (F+ E') C X is a torus embedding.
e multp(A;NE)) = multp(AsNE;) = 1 and multp(A;NEy) = multp(AsNEy) = b.
Let ¢*: M* — X be the elimination of Ay N (Ey \ E') = Ay N (Ey \ E'). Then ¢ is a
toric blowing-up defined by a subdivision of the fan corresponding to X \ (E+ E’) C X.
The weak transform of A; is supported on a non-singular point P, of an exceptional
curve I' C (¢*)71(P) and on nodes of (¢*)"1(E + E’) for i = 1, 2. The open torus acts
transitively on I'\ Sing(¢*)"}(E + E’). Therefore, we have an automorphism f of X with
f(A1) = As.
Next, we consider the exceptional types.
Case [2]p: E ~P' C X ~ P? is considered as the Veronese embedding by |O(2)|. Thus
an automorphism of F lifts to an automorphism of X. An extremal fundamental triplet
(X, E,A) is determined by a point P € E by A = 8P. Thus the isomorphism class of

the extremal fundamental triplet is unique.
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Case [0;1,1]p: We may assume that F is the diagonal locus of X = P! x P!. Thus
an automorphism of F lifts to an automorphism of X. Thus the isomorphism class of
extremal fundamental triplet is unique by the same reason above.

Case [1;2,2]p: The extremal distributions are classified as in *) of TABLE 8/ by Propo-
sition (2)—(4). For an extremal fundamental triplet (X, E, A), if chark # 2, then
A is supported on the two ramification points of 7|g: F — P! If chark = 2 and
D(X,E,A) ¢ {Ds,8A}, then 7r|p: E — P! is inseparable and A is supported on at most
three points. Thus the isomorphism class of the extremal fundamental triplet (X, E, A)
is determined by the distribution.

Case [3;2,4]+: E = o+ D for a section D ~ ¢ + 4¢ and an extremal fundamental
triplet (X, E,A) is given by A = 8P for a point P € D \ . For given two points P,
P, € D\ o, we take another point @ € D \ (¢ U {P;, P»}) and consider the elementary
transformation at @: X -— Xy ~ Fy. Let Q)3 € X5 be the intersection point of the
proper transform Dy C X5 of D and the fiber over 7(Q) and let Xy — X; ~ F; be
the elementary transformation at (5. Let Q1 € X; be the intersection point of the
proper transform D; C X; of D and the fiber over n(P) and let X; — X, ~ Fy be
the elementary transformation at ;. Let og C X be the proper transform of ¢ and let
Qo € X be the intersection point of the proper transform Dy C Xy of D and the fiber
over 7(P). Note that Dy is regarded as the diagonal of P* x PL. There is an automorphism
¢ of Dy such that (Do N og) = Do N oy, (Qo) = Qo, and o(f(P1)) = ¢(f(FPz)) for the
rational map f: X -+— Xj. Then ¢ lists to an automorphism ¢ of Xy which preserves the
section oy, the fiber over 7(P), and Dy. Hence ¢ induces an automorphism ¢ of X such
that g(D) = D, ¢(0) = o, and $(P;) = P,. Hence, the isomorphism class of extremal
fundamental triplet is unique.

Case [3;2,4];+(a,b) with (a,b) # (0,0): E = 0 4+ £ + 0 for a fiber £ and a section
0o at infinity. Let P be the point o, N ¢. Let A; and Ay be effective Cartier divisors
of F giving extremal fundamental triplet of this type. By the argument above, we may
assume that Supp(A; N o) = Supp(Ay Noy) = {P} U (0, NE') for another fiber ¢ and
that Supp(A; N¢) = Supp(Ay N¢). Let ¢*: M* — X be the elimination of A; N oy in
case multp(A; N¢) = 1, and the the elimination of A; N ¢ in case multp(A; Noy) = 1.
Then the weak transform A§ for i = 1, 2 is supported on a non-singular point P; of a ¢*-
exceptional curve I', on a point @ € ¢\ {P}, and on the inverse image of the intersection
point o, N¥. Since I and the proper transform of ¢ are two irreducible component of the
boundary of the torus imbedding into M*, an element of the open torus acts trivially on
the proper transform of ¢ and moves P! to P}. Thus f (A1) = A, for an automorphism

f of X. Hence, the isomorphism class of extremal fundamental triplet is unique. O
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Remark 6.21. In case chark = 2, the isomorphism class of an extremal fundamental
triplet of type [1;2, 2]y with the extremal distribution D is not unique if D = Dg or 8A;.
In fact, if D = Dg, then there are two fundamental triplets (X, E,8P) and (X, E’,8P")
for X = F; such that

e 7|p: E — P! is separable and P is the unique ramification point of 7|g,

e T|p: E — P! is inseparable and P is any point of E.

If (X,E,A) is an extremal fundamental triplet with the distribution D = 8A;, then
7|p: E — P! is inseparable and Supp A consists of four points. Thus A is not unique

up to isomorphism of E. Moreover, there are infinitely many isomorphism classes of
(X, E,A) with D(X, E, A) = 8A;; This fact was pointed out by Ohashi.

Corollary 6.22 (cf. [3], [19]). There is a one-to-one correspondence between the set of
isomorphism classes of log del Pezzo surfaces of index two with Picard number one and

the set of isomorphism classes of extremal fundamental triplets of the following types:

[1]07 [2]0? [2]+<O)7 [2]+(4)7 [1;272]07 [2;171}+(173)7 [2;172]07 [2;172]++7
[3;1’1]-&-7 [3§2a4]+7 [3;274}—%(070)7 [3;274]-1--1—(271)7 [3;274]4--&-(1’6)’
[4;1,0]0, [4;2,4]0o-

In particular, if chark # 2, then there are exactly 18 isomorphism classes of log del Pezzo
surfaces of index two with Picard number one, in which 4 isomorphism classes are of type
[1;2,2]g. If chark = 2, then there are exactly 14 isomorphism classes of log del Pezzo
surfaces of index two with Picard number one not of type [1;2,2]o, and there are infinitely

many isomorphism classes of log del Pezzo surfaces of index two with Picard number one
of type [1;2,2]o.

6.5. Dual graph of the negative curves. We consider the dual graph I = I'(S) =
I'[M] of negative curves on M. The proper transform of an irreducible component E; of
E in M is represented by a vertex in I'x. Thus we have a natural injection v: J(E) —
Ver(Ik) from the set J(F) of irreducible components of E to the set Ver(I'k) of vertices
of I'k.

Let C(I'rpp) be the set of connected components of Igpp. Let C(A,,) and C(D,,) be
the sets of connected components of Irpp which are Dynkin diagrams of types A,, and
D,,, respectively.

Let V be the subset of white vertices joined to I'k. A vertex v € V represents a (—1)-
curve v on M with Ey N~y # 0, equivalently a (—1)-curve belonging to the case (5) or
(6) of Proposition
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Let I be the subgraph of I' consisting of vertices of V U I'k U I'rpp. Let W be the
set of white vertices of I" which is not joined to I'k. Then a vertex in W represents a
(—1)-curve v with Epy Ny = 0. Thus

Ver(I') = Ver(I"") UW = Ver(I'k) U Ver(I'rpp) LUV LIW.

Note that Ik and Izpp are uniquely determined as the subgraphs of I”. In fact, Ik U
I'rpp is the subgraph consisting of non-white vertices, and a connected component of Ik

contains a non-black vertex.

Lemma 6.23. Suppose that S is not of type [1;2,2]g. Then, for any irreducible component
E; € J(E), the scheme
AN(E;\ Sing E)
is uniquely determined up to isomorphism by the type T, the graph I'°, and by v(E;) € Ik.
Moreover, the number §V of the finite set V is calculated as follows:
o If Ky + Ly is big, then £V = deg(A) — o(S) — by for the number by of black
vertices in Ik.
o If T =[3;2,4]; or[4;2,4]oo, then §V = 16 — 20(S).
o IfT=13;2,4,,(1,b), then £V =15 — 20(S) — 20.
o If T =[3:2,4],,(2,1), then tV = 12 — 25(S).
e Suppose that T = [3;2,4]4.(0,0). If a vertex in I'rpp joined to a vertexr v € V
and v is joined to a black vertex of I'k, then £V = 15— 20(S). If there is no such
a vertex in I'rpp above, then £V = 14 — 20(S).

Proof. We have C(I'xpp) = UC(A). In case T = [2;1,2]y, we set C' C C(Irpp) to be
the complement of a unique element of C(Igpp) representing the total transform of the
negative section of X ~ Fy. In case T # [2;1, 2]y, we set C' = C(Igrpp). In the both cases,
we set C'(A,) = C' NC(Ay).

Let Vs C V be the subset of vertices representing a ¢-exceptional (—1)-curve. Let
P, € X denote the point to which the (—1)-curve is contracted. Note that Vs, = V if
Ky + Ly is big. Let V. be the set of vertices v € V, such that P, is a node of E. Let
Vi be the set of vertices v € V, such that P, ¢ Sing £ and multp, (A) = m > 1. The
number £}/, is 0 or 1, which depends on the type T. There is a one to one correspondence
between C’'(A;) and V4 for [ > 1 as follows (cf. Lemma 6.16): A connected component
Iy € C'(A)) represents the set of (—2)-curves in the fiber ¢~ (P) over a point P &
A\ Sing FE with multp(A) = [+ 1, where the end (—1)-curve of ¢! (P) is represented by
a vertex vy € Vi41. Here, v(E;) € Ver(Ik) is the unique vertex of Ik joined to vy for the

irreducible component E; = Ej,) of E containing P. Conversely, for a vertex v € V4,
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the set of (—2)-curves in ¢~'(P,) is represented by a connected component I,y € C'(A;).

Therefore, we have
{P € E;\Sing E | multp(A) =1+ 1} = {P\ | I\ € C'(A), j = j(\)}

for any [ > 1 and for any irreducible component E; of E. Since deg(AN(E; \ Sing £)) is
determined by T, the scheme A N (E; \ Sing E) is determined up to isomorphism by T,
I and v(E;). We have

deg(A\ Sing ) = ZZZIZﬂVZ and o(5) = ZZZQ(Z — 1)tV
If ANSing E # (), then deg(A) — deg(A \ Sing E) = 1 + br. Therefore,
deg A — o(S) = br + V.

Hence, we may assume that K+ Ly is not big, i.e., T is one of [3;2, 4], [3;2, 4], (a,b),
or [4;2,4]p. Here, degA = 8. A vertex v € V \ V, represents the proper transform in
M of a fiber of 7w passing through a point of A\ Sing F. Let E; C E be the horizontal

component which is not the negative section. Then

VA Vy) =t{v e Vs | 1 =j(v)}.

Thus 4V = 28V, — e for ¢ = t{v € V,, | j(v) # 1}. Here, ¢ = 0 for T = [3;2,4],
13:2, 4144 (2,1), [4;2,4]00; and & = 1 for [3;2,4],,(1,0). If T = [3; 2, 4], (0,0), then

1, if j(\) # 1 for some I'\ € C(A),
2, otherwise.

Thus we are done. O

Corollary 6.24. If T # [1;2,2]y, then the graph I'(S) depends only on the subgraph
r(s).

Proof. Tt is enough to show the set W and the lines joining W and I U W are all
determined. A vertex of W represents a (—1)-curve belonging to one of the cases (7a)—
(7€) of Proposition [6.2.

Case: X ~P? Then W = 0 if T = [1]p. Hence, we may assume that T = [2], or
[2]4+(b). Then a vertex of W represents the proper transform in M of a line ¢ C X with
deg({ N A) = 2, by Proposition[6.2. The line ¢ is not a component of £ and is one of the

following:

e A line joining two distinct points of A.
e The tangent line of E at a point P € A\ Sing F with multp(A) > 2.
e The line ¢ passing through the node P of E with multp(A N¥¢) = 2 in the case

T=1[2].(1).
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Therefore, the set W is determined by the graph I"(S)’. Let £, and £ be two such lines
above. Then the proper transforms in M intersects if and only if the intersection point
1N ly is not contained in A. Therefore, the graph I'(S) is also determined by I'(S)’.

Case: X ~T,, Kx + L is big, and T is not of type [0; 1, 1]o, [0; 1, 1], (b), nor [1;1, 1]o.

Then a vertex in W represents the proper transform of a fiber ¢ of m: X — P! with
deg(AN{) = 1 by Proposition|6.2. Since AN/ is not a node of E, the set W is determined
by A\Sing E. For P € AN/, the proper transform ¢,; C M of ¢ intersects the (—1)-curve
¢ Y(P) if multp(A) = 1, and intersects the end (—2)-curve of the straight chain ¢—!(P)
if multp(A) > 2. There are no other negative curves intersecting ¢,;. Therefore, I'(S) is
also determined by I'(S)’.

Case: T =[0;1,1]g or [0;1,1],(b). A vertex in W represents the proper transform of

a fiber £ of m: X — P! with deg(AN¥) =1 or the proper transform of a minimal section
o with deg(A No) = 1 by Proposition Since AN /¢ is not a node of E, the set W
is determined by A \ Sing . Let ¢ be such a fiber. Then a negative curve intersecting
the proper transform £, is either an end curve of the chain ¢! (P) for P = ¢N A or the
proper transform o, of a minimal section o with deg(ANo) =1, cNNA = (. We have
a similar assertion for a minimal section o above. Therefore, I'(S) is also determined by
r(sy.

Case: T =11;1,1]yg. A vertex in W represents the proper transform of a fiber ¢ of
m: X — P! with deg(A N¢) = 1 or the total transform of the negative section o by
Proposition (6.2l By a similar argument to the cases above, we infer that I'(S) is deter-
mined by I'(S)’.

In the remaining case, K + Ly is not big. The set W is empty for T = [4;2, 4],
T =132,4:4(2,1), T = [3;2,4]4+(1,b) with 4 < b < 6 by Proposition Thus the
remaining types we must consider are T = [3;2,4]4, [3;2,4]14(0,0), and [3;2, 4], (1,b)
with 1 <b < 3.

Case: T =[3;2,4],. E =0+ D and D ~ o+4/ for a fiber . A vertex in W represents
the proper transform ©,, of a section © at infinity with © N D C A by Proposition
Moreover, the section © at infinity is uniquely determined by a subscheme A’ C A of
degree 4 by A’ = © N D. The (—2)-curves on M intersecting ©,; are determined from
the divisor A’. For i = 1, 2, let ©; be a section at infinity with A; = ©, N D C A, and
let ©; »s be the proper transform in M. Then

61,M®2,M = @162 — deg(Al N AQ) =3 - deg(Al N Ag)

Therefore, W and I'(S) are determined by I'(S)".
Case: T = [3;2,4]14(a,b) for (a,b) € {(0,0),(1,1),(1,2),(1,3)}. E=0+{+o0 for a

fiber ¢ and for a section o, at infinity. A vertex in W represents the proper transform
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Oy of a section O at infinity with © N E C A by Proposition 6.2, Moreover, the section
O at infinity is uniquely determined by subschemes A’ C A N o, of degree 3 — b and
A" C ANt of degree 1 —a by A'YUA” = ©N(E\ Sing £). Thus, by the same argument
as above, we infer that W and I'(S) are determined by I'(S)’. O

The same assertion as Lemma does not hold for type T = [1;2, 2],.

Example 6.25. Suppose that chark # 2. Let X = F; and let F ~ 20 + 2¢ be a non-
singular divisor. Let P € F be a non-ramification point with respect to w|g: E — P!, {p
the fiber of w passing through P, and let P’ be the other point of /p N E. We consider
two divisors Ay := 8P and Ay := 7P + P’ on E. Then (X, E,A;) and (X, E,A,) are
fundamental triplets of type [1;2,2]o, and I'(X, E, A;)" ~ I'(X, E, Ay)’, which is written
as the graph (3) of Lemma with 7 black vertices. However, the number of white
vertices of I'(X, E, A1) is 7 and the number for I'(X, E, A,) is 6, by Proposition (6.2} (71),
(7g). In TABLE 12 below, we have the graphs I'(X, F, Ay) and I'(X, E, A,).

