RIMS-1736 # COUNTEREXAMPLES OF KODAIRA'S VANISHING AND YAU'S INEQUALITY IN POSITIVE CHARACTERISTICS To the memory of Professor Masaki Maruyama By Shigeru MUKAI December 2011 # 京都大学 数理解析研究所 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan ## COUNTEREXAMPLES OF KODAIRA'S VANISHING AND YAU'S INEQUALITY IN POSITIVE CHARACTERISTICS #### SHIGERU MUKAI To the memory of Professor Masaki Maruyama ABSTRACT. We generalize Tango's theorem [T1] on the Frobenius map of the first cohomology groups to higher dimensional algebraic varieties in characteristic p > 0. As application we construct counterexamples of Kodaira vanishing in higher dimension, and prove the Ramanujam type vanishing on a surface which is not of general type when $p \geq 5$. Let X be a smooth complete algebraic variety over an algebraically closed field of positive characteristic p > 0, and let D be an effective divisor on X. In this article we study the kernel of the Frobenius map (1) $$F^*: H^1(X, \mathcal{O}_X(-D)) \to H^1(X, \mathcal{O}_X(-pD))$$ of the first cohomology groups of line bundles. Tango [T1] described the kernel of F^* in terms of the exact differentials in the case of curves. First we generalize this result to varieties of arbitrary dimension, that is, we prove **Theorem 1.** The kernel of the Frobenius map (1) is isomorphic to the vector space $$\{df \in \Omega_{Q(X)} \mid f \in Q(X), (df) \ge pD\},\$$ where Q(X) is the function field of X and $(\omega) \geq pD$ means that a rational differential $\omega \in \Omega_{Q(X)}$ belongs to $\Gamma(X, \Omega_X(-pD))$. Using this description and generalizing Raynaud's method [Ra], we construct pathological varieties of higher dimension which are similar to his surfaces: **Theorem 2.** Let p be a prime number and $n \geq 2$ an integer. Then there exist an n-dimensional smooth projective variety X of characteristic p and an ample line bundle L such that - (a) $H^1(X, L^{-1}) \neq 0$, - (b) the canonical divisor class K_X is ample and the intersection number $(c_i(X).K_X^{n-i})$ is negative for every $i \geq 2$, and (c) there is a finite cover G of X and a sequence of morphisms $$G = G_n \to G_{n-1} \to \cdots \to G_2 \to G_1$$ such that $G_{i+1} \to G_i$ is a \mathbb{P}^1 -bundle for every $i = 1, \dots, n-1$ and that G_1 is a nonsingular curve. The Euler characteristic $e(X)(:= \deg c_n(X))$ of X is equal to $e(G) = 2^{n-1}e(G_1)$. Here $c_i(X)$ is the ith Chern class of X. When p = 2, 3, we obtain similar varieties X with quasi-elliptic fibrations $X \to Y$. In this case, the canonical classes K_X are the pull-back of ample divisor classes on Y. By the property (b) and Yau's inequality ([Y1], [Y2]) or by (a) and [DI], we have Corollary. The algebraic variety X in the theorem is not liftable to characteristic zero. Throughout this article R.V. on an algebraic surface X means the vanishing of $H^1(X, L^{-1})$ for all nef and big line bundles on X. Conversely to the above counterexample, using Theorem 1 and [LM], we prove the following. **Theorem 3.** In the case where X is of dimension two, we have the following: - (a) Assume that X is not of general type and that the Iitaka fibration $X \to C$ is not quasi-elliptic when the Kodaira dimension $\kappa(X)$ is 1 and p = 2, 3. Then R.V. holds on X. - (b) If R.V. does not hold on X, then there exist a birational morphism $X' \to X$ and a morphism $g: X' \to C$ onto a smooth algebraic curve C such that every fiber F of g is connected and singular. Furthermore, the cotangent sheaf Ω_F has nonzero torsion. Our counterexamples X in dimension two are sandwiched between two \mathbb{P}^1 -bundles, and the general fibers F in (b) of Theorem 3 are rational for them. A curve of higher (geometric) genus appears as such a fiber F if we take a sufficiently general separable cover $\pi: \tilde{X} \to X$ with $(\deg \pi, p) = 1$. R.V. does not hold on \tilde{X} either since L^{-1} is a direct summand of $\pi_* \pi^* L^{-1}$. All results of this article are contained in either [M1] or [M2] except Proposition 3.2. The report [M1] is an outcome of the author's seminar around 1977 on [Mum] and a preprint of [Ra] with Professor Masaki Maruyama, to whose advice and encouragement the author expresses his sincere gratitude in this occasion. **Convention.** In the sequel we assume the characteristic p is positive and mean by K.V. the vanishing of the first cohomology group H^1 . #### 1. Tango's theorem The feature of positive characteristic is the existence of the Frobenius morphisms $F: X \to X$ and the Frobenius maps. Let L be a line bundle on X. The Frobenius morphism induces the Frobenius map (2) $$F^*: H^1(X, L^{-1}) \to H^1(X, L^{-p})$$ between the first cohomology groups. When X is normal and dim $X \ge 2$, we have **Lemma 1.1** (Enriques-Severi-Zariski). $H^1(X, L^{-m}) = 0$ holds if L is ample and m is sufficiently large. Therefore, by the sequence $$H^1(X, L^{-1}) \to H^1(X, L^{-p}) \to H^1(X, L^{-p^2}) \to \cdots$$ of Frobenius maps, K.V. holds on X if and only if the following holds: - (*) $F^*: H^1(X, L^{-1}) \to H^1(X, L^{-p})$ is injective for every ample line bundle L on X. - 1.1. **Tango-Raynaud curve.