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Abstract

A class of discrete convex functions that can efficiently be minimized has been
considered by Murota. Among them aré-¢onvex functions, which are natural
extensions of submodular set functions. We first consider the problem of minimizing
an L-convex function with a linear inequality constraint having a positive normal
vector. We propose a polynomial algorithm to solve it based on a binary search for
an optimal Lagrange multiplier, where use is made of algorithms for minimum-ratio
and maximume-ratio problems that are, respectively, associated with submodular and
supermodular set functions. We also examine an extension of the problem to that
with a linear inequality constraint having a not necessarily positive normal vector and
adapt it to the problem of minimizing an®™tonvex function, the convex conjugate
of an L-convex function, with a linear inequality constraint. The former extension
can be solved in polynomial time by using a binary search for an optimal Lagrange
multiplier and by adopting Nagano’s algorithm for the intersection of line and a base
polyhedron. The latter can also be solved in polynomial time by an approach similar
to that for Li-convex functions, based on a geometric characterizatiorfafdvivex
functions.

1. Introduction

Murota [12, 13] considered a class of discrete convex functions that have nice min-max
relations and can efficiently be minimized. Among them are L-convéx@nvex) func-
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tions and M-convex (Mtconvex) functions; the former are the conjugates (or the Legendre
transforms) of the latter and vice versa-donvex functions were also treated earlier by
Favati and Tardella [1] and called submodular integrally convex functions (also see [6] for
L3-convex functions and [15] for KMconvex functions). A weakly polynomial algorithm

for minimizing L*-convex functions was proposed by Murota [14].

We consider the problem of minimizing ani-tonvex function with a linear inequal-
ity constraint having a positive normal vector (or weight vector) such as a budget con-
straint. The effective domains oficonvex functions have special discrete structures (see
[5, 13]), so that such an additional linear constraint does not fit into the effective domains
of Li-convex functions and we need a new algorithm to the problem other than those
for Li-convex functions without any additional constraints. Moreover, we examine pos-
sible extension and adaptation of the algorithm for other problems and give polynomial
algorithms.

The present paper is organized as follows. Section 2 gives definitions and describes
the optimization problem for an®tconvex function with a linear inequality constraint.
Section 3 shows a characterization of optimal solutions of the problem. In Section 4
we propose an algorithm to solve the problem based on a binary search for an optimal
Lagrange multiplier, which finds an optimal solution in weakly polynomial time. In Sec-
tion 5 we also examine an extension of the problem to the one having a not necessarily
positive weight vector and adapt the algorithm for drchnvex function to minimizing
an MP-convex function with a linear inequality constraint. We propose polynomial algo-
rithms for solving these problems.

2. Definitions and Problem Description

Let £ be a finite nonempty set, altl andZ be the sets of reals and of integers, respec-
tively. We consider an 1-convex functionf : Z¥ — R U {+occ} on the integer lattice
Z* such that its effective domaitomf = {z € Z¥ | f(z) < +oo} is nonempty and
full-dimensional. See [13] for the precise definition. We give a characterization of an
L3-convex function in the following.

Denote byConv the convex hull operator ilR”. For anyz € Z% and any linear
ordering (or permutatiory of E define a simplex

A7 =Conv({z+ xs, | i =1,---,m, S;is the set of the firstelements ofr}). (2.1)

The collection of all such simplice&? for all pointsz € Z*¥ and linear orderings of
E forms a simplicial division oR?, which is called thérreudentahl simplicial division
We also call eaci\? a Freudentahl cell

Let f be a function on the integer latti®" such that

(A1) Conv(domf)NZ¥ = domf.



(A2) The convex hullConv(dom f) of the effective domain of is full-dimensional and
is the union of some Freudentahl cells.