Lemma 6.26. Suppose that S is of type [1;2,2]o. Let w € W be the vertex representing
the total transform of the negative section o of X ~ Fy. Let L be the union of the fibers
0 of m with deg({ N A) = 2. Then, (A,ANL = ENL) (cf. Lemma 5.14) is uniquely
determined up to isomorphism by the graph I'° and w. Moreover, the dual graph I'(S) is
determined by the subgraph consisting of I* and w.

Proof. A reducible fiber F' of M — P! corresponds to a connected component of the
graph consisting of V U I'rpp, by Proposition 6.2/ and Lemma 5.13. The image ¢ = ¢(F)
a fiber of m: X — P! and F = ¢*(. Let ¢; be the proper transform of ¢ in M. Then £,
be the irreducible component of F' which intersects the total transform o), of o.

Suppose that the dual graph of F'+ E) is either (1) or (3) of Lemma5.13] Then F is
written as the straight chain Fy + F; + --- 4+ F,, of rational curves for m > 1 such that
the end curves Fyy and F,, are represented by vertices in }V and that 7' F; corresponds
to a connected component of Ijpp. If £y = F; for 0 < i < m, then /N E =/N A and
it consists of two points ()1, Q2 with multg, (A) = ¢, multg,(A) =m —i. If £y = Fj or
F,, then N A consists of one point @) with multg(A) = m. If m = 1, then either that ¢
intersects E transversely, or that £ N E consists of two points.

Next, suppose that the dual graph of F' 4+ E) is either (2) or (4) of Lemma
Then ¢ intersects F tangentially at a point P, and the number of (—2)-curves in F' is
multp(A) > 2. The vertex representing ¢, is a black vertex joined to the unique white
vertex.

Hence, w and I'” determine the scheme structures of A and ANL = EnN L.
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By Proposition [6.2, a vertex w; € W \ {w} represents the proper transform ©; js in
M of a section ©; ~ o + n/ of m with ©; " E C A for 1 < n; < 4. Furthermore, ©;,
corresponds to a subscheme A; C A with degA; = 2n;,, EN{ ¢ A; N {. The unique
component of a reducible fiber I intersecting O; »s is determined by the information on
¢NA;. We have ©; yyop = n;—1. The intersection number ©; ,/0; s for w;, w; € W\{w}

is calculated as
(0 +nil)(oc+nil) —deg(A; NA;) =n; +n; — 1 —deg(A; NA)).
Thus the full graph I' = I'(S) is also determined by w and I™. O

Lemma 6.27. Suppose that S is of type [1;2,2]o. Let V; for 0 < i < 4 be the following
subsets of V:

e v €V if and only if v is not joined to any black vertex.

e v eV if and only if v is joined to exactly one black vertex and the black vertex is

an end of a connected component of I'rpp of type Ay for 1 > 1.

v € Vs if and only if v is joined to two black vertices.

v € Vs if and only if v is joined to exactly one black vertices and the black vertex

15 the middle vertex of a connected component of I'rpp of type As.

v € Vy if and only if v is joined to exactly one black vertices and the black vertex

15 an end of a connected component of I'rpp of type D; for 1 > 4.

Then V = |_|§1:O Vi. Let Vi; C V; be the subset of vertices v such that the connected
component joined to v is of type A;. Let Vy; C V4 be the subset of vertices v such that the

connected component joined to v is of type D;. Then

o(S) =24Ve +34Vs +(1/2) Zl21 [V + 2124 1§V,
degA =8 = (1/2)ﬂV0 + QﬁVQ + SﬂV;ﬁ, + (1/2) 2121(1 + 1) ﬂVlyl + Zl24lﬁv4’l'

Proof. The subsets V; are related to the graphs of Lemma as follows: If v € V),
then v is one of the two white vertices of the graph (1). If v € V;,, then v is one of
the two white vertices of the graph (3) with [ black vertices. If v € V,, then v is the
white vertex of the graph (2). If v € V5, then v is the white vertex of the graph (4)
with three black vertices. If v € Vy;, then v is the white vertex of the graph (4) with
[ black vertices. Thus V = [|V;. Since any (—2)-curve of M is contained in a fiber of
M — P! 5(S) is calculated as above. For a point P € E, let {p be the fiber of 7 passing
through P, and mp := multp(A). If P is not a ramification point of 7|g: F — P!, then
(N E = {P, P’} for another point P’ € E. In this case, if mp + mp = 1, then the dual
graph of ¢~1(¢p) + E)y is the graph (1); If mp +mp = m > 1, then the dual graph is the
graph (3) with m — 1 black vertices. If mp = 2 and p N E = 2P, then the dual graph
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of p~1(¢p) + Eyy is the graph (2). If mp = 3 and £p N E = 2P, then the dual graph of
¢ Y(lp) + Ey is the graph (4) with three black vertices. If mp > 4 and {p N E = 2P,
then the dual graph of ¢~'(¢p) + Eys is the graph (4) with mp black vertices. Thus

deg A =8 = > pca mp is calculated as above. U

Theorem 6.28. Let S; and Sy be log del Pezzo surfaces of index two. Fori =1, 2, let
(M;, Epg) be the basic pair associated with S; and let I'(S;) be the dual graph of negative
curves on M;. If chark # 2, then the following conditions are mutually equivalent:
(1) (My, Epny) and (Ma, Eyy,) are equi-singular deformation equivalent, and I'(Sy) and
I'(Sy) are isomorphic;
(2) Sy and Sy have the same type, and I'(Sy) and I'(Sy) are isomorphic;
(3) There exist fundamental triplets (X1, E1, A1) and (Xs, Es, Ag) defining S; and
Sa, respectively, such that (X1, E1, A1) and (Xa, Eq, Ag) are strongly equi-singular
deformation equivalent;

(4) Sy and Sy are equi-singular deformation equivalent.

Proof. (1) = (2): Let T; be the type of §; for i = 1, 2. Then T; = To, (Ty,T2) =
([0;1,1]o,[2;1,2]0), or (Ty,T2) = ([2;1,2]0,[0;1,1]) by Theorem Under the iso-
morphism ['(Sy) ~ I'(Sz), we have isomorphisms I'(S))k ~ I'(S2)k and I'(S;)rpp =~
I'(Sy)rpp. If Ty = [2;1,2]p, then there is an isolated black vertex in I'(Si)rpp. If
Ty = [0;1,1]p, then there is no isolated black vertex in I'(Se)rpp. Hence, T = Ts.

2) = follows from Theorem [6.1.

(2) = (3) Since Ty = T4 and chark # 2, there exist a minimal basic pair (X, E') and
zero-dimensional subschemes A; and Ay of E such that (M;, Ey,) is obtained as the
elimination of the fundamental triplet (X, E, A;) for i« = 1, 2. Thus the assertion (3)
follows from Lemmas5.14, 6.23, and [6.26.

(3) = (4)) is shown in Theorem[5.15

(4) = (2): Let f: S — T be an equi-singular deformation of log del Pezzo surfaces

of index two over a non-singular connected curve T". Let M — S be the simultaneous
minimal resolution and h: (M ,E5) — T be the induced equi-singular deformation of
basic pairs. Then, I'(Sy)x U I'(S;)rpp is independent for any fiber S; = f~(¢). In
particular, all the fibers S; have the same type T by the argument in (1) = (2)) above.
If v is a (—1)-curve on the fiber My = h™1(0) over a point o € T', then + is the fiber over
o of a divisor T of h='(U) for a Zariski open neighborhood U of o such that any fiber
of I' = U is a (—1)-curve. In particular, the number of (—1)-curves on M, for t € T
defines a lower semi-continuous function. Let V(t) be the set of white vertices in I'(S(¢))
which are joined to I'(S(t))rpp. Then ¢ +— gV(t) is also lower semi-continuous. If §V(t)
is constant, then I'(S(t))’ is uniquely determined, and hence I"(S(t)) is also constant by
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Corollary6.24 and Lemma/6.26. Thus, it is enough to show the function () is constant.
If T#[3;2,4].4(0,0) and T # [1;2, 2]y, then §V(¢) is constant, since it is determined by
T and I'(S(t)) by Lemma[6.23.

Suppose that T = [3;2,4],,(0,0). Let V'(t) C V(t) be the subset of vertices v which
is joined to a black vertex in I'(S(t))k. Then £V'(t) = 1 or 2, and t — {V'(t) is lower
semi-continuous. On the other hand, §V(¢) = 16 — 20(S(t)) — £V'(¢) by Lemma 6.23!
Hence, V(t) and V'(t) are constant.

Suppose that T = [1;2,2]y. Let V;(t) be the set V; for S(¢) in Lemmal6.27. Similarly, we
define Vy ;(¢) and Vy;(t). Then #§Vi(t), $V1,(t), and §Vy,(t) are all lower semi-continuous
functions. Let a(l) be the number of connected components of I'(S(t))rpp of type A; for
[ > 1 and let d(I) be the number of connected components of I'(S(t))rpp of type D; for
{ > 4. Then

a(l) = (1/2)dVia(t) + 28V (1), a(2) = §(1/2)V12(t),
a(3) = (3/2)8V15(t) + 38V5(¢), a(l) = (1/2)gV1,(t) for [ >4,
d(l) =tV (t) for 1> 4.

By the formula for deg(A) in Lemma[6.27, we infer that all the §V;(¢) are constant. In
particular, §V(t) is constant. O

6.6. Comparison with the classification by Alexeev—Nikulin. The right resolution
plays an important role in the classification theory of log del Pezzo surfaces of index two
by Alexeev—Nikulin [3]. We assume chark = 0 in Section [6.6.

A general member Cg € |-2Kj| is non-singular, by Bertini’s theorem. Let Cy be the
total transform in ). Then the divisor Cy, + Ey is non-singular and linearly equivalent
to —2Ky. The pair (), Cy + Ey) is called a right DPN pair of elliptic type in [3]. Let
7: X — Y be the double-covering branched along Cy + Ey. Then X is non-singular
and is a K3 surface. Note that X does depend on the choice of Cg. Let 6 be the
covering involution of X with respect to 7. Then 6 does not preserve a nowhere vanishing
holomorphic 2-form on X, i.e., 6 is non-symplectic. The #-fixed locus X? is non-singular
and is isomorphic to 7(X?) = Cy+Ey. We call X’ the K3 surface associated with (S, Cs).

Remark. Let X — X’ — S be the Stein factorization of the composite fo71: X — S.
Then X’ — S is a double-covering étale outside Sing C'sUSing S and Oy ~ Os®Os(Kg).
Moreover, X’ has only rational double points as singularities and has a trivial dualizing
sheaf. Thus the notion of right resolution of S is just the notion of canonical resolution

in the sense of Horikawa with respect to the double-covering X’ — S.
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Remark. Giving a non-singular member Cg € |-2Kg| is equivalent to giving a non-
singular member Cj; € |Ly| for the associated basic pair (M, Eyr). Let (X, E,A) be a
fundamental triplet defining the log del Pezzo surface S. Then a non-singular member

Cs € |-2Kg]| is the proper transform of a non-singular member C' € |L| with CNE = A.

Conversely, let us consider a K3 surface X with a non-symplectic involution 6. Then
the f-fixed locus X? is a non-singular divisor. Let ) be the quotient surface of X by the
action of § and let 7: X — ) be the quotient map. Since Ky ~ 7Ky + X%, 7(X%) is a

non-singular divisor linearly equivalent to —2Ky.

Lemma 6.29. Suppose that X? is reducible and contains an irreducible curve of genus
g > 2. Then (X,0) is constructed from a log del Pezzo surface S of index two and a

non-singular member Cg € |—2Kg| as above.

Proof. Let Cy C Y be the image of the curve of genus g and let Ey be the rest of 7(X?).
Then KyCy 4 C5 = (1/2)C% = 2g — 2 > 0. By the Hodge index theorem, E?, < 0 for
any irreducible component E;y of Ey. Thus, E;y is a (—4)-curve by —2KyFE;y = E7y,.
Hence, ) is the right resolution of a log del Pezzo surface of index two by Lemma
Moreover, CYy is the total transform of a non-singular member Cg of |-2Kg|. Thus, we

are done. O

Therefore, the classification problem of log del Pezzo surfaces of index two is reduced
in some sense to the classification of K3 surfaces with non-symplectic involutions, if
chark = 0.

Let S; and S5 be two log del Pezzo surfaces of index two whose right resolutions )
and ) are deformation equivalent. For i = 1, 2, let A; be the K3 surface associated with
(S;, C;) for a non-singular member C; € |-2Kg,|, and let §; € Aut(S;) be the associated
non-symplectic involution. Then (X7, 6;) and (A5, 0) are deformation equivalent by an
argument in Proposition [6.10. In fact, X; and X5 appear as fibers of a smooth family
X — T of K3 surfaces over a connected curve T where X admits an involution 8 over T
and the restriction of § to S; is 6; for i = 1, 2. Therefore, the deformation type of (X,0)
depends on the deformation type of the DPN surface ), and vice versa.

Assume further that k is the complex number field C. In order to study (X,0), Alex-
eev and Nikulin have considered the invariant part S = H?(X* Z)?" of the K3 lattice
H?(X* Z) by the induced involution #*. Then S is an even hyperbolic 2-elementary
lattice contained in NS(X') in the following sense:

Let A be a non-degenerate lattice and let Q(z,y) € Z denote the intersection pairing
for z, y € A. Then A is called even if Q(x,z) € 27Z for any = € A. It is called
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hyperbolic if the signature of Q(-,-) is (1,7 — 1) for r = rank A. It is called 2-elementary
if A*/A ~ (Z/2Z)%" for the dual lattice A* = Hom(A,Z) C A ® Q.

For an even hyperbolic 2-elementary lattice A, the main invariants are defined to be
(r,a,d), where the remaining invariant 6 € {0, 1} is determined as follows: ¢ = 0 if and
only if Q(z*,z*) € Z for any z* € A*. It is shown that the isomorphism classes of even
hyperbolic 2-elementary lattices are determined by the main invariants (cf. [3, §5.1]).
Furthermore, the main invariants for even hyperbolic 2-elementary lattices A admitting
primitive embeddings into a K3 lattice are classified in [3, §5.2] by an algebraic argument
of the lattice theory.

The main invariants of S have the following geometric interpretation (cf. [3 §2.3, §5.2]):
Let g be the genus of C's and let k£ be the number of irreducible components of E);. Note
that L3, =49 — 4, K2 = g—1> 1, and k equals the number of (—4)-curves on ). Then
(g9,k) and (r,a) are related by

k=(r—a)/2, g=022—-r—a)/2; r=11—-g+k, a=11—g—k.

The invariant § coincides with the ¢ of Definition 6.9 (cf. [3, §2.3]).

By the geometric interpretation and by TABLE 6, we have the list of the main invariants
for all the types of log del Pezzo surfaces of index two in TABLE 9. Here, the number N in
TABLE [9]is the entry number N used in [3, Table 1], which is given by the lexicographic
order with respect to (k,r,d). Note that Alexeev and Nikulin [3] has treated also log
del Pezzo surfaces of index one and that the list with V < 10 in [3, Table 1] corresponds
to the case of index one.

By the Torelli type theorem for K3 surfaces, Alexeev—Nikulin proved that the set of
the pairs (X,0) of K3 surfaces X and non-symplectic involutions # having fixed main
invariants (7, a,d) forms a connected family.

In (3], the log del Pezzo surfaces of index at most two are classified not only by the
main invariants but also by another invariant called the root invariant. We omit the
explanation of the root invariant here, but it almost corresponds to an information on
the set of negative curves on the DPN surface ). They classified the root invariants for
any (X,0) by an algebraic argument of lattices and by the Torelli type theorem for K3
surfaces. The method of calculating the dual graph I'[)] of the negative curves on )
from the main invariants and a root invariant is explained in detail in [3]. The nef cone
of Y is determined by I'[Y] up to the action of certain Weyl group defined by the root
invariant. The nef cone is used for the Torelli type theorem.