** The statement (*) makes sense even when $\dim X = 1$. The following is fundamental for (*) in this case: **Theorem 1.2** (Tango [T1]). Let D be an effective divisor on a smooth algebraic curve X. Then the kernel of the Frobenius map (1) is isomorphic to the space of exact differentials df of rational functions f on X with $(df) \geq pD$. The following example, which was found by Raynaud [Ra] in the case e = 1, shows that (*) does not holds when dim X = 1. **Example 1.3.** Let P(Y) be a polynomial of degree e in one variable Y and let $C \subset \mathbb{P}^2$ be the plane curve of degree pe defined by $$(3) P(Y^p) - Y = Z^{pe-1},$$ where (Y, Z) is an inhomogeneous coordinate of \mathbb{P}^2 . It is easy to check that C is smooth and has exactly one point ∞ on the line of infinity. By the relation $$-dY = -Z^{pe-2}dZ$$ between the differentials dY and dZ, Ω_C is generated by dZ over $C \cap \mathbb{A}^2$. In other words, dZ has no poles or zeros over $C \cap \mathbb{A}^2$. Since $\deg \Omega_C = 2g(C) - 2 = pe(pe - 3)$, we have $(dZ) = pe(pe - 3)(\infty)$. Therefore, by the above theorem of Tango, the Frobenius map (1) is not injective for the divisor $D = e(pe - 3)(\infty)$. A curve C of genus ≥ 2 is called a Tango-Raynaud curve if C satisfies the following mutually equivalent conditions: - (a) there exists a line bundle L on C such that $L^p \simeq \Omega_C$ and that the Frobenius map (2) is not injective, and - (b) there exists a rational function f on C such that $df \neq 0$ and that the divisor (df) is divisible by p. The curve C in the above Example is a Tango-Raynaud curve. 1.2. **Higher dimensional generalization.** Following [T1] we denote the cokernel of the natural (pth power) homomorphism $\mathcal{O}_X \to F_*\mathcal{O}_X$ by \mathcal{B}_X . For a Cartier divisor D on X we have the exact sequence $$(4) 0 \to \mathcal{O}_X(-D) \to F_*(\mathcal{O}_X(-pD)) \to \mathcal{B}_X(-D) \to 0$$ and the associated long exact sequence (5) $$0 \to H^0(\mathcal{O}_X(-D)) \xrightarrow{F^*} H^0(\mathcal{O}_X(-pD)) \to H^0(\mathcal{B}_X(-D))$$ $$\xrightarrow{\delta} H^1(\mathcal{O}_X(-D)) \xrightarrow{F^*} H^1(\mathcal{O}_X(-pD)) \to \cdots$$ If D is effective, then $F^*: H^0(\mathcal{O}_X(-D)) \to H^0(\mathcal{O}_X(-pD))$ is surjective. Hence we have the following **Lemma 1.4.** If D is effective, then the coboundary map δ of (5) induces the isomorphism (6) $$\operatorname{Ker}[F^*: H^1(\mathcal{O}_X(-D)) \to H^1(\mathcal{O}_X(-pD))] \simeq H^0(\mathcal{B}_X(-D)).$$ Assume that X is normal and consider the direct image of the derivation $d: \mathcal{O}_X \to \Omega_X$ by F. By F_*d , \mathcal{B}_X is regarded as a subsheaf of $F_*\Omega_X$. Let $\Omega_{Q(X)}$ be the Q(X)-vector space of differentials. We denote the constant sheaf associated with Q(X) or $\Omega_{Q(X)}$ on X by the same symbol, and consider the intersection $dQ(X) \cap \Omega_X$ in the constant sheaf $\Omega_{Q(X)}$. Then, more precisely, \mathcal{B}_X is contained in $F_*(dQ(X) \cap \Omega_X)$. We also have $\mathcal{B}_X(-D) \hookrightarrow F_*(dQ(X) \cap \Omega_X(-pD))$. Therefore, by the exact sequence (5), we have **Proposition 1.5.** If X is normal, then the kernel of the Frobenius map of $H^1(\mathcal{O}_X(-D))$ is isomorphic to a subspace of the vector space $$\{df \in \Omega_{Q(X)} \mid f \in Q(X), (df) \ge pD\}.$$ **Corollary.** If X is normal and $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}_X(pD), \Omega_X) = 0$, then the Frobenius map of $H^1(\mathcal{O}_X(-D))$ is injective. When X is smooth, $\mathcal{B}_X = F_*(dQ(X) \cap \Omega_X)$ holds, by the existence of a p-basis. Hence $\mathcal{B}_X(-D) = F_*(dQ(X) \cap \Omega_X(-pD))$ holds for a Cartier divisor D and we have Theorem 1. 1.3. Purely inseparable covering in an \mathbb{A}^1 -bundle. When a vector bundle E on X is given, we have the relative Frobenius morphism $\mathbb{P}(E) \to \mathbb{P}(E^{(p)})$ over X. We denote this morphism by φ . We consider the special case where E is an extension of two line bundles: $$(**) 0 \to \mathcal{O}_X(-D) \to E \to \mathcal{O}_X \to 0.$$ Then $E^{(p)}$ is also an extension of line bundles $$(***) 0 \to \mathcal{O}_X(-pD) \to E^{(p)} \to \mathcal{O}_X \to 0.$$ Let $F_{\infty} \subset \mathbb{P}(E)$ be the section corresponding to the exact sequence (**). Then $\mathbb{P}(E) \setminus F_{\infty}$ an \mathbb{A}^1 -bundle and $\mathbb{P}(E)$ is its compactification. Assume that the extension class α of (**) belongs to the kernel of the Frobenius map (1). Then (***) have a splitting, which yields a section G' of $\mathbb{P}(E^{(p)})$ disjoint from $F'_{\infty} := \varphi(F_{\infty})$. **Definition 1.6.