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Abstract We consider the guaranteed a posteriori estimates for the inverse parabolic
operators with homogeneous initial-boundary conditions. Our estimation technique
uses a full-discrete numerical scheme, which is based on the Galerkin method with
an interpolation in time by using the fundamental solution for semidiscretization in
space. In our technique, the constructive a priori error estimates for a full discretiza-
tion of solutions for the heat equation play an essential role. Combining these esti-
mates with an argument for the discretized inverse operator and a contraction prop-
erty of the Newton-type formulation, we derive an a posteriori estimate of the norm
for the infinite-dimensional operator. In numerical examples, we show that the pro-
posed method should be more efficient than the existing method. Moreover, as an
application, we give some prototype results for numerical verification of solutions of
nonlinear parabolic problems, which confirm the actual usefulness of our technique.
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1 Introduction

Setting Lt := ∂
∂ t −ν4+b ·∇+c, for f ∈ L2

(
J;L2(Ω)

)
, consider the following linear

parabolic partial differential equations (PDEs) with homogeneous initial and bound-
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ary conditions: 
Ltu = f , in Ω × J, (1a)
u(x, t) = 0, on ∂Ω × J, (1b)
u(x,0) = 0, in Ω , (1c)

where Ω ⊂ Rd , (d ∈ {1,2,3}) is a bounded polygonal or polyhedral domain, J :=
(0,T )⊂R, (T <∞) is a bounded interval, ν is a positive constant, b∈L∞(J;L∞(Ω)

)d ,
and c ∈ L∞(J;L∞(Ω)

)
. As is well known, for any f ∈ L2

(
J;L2(Ω)

)
, there exists

a unique weak solution u ∈ L2
(
J;H1

0 (Ω)
)

to the problem (1). Denoting the solu-
tion operator of (1) by L −1

t , it is a bounded linear operator from L2
(
J;L2(Ω)

)
to

L2
(
J;H1

0 (Ω)
)
.

The main aim of this paper is to obtain the concrete value CL2L2,L2H1
0
> 0 satisfying

the following estimates:∥∥L −1
t
∥∥

L (L2(J;L2(Ω)),L2(J;H1
0 (Ω))) ≤CL2L2,L2H1

0
. (2)

The constant CL2L2,L2H1
0

plays an important role in the verification of solutions for the
initial-boundary-value problems for the nonlinear parabolic PDEs, and we usually
need to estimate it as small as possible. The concrete value CL2L2,L2H1

0
> 0 satisfying

(2) can be calculated by the Gronwall inequality or other theoretical considerations
(e.g., [16]), which we call the “a priori estimates.” However, in general, CL2L2,L2H1

0
obtained by such a priori estimates is exponentially dependent on the length of the
time interval J unless the corresponding elliptic part of the operator Lt is coercive [4,
5]. Thus a priori estimates often lead to an overestimate for the norm of L −1

t , which
yields worse results for some purposes.

In order to overcome this difficulty, we proposed a method to calculate CL2L2,L2H1
0

by numerical computation with guaranteed accuracy in [10], which we called “a pos-
teriori estimates.” The method is based on combining the a priori error estimates for
a semidiscretization with the a priori estimates for the ordinary differential equations
(ODEs) in time. It has proven to be more efficient than the existing a priori method;
some numerical examples show that this a posteriori method can remove the expo-
nential dependency on the time interval J. However, it has a very large computational
cost, because the semidiscretization of (1) causes stiff ODEs that require a very small
step size. Also, it is not clear what time-space ratio to use in the discretization process.

In this paper, we propose a new a posteriori method with a fully discretized
Newton-type operator, which uses the Galerkin approximation in the space direction
and the Lagrange-type interpolation in the time direction. In the case of the simple
heat equations, some fundamental properties (e.g., the stability and a priori error es-
timates) for this full-discretization scheme have already been obtained in [11]. In
the desired estimation of the inverse operator norm

∥∥L −1
t
∥∥

L (L2(J;L2(Ω)),L2(J;H1
0 (Ω))),

the matrix norm estimates corresponding to the discretized inverse operator and the
constructive error analysis for the simple heat equations are important and essential.
By constructive analysis, we can also guess an appropriate time-space ratio prior to
the actual computation. Moreover, by using numerical examples, we will show that
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the proposed method succeeds in obtaining a posteriori estimates with less computa-
tional cost than the previous method in [10]. This means that the present method is
very robust compared with the previous one.

The contents of this paper are as follows: In section 2, we introduce some function
spaces, operators, and other notation. In section 3, we introduce the results of stabil-
ity and a priori error estimates for the full-discretization scheme for the simple heat
equations, which were obtained in [11]. In section 4, we consider the approximate
quasi-Newton operator that corresponds to the full-discretization scheme for prob-
lem (1). In section 5, we derive the new a posteriori estimates of (2) by combining
the results in section 3 with the property of the approximate quasi-Newton operator
defined in the previous section. In section 6, we compare the computed values for
CL2L2,L2H1

0
by three methods, namely, the a priori method, the a posteriori estimates

in [10], and the new a posteriori method obtained in section 5. In this section we also
show some prototype results of the numerical enclosure of solutions for nonlinear
parabolic problems as an application of our method.

2 Notation

In this section, we introduce some function spaces, operators, and other notation. Let
L2(Ω) and H1(Ω) be the usual Lebesgue and Sobolev spaces on Ω , respectively,
and define the natural inner product of u, v in L2(Ω) by (u,v)L2(Ω) :=

∫
Ω u(x)v(x)dx.

Also, let H1
0 (Ω) be a Sobolev space defined by H1

0 (Ω) :=
{

u ∈ H1(Ω) ; u = 0 on ∂Ω
}

with inner product (u,v)H1
0 (Ω) := (∇u,∇v)L2(Ω)d . We will sometimes refer to the fol-

lowing Sobolev inequality on H1
0 (Ω). Namely, for a suitable constant p ≥ 1, which

is dependent on the dimension of Ω , there exists a constant Cs,p > 0 such that

‖u‖Lp(Ω) ≤Cs,p ‖u‖H1
0 (Ω) , ∀u ∈ H1

0 (Ω). (3)

When p = 2, (3) is called the Poincaré inequality.
Let 4 : L2(Ω)→ L2(Ω) be the Laplace operator that is self-adjoint on the domain

D(4) :=
{

u ∈ H1
0 (Ω) ; 4u ∈ L2(Ω)

}
. Let V 1(J) be a subspace of H1(J) defined by

V 1(J) :=
{

u ∈ H1(J) ; u(0) = 0
}

. Then, V 1(J) is a Hilbert space with inner product
(u,v)V 1(J) := (u′,v′)L2(J). The time-dependent Lebesgue space L2

(
J;L2(Ω)

)
is de-

fined as a space of square-integrable L2(Ω)-valued functions on J. Then, L2
(
J;L2(Ω)

)
is a Hilbert space with inner product (u,v)L2(J;L2(Ω)) :=

∫
J
∫

Ω u(x, t)v(x, t)dxdt. We
denote the function space L2

(
J;L2(Ω)

)
as L2L2, for short. Let L2

(
J;H1

0 (Ω)
)

be a
subspace of L2L2 defined by

L2(J;H1
0 (Ω)

)
:=
{

u ∈ L2L2 ; ∇u ∈ L2(J;L2(Ω)
)d
, u( · , t) = 0 on ∂Ω , a.e. t ∈ J

}
.

