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Abstract. We generalize Tango’s theorem [T1] on the Frobenius
map of the first cohomology groups to higher dimensional algebraic
varieties in characteristic p > 0. As application we construct coun-
terexamples of Kodaira vanishing in higher dimension, and prove
the Ramanujam type vanishing on a surface which is not of general
type when p ≥ 5.

Let X be a smooth complete algebraic variety over an algebraically
closed field of positive characteristic p > 0, and let D be an effective
divisor on X. In this article we study the kernel of the Frobenius map

(1) F ∗ : H1(X,OX(−D)) → H1(X,OX(−pD))

of the first cohomology groups of line bundles.
Tango [T1] described the kernel of F ∗ in terms of the exact differen-

tials in the case of curves. First we generalize this result to varieties of
arbitrary dimension, that is, we prove

Theorem 1. The kernel of the Frobenius map (1) is isomorphic to the
vector space

{df ∈ ΩQ(X) | f ∈ Q(X), (df) ≥ pD},
where Q(X) is the function field of X and (ω) ≥ pD means that a
rational differential ω ∈ ΩQ(X) belongs to Γ(X, ΩX(−pD)).

Using this description and generalizing Raynaud’s method [Ra], we
construct pathological varieties of higher dimension which are similar
to his surfaces:

Theorem 2. Let p be a prime number and n ≥ 2 an integer. Then
there exist an n-dimensional smooth projective variety X of character-
istic p and an ample line bundle L such that

(a) H1(X,L−1) ̸= 0,
(b) the canonical divisor class KX is ample and the intersection

number (ci(X).Kn−i
X ) is negative for every i ≥ 2, and
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(c) there is a finite cover G of X and a sequence of morphisms

G = Gn → Gn−1 → · · · → G2 → G1

such that Gi+1 → Gi is a P1-bundle for every i = 1, · · · , n − 1
and that G1 is a nonsingular curve. The Euler characteristic
e(X)(:= deg cn(X)) of X is equal to e(G) = 2n−1e(G1).

Here ci(X) is the ith Chern class of X.

When p = 2, 3, we obtain similar varieties X with quasi-elliptic fibra-
tions X → Y . In this case, the canonical classes KX are the pull-back
of ample divisor classes on Y . By the property (b) and Yau’s inequality
([Y1], [Y2]) or by (a) and [DI], we have

Corollary. The algebaric variety X in the theorem is not liftable to
characteristic zero.

Throughout this article R.V. on an algebraic surface X means the
vanishing of H1(X,L−1) for all nef and big line bundles on X. Con-
versely to the above counterexample, using Theorem 1 and [LM], we
prove the following.

Theorem 3. In the case where X is of dimension two, we have the
following:

(a) Assume that X is not of general type and that the Iitaka fibra-
tion X → C is not quasi-elliptic when the Kodaira dimension
κ(X) is 1 and p = 2, 3. Then R.V. holds on X.

(b) If R.V. does not hold on X, then there exist a birational mor-
phism X ′ → X and a morphism g : X ′ → C onto a smooth
algebraic curve C such that every fiber F of g is connected and
singular. Furthermore, the cotangent sheaf ΩF has nonzero tor-
sion.

Our counterexamples X in dimension two are sandwiched between
two P1-bundles, and the general fibers F in (b) of Theorem 3 are ra-
tional for them. A curve of higher (geometric) genus appears as such
a fiber F if we take a sufficiently general separable cover π : X̃ → X
with (deg π, p) = 1. R.V. does not hold on X̃ either since L−1 is a
direct summand of π∗π

∗L−1.
All results of this article are contained in either [M1] or [M2] except

Proposition 3.2. The report [M1] is an outcome of the author’s seminar
around 1977 on [Mum] and a preprint of [Ra] with Professor Masaki
Maruyama, to whose advice and encouragement the author expresses
his sincere gratitude in this occasion.
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Convention. In the sequel we assume the characteristic p is positive
and mean by K.V. the vanishing of the first cohomology group H1.

1. Tango’s theorem

The feature of positive characteristic is the existence of the Frobenius
morphisms F : X → X and the Frobenius maps. Let L be a line bundle
on X. The Frobenius morphism induces the Frobenius map

(2) F ∗ : H1(X,L−1) → H1(X,L−p)

between the first cohomology groups. When X is normal and dim X ≥
2, we have

Lemma 1.1 (Enriques-Severi-Zariski). H1(X,L−m) = 0 holds if L is
ample and m is sufficiently large.

Therefore, by the sequence

H1(X,L−1) → H1(X,L−p) → H1(X,L−p2

) → · · ·
of Frobenius maps, K.V. holds on X if and only if the following holds:

(*) F ∗ : H1(X,L−1) → H1(X,L−p) is injective for every ample line
bundle L on X.