Let I'(S) be the dual graph I'[)]. Then we have a natural map Ver(I'(S)) — Ver(I'(S))
by taking proper transforms in V. Let I’ (S)k be the subgraph of I (S) consisting of the

vertices representing irreducible components of ©* Fy;. This is called the logarithmic part
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TABLE 9. The main invariants of fundamental triplets

Type T al|d| N Type T rlald| N
1] alolis] 2100 |4l2]1]13
2] 7119 251,100 | 7[3]1]22
[2]4(0) 10161]26] [2;1,1],(1,1) | 8 [2]1]28
21,1 |15 l1]s2] 2.2 [ o134
2,20 [12]4|1]38] [21,1,(1,3) [10]0]0]40
21.3)  [1313]1]43] (21,2 816118
20.(4) |1al2]ol46] [2:1,2,+ [10]40]30
[0;1,0]0 411116 (3;1,0]o 1112
[0;1,1]o 6118 (3;1,1]+ 210121
[0;1, 1] (0) 5l1loa]  [3;2.4 |11]7]1]27
0;1,1].(1) |10]4]1]31]3;2.4].00,0)|12]6]1]33
0:1,1].(2) [11]3]1]37] 32,41, 13]5]1]39
0;1,1]4(3) [12|2|1]42 | [3;2,4],.(2,1) |14 |4 |0 |44
[1;1,0] 3l1l14] 324,12 [ 14]4]1]45
1; 1, 1o 51117 [3;2,415(1,3) [ 15|31 ]47
[1;1,1],.(0,0) al1]23] 3:2,4,.1,4) | 16]2]1]48
[1;1,1]4(1,1) 311129 [352,4]44(1,5) |17 [1]1]49
[1;1,1],(2,1) [ 10|20 35| [3:2,4],.(1,6) | 18| 0] 0| 50
1;1,1].(12) (0] 2]1]36] 41,0 2 [0]0]11
1;1,1),.(1,3) 11| 1141 [4240 |10]6]0]25
;2,2 |10]8]1]20

of I'[Y] in [3]. If a connected component of I'(S)k corresponds to a singular point of S

of type K,, for n > 2, then the component is written as

where the total number of the vertices is 2n+1. The subgraph I'(S)gpp C I'(:S) consisting
of the (—2)-curves on Y is called the Du Val part of I'[Y] in (3], and is canonically
isomorphic to I'(S)gpp. The union I'(S)k U I'(S)gpp is just the dual graph of the -
exceptional curves. Note that I'(S) is determined by I'(S) by Corollary 6.5.

Therefore, the classification of the main invariants and the root invariants seems to

correspond to the classification of equi-singular deformation types by Theorems|6.1,6.28|
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6.7. Dual graph of the negative curves for extremal cases. We shall write the
graph I’ (S) for an extremal log del Pezzo surface S of index two. The notion of extremal
in [3] is the same as our notion in Definition if we erase the case of type [2;1,2]o.
Then we have the list of dual graphs for chark = 0 in [3, Table 3]. We can calculate
the graph by a geometric way by using results in Section 6.2. This method is completely
different from that in [3].

Let us fix an extremal fundamental triplet (X, £/, A) defining S. A negative curve on

Y is one of the following curves:

(1) An exceptional curve for the composite Y — M — X.
(2) The proper transform of an irreducible component of E; in other words, an irre-
ducible component of Ey.

(3) The proper transform of an irreducible curve of X not contained in E.

By Proposition 6.2/ and Corollary (6.5, we can classify the negative curves in the case (3)

as follows.

Proposition 6.30. Let G be the set of irreducible curves v of X with v ¢ E whose
proper transform in ) is negative. Then & is described as follows according to the type
T of the extremal fundamental triplet (X, E, A):

(1) &=04if T is one of

[1]07 [2]+(4)> [13171]+<271)? [2;171]+(171)’ [251a1]+(172)7 [2;1:1]+(173>7
21,204, 355,14, [3;2,4]44(1,6), [4;1,0]o.

(2) If T = [2]p, then A = 8P for a point P of the non-singular conic E, and &
consists of the tangent line at P.

(3) Suppose that T = [2].(b). Then E = Ey + E, for two lines E,, Fy. Let P
be the node By N Ey. If b =0, then A = 4Q, + 4Q2 for points Q1 € Ey \ {P},
Q2 € Ex\{P}. If b > 0, then A = 3Q1+ (4—b)Q2+ Ap for points Q1 € E1\{P},
Qs € Ey \ {P} and for an effective Cartier divisor Ap of E supported on P with
multp(Ap N Ey) =1, multp(Ap N Ey) = b.
(a) If b # 1, 4, then & consists of the line passing through Q1, Qs.
(b) If b =1, then & consists of the line passing through Q1, Q2 and the unique

line 0 with N E = Ap.
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(4)

(5)

(6)

(7)

& consists of one fiber of the Pl-bundle m: X — P! if T is one of

[0;1,0]0, [0;1,1]4(3),

[1;1,00,  [1;1,1]4(0,0), [L;L,1]4+(1,1), [L1,1)4(1,2), [151,1]4(L,3)
[2:1,0]0, [2;1,1]4(0,0),

3:1,000, [3:2,4]++(2,1), [3:2,4]++(1,4),  [3;2,4]++(L,5),

[4; 2, 400

S consists of a fiber and a minimal section of m: X — P! if T is one of
[0?171]07 [07171]+(0)7 [071?1]+<1)7 [07171]+(2)7 [17171]07 [2?172]0

Suppose that T = [3;2,4]y. Then E = o+ D for a section D ~ o + 4¢. Let P be

the node c N D. Then A = 8Q for a point Q € D\ {P}. Let {p and lgy be the

fibers of m passing through P and @), respectively. Then & consists of {p, lg, and

the section © at infinity with © N E = 4Q).

Suppose that T = [3;2,4]44(a,b) for (a,b) € {(0,0),(1,1),(1,2),(1,3)}. Then

E = 0+ o, + ¢ for a section o at infinity and a fiber ¢ of w. Let P be the

node oo N L. Then A = (6 — b)Q + (2 — a)Q' + Ap for points Q € o5 \ {P},

Q' € (\{P} and for an effective Cartier divisor Ap of E supported on P with

multp(ApNos) =b, multp(ApN{l) = a. Let by be the fiber of ™ passing through

Q.

(a) If (a,b) = (0,0), then & consists of g and the section © with O©NE = 3Q+Q’.

(b) If (a,b) = (1,1), then & consists of g and two sections ©1, Oy at infinity
such that ©1 N E =3Q 4+ Q' and ©; N E =2Q + Ap.

(c) If (a,b) = (1,2), then & consists of g and two sections ©1, Oy at infinity
such that ©1 N E =3Q + Q" and O NE = Q + Ap.

(d) If (a,b) = (1,3), then & consists of Ly and two sections ©1, Oy at infinity
such that ©1 NE =3Q + Q' and ©, N E = Ap.

Suppose that T = [1;2,2]o and chark # 2. Then A = ny P, + nyPy for the

ramification points Py, Py € E of the double-covering w|g: E — P! and for

(n1,n2) € {(8,0),(6,2),(5,3),(4,4)}. Let ¢; be the fiber of m passing through

P; fori=1, 2.

(a) If (n1,n2) = (8,0), then & = {0, (1 }.

(b) If (n1,n2) # (8,0), then & consists of o, the fibers {1, {2, and the section ©
at infinity passing through Py and Ps.

Suppose that T = [1;2;2]g and chark = 2. If w|g: E — P! is separable, then

A = 8P for the unique ramification point P € E, and & consists of the fiber {p
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passing through P and o. Suppose that 7|g is inseparable. Then A = Zézl m; P;
for 1 distinct points Py, ..., P, forl < 4, and my > mg > -+ > my > 2 with
St m; =8. Let {; be the fiber of ™ passing through P;.
(a) Ifl =1, then & = {0, (1}.
(b) If2 <1< 3, then & consists of o, the fibers {; for 1 < i <, and the sections
©,; at infinity with ©, ;|p = P+ P; for 1 <i<j <lI.
(c) If L =4, then & consists of o, the fibers {; for 1 <1i <4, the sections ©,; at
infinity with ©, j|p = P, + P; for 1 <i < j <, and the section T ~ o + 2(
with Y| = X1, P

Proof. (1), (2), (4), are shown directly from Proposition [6.2/ and Corollary [6.5.

(3): If b > 1, then there is no line ¢ with /N E C Ap by Corollary 2.13l If b = 1,
then there exists uniquely the line ¢ with /N E' = Ap. Thus & is described as above by
Proposition (7a).

(6): The proper transform of /g in M is a (—1)-curve in Proposition 6.2, (6). The
proper transform of ¢p in ) is the (—1)-curve appearing at Lemma Since A = 8P
and (o 4 30)D = 4, the section © at infinity with © N E C A is unique. Thus & consists
of these three curves.

(7): It is enough to determine the sections © at infinity satisfying © N E C A. Since
Oow = 3, ©f = 1, we have the unique section © in case (a,b) = (0,0) and the two
sections O1, O, in other cases by Corollary 2.13.

(8) and (9): It is enough to determine the sections © ~ o + m/l for 1 < m < 4 with
©NE C A. For the fiber £p passing through a point P € A, we have ¢p|p = 2P. Hence,
the sections © are determined by Proposition 6.2 (7g). Thus we are done. U

Using Proposition|6.30, we can calculate the graph r (S) for any extremal log del Pezzo
surface S of index two. If the type T is not [1; 2, 2]y, then the extremal fundamental triplet
(X, E,A) of type T is unique up to isomorphism by Theorem[6.20, so the graph r (S) for
the extremal log del Pezzo surface S is denoted by It for T # [1;2,2]yp. We shall explain
how to calculate I’ (S) for some types in each case of Proposition [6.30, and have the list
of graphs for some types in cases (1)—(7) in TABLE [10. In the cases (8)—(9), we list the
graph I (S) for two extremal cases in TABLE[11. We can obtain the same graphs as in
[3, Table 3| for all the types if chark # 2, but we omit the calculation in the remaining
types.

In the graphs in TABLE 10, a vertex labeled with an irreducible curve v of X represents
the proper transform of v in ).

Case (1): G = 0. If T = [4;1,0]o, then @ s the graph It since A = 0and Y ~ M ~ X.
If T = [1]o, then A = 5P for a point P of a line F of P2, Y ~ M, and hence It is written
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as in TABLE (10l For other types with & = (), F is reducible and Y — M — X is a
succession of blowups whose centers lie on the proper transform of E or on the inverse
image of the nodes of E. Thus It is naturally obtained. For example, we consider the
case T = [2;1,1]4(1,2). Then £ = o+{¢ and A = Q+ Ap for a point @ € ¢\ o and for an
effective Cartier divisor Ap supported on the node P = 0N¢ such that multp(ApNo) =1
and multp(Ap N ¢) = 2. Thus we have the graph I'r as in TABLE [10.

Case (2): T =[2]p. E is a non-singular conic of P? and A = 8P. For the tangent line
(p of E at P, we have the graph It in TABLE [10.

Case (3): T =[2]4(b). E = E) + E, for two lines F;, Fy of P!. Suppose that b = 0.
Then A = 4Q); + 4Q)>. For the line ¢, passing through @); and ()5, we have the graph
It in TABLE [10. For the case b # 1, It is similarly obtained. Suppose that b = 1. Let
ly € G be the line passing through )1, Q)2 and let ¢; € & be the other line. Then the
point £y N ¢; is not lying on E. Thus It is as in TABLE[10.

Case (4): Here, we pick up three types [2;1,0]o, [1;1,1].(1,1), and [3;2,4], (2, 1).
Suppose that T = [2;1,0]p. Then F = ¢ and A = 2P. Thus we have the graph It in
TABLE 10 for the fiber ¢p of 7 passing through P.

Suppose that T = [1;1,1]4(1,1). Then F = o0 + ¢ and A = @ + 2Q2 + Ap for
Q1 €0\l Qs € (\ o, and for an effective Cartier divisor Ap supported on P = o N ¢
with multp(Ap N o) = multp(Ap N¢) = 1. Thus we have the graph It in TABLE 10! for
the fiber ¢, passing through ;.

Suppose that T = [3;2,4],,(2,1). Then E = 0 + 0o + ¢ and A = 5Q + Ap for
Q € 0 \ ¢ and for an effective Cartier divisor Ap supported on P = o N ¢ with
multp(Ap Nos) = 1, multp(Ap N¢) = 2. Thus we have the graph It in TABLE [10 for
the fiber ¢ passing through Q.

Case (5): Here, we pick up three types [0;1, 1]y, [0;1, 1], (1), and [2;1,2]y. Suppose
that T = [0;1,1]p. Then F is regarded as the diagonal locus of X = P! x P! and A = 6P
for a point P € E. Let ¢; be the fiber passing through P of the i-th projection X — P!
for i = 1, 2. Then I is as in TABLE [10. Note that this graph is not included in 3]
since this is not extremal in the sense of [3]. In fact, the extremal distribution Dj,; 1, is
a subdiagram of Dy, g,

Suppose that T = [0;1,1],(1). Then £ = o+ and A = 2Q1+2Qs+Ap for Q; € o\,
Q2 € £\ o, and for an effective Cartier divisor Ap supported on the node P = o N ¢ with
multp(Ap No) = multp(Ap N ) = 1. Let ¢, be the fiber passing through @1 and let o9
be the minimal section passing through (). Then It is as in TABLE/[10.

Suppose that T = [2;1,2]p. Then E is a section at infinity and A = 6P for P € F.
Let ¢p be the fiber passing through P. Then ENo = () and Efp = ofp = 1. Hence ﬁr
is as in TABLE|10.



TABLE 10. Some graphs It

T [1o 2;1,1](1,2)
P o v !
T s = = = O—0—0—0—0—-0—0—0
T [2lo 2],.(0)
lp b
E A4
It w
E, B,
O—o—0O0—0—0
ﬁT g gp
o—0O—e—O
T [3;2 4++ (2,1)
A 61 g O Too
O fQ
T 0;1,1] 0;1,1]4
I
=
I
=
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TABLE 11. Graphs I'(S) for two extremal cases of type [1;2,2],

D(5)

Ds

8A;

Case (6): T = [3;2,4]1. Then E = o + D for a section D ~ o + 4¢. For the node
P =o0nND, we have A = 8Q for Q € D\ {P}. Let {p, {g, and O be the same divisors
as in Proposition [6.30} (6). Then It is as in TABLE[10!

Case (7): We pick up two types [3;2,4]+.(0,0) and [3;2,4],+(1,2). Let E = 0+04+Y,
P=0,NP,Q,Q, Ap, Ly, ©, O1, Oy be the same as in Proposition[6.30, (7). Then Iy
is as in TABLE 10 by the description of &.

Case (8): T = [1;2,2]p and chark # 2. We pick up the case where D(S) = Ds.
Then A = 8P, for a ramification P, point of 7|g: E — P'. Then I'(S) = I'(S) is as in
TABLE 11 for the fiber ¢; of m: X — P! passing through P;.
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TABLE 12. Graphs I'(S) for two non-extremal cases of type [1;2, 2], with
D(S) = A;

Ay =8P

Ay =TP+ P

Case (9): T =[1;2,2]p and chark = 2. We pick up the case where A consists of four
points Py, ..., P;. This is just the case where D(S) = 8A;. Then A = 2(P, + --- + Py).
Let ©; j ar be the proper transform in M of the section ©; ; at infinity with ©, ;| = P+ P;
for 1 <1v < j < 4. Let o) be the proper transform in M of the negative section ¢ and let
T be the proper transform in M of the section Y ~ o + 2¢ with Y|z ~ >}, P;. Then
YyrNO;jm=o0pmNO; 0 =0foranyi<j, Tyoy =1, and

]-a if {ilajl}m{i%jé} :(Da

0, otherwise.