The assumption of the full dimensionality is not essential but we assume it here for sim-
plicity. Under Assumptions (Al) and (A2) we can uniquely construct a piecewise linear
extensionf of f by means of the Freudentahl simplicial division as follows. For any
x € A7 we have a unique expression:ofs a convex combination of extreme points of
the cellA? as

r = Zai(z + Xs1)s (2.2)

wheres; is the set of the firstelements otr. According to the expression (2.2) we define

m

flo) =) aif(z+xs,)- (2.3)

=1

For all = outsideConv(dom ) we putf(z) = +oc. Note thatf is well defined. Such a
piecewise-linear extension has been considered in fixed-point algorithms as a piecewise-
linear approximation of a nonlinear function ¥ being sampled oZ” (see [21, 24]). It
should also be noted that whdnm f = {yx | X C E}, f is called theLovasz extension
([5, 11)).

Then, f is anL®-convex functiorf and only if the following (A3) holds.

(A3) The piecewise linear extensigh: R — R U {+oc} of f by (2.2) and (2.3) is a
convex function oR”

(see [6, 12, 13]). The original definition of ari-convex function orZ” is different, but
see [5, Chapter VII] for the proof of their equivalence. Hence Conditions (Al), (A2), and
(A3) imply

(S) fis submodular odomf, i.e.,
@)+ fy) = flavy) + fleny)  (zy € domf), (2.4)
where(z V y)(e) = max{z(e),y(e)} and(z A y)(e) = min{z(e),y(e)} fore € E.

It follows that the effective domaidom f is a (distributive) lattice with lattice operations
v andA. For anyz € Z* define a set functiorf, on 2¥ by

LX) =fz+xx) (X CE). (2.5)

Then (2.4) implies that the functiofi, is a submodular set function for evetyc Z*
wheneverom f, # 0.



We also call the extensiofi on R¥ an L‘-convex function We consider E-convex
functions onZ” andR” and their extensions in the above sense in the sequel.

For any L*-convex functionf : Zf — R U {+o0}, any positive weight vectow :
E — R, and anyj € R consider the following problem.

(P°): Minimize f(z)
subjectto (w,z) < 3,
z € RP, (2.6)

where(w,z) = > ., w(e)z(e). Here it should be noted that the objective functibn

is defined orR* and is not restricted on the integer lattiéé. This makes the problem
substantially easier but the existence of a linear constraint makes it nontrivial.

3. The Lagrangian Function and the Optimality

For Problem(P°) given by (2.6) consider the associated Lagrangian function as follows.

~

Lz, A) = f(x) + A8 — (w, z)). (3.1)

Then the optimal solutions of Problef¥°) are characterized by the following, which is
well-known in (continuous) convex optimization.

Proposition 3.1 A vectorz* € R¥ is an optimal solution of Problerf?°) if and only if
there exists a* < 0 such that the followinga), (b), and(c) hold.

(@) z*is aminimizer ofL(x, \*) in .
(0) (w,z") < 6.
(©) A*(8 — (w,a%)) = 0.
Condition(a) is rewritten as
0 € OL(x* \*) = Of (2*) — Nw (3.2)

or Mw € Of (x*), wheredL(z*, \*) (resp.df (z*)) denotes the subdifferential 6{z, \*)
(resp.f(x))inz atz = z*. O

It should be noted that Proposition 3.1 holds for any convex function. For the L
convex functionf the subdiferential8 L(x*, \*) andaf(x*) aregeneralized polymatroids
of Frank [3] because of the?tconvexity ofL(z, A*) and f (z) (see [5, 13]). This will play
a crucial Ble in constructing efficient algorithms. Note that for ang dom f we have

Of(x) ={p e R |VX C E: f(z)— f(z — xx) < p(X) < f(z+xx) — f(z)} (3.3)



(see [5, 13)).
Define Z()) to be the set of minimizers df(x, \) or f(z) — M(w, z) in x € Z¥. We
see from its submodularity th&t(\) is a distributive lattice with respective toandA.

Theorem 3.2 Suppose that for a parametat < 0 there existr,y € Z(\*) such that

(w,z) <B,  (w,y) > B. (3.4)

Then a vector:* lying on the line segment betweemandy and satisfyingw, *) = g is
an optimal solution of ProblerP?).