1.1. Tango-Raynaud curve. The statement (*) makes sense even
when dim X = 1. The following is fundamental for (*) in this case:

Theorem 1.2 (Tango [T1]). Let D be an effective divisor on a smooth
algebraic curve X. Then the kernel of the Frobenius map (1) is iso-
morphic to the space of exact differentials df of rational functions f on
X with (df) ≥ pD.

The following example, which was found by Raynaud [Ra] in the case
e = 1, shows that (*) does not holds when dim X = 1.

Example 1.3. Let P (Y ) be a polynomial of degree e in one variable
Y and let C ⊂ P2 be the plane curve of degree pe defined by

(3) P (Y p) − Y = Zpe−1,

where (Y, Z) is an inhomogeneous coordinate of P2. It is easy to check
that C is smooth and has exactly one point ∞ on the line of infinity.
By the relation

−dY = −Zpe−2dZ

between the differentials dY and dZ, ΩC is generated by dZ over C∩A2.
In other words, dZ has no poles or zeros over C ∩ A2. Since deg ΩC =
2g(C) − 2 = pe(pe − 3), we have (dZ) = pe(pe − 3)(∞). Therefore, by
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the above theorem of Tango, the Frobenius map (1) is not injective for
the divisor D = e(pe − 3)(∞).

A curve C of genus ≥ 2 is called a Tango-Raynaud curve if C satisfies
the following mutually equivalent conditions:

(a) there exists a line bundle L on C such that Lp ≅ ΩC and that
the Frobenius map (2) is not injective, and

(b) there exists a rational function f on C such that df ̸= 0 and
that the divisor (df) is divisible by p.

The curve C in the above Example is a Tango-Raynaud curve.

1.2. Higher dimensional generalization. Following [T1] we denote
the cokernel of the natural (pth power) homomorphism OX → F∗OX

by BX . For a Cartier divisor D on X we have the exact sequence

(4) 0 → OX(−D) → F∗(OX(−pD)) → BX(−D) → 0

and the associated long exact sequence

(5)
0 → H0(OX(−D))

F ∗
→ H0(OX(−pD)) → H0(BX(−D))

δ→ H1(OX(−D))
F ∗
→ H1(OX(−pD)) → · · · .

If D is effective, then F ∗ : H0(OX(−D)) → H0(OX(−pD)) is surjec-
tive. Hence we have the following

Lemma 1.4. If D is effective, then the coboundary map δ of (5) induces
the isomorphism

(6) Ker[F ∗ : H1(OX(−D)) → H1(OX(−pD))] ≅ H0(BX(−D)).

Assume that X is normal and consider the direct image of the deriva-
tion d : OX → ΩX by F . By F∗d, BX is regarded as a subsheaf of
F∗ΩX . Let ΩQ(X) be the Q(X)-vector space of differentials. We denote
the constant sheaf associated with Q(X) or ΩQ(X) on X by the same
symbol, and consider the intersection dQ(X)∩ΩX in the constant sheaf
ΩQ(X). Then, more precisely, BX is contained in F∗(dQ(X)∩ΩX). We
also have BX(−D) ↪→ F∗(dQ(X)∩ΩX(−pD)). Therefore, by the exact
sequence (5), we have

Proposition 1.5. If X is normal, then the kernel of the Frobenius
map of H1(OX(−D)) is isomorphic to a subspace of the vector space

{df ∈ ΩQ(X) | f ∈ Q(X), (df) ≥ pD}.

Corollary. If X is normal and HomOX
(OX(pD), ΩX) = 0, then the

Frobenius map of H1(OX(−D)) is injective.
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When X is smooth, BX = F∗(dQ(X)∩ΩX) holds, by the existence of a
p-basis. Hence BX(−D) = F∗(dQ(X) ∩ ΩX(−pD)) holds for a Cartier
divisor D and we have Theorem 1.

1.3. Purely inseparable covering in an A1-bundle. When a vector
bundle E on X is given, we have the relative Frobenius morphism
P(E) → P(E(p)) over X. We denote this morphism by ϕ. We consider
the special case where E is an extension of two line bundles:

(**) 0 → OX(−D) → E → OX → 0.

Then E(p) is also an extension of line bundles

(***) 0 → OX(−pD) → E(p) → OX → 0.

Let F∞ ⊂ P(E) be the section corresponding to the exact sequence
(**). Then P(E) \ F∞ an A1-bundle and P(E) is its compactification.
Assume that the extension class α of (**) belongs to the kernel of the
Frobenius map (1). Then (***) have a splitting, which yields a section
G′ of P(E(p)) disjoint from F ′

∞ := ϕ(F∞).

Definition 1.6. Let G = G(X,D, α) be the (scheme-theoretic) inverse
image of G′ by the relative Frobenius morphism ϕ. We denote the
restriction of the projection ḡ : P(E) → X to G by τ .

