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OUTSTANDING PROBLEMS ON NORMAL PROJECTIVE
SURFACES ADMITTING NON-ISOMORPHIC SURJECTIVE
ENDOMORPHISMS

NOBORU NAKAYAMA

ABSTRACT. The structure of a normal projective surface X admitting a non-
isomorphic surjective endomorphism f is determined except for log del Pezzo
surfaces of Picard number 1. The structure of X is also determined in the case
where the first dynamical degree Ay is not equal to the positive square root of
deg f.

1. INTRODUCTION

By the study of normal Moishezon surfaces X admitting non-isomorphic surjec-
tive endomorphisms f in [20] and [21], we have determined the structure of such
surfaces except the case where X is a rational surface with only quotient singulari-
ties and K x 4 St is not pseudo-effective. Here, K x stands for the canonical divisor
and Sy for the characteristic completely invariant divisor of f (cf. [20, Def. 2.16]).
By [21] §4], the following three subcases remain as unsolved cases:

(R1) X is a log del Pezzo surface of Picard number p(X) = 1;

(R2) p(X) =2 and —Kx is big;

(R3) (X, Sy) is log-canonical, —(Kx +.Sy) is nef and big, and the number n(Sy)

of prime components of Sy equals p(X) > 3.
Determining the structure of (X, f) belonging to (BR2)) or (R3) is an outstanding
problem bothering the author many years, but at last, this is settled in this article.

Remark. The existence of non-isomorphic surjective endomorphism implies that X
is projective, by [20, Cor. B]. Suppose that X has only quotient singularities and
Kx + Sy is not pseudo-effective. If p(X) = 1, then X is a log del Pezzo surface,
since —Kx is ample. The following is an additional information for (X, f) with
p(X) > 2 not belonging to (R2) nor (R3):

Assume that p(X) = 2. If X is irrational or if —Kx is not big, then we have
known the structure of X by [20, Thm. 4.16] and [2I, Thm. 4.7]. We shall prove a
stronger result for this X as Theorem [5.1]in Section 5.1 below.

Assume next that p(X) > 3. Then (X, Sy) is an L-surface in the sense of [21)
Def. 4.2] (cf. [2I, Prop. 4.3]). In particular, X is rational. Moreover, we have the
following by the structure theorem [2I, Thm. 4.5] on L-surfaces:

e Divisors —Kx and Sy are big, and —(Kx + Sy) is semi-ample;
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o If n(Sy) # p(X), then (X, Sy + B) is a toric surface for a prime divisor B.

Furthermore, by [21, Cor. 4.6], if —(Kx +.S) is not big, then (X, Sy + B) is a toric
surface or a half-toric surface for a prime divisor B.

Remark. For a toric surface X and its boundary divisor D, the complement of the
open torus, the pair (X, D) is called also a toric surface by abuse of notation (cf.
[18, Conv. 1.4]). A half-toric surface is defined in [I8, Def. 7.1], and it is a key
notion in this article: This is a pair (X, S) of a normal projective surface X and
a reduced divisor S such that Kx + S # 0, 2(Kx +S) ~ 0, and (V,7715) is a
toric surface for a double cover 7: V — X étale in codimension 1: We call 7 the
characteristic double cover of (X, S) (cf. [18, §7.1]).

As a solution to the outstanding problem, we shall show in Theorems 23] and
below that one of the two conditions below is satisfied for any (X, f) belonging
to (R2) and that the latter condition is satisfied for any (X, f) belonging to (B3):

e There is a finite Galois cover X’ — X étale in codimension 1 such that X’
is a P!-bundle over P! or over an elliptic curve, the Galois group preserves
the P'-bundle structure, and some power f* = fo fo---o f: X — X lifts
to an endomorphism of X”.

o There is a reduced divisor B such that (X, Sy + B) is a toric surface or a
half-toric surface.

