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Abstract. We prove the “hot spots” conjecture of J. Rauch in the case that
the domain Ω is a planar convex domain satisfying diam(Ω)2/|Ω| < 1.378.
Specifically, we show that an eigenfunction corresponding to the lowest non-
zero eigenvalue of the Neumann Laplacian on Ω attains its maximum (mini-
mum) at points on ∂Ω. When Ω is a disk, diam(Ω)2/|Ω| t 1.273. Hence, the
above condition indicates that Ω is a nearly circular planar convex domain.
However, symmetries of the domain are not assumed.

1. Introduction and Main results

Let Ω be an open bounded domain with smooth boundary. We consider the
eigenvalue problem

(1.1) ∆Φn + λnΦn = 0 in Ω, ∂νΦn = 0 on ∂Ω,

where {λn}∞n=1 are the eigenvalues which satisfy

0 = λ1 < λ2 < λ3 < · · · → +∞.

Hereafter, u denotes an eigenfunction of (1.1) corresponding to λ2 which is not
identically 0. In this paper, under certain conditions on Ω, we prove the “hot
spots” conjecture of the form:

Conjecture 1.1 (J. Rauch[R75]). For all p ∈ Ω,

inf
q∈∂Ω

u(q) < u(p) < sup
q∈∂Ω

u(q).

For a brief history and the physical meaning of Conjecture 1.1, see [BB99, AB04].
This conjecture does not hold in this level of generality. There are counterexamples
which are planar non-convex domains with hole(s) [BW99, B05]. On the other
hand, the conjecture holds for a planar convex domain with two axes of symmetries
[BB99, JN00] ([BB99] also proves the case of another class of domains with one
axis of symmetry) and for the so-called lip domain [AB04]. However, the case
of the convex domains seems to remain open, even if the domain is planar. Our
main result is a positive answer for a certain class of planar domains which is not
completely included in [BB99, JN00, AB04].
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Theorem A. Let Ω be a planar convex domain. Let |Ω| denote the area of Ω, and
let d := supp,q∈Ω |p− q| (:= diam(Ω)). If

(1.2)
d2

|Ω| <
j2
0

πj2
1

≈ 1.378,

then Conjecture 1.1 holds. Here jk (k = 0, 1) denotes the first positive zero of
the derivative of the Bessel function of the first kind of order k, J ′k( · ), namely,
j0 ≈ 3.831, j1 ≈ 1.841.

When Ω is a disk, d2/|Ω| = 4/π ≈ 1.273. Therefore, (1.2) indicates that Ω is a
nearly circular domain. However, we do not assume symmetries of the domain.

Theorem A is derived from the following:

Lemma B. Let Ω be a planar convex domain. If

(1.3)
√

λ2 <
j0
d

,

then Conjecture 1.1 holds.

We briefly show that (1.3) holds if (1.2) holds. Let R∗ denote the radius of the
disk which has the same area as Ω. Using an upper bound of λ2 obtained by Szegö
[S54] and Weinberger [W56]

√
λ2 ≤ j1

R∗
=

√
π

|Ω|j1,

we have √
λ2 ≤

√
π

|Ω|j1 <
j0
d

.

Hence, Lemma B derives Theorem A.
We prove Lemma B in an indirect way.

Lemma 1.2. Suppose the same assumptions of Lemma B are satisfied. Then u
does not have a critical point in Ω. Here we say that p0 is a critical point of u, if
ux(p0) = uy(p0) = 0.

We show by contradiction that Lemma 1.2 derives Lemma B. If Conjecture 1.1
fails, then u attains the maximum or minimum at a point in Ω which is a critical
point. This contradicts Lemma 1.2.

We will see that Lemma 1.2 is a special case of the following conjecture:

Conjecture 1.3 (E. Yanagida). Let Ω ⊂ RN be a convex domain, and let f be a
function of class C2. Let v be a non-constant solution to

(1.4) ∆v + f(v) = 0 in Ω, ∂νv = 0 on ∂Ω.