By construction G is embedded in the A1-bundle P(E) \ F∞. When
α corresponds to η = df ∈ H0(BX(−D)) in the way of Theorem 1, that
is, when α = δ(η), we denote G by G(X,D, η) also. The morphism
τ : G → X is flat, finite of degree p and ramifies everywhere. If X is
normal and η ̸= 0, then G is a variety and its function field is a purely
inseparable extension of Q(X). By construction we have the following
linear equivalence:

(7) G − pF∞ ∼ ḡ∗(pD).

Now we can state a criterion for G to be smooth.

Proposition 1.7. Assume that X is smooth. Then G = G(X,D, η) is
smooth if and only if η ∈ H0(BX(−D)) is nowhere vanishing. If these
equivalent conditions are satisfied, then the natural sequence

(8) 0 → τ ∗OX(pD)
×η−→ τ ∗ΩX

τ∗
−→ ΩG → ΩG/X → 0.

is exact and ΩG/X is isomorphic to τ ∗OX(D). In particular the image
of τ ∗ is a vector bundle of rank n − 1.
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Proof. Assume that D is given by a system {gi}i∈I of local equations for
an open covering {Ui}i∈I of X. We may assume that η is represented
by a 0-cochain {bi}i∈I which satisfies

bi = gp
i ci ∈ Γ(Ui,OX(−pD)), bj − bi = ap

ij ∈ Γ(Ui ∩ Uj,OX(−pD))

for some ci ∈ OX and aij ∈ OX(−D). Then {aij}i,j∈I is a 1-cocycle
which represents α = δ(η) and the vector bundle E in (**) is defined

by the 1-cocycle

{(
gig

−1
j 0

aijg
−1
j 1

)}
with coefficient in GL(2,OX). Since

(ci 1)

(
gp

i g
−p
j 0

ap
ijg

−p
j 1

)
= (cj 1)

holds, the 0-cocycle {(ci 1)}i∈I defines a splitting OX → E(p) of the
extension (***).

On each open set Ui, G ⊂ P(E) \ F∞ is defined by the equation
Sp

i = ci, where Si is a fiber coordinate of Ui×A1. On their intersection,
Sp

i = ci (over Ui) and Sp
j = cj (over Uj) are patched by the affine

transformation gjSj = giSi + aij. Let OX(pD)
×η−→ ΩX be the the

multiplication homomorphism by η. Since τ ∗dci = 0, we have the
complex (8).

Let x be a point in Ui. If dci vanishes at x, then Sp
i = ci is sin-

gular at x. Assume that dci is nonzero at x. Then G is smooth at
τ−1(x). Moreover, the cotangent space of X at x has a basis of the
form {γ1, . . . , γn−1, dci}, and {τ ∗γ1, . . . , τ

∗γn−1, dSi} is a basis of the
cotangent space of G at τ−1(x). Therefore, the kernel of τ ∗ is spanned
by dci and the cokernel by dSi. Hence (8) is exact and the image of τ ∗

is a vector bundle of rank n − 1. Since gjdSj = gidSi holds in ΩG/X ,
ΩG/X is isomorphic to τ ∗OX(D). ¤
Corollary. τ ∗cn(X) ∼ pcn(G), where n = dim X. In particular, we
have e(X) = e(G).

Proof. Let B be the image of τ ∗. Then by the propostion we have
cn(G) ∼ τ ∗(−D) · cn−1(B

∨) and τ ∗cn(X) ∼ τ ∗(−pD) · cn−1(B
∨). Hence

τ ∗cn(X) is rationally equivalent to pcn(G). The second half of Corollary
is obtained by taking the degree of these two 0-cycles. ¤

If X is a Tango-Raynaud curve, then τ : G → X is nothing but the
Frobenius morphism of X.

2. Construction of counterexamples

By a TR-triple, we mean a triple (X,D, f) of a smooth variety X,
a divisor D on X and a rational function f ∈ Q(X) with (df) ≥
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pD. In this section, we shall construct a new TR-triple (X̃, D̃, f̃) from
(X,D, f) under a certain divisibility assumption.

2.1. New triple of higher dimension. Let (X,D, f) be a TR-triple.
We assume that D = kD′ for a divisor D′ and an integer k ≥ 2 which
is prime to p, and construct a new TR-triple (X̃, D̃, f̃) with dim X̃ =
dim X + 1.