(Proof) For any feasible solutionof Problem(P°),

~

fz) = f2)+X(B—(w,2))
> min{f(z) + N (8 — (w,7)) | 2’ € domf}
= f@) + X (8- (w,a)
= f(="), (3.5)

where note thaf (z) — A (w, z) = f(y) — A\ (w,y) = f(z*) — X\ (w, z*) sincex,y €
Z(\*). It follows from Proposition 3.1 and the assumption thiats an optimal solution
of (P°). O

Whendomf is bounded, we can apply Murota’s weakly polynomial algorithm [14]
for minimizing L*-convex functions to find a vector ifi()\) for each). We can perform
a binary search to find an optimal Lagrange multiphéby making use of algorithms for
the minimume-ratio (and maximume-ratio) problems to be described in the next section.

It should also be noted that the structure of parametric minimiZ¢as of L(z, A) or
f(x)—Xw, z)inz € Z¥ is closely related to the theory of principal partitions (see [5, 7])
and also to the monotonicity results on parametric minimization of submodular functions
onZ¥ (see [22, 23)).

4. A Polynomial Algorithm

In this section we propose algorithms for solving Problef#1). In the following we
suppose

(i) The effective domairnlom f is bounded and we are given the maximum element
and the minimum elementof dom f as a lattice.

(i) fisinteger-valued odom f, w is a positive integral vector, anglis an integer.

It should be noted that although we assume in (i) the boundedneksigf, the in-
equality constraint and the existence of the minimum elemesftdom f imply that the
feasible region of the problem is bounded from above because of the positiveness of the
weight vectorw.



4.1. A binary search algorithm

We construct an algorithm for finding an optimal solution of Problgpfi) based on a
binary search for an optimal Lagrange multiplit

If we have a minimizer* of f that satisfiegw, z*) < 3, thenz* is an optimal solution
of (P°). Hence let us suppose, z*) > (3. Then there exists an optimal solution lying
on the hyperplanéw, x) = 3. We try to find such an optimal solution.

Letz € domf satisfyx € Z(«) for somea € R. For such an: define

Ap = inf{a | aw € 8f(x)}, (4.1)
fiz = sup{a | aw € Of(x)}. 4.2

It follows from (3.3) and the positiveness ofthat

~

Ay =inf{a | VX CE:aw(X) > f(x) — f(r — xx)}, (4.3)
fiz =sup{a | VX C F:aw(X) < f(zr+xx)— f(2)}. (4.4)

Sincew is a positive vector, the problem of determining the value of (4.4) is reduced to
the minimume-ratio problem

[z 4+ xx) — f(x)

Minimize
w(X)

subjectto 0 #A#X CF (4.5)

(see [5, Sec. 7.2]). The minimum value is equaflito Dually, the maximum-ratio prob-

lem
f(z) = flz = xx)
w(X)

gives the value of\, of (4.3). Note thatf,(X) = f(z + xx) — f(z) in X is a submod-

ular set function and'(z) — f(z — xx) is a supermodular set function . Strongly
polynomial algorithms for the minimum-ratio and maximum-ratio problems are obtained
by [2, 17].

Maximize

subjectto 0 #A#X CFE (4.6)

Theorem 4.1 Suppose that we are giveny € domf that definei,, 5\y € R such that
fla < Ay 4.7)

and
(w,z) < B,  (w,y) > (4.8)
Puta = (fi, + A,)/2 and letz € Z(a). Then we have

(w,z) < (w,z) < (w,y). (4.9)



Moreover,

(Proof) It follows from the definitions ofi, anda that(w, z) < (w, z). Similarly, from
the definitions ofA, anda we get(w, z) < (w,y). Moreover, (4.10) follows from the
definitions ofa, A., andji.. O

Based on Theorem 4.1 we propose an algorithm as follows.

Algorithm BS

Input: The minimum element of domf.

Output: An optimal solutionz* and an optimal Lagrange multiplier*.
Step 1 Compute a global minimizer* ¢ Z* of f.

If 2* is a feasible solution of°), then return:* anda* = 0.

Else putr «— v andy < z*, computei, and\,, and go to Step 2.
Step 2 While /i, < ), do (*):

(*) Puta — (fip + A,)/2 and findz € Z(a).
If = is feasible, then put — = and computgi,,
else puty < z and compute\,.