Oi1.j1,MOis ot =

Therefore, I'(S) = I'(S) is as in TABLE [11.
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TABLE 13. Two subgraphs A; C Dg = [gpp defining non-extremal root invariants
g @@#&Hlﬂ
DO :

Remark 6.31. Suppose that chark # 2. We have two isomorphism classes of log del Pezzo
surfaces S of index two of type [1;2, 2]y with D(S) = A;. These are constructed from the
fundamental triplets (X, E, A;) and (X, F, Ay) for the two zero dimensional subschemes
Ay =8P and Ay = 7P + P’ defined in Example 6.25. Let ¢p be the fiber of 7: X — P!
passing through P. Then ¢p N E = {P, P'}. Let v; ~ o + j{¢ be the unique section of
with v;|p = 2jP for j > 1 (cf. Proposition 6.2 (7g)). Then the dual graph I'(X, E, A;)
for i = 1, 2 is written as in TABLE

For a ramification point P, € E of 7|g, the fundamental triplet (X, E,8P;) is extremal
and the dual graph I' := I'(X, E,8P;) is given in TABLE According to Alexeev—
Nikulin [3], we have a non-extremal root invariant from a subgraph D of the Dynkin
diagram I'zpp = Ds and we can calculate the dual graph I'(S*) = I'(D?) for a log del Pezzo
surface S* of type [1; 2, 2]p having the same non-extremal root invariant determined by D*.
Ohashi has calculated the graph f(Dﬁ) for the subgraph Df = DM or D in TABLE
As a result, we infer that I'(D®) coincides with I'(X, E, A;) for i = 1, 2.
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7. DESCRIPTION OF LOG DEL PEZZO SURFACES OF INDEX TWO

A log del Pezzo surface S of index two is determined by a fundamental triplet (X, E; A)
with E reduced and with LE = deg(A). The classification of fundamental triplets gives
the geometric description of S. From the information of the fundamental triplet, we shall
describe the surface S explicitly as a subvariety of a weighted projective space or of the

product of two weighted projective spaces.

7.1. Description by blowing up. Let (X, F,A) be a fundamental triplet such that
X ~ F, and F is a section of the P'-bundle structure 7: X — P'. For the elimination
¢: M — X of A, the proper transform Ey; C M of E is a section of w o ¢: M — P*
with F2, = —4. By Lemma [4.5, there is a birational morphism p: M — F, over P!
such that E,; is the total transform of the negative section ¢® of Fy. For an irreducible
curve v C M, it is u-exceptional if and only if 7 is an irreducible component of a fiber of
M — P! with Ey; N~y = 0. In particular, K,y < 0 for any p-exceptional curve . Thus
4 is isomorphic to the elimination of a zero-dimensional subscheme D' C F4 such that
vp(D’) = 1 for any P € D' and I’ N o™ = (), by Proposition 2.9.

The birational morphism a: M — S contracts E); to a singular point of type K; and
¢-exceptional (—2)-curves to rational double points. In the case [2; 1, 2]y, a contracts also
the proper transform of o to a singular point of type A;. The ¢-exceptional (—2)-curves
are contracted by the morphism pu: M — [y, since these curves do not intersect Ej;.

Let ¢) C F, be a section at infinity and let ¢ be a fiber of F;, — P'. The contraction
morphism F; — F, of the negative section o gives an isomorphism F, ~ P(1,1,4). The
image of £ in P(1,1,4) is a generating line and the image of ¢?) is a cross section of the
cone P(1,1,4) over P!. The vertex v of the cone is a singular point of type K;. For a
homogeneous coordinate (X,Y,Z) of P(1,1,4), v is the point (0:0:1), div(Z) is a cross
section, and div(X) and div(Y) are generating lines. Thus there is a birational morphism

q: Fy — P(1,1,4) such that ¢(oy) = {v}, q¢(c¥)) = div(Z), and ¢(¢) = div(X).

Proposition 7.1. Suppose that a log del Pezzo surface S of index two is of type [n;1,0]o
for 0 < n < 4. Then S is isomorphic to P(1,1,4) blown up along a zero-dimensional
subscheme D satisfying

(*)Y v €D, degD =4 —n, and deg(D N ¥¢) < 1 for any generating line (.
Conversely, if D C P(1,1,4) is a zero-dimensional subscheme satisfying (*) for0 < n < 4,
then D is a Cartier divisor of a cross section, and P(1,1,4) blown up along D is a log

del Pezzo surface of index two of type [n;1,0]p.

Proof. Let (X, E, A) be a fundamental triplet defining S. Then £ = o and deg A = 4—n.

The total transform © ) = ¢*(0x) C M of a section o, at infinity of X is a section of
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M — Pl Since Kx + 0 + 04 + 20 ~ 0, we have Ky + Ey + Oy + 200 ~ 0. Since
Ey = p*oW, we infer that u(©),) C Fy is a section o) at infinity and that u is the
elimination of the Cartier divisor ' C ¢), by Proposition 2.9. Here, D' is isomorphic to
A under the isomorphism ¢(!) ~ E over P'. Let D be the image ¢’ for the birational
morphism ¢: Fy — P(1,1,4). Then D is a Cartier divisor of the cross section © = ¢(0)
satisfying (*). The induced morphism S — P(1,1,4) is just the blowing-up along D.
Conversely, if D C P(1,1,4) is a zero-dimensional subscheme satisfying (*), then D
is a Cartier divisor of a cross section © by Lemma [7.2| below. Let D' be the preimage
q }(D) for q: Fy — P(1,1,4). The preimage ¢~ 'O is a section at infinity. Let u: M — Ty
be the elimination of I’. The proper transform ©,, C M of © and the total transform
Ey € M of ¢® are sections of M — P!, where Ky + Oy + Ey + 2u*f ~ 0 and
02, =4—(4—n)=n>0. Weset Ly, = —2Ky — Ep. Then Ly ~ 20y, + Eny + 4p°
and Ky + Ly = Oy + 2p*0 imply that (M, Ey) is a basic pair with Ly Ey = 0. The
log del Pezzo surface S associated with (M, Ejy) is just the blowing up of P(1,1,4) along
D. On the other hand, M is the elimination of (X, F,A) for X = F,, F = o, and an
effective divisor A of E with deg A =4 —n. Hence, S is a log del Pezzo surface of index
two of type [n;1,0]o. d

Lemma 7.2. Let A be a zero-dimensional subscheme of F,, such that ANo =0 for a
minimal section o and that deg(A N {) < 1 for any fiber £ of F,, — PL.
(1) If deg A < n+1, then A is a Cartier divisor of a section 0., at infinity.
(2) If deg A = n+2, then A is a Cartier divisor of 0 0T of 0oo UL for a section o
at infinity and for a fiber (.
In particular, vp(A) =1 for any P € Supp A if deg A < n + 2.

Proof. (1) We may assume that deg A = n + 1. From the exact sequence
0 — ZAOx(c+nl) - Ox(c+nl) - Op — 0

on X =T, for the defining ideal Za of A, we infer that H(X,ZaOx (o + nf)) # 0 since
dimH°(X,0 4+ nf) = n + 2. Thus Ox(—D) C Za for an effective divisor D ~ o + nf.
If D is irreducible, then D is a section at infinity. We shall derive a contradiction by
assuming that D is reducible. Then n > 0 and D = o + F for an effective divisor
F ~nl. Thus Ox(—F) C Zp since AN o = (. The non-empty intersection A N ¢ for a
fiber ¢ C F' is supported on a point P. For a defining equation t € Ox p of £ at P, let
Oa.p — Oa p be the multiplication map by t. Then this is a nilpotent endomorphism
with one-dimensional cokernel since deg(AN¢) = 1. Hence, t* € Za p and tF~1 & Zx p for
k = multp A = dimy Oa p. Thus multp A < mult, F'. Considering any fiber ¢ contained
in F', we have deg A < n which contradicts deg A =n + 1.
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(2) Let us fix a point P € Supp A and let ¢ be the fiber containing P. Suppose that
multp(A) = 1. Then A = A’ U {P} for a subscheme A’ with A’N¢=0. By (1), A’ is a
Cartier divisor of a section o, at infinity. Thus A is a Cartier divisor of o, U ¢ in this
case.

Suppose that k& := multp(A) —1 > 0. Let t € Oxp be a defining equation of ¢
at P. Then the multiplication map Oa p — Oap by t is a nilpotent endomorphism
with one-dimensional cokernel. Thus t* ¢ Ia,p and thtl ¢ Za,p. The image tOa p is
isomorphic to Oa p/(t*). Thus the image of the homomorphism Ox — Oa obtained by
tensoring Oa with the inclusion Ox(—¢) — Ox is isomorphic to Oa: for a subscheme
A" C A with deg A’ = n 4 1 and multp(A’) = k. By (1), A’ is a Cartier divisor of a
section 0., at infinity. Thus Za p is generated by (£, t*) for a defining equation £ € Ox p
of 0o at P. Since t* ¢ ZIa.p, there is a constant ¢ € k with £ + cth € Za.p. Thus
Iap = (f +cth 7). If ¢ = 0, then Ox(—0) C Za and A is a Cartier divisor of 0.
If ¢ # 0, then Za p = (f + ct®, ft) and A is a Cartier divisor of o, U /. g

Proposition 7.3. Let S be a log del Pezzo surface of index two determined by a funda-
mental triplet (X, E,A) such that X ~ T, and E is a non-minimal section of X — P!
Then the type of S is one of [0;1, 1]y, [1;1,1]o, and [2;1,2]o.
(1) If the type is [0;1,1]o, then S is isomorphic to P(1,1,4) blown up along a zero-
dimensional subscheme D satisfying the following conditions:
(a) v €D, degD = 6, and deg(DN{) <1 for any generating line ¢,
(b) D is not a Cartier divisor of any cross section of P(1,1,4).
Conversely, if a zero-dimensional subscheme D satisfies the conditions above, then
P(1,1,4) blown up along D is a log del Pezzo surface of index two of type [0;1,1].
(2) If the type is [1;1,1]o, then S is isomorphic to P(1,1,4) blown up along a zero-
dimensional subscheme D such that v ¢ D, degD = 5, and deg(DN?) < 1 for
any generating line £. Conversely, if D is a zero-dimensional subscheme satisfying
the same condition as above, then D is a Cartier divisor of a cross section, and
P(1,1,4) blown up along D is a log del Pezzo surface of index two of type [1;1,1].
(3) Suppose that the type is [2;1,2]g. Then there exist a cross section © of P(1,1,4),
an effective Cartier divisor D of © of degD = 6, and a birational morphism S — S
for the blowing-up S - P(1,1,4) along D such that S — S is the contraction
morphism of the proper transform of © in S. Conversely, the surface S obtained
from an effective Cartier divisor D of a cross section © as above is a log del Pezzo

surface of index two of type [2;1,2]o.

Proof. The case [1;1, 1]y is proved by the same argument as in Proposition



136

Case [2;1,2]p: The negative section o does not intersect E. The total transform O,
of o in M is also a section satisfying Ky, + Ey + Oy + 2¢%4 ~ 0. Since E); is the total
transform of the negative section o, 1(0,) is a section ¢(?) at infinity, and p is the
elimination of the divisor D' C ¢(!). Here I is isomorphic to A under the isomorphism
c@® ~ F over P!. The image D = ¢, C P(1,1,4) is a Cartier divisor of the cross
section © = ¢(0@) with degDd = 6. Let S — P(1,1,4) be the blowing-up along D. Then
the induced birational morphism M — S contracts all the ¢-exceptional (—2)-curves on
M. Since ao: M — S contracts also the proper transform of ¢ in M, S is obtained by
contracting the the proper transform © of o in S. Conversely, if D is a Cartier divisor
of a cross section © of degD = 6, then for the elimination u: M — F, of D/ = ¢7'D, M
is obtained as the elimination for a fundamental triplet (X, E, A) of type [2; 1, 2]y, where
E' is the proper transform of ©.

Case [0;1, 1]p: Since deg A = 6, we can take a minimal section ¢ such that ENo C A.
Let X’ — X be the blowing up at the point £ N o. Then the proper transform ¢ of
the fiber through the point £ No is a (—1)-curve. Let X’ — X; be the blowdown of
¢'. Then the proper transform o; of ¢ in X; is the negative section and the proper
transform E; of F in X, is a section at infinity. Here, the image Q € X; of ¢ is not
contained in o7 U E;. The elimination M — X of A induces a morphism M — X; which
is regarded as the elimination of the zero-dimensional subscheme A} U {Q} for a Cartier
divisor A of F; with deg A} = 5. The proper transform of F; in F, by the rational map

pog s X . M — F, is the negative section 0¥ and the proper transform of oy in Fy

(4

&) at infinity. Let I} be the Cartier divisor of ¢(!) isomorphic to A} under

is a section o
the isomorphism () ~ E; over P!

Suppose that A} does not intersect the fiber ¢g of X; — P! passing through Q. Then
the rational map X --— [y is an isomorphism at ) and let Q" € F, be the image of Q).
The morphism p: M — Fy is considered as the elimination of D} U {Q’}. The image
D, = ¢q(D}) C P(1,1,4) is a Cartier divisor of the cross section © = ¢(0) and ¢(Q’) & ©.
Then the induced morphism S — P(1,1,4) is the blowing-up along the zero-dimensional
subscheme D = D; U {¢(Q")}, which satisfies the condition (a).

Next, suppose that A intersects the fiber /. Then X --— M — F, is not isomorphic
to Q. Let M — F, be the elimination of D}. Then M — M is obtained as the blowing-up
at a point @ of the proper transform of /g in M lying over ). Thus pu: M — F, is the
elimination of a Cartier divisor I’ of ¢(*) U l for the proper transform £, of {g in Fy,
where D' N oY) is isomorphic to A’ under the isomorphism ¢(!) ~ E; over P'. The image
D = ¢(D') € P(1,1,4) is a Cartier divisor of @ U/ for the cross section © = ¢(0.,) and the
generating line ¢ = q({g/). Then the induced morphism S — P(1,1,4) is the blowing-up

along I, which satisfies the condition (a).
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Let D € P(1,1,4) be a zero-dimensional subscheme satisfying the condition (a). If it
does not satisfy the other condition (b), D is a Cartier divisor of a cross section O, and
the blowing-up S — P(1,1,4) along D gives a birational morphism from S into a log
del Pezzo surface S of index two of type [2;1,2]y by (3). If D satisfies the condition (b),
then, by Lemma 7.2 and by considering the inverse construction of X; -— M — Ty,
we infer that P(1,1,4) blown up along D is a log del Pezzo surface of index two of type
[0; 1, 1]o. O

Proposition 7.4. Let S be a log del Pezzo surface of index two of type [1]o. Then there
exist a zero-dimensional subscheme D C P(1,1,4) of degDD = 5 and a cross section ©
containing D such that the proper transform 0 of © in the variety S obtained as the
blowing up of P(1,1,4) along D is a (—1)-curve and that S is obtained as the blowdown
S — S of the (—=1)-curve ©.

Proof. Let (X = P2, E, A) be a fundamental triplet determining S. Let 7: X; ~F; — X
be the blowing-up at a point P ¢ E. Then (X1, E1,A;) is a fundamental triplet of type
[1;1,1]¢ for the inverse images Ey = 77'F and A; = 77'A. By Proposition the log
del Pezzo surface S determined by (Xi, Fy, A;) is isomorphic to P(1,1,4) blown up along
a Cartier divisor D of a cross section © with deglD) = 5. Here, the proper transform
OcSisa (—1)-curve since it is the proper transform of the negative section o7 C Xj.

Thus the log del Pezzo surface S is obtained by contracting the (—1)-curve ©. O

7.2. Remarks on weighted projective spaces. We insert here some notes on weighted
projective spaces which are useful in the subsequent subsections. The results mentioned
here are well known but we shall give proofs based on Demazure’s construction [10] of

normal graded rings.

Lemma 7.5. Let X be the weighted projective space P(ag, aq, ..., aq) with ag = 1 and let
T:P=P(O®0O(e)) — X be the P-bundle defined for a positive integer e > 0 divisible by

lem{ay,...,aq}. Then there is a birational morphism P — P(ay,. .., aq,€) such that the
exceptional locus is the section ¥ C P(O & O(e)) of m corresponding to O & O(e) — O
and that ¥ is contracted to the point (0:0: ---:0:1).

Proof. We fix a homogeneous coordinate (Xo,...,Xq) of X of weight (aq,...,aq). Let
Yoo C P be the section corresponding to a surjection O@O(e) — O(e). Then XNE, =0
and Yo, ~ X + em*Ey for the Weil divisor Ey = div(Xy). Let us fix defining equations g
and f of ¥ and X, respectively. We consider the QQ-divisor

1
H=-Y+7"E
(&
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on P and the graded ring R = R(P, H) (cf. Section [3.4). Here, R,, = H°(P,LmH_) for

m > 0. For a given positive integer m, we set k = I_m/eJ. Then
m.0p(LmH 1) = Sym*(Og © O(—e)f) ® O(m) = @5:0 O(m — je)tigh=i.