If v has a critical point p0 in Ω (i.e., vxk
(p0) = 0 for all k ∈ {1, 2, . . . , N}), then

the second eigenvalue µ2 of the eigenvalue problem

(1.5) ∆Ψn + f ′(v)Ψn = −µnΨn in Ω, ∂νΨn = 0 on ∂Ω

is strictly negative.

Conjecture 1.3 is posed by E. Yanagida, and he points out that Conjecture 1.3
is a nonlinear version of Conjecture 1.1 [Y06]. Conjecture 1.3 holds for a disk
[Mi07b] and for a domain of the form [0, 1] ×D(⊂ R × RN ) [GM88] (The setting
of the problem of [GM88] is, however, different from ours). We consider a more
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general problem. When the Morse index of a solution to (1.4) on a convex domain
is m, what shape is the solution? It is well-known that the solution of (1.4) on a
convex domain should be constant when m = 0 [CH78, Ma79]. The contrapositive
of Conjecture 1.3 is an answer for the case m = 1. Specifically, when m = 1, a
solution on a convex domain attains the maximum (minimum) at points on the
boundary.

In the present paper, we consider Lemma 1.2 as the linear case of Conjecture 1.3,
i.e., f(v) = λ2v. In this case,

(1.6) µ2 = 0.

However, in Section 3 we show that µ2 < 0 if u has a critical point in Ω. This
contradicion proves Lemma 1.2.

We should mention the strategy. [BW99, BB99, AB04, B05] use probabilistic
methods. [JN00] uses an analytic method. Our method is an analytic one which is
partially similar to the one of [JN00]. Let U ∈ C∞(R2) be the radially symmetric
solution to

∆U + λ2U = 0 in R2, U(0) = max
q∈R2

U(q) = 1.

Then U can be written explicitly as follows:

U(x, y) = J0

(√
λ2r

)
(r =

√
x2 + y2),

where Jk( · ) is the Bessel function of the first kind of order k. By z we define

(1.7) z := w − u,

where w = u(p0)Up0 , and Up0 is the translation of U such that the center of U is p0.
Note that ∆z + λ2z = 0 in Ω. In the proof of Lemma 1.2, we use a contradiction.
Suppose that p0 ∈ Ω is a critical point of u. Then p0 is a degenerate point of
z. Using this degeneracy of z, we analyze the zero-level sets of z and construct
a good test function which derives a contradiction (µ2 < 0). Roughly speaking,
we compare the eigenfunction u with the radially symmetric solution w in spite
that w does not necessarily satisfy the Neumann boundary condition on ∂Ω. The
techniques used in the proof are developed in [Mi07a, Mi07b].

The rest of the paper consists as follows: In Section 2, we recall known results
about the zero-level sets (the nodal curves) of eigenfunctions in R2, namely, the
theory of Carleman, Hartman, and Wintner. In Section 3, we prove Lemma 1.2.

2. Preliminaries

In this section, we recall the theory of Carleman, Hartman, and Wintner. From
now on, let {φ = 0}, {φ 6= 0}, and {φ > 0} denote the zero-level sets, the non-zero
level sets, and the positive regions of φ respectively.

Proposition 2.1. Let V (x, y) ∈ C1(Ω), and let φ(x, y) be a function satisfying that
∆φ + V φ = 0 in Ω. Then φ ∈ C2(Ω). Furthermore, φ has the following properties:
( i ) If φ has a zero of any order at p0 in Ω, then φ ≡ 0 in Ω.
(ii) If φ has a zero of order l at p0 in Ω, then the Taylor expansion of φ is

φ(p) = Hl(p− p0) + O(|p− p0|l+1),

where Hl is a real valued, non-zero, harmonic, homogeneous polynomial of degree
l. Therefore, {φ = 0} has exactly 2l branches at p0.
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This proposition is due to Hartman-Wintner [HW53] and generalizes a result
by Carleman [C33]. This statement is a slight modification of the statement of
[HHHO99]. We see by the proposition that {φ = 0} consists of smooth curves and
intersections among them. In particular, the curves do not terminate, unless they
hit other curves or the boundary of the domain.