** Let $G = G(X, D, \alpha)$ be the (scheme-theoretic) inverse image of G' by the relative Frobenius morphism φ . We denote the restriction of the projection $\bar{g} : \mathbb{P}(E) \to X$ to G by τ . By construction G is embedded in the \mathbb{A}^1 -bundle $\mathbb{P}(E) \setminus F_{\infty}$. When α corresponds to $\eta = df \in H^0(\mathcal{B}_X(-D))$ in the way of Theorem 1, that is, when $\alpha = \delta(\eta)$, we denote G by $G(X, D, \eta)$ also. The morphism $\tau : G \to X$ is flat, finite of degree p and ramifies everywhere. If X is normal and $\eta \neq 0$, then G is a variety and its function field is a purely inseparable extension of Q(X). By construction we have the following linear equivalence: (7) $$G - pF_{\infty} \sim \bar{g}^*(pD).$$ Now we can state a criterion for G to be smooth. **Proposition 1.7.** Assume that X is smooth. Then $G = G(X, D, \eta)$ is smooth if and only if $\eta \in H^0(\mathcal{B}_X(-D))$ is nowhere vanishing. If these equivalent conditions are satisfied, then the natural sequence (8) $$0 \to \tau^* \mathcal{O}_X(pD) \xrightarrow{\times \eta} \tau^* \Omega_X \xrightarrow{\tau^*} \Omega_G \to \Omega_{G/X} \to 0.$$ is exact and $\Omega_{G/X}$ is isomorphic to $\tau^*\mathcal{O}_X(D)$. In particular the image of τ^* is a vector bundle of rank n-1. *Proof.* Assume that D is given by a system $\{g_i\}_{i\in I}$ of local equations for an open covering $\{U_i\}_{i\in I}$ of X. We may assume that η is represented by a 0-cochain $\{b_i\}_{i\in I}$ which satisfies $$b_i = g_i^p c_i \in \Gamma(U_i, \mathcal{O}_X(-pD)), \quad b_j - b_i = a_{ij}^p \in \Gamma(U_i \cap U_j, \mathcal{O}_X(-pD))$$ for some $c_i \in \mathcal{O}_X$ and $a_{ij} \in \mathcal{O}_X(-D)$. Then $\{a_{ij}\}_{i,j\in I}$ is a 1-cocycle which represents $\alpha = \delta(\eta)$ and the vector bundle E in (**) is defined by the 1-cocycle $\left\{\begin{pmatrix} g_i g_j^{-1} & 0 \\ a_{ij} g_j^{-1} & 1 \end{pmatrix}\right\}$ with coefficient in $GL(2, \mathcal{O}_X)$. Since $$(c_i \ 1) \begin{pmatrix} g_i^p g_j^{-p} & 0 \\ a_{ij}^p g_j^{-p} & 1 \end{pmatrix} = (c_j \ 1)$$ holds, the 0-cocycle $\{(c_i \ 1)\}_{i \in I}$ defines a splitting $\mathcal{O}_X \to E^{(p)}$ of the extension (***). On each open set U_i , $G \subset \mathbb{P}(E) \setminus F_{\infty}$ is defined by the equation $S_i^p = c_i$, where S_i is a fiber coordinate of $U_i \times \mathbb{A}^1$. On their intersection, $S_i^p = c_i$ (over U_i) and $S_j^p = c_j$ (over U_j) are patched by the affine transformation $g_j S_j = g_i S_i + a_{ij}$. Let $\mathcal{O}_X(pD) \xrightarrow{\times \eta} \Omega_X$ be the the multiplication homomorphism by η . Since $\tau^* dc_i = 0$, we have the complex (8). Let x be a point in U_i . If dc_i vanishes at x, then $S_i^p = c_i$ is singular at x. Assume that dc_i is nonzero at x. Then G is smooth at $\tau^{-1}(x)$. Moreover, the cotangent space of X at x has a basis of the form $\{\gamma_1, \ldots, \gamma_{n-1}, dc_i\}$, and $\{\tau^*\gamma_1, \ldots, \tau^*\gamma_{n-1}, dS_i\}$ is a basis of the cotangent space of G at $\tau^{-1}(x)$. Therefore, the kernel of τ^* is spanned by dc_i and the cokernel by dS_i . Hence (8) is exact and the image of τ^* is a vector bundle of rank n-1. Since $g_j dS_j = g_i dS_i$ holds in $\Omega_{G/X}$, $\Omega_{G/X}$ is isomorphic to $\tau^*\mathcal{O}_X(D)$. Corollary. $\tau^*c_n(X) \sim pc_n(G)$, where $n = \dim X$. In particular, we have e(X) = e(G). *Proof.* Let B be the image of τ^* . Then by the propostion we have $c_n(G) \sim \tau^*(-D) \cdot c_{n-1}(B^{\vee})$ and $\tau^*c_n(X) \sim \tau^*(-pD) \cdot c_{n-1}(B^{\vee})$. Hence $\tau^*c_n(X)$ is rationally equivalent to $pc_n(G)$. The second half of Corollary is obtained by taking the degree of these two 0-cycles. If X is a Tango-Raynaud curve, then $\tau:G\to X$ is nothing but the Frobenius morphism of X. #### 2. Construction of counterexamples By a TR-triple, we mean a triple (X, D, f) of a smooth variety X, a divisor D on X and a rational function $f \in Q(X)$ with $(df) \geq$ pD. In this section, we shall construct a new TR-triple $(\tilde{X}, \tilde{D}, \tilde{f})$ from (X, D, f) under a certain divisibility assumption. 2.1. New triple of higher dimension. Let (X, D, f) be a TR-triple. We assume that D = kD' for a divisor D' and an integer $k \geq 2$ which is prime to p, and construct a new TR-triple $(\tilde{X}, \tilde{D}, \tilde{f})$ with dim $\tilde{X} = \dim X + 1$. Under the same setting as the last subsection, we choose and fix a non-empty open subset $U \subset X$ among U_i 's, $i \in I$. We shrink U and replace f with f' satisfying df' = df if necessary so that f is regular over U. We take a fiber coordinate S of $\mathbb{P}(E) \to X$ over U such that the section of infinity F_{∞} is defined by $S = \infty$ and G = G(X, D, df) defined by $S^p - f = 0$. Our new variety \tilde{X} is a model of the function filed $Q(X)(S, \sqrt[k]{S^p} - f)$. We construct it in two steps. Let m be a positive integer such that p + m is divisible by k. By the linear equivalence (7), we have $$G + mF_{\infty} \sim k(\frac{p+m}{k}F_{\infty} + g^*(pD')),$$ that is, $G + mF_{\infty}$ is the zero locus of a global section of M^{-k} , being $M = \mathcal{O}_{\mathbb{P}}(-\frac{p+m}{k}F_{\infty} - g^*(pD'))$. First in the usual way we take the global k-fold cyclic covering (9) $$Spec\left(\bigoplus_{i=0}^{k-1} M^i\right) \to \mathbb{P}(E)$$ with algebra structure given by $M^k \simeq \mathcal{O}_{\mathbb{P}(E)}(-G - mF_{\infty}) \hookrightarrow \mathcal{O}_{\mathbb{P}(E)}$. Secondly we take the *relative normalization* of this covering over a neighborhood of F_{∞} . ### **Definition 2.1.