Then, L2H1
0 ≡ L2

(
J;H1

0 (Ω)
)

is a Hilbert space with inner product (u,v)L2H1
0

:=

(∇u,∇v)(L2L2)d . Let V 1
(
J;L2(Ω)

)
be a subspace of L2L2 defined by

V 1(J;L2(Ω)
)

:=
{

u ∈ L2(J;L2(Ω)
)

;
∂u
∂ t

∈ L2(J;L2(Ω)
)
, u( · ,0) = 0 in L2(Ω)

}
.
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Then, V 1L2 ≡V 1
(
J;L2(Ω)

)
is a Hilbert space with inner product (u,v)V 1L2 :=

(
∂u
∂ t ,

∂v
∂ t

)
L2L2

.

We define the Hilbert space V :=V 1L2∩L2H1
0 with inner product (u,v)V :=(u,v)V 1L2 +

(u,v)L2H1
0
=
(

∂u
∂ t ,

∂v
∂ t

)
L2L2

+(∇u,∇v)(L2L2)d . Moreover, we define the partial differ-

ential operator 4t : L2L2 → L2L2 by 4t := ∂
∂ t −ν4 on the domain D(4t) :=V 1L2∩

L2
(
J;D(4)

)
. Then, the inverse of 4t exists (e.g., [3]), and we denote it by 4−1

t ∈
L (L2L2). Notably, the range of 4−1

t satisfies R(4−1
t ) = D(4t). From the compact-

ness of the embedding Ie : D(4t) ↪→ L2H1
0 , the bounded linear operator Ie4−1

t ∈
L (L2L2,L2H1

0 ) is also compact.
Let Sh(Ω) be a finite-dimensional subspace of H1

0 (Ω) dependent on the dis-
cretization parameter h. For example, Sh(Ω) is considered to be a finite element
space with mesh size h. Let n be the number of degrees of freedom of Sh(Ω), and
let {φi}n

i=1 ⊂ H1
0 (Ω) be the basis functions of Sh(Ω). Moreover, we denote a vector

of the basis functions of Sh(Ω) by φ := (φ1, . . . ,φn)
T . We also assume the inverse

estimates on Sh(Ω) like as follows:
Assumption 2.1 There exists a positive constant Cinv(h) satisfying

‖uh‖H1
0 (Ω) ≤Cinv(h)‖uh‖L2(Ω) , ∀uh ∈ Sh(Ω). (4)

For example, if Ω is a bounded open interval in R, and Sh(Ω) is the P1 finite ele-
ment space, then Assumption 2.1 is realized with Cinv(h) =

√
12

hmin
, where hmin is the

minimum mesh size in the division of Ω (see e.g., [15, Theorem 1.5]).
Let P1

h : H1
0 (Ω)→ Sh(Ω) be an H1

0 -projection. Namely, for an arbitrary element
u ∈ H1

0 (Ω), P1
h u ∈ Sh(Ω) satisfies the following variational equation:(

∇(u−P1
h u),∇vh

)
L2(Ω)d = 0, ∀vh ∈ Sh(Ω). (5)

We need the following assumptions as the a priori error estimates for P1
h .

Assumption 2.2 There exists a positive constant CΩ (h) satisfying∥∥u−P1
h u
∥∥

H1
0 (Ω)

≤CΩ (h)‖4u‖L2(Ω) , ∀u ∈ D(4), (6)∥∥u−P1
h u
∥∥

L2(Ω)
≤CΩ (h)

∥∥u−P1
h u
∥∥

H1
0 (Ω)

, ∀u ∈ H1
0 (Ω). (7)

For example, if Ω is a bounded open interval in R, and Sh(Ω) is the P1 finite element
space, then Assumption 2.2 is realized as CΩ (h) = h

π , where h is the mesh size (see
e.g., [1,7]).

Let V 1
k (J) be a finite-dimensional subspace of V 1(J) dependent on the discretiza-

tion parameter k. For example, V 1
k (J) is considered to be a finite element space with

mesh size (time step size) k. Let m be the number of degrees of freedom for V 1
k (J),

and let {ψi}m
i=1 ⊂V 1(J) be the basis functions of V 1

k (J). Moreover, we denote a vec-
tor of the basis functions of V 1

k (J) by ψ := (ψ1, . . . ,ψm)
T .

We assume that Πk :V 1(J)→V 1
k (J) is a Lagrange interpolation operator. Namely,

if the mesh points on J are taken as 0 = t0 < t1 < · · · < tm = T , for any element
u ∈V 1(J), Πku ∈V 1

k (J) satisfies

u(ti) =
(
Πku

)
(ti), ∀i ∈ {1, . . . ,m}. (8)

We need the following assumption as the a priori error estimate for Πk.
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Assumption 2.3 There exists a positive constant CJ(k) satisfying

‖u−Πku‖L2(J) ≤CJ(k)‖u‖V 1(J) , ∀u ∈V 1(J). (9)

For example, if V 1
k (J) is the P1 finite element space, then Assumption 2.3 is realized

by CJ(k) = k
π (see e.g., [15, Theorem 2.4]).

Let V 1
(
J;Sh(Ω)

)
and V 1

k

(
J;Sh(Ω)

)
be the semidiscretization and the full-discretization

subspaces of V , respectively. We now define the semidiscretization operator Ph : V →
V 1
(
J;Sh(Ω)

)
by the following weak form for any u ∈V(

∂
∂ t

(
u−Phu

)
(t),vh

)
L2(Ω)

+ν
(
∇
(
u−Phu

)
(t),∇vh

)
L2(Ω)d = 0,

∀vh ∈ Sh(Ω), a.e. t ∈ J. (10)

Then the full-discretization operator Ph,k : V → V 1
k

(
J;Sh(Ω)

)
is defined as the com-

position of Ph and Πk, that is, by Ph,k := ΠkPh.