Hence, we have

k S
(7-18) R =@,  klXo, -, Xalm—jet’g" 7,
where k[Xo, ..., Xq]; denotes the homogeneous part of degree [ of the graded polynomial
ring k[Xp,...,Xq]. Let Y; € R for 0 < i < d be the homogeneous element of degree a;
corresponding to X; as the element of the right hand side of (7-18). Let Y411 € R be the
homogeneous element of degree e corresponding to f as the element of the right hand
side of (7-18). Since

k .
Rm = @J:O kl:Y()’ oo 7Yd]m—]5Yé+l7

we infer that R = k[Y, ..., Y4, Yar1] and R is isomorphic to the graded polynomial ring
of weight (ao, ...,aq,€). Since H is a semi-ample big Q-divisor on P, we have a natural

birational morphism ¢: P — Proj R ~ P(aq, . .., aq, €) such that ¢*O(e) ~ Op(eH),
©Ygr1 =1, and @"P.(Yy,...,Yq) = P.(X1,...,X0)g
for any weighted homogeneous polynomial P. of degree e. Here, X is the exceptional
locus of ¢ and ¢(X) = {(0:0: ---:0:1)}. d
Lemma 7.6. The Hirzebruch surface X =T, is isomorphic to the divisor
{Xw =Yz} Cc P(1,1,n+ 1,n+ 1)
for a homogeneous coordinate (X,Y,Z,W) of weight (1,1,n+1,n+1), in which the restric-

tion of O(n + 1) is isomorphic to Ox (o + (n+ 1)¢).

Proof. We consider the graded ring R = R(X, H) for the ample Q-divisor

1
H = o+ /L.
n+1

Then X ~ ProjR. Let g be a defining equation of a minimal section o and let f
be a defining equation of a section at infinity. For a non-negative integer m and k =

m/(n+ 1), we have an equality
m.0x(LmH 1) = Sym*(Og & O(—n)f) @ O(m) = @j:o O(m —nj)fighi
for 7: X = F,, — P!. In particular,

(7-19) R =@, ks, tlnn;jt’g"’
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for a homogeneous coordinate (s, t) of P'. Let X € R and Y € Ry correspond to sg® and
tg® as the elements of the right hand side of (7-19), respectively, where ¢ = A /(n+ 1)J.
Let Z € R,,; and W € R, 1 correspond to sf and tf as the elements of the right
hand side of (7-19). Then XW = YZ. Let ¢; and 45 be non-negative integers with m >
(n+ 1)(i1 + i2). Then the element P(X,Y)Z""W2 € R, for a homogeneous polynomial P

of degree m — (n + 1)(iy + i2) corresponds to
P(S, t>si1ti2fi1+izgk*(i1+i2)

as the element of the right hand side of (7-19). Hence, R is generated by X, Y, Z, W
with the relation XW = YZ. Therefore, there is a closed immersion 7: X ~ ProjR —
P(1,1,n + 1,n + 1) such that 7*O(n + 1) ~ Ox (0 + (n + 1)¢) and 7(X) = {XW = YZ},
since {XW = YZ} is irreducible. O

Lemma 7.7. For positive integers ny, ns, let P be the fiber product of F,,, and F,, over

P'. Let oy and oy be the negative sections of F,, — P! and F,, — P!, respectively. Let

H be the Q-divisor on P defined by
H= i]ojfal + i10’2‘02 +F
ny na
for the projections p1: P — T, , po: P — F,,, and for a fiber F of m: P — PL.
(1) The graded ring R = R(P, H) is isomorphic to the graded polynomial ring of four
variables with weight (1,1,n1,n3).
(2) For the naturally defined birational map P -— Proj R = P(1,1,ny,ny), the com-
posite P — P(1,1,n;) with the projection P(1,1,ny,ns) -+— P(1,1,n;) is just the
composite P — T, — F, ~P(1,1,n;) fori=1, 2.

Proof. (1): Let (s,t) be the homogeneous coordinate of P!. Let g; be a defining equation
of o C F,, fori =1, 2. Let 6{° ~ o; + n;{ be a section at infinity of F,, — P! and
let £; be a defining equation of o for ¢« = 1, 2. For a fixed positive integer m, we set
ki = I_m/nz-_l for i =1, 2. Then

7,0p(LmH 1) = Sym™ (Og; & O(—ny)f;) ® Sym*(Ogy & O(—ny)fs) ® O(m)
e

_ . . g1k
_@ogjlgkl,og‘gskgo(m Jini = jenz)t1' g

In particular, we have

e
(7-20) B = @oejicr 0iocr K8 Umsim—gona Tt £

We set §; = L1 / ni, for =1, 2. Then 0; = 0 unless n; = 1. Let X and Y € R; correspond
to sg‘f1 ggQ and tg‘f1 ggQ as the elements of the right hand side of (7-20), respectively. We

set e, = |_(ng/nl)J and ey = I_(nl/ng)J. If ny = ng, then e¢; = e3 = 1; if ny < no, then
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e; > 1land ey = 0. Let Z; € R,, and Zy € R, correspond to f1g5* and fag]' as the
elements of the right hand side of (7-20), respectively. Then, for a pair of non-negative
integers (j1, j2) with jing + jang < m, the equality
gy Py = (f1g5)” (fagf) e T gy !
holds, and P(X,Y)Z]'z* € R,, for a homogeneous polynomial P of degree m — jyn; — jans
corresponds to
P(s, )(£167) (£agf)2ght " 1eght exi
as the element of the right hand side of (7-20). Therefore, R = k[X,Y,Z;,Zs] and R is
isomorphic to the graded polynomial ring of weight (1, 1,1, ng).
(2): For i =1, 2, we consider the semi-ample Q-divisor
H; = iai +4
1

on F,,, and the graded ring R* := R(F,,., H;). Then Proj R* ~ (1,1, n;) and the natural
birational morphism F,, — Proj R* is isomorphic to the contraction morphism F,,, — TF,,.
of o;, by Lemmal[7.5. Since p;H; < H, R* is regarded as a graded subring of R. We infer
that the inclusion R¥ C R induces the projection P(1,1,n,ny) -— P(1,1,n;) from the

calculation in (1). Thus we are done. U

7.3. Embedding into weighted projective spaces, I. Let (X, E, A) be a fundamen-
tal triplet defining a log del Pezzo surface S of index two. For the blowing-up V" — X
along A and for the minimal desingularization A\: M — V', the composite ¢: M — X
is just the elimination (M, Ey) — (X, E,A). By Lemma 2.18 and by the vanishing
H'(X,L — E) =0 (cf. Lemma 3.17), we infer that V is a Cartier divisor of P = P(&) for
the locally free sheaf £ = Ox(L— E)® Ox, where N*Og(1)|v >~ On(Lyr). An irreducible
curve v C M is A-exceptional if and only if 7 is ¢-exceptional and Lj;v = 0. Thus the
minimal desingularization a: M — S of S induces a morphism ¢: V — S with a = o \.
In particular, Og(1)|y ~ ¢*Os(—2K5).

Let u € Og(1l) and v € Og(1) @ p*O(E — L) be the global sections over P defined by

the natural homomorphisms

u: Ox 35— (0,s) € Ox(L — F) ® Ok,

v: Ox(L—FE)>s+— (s,0) € Ox(L — E) @ Ox.
Let n € HY(X, E) be a defining equation of E. There exists a section ¢ € H°(X, L) such
that div(§|g) = A and V ~ V (£, n) = div(p*(§)v — p*(n)u) by Proposition 2.19,

The linear system |Og(1)| is base point free since Bs|L — E| = Bs|2(Kx + L)| = 0
by Lemmal[3.17. Let ®': P — P|O¢(1)| be the morphism associated with |Og(1)| and let
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®: P — W be induced morphism as the Stein factorization of ®'. The Stein factorization

of VC P — W is expresses as the composite of p: V' — S and a finite morphism S — W.

Proposition 7.8. Suppose that Kx + L is big. Then W is a three-dimensional toric
variety and ®: P — W is a birational toric morphism. Moreover, the image ®(V') is a
divisor of W and ®(V') ~ S.

Proof. The morphism ®: P — W is birational since Og(1)? = (L— E)*> > 0. If Kx + L is
ample, then the ®-exceptional locus is the divisor div(v), which is contracted to a point.
Since P has a structure of toric variety and div(v) is a T-invariant divisor for the open
torus T C PP, the variety W and the morphism & are toric. If Kx + L is not ample but
big, then X ~ [, and & is isomorphic to the pullback of the locally free sheaf O(4) & O
of P(1,1,2) by the contraction morphism X — Fy ~ P(1,1,2) of the negative section.
Thus W is isomorphic to the weighted projective space P(1,1,2,4) by Lemma|7.5; hence
W and @ are also toric.

From the linear equivalences V' ~ O¢(1) 4+ p*E, div(v) ~ Og(1) = p* (L — E), L — E ~
2(Kx + L), and Kp ~ p*(Kx + L — E) — 20¢(1), we infer that

=V = (1/2)div(v) — Kp ~q (1/2)O¢(1)

is relatively numerically trivial for ®: P — W. Hence, if chark = 0, then R! ®,0p(—V) =
0 by the relative Kawamata—Viehweg vanishing theorem. By Leray’s spectral sequence,
the vanishing R' ®,0p(—V) = 0 is equivalent to the vanishing H'(P, m®*A — V) = 0
for m > 0 for a T-invariant ample divisor A of W. Recall that the cohomology group
of an invertible sheaf on a toric variety is described by combinatorial data. Hence the
vanishing is independent of char k. Therefore, R! ®,Op(—V') = 0 holds, and consequently,
Ow ~ ¢,0p — 0,0y is surjective. It follows that ®(V') is normal and ¢*(—2Kg) comes
from an ample divisor on ®(V'). Therefore S ~ ®(V') and ¢ ~ |y O

Lemma 7.9. Suppose that Kx+ L is not big, i.e., the type of (X, E, A) is one of [1;2, 2],
13;2,4] 4, [3;2,4] 14 (a,b), and [4;2,4]00. If X = TFy or X ~F3, then W ~ P(1,1,2). If
X =TFy, then W ~P(1,1,4). In the both cases, the induced finite morphism S — W is

a double-covering.

Proof. Suppose that (X, E) is of type [n; 2,¢e]. Then L—E ~ 2(Kx+L) ~ 2(n+2—e){ for a
fiber £ of m: X — P! Hence, P ~ Fogxp1 X for d = n+2—e > 1 and @ is the composite of
the first projection P — Fyq and the contraction morphism Foq — Fay ~ P(1, 1,2d) of the
negative section. In particular, W ~ P(1,1,2d). The isomorphisms ®*Oy (2d) ~ O¢(1)
and \*(Og(1)|y) =~ O (Lyy) induce

L3, = deg(V/W)Ow(2d)* = 2d deg(V/W).
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On the other hand, we have
L3, = L* —deg(A)=L(L - E)=4(n+2—e¢) = 4d.

Hence, deg(V/W) = deg(S/W) = 2. Note that d = 2 for the type [4;2,4]p, and d = 1
for the rest. O

In the rest of Section[7.3] we shall embed S into a weighted projective space and give
an explicit defining equation of S in the case where Kx + L is big and S is not of type
[n;1,0]p. The case of types [n;1,0]y is studied in Section below by another method.
In Section [7.5/ below, we treat the case where Kx + L is not big by using Lemma 7.9.

Here, we use the following:

Notation 7.10.

(1) Let (s,t) denote a homogeneous coordinate of P!. For a morphism p: Z — P!,
the pullbacks p*s and p*t are global sections of p*O(1). Here, we write p*s = s
and p*t = t for simplicity.

(2) For the Hirzebruch surface X = T, with a fixed projection X — P! let o be a
minimal section and let 0., be a section at infinity. A defining equation of o is
denoted by the symbol g and a defining equation of o, is denoted by the symbol

f. Here, f and g are regarded as the natural injections
£: 035+ (5,00 € O O(n)
g: O(n)>s+—(0,s) € OB O(n).
Similarly to s and t above, the pullbacks p*f and p*g by a morphism p: Z — X

are expressed by the same symbols f and g, respectively.

Proposition 7.11. Suppose that X = P?. Then W is isomorphic to the weighted projec-
tive space P(1,1,1,2w) for w = (1/2)deg(L — E) =3 —deg F € {1,2}. Let (X,Y,Z,U) be
a homogeneous coordinate system of P(1, 1,1, 2w).

1) Suppose that the type is [1]g. Then S is isomorphic to
(
{F5(Y,2) =XU} C P(1,1,1,4)

for a quintic homogeneous polynomial F5 # 0.

(2) Suppose that the type is [2]g. Then S is isomorphic to
{F4(X,Y) + F3(X,Y)Z = (2* — XY)U} c P(1,1,1,2)

for a cubic homogeneous polynomial F3 and a quartic homogeneous polynomial Fy

with (Fy, Fy) # (0,0).
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3) Suppose that the type is [2|,.(0). Then S is isomorphic to
(3) Yy +
{F3(X,2)X + G5(Y,Z2)Y + z* = XYu} € P(1,1,1,2)

for cubic homogeneous polynomials F3 and Gs.
(4) Suppose that the type is [2](b) for 1 < b < 4. Then S is isomorphic to

{Fy_4(X,2)X* + G5(Y,2)Y = XYU} C P(1,1,1,2)
for a homogeneous polynomial F,_, of degree 4 — b and a cubic homogeneous
polynomial Gy with Fy_4(0,1) # 0, G3(0,1) # 0.
In the descriptions above, (0:0:0:1) € W is the unique non-Gorenstein point of S.

Proof. W ~ P(1,1,1,2w) since £ = O(L — E) ® O = OQ2w) ® O. Let (x,y,z) be a
homogeneous coordinate of P2. We denote the pullbacks of x, y, and z to P by the
same symbols, respectively, for simplicity. Then ® is regarded as a morphism determined
by the properties: ®*U = u and ®*Py,(X,Y,Z) = Pay(x,y,2z)v for any homogeneous
polynomial P,,, of weight 2w and for the homogeneous coordinate (X,Y,Z,U) of W. Since
A div(v) = Ej, S has the unique non-Gorenstein point (0:0:0:1).

(1): We may assume that 7 = x and £ = F5(y, z) for a quintic homogeneous polynomial
F5 # 0. Then {&v — nu = F5(y,z)v — xu and S is isomorphic to the non-Cartier divisor
{F5(Y,Z) = XU} of degree 5 of P(1,1,1,4).

(2): We may assume that n = z? — xy. Then E ~ P! has a coordinate (s, t) such that
x|p =82, y|p = t%, and z|g = st. Let Fy(s,t) # 0 be an octic homogeneous polynomial
such that A = div(Fz(s,t)) C E. We can write

FS(Sat) = F4(S27t2) + FS(S27t2)St

for a cubic homogeneous polynomial F3 and a quartic homogeneous polynomial Fy. Then
div(§) N E = A and V =V (,n) for the global section

&= Fy(x,y) + F5(x,y)z
of Ox(L) ~ O(4). Since
v —mu = (Fi(x,y) + F3(x,y)z)v — (2° — xy)u,
S is isomorphic to the Cartier divisor
{Fy(X,Y) + F5(X,Y)Z = (2* — XY)U} C P(1, 1,1, 2).
(3) and (4): We may assume that 7 = xy. Then A = div(§) N E for

£ = Fs(x,2)x + G3(y, 2)y + cz*
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for cubic homogeneous polynomials F3 and G73, and for a constant ¢ € k. Here, ¢ # 0 if and
only if the type of (X, E, A) is [2]4.(0). If ¢ # 0, then we may assume ¢ = 1 by replacing &
by a non-zero multiple of €. If the type is [2](b) for b > 0, then ¢ = 0 and we may assume
that multp(A N div(y)) = b and multp(A Ndiv(x)) = 1. Thus Fs(x,y) = x*1F_4(x,y)
for a homogeneous polynomial F;_, of degree 4 — b with F;_,(0,1) # 0, and G3(0,1) # 0.
Since
&v —nu = (F3(x,2z)x + Gs(y,2)y + cz*)v — xyu,
S is isomorphic to the Cartier divisor of P(1,1,1,2) defined by

F5(X,2)X + G3(Y,2)Y + ¢Z* = XYU. O

Proposition 7.12. Let (X,Y,Z,U) be a homogeneous coordinate of the weighted projective
space P(1,1,2,4).
(1) A log del Pezzo surface of index two of type [2;1,2]o is isomorphic to

{Fs(X,Y) =2ZU} C P(1,1,2,4)

for a sextic homogeneous polynomial Fg # 0.