Combining results in [2I], we have:

Theorem 1.1. Let X be a normal projective surface. If X admits a non-isomorphic
surjective endomorphism f such that Kx + Sy is not pseudo-effective, then one of
the following holds:

(1) The surface X is log del Pezzo of Picard number 1.

(2) There is a finite Galois cover V. — X étale in codimension 1 from the
product V=P x T for a non-singular projective curve T of genus > 2.

(3) There is a finite Galois cover V. — X étale in codimension 1 from one of
the following P*-bundles V' over an elliptic curve T

o V=P xT;

o V =Pr(&) for an indecomposable locally free sheaf € of rank 2 and
degree 0;

o V =Pr(Or @ L) for an invertible sheaf L of degree # 0.

(4) There is a finite Galois cover V. — X étale in codimension 1 from a pro-
jective cone V' over an elliptic curve (cf. [20, Def. 1.16)).

(5) There is a finite Galois cover V.— X étale in codimension 1 from a P!-
bundle V' over P* in which the Galois group Gal(V/X) preserves the P!-
bundle structure.

(6) The pair (X,S§ + B) is a toric surface for a non-zero reduced divisor B
having at most two prime components.

(7) The pair (X, Sy + B) is a half-toric surface for a prime divisor B, and B
is an end component of Sy + B.
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Moreover, in cases @), @), @), and @), some power fF: X — X lifts to an
endomorphism of V.

Remark. The divisor B in (@) and (@) of Theorem [[T] has no common prime com-
ponent with S, since Sy 4+ B is reduced. Moreover, every prime component of B
is nef, since Sy contains all the negative curves (cf. [20, Prop. 2.20(3)]).

Theorems [Tl 23] and are proved by arguments in [2I Sect. 4] and by
certain properties of P!-fibrations, pseudo-toric surfaces (cf. [I8, Def. 6.1]), and
V-surfaces, which are discussed in Sections 2 Bl and M below, respectively. By
endomorphisms of toric and half-toric surfaces constructed in [22] and by adding
some results on the converse of Theorem [[LT] we have:

Theorem 1.2. Let X be a normal projective surface which is not a log del Pezzo
surface of Picard number 1. Then X admits a non-isomorphic surjective endomor-
phism f such that Kx + Sy is not pseudo-effective if and only if one of the following
conditions is satisfied:

(1) There is a finite Galois cover V. — X étale in codimension 1 which satisfies
one of conditions [2)-@) of Theorem [LI
(2) There is a reduced divisor D such that (X, D) is a toric surface and that
some prime component of D is not a negative curve.
(3) There is a reduced divisor D with a prime component I such that
e (X, D) is a half-toric surface and T is an end component of the linear
chain D of rational curves,
e cach prime component of T*I" is not a negative curve for the charac-
teristic double cover 7: V. — X of the half-toric surface (X, D).

We have the following update of [2I, Thm. 1.1] by Theorem [T}

Theorem 1.3. Let X be a normal projective surface which is not a log del Pezzo
surface of Picard number 1. Then X admits a non-isomorphic surjective endomor-
phism if and only if there is a finite Galois cover V. — X étale in codimension 1
from one of the following normal projective surfaces V:

(1) V.=C x T for an elliptic curve C and a non-singular projective curve T
of genus > 2;

V' is an abelian surface;

3) V =P! x T for a non-singular projective curve T of genus > 2;

2
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V' is a projective cone over an elliptic curve;

V is a P'-bundle over P! and the Galois group Gal(V/X) preserves the
Pl-bundle structure;

(7) V is a toric surface and the Galois group Gal(V/X) preserves the open

(2)
3)
(4) V is a P-bundle over an elliptic curve;
(5)
(6)

torus.

Remark. By results in this article, only the case of log del Pezzo surface of Picard
number 1 remains unsolved in the problem of classifying normal Moishezon sur-
faces admitting non-isomorphic surjective endomorphisms. Even in the case, our
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arguments in this article, e.g. those in Section [3.3] below, seem to be effective for
the problem when the characteristic completely invariant divisor Sy is not zero.
However, now the author has no good idea if Sy = 0.