3 Constructive a priori error estimates

In this section, we introduce some results for the stability of, and a priori error es-
timates for, the full-discretization operator Ph,k. Since the results of this section are
given in [11], we omit the proofs.

Theorem 3.1 ([11, Lemma 5.3 & Theorem 5.4]) Under Assumption 2.1 and Assump-
tion 2.3, the following constructive a priori estimate holds,∥∥Ph,ku

∥∥
L2
(

J;H1
0 (Ω)

) ≤(Cs,2

ν
+Cinv(h)CJ(k)

)∥∥∥∥∂u
∂ t

−ν4u
∥∥∥∥

L2L2
, ∀u ∈ D(4t).

(11)

Moreover, if V 1
k (J) is the P1 finite element space then we have the following estimates:∥∥Ph,ku
∥∥

V 1
(

J;L2(Ω)
) ≤ 2

∥∥∥∥∂u
∂ t

−ν4u
∥∥∥∥

L2
(

J;L2(Ω)
) , ∀u ∈ D(4t). (12)

Since the full-discretization scheme proposed in [6,9] has no V 1L2 stability, we can
say that the present full-discretized approximation has better properties, in an analyt-
ical and practical sense.

Finally, we introduce the constructive a priori error estimates for Ph,k.

Theorem 3.2 ([11, Theorem 5.5 & Theorem 5.6]) Under the assumptions 2.1- 2.3,
we have the following constructive a priori error estimates:∥∥u−Ph,ku

∥∥
L2
(

J;H1
0 (Ω)

) ≤C1(h,k)
∥∥∥∥∂u

∂ t
−ν4u

∥∥∥∥
L2
(

J;L2(Ω)
) , ∀u ∈ D(4t), (13)

∥∥u−Ph,ku
∥∥

L2
(

J;L2(Ω)
) ≤C0(h,k)

∥∥∥∥∂u
∂ t

−ν4u
∥∥∥∥

L2
(

J;L2(Ω)
) , ∀u ∈ D(4t), (14)

where C1(h,k) := 2
ν CΩ (h)+Cinv(h)CJ(k) and C0(h,k) = 8

ν CΩ (h)2 +CJ(k).
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4 Discretized quasi-Newton scheme

In this section, we consider a full-discretized approximation scheme for solutions of
(1) by using a quasi-Newton operator. Since the full-discretization scheme in this
paper uses interpolation in time, its computational method is somewhat complicated.
However, it enables us to get an efficient and accurate estimation of the inverse opera-
tor norm in (2), as well as the verified computation of solutions to nonlinear problems.

We first describe an easy, but an important operation of matrix-vector multiplica-
tion.

Definition 4.1 Let M be an m1-by-m2 matrix. Then, we define the m1m2 vector vec(M)
as follows:

vec(M) := (M1,1,M1,2, . . . ,M1,m2 ,M2,1, . . . ,Mm1,m2)
T . (15)

We call this transformation a “row-major matrix-vector transformation”.

Definition 4.2 Let M be an m1-by-m2 matrix. Then, we define the block diagonal
matrix (In ⊗M) as follows:

(In ⊗M) :=

M · · · 0
...

. . .
...

0 · · · M


︸ ︷︷ ︸

n

. (16)

Here, In is the n-by-n identity matrix, and the operator ⊗ denotes the Kronecker
product.

From these definitions, we have the following lemma.

Lemma 4.3 For an arbitrary n-by-m matrix M and m-dimensional vector x, the fol-
lowing equality holds:

Mx =
(
In ⊗ xT )vec(M) . (17)

Proof. —— The elements of Mx are calculated by

Mx =

M1,1 · · · M1,m
...

. . .
...

Mn,1 · · · Mn,m


x1

...
xm

=

M1,1x1 + · · ·+M1,mxm
...

Mn,1x1 + · · ·+Mn,mxm

 .

On the other hand, the elements of
(
In ⊗ xT

)
vec(M) are calculated by

(
In ⊗ xT )vec(M) =

xT · · · 0
...

. . .
...

0 · · · xT


M1,1

...
Mn,m

=

M1,1x1 + · · ·+M1,mxm
...

Mn,1x1 + · · ·+Mn,mxm

 .

Therefore, the corresponding components coincide with each other. ut
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Next, we consider the quasi-Newton operator of (1) and its full-discretization.
Let A be an integral operator defined by A := −Ie4−1

t (b ·∇+ c) : L2
(
J;H1

0 (Ω)
)
→

L2
(
J;H1

0 (Ω)
)
. Since the domain of 4t is D(4t), denoting the range of A by R(A),

it holds that R(A)⊂ D(4t) =V 1L2 ∩L2D(4). Then, the differential operator of the
left-hand side of (1a) can be represented as Lt = 4t(I −A), where I denotes the
identity operator on D(4t). We define the quasi-Newton operator as the inverse of
I −A, i.e., (I −A)−1 : L2H1

0 → L2H1
0 .

We now define the symmetric and positive definite matrices Lφ and Dφ ∈ Rn×n

by

Lφ ,i, j := (φ j,φi)L2(Ω) , Dφ ,i, j := (∇φ j,∇φi)L2(Ω)d , ∀i, j ∈ {1, . . . ,n}.

Let L1/2
φ and D1/2

φ be the Cholesky factors of Lφ and Dφ , respectively, i.e., the follow-
ing equalities hold

Lφ = L1/2
φ LT/2

φ , Dφ = D1/2
φ DT/2

φ ,

where L1/2
φ and D1/2

φ are lower triangular matrices, and LT/2
φ and DT/2

φ are those matri-
ces transposed. Let Lψ ∈ Rm×m be the symmetric and positive-definite matrix whose
elements are defined by Lψ,i, j := (ψ j,ψi)L2(J). We define Zφ ∈ L∞(J)n×n as the matrix
function on J whose elements are defined by

Zφ ,i, j := ((b ·∇)φ j + cφ j,φi)L2(Ω) , ∀i, j ∈ {1, . . . ,n}.

For any i ∈ {1, . . . ,m}, we define the matrices G̃(i)
φ ,ψ ∈ Rn×nm and G̃φ ,ψ ∈ Rnm×nm by

G̃(i)
φ ,ψ :=

∫ ti

0
exp
(
(s− ti)νL−1

φ Dφ

)
L−1

φ Zφ (s)
(
In ⊗ψ(s)T ) ds, G̃φ ,ψ :=


G̃(1)

φ ,ψ
...