(2) A log del Pezzo surface of index two of type [2;1,2],4 is isomorphic to
{Z% + X*ZF\(Z,X*) + Y?ZG4(Z,Y?) = XYU} C P(1,1,2,4)
for linear polynomaials Fy and G, .

Proof. For the fundamental triplet (X, E,A), we have X ~ Fy, E' ~ o + 2(, and L ~
3(c + 2¢). For a suitable homogeneous coordinate (X,Y,Z) of P(1,1,2), the contraction
morphism ¢: X — P(1,1,2) of the negative section satisfies the following properties:
¢*Z = £ and ¢*P»(X,Y) = Pa(s,t)g for any quadric homogeneous polynomial P,. Note
that ¢*O(2) ~ Ox (o + 2¢) and Px(£) — X is isomorphic to the pullback of P(O(4) ®
O) — P(1,1,2) by q. Hence W ~ P(1,1,2,4) by Lemma [7.5. Thus the morphism
O: Px(€) - W ~P(1,1,2,4) satisfies the following properties:

o O*U = u;

o O*(X'VIZ) = s't/fv for (i,7) = (1,0), (0,1);

o O*Py(X,Y) = Py(s, t)gv for any quartic homogeneous polynomial P.

Case [2;1,2]p: We may assume nn = f. There is a sextic homogeneous polynomial

Fs # 0 such that div(§) N E = A for £ = Fg(s, t)g*. Since
Ev— = Fy(s, g’y — fu,

S is isomorphic to the divisor {F5(X,Y) = ZU} C P(1,1,2,4).
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Case [2;1,2],,: We may assume 7 = stg. Moreover, we may assume that A contains
the points {f =s =0} and {f =t = 0}. Then div({) N E' = A for

¢ =13 + s’ fghl(f,s%g) + t?fgG (£, t7g)
for certain linear polynomials F| and G;. Since
Ev—nu = <f3 + s?fgFy (£, s%g) + t*fgG (£, tgg)) v — stgu,
S is isomorphic to
(7% + X*2F(Z,X%) + Y?2G4(Z,Y?) = XYU} C P(1,1,2,4). O

Proposition 7.13. Let (X, E,A) be a fundamental triplet for X ~TF, and E ~ o + £.

Then W is isomorphic to the divisor
{Xw=vYZ} CP(1,1,n+1,n+1,2(n+1))

for a homogeneous coordinate (X,Y,Z,W,U) of weight (1,1,n+1,n+1,2(n+1)). Moreover,
the log del Pezzo surface S of index two associated with (X, E,A) is isomorphic to a
subvariety of W defined by the following equations:

Type [0;1, 1o
Fo(Z, W)W+ G2 (W, Y)Y = (X — W)U,

for quadric polynomials Fy and Gy with (Fy, Gs) # (0,0).

Type [0; 1, 1],.(0):
WP+ Fy(Z,W)ZW = XU — G4 (W, Y)YW,

for linear polynomaials Fy and G;.

Type [0;1,1](1):
(W ¢Z)ZW = XU — (W + 'Y) YW,

for constants ¢, ¢ € k.

Type [0;1,1],(b) for b > 1:
(W+ cZ)ZW = XU — W*~Y",

for a constant c € k.

Type [1; 1, 1]o:
F5(X,Y)X = 2U, Fs(X,Y)Y = WU,

for a quintic homogeneous polynomial Fs # 0.
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Type [1;1,1],(0,0):
(W4 cZ)ZW = (XU — G1(W,Y)YW)X, (W + cZ)W* = (XU — G (W, Y*)YW)Y,

for a constant ¢ and a linear polynomial G .
Type [1;1,1].(1,1):

Z2W = (XU — (W+ cY)YW)X, ZW? = (XU — (W + cY?)YW)Y,

for a constant c € k.
Type [1;1,1],(2,1):

2% = (XU — (W4 cY?)YW)X, Z*W = (XU — (W + cY?)YW)Y,

for a constant c € k.
Type [1;1,1],(1,b) for b > 1:

Z2W = (XU — YA, Zw? = (XU — P WE )Y,
Type [2;1,1]:(0,0):
Z2W = (XU — Gy (W, Y2)Yw) x>y

for 0 < i <2 for a linear polynomial G.
Type [2;1,1],(1,1):
237 = (XU — (W + cY?)Yw) x>y’
for 0 <1 <2 for a constant ¢ € k.
Type [2;1,1].(1,0) for b > 1:
for 0 <i<2.
Type [3;1,1];:
Z37W = (XU — G (W, Y Yw)X* 'y

for 0 < i <3 for a linear polynomial G.

Proof. Let X — P(1,1,n+1,n+1) be the embedding of Lemma[7.6. Then & is isomorphic
to the restriction of O(2(n+1))®O since L—FE ~ 2(c+(n+1)¢). Hence, W is isomorphic
to {XW=YZ} in P(1,1,n+ 1,n +1,2(n + 1)) by Lemma 7.5

For a defining equation € H(X, 0 +¢) of E and for a section ¢ € H(X, 304 (2n+3)¢)
with div(§) N E = A, S is isomorphic to the image of V' = V(¢,7n) under the morphism
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¢:PE)—-WCP(1,1,n+1,n+1,2(n+1)). Here, we have
P*U = u, D*Q2(Z,W) = Qy(s, t)fv,
O™ (Qn41(X,Y)Z) = Qnia(s, t)sfgy, O (Qn1 (X, V)W) = Qusi(s, t)tfgy,
" Qo) (X, Y) = Qanr1y (s, )8V,

for any homogeneous polynomial @;(s,t) of degree j € {2,n+1,2(n + 1)}. The global

section £ is written as
(7-21) ¢ = PO, (s. ) + PV (s, )8 + Ps(s,t)E8” + Pyls(s,t)g”

for some homogeneous polynomials Pj(i)(s, t) of degree j =3+ n(i — 1) for 0 <i < 3.
We first treat the case where E is non-singular, i.e., the type is [0; 1, 1]y or [1; 1, 1]o.
Case [0;1,1]p: We may assume 7 = sg—tf. We may assume that the point ENdiv(t) =

{g =t =0} is contained in A. By (7=21), ¢ is written as

=1t (FQ(S, )£ + Ga(f, g)t2g)
for certain quadric polynomials Fy and Gy with (F», G2) # (0,0). Thus
fv—rnu=t (FQ(S, t)£? + Goff, g)t2g> v — (sg — tf)u.
We define a weighted homogeneous polynomial = = =(X, Y, Z,W,U) of degree 3 by
E = F(Z,W)W + Go(W, Y)Y — (X — W)U.

Then we have

[1]

O*(XE) = sgv(§v — 1), *(YE) = tgv(§v — nu),
) = tfv({v — nu).
Thus ®(V (£, 7)) is the prime divisor of W defined by {Z = 0}.

Case [1;1,1]p: We may assume 1 = £ and £ = F5(s,t)g® for a quintic homogeneous
polynomial Fy # 0 by (7-21). Then &v — nu = F(s,t)gdv — fu. We define weighted
homogeneous polynomials =; = Z;(X, Y, Z,W,U) for i = 1, 2 of degree 6 by

¢*(ZZ) = sfv(év — nu), O™ (W

[1]

=, = F5(X,Y)X — 20, I, = F5(X,Y)Y — WU.
Then we have
(7-22) O*(X*Z,) = s’gv(&v — nu), P*(Y?Z,) = t3gv(&v — nu),
®*(2Z,) = s’fv(&v — nu), O*(W=y) = t2fv(Ev — nu).

Thus the prime divisor ®(V(£,71)) of W is just the reduced part of the subscheme of
P(1,1,2,2,4) defined by the ideal J C k[X,Y,Z,W, U] generated by XW — YZ, =;, and =,.
We shall show that the subscheme is reduced and equals ®(V'(£,7)). Let A be the affine
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ring of the open subset {U # 0} in P(1,1,2,2,4). Then A is regarded as a subring of the
usual polynomial ring R = k[x,y, z,w| of four variables by X — x, Y— y, Z — 2z, W — w,
U+ 1. Let I C R be the ideal generated by xw — yz, F5(x,y)x — 2, F5(x,y) —w. Then
R/I ~k[x,y| and hence J is reduced on the open subset U. Combining with (7-22), we
infer that ®(V (£, 7)) is defined by the ideal J.

Next, we treat the case where E is singular. Then E = ¢ + ¢ for a minimal section o

and a fiber /. We may assume that ¢ = div(s), n = sg, and
£ =Py (s, t)f + Go(f, t"g)t’g

for a homogeneous polynomial P;_,, of degree 3 — n and for a quadric homogeneous
polynomial G5 by (7-21). Thus

Ev—nu= (Pg,,n(s, t)£° + Gaof, t"g)t3g) v — sgu.

We define weighted homogeneous polynomials =; for 0 < ¢ < n of degree 3(n + 1) with
respect to (X,Y,Z,W,U) by

Zi = Py (Z,W)Z" W+ (Go(W, Y"TH)Y — XU)X" 7YY,
Then we have
(7-23)  ®*(X"T'E) = s itigy(Ev —qu),  PF(Y'TE) = s" " T gv(Ev — ),
O*(2Z;) = s" M v (Ev — nu), O*(WZ;) = s" "t Ev(Ev — nu),
for 0 <7 <n.
Claim. The subscheme ®(V(¢,n)) of P(1,1,n+1,n+1,2(n+ 1)) is defined by XW — YZ =
Sp=--- =5, =0.

Proof. Let A be the affine ring of {U # 0} in the weighted projective space P(1,1,n +
L,n+1,2(n+1)) = Projk[X,Y,Z,W,U]. Then A is a subring of the usual polynomial ring
R=k[x,y,z,w]byX+—x, Yy, Z— 2z W—w, U 1. Let I C R be the ideal generated
by xw — yz and
El’<X,y,Z,W) — ngn(Z,W> n—i z + G ( n+l)xn7iyi+l _ XnJrlfiyi
for 0 <i <n. By (7-23), it is enough to check that R/I has no non-zero ideal supported
at the origin. We set
U, =5 + Go(w,y" =1 + -+ Go(w, y" )" 'E,

for 0 < i < n. We have an isomorphism R/(Vy) ~ @! ,Kk[y, z, w|x" as a k[y, z, w]-module.
Hence, R/(Z0,Z1,...,2,) = R/ (Yo, ¥y,...,V,) is 1somorph1c to

kly,z,w @@Z 1( V.2, W /(y"“*")) x".
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Therefore, we have an isomorphism

R/I~Kly,zw| @@, (kly,zw/" W)

as a kly, z, w]-module. In particular, R/I is a torsion-free k[z]-module. Hence, R/I has

no non-zero ideal supported at the origin. U

Proof of Proposition|7.13 continued. In the next step, we shall normalize P;_, and Gb.
Let P be the node c Nl ={s=g=0} If Ano\ {P} # 0, then we may assume that
A N o contains {t = 0} N o by replacing (s,t) with (s,t + ¢;8) for a constant ¢; € k.
If An¢\ {P} # 0, then we may assume that A N ¢ contains {f = 0} N ¢ by replacing
(f,g) with (f + cot"g, g) for a constant c; € k. We may also replace (Ps_,,Gy) with
(A1 Ps_p, \oG3) for any non-zero constants A, Ay € k. The normalization is done as
follows:

Case 1. P ¢ A = div(§) N E: Then the type is one of [0;1,1].(0), [1;1,1].(0,0),
2;1,1]4(0,0), and [3;1,1]+. Here, we have P;_,(0,1) # 0. If n < 3, then P;_,(1,0) =0,
by the assumption. Similarly, G5(0,1) = 0, by the assumption. Thus we can write

P n(s,t) = £33 4 stFl_,(s,t) and Go(z,y) = 2G1(z,y)

for a homogeneous polynomial Fj_,, of degree 1 — n and a linear polynomial G;.

Case 2. P € A and multp(ANo) > 1: If n = 0, then we may change the first and
second projections Fy — P! and may assume that multp(A No) = 1; thus the case n = 0
is treated in Case 3 below. Then we may assume n > 0, and hence the type [1;1, 1],(2,1)

remains only. Since multp(A No) =2 and multp(A N¥¢) =1, we can write
Py . (s,t) =s* and Gay(z,y) = z(z + cy)

for a constant ¢ € k.

Case 3. P € A and multp(ANo) = 1: Then 0 < n < 2and 1 < b < 3 for
b=multp(ANY{). If n <1, then P3_,(1,0) = 0, and if b < 3, then G5(1,0) = 0, by
assumption. Thus we can write

st(t +c¢s), if n=0; x(x+dy), ifb=1;
Py . (s,t) = ( ) and  Go(z,y) = ( v)
st2 ", if n >0, 370yt if b > 1,
for constants ¢, ¢ € k.

Applying the normalization to each type, we have the list of defining equations of
(V' (&) O

Remark 7.14. In Proposition [7.13, if n = 1, then S is defined by three equations in

P(1,1,2,2,4) as a subvariety of codimension two. These equations are written as the
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2 x 2-minors of a matrix of size 2 x 3. In particular, the description of S is the same style
as in [27, Theorem 1] (cf. [6, Theorem 5.1]).

7.4. Embedding into weighted projective spaces, II. In Section [7.3] we do not
consider the types [n;1,0]y for 0 < n < 4 among the case where Kx + L is big. The log

del Pezzo surfaces of these types are described by:

Theorem 7.15. Let S be a log del Pezzo surface of the type [n;1,0]q for 0 < n < 4.
(1) If n =4, then S ~P(1,1,4).
(2) If 1 < n < 3, then S is isomorphic to the subvariety of P(1,1,n) x P(1,1,4)
defined by the following equations:

XoY1 = X1Yo, Z1X§ g = ZoX} Y Fy o (X1,Y1)  for 0<i<n,

where (Xo,Yo,Zo) and (Xq1,Y1,Z1) are homogeneous coordinates of P(1,1,n) and
P(1,1,4), respectively, and Fj is a non-zero homogeneous polynomial of degree j.
(3) If n =0, then S is isomorphic to the subvariety of P* x P(1,1,4) defined by

Z1Xo = YoFy(%1,Yy)

for a quartic homogeneous polynomial Fy # 0, where (Xo,Yo) is a coordinate of
P!

For the proof, we apply the result of Section|7.1. For a given .S, the fundamental triplet
(X, E,A) defining S is uniquely determined up to isomorphism. Here, X ~F,, E = o,
and deg A = 4 — n. For the elimination ¢: (M, Ey) — (X, E,A), M is obtained also
as the elimination p: M — Fy of a zero-dimensional subscheme I’ of a section ¢(!) at
infinity, by Section 7.1. Moreover, by Proposition S is realized as the blowing up of
P(1,1,4) along the zero-dimensional subscheme D = ¢(ID’) for the contraction morphism
q: Fy — P(1,1,4) of the negative section ¢ of Fy. In order to prove Theorem [7.15, it
suffices to consider the case: n # 4, since degl) = 4 — n. There is an effective divisor
B ~ (4 —n)¢ such that D' = ¢ N B. Let u and v be the defining equation of o(?)
and o™, respectively. For the homogeneous coordinate (s,t) of P!, let Fy(s,t) be a
homogeneous polynomial of degree d =4 —n with B = div(Fy(s,t)) (cf. Notation[7.10]).
Then D = div(u) N div(vFy(s,t)). The proper transform of ¢® in X ~ F, by the
birational map po¢=t: X .= M -.— 4 is just £ = o. Similarly, the proper transform of
oc® in X is a section 0, at infinity. We have fixed the defining equations f and g of o, and
o, respectively, of X ~ F,, as in Notation[7.10. Then, the image of (¢, 1): M — X xp1 Fy
is a divisor V' defined by

(7-24) ug = viFy(s,t).
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We set W =P(1,1,n) x P(1,1,4) in case n # 0, and W = P! x P(1,1,4) in case n = 0.
Let h: X xp1 Fy — W be the natural morphism. We shall find explicit defining equations

of the image h(V'), and show that h(V) ~ S.