Step 3 Find a pointz* in the intersection of the line segment betweeandy and the
hyperplanefl = {z € R¥ | (w, z) = 3}. Returnz* anda* = [i,.
(End)

It should be noted that computing, and ;\y plays a crucial @le in achieving the
polynomial complexity of the proposed algorithm, which will be seen in the sequel.

4.2. Validity of the algorithm

Let B = max{max{|f(z)| | z € domf}, max{w(e) | e € E}, ||} and K =
max{u(e) —u(e) | e € E}. We assume thaB, K > 2.

Theorem 4.2 AlgorithmBS computes an optimal solution @P°) in O((L*+SFM) log B)
time, whereéSFM denotes the complexity of the submodular function minimization algo-
rithm (of Orlin [18]) and L" denotes the complexity of minimizing airdonvex func-
tion (which is O(SFMlog K') by Murota’s algorithm[14]). Consequently, it runs in
O(SFMlog K log B) time.

(Proof) Since we have

b, = min

{f(Q—FXX) — f(u)
w(X)

0+XC E} > 2B, (4.11)



the initial difference\, — /i, is bounded by- min{0, /i, } < 2B, and any nonzero differ-
ence)\, — /i, is not less than /(B?). Since the differencéy — fi, is cut in half in each
execution of (*) of Step 2, it follows that the number of the executions of (*) of Step 2 is
O(log B). Each computation of., and5\y requiresO(SFM) (see [2, 17]). Also we can
apply Murota’s algorithm for minimizing 1-convex functions to compute a minimizer

of L(-,a) (i.e., z € Z(«)) in each execution of (*), which requiré3(SFM log K') time
(see [10] for the complexity estimation of Murota’s algorithm). It follows that the total
running time of AlgorithmBS is O((L* 4+ SFM) log B) or O(SFMlog K log B). O

In Algorithm BS we can use the submodular function minimization (SFM) algorithms
that allow parametric minimization of a strong-map sequence of submodular set functions
such as those in [2, 8, 9, 18]. The complexity of currently the best SFM algorithm is
O(|E|’(|E|+EO) log | E|) due to Orlin, where EO denotes the time required for a function
evaluation off. The applicability of Orlin’s algorithm [18] to the minimum-ratio problem
is shown by Nagano [17].

5. Extensions and Related Algorithms

In this section we discuss possible extension and adaptation of the algorithm for Problem
(P°) to other problems.

5.1. General weight vectors

We have assumed that the weight veetor £ — R is positive. This assumption leads
us to the minimum-ratio (resp. maximume-ratio) problem for determining the vajue
(resp.S\y) for which we have efficient algorithms. Although Problékf) becomes more
difficult, we can solve Proble(#°) with a not necessarily positive but nonzero weight
vectorw as follows.

Suppose that we are given a vector Z(«) for somea € R. For such a vector we
modify the definitions of\, andji. as follows.

Ae=inf{v | VX CE: f(2) = f(z = xx) <vw(X) < fz+xx) = f(2)},  (5.1)
fi- = sup{v [ VX C E: f(2) = f(z = xx) Svw(X) < f(z+ xx) — f(2)}.  (5.2)

Recall that the polyhedron represented by the system of inequalities in the right-hand side
of (5.1) and (5.2) is a generalized polymatroid, which is a projection of a base polyhedron
into the coordinate space of codimension one (see [4]). Hence the problem of computing
)\, and i, defined as above is to find the end-points of the intersection of the generalized
polymatroid and the lind. = {vw | v € R}. We can adapt the strongly polynomial
algorithm of Nagano [16] to find such end-points. When a computed global minimiizer



of f is infeasible, we should assume that we are given a feasible soludiod a negative
valuea such that: € Z(«). Then we can start from Step 2 of AlgorithBS by putting
x «— z andy < z* to solve Problent P°) with givenw, using the above definitions of
andji,.