G̃(m)
φ ,ψ

 .

(18)

Moreover, we define Gφ ,ψ ∈ Rnm×nm as Gφ ,ψ := Inm − G̃φ ,ψ .
We obtain the Theorem 4.4 as a full-discretization scheme of the quasi-Newton

operator.

Theorem 4.4 Let V 1
k (J) be a finite element space constituted by the Lagrange ele-

ments. For a function fh,k ∈ V 1
k

(
J;Sh(Ω)

)
, let uh,k ∈ V 1

k

(
J;Sh(Ω)

)
be a solution of

the following equation

uh,k −Ph,kAuh,k = fh,k. (19)

Then, the unique existence of a solution uh,k of (19) is equivalent to the nonsingularity
of Gφ ,ψ .
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Proof. —— First, we consider Ph,kAuh,k. For an arbitrary uh,k ∈V 1
k

(
J;Sk(Ω)

)
, there

exists a matrix U ∈Rn×m such that uh,k(x, t) = φ(x)TUψ(t). Let wh := PhAuh,k. Sim-
ilarly, from wh ∈V 1

(
J;Sh(Ω)

)
, there exists a vector function w ∈V 1(J)n such that

wh(x, t) = φ(x)Tw(t) =
n

∑
i=1

φi(x)wi(t).

For each vh ∈ Sh(Ω), and almost everywhere t ∈ J, from the definition of Ph and the
operator A, we have(

∂wh

∂ t
(t),vh

)
L2(Ω)

+ν (∇wh(t),∇vh)L2(Ω)d

=

(
∂Auh,k

∂ t
(t),vh

)
L2(Ω)

+ν
(
∇Auh,k(t),∇vh

)
L2(Ω)d ,

=
((

b(t) ·∇
)
uh,k(t)+ c(t)uh,k(t),vh

)
L2(Ω)

. (20)

From the arbitrariness of vh ∈ Sh(Ω), the variational equation (20) is equivalent to
the following system of first-order linear ODEs with homogeneous initial conditions(

Lφ
d
dt

+νDφ

)
w= ZφUψ. (21)

Since (21) is an initial-value problem for an ODE system with constant coefficients,
by using its fundamental matrix, w can be presented as

w(t) =
∫ t

0
exp
(
(s− t)νL−1

φ Dφ

)
L−1

φ Zφ (s)Uψ(s)ds (22)

=

(∫ t

0
exp
(
(s− t)νL−1

φ Dφ

)
L−1

φ Zφ (s)
(
In ⊗ψ(s)T ) ds

)
vec(U) , (23)

where we have used (17) to make the deformation from (22) to (23). And, from (18),
we have

w(ti) = G̃(i)
φ ,ψ vec(U) ∈ Rn, ∀i ∈ {1, . . . ,m}. (24)

Thus, from (23), we obtain the following relation between U and w:

(
w(t1)T , . . . ,w(tm)T )T

= G̃φ ,ψ vec(U) .

Now, we prove that if (19) is solvable for each fh,k ∈ V 1
k

(
J;Sh(Ω)

)
, then Gφ ,ψ

is nonsingular. For an fh,k ∈ V 1
k

(
J;Sh(Ω)

)
, we denote the solution of (19) as uh,k ∈

V 1
k

(
J;Sh(Ω)

)
. From the fact that fh,k ∈ V 1

k Sh, there exists an F ∈ Rn×m such that
fh,k(x, t)= φ(x)T Fψ(t). Note that, for any nodal points ti, we have (Ph,kAuh,k)(x, ti)=
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(Πkwh)(x, ti) = φ(x)Tw(ti) by the definition of Πk. Therefore, from (19) and (24), we
have

uh,k(x, ti)− fh,k(x, ti) = (Ph,kAuh,k)(x, ti), ∀x ∈ Ω , ∀i ∈ {1, . . . ,m},
= (Πkwh)(x, ti),

which implies

φ(x)T (U −F)ψ(ti) = φ(x)Tw(ti)

= φ(x)T G̃(i)
φ ,ψ vec(U) . (25)

Since we assume that V 1
k (J) is the finite element space constituted by the Lagrange

elements, ψ j(ti) = δ j,i is satisfied, where δ j,i denotes the Kronecker delta. Therefore,
we get

(U −F)ψ(ti) =

U1,1 −F1,1 · · · U1,m −F1,m
...

. . .
...

Un,1 −Fn,1 · · · Un,m −Fn,m


ψ1(ti)

...
ψm(ti)

=

U1,i −F1,i
...

Un,i −Fn,i

 .

From the arbitrariness of x and i, the variational equation (25) is equivalent to the
following simultaneous linear equations:

vec(U −F) = G̃φ ,ψ vec(U) .

Namely, we have (
Inm − G̃φ ,ψ

)
vec(U) = vec(F) .

Therefore, from the arbitrariness of fh,k, the nonsingularity of Inm − G̃φ ,ψ follows.
The converse of this proposition is easily obtained by reversing the discussion. ut

When we apply the proposed a posteriori estimates, it is necessary to confirm
that Gφ ,ψ is nonsingular, which will be able to verify by validated computations such
as [14]. Therefore, in what follows, we always assume the nonsingularity of Gφ ,ψ .
Moreover, we define the linear operator [I−A]−1

h,k : V 1
k

(
J;Sh(Ω)

)
→V 1

k

(
J;Sh(Ω)

)
by

the solution of (19). We call this operator a “fully discretized quasi-Newton operator”.

5 A posteriori estimates

In this section, we derive a new a posteriori estimate to obtain CL2L2,L2H1
0
, which

satisfies (2) by using the fully discretized quasi-Newton operator.
First, we describe a method to calculate the norm of the elements in the full-

discretization space. Let Kφ ,ψ be a matrix in Rnm×nm defined by

Kφ ,ψ := Dφ ⊗Lψ =

Dφ ,1,1Lψ · · · Dφ ,1,nLψ
...

. . .
...

Dφ ,n,1Lψ · · · Dφ ,n,nLψ

 . (26)
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From the symmetric positive definiteness of Dφ and Lψ , it is readily seen that Kφ ,ψ is
also symmetric positive definite. Therefore, Kφ ,ψ is Cholesky decomposable such that
Kφ ,ψ =K1/2

φ ,ψ KT/2
φ ,ψ . Similarly, we define the matrix Lφ ,ψ in Rnm×nm as Lφ ,ψ :=Lφ ⊗Lψ .