Under the same setting as the last subsection, we choose and fix a
non-empty open subset U ⊂ X among Ui’s, i ∈ I. We shrink U and
replace f with f ′ satisfying df ′ = df if necessary so that f is regular
over U . We take a fiber coordinate S of P(E) → X over U such that
the section of infinity F∞ is defined by S = ∞ and G = G(X,D, df)
defined by Sp−f = 0. Our new variety X̃ is a model of the function filed
Q(X)(S, k

√
Sp − f). We construct it in two steps. Let m be a positive

integer such that p+m is divisible by k. By the linear equivalence (7),
we have

G + mF∞ ∼ k(
p + m

k
F∞ + g∗(pD′)),

that is, G + mF∞ is the zero locus of a global section of M−k, being
M = OP(−p+m

k
F∞−g∗(pD′)). First in the usual way we take the global

k-fold cyclic covering

(9) Spec

(
k−1⊕
i=0

M i

)
→ P(E)

with algebra structure given by Mk ≅ OP(E)(−G − mF∞) ↪→ OP(E).
Secondly we take the relative normalization of this covering over a
neighborhood of F∞.

Definition 2.1. We put

(10) X̃ = Spec

(
k−1⊕
i=0

M i([im/k]F∞)

)
.

with natural algebra structure induced by (9), where [ ] is the Gauss
symbol. The composite of this cyclic k-fold cyclic covering π : X̃ →
P(E) and the structure morphism P(E) → X is denoted by g : X̃ → X.
Furthermore, we set

D̃ := (k − 1)F∞ + g∗D′ and f̃ = k
√

Sp − f ∈ Q(X̃),

where the unique section of g lying over F∞ is denoted by the same
symbol.

The complete linear system |mF∞| defines an embedding outside G
for sufficiently large m. Hence we have
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Lemma 2.2. If D is ample, so is D̃.

Now we assume further that η := df ∈ H0(BX(−D)) is nowhere
vanishing. Then G is smooth by Proposition 1.7 and X̃ is smooth
since the branch F∞⊔G is smooth. Since X̃ is defined by the equation
T k = Sp − f on g−1(U), taking differential, we have kT k−1dT = −df .
Hence dT has no zero along G. The differential dT vanishes along the
infinity section F∞ with order p(k−1). Therefore, dT defines a nonzero
global section of ΩX̃(−p(k − 1)F∞ − ph∗D′). It is easily checked that

df̃ ∈ H0(BX̃(−D̃)) is nowhere vanishing. Thus we have

Proposition 2.3. If X is smooth and (X,D, f) is a TR-triple with am-

ple D and nowhere vanishing η = df , then X̃ is smooth and (X̃, D̃, f̃)

is also a TR-triple with ample D̃ and nowhere vanishing η̃ := df̃ .

Every fiber of g is a rational curve with the unique singular point
at the intersection with π−1G. The singularity is the cusp of the form
T k = Sp.

Let τ̃ : G̃ → X̃ be the everywhere ramified covering constructed from

(X̃, D̃, f̃) (Definition 1.6). Since
p

√
f̃ = k

√
S − p

√
f , the composite g ◦ τ̃

factors through τ and we have the commutative diagram

h

G̃ −→ G
τ̃ ↓ ↓ τ

X̃ −→ X.
g

Moreover this morphism h : G̃ → G is isomorphic to the P1-bundle
P(OG ⊕ OG(τ ∗D′)) over G. Let U and V be the infinity and zero
sections of the P1-bundle h, respectively. They are disjoint and we
have

(11) U − V ∼ h∗τ ∗D′.

The pull-backs τ̃ ∗F∞ and τ̃ ∗G are U and pV , respectively. In particular,
we have

(12) τ̃ ∗D̃ ∼ (k − 1)U + h∗τ ∗D′ ∼ kU − V.

Proposition 2.4. Assume that X is smooth and (X,D, f) is a TR-
triple with (df) = pD. Then G̃ is a P1-bundle over G and e(X̃)(=
deg ctop(X̃)) is equal to 2e(X).

Proof. The first half is already shown above. This implies e(G̃) =
e(P1)e(G) = 2e(G). Hence the second half follows from Corollary of
Proposition 1.7. ¤
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2.2. The canonical classes of G̃ and X̃. Let (X,D, f) be a TR-
triple with an ample divisor D and nowhere vanishing (df) ∈ H0(BX(−D).
The purely inseparable cover G of X is embedded in the A1-bundle
P(E) \ F∞. Since G is smooth, we have the exact sequence

(13) 0 → TG → TP(E)|G → NG/P(E) → 0.

The normal bundle NG/P(E) is isomorphic to τ ∗OX(−pD). On the other
hand, restricting the natural exact sequence

0 → TP(E)/X → TP(E) → h∗TX → 0

to G, we have the exact sequence

(14) 0 → τ ∗OX(−D) → TP(E)|G → τ ∗TX → 0

since the relative tangent bundle TP(E)/X is isomorphic to OP(E)(2F∞)⊗
h∗OX(−D) and F∞ ∩ G = ∅. By these two exact sequences, we have
the rational equivalence

c(G) · τ ∗c(OX(−pD)) ∼ τ ∗c(OX(−D)) · τ ∗c(X)

of algebraic cycles, where c(X) and c(G) =
∑

i≥0 ci(G) are the total
Chern classes of X and G, respectively. Hence we have

τ ∗c(X) ∼ c(G)(1 − pτ ∗D)(1 − τ ∗D)−1(15)

∼ c(G){1 + (1 − p)
∑
i≥1

τ ∗Di}.