On the first dynamical degree Ay (cf. [20, Def. 3.1]) of a non-isomorphic surjective
endomorphism f: X — X, we have a fundamental theorem as [20, Thm. D]. In
particular, if X has Picard number 1 or if X contains a negative curve, then Ay
equals the positive square root 05 := (deg f)l/ 2. By results in Section [ below, we
can improve [20, Thm. D] to the following in the case where Ay > dy:

Theorem 1.4. Let X be a normal projective surface admitting a non-isomorphic
surjective endomorphism f such that Ay > 6y. Then p(X) > 2 and there exists a
finite Galois cover V.— X étale in codimension 1 from one of the normal projective
surfaces V listed below, in which some power f* lifts to an endomorphism of V:

(1) V is an abelian surface;

(2) V.=C xT for an elliptic curve C and a non-singular projective curve T
of genus > 2;

(3) V=P x T for a non-singular projective curve T of genus > 2;

(4) V is a P*-bundle Pr(Or & L) over an elliptic curve T for an invertible
sheaf L of degree 0;

(5) V=P x PL.

Moreover, Ay = deg f in cases [@) and B)), and A is an integer dividing into deg f

in cases @) and (B).

Remark. The inequality Ay > & holds for any f (cf. [20, Prop. 3.3(2)]). If Ay = 4y,
then the pullback homomorphism (f*)*: N(X) — N(X) is a scalar map for some
k > 0 by [20, Thm. D], where N(X) denotes the real vector space of numerical
classes of R-divisors on X (cf. [I8 Def. 2.7], [20] §1.1]).

Crucial ideas. As is mentioned above, three cases (RIl), (R2)), and (B3]) remain
unsolved in the problem determining the structure of a normal Moishezon surface
X admitting a non-isomorphic surjective endomorphism f.

Before explaining our crucial ideas, we shall note a relation between studies in
(B2) and (B3). For (X, f) in (R3], we know the following by the structure theorem
[21, Thm. 4.5] on L-surfaces:

o —(Kx + Syf) is semi-ample;

e Sy is a linear chain of rational curves (cf. [I8] Def. 4.1]);
e (Kx + S§)C < 0 for one end component C of Sy;

e the union SEC of non-end components is negative definite.

The target X of the contraction morphism ¢: X — X of S]hc is a normal projective
surface with p(X) = 2 and f descends to an endomorphism f of X such that Kx +
Sy = ¢"(Kx+ Sf). Hence, the study in the case (R3) is reduced to that in the case
(R2). Conversely, for (X, f) in (R2), if Sy is connected and reducible and if Ay = dy,

then a toroidal blowing up X — X at a singular point of Sy produces a non-

isomorphic surjective endomorphism f of a normal projective surface X belonging
to (R3) (cf. [I9, Cor. 5.7], [20, Thm. D]).



We have three crucial ideas on pseudo-toric surfaces, half-toric surfaces, and a
comparison of ramification divisors. We shall explain how these idea are applied
to the study of (X, f) but not explain the ideas directly. The first crucial idea is
analyzing negative curves on some pseudo-toric surface which is a compactification
of the universal cover of a certain open subset of another pseudo-toric surface. Here,
we assume the following for (X, f):

o —(Kx + Sf) is nef,

e 5S¢ is connected, and

o (Kx+S55)Ci <0and (Kx +57)Cy <0 for two prime components Cy and
CQ of Sf.

Then, by Lemma [3.12 below, Sy is a linear chain of rational curves with C; and Cy
as end components, and there is an effective divisor B ~ —(Kx + S¢) such that

e (X,B + Sy) is log-canonical along Sy, and
e BN Supp Sy consists of two points which are in C; and Cs.