We modify this proposition so that Proposition 2.1 can be applied in our proof.

Corollary 2.2. Let V (x, y) ∈ C1(Ω), and let φ(x, y) ∈ C2(Ω) be a function
satisfying that ∆φ + V φ = 0 in Ω. If φ has a degenerate point p0 in Ω, i.e.,
φ(p0) = φx(p0) = φy(p0) = 0, then either ( i ) or (ii) holds:
( i ) φ ≡ 0 in Ω.
(ii) {φ = 0} has at least four branches at p0. Moreover, {φ > 0} has at least two
connected components near p0 (However, they may be connected globally in Ω).

3. Proof

In this section we prove Lemma 1.2 by contradiction. Hereafter, let Ω be a planar
convex domain, and let p0 be a critical point of u in Ω.

First, we study the zero-level sets of z = w − u, where z is defined by (1.7).

Lemma 3.1. p0 is a degenerate point of z, i.e., z(p0) = zx(p0) = zy(p0) = 0.

Proof. Because of the definition of z, z(p0) = w(p0) − u(p0) = 0. Since p0 is a
critical point of w and u, we have zx(p0) = wx(p0) − ux(p0) = 0 and zy(p0) =
wy(p0)− uy(p0) = 0. ¤

Before stating the next lemma, we recall the following relation for Dirichlet and
Neumann eigenvalues of the Laplacian:

Proposition 3.2. The lowest Neumann nonzero eigenvalue of a planar domain is
strictly less than the lowest Dirichlet eigenvalue for any domain with the same area.

The next lemma is well-known for specialists (However, the function z in the
statement is not necessarily an eigenfunction of (1.1), because z does not necessarily
satisfy the Neumann boundary condition on ∂Ω). See [K85, JN00] for details of
Proposition 3.2 and Lemma 3.3. We repeat the proof for the sake of the readers’
convenience.

Lemma 3.3. {z = 0} has no loop on Ω ∪ ∂Ω.

Proof. We prove the lemma by contradiction. Assume the contrary, i.e., {z = 0}
has a loop. Let D be the open subset of Ω enclosed by the loop. If the sign of z
changes in D, then there is another loop on D∪∂D such that z does not change the
sign in the set enclosed by the loop. Thus we can assume without loss of generality
that the sign of z does not change in D. Then z satisfies

∆z + λ2z = 0 in D, z = 0 on ∂D.

Therefore, λ2 is the first eigenvalue of the Dirichlet Laplacian on D. Let κ1(D)
(resp. κ1(Ω)) denote the first eigenvalue of the Dirichlet Laplacian on D (resp. Ω).
Using Proposition 3.2 and the fact that D ⊂ Ω, we have

λ2 = κ1(D) ≥ κ1(Ω) > λ2,

which is a contradiction. ¤
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Figure 1. The vectors p− p0 and ν.

Lemma 3.4. Let Γ ⊂ ∂Ω be an open subset of the boundary with non-zero measure,
and let δ := supξ∈Γ,η∈∂Ω |ξ − η|. If z > 0 on Γ, u(p0) > 0, and

(3.1)
√

λ2 <
j0
δ

,

then ∫

Γ

z∂νzdσ < 0.

Proof. Let p ∈ Γ be a point on Γ, and let ν denote the outer normal of ∂Ω at p.
Since Ω is convex, we see ν · (p− p0) > 0, where · denotes the inner product of R2.
See Figure 1. Since (∂νu)(p) = 0 and w is radially symmetric with respect to p0,
we have

(3.2) (∂νz)(p) = (∂νw)(p)− (∂νu)(p) = u(p0)J ′0
(√

λ2|p− p0|
)

ν · p− p0

|p− p0| .

We see that
√

λ2|p− p0| < j0, combining (3.1) and the fact that |p− p0| ≤ δ. Since
J ′0( · ) < 0 in the interval (0, j0), the right-hand side of (3.2) is negative. Hence
(z∂νz)(p) < 0, and we have ∫

Γ

z∂νzdσ ≤ 0.