In particular, we have

(16) τ ∗KX ∼ KG + (p − 1)τ ∗D.

Now we compute the canonical classes of G̃ and X̃. By (11) and
(12), we have

(17) KG̃ ∼ −U − V + h∗KG ∼ −2U + h∗(KG + τ ∗D′).

and

τ ∗KX ∼KG̃ + (p − 1)τ ∗D̃

∼− 2U + h∗(KG + τ ∗D′) + (p − 1) {(k − 1)U + h∗τ ∗D′}(18)

∼(pk − p − k − 1)U + h∗ (KG + pτ ∗D′) .

We note that pk − p − k − 1 ≥ 0 and the equality holds if and only if
{p, k} = {2, 3}.
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In the sequel we denote by ∼Q the Q-linear (or Q-rational) equiva-
lence of Q-divisors (or Q-cycles). For the later use we put

(19) J := KG +
1

k − 1
τ ∗D and J̃ := KG̃ +

1

k̃ − 1
τ̃ ∗D̃

for an integer k̃. Since D′ ∼Q D/k, we have

J̃ ∼Q −U − V + h∗KG +
1

k̃ − 1

{
(k − 1)U +

1

k
h∗τ ∗D

}
∼Q

(
k − 1

k̃ − 1
− 2

)
U + h∗

{
KG +

(
1

k
+

1

k(k̃ − 1)

)
τ ∗D

}
(20)

∼Q

(
k − 1

k̃ − 1
− 2

)
U + h∗

{
J +

1

k

(
1

k̃ − 1
− 1

k − 1

)
τ ∗D

}
by (17).

2.3. Chern numbers of X̃. Since G̃ is a P1-bundle over G with two
disjoint sections U and V , the relative cotangent bundle Ω

eG/G is iso-

morphic to O
eG(−U − V ). Hence we have

c(G̃) ∼ (1 + U + V ) · h∗c(G)

ci(G̃) ∼ h∗ci(G) + (U + V ) · h∗ci−1(G).(21)

Since U ∩ V = ∅, we have

U · V ∼ 0,

U2 ∼ ((U − V ) + V ) · U ∼ k−1h∗τ ∗D · U,(22)

V 2 ∼ (U − (U − V )) · V ∼ −k−1h∗τ ∗D · V
by (11). More generally, we have

(23)
Um ∼ k−m+1h∗τ ∗Dm−1 · U and
V m ∼ (−k)−m+1h∗τ ∗Dm−1 · V

for every integer m ≥ 1.

Proposition 2.5. Let λ and µ be nonnegative integers such that λ +

i + µ = dim G̃. Then we have

(c1(G̃)λ.ci(G̃).τ̃ ∗D̃µ)

=
λ∑

α=0

(
λ

α

)
(c1(G)λ−α.ci(G).τ ∗Dµ+α−1)(k1−α + (−1)µk1−α−µ)

+
λ∑

α=0

(
λ

α

)
(c1(G)λ−α.ci−1(G).τ ∗Dµ+α)(k−α + (−1)µk−α−µ)
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Proof. By (12) and (21), we have

(c1(G̃)λ.ci(G̃).τ̃ ∗D̃µ)

=(c1(G̃)λ.h∗ci(G).τ̃ ∗D̃µ) + (c1(G̃)λ.h∗ci−1(G̃).(U + V ).τ̃ ∗D̃µ)

=
λ∑

α=0

(
λ

α

)
(h∗c1(G)λ−α.h∗ci(G).(U + V )α.(kU − V )µ)

+
λ∑

α=0

(
λ

α

)
(h∗c1(G)λ−α.h∗ci−1(G).(U + V )α+1.(kU − V )µ)

=
λ∑

α=0

(
λ

α

)
(h∗c1(G)λ−α.h∗ci(G).(kµUα+µ + (−1)µV α+µ))

+
λ∑

α=0

(
λ

α

)
(h∗c1(G)λ−α.h∗ci−1(G).(kµUα+µ+1 + (−1)µV α+µ+1))

=
λ∑

α=0

(
λ

α

)
(h∗c1(G)λ−α.h∗ci(G).h∗τ ∗Dα+µ−1.(k1−αU + (−1)µk1−α−µV ))

+
λ∑

α=0

(
λ

α

)
(h∗c1(G)λ−α.h∗ci−1(G).h∗τ ∗Dα+µ.(k−αU + (−1)µk−α−µV )).