Suppose that 1 < n < 3. Then the image of h: X xp1Fy — W is defined by XoY; = X1 Y.
In fact, we can choose the homogeneous coordinates to satisfy h*P,(Xo,Yo) = P,(s,t)g,
h*Zy = £, h*Py(X1,Y1) = Py(s,t)v, and h*Z; = u, for homogeneous polynomials P; of
degree j. By the equation (7—24), h(V') is contained in the subscheme S C W defined by

(7-25) XoY1 = X1Yo, ZiX§ 'Y = ZoXP Y Fy(Xy,Y,) for 0<i<n.
Lemma 7.16. The subscheme S’ is normal. In particular, h(V) = S'.

Proof. We consider the following standard open covering {W;} of W

W, = {Xo # 0,X; # 0}, Wy = {Xo # 0,Y; # 0},
Wiy = {Yo # 0,X; # 0}, Wy = {Yo # 0,Y, # 0},
Ws = {Zo # 0,X, # 0}, We = {Zo # 0,Y, # 0},
W = {Xo # 0,2, # 0}, We = {Yo # 0,2, # 0},

Wy ={Zy # 0,2, # 0}.
On the open subset Wy, the regular functions yo = Yo/Xo, 2o = Zo/X{, y1 = Y1/X1, and
z) = Z,/X{ form a coordinate system, i.e.,
W, = Speck[yo, zo, y1,21] ~ A*.
Here, S’ N W, ~ A? is defined by

y1=7yo0, 21 =2zoFa(l,y1).
Thus S’ N W, ~ A?. Applying a similar argument to the open set W,, we have W, ~ A4
and S' N W, ~ A2
On Wy, the regular functions yo = Yo/Xo, 2o = Zo/Xy, x1 = X1/Y1, and z; = Z;/Y] form
a coordinate system of Wy ~ A*. Here, S’ N W, is defined by
1 =x1y0, 21 = zox7Fy(x1,1).
Thus SN Wy >~ (A'\ {0}) x Al. Similarly, W3 ~ A* and S’ N W5 ~ (A \ {0}) x Al.
The open subset Wj is isomorphic to
Spec (k[Xm yol ™ @ kly1, 21]) )
where

oy =Yy/Xy, z1 = Zy /X],
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e k([xq,y0]™ is the subring of the polynomial ring k[xo, yo] of two variables which is
generated by the monomials of degree divisible by n,

e P,(x0,y0) = Pn(Xo, Y0)/Zo for any homogeneous polynomial P, of degree n.
Then S’ N Wiy is defined by

Yo = Xoy1, 2z1%xy = Fa(1,y1).
Therefore,
"N Ws ~ Spec (k[xg, y1,21] / (z1x — Fa(1,71)))
and hence S’ N W5 has at most rational double points of type A as singularities. The
singularity of S’ N W is similar.

The open subset W5 is isomorphic to

Spec (klyo, zo] ® k[x1,y1] ) ,

where yo = Yo /X0, zo = Zo/Xy, and Py(x1,y1) = Py(Xy,Y;)/Z* for any quartic homogeneous
polynomial P;. Thus S" N W5 is defined by

y1=x1y0, 1= zoxiFy(1,y0).
Therefore,
S' N Wy ~ Spec (k[yo, 2o, %] / (zox{Fa(1,70) — 1)) .
Thus S” N W5 is non-singular. Similarly, S’ N Wy is non-singular.

The open subset Wy is written as
Spec (k[X07 Yo](n) ® k(xi, Yl](4)) .

where P,(x9,y0) = P.(X0,Y0)/Zo and Py(x1,y1) = Py(X1,Y1)/Z; for homogeneous poly-
nomials P; of degree j. Then S" N Wy is defined by “xoy; = x1y0” and Xbye Tt =
Xyt Fy(x1,y1) for 0 < i < n. Therefore, S’ N Wy ~ Speck[x;,y:]®, which is iso-
morphic to an open neighborhood of the vertex of the cone P(1,1,4). Therefore, S’ is

normal. O

Proof of Theorem |7.15. Suppose that 1 < n < 3. By construction of h, we have a
birational morphism S — S so that the composite S" — S — P(1,1,4) is induced from
the second projection W — P(1,1,4). By Lemma 7.16, S’ — P(1,1,4) is isomorphic
outside D = {Fy(Xy,Y1) = Z; = 0}, where (X1,Yy,Z;) is regarded as a homogeneous
coordinate of P(1,1,4). The description of S" N W5 and S’ N W in Lemma [7.16] shows
that S — P(1,1,4) is just the blowing up along D. Hence, S’ ~ S. Therefore, S is
isomorphic to the subvariety S" of P(1,1,n) x P(1,1,4) defined by (7-25)). This finish the
proof in the case 1 < n < 3.



153

Finally suppose that n = 0. For the surjective morphism h: X xp Fy — W =
P! x P(1,1,4), we can choose the homogeneous coordinates to satisfy h*Xy = g, h*Yy = £,
h*Z; = u, and h*Py(X1,Y1) = Py(s,t)v, for any quartic homogeneous polynomial P,. By
the equation (7-24), h(V) is contained in the subscheme S C W defined by

(7-26) Z1Xo = Yo Fu(X1,Yq).
Let Wy C W be the open subset {Xo # 0} and let Wy C W be {Yy # 0}. Then
8’0 Wy = Proj ((Klyo))[¥a, Y1, 2] / (21 = XiyoFi(1,y0))) = A x P,
where yo = Yo /Xo. Moreover,
S' N Wy ~ Proj ((Kxo))[X1, Y1, 21] / (Zixo — Fi(Xy, Y1)

for xg = Xo/Yo. Thus S’ is normal, h(V) = 5’, and S’ — P(1,1,4) is the blowing-up along
D = {Z; = Fy(Xy,Y1) = 0}. In particular, S' ~ S. Therefore S is defined by (7-26), and

we are done. O

Remark. If Supp A consists of at most two points, then S is a toric variety. In fact,

S — P(1,1,4) is described as a toric blowup. In particular, S is toric if n < 2.

7.5. Embedding into weighted projective spaces, III. In the non-big case, L — E ~

wl for w =2 or 4 on X =IF,, and hence
P=Px(Ox(L—FE)®Ox) ~F, xp xX =F, xp F,,.

Let p;: P — F, and py: P — X ~ F, be the projections. The global sections u and v in
Section 7.3/ descend to global sections of O(c™) 4+ wf) and O(c™)) over F,,, respectively,
where 0(*) is the negative section and ¢ is a fiber on F,,. The divisor V = V(¢£,1) C P is
described by a quadric equation with respect to (£, g) over F,,, since the mapping degree
of VcP—F, is two.

The morphism ®: P — W is the composite of ps and the contraction morphism
q: Fy — Fy, ~ P(1,1,w) ~ W of the negative section o). Let (X,Y,U) be a homo-
geneous coordinate of P(1,1,w). We may assume that the morphism ¢: F,, — P(1, 1, w)
satisfies ¢*U = u and ¢*P,(X,Y) = P,(s,t)v for any homogeneous polynomial P, of
degree w.

Finding suitable sections £ and 7, we shall describe the surface S explicitly.

Proposition 7.17. A log del Pezzo surface of index two of type [4;2, 4]0 is isomorphic
to the divisor

{uz = Fs(X,Y)} C P(1,1,4,4)
for a homogeneous coordinate (X, Y, Z,U) of weight (1,1,4,4) and for an octic homogeneous

polynomial Fg # 0.
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Proof. Since E = 0 4 04, for a section o4, at infinity, we may assume n = fg. There is
an octic homogeneous polynomial Fg(s,t) # 0 such that 7. (A) = div(F3(s, t)). Thus

=12+ Ix(s,t)g® € HYX,L)=H"X,20 +8()
satisfies div(§) N £ = A. Since
&v —nu = vE? — ufg + Fy(s, t)vg?,
the first projection py|y: V C P — Fy is a finite morphism. For the isomorphism
P~F, xp X >~ F; xp1 Fy,

we have a birational map P -— P(1,1,4,4) by Lemma [7.7. We set U := Z; and Z := Z,
for the homogeneous coordinate Z; defined in Lemma (7.7, Then the proper transform V"’
of Vin P(1,1,4,4) is a Cartier divisor of degree 8 defined by

U= 7> —UZ + F3(X,Y) = 0.

Note that V"’ is Cohen-Macaulay since so is P(1,1,4,4). The projection (X:Y:U:Z)
(X:Y:U) induces a finite morphism V' — P(1, 1,4) which is birational to ®|,: V C P —
W ~P(1,1,4). Since

0

0
— U =27 — —U =7
57 U and 30 ,

and since SingP(1,1,4,4) C {X =Y = 0}, we have

SingV' C{Z=U=Fs(X,Y) =0} U{X=Y=2(Z-U) =0}.
Thus V' has only isolated singularities by Fg # 0. Hence V' is normal, V' — W is the
Stein factorization of ®|y: V' — W, and thus S ~ V'. Replacing (U,Z) with (U + Z, Z),

we have the expected equation. U

Proposition 7.18. A log del Pezzo surface of index two of type [3;2,4]4 is isomorphic
to the divisor

{Z% + (cY? + XU)Z + F5(X,Y) = Y'U} C P(1,1,2,3)
for a constant ¢ € k and a sextic homogeneous polynomial Fg, where (X,Y,U,Z) is a

homogeneous coordinate of weight (1,1,2,3).

Proof. In this type, £ = o + D for a section D ~ o + 4¢. We may assume that the
fiber ¢ passing through the intersection point ¢ N D is defined by {s = 0}. The divisor
m.(A) C P! of degree 8 does not contain (0:1). Let Fg(s,t) be an octic homogeneous
polynomial such that div(Fz(s,t)) = m.(A). We may assume that

Fy(s,t) = t¥ + ct’s + Fy(s, t)s?
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for a constant ¢ € k and for a sextic homogeneous polynomial Fg. For the sections f
and g, we have m,Ox (0 + 4¢) = O(4)g ® O(1)f over P'. Hence, D = div(Py(s, t)g — sf)
for a quartic homogeneous polynomial P, with P4(0,1) # 0. We may replace £ with
f+ Ps(s, t)g for any cubic polynomial Ps. Hence, we may assume that Py = t*. Therefore
D = div(t'g — sf) and F = div(n) for n = (t'g — sf)g. We consider a global section
¢ = Fy(s,t)g” + ct’gf + £2 € HY(X, L) = H(X, 20 + 6/).
Then div(§) No =0 and div(§) N D = A by
526 = g*(Fs(s,t)s® + est” +t%) mod (t'g — sf).

Thus V = V(&,n) C P. Since

v —nu = vE2 + (ct®v + su)fg + (Fs(s, t)v — thu)g?,

we infer that pi|y: V' C P — Fy is a finite morphism. Applying Lemma 7.7, we have a
birational map P --— P(1,1,2,3) such that the proper transform V' of V' in P(1,1,2,3)

is a Cartier divisor of degree 6 given by
U= 27> + (cY? + XU)Z + Fs(X,Y) — YU =0

for a homogeneous coordinate (X,Y,U,Z) of weight (1,1,2,3). Note that the projection
(X:Y:U:Z) — (X:Y:U) induces a finite morphism V' — W ~ P(1,1,2), which is bira-
tional to ®|y: V — W. Since

aaij =2Z+ (¥’ +XU) and aaU\I} = XZ — Y4,
the singular locus of V' is contained in
{2Z 4+ (Y +XU) =XZ —Y' = Z* + Y’ Z + F5(X,Y) =0} U{X =Y = Z = 0}.
In particular, Sing V' N {X # 0} is contained in the finite set
{Liy:rzin) [z=y" u=—cy’ = 29", y* + oy + Fy(L,y) = 0}

and SingV’ N {X = 0} € {(0:0:0:1)}. Hence, V' has only isolated singular points
and thus V' is normal. Thus S ~ V'’ since V' — W gives the Stein factorization of

V —-W. O

Proposition 7.19. Let S be a log del Pezzo surface of index two of type [3;2,4] .4 (a,b).
(1) If (a,b) = (0,0), then S is isomorphic to the divisor
{Z% + (Y + XU)Z + YO + XF5(X,Y) = 0} C P(1,1,2,3)

for a quintic homogeneous polynomial F5 and for a constant c.
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(2) If (a,b) = (2,1), then S is isomorphic to the divisor
{Z® + XUZ + XY° + X*Fy(X,Y) = 0} C P(1,1,2,3)

for a quartic homogeneous polynomial Fy.
(3) Ifa=1, then 1 < b <6 and S is isomorphic to the divisor

{22 + (Y + XU)Z + XY - X" By (X, Y) = 0} € P(1,1,2,3)
for a homogeneous polynomial F5_, of degree 5 — b.

Proof. In this type, E = 0 + 04 + ¢ for a section 0., at infinity and for a fiber £. We
may assume that oo, = {f = 0}, £ = {s = 0}, and n = —fgs. A global section £ of
Ox (L) ~ Ox (20 + 6/) with div(§) N E = A can be written as

€ =12+ ctfg+ Fy(s,t)g?
for a constant ¢ € k and for a sextic homogeneous polynomial Fg. Since
&v —nu=vE? + (ct’v + su)fg + Fy(s, t)ve’,

we infer that V' — Fy is not finite along {v =s = 0}. We can normalize Fg as follows:

Case (a,b) = (0,0): Then Fg(0,1) # 0. Multiplying t by a non-zero constant, we may
assume Fy(s,t) = t° + sF;(s, t) for a quintic homogeneous polynomial F5. Here, ¢ # 2
if and only if Supp(A N ¢) consists of two points.

Case (a,b) = (2,1): Then ¢ = 0 and Fg(s,t) = sF5(s,t) for a quintic homogeneous
polynomial Fy with F5(0,1) # 0. Multiplying t by a non-zero constant, we may assume
Fs(s,t) = s(t° + sFy(s,t)) for a quartic homogeneous polynomial Fy.

Case (a,b) = (1,b): Then 1 < b < 6, ¢ # 0, and Fy(s,t) = s°Fs 4(s,t) for a
homogeneous polynomial Fg_, with Fg_,(0,1) # 0. Multiplying s and t by non-zero
constants, we may assume ¢ = 1 and Fg(s,t) = s?(t* 75+ sF5_4(s, t)) for a homogeneous
polynomial F5_;, of degree 5 — b, where F5_, = 0 in case b > 5.