Lemma 5.1 For an element uh,k ∈ V 1
k

(
J;Sh(Ω)

)
, taking U ∈ Rn×m such that uh,k =

φ TUψ , then the following equalities hold∥∥uh,k
∥∥

L2
(

J;L2(Ω)
) = ∣∣∣LT/2

φ ,ψ vec(U)
∣∣∣ , (27)∥∥uh,k

∥∥
L2
(

J;H1
0 (Ω)

) = ∣∣∣KT/2
φ ,ψ vec(U)

∣∣∣ , (28)

where | · | denotes the Euclidean norm of a vector.

Proof. —— Since the proofs of (27) and (28) are almost the same, we will prove only
(27). From (17), we have

∥∥uh,k
∥∥2

L2
(

J;L2(Ω)
) = ∫

J

∫
Ω

ψ(t)TUT φ(x)φ(x)TUψ(t)dxdt

=
∫

J

∫
Ω

vec(U)T (In ⊗ψ(t))T φ(x)φ(x)T (In ⊗ψ(t)T )vec(U) dxdt

= vec(U)T
∫

J
(In ⊗ψ(t))T Lφ

(
In ⊗ψ(t)T ) dt vec(U)

= vec(U)T
∫

J

Lφ ,1,1ψ(t)ψ(t)T · · · Lφ ,1,nψ(t)ψ(t)T

...
. . .

...
Lφ ,n,1ψ(t)ψ(t)T · · · Lφ ,n,nψ(t)ψ(t)T

 dt vec(U)

= vec(U)T

Lφ ,1,1Lψ · · · Lφ ,1,nLψ
...

. . .
...

Lφ ,n,1Lψ · · · Lφ ,n,nLψ

vec(U)

=
(

LT/2
φ ,ψ vec(U)

)T (
LT/2

φ ,ψ vec(U)
)
,

which proves equation (27). ut
Let Mφ ,ψ(h,k) be a nonnegative constant defined by Mφ ,ψ(h,k) :=

∥∥∥KT/2
φ ,ψ G−1

φ ,ψ K−T/2
φ ,ψ

∥∥∥
2
,

where ‖ · ‖2 denotes the matrix two-norm. The following theorem for Mφ ,ψ holds.

Theorem 5.2 It holds that∥∥∥[I −A]−1
h,k fh,k

∥∥∥
L2
(

J;H1
0 (Ω)

) ≤ Mφ ,ψ
∥∥ fh,k

∥∥
L2
(

J;H1
0 (Ω)

) , ∀ fh,k ∈V 1
k Sh. (29)

Proof. —— For any fh,k ∈ V 1
k Sh, we set uh,k := [I −A]−1

h,k fh,k ∈ V 1
k Sh. Since fh,k and

uh,k are the elements of V 1
k

(
J;Sh(Ω)

)
, there exist matrices F and U in Rn×m such

that fh,k = φ T Fψ and uh,k = φ TUψ , respectively. Moreover, from the proof of The-
orem 4.4, it follows that vec(U) = G−1

φ ,ψ vec(F). Therefore, we have the following
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estimates∥∥uh,k
∥∥2

L2
(

J;H1
0 (Ω)

) = vec(U)T Kφ ,ψ vec(U)

=
(

KT/2
φ ,ψ vec(U)

)T (
KT/2

φ ,ψ G−1
φ ,ψ K−T/2

φ ,ψ

)(
KT/2

φ ,ψ vec(F)
)

≤
∥∥uh,k

∥∥
L2
(

J;H1
0 (Ω)

) ∥∥∥KT/2
φ ,ψ G−1

φ ,ψ K−T/2
φ ,ψ

∥∥∥
2

∥∥ fh,k
∥∥

L2
(

J;H1
0 (Ω)

) .
This completes the proof. ut

Let C0 and C1 be the nonnegative constants defined by

C0 := Mφ ,ψ

(
Cs,2

ν
+Cinv(h)CJ(k)

)
, C1 := ‖b‖L∞L∞ +Cs,2 ‖c‖L∞L∞ ,

respectively. Moreover, we define the constant κφ ,ψ as follows:

κφ ,ψ :=
‖b‖L∞L∞ (1+C0C1)C1(h,k)+C0C1C0(h,k)‖c‖L∞L∞

1−C0(h,k)‖c‖L∞L∞
, (30)

provided that 1−C0(h,k)‖c‖L∞L∞ 6= 0.

Theorem 5.3 Assume that

0 ≤ κφ ,ψ < 1. (31)

Then under the same assumptions as in Theorem 3.2, we have the following construc-
tive a posteriori estimates∥∥L −1

t
∥∥

L
(

L2(J;L2(Ω)),L2(J;H1
0 (Ω))

) ≤ 1
1−κφ ,ψ

C0 +(1+C0C1)C1(h,k)
1−C0(h,k)‖c‖L∞L∞

. (32)

Proof. —— For any f ∈ L2
(
J;L2(Ω)

)
, we set u := L −1

t f ∈ D(4t). Then we make
the following decomposition of (1) into two parts, e.g., the finite- and infinite-dimensional
parts, using the projection Ph,k. Namely, in the space L2

(
J;H1

0 (Ω)
)
, using the follow-

ing equivalency

∂u
∂ t

−ν4u+(b ·∇)u+ cu = f

⇐⇒ u = Ie4−1
t
(
−(b ·∇)u− cu+ f

)
, (33)

we have the decomposition:

⇐⇒

{
Ph,ku = Ph,kIe4−1

t
(
−(b ·∇)u− cu+ f

)
, (34a)

(I −Ph,k)u = (I −Ph,k)Ie4−1
t
(
−(b ·∇)u− cu+ f

)
. (34b)

We set u⊥ := u−Ph,ku for short. From (34a), using the definition of the operator A,
we have

Ph,ku = Ph,k
(
A(Ph,ku+u⊥)+ Ie4−1

t f
)
,
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by the definition of the operator [I −A]−1
h,k , which implies

Ph,ku = [I −A]−1
h,kPh,k

(
Au⊥+ Ie4−1

t f
)
.

Therefore, from (29) and (11), we have the following estimates,∥∥Ph,ku
∥∥

L2H1
0
≤ Mφ ,ψ

(∥∥Ph,kAu⊥
∥∥

L2H1
0
+
∥∥Ph,kIe4−1

t f
∥∥

L2H1
0

)
≤ Mφ ,ψ

(
Cs,2

ν
+Cinv(h)CJ(k)

)
(‖(b ·∇+ c)u⊥‖L2L2 +‖ f‖L2L2) .