Since both U and V are sections of h : G̃ → G, we have (h∗Z.U) =
deg Z for every 0-cycle Z on G. Therefore the proposition follows from
the last expression. ¤
Corollary. (c1(G̃)λ.ci(G̃).τ̃ ∗D̃µ) is of degree ≤ 1 as a Laurent poly-
nomial in the variable k. Moreover, the coefficient of k is equal to
(c1(G)λ.ci(G).τ ∗Dµ−1) if µ ≥ 1 and 0 otherwise.

2.4. Proof of Theorem 2. Now we are ready to construct an n-
dimensional TR-triple (Xn, Dn, dfn). We define two sequences {ki}1≤i≤n−1

and {ei}1≤i≤n−1 of positive integers inductively by the rule

ki = 1 + ciei−1 and ei = ei−1ki

for 2 ≤ i ≤ n − 1, where {ci}i is a non-decreasing sequence of integers
ci ≥ 2 such that ki’s are not divisible by p. (The simplest choice is
ci := p for every i.) We start with an arbitrary positive integer k1 ≥ 2
prime to p and e1 := k1.

The first TR-triple (X1, D1, df1) consists of a Tango-Raynaud curve
X1, a divisor D1 and an exact differential df1 with (df1) = pD1 such
that D1 is divisible by en−1. Then we apply the construction in §2.1
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by taking kn−1-fold covering of the P1-bundle P(E1) over X1, and put

(X2, D2, df2) = (X̃1, D̃1, df̃1). This is a TR-triple of dimension 2. We
repeat this process n−1 times. We note that the divisor D2 = (kn−1−
1)F∞ + D1/kn−1 is divisible by en−2. In particular, D2 is divisible by
kn−2. Hence, taking kn−2-fold covering of P(E2) over X2, we obtain

(X3, D3, df3) = (X̃2, D̃2, df̃2), which is a TR-triple of dimension 3 such
that D3 is divisible by en−3, and so on. In the final (n − 1)st step we
take the k1-fold covering of P(En−1) since Dn−1 is divisible by e1 = k1.
We obtain a new TR-triple (Xn, Dn, dfn), which is an n-dimensional
counterexample of Kodaira’s vanishing by Proposition 2.3.

The first half of (b) of Theorem 2 is a consequence of the following

Proposition 2.6. The canonical class KXn is ample if {p, k1} ̸= {2, 3},
and the pull-back of an ample divisor on Xn−1 if {p, k1} = {2, 3}.

Proof. Since τn : Gn → Xn is finite, it suffices to show that KGn−1 +
p
k1

τ ∗
n−1Dn−1 is ample by (16) and (18). We put

Ji := KGi
+

1

kn−i − 1
τ ∗
i Di

for every 1 ≤ i ≤ n − 1 after (19). Since p/k1 ≥ 1/(k1 − 1), it suffices
to show the following:

claim 1. Ji is ample.

We prove by induction on i. In the case i = 1, both KG1 and D1 are
ample. Hence J1 is ample. Assume that i ≥ 2. We have

kn−i+1 − 1

kn−i − 1
=

cn−i+1en−i

cn−ien−i−1

≥ kn−i ≥ 2

if n− i ≥ 2, and (k2 − 1)/(k1 − 1) = c2k1/(k1 − 1) > 2. By the formula
(20), Ji is ample since so is Ji−1 and since kn−i+1 > kn−i. ¤

Now we consider the sequence of the morphisms

Gn
hn−1−→ Gn−1

hn−2−→ · · · h2−→ G2
h1−→ G1,

in order to investigate the asymptotic behaviour of certain Chern num-

bers of Xn as k1, · · · , kn−1 go to ∞, where Gj := G̃j−1 for j = 2, · · · , n.
Since G1 is a curve, we have − deg c1(G1) = deg τ ∗

1 D1 = 2g − 2, where
g is the genus of the Tango-Raynaud curve G1 ≅ X1. Applying Propo-
sition 2.5 (or its Corollary) successively to the above morphisms hi, we
have the following

Proposition 2.7. The intersection number (c1(Gn)λ.ci(Gn).τ ∗
nDµ

n) is
a Laurent polynomial in the variables k1, . . . , kn−1 whose coefficients
are integers independent of X1 and D1. The degree of the Laurent



COUNTEREXAMPLES OF KODAIRA’S VANISHING 13

polynomial is at most 1 with respect to every variable. Moreover, the
coefficient of k1 · · · kn−1 is equal to

2g − 2 if (λ, i, µ) = (0, 0, n),

−(2g − 2) if (λ, i, µ) = (1, 0, n − 1), (0, 1, n − 1), and

0 otherwise.

Furthermore we have

Proposition 2.8. The intersection number (Kn−i
Xn

.ci(Xn)) is a Laurent
polynomial in the variables k1, . . . , kn−1 and the degree is of degree ≤
1 with respect to each variable. If i ≥ 2, then the coefficient of the
highest monomial k1 · · · kn−1 in the Laurent expression of (Kn−i

Xn
.ci(Xn))

is equal to −p−n(p − 1)n−i(n − i)(2g − 2).