The strictness of the inequality is clear. ¤

We are in a position to prove the main lemma.
Proof of Lemma 1.2. We prove the lemma by contradiction. Suppose the contrary,
i.e., u has a critical point p0 in Ω. First, we consider the case u(p0) = 0. Then p0

is a degenerate point of u, i.e., u(p0) = ux(p0) = uy(p0) = 0. Since u 6≡ 0 in Ω, (ii)
of Corollary 2.2 says that {u = 0} has at least four branches at p0. Each branch
does not terminate and should connect to another branch or to the boundary ∂Ω.
Hence, it follows from an elementary argument that {u 6= 0} has at least three
connected components. We obtain a contradiction, since u should have exactly two
nodal domains.

If u(p0) < 0, then we consider −u. Therefore, we can assume without loss of
generality that u(p0) > 0. We see by Lemma 3.1 that p0 is a degenerate point of z.
By Corollary 2.2 we can divide the possibilities in two cases.

Case 1: We consider the case that (i) of Corollary 2.2 occurs, i.e., z ≡ 0 in Ω.
Then u is radially symmetric with respect to p0, since w is radially symmetric. Ω
should be a disk, because u satisfies the Neumann boundary condition on ∂Ω, Ω is
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convex, and p0 6∈ ∂Ω. In this case, u can be written explicitly,

(3.3) u(r, θ) = c1J1

(
j1r

R

)
sin θ + c2J1

(
j1r

R

)
cos θ (c1, c2 ∈ R, c2

1 + c2
2 6= 0),

where R is the radius of the disk and (r, θ) is a polar coordinate system of the disk.
In particular, (3.3) is not radially symmetric, which contradicts that u is radially
symmetric. Thus the case does not occur.

Case 2: (ii) of Corollary 2.2 occurs. Then {z = 0} has at least four branches at
p0. Each branch does not connect to another branch. If it does, then {z = 0} has
a loop, which contradicts Lemma 3.3. Hence each branches should connect to the
boundary ∂Ω. Moreover, it follows from (ii) of Corollary 2.2 that {z > 0} has at
least two connected components. They are not connected globally in Ω, since all
the branches emanated from p0 are separated each other. Let D1, D2 (D1∩D2 = ∅)
denote connected components of {z > 0}. By zk (k = 1, 2) we define

zk :=
{

z in Dk,
0 in Ω\Dk.

Note that ∂Dk ∩ ∂Ω (k = 1, 2) has non-zero measure, because of Lemma 3.3. By ψ
we define

ψ := z1 − αz2 (α ∈ R).
We take α such that 〈ψ, Φ1〉 = 0, where Φ1(= 1) is the first eigenfunction of (1.1),
and 〈 · , · 〉 denotes the inner product of L2(Ω). Specifically, α = 〈z1, Φ1〉 / 〈z2,Φ2〉.
Here 〈z2, Φ2〉 > 0, because z2 > 0 on a set with non-zero measure. Then we have

H[ψ] :=
∫∫

Ω

(
|∇ψ|2 − λ2ψ

2
)

dxdy

= −
∫∫

{ψ 6=0}
ψ (∆ψ + λ2ψ) dxdy +

∫

∂{ψ 6=0}
ψ∂νψdσ

=
∫

∂{z1 6=0}
z1∂νz1dσ + α2

∫

∂{z2 6=0}
z2∂νz2dσ,(3.4)

where we use ∆ψ + λ2ψ = 0 in {ψ 6= 0}. Because of the assumption (1.3), (3.1) is
satisfied. We see by Lemma 3.4 that the right-hand side of (3.4) is negative. From
a variational characterization of the second eigenvalue of (1.5), we have

(3.5) µ2 := inf
φ∈span〈Φ1〉⊥∩H1(Ω)

H[φ]
〈φ, φ〉 ≤

H[ψ]
〈ψ,ψ〉 < 0,

where span 〈Φ1〉⊥ :=
{
φ ∈ L2(Ω); 〈φ, Φ1〉 = 0

}
. (3.5) contradicts (1.6). ¤
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