5.2. MP-convex functions

For any Li-convex functionf : Z¥ — Z we have the associated*Monvex function
f*:Z¥ — Z U {+oo} as the convex conjugate or the Legendre transforfy @fhich is
given by

f*(p) = sup{(p.x) - f(x) |z € Z"}  (p € Z"). (5.3)

Putg = f*. The convex extensiofof g(= f*) is expressed as

g(p) =sup{(p,z) — f(x) |2 € Z"}  (peRF). (5.4)

We also callj : R¥ — R U {+o0} an M-convex function. (M-convex functions from

RF toRU{+oo} in a more general sense have been considered in [15, 13] (also see [5]).)
For the M-convex functiory : R — R U {+cc}, a nonzero integral vecter: £ —

Z, and an integey consider the following problem.

(P*) : Minimize J(p)
subjectto (p,c) <7,
p € RE. (5.5)

For anya € R denote byZ*(«) the set of all minimizers of(p) — a(p, c) inp € Z~.
Theorem 5.1 Suppose that € Z*(«) for somea € R. Then,

inf{a |p € Z*(a)}

e
max{ 9+ exe) — 9(p)
ec(e)

9(p)

e,el € E, cle) < c(e’)},

e€ L, ec(e) <0, ez—l—,—}}, (5.6)

sup{a [ p € Z°(a)}
— min{min{ Q(p + Xe — Xe,) _
c(e) —c(€)
mm{ g(p+ ex(e)>— 9(p)

9(p)

e,e € B, c(e) > c(e')},

e€ E, ec(e) >0, €_+,—}}. (5.7)



(Proof) Because of the conjugacy betweérchnvex functions and Fconvex functions

the tangent cone of the epigraph @fat p is generated by those vectors from among
(Xe=Xe's G(PHXe—Xer) —9()) (€,€ € E) and(exe, §(p+exe)—g(p)) (e € E, € =+, —)

that belong tR” x R. (Note that l-convex functions are affine on every Freudentahl cell
and the facets of Freudentahl cells are determined by hyperplanes having normal vectors
from amongy. — xe (e,€’ € E) andey. (e € E, ¢ = +,—) (see [5, 13].) Hence we

have (5.6) and (5.7). O

Let us denote the values of (5.6) and (5.7)[,byndmp, respectively. Note thé; and
1, can be computed iO(|E|*EO®) time, whereEO®* means the time for the function
evaluation oracle fog.

Now, suppose that we are given vectprsp, € R¥ such that

D1 < Z.(Oq), D2 < Z.(OQ) (58)

and
(pr,¢) <7 < (p2,0). (5.9)

If we havern,, > [,,, then a poinp* in the intersection of the line segment between
andp, and the hyperplang® = {p € R¥ | (p,c) = v} is an optimal solution of Problem
(P*).

If 7, < I,,, then putor — (v, + 1,,)/2 and find a poing € Z°*(«). If ¢ is feasible,
then putp; < ¢ or elsep, < ¢. Repeat this process untit,, = sz and we obtain an
optimal solutiorp* as above.

The validity of this algorithm can be proven by the same arguments as made for Al-
gorithmBS.

Starting with vectorg,,p, € RP satisfying (5.8) and (5.9), the above-mentioned
algorithm computes an optimal solution of ProbléRt) in O((M? + |E|?EO®) log B*),
whereM® denotes the complexity of minimizing an*Monvex function, which i®)((|E|
+|E[*log(K*/|E[))EO* (log(K* /| E]) / log |E])) or O(|E]PEO® log(K*/|E])) due to
Shioura [19] and Tamura [20], and

B = max{max{lg(p)] | p € dom g}, max{le(c)| | e € E, 1[}},  (5.10)
K* = max{|z(e) —y(e)| | z,y € dom g}. (5.11)

Here we assume that botkf and K* are finite values.

6. Concluding Remarks

We have proposed polynomial algorithms for minimizing a discrete convex function, such
as an lt-convex function and an Mconvex function, with a linear inequality constraint.
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We can adapt the proposed algorithm to minimizing those extensions of discrete convex
functions for which the end-points of the intersection of a line and a subdifferential of the
function at every point can efficiently be computed.

In the present paper we have considered the minimization problem with a single in-
equality constraint. The simple binary search approach adopted here does not work for
the problem with multiple inequality constraints. Related research on minimization of
submodular functions with multiple parameters has been made in the theory of principal
partitions [7] (also see [5, Sec. 7.2]). We will investigate the problem elsewhere.
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