From the definition of C0, we have∥∥Ph,ku
∥∥

L2H1
0
≤ C0 ‖(b ·∇)u⊥+ cu⊥‖L2L2 +C0 ‖ f‖L2L2

≤ C0 ‖b‖L∞L∞ ‖u⊥‖L2H1
0
+C0 ‖c‖L∞L∞ ‖u⊥‖L2L2 +C0 ‖ f‖L2L2 . (35)

By calculating the L2L2 norm of (34b) using (14), we have

‖u⊥‖L2L2 ≤C0(h,k)‖−(b ·∇)u− cu+ f‖L2L2

≤C0(h,k)
(
‖b‖L∞L∞ ‖u‖L2H1

0
+‖c‖L∞L∞ ‖u‖L2L2 +‖ f‖L2L2

)
,

which yields(
1−C0(h,k)‖c‖L∞L∞

)
‖u⊥‖L2L2

≤C0(h,k)
(
‖b‖L∞L∞ ‖u‖L2H1

0
+‖c‖L∞L∞

∥∥Ph,ku
∥∥

L2L2 +‖ f‖L2L2
)
.

From (31), 1−C0(h,k)‖c‖L∞L∞ > 0 is satisfied. Therefore, we obtain

‖u⊥‖L2L2 ≤
C0(h,k)

1−C0(h,k)‖c‖L∞L∞

(
‖b‖L∞L∞

∥∥Ph,ku+u⊥
∥∥

L2H1
0

+Cs,2 ‖c‖L∞L∞
∥∥Ph,ku

∥∥
L2H1

0
+‖ f‖L2L2

)
≤ C0(h,k)

1−C0(h,k)‖c‖L∞L∞

(
C1
∥∥Ph,ku

∥∥
L2H1

0
+‖b‖L∞L∞ ‖u⊥‖L2H1

0
+‖ f‖L2L2

)
.

(36)

Thus (35) is estimated as∥∥Ph,ku
∥∥

L2H1
0
≤ C0 ‖b‖L∞L∞ ‖u⊥‖L2H1

0
+C0 ‖ f‖L2L2

+C0
C0(h,k)‖c‖L∞L∞

1−C0(h,k)‖c‖L∞L∞

(
C1
∥∥Ph,ku

∥∥
L2H1

0
+‖b‖L∞L∞ ‖u⊥‖L2H1

0
+‖ f‖L2L2

)
.

(37)

Setting nonnegative constants R1,1, R1,2, and b1 as follows:

R1,1 := 1−C0C1
C0(h,k)‖c‖L∞L∞

1−C0(h,k)‖c‖L∞L∞
, R1,2 :=

C0 ‖b‖L∞L∞

1−C0(h,k)‖c‖L∞L∞
,

b1 :=
C0

1−C0(h,k)‖c‖L∞L∞
,
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(37) is rewritten as

R1,1
∥∥Ph,ku

∥∥
L2
(

J;H1
0 (Ω)

)−R1,2 ‖u⊥‖L2
(

J;H1
0 (Ω)

) ≤ b1 ‖ f‖
L2
(

J;L2(Ω)
) . (38)

On the other hand, by considering the L2H1
0 norm of (34b), from (13) we have

‖u⊥‖L2H1
0
≤C1(h,k)‖−(b ·∇)u− cu+ f‖L2L2

≤C1(h,k)
(
‖b‖L∞L∞

∥∥Ph,ku+u⊥
∥∥

L2H1
0
+‖c‖L∞L∞

∥∥Ph,ku+u⊥
∥∥

L2L2 +‖ f‖L2L2

)
≤C1(h,k)

(
C1
∥∥Ph,ku

∥∥
L2H1

0
+‖b‖L∞L∞ ‖u⊥‖L2H1

0
+‖c‖L∞L∞ ‖u⊥‖L2L2 +‖ f‖L2L2

)
.

From (36), we obtain

‖u⊥‖L2H1
0
≤C1(h,k)C1

∥∥Ph,ku
∥∥

L2H1
0
+C1(h,k)‖b‖L∞L∞ ‖u⊥‖L2H1

0
+C1(h,k)‖ f‖L2L2

+C1(h,k)
C0(h,k)‖c‖L∞L∞

1−C0(h,k)‖c‖L∞L∞

(
C1
∥∥Ph,ku

∥∥
L2H1

0
+‖b‖L∞L∞ ‖u⊥‖L2H1

0
+‖ f‖L2L2

)
.

(39)

We set nonnegative constants R2,1, R2,2, and b2 as follows:

R2,1 :=
C1C1(h,k)

1−C0(h,k)‖c‖L∞L∞
, R2,2 := 1− ‖b‖L∞L∞ C1(h,k)

1−C0(h,k)‖c‖L∞L∞
,

b2 :=
C1(h,k)

1−C0(h,k)‖c‖L∞L∞
,

where we note that the positivity of R2,2 follows by the condition (31). Thus (39) can
be rewritten as

−R2,1
∥∥Ph,ku

∥∥
L2
(

J;H1
0 (Ω)

)+R2,2 ‖u⊥‖L2
(

J;H1
0 (Ω)

) ≤ b2 ‖ f‖
L2
(

J;L2(Ω)
) . (40)

From (38) and (40), we have the following simultaneous inequalities,(
R1,1 −R1,2
−R2,1 R2,2

)∥∥Ph,ku
∥∥

L2
(

J;H1
0 (Ω)

)
‖u⊥‖L2

(
J;H1

0 (Ω)
)
≤

(
b1
b2

)
‖ f‖

L2
(

J;L2(Ω)
) .

By assumption (31), we obtain

det
(

R1,1 −R1,2
−R2,1 R2,2

)
= 1−κφ ,ψ > 0.

Therefore, the simultaneous inequalities can be solved as follows:∥∥Ph,ku
∥∥

L2
(

J;H1
0 (Ω)

)
‖u⊥‖L2

(
J;H1

0 (Ω)
)
≤ 1

1−κφ ,ψ

(
R2,2 R1,2
R2,1 R1,1

)(
b1
b2

)
‖ f‖

L2
(

J;L2(Ω)
) . (41)

Finally, from (41), we have

‖u‖
L2
(

J;H1
0 (Ω)

) ≤ ∥∥Ph,ku
∥∥

L2
(

J;H1
0 (Ω)

)+‖u⊥‖L2
(

J;H1
0 (Ω)

)
≤

R2,2b1 +R1,2b2 +R2,1b1 +R1,1b2

1−κφ ,ψ
‖ f‖

L2
(

J;L2(Ω)
) ,

which proves the desired estimates. ut
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6 Numerical examples

In this section, we show several rigorous numerical results for CL2L2,L2H1
0

satisfy-
ing (2) for test problems by three kinds of methods, namely, a priori estimates (the
Gronwall inequality), a posteriori estimates proposed in [10], and the new method in
Theorem 5.3. Moreover, we also show several rigorous error bounds of the numerical
solutions for the nonlinear parabolic equations as an application of the estimates of
(2).