Proof. By (21), τ ∗
nci(Xn) is rationally equivalent to

ci(Gn) + (1 − p)
i∑

j=1

ci−j(Gn).τ ∗
nDj

n

∼ (1 − p)τ ∗
nDi

n + (1 − p)c1(Gn)τ ∗
nDi−1

n + (lower terms in Dn).

Since τ ∗
nc1(Xn) ∼ (1 − p)τ ∗

nDn + c1(Gn), we have

pn(c1(Xn)n−i.ci(Xn))

=(τ ∗
nc1(Xn)n−i.τ ∗

nci(Xn))

=(1 − p)n−i+1(τ ∗
nDn

n) + (1 − p)n−i(n − i)(c1(Gn).τ ∗
nDn−1

n )

+ (1 − p)n−i+1(c1(Gn).τ ∗
nDn−1

n ) + (lower terms in Dn).

Hence our assertion follows from Proposition 2.7. ¤
By the proposition, (Kn−i

X .ci(Xn)) is negative for sufficiently large
choice of k1, · · · , kn−1 for i ≥ 2. This shows (b) of Theorem 2. (c) is a
direct consequence of Proposition 2.4.

2.5. Properties of (X2, D2, df2). Here we remark a few properties of
2-dimensional counterexamples (X,D, df) := (X2, D2, df2), which is a
k-fold covering of a P1-bundle over a Tango-Raynaud curve C. By
Proposition 1.7, the cokernel of the multiplication map by df is locally
free. In our case, the cokernel is a line bundle. Hence we have the
exact sequence

(25) 0 → OX(pD)
×df−→ ΩX −→ OX(KX − pD) → 0.

Proposition 2.9. (a) The complete linear system |p(pD−KX)| is
non-empty.
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(b) If k ≡ −1 (p), then X has a nonzero vector field, that is,
H0(TX) ̸= 0.

(c) When {p, k} ̸= {2, 3}, the canonical class KX is ample and
K.V. holds for K, that is, H1(OX(−KX)) = 0.

Proof. First we compute the canonical class KX more rigorously than
§2.2. Since KP(E)/C = −2F∞ + D1 and since the k-fold cyclic covering
π : X → P(E) has branch locus G ⊔ F∞, we have

KX/C = π∗KP(E)/C+(k−1)G+(k−1)F∞ ∼ −(k+1)F∞+(k−1)G+g∗D1.

The rational function Sp − f gives the linear equivalence G ∼ p(F∞ −
D1) on P(E), which is (7). Hence its kth root k

√
Sp − f ∈ Q(X) gives

the equivalence G ∼ p(F∞ − D1/k) on X. Therefore, we have

(26) KX ∼ KX/C + pD ∼ (pk − p − k − 1)F∞ + (p + k)D1/k

and pD − KX ∼ (k + 1)F∞ − D1. Now we are ready to prove our
assertions.

(a) |p(pD−KX)| is non-empty since p(pD−KX) is linearly equivalent
to (k + 1)G + pD1/k.

(b) Put k = ap − 1 for a nonnegative integer a. Then we have
pD−KX ∼ apF∞−D1 ∼ aG+D1/k. Since TX contains OX(pD−KX)
as a line subbundle, we have H0(TX) ̸= 0.

(c) If {p, k} ≠ {2, 3}, then pk − p − k − 1 is positive. Hence KX

is ample by (26) and the same argument as the proof of Lemma 2.2.
Since p(pk−p−k−1) > k−1, we have Hom(OX(pmKX),OX(D)) = 0
for every m ≥ 1. Hence we have Hom(OX(pmKX), ΩX) = 0 by (25)
and (a). Therefore, we have H1(OX(−KX)) = 0 by the corollary of
Proposition 1.5 and Lemma 1.1. ¤

By (a) of the proposition the cotangent bundle ΩX is not stable in
the sense of Bogomolov or Takemoto. Since any positive dimensional
algebraic group does not act on a surface of general type, the group
scheme Aut X is not reduced by (b). See [Ru] and [La] for alternative
treatment of (generalized) Raynaud’s surface from this viewpoint. We
refer [E] and [SB] for the pluricanonical maps of surfaces of general
type in positive characteristic.

3. Surfaces on which R.V. does not hold

In this section we prove Theorem 3. By virtue of the following result,
Ramanujam’s vanishing (R.V.) on a (smooth complete) surface X is
equivalent to the injectivity of the Frobenius map (2) for all nef and
line bundle L.
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Proposition 3.1 (Lewin-Ménégaux [LM]). H1(X,L−m) = 0 holds for
m >> 0 if L is nef and big.

The following is inspired by a similar statement [T2, Corollary 8].
This is not absolutely necessary for our proof. But it makes our proof
more transparent and looks interesting in itself.