Applying Lemmal7.7, we have a birational map P --— P(1, 1,2, 3) such that the proper
transform V' of V in P(1, 1,2, 3) is a Cartier divisor of degree 6 defined by

U= 7%+ (cY? + XU)Z + F5(X,Y) = 0

for the homogeneous coordinate (X,Y,U,Z) of weight (1,1,2,3). Here, the projection
(X:Y:U:Z) — (X:Y:U) induces a finite morphism V' — W ~ IP(1,1,2), which is bira-
tional to ®|y: V' — W. By the calculation

9, 0 0 0

R f— 3 R — JR— f— JR—
aij 2Z + (cY’ + XU), aU\I/ XZ, (‘)X\I] UZ—l—axFG(X,Y),
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we infer that Sing V' is contained in

E
{F5(X,Y) =Z=cY’ + XU =0} U {x: 2Z + cY® = F5(0,Y) — 2 = UZ + %}f(o,v) :0}.
Here, Sing V' N {X = Z = 0} is contained in {(0:0:0:1)}. For, we have Fg(0,Y) = Y®
in case (a,b) # (0,0), (0Fs/0X)(0,Y) = Y® in case (a,b) = (2,1), and ¢ = 1 in case
(a,b) = (1,b). Furthermore, Sing V' N {X # 0} is contained in the finite set

{(1:y:0:—cy®) | F5(1,y) = 0}
and Sing V' N {Z # 0} is contained in the finite set
OF
{<0ry:1:u> 24 ey’ = Fy(0,y) — 1 =u+ 5 2(0,) :O}'

Hence, V' has only isolated singularities and thus V"’ is normal. Therefore S ~ V', since
V' — W coincides with the Stein factorization of V' — W. Therefore, we have the

expected defining equations. O

Proposition 7.20. Let S be a log del Pezzo surface of index two of type [1;2,2]y and let
(X, E,A) be a fundamental triplet defining S. Let (X,Y,U,Z) be a homogeneous coordinate
of P(1,1,2,3).
(1) FEither if chark # 2 or if the double-covering w|g: E C X — P! is inseparable,
then S is isomorphic to the divisor of P(1,1,2,3) defined by

72 = F3(X,Y)Z + Fy(X,Y)U + XYU?
for a cubic polynomial F3 and a quartic polynomial Fy with (F3, Fy) # (0,0).
(2) If chark = 2 and if n|g: E C X — P! is separable, then S is isomorphic to the
divisor of P(1,1,2,3) defined by
72 = (F3(X,Y) 4+ XU)Z + Fy(X, Y)U + Y?U?
for a cubic polynomial F3 and a quartic polynomial Fy with (F3, Fy) # (0,0).
Proof. In this type, E ~ 20 + 2{ is non-singular. By Lemma [4.11} we may assume

2 — stg?, in the case (1);

2 + sfg + t%g?,  in the case (2).
Case (1): The fibers {s = 0} and {t = 0} intersect tangentially with E. Hence,

s|p = x? and t|g = y? for a homogeneous coordinate (x,y) of E ~ P!. Moreover we can
identify g|p with 1 and f|g with xy by an isomorphism Og(c) ~ Op. Note that any

homogeneous polynomial Py, (x,y) of degree 2m is written as

P2m(X7 y) = Pm(x2, y2) + Pm—l(xza y2)xy
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for some homogeneous polynomials P; of degree j for j = m, m —1. Thus we may assume
§ = Fi(s,t)g” + Fi(s, t)fg
for a cubic polynomial F3 and a quartic polynomial Fj, where A C E is defined by
Fy(x2,y%) + F5(x2, y?)xy = 0. Since
v —nu = (Fy(s,t)v + stu)g® + Fs(s, t)vig — uf?
we infer that V' — [y is not finite along {u = Fj(s,t) = Fy(s,t) = 0}. Applying

Lemma [7.7, we have a birational map P --— P(1,1, 1,2) such that the proper transform
V' of V in P(1,1,1,2) is a Cartier divisor of degree 4 defined by

—UgZs + F3(X,Y)Zo + Fy(X,Y) 4+ XYUp = 0

for the homogeneous coordinate (X, Y, Zy, Up) of weight (1, 1,1, 2). Note that the projection
(X:Y:Zo:Up) — (X:Y:Up) induces a rational map V' -— W = P(1,1,2) with non-empty
locus of indeterminacy. We consider the birational map
P(1,1,1,2) ~—P(1,1,2,3); (X:Y:Zg:Ugp) — (X:Y:U:Z) = (X:Y:Up:ZoUp).
Then the proper transform V" of V in P(1, 1,2, 3) is a Cartier divisor of degree 6 defined
by
W= —2% + F5(X,Y)Z + Fy(X, Y)U + XYU? = 0
and the projection (X:Y:U:Z) — (X:Y:U) induces a finite morphism V" — W. By the

calculation
2\; = —27+ F3(X,Y), (;IJJ = Fy(X,Y) + 2XYU,
g‘i = ﬁ’(x,Y)Z + %ﬁ;(x, Y)U + YU?, a;{f = %ﬁ;’(x, Y)Z + %?(X,YW +XU%,
we infer that the singular locus of V" is contained in the locus
{Fg(x,Y) —2Z = Fy(X,Y) + 2XYU = Z* — XYU®? = (?;)I(j = (?;{j = 0} :

We shall show Sing V" is a finite set. Note that Sing V" N{X=Y =0} C {(0:0:0:1)}.
Thus it suffices to consider two subsets Sing V" N{X # 0} and Sing V"N{Y # 0}. Suppose
first that chark # 2. Then Sing V" N {X # 0} is contained in the finite set

OF: OF.
{(1 'y:z:u) ‘ 2z — F3(1,y) =2yu+ Fy(l,y) = 8—;(1,37)2 + a—;(l,y)u+u2 — 0}

and Sing V" N {Y # 0} is contained in the finite set
OF3

R T _ _ aF4 2 _
{(X.l.z.u) ‘ 22—F3(X,1)—2xu+F4(x,1)—W(X,l)z—i—ﬁ(x,l)u—i—u —O}.
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Next, suppose that chark = 2. Then there are finitely many (x:y) € P! satisfying
F3(x,y) = Fy(x,y) = 0. Hence, Sing V" N {X # 0} is contained in the finite set

OF: OF.
{(1 yiziw) | Fy(Ly) = Fi(liy) =2° — yu? = oy L)zt Ly’ = 0} :
and Sing V" N {Y # 0} is contained in the finite set
F: E
{(x: Lz | D) = B 1) =2 — o’ = 20 Tz 4 5w, Tu o = o}.

Therefore, Sing V" is a finite set. Thus V" is normal and S ~ V".
Case (2): We can choose a homogeneous coordinate (x,y) of E ~ P! so that s|p = x?,
t|p = (x+y)y and that g|gp = 1 and £f|g = y? under an isomorphism Og (o) ~ Og. Note

that any homogeneous polynomial Py, (x,y) of degree 2m is written as

Po(x,5) = Pou(x%, (x + y)y) + Pt (2%, (x + y)y)y”
for homogeneous polynomials P; of degree j for j = m, m — 1. In fact, this is shown by
using
xy = (x+y)y—y> and y'=—((x+y)y)*+ 2Ex+y)y+x)y*
Thus we may assume that
g - F4(Sa t)g2 + F3(S7 t)fg
for a cubic polynomial F3 and a quartic polynomial Fy, where A is defined by Fy(x?, (x +
y)y) + Fa(x*, (x + y)y)y* = 0. Since
&v —nu = (Fy(s,t)v — t*u)g® + (F3(s, t)v — su)gf — uf?,

we infer that V' — TFy is not finite over {u = Fj(s,t) = Fy(s,t) = 0}. Applying
Lemma 7.7, we have a birational map P --— P(1,1,1,2) such that the proper transform
V' of V in P(1,1,1,2) is a Cartier divisor of degree 4 defined by

—UpZ3 + (F3(X,Y) — XUp)Zo + Fy(X,Y) — Y?Uy = 0

for the homogeneous coordinate (X, Y, Zg, Ug) of weight (1,1, 1,2). However, the projection
(X:Y:Zp:Up) — (X:Y:Up) induces a rational map V' --— W = P(1,1,2) with non-empty

locus of indeterminacy. We consider the birational map
P(1,1,1,2) ~—P(1,1,2,3); (X:Y:Zg:Up) — (X:Y:U:Z) = (X:Y:Up:ZoUp).

Then the proper transform V" of V in P(1, 1,2, 3) is a Cartier divisor of degree 6 defined
by
U= 22 + (F3(X,Y) — XU)Z + Fy(X,Y)U — Y?U? = 0
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and the projection (X:Y:U:Z) — (X:Y:U) induces a finite morphism V” — W. Since

chark = 2, we have

ov v

& :Fg(X,Y)—XU7 % — —XZ+F4(X,Y)7
oV  OFj3 OF, oV 0Fj3 OF,
X% (X,Y)Z —UZ + % (X, Y)U, oY = 5y (X,Y)Z + ¥ (X, Y)U.

Thus the singular locus of V" is contained in the locus X defined by the following equa-

tions:

() =0 (i) XU=FKKY), (i) XZ=FXY),
 OF, OF,

(iv) VZ=—(XV)Z+— (X, Y)U.

In order to show, S ~ V", we have only to check that X is a finite set. The four equations
above induce the following (v) and (vi), where (v) follows from (i)—(iii), and (vi) follows
from (ii), (iii), and (v) multiplied by X*:

(v) Z*—XUZ+ Y?U? = 0; (vi)  Fu(X,Y)* — XF3(X, Y)Fy(X,Y) + Y2 F3(X,Y)? = 0.

Note that (vi) does not hold identically on P!. This is shown as follows: Assume the
contrary. We may also assume that F3(X,Y) is not identically zero. Then the rational
function w = Fy(X,Y)X ' F3(X,Y)™! is related to the rational function y = Y/X by the
Artin-Schreier equation: w? —w+y? = 0. Here k(y)/k(y?) is inseparable but k(w)/k(y?)
is separable. However k(w) C k(y) by the assumption. Thus a contradiction is derived.
Therefore, X N {X # 0} is a finite set. If (0:1:u:z) € ¥, then u = z by (v) and

OF, OF, -

by (iv). Thus ¥ N {X = 0} is also finite. Therefore we finished the proof. O

Remark. The equations in Propositions [7.11H7.15/ and [7.1747.20 define log del Pezzo
surfaces of index two. In fact, the subvariety defined by the equations is really constructed
from a fundamental triplet (X, E, A) of the same type, where E and A are defined by
the data of the equations.

Example 7.21. Let (X, E, A) be an extremal fundamental triplet of type [1;2, 2]y with
D(X, E,A) = Dg. Then the associated log del Pezzo surface S is defined by

7? = (X* 4 YU)XU, if chark # 2 or E — P! is inseparable,
7? = (XZ + X' + Y?U)U, otherwise,

in P(1,1,2,3) for the homogeneous coordinate (X,Y,U, Z) of weight (1,1,2,3). In fact, we
can take F3 = 0 and Fj; = X* in Proposition [7.20
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The following example shows that the Smooth Divisor Theorem in [3] does not hold in

general in characteristic two. This was pointed out by Ohashi in a special case.

Example 7.22. Suppose that chark = 2. Let S be a log del Pezzo surface defined by
the equation of Proposition [7.20, (1), with F3 = 0. Then 7|g: E — P! is inseparable.
We can show that any member C' of |-2K| has a singular point, as follows: A general
member C is defined by U— Q(X,Y) = 0 for a quadric polynomial ). Thus C' C P(1, 1, 3)
is defined by
72 = (X, )Q(X,Y) + XYQ(X, Y)?

for the homogeneous coordinate (X,Y,Z) of weight (1,1,3). Let (x,z) be the coordinate
system of the open subset {Y # 0} ~ A? defined by x = X/Y and z = Z/Y3. Then
C N {Y # 0} is defined by z* = ®(x) for the polynomial

d(x) = Q(x,1)Fy(x,1) + xQ(x, 1)2.

Thus a point (xg,zg) € A? is contained in Sing CN{Y # 0} if and only if (d®/ dx)(x) = 0
and z2 = ®(x). Thus Sing C # ().

Remark 7.23. We consider a fundamental triplet (X, E, A) is of type [1; 2, 2]p with A = 8P
for a non-ramification point P € E for 7|p. Let ¢: M — X be the elimination of A. The
dual graph I'[M] = I'(X, E, A) of negative curves on M is written in TABLE We shall
give further information on the set of negative curves by using the description of £ and
A in Proposition|7.20, in case chark > 5. Let (x:y) be the coordinate of £ ~ P! used in
Case (1) of the proof of Proposition [7.20l Then we may assume that P € E is defined by
x+y = 0. Let us define homogeneous polynomials P,(s,t) and Q,(s,t) € Z[1/2, s, t] of
degree n > 0 by
(x+ )" = Pu(x,¥°) + 2xyQu1 (x*, ).
Here, @_1(s,t) =0, Py(s,t) = Qo(s,t) = 1, and we have

2P,(2,y") = (x4 y)" + (=) = I, (x4 y) = O~ y)),
ByQua (,y°) = (x4 9" = =y = [ (e +y) = ¥ (x =)
for ¢ = exp(2mv/—1/(4n)) for n > 1. Therefore,
P.(s,t) =2""! H:;; ((S +t) — cos (%ﬂ') (s — t)) :
Qn_1(s,t) = 2" H:: ((s +t) — cos (%7‘(‘) (s — t)) :
In particular, P,(s,t) and @Q,(s,t) have only simple roots on P! if gcd(chark, 2n) = 1.
We also have the equality

(7-27) Pi(s,t)Qj-1(s,t) — Pi(s,£)Qi1(s,t) = (s — £)*Qj-i—1(s, t)
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for 0 < ¢ < j by calculation. Let -, be the unique section of = with ;| = 2jP (cf.
Proposition (6.2, (7g)) for 1 < j < 4. Then

Vi = diV(Pj(S, t)g + 2Qj_1(S, t)f)

We set vy to be 0. Then

%N =% Ndiv((s — £)*Qj-i-1(s, t))
for 0 < i < j <4 by (727). Let v; C M be the proper transform of v; in M for
0 < j <4, which is a (—=1)-curve. If v py Ny # 0 for i < j, then i + 1 < j, and the
following assertions hold:
e v, Ny is a reduced point lying over the point (1:—1) € P! for j =i+ 2,
e i Ny is reduced consisting of two points lying over {(3:—1),(1:—=3)} C P!
for j =1+ 3,

® Yo.m M Vs is reduced consisting of three points lying over
{(1+v2:1-v2),1:-1), (1-v2:1+v2)} c P

In particular, vo pr VY201 = Yo N7yaas is a point Py lying over the point {g = s+t = 0},
and the union of negative curves on M is not normal crossing at the point Pj;. From the
dual graph I'[M] in TABLE [12, we can not obtain directly the property that vo as, V2.0,

and 74,3 meet at a point.

Remark 7.24. For a log del Pezzo surface S of index two, we have proved in Theorem [3.32
that —4Kg is very ample, and that —2K is very ample if and only if K2 > 1. We can
check it by our explicit description of S as follows:

If S is one of surfaces treated in Section [7.3, i.e., K); + Ly, is big and S is not of
type [n;1,0], then S is expressed as a subvariety of a weighted projective space. Here,
Os(—2Kg) is just the restriction of a very ample invertible sheaf of the weighted projective
space, by construction.

The surfaces S of type [n;1,0]y are treated in Section 7.4, where K% = 5 +n > 1.
If n =4, then S ~ P(1,1,4) and Og(—2Kg) = O(4) is very ample. If 0 < n < 4,
then S is a subvariety of P(1,1,n) x P(1,1,4) where Og(—2K3) is just the restriction
of O(2n) X O(4) by Proposition [7.1; thus —2Kg is very ample. If n = 0, then S is
a subvariety of P! x P(1,1,4) and Og(—2Kj) is just the restriction of the very ample
invertible sheaf O(2) X O(4) also by Proposition [7.1.

If S is of type [4;2,4]p0, then K% = 2, and Og(—2Ky) is the restriction of the very
ample invertible sheaf O(4) of P(1, 1,4, 4) by Proposition [7.17.

Thus, the remaining types are [3;2,4],, [3;2,4],(a,b), and [1;2,2]g. These are just

the cases of S with KZ% = 1. In this case, S is a prime divisor of (1, 1,2, 3) not containing
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the point (0:0:0:1) and Os(—2Kg) ~ O(2)|s, by Propositions[7.18,/7.19,7.20l We note
that —2K is not very ample, since O(2)|s is the pullback of O(2) by the projection
S — P(1,1,2). It is enough to check that O(4)|s ~ Og(—4Ky) is very ample, since O(6)
is very ample on IP(1, 1,2, 3). Let (X,Y,U, Z) be the homogeneous coordinate of P(1, 1,2, 3)
as before. Then the vector space H'(P(1,1,2,3),0(4)) is generated by
Xy x*UYiu, Xz, YZ
for 0 <i<4and 0 < j <2 Now S is covered by three affine open subsets {X # 0},
{Y # 0}, {U # 0}. The affine ring of {X # 0} is isomorphic to the polynomial ring of
three variables generated by
Y/X =% /x', u/x?=xu/xt, z/x% =xz/xh
Thus the linear system |O(4)| gives an embedding of the open subset {X # 0} into the
projective space |O(4)]Y = P(H"(P(1,1,2,3), O(4))). Similarly, it gives an embedding of
{Y # 0}. The affine ring of {U # 0} is isomorphic to the subring k[x, y, z]® generated by
monomials of degree two of the polynomial ring k[x,y, z| of three variables. This ring is
generated by
7yl = X*V U, xz = XZ/U?, yz=YZ/U?, zZ*=7%/0°

for 0 < j < 2. Since 22 ¢ H(P(1,1,2,3),0(4)), the linear system |O(4)| does not give
an embedding of {U # 0}. However, the defining equations of S obtained in Proposi-

tions [7.18, [7.19, [7.20 express z? = Z2/U3 by other generators of the affine ring. Hence,
O(4)|s is very ample.
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