We considered the norm estimates for an inverse operator of the following Lt :

Lt :=
∂
∂ t

−ν4−2uk
h, (42)

that is, b = 0 and c =−2uk
h in (2). Here, uk

h is assumed to be an approximate solution
of the following nonlinear parabolic problem:

∂u
∂ t

−ν4u = u2 + f , in Ω × J, (43a)

u(x, t) = 0, on ∂Ω × J, (43b)
u(x,0) = 0, in Ω . (43c)

Therefore, (42) becomes a linearized operator of (43) at uk
h. We only considered one-

space-dimensional case (d = 1) with Ω = (0,1). Furthermore, the function f was
chosen so that the problem (43) had the following exact solutions:

• u(x, t) = 0.5t sin(πx), ν = 0.1, (Example 1.1);
• u(x, t) = 0.5t sin(πx), ν = 1.0, (Example 1.2);
• u(x, t) = sin(πt)sin(πx), ν = 0.1, (Example 2.1);
• u(x, t) = sin(πt)sin(πx), ν = 1.0, (Example 2.2).

Note that Example 1.1 and Example 2.1 are studied in [10]. In each example, the
function uk

h was computed as an approximation of the corresponding u by using a
piecewise-cubic Hermite interpolation in the space direction with a piecewise-linear
interpolation in the time direction. Therefore, uk

h belongs to V 1
(
J;H1

0 (Ω)∩H2(Ω)
)
.

We used the finite-dimensional spaces Sh(Ω) and V 1
k (J), spanned by piecewise

linear functions with uniform mesh size h and k, respectively, so that they satisfied
k = h2. Then, it was seen that the constants in previous sections could be taken as
CΩ (h) = h/π , Cinv(h) =

√
12/h, CJ(k) = k/π = h2/π , and Cs,2 = 1/π , respectively.

Moreover, we had

‖c‖
L∞
(

J;L∞(Ω)
) = 2

∥∥∥uk
h

∥∥∥
L∞
(

J;L∞(Ω)
) ≤{T (Example 1.1 and 1.2)

2 (Example 2.1 and 2.2).

6.1 A posteriori estimates of the inverse parabolic operator

We now present the results computed for CL2L2,L2H1
0

by using three kinds of method.
Here, we used the following a priori estimate, which comes from the Gronwall in-
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equality∥∥L −1
t
∥∥

L
(

L2(J;L2(Ω)),L2(J;H1
0 (Ω))

) ≤ exp(γT )
Cs,2

ν
, γ := max

{
sup
Ω×J

(−c),0
}
.

In this subsection, we will refer to the a posteriori estimates studied in [10] and our
present estimates (32) as “a posteriori estimate I” and “a posteriori estimate II,” re-
spectively. To compute a posteriori estimate I, we used the same parameters as in
[10], i.e., (n,m) = (5,700 ·T 2) for Example 1.1, (n,m) = (5,100 · 4T ) for Example
2.1, where we note that h = 1/(n+1) and k = 1/m. For a posteriori estimate II, we
used h = 1/8 and h = 1/16, with k = h2.

Example 1.1 and 1.2: uk
h(x, t)≈−t sin(πx)

Figures 1-2 show the values of CL2L2,L2H1
0

for Example 1.1-1.2, plotted out on log-
linear coordinates. For T > 1, the values of the proposed estimates are smaller than

Fig. 1 ν = 0.1 Fig. 2 ν = 1

the other estimates. The two kinds of a posteriori estimates require the validated upper
bound for the matrix two-norm of the corresponding unsymmetric dense matrices
(e.g., Mφ ,ψ ), and most of the computational costs is due to this task. In Example
1.1, for T = 2, a posteriori estimate I a matrix of size 14000, but in a posteriori
estimate II, we can attain our purpose with a matrix of size 896 for h = 1/8, and 7680
for h = 1/16. This fact shows, in the case of a posteriori estimate II, that it is not
necessary to take special account of the stiff property of the ODEs coming from the
semidiscretization.

Example 2.1 and 2.2: uk
h(x, t)≈−2sin(πt)sin(πx)

Figures 3-4 show the values of CL2L2,L2H1
0

for Example 2.1-2.2 (log-linear coordi-
nates). For T > 1/2, the values of the proposed estimates with h = 1/16 are smaller
than the other estimates. In Example 2.1, for T = 2, a posteriori estimate I requires
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Fig. 3 ν = 0.1 Fig. 4 ν = 1

a matrix of size 8000, but a posteriori estimate II requires only one of size 896 for
h = 1/8 and size 7680 for h = 1/16. It is notable that the results of the proposed
estimates show no exponential dependency for T . On the other hand, due to the stiff-
ness of the corresponding ODEs, we were not successful in computing the inverse
operator of a posteriori estimate I, except for the case where T was very small.

6.2 Verification results for solutions of nonlinear parabolic equations

Applying the estimates (2), we implemented a numerical verification method to prove
the existence of solutions for the nonlinear parabolic problems. As a prototype appli-
cation, we considered the nonlinear parabolic initial-boundary-value problems of the
form (43). In a similar way as in [8] for the elliptic case, we defined the fixed-point
equation for a compact operator, which is equivalent to (43) with the Newton-type
residual form, and derived a verification condition by applying the Schauder fixed-
point theorem.

First, we considered the following residual equation for (43):
∂w
∂ t

−ν4w−2uk
hw = g(w), in Ω × J, (44a)

w(x, t) = 0, on ∂Ω × J, (44b)
w(x,0) = 0, in Ω , (44c)

where

g(w) = w2 + ε, ε = (uk
h)

2 + f −

(
∂uk

h
∂ t

−ν4uk
h

)
.

Note that if the approximate solution uk
h is close to the exact solution of (43), then

w ≈ 0, ε ≈ 0, and g(w) ≈ 0. Thus (44) can be rewritten as the following fixed-point
equation of the compact map F :

w = L −1
t g(w) =: F(w). (45)
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Next, for any positive constants α and β , we define the candidate set Wα,β as

Wα ,β :=
{

w ∈V ; ‖w‖L2H1
0
≤ α, ‖w‖V 1L2 ≤ β

}
.