** We put (10) $$\tilde{X} = Spec\left(\bigoplus_{i=0}^{k-1} M^i([im/k]F_{\infty})\right).$$ with natural algebra structure induced by (9), where [] is the Gauss symbol. The composite of this cyclic k-fold cyclic covering $\pi: \tilde{X} \to \mathbb{P}(E)$ and the structure morphism $\mathbb{P}(E) \to X$ is denoted by $g: \tilde{X} \to X$. Furthermore, we set $$\tilde{D} := (k-1)F_{\infty} + g^*D'$$ and $\tilde{f} = \sqrt[k]{S^p - f} \in Q(\tilde{X})$ where the unique section of g lying over F_{∞} is denoted by the same symbol. The complete linear system $|mF_{\infty}|$ defines an embedding outside G for sufficiently large m. Hence we have **Lemma 2.2.** If D is ample, so is \tilde{D} . Now we assume further that $\eta := df \in H^0(\mathcal{B}_X(-D))$ is nowhere vanishing. Then G is smooth by Proposition 1.7 and \tilde{X} is smooth since the branch $F_\infty \sqcup G$ is smooth. Since \tilde{X} is defined by the equation $T^k = S^p - f$ on $g^{-1}(U)$, taking differential, we have $kT^{k-1}dT = -df$. Hence dT has no zero along G. The differential dT vanishes along the infinity section F_∞ with order p(k-1). Therefore, dT defines a nonzero global section of $\Omega_{\tilde{X}}(-p(k-1)F_\infty - ph^*D')$. It is easily checked that $d\tilde{f} \in H^0(\mathcal{B}_{\tilde{X}}(-\tilde{D}))$ is nowhere vanishing. Thus we have **Proposition 2.3.** If X is smooth and (X, D, f) is a TR-triple with ample D and nowhere vanishing $\eta = df$, then \tilde{X} is smooth and $(\tilde{X}, \tilde{D}, \tilde{f})$ is also a TR-triple with ample \tilde{D} and nowhere vanishing $\tilde{\eta} := d\tilde{f}$. Every fiber of g is a rational curve with the unique singular point at the intersection with $\pi^{-1}G$. The singularity is the cusp of the form $T^k = S^p$. Let $\tilde{\tau}: \tilde{G} \to \tilde{X}$ be the everywhere ramified covering constructed from $(\tilde{X}, \tilde{D}, \tilde{f})$ (Definition 1.6). Since $\sqrt[p]{\tilde{f}} = \sqrt[k]{S - \sqrt[p]{f}}$, the composite $g \circ \tilde{\tau}$ factors through τ and we have the commutative diagram $$\begin{array}{ccc} & h & \\ \tilde{G} & \longrightarrow & G \\ \tilde{\tau} & \downarrow & & \downarrow & \tau \\ \tilde{X} & \longrightarrow & X. & \\ & g & & & \end{array}$$ Moreover this morphism $h: \tilde{G} \to G$ is isomorphic to the \mathbb{P}^1 -bundle $\mathbb{P}(\mathcal{O}_G \oplus \mathcal{O}_G(\tau^*D'))$ over G. Let U and V be the infinity and zero sections of the \mathbb{P}^1 -bundle h, respectively. They are disjoint and we have $$(11) U - V \sim h^* \tau^* D'.$$ The pull-backs $\tilde{\tau}^*F_{\infty}$ and $\tilde{\tau}^*G$ are U and pV, respectively. In particular, we have (12) $$\tilde{\tau}^* \tilde{D} \sim (k-1)U + h^* \tau^* D' \sim kU - V.$$ **Proposition 2.4.** Assume that X is smooth and (X, D, f) is a TR-triple with (df) = pD. Then \tilde{G} is a \mathbb{P}^1 -bundle over G and $e(\tilde{X}) (= \deg c_{top}(\tilde{X}))$ is equal to 2e(X). *Proof.* The first half is already shown above. This implies $e(\tilde{G}) = e(\mathbb{P}^1)e(G) = 2e(G)$. Hence the second half follows from Corollary of Proposition 1.7. 2.2. The canonical classes of \tilde{G} and \tilde{X} . Let (X, D, f) be a TR-triple with an ample divisor D and nowhere vanishing $(df) \in H^0(\mathcal{B}_X(-D))$. The purely inseparable cover G of X is embedded in the \mathbb{A}^1 -bundle $\mathbb{P}(E) \setminus F_{\infty}$. Since G is smooth, we have the exact sequence $$(13) 0 \to T_G \to T_{\mathbb{P}(E)}|_G \to N_{G/\mathbb{P}(E)} \to 0.$$ The normal bundle $N_{G/\mathbb{P}(E)}$ is isomorphic to $\tau^*\mathcal{O}_X(-pD)$. On the other hand, restricting the natural exact sequence $$0 \to T_{\mathbb{P}(E)/X} \to T_{\mathbb{P}(E)} \to h^*T_X \to 0$$ to G, we have the exact sequence $$(14) 0 \to \tau^* \mathcal{O}_X(-D) \to T_{\mathbb{P}(E)}|_G \to \tau^* T_X \to 0$$ since the relative tangent bundle $T_{\mathbb{P}(E)/X}$ is isomorphic to $\mathcal{O}_{\mathbb{P}(E)}(2F_{\infty}) \otimes h^*\mathcal{O}_X(-D)$ and $F_{\infty} \cap G = \emptyset$. By these two exact sequences, we have the rational equivalence $$c(G) \cdot \tau^* c(\mathcal{O}_X(-pD)) \sim \tau^* c(\mathcal{O}_X(-D)) \cdot \tau^* c(X)$$ of algebraic cycles, where c(X) and $c(G) = \sum_{i \geq 0} c_i(G)$ are the total Chern classes of X and G, respectively. Hence we have (15) $$\tau^* c(X) \sim c(G) (1 - p\tau^* D) (1 - \tau^* D)^{-1}$$ $$\sim c(G) \{ 1 + (1 - p) \sum_{i \ge 1} \tau^* D^i \}.