Proposition 3.2. Let X ′ be the blow-up of a surface X at a point.
The R.V. holds on X ′ if and only if so does on X.

Proof. Let x ∈ X be the center of the blowing up π : X ′ → X. If L is
a nef and big line bundle on X, then so is the pull-back π∗L. If R.V.
holds on X ′, then H1(X ′, π∗L) vanishes. Since H1(X,L) is isomorphic
to H1(X ′, π∗L), R.V. holds also on X.

Conversely assume that R.V. holds on X and let D′ be a nef and big
divisor on X ′. Then D := π∗D

′ is also nef and big. By Theorem 1, the
vector space {df ∈ ΩQ(X) | f ∈ Q(X), (df) ≥ pD} is zero. The space
{df ∈ ΩQ(X′) | f ∈ Q(X ′), (df) ≥ pD′} is also zero since (df) ≥ pD is
a divisorial condition. Therefore, R.V. holds on X ′. ¤

We first prove (b). Let X be a surface on which R.V. does not
hold. By Proposition 1.5, there exist a rational function f and a nef
and big divisor D with (df) ≥ pD. f gives a rational map from X
to the projective line P1. By taking suitable blowing-ups X ′ → X
and the Stein factorization, we have the morphism g : X ′ → C with
g∗OX′ = OC . C is smooth since so is X. Every fiber of g is connected.
Let L be the image of the multiplication homomorphism OX′(pD) −→
ΩX′ by df . The relative cotangent sheaf ΩX′/C = ΩX′/g∗ΩC contains
T := L/[L ∩ g∗ΩC ] as a subsheaf. On a non-empty subset of C, ΩC

contains df as its global section. Hence, L∩g∗ΩC ̸= 0 and T is a torsion
sheaf. There exists an effective divisor A with Supp A = Supp T which
is linearly equivalent to c1(L)− c1(L∩ g∗ΩC). c1(L) = pD is a nef and
big divisor on X ′ and c1(L∩ g∗ΩC) ≤ g∗KC holds. Hence A contains a
component G different from fibers of g. Then for every fibers B of g,
ΩB has nonzero torsion at the intersection B ∩ G. In particular, B is
singular at B ∩ G.

Now we prove (a). By Proposition 3.2, we may assume that X is a
(relatively) minimal model.

Proposition 3.3. If X is a ruled surface or an elliptic surface, then
R.V. holds on X.

Proof. Let h : X → C be a P1-bundle or an elliptic fibration of X.
Then there exists an exact sequence

0 → h∗ΩC → ΩX → ΩX/C → 0
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of torsion free sheaves on X. Let L be a nef and big line bundle on
X. The degree of L, h∗ΩC and ΩX/C restricted to general fibers of
h are positive, zero and nonpositive, respectively. Therefore, we have
HomOX

(L, h∗ΩC) = HomOX
(L, ΩX/C) = 0. By the exact sequence, we

have HomOX
(L, ΩX) = 0. Hence R.V. holds on X. (This argument is

taken from [T2, Corollary 6].) ¤

case 1. If κ(X) = −∞, then we can take a P1-bundle as a relatively
minimal model. Hence R.V. holds by the proposition.

case 2. If κ(X) = 1, then the minimal model X is an elliptic surface
by our assumption. Hence R.V. holds by the proposition.

case 3. Assume that κ(X) = 0. By the classification of Bombieri-
Mumford [BM1], X and the second Betti number B2(X) satisfy one of
the following:

(a) B2(X) = 6 and X is an abelian surface.
(b) B2(X) = 22 and X is a K3 surface.
(c) B2(X) = 10 and X is either a classical, singular or supersingular

Enriques surface. The last two types occurs only when p = 2.
(d) B2(X) = 6 and X is either hyperelliptic or quasi-hyperelliptic.

The latter appears only when p = 2, 3.

In the case (a), R.V. holds by the corollary of Proposition 1.5 since
ΩX ≅ O⊕2

X . In the case (d), R.V. holds by Proposition 3.3 since X has
an elliptic fibration also (over P1) by [BM1, Theorem 3]. Our proof of
Theorem 3 is completed by the following

Proposition 3.4. R.V. holds on a K3 and an Enriques surfaces.

Proof. It suffices to show the injectivity of (1) for all nef and big divisor
D on X. Assume the contrary. Then, by Lemma 1.4, H0(BX(−D)) is
nonzero. By the multiplication map

(27) H0(OX(D)) × H0(BX(−D)) −→ H0(BX),

and by the Riemann-Roch ineqaulity

(28) dim H0(OX(D)) ≥ 1

2
(D2) + χ(OX) ≥ 2,

we have

dim Ker[F ∗ : H1(OX) → H1(OX)] = dim H0(BX) ≥ 2.

This is a contradiction since H1(OX) is at most 1-dimensional by [BM1]
and [BM2, Lemma 1]. ¤
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