From the Schauder fixed-point theorem, noting that the continuity of the map F in
the space L2H1

0 , if the set Wα,β satisfies

F(Wα,β )⊂Wα ,β , (46)

then a fixed point of (45) exists in the set Wα,β , where Wα,β stands for the closure of
the set Wα,β in L2H1

0 .
Now, by some simple calculations using the Sobolev embedding theorem and

the Poincaré inequality, it is easily seen that the following inequalities hold for any
w ∈Wα,β :

‖F(w)‖L2H1
0
≤CL2L2,L2H1

0

(
αβ
√

T
8 +‖ε‖L2L2

)
,

‖F(w)‖V 1L2 ≤
(

2
π

CL2L2,L2H1
0

∥∥∥uk
h

∥∥∥
L∞L∞

+1
)(

αβ
√

T
8 +‖ε‖L2L2

)
.

From these inequalities, we have the following sufficient condition for (46):
CL2L2,L2H1

0

(
αβ
√

T
8 +‖ε‖L2L2

)
≤ α ,(

2
π

CL2L2,L2H1
0

∥∥∥uk
h

∥∥∥
L∞L∞

+1
)(

αβ
√

T
8 +‖ε‖L2L2

)
≤ β .

Thus, we obtain the verification condition for the existence of the solutions of (44).
Since it holds that w = u−uk

h, by solving the above simultaneous algebraic inequali-
ties in α and β , we have error bounds of the form

∥∥u−uk
h

∥∥
L2H1

0
≤ α .

We now present the verification results for the solutions of (44), namely, α , β ,
and the residual norm, ‖ε‖L2L2 . In Figure 5, we chose the function f so that (43) has
the exact solution u(x, t) = 0.5t sin(πx), with ν = 0.1 and ν = 1.0, which correspond
to Example 1.1 and Example 1.2, respectively, in the previous subsection. We show
more results in Figure 6, in which the function f is chosen so that (43) has the exact
solution u(x, t) = sin(πt)sin(πx), with ν = 0.1 and ν = 1.0, which correspond to
Example 2.1 and Example 2.2, respectively.

From these figures, it is seen that the error bounds increase in proportion to
the residual norms. This property should be expected in our verification conditions.
Namely, the validated accuracy of the present method is essentially dependent on the
residual norm of the approximate solutions.

We see in the left side of Figure 6, for the case ν = 0.1, that our verification
method failed for T > 0.5 with h = 1/8. On the other hand, since CΩ (h) and the
residual norm ‖ε‖L2L2 for the mesh size h = 1/16 are smaller than in case of h = 1/8,
we succeeded in verification up to T ≤ 1.25. This fact shows that a smaller h yields
better verification, which should also be quite expected.
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Fig. 5 Verification results: Exact solution for u(x, t) = 0.5t sin(πx), with ν = 0.1(left), ν = 1.0(right)

Fig. 6 Verification results: Exact solution for u(x, t) = sin(πt)sin(πx), with ν = 0.1(left), ν = 1.0(right)
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Remark 6.1 (Computer environment) All computations were carried out on a Dell
Precision T7500 (Intel Xeon x5680, 72 GB of memory) with MATLAB R2010b. The
computation errors have been taken into account by using INTLAB 6.0, a toolbox for
self-validating algorithms, developed by Rump [14].

7 Conclusions

We propose a method to compute constructive a posteriori estimates of the inverse
operators for parabolic initial-boundary-value problems. This method is based on the
full-discretization quasi-Newton operator, as well as the constructive a priori error es-
timates for the Galerkin method, with an interpolation in time by effectively using the
fundamental solution for the spatial semidiscretization. Our proposed new estimates
(32) seem to be better and more robust than the previous estimates [10], as illustrated
in the test problems. Moreover, by applying the method to some prototype examples,
we illustrated that our method can be used to enclose solutions for nonlinear parabolic
problems.
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3. Ladyženskaja, O. A., Solonnikov, V. A., Ural’ceva, N. N.: Linear and Quasi-linear Equations of
Parabolic Type. AMS, Rhode Island (1968)

4. Luskin, M., Rannacher, R.: On the smoothing property of the Galerkin method for parabolic equations.
SIAM J. Numer. Anal. 19 no. 1, 93–113 (1982)

5. Minamoto, T.: Numerical Existence and Uniqueness Proof for Solutions of Semilinear Parabolic
Equations. Appl. Math. Lett. 14 no. 6, 707–714 (2001)

6. Nakao, M. T.: Solving nonlinear parabolic problems with result verification. Part I: One-space-
dimensional case. J. Comput. Appl. Math. 38, 323–334 (1991)

7. Nakao, M. T., Yamamoto, N., Kimura, S.: On the best constant in the error bound for the H1
0 -projection

into piecewise polynomial spaces. J. Approx. Theory 93, 491–500 (1998)
8. Nakao, M. T., Hashimoto, K., Watanabe, Y.: A numerical method to verify the invertibility of linear

elliptic operators with applications to nonlinear problems. Computing 75, 1–14 (2005)
9. Nakao, M. T., Hashimoto, K.: A numerical verification method for solutions of nonlinear parabolic

problems. Journal of Math-for-Industry 1, 69–72 (2009)
10. Nakao, M. T., Kinoshita, T., Kimura, T.: On a posteriori estimates of inverse operators for linear

parabolic initial-boundary value problems. Computing 94 no. 2, 151–162 (2012)
11. Nakao, M. T., Kimura, T., Kinoshita, T.: Constructive a priori error estimates for a full discrete ap-

proximation of the heat equation. RIMS Preprints RIMS-1745 (2012)
12. Plum, M.: Computer-Assisted Existence Proofs for Two-Point Boundary Value Problems. Computing

46 no. 1, 19–34 (1991)
13. Plum, M.: Computer-Assisted Proofs for Semilinear Elliptic Boundary Value Problems. Japan J. In-

dust. Appl. Math. 26 no. 2-3, 419–442 (2009)



20 T. Kinoshita, T. Kimura and M. T. Nakao

14. Rump, S. M.: INTLAB–INTerval LABoratory. In: Csendes, T., (ed.) Developments in Reliable Com-
puting, pp. 77–104. Kluwer, Dordrecht (1999) http://www.ti3.tu-harburg.de/rump/intlab/

15. Schultz, M. H.: Spline Analysis. Prentice-Hall, Englewood Cliffs, N.J. (1973)
16. Zeidler, E.: Nonlinear Functional Analysis and its Applications II/A. Springer-Verlag, New York

(1990)


	web-title
	RIMS1754