$$ In particular, we have (16) $$\tau^* K_X \sim K_G + (p-1)\tau^* D.$$ Now we compute the canonical classes of \tilde{G} and \tilde{X} . By (11) and (12), we have (17) $$K_{\tilde{G}} \sim -U - V + h^* K_G \sim -2U + h^* (K_G + \tau^* D').$$ and $$\tau^* K_X \sim K_{\tilde{G}} + (p-1)\tau^* \tilde{D}$$ (18) $$\sim -2U + h^* (K_G + \tau^* D') + (p-1) \{ (k-1)U + h^* \tau^* D' \}$$ $$\sim (pk - p - k - 1)U + h^* (K_G + p\tau^* D').$$ We note that $pk - p - k - 1 \ge 0$ and the equality holds if and only if $\{p, k\} = \{2, 3\}$. In the sequel we denote by $\sim_{\mathbb{Q}}$ the \mathbb{Q} -linear (or \mathbb{Q} -rational) equivalence of \mathbb{Q} -divisors (or \mathbb{Q} -cycles). For the later use we put (19) $$J := K_G + \frac{1}{k-1}\tau^*D \text{ and } \tilde{J} := K_{\tilde{G}} + \frac{1}{\tilde{k}-1}\tilde{\tau}^*\tilde{D}$$ for an integer \tilde{k} . Since $D' \sim_{\mathbb{Q}} D/k$, we have $$\tilde{J} \sim_{\mathbb{Q}} -U - V + h^* K_G + \frac{1}{\tilde{k} - 1} \left\{ (k - 1)U + \frac{1}{k} h^* \tau^* D \right\} (20) \qquad \sim_{\mathbb{Q}} \left(\frac{k - 1}{\tilde{k} - 1} - 2 \right) U + h^* \left\{ K_G + \left(\frac{1}{k} + \frac{1}{k(\tilde{k} - 1)} \right) \tau^* D \right\} \sim_{\mathbb{Q}} \left(\frac{k - 1}{\tilde{k} - 1} - 2 \right) U + h^* \left\{ J + \frac{1}{k} \left(\frac{1}{\tilde{k} - 1} - \frac{1}{k - 1} \right) \tau^* D \right\}$$ by (17). 2.3. Chern numbers of \tilde{X} . Since \tilde{G} is a \mathbb{P}^1 -bundle over G with two disjoint sections U and V, the relative cotangent bundle $\Omega_{\tilde{G}/G}$ is isomorphic to $\mathcal{O}_{\tilde{G}}(-U-V)$. Hence we have $$c(\tilde{G}) \sim (1 + U + V) \cdot h^* c(G)$$ $$c_i(\tilde{G}) \sim h^* c_i(G) + (U + V) \cdot h^* c_{i-1}(G).$$ Since $U \cap V = \emptyset$, we have (22) $$U \cdot V \sim 0,$$ $$V^{2} \sim ((U - V) + V) \cdot U \sim k^{-1} h^{*} \tau^{*} D \cdot U,$$ $$V^{2} \sim (U - (U - V)) \cdot V \sim -k^{-1} h^{*} \tau^{*} D \cdot V$$ by (11). More generally, we have (23) $$U^{m} \sim k^{-m+1} h^{*} \tau^{*} D^{m-1} \cdot U \quad \text{and} \quad V^{m} \sim (-k)^{-m+1} h^{*} \tau^{*} D^{m-1} \cdot V$$ for every integer $m \geq 1$. **Proposition 2.5.** Let λ and μ be nonnegative integers such that $\lambda + i + \mu = \dim \widetilde{G}$. Then we have $$(c_{1}(\widetilde{G})^{\lambda}.c_{i}(\widetilde{G}).\widetilde{\tau}^{*}\widetilde{D}^{\mu})$$ $$= \sum_{\alpha=0}^{\lambda} {\lambda \choose \alpha} (c_{1}(G)^{\lambda-\alpha}.c_{i}(G).\tau^{*}D^{\mu+\alpha-1})(k^{1-\alpha} + (-1)^{\mu}k^{1-\alpha-\mu})$$ $$+ \sum_{\alpha=0}^{\lambda} {\lambda \choose \alpha} (c_{1}(G)^{\lambda-\alpha}.c_{i-1}(G).\tau^{*}D^{\mu+\alpha})(k^{-\alpha} + (-1)^{\mu}k^{-\alpha-\mu})$$ *Proof.* By (12) and (21), we have $$\begin{split} &(c_{1}(\widetilde{G})^{\lambda}.c_{i}(\widetilde{G}).\tilde{\tau}^{*}\widetilde{D}^{\mu}) \\ &= (c_{1}(\widetilde{G})^{\lambda}.h^{*}c_{i}(G).\tilde{\tau}^{*}\widetilde{D}^{\mu}) + (c_{1}(\widetilde{G})^{\lambda}.h^{*}c_{i-1}(\widetilde{G}).(U+V).\tilde{\tau}^{*}\widetilde{D}^{\mu}) \\ &= \sum_{\alpha=0}^{\lambda} \binom{\lambda}{\alpha} (h^{*}c_{1}(G)^{\lambda-\alpha}.h^{*}c_{i}(G).(U+V)^{\alpha}.(kU-V)^{\mu}) \\ &+ \sum_{\alpha=0}^{\lambda} \binom{\lambda}{\alpha} (h^{*}c_{1}(G)^{\lambda-\alpha}.h^{*}c_{i-1}(G).(U+V)^{\alpha+1}.(kU-V)^{\mu}) \\ &= \sum_{\alpha=0}^{\lambda} \binom{\lambda}{\alpha} (h^{*}c_{1}(G)^{\lambda-\alpha}.h^{*}c_{i}(G).(k^{\mu}U^{\alpha+\mu} + (-1)^{\mu}V^{\alpha+\mu})) \\ &+ \sum_{\alpha=0}^{\lambda} \binom{\lambda}{\alpha} (h^{*}c_{1}(G)^{\lambda-\alpha}.h^{*}c_{i-1}(G).(k^{\mu}U^{\alpha+\mu+1} + (-1)^{\mu}V^{\alpha+\mu+1})) \\ &= \sum_{\alpha=0}^{\lambda} \binom{\lambda}{\alpha} (h^{*}c_{1}(G)^{\lambda-\alpha}.h^{*}c_{i}(G).h^{*}\tau^{*}D^{\alpha+\mu-1}.(k^{1-\alpha}U+(-1)^{\mu}k^{1-\alpha-\mu}V)) \\ &+ \sum_{\alpha=0}^{\lambda} \binom{\lambda}{\alpha} (h^{*}c_{1}(G)^{\lambda-\alpha}.h^{*}c_{i-1}(G).h^{*}\tau^{*}D^{\alpha+\mu}.(k^{-\alpha}U+(-1)^{\mu}k^{-\alpha-\mu}V)). \end{split}$$ Since both U and V are sections of $h: \widetilde{G} \to G$, we have $(h^*Z.U) = \deg Z$ for every 0-cycle Z on G. Therefore the proposition follows from the last expression. **Corollary.** $(c_1(\widetilde{G})^{\lambda}.c_i(\widetilde{G}).\widetilde{\tau}^*\widetilde{D}^{\mu})$ is of degree ≤ 1 as a Laurent polynomial in the variable k. Moreover, the coefficient of k is equal to $(c_1(G)^{\lambda}.c_i(G).\tau^*D^{\mu-1})$ if $\mu \geq 1$ and 0 otherwise. 2.4. **Proof of Theorem 2.** Now we are ready to construct an n-dimensional TR-triple (X_n, D_n, df_n) . We define two sequences $\{k_i\}_{1 \leq i \leq n-1}$ and $\{e_i\}_{1 \leq i \leq n-1}$ of positive integers inductively by the rule $$k_i = 1 + c_i e_{i-1}$$ and $e_i = e_{i-1} k_i$ for $2 \le i \le n-1$, where $\{c_i\}_i$ is a non-decreasing sequence of integers $c_i \ge 2$ such that k_i 's are not divisible by p. (The simplest choice is $c_i := p$ for every i.) We start with an arbitrary positive integer $k_1 \ge 2$ prime to p and $e_1 := k_1$. The first TR-triple (X_1, D_1, df_1) consists of a Tango-Raynaud curve X_1 , a divisor D_1 and an exact differential df_1 with $(df_1) = pD_1$ such that D_1 is divisible by e_{n-1} . Then we apply the construction in §2.1 by taking k_{n-1} -fold covering of the \mathbb{P}^1 -bundle $\mathbb{P}(E_1)$ over X_1 , and put $(X_2, D_2, df_2) = (\tilde{X}_1, \tilde{D}_1, d\tilde{f}_1)$. This is a TR-triple of dimension 2. We repeat this process n-1 times. We note that the divisor $D_2 = (k_{n-1}-1)F_{\infty} + D_1/k_{n-1}$ is divisible by e_{n-2} . In particular, D_2 is divisible by k_{n-2} . Hence, taking k_{n-2} -fold covering of $\mathbb{P}(E_2)$ over X_2 , we obtain $(X_3, D_3, df_3) = (\tilde{X}_2, \tilde{D}_2, d\tilde{f}_2)$, which is a TR-triple of dimension 3 such that D_3 is divisible by e_{n-3} , and so on. In the final (n-1)st step we take the k_1 -fold covering of $\mathbb{P}(E_{n-1})$ since D_{n-1} is divisible by $e_1 = k_1$. We obtain a new TR-triple (X_n, D_n, df_n) , which is an n-dimensional counterexample of Kodaira's vanishing by Proposition 2.3. The first half of (b) of Theorem 2 is a consequence of the following **Proposition 2.6.** The canonical class K_{X_n} is ample if $\{p, k_1\} \neq \{2, 3\}$, and the pull-back of an ample divisor on X_{n-1} if $\{p, k_1\} = \{2, 3\}$. *Proof.* Since $\tau_n: G_n \to X_n$ is finite, it suffices to show that $K_{G_{n-1}} + \frac{p}{k_1}\tau_{n-1}^*D_{n-1}$ is ample by (16) and (18). We put $$J_i := K_{G_i} + \frac{1}{k_{n-i} - 1} \tau_i^* D_i$$ for every $1 \le i \le n-1$ after (19). Since $p/k_1 \ge 1/(k_1-1)$, it suffices to show the following: claim 1. J_i is ample. We prove by induction on i. In the case i = 1, both K_{G_1} and D_1 are ample. Hence J_1 is ample. Assume that $i \geq 2$. We have $$\frac{k_{n-i+1}-1}{k_{n-i}-1} = \frac{c_{n-i+1}e_{n-i}}{c_{n-i}e_{n-i-1}} \ge k_{n-i} \ge 2$$ if $n-i \ge 2$, and $(k_2-1)/(k_1-1) = c_2k_1/(k_1-1) > 2$. By the formula (20), J_i is ample since so is J_{i-1} and since $k_{n-i+1} > k_{n-i}$. Now we consider the sequence of the morphisms $$G_n \xrightarrow{h_{n-1}} G_{n-1} \xrightarrow{h_{n-2}} \cdots \xrightarrow{h_2} G_2 \xrightarrow{h_1} G_1,$$ in order to investigate the asymptotic behaviour of certain Chern numbers of X_n as k_1, \dots, k_{n-1} go to ∞ , where $G_j := \widetilde{G}_{j-1}$ for $j = 2, \dots, n$. Since G_1 is a curve, we have $-\deg c_1(G_1) = \deg \tau_1^* D_1 = 2g - 2$, where g is the genus of the Tango-Raynaud curve $G_1 \simeq X_1$. Applying Proposition 2.5 (or its Corollary) successively to the above morphisms h_i , we have the following **Proposition 2.7.** The intersection number $(c_1(G_n)^{\lambda}.c_i(G_n).\tau_n^*D_n^{\mu})$ is a Laurent polynomial in the variables k_1, \ldots, k_{n-1} whose coefficients are integers independent of X_1 and D_1 . The degree of the Laurent polynomial is at most 1 with respect to every variable. Moreover, the coefficient of $k_1 \cdots k_{n-1}$ is equal to $$\begin{cases} 2g-2 & \text{if } (\lambda,i,\mu) = (0,0,n), \\ -(2g-2) & \text{if } (\lambda,i,\mu) = (1,0,n-1), (0,1,n-1), \text{ and} \\ 0 & \text{otherwise}. \end{cases}$$ Furthermore we have **Proposition 2.8.** The intersection number $(K_{X_n}^{n-i}.c_i(X_n))$ is a Laurent polynomial in the variables k_1, \ldots, k_{n-1} and the degree is of degree ≤ 1 with respect to each variable. If $i \geq 2$, then the coefficient of the highest monomial $k_1 \cdots k_{n-1}$ in the Laurent expression of $(K_{X_n}^{n-i}.c_i(X_n))$ is equal to $-p^{-n}(p-1)^{n-i}(n-i)(2g-2)$. *Proof.* By (21), $\tau_n^* c_i(X_n)$ is rationally equivalent to $$c_{i}(G_{n}) + (1-p) \sum_{j=1}^{i} c_{i-j}(G_{n}) \cdot \tau_{n}^{*} D_{n}^{j}$$ $$\sim (1-p)\tau_{n}^{*} D_{n}^{i} + (1-p)c_{1}(G_{n})\tau_{n}^{*} D_{n}^{i-1} + (\text{lower terms in } D_{n}).$$ Since $\tau_{n}^{*} c_{1}(X_{n}) \sim (1-p)\tau_{n}^{*} D_{n} + c_{1}(G_{n}), \text{ we have}$ $$p^{n}(c_{1}(X_{n})^{n-i} \cdot c_{i}(X_{n}))$$ $$= (\tau_{n}^{*} c_{1}(X_{n})^{n-i} \cdot \tau_{n}^{*} c_{i}(X_{n}))$$ $$= (1-p)^{n-i+1}(\tau_{n}^{*} D_{n}^{n}) + (1-p)^{n-i}(n-i)(c_{1}(G_{n}) \cdot \tau_{n}^{*} D_{n}^{n-1})$$ $$+ (1-p)^{n-i+1}(c_{1}(G_{n}) \cdot \tau_{n}^{*} D_{n}^{n-1}) + (\text{lower terms in } D_{n}).$$ Hence our assertion follows from Proposition 2.7. By the proposition, $(K_X^{n-i}.c_i(X_n))$ is negative for sufficiently large choice of k_1, \dots, k_{n-1} for $i \geq 2$. This shows (b) of Theorem 2. (c) is a direct consequence of Proposition 2.4. 2.5. **Properties of** (X_2, D_2, df_2) . Here we remark a few properties of 2-dimensional counterexamples $(X, D, df) := (X_2, D_2, df_2)$, which is a k-fold covering of a \mathbb{P}^1 -bundle over a Tango-Raynaud curve C. By Proposition 1.7, the cokernel of the multiplication map by df is locally free. In our case, the cokernel is a line bundle. Hence we have the exact sequence (25) $$0 \to \mathcal{O}_X(pD) \xrightarrow{\times df} \Omega_X \longrightarrow \mathcal{O}_X(K_X - pD) \to 0.$$ **Proposition 2.9.** (a) The complete linear system $|p(pD - K_X)|$ is non-empty. - (b) If $k \equiv -1(p)$, then X has a nonzero vector field, that is, $H^0(T_X) \neq 0$. - (c) When $\{p, k\} \neq \{2, 3\}$, the canonical class K_X is ample and K.V. holds for K, that is, $H^1(\mathcal{O}_X(-K_X)) = 0$. *Proof.* First we compute the canonical class K_X more rigorously than §2.2. Since $K_{\mathbb{P}(E)/C} = -2F_{\infty} + D_1$ and since the k-fold cyclic covering $\pi: X \to \mathbb{P}(E)$ has branch locus $G \sqcup F_{\infty}$, we have $$K_{X/C} = \pi^* K_{\mathbb{P}(E)/C} + (k-1)G + (k-1)F_{\infty} \sim -(k+1)F_{\infty} + (k-1)G + g^*D_1.$$ The rational function $S^p - f$ gives the linear equivalence $G \sim p(F_{\infty} - D_1)$ on $\mathbb{P}(E)$, which is (7). Hence its kth root $\sqrt[k]{S^p - f} \in Q(X)$ gives the equivalence $G \sim p(F_{\infty} - D_1/k)$ on X. Therefore, we have (26) $$K_X \sim K_{X/C} + pD \sim (pk - p - k - 1)F_{\infty} + (p + k)D_1/k$$ and $pD - K_X \sim (k+1)F_{\infty} - D_1$. Now we are ready to prove our assertions. - (a) $|p(pD-K_X)|$ is non-empty since $p(pD-K_X)$ is linearly equivalent to $(k+1)G+pD_1/k$. - (b) Put k = ap 1 for a nonnegative integer a. Then we have $pD K_X \sim apF_{\infty} D_1 \sim aG + D_1/k$. Since T_X contains $\mathcal{O}_X(pD K_X)$ as a line subbundle, we have $H^0(T_X) \neq 0$. - (c) If $\{p, k\} \neq \{2, 3\}$, then pk p k 1 is positive. Hence K_X is ample by (26) and the same argument as the proof of Lemma 2.2. Since p(pk p k 1) > k 1, we have $\operatorname{Hom}(\mathcal{O}_X(p^mK_X), \mathcal{O}_X(D)) = 0$ for every $m \geq 1$. Hence we have $\operatorname{Hom}(\mathcal{O}_X(p^mK_X), \Omega_X) = 0$ by (25) and (a). Therefore, we have $H^1(\mathcal{O}_X(-K_X)) = 0$ by the corollary of Proposition 1.5 and Lemma 1.1. - By (a) of the proposition the cotangent bundle Ω_X is not stable in the sense of Bogomolov or Takemoto. Since any positive dimensional algebraic group does not act on a surface of general type, the group scheme Aut X is not reduced by (b). See [Ru] and [La] for alternative treatment of (generalized) Raynaud's surface from this viewpoint. We refer [E] and [SB] for the pluricanonical maps of surfaces of general type in positive characteristic. #### 3. Surfaces on which R.V. does not hold In this section we prove Theorem 3. By virtue of the following result, Ramanujam's vanishing (R.V.) on a (smooth complete) surface X is equivalent to the injectivity of the Frobenius map (2) for all nef and line bundle L. **Proposition 3.1** (Lewin-Ménégaux [LM]). $H^1(X, L^{-m}) = 0$ holds for m >> 0 if L is nef and big. The following is inspired by a similar statement [T2, Corollary 8]. This is not absolutely necessary for our proof. But it makes our proof more transparent and looks interesting in itself. **Proposition 3.2.** Let X' be the blow-up of a surface X at a point. The R.V. holds on X' if and only if so does on X. *Proof.* Let $x \in X$ be the center of the blowing up $\pi : X' \to X$. If L is a nef and big line bundle on X, then so is the pull-back π^*L . If R.V. holds on X', then $H^1(X', \pi^*L)$ vanishes. Since $H^1(X, L)$ is isomorphic to $H^1(X', \pi^*L)$, R.V. holds also on X. Conversely assume that R.V. holds on X and let D' be a nef and big divisor on X'. Then $D:=\pi_*D'$ is also nef and big. By Theorem 1, the vector space $\{df\in\Omega_{Q(X)}\mid f\in Q(X),\, (df)\geq pD\}$ is zero. The space $\{df\in\Omega_{Q(X')}\mid f\in Q(X'),\, (df)\geq pD'\}$ is also zero since $(df)\geq pD$ is a divisorial condition. Therefore, R.V. holds on X'. We first prove (b). Let X be a surface on which R.V. does not hold. By Proposition 1.5, there exist a rational function f and a nef and big divisor D with (df) > pD. f gives a rational map from X to the projective line \mathbb{P}^1 . By taking suitable blowing-ups $X' \to X$ and the Stein factorization, we have the morphism $g: X' \to C$ with $q_*\mathcal{O}_{X'}=\mathcal{O}_C$. C is smooth since so is X. Every fiber of q is connected. Let L be the image of the multiplication homomorphism $\mathcal{O}_{X'}(pD) \longrightarrow$ $\Omega_{X'}$ by df. The relative cotangent sheaf $\Omega_{X'/C} = \Omega_{X'}/g^*\Omega_C$ contains $T:=L/[L\cap g^*\Omega_C]$ as a subsheaf. On a non-empty subset of C, Ω_C contains df as its global section. Hence, $L \cap q^* \Omega_C \neq 0$ and T is a torsion sheaf. There exists an effective divisor A with Supp A = Supp T which is linearly equivalent to $c_1(L) - c_1(L \cap g^*\Omega_C)$. $c_1(L) = pD$ is a nef and big divisor on X' and $c_1(L \cap g^*\Omega_C) \leq g^*K_C$ holds. Hence A contains a component G different from fibers of g. Then for every fibers B of g, Ω_B has nonzero torsion at the intersection $B \cap G$. In particular, B is singular at $B \cap G$. Now we prove (a). By Proposition 3.2, we may assume that X is a (relatively) minimal model. **Proposition 3.3.** If X is a ruled surface or an elliptic surface, then R.V. holds on X. *Proof.* Let $h: X \to C$ be a \mathbb{P}^1 -bundle or an elliptic fibration of X. Then there exists an exact sequence $$0 \to h^*\Omega_C \to \Omega_X \to \Omega_{X/C} \to 0$$ of torsion free sheaves on X. Let L be a nef and big line bundle on X. The degree of L, $h^*\Omega_C$ and $\Omega_{X/C}$ restricted to general fibers of h are positive, zero and nonpositive, respectively. Therefore, we have $\operatorname{Hom}_{\mathcal{O}_X}(L,h^*\Omega_C)=\operatorname{Hom}_{\mathcal{O}_X}(L,\Omega_{X/C})=0$. By the exact sequence, we have $\operatorname{Hom}_{\mathcal{O}_X}(L,\Omega_X)=0$. Hence R.V. holds on X. (This argument is taken from [T2, Corollary 6].) - case 1. If $\kappa(X) = -\infty$, then we can take a \mathbb{P}^1 -bundle as a relatively minimal model. Hence R.V. holds by the proposition. - case 2. If $\kappa(X) = 1$, then the minimal model X is an elliptic surface by our assumption. Hence R.V. holds by the proposition. - case 3. Assume that $\kappa(X) = 0$. By the classification of Bombieri-Mumford [BM1], X and the second Betti number $B_2(X)$ satisfy one of the following: - (a) $B_2(X) = 6$ and X is an abelian surface. - (b) $B_2(X) = 22$ and X is a K3 surface. - (c) $B_2(X) = 10$ and X is either a classical, singular or supersingular Enriques surface. The last two types occurs only when p = 2. - (d) $B_2(X) = 6$ and X is either hyperelliptic or quasi-hyperelliptic. The latter appears only when p = 2, 3. In the case (a), R.V. holds by the corollary of Proposition 1.5 since $\Omega_X \simeq \mathcal{O}_X^{\oplus 2}$. In the case (d), R.V. holds by Proposition 3.3 since X has an elliptic fibration also (over \mathbb{P}^1) by [BM1, Theorem 3]. Our proof of Theorem 3 is completed by the following **Proposition 3.4.** R.V. holds on a K3 and an Enriques surfaces. *Proof.* It suffices to show the injectivity of (1) for all nef and big divisor D on X. Assume the contrary. Then, by Lemma 1.4, $H^0(\mathcal{B}_X(-D))$ is nonzero. By the multiplication map (27) $$H^0(\mathcal{O}_X(D)) \times H^0(\mathcal{B}_X(-D)) \longrightarrow H^0(\mathcal{B}_X),$$ and by the Riemann-Roch inequality (28) $$\dim H^0(\mathcal{O}_X(D)) \ge \frac{1}{2}(D^2) + \chi(\mathcal{O}_X) \ge 2,$$ we have $$\dim \operatorname{Ker}[F^*: H^1(\mathcal{O}_X) \to H^1(\mathcal{O}_X)] = \dim H^0(\mathcal{B}_X) \ge 2.$$ This is a contradiction since $H^1(\mathcal{O}_X)$ is at most 1-dimensional by [BM1] and [BM2, Lemma 1]. #### References - [BM1] E. Bombieri and D. Mumford, Enriques' classification of surfraces in char. p, II, Complex Analysis and Algebraic Geometry, ed. W.L. Baily and T. Shioda, Cambridge Univ. Press, 1977, pp. 23–42. - [BM2] E. Bombieri and D. Mumford, Enriques' classification of surfraces in char. p, III, Invent. Math., 35(1976), pp. 197–232. - [DI] P. Deligne and L. Illusie, Relèvements modulo p^2 et décomposition du complexe de De Rham, Invent. Math. **89**(1987), pp. 247270. - [E] T. Ekedahl, Canonical models of surfaces of general type in positive characteristic, Publ. IHES, **67**(1988), 97–144. - [La] W. Lang, Examples of surfaces of general type with vector fields, *Arithmetic* and Geometry, vol. II, Progress in Math. **36**(1983), 167–173. - [LM] R. Lewin-Ménégaux, Un théorème d'annulation en caractéristique positive, Astérisque **86**(1981), 35–43. - [M1] S. Mukai, On counterexamples of Kodaira's vanishing and Yau's inequality in positive characteristics (in Japanese), Proceeding of Kinosaki algebraic geometry symposium, 1979, pp. 9–31. - [M2] S. Mukai, Counterexamples of Kodaira's vanishing and Yau's inequality in in higher dimensional variety of characteristic p>0, RIMS preprint, Kyoto Univ., June 2005. - [Mum] D. Mumford, Pathologies III, Amer. J. Math., 89 (1967), 94–104. - [Ra] M. Raynaud, Contre-example au "vanishing de Kodaira" sur une surface lisse en caractéristique p>0, C. P. Ramanujam A Tribute, Springer-Verlag, Berlin-Heidelberg-New York, 1978, pp. 273–278. - [Ru] P. Russell, Factoring the Frobenius morphism of an algebraic surface, *Algebraic geometry*, *Bucharest 1982*, Lecture Notes in Math., **1056**, Springer-Verlag, Berlin, 1984, pp. 366–380. - [SB] N.I. Shepherd-Barron, Unstable vector bundles and linear systems on surfaces in characteristic p, Invent. Math. **106** (1991), 243–261. - [T1] H. Tango, On the behavior of extensions of vector bundles under the Frobenius map, *Nagoya Math. J.*, **48** (1972), 73–89. - [T2] H. Tango, On the behavior of cohomology classes of vector bundles under Frobenius map (in Japanese), Recent Progress of Algebraic Geometry, ed. H. Matsumura, RIMS Kôkyûroku, 144(1972), pp. 48–59. - [Y1] S. T. Yau, On Calabi's conjecture and some new results in algebraic geometry, *Proc. Nat'l. Acad. Sci. USA*, **74** (1977), 1798–1799. - [Y2] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31(1978), 339–411. RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY KITASHIRAKAWA-OIWAKECHO, SAKYO-KU KYOTO 606-8502 Japan e-mail: mukai@kurims.kyoto-u.ac.jp