By an argument generating a pencil on X, we have a situation of Proposition B.11]
below, by which we can find another non-zero reduced divisor B" such that (X, B’ +
Sy) is a toric surface. The proof of Proposition BI1] uses results on the universal
cover of a certain open subset of a pseudo-toric surface, which are prepared in
Section If B is reducible, then we can prove easily that (X, Sy + B) is a toric
surface. When B is irreducible, we can show that (X, Sy + B) is a pseudo-toric
surface of defect 1 (cf. [I8, Defs. 2.23 and 6.1]), and we shall consider the universal
cover above for (X, S; 4+ B), which extends to a finite Galois cover X — X from a
normal projective surface X by the Grauert—-Remmert extension theorem (cf. [6],
[7, XII, Thm. 5.4]). Here, X is also a pseudo-toric surface with the inverse image
of Sy + B as the boundary divisor (cf. Lemma[3.4), and we have an endomorphism
f of X as a lift of f (cf. Lemma [BI0). Our first crucial idea is analyzing negative
curves on X , which are all contained in S 7- Necessary results on negative curves
on X are prepared in Proposition [3.9, by which we can find the expected divisor
B’ such that (X, Sy + B’) is a toric surface.

The second crucial idea concerns Theorem [LT0 below on half-toric surfaces and
Va-surfaces (cf. Definitions . Iland A3I@3])). Before the idea, we shall explain how V-
surfaces (cf. Definition B)) are related to the study of (X, f) in (B2): Suppose that
X contains two negative curves C and C5. Then Ay = ¢, S¢ equals the linear chain
Cy + C3, and by the discussion above on the first crucial idea (cf. Theorem [B14)),
we may assume that —(Kx + Sy) is not ample; for example, (Kx + Sf)C1 < 0 and
(Kx+Sf)Cy = 0. Then (X, Cy, Cy) is a V-surface. Even if X contains a unique neg-
ative curve, in many cases, we can find another prime divisor C” such that (X, C, C”)
or (X,C’,C) is a V-surface, by arguments in Section5.21 Conversely, — Ky is big for
any V-surface (V, Ay, As) by Lemma 4Y[2). The V-surfaces are divided into three
subclasses: Va-surfaces, ordinary Vg-surfaces, and extraordinary Vg-surfaces (cf.
Definitions AH[E) and EI]). The V-surfaces (X, Cy,C2), (X,C,C"), and (X,C",C)
above are not extraordinary Vg-surfaces (cf. Lemma [:22). In Theorem FI0 (resp.
[L27]), we can prove that if (V, A1, A3) is a Va-surface (resp. an ordinary Vp-surface),
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then (V,A; + A2 + B) is a half-toric surface for a prime divisor B: Theorem .21
is proved by Theorem .10l These theorems prove Theorem for many cases of
(X, f) belonging to (R2) in which X contains a negative curve and —(Kx + Sy)
is not ample. Moreover, these theorems and Theorem prove Theorem [£.23] on
(R3) by the above-mentioned reduction of the study in (B3] to that in (R2]).

Our second crucial idea appears in the proof of Theorem .10 in the case where
A2 < 0: A Va-surface (V, Ay, Ay) with A2 < 0 satisfies the following (cf. LemmalL4):
V is rational with p(V) = 2;

A1+ As is connected and (V, Aj + Ag) is log-canonical with A? < 0, A2 < 0,
(KV + A+ AQ)Al <0, and (KV + A+ AQ)AQ =0;

(A1 \ A2) N Sing V' is empty or consists of one point at which (V,A;) is
1-log-terminal;

(A2 \ A1) N Sing V' consists of two Aj-singular points.

Let Y — V be the minimal resolution of singularities lying on A; + As. Then the
dual graph of the total transform of A1+ A, is of type D (cf. LemmalT3]). Applying
Lemma 23l and Corollary 2311 to the dual graph, we can find a P!-fibration on ¥ —
P! with a double section which is exceptional for Y — V (cf. Lemma FE14)). The
second crucial idea is analyzing singular fibers of the P!-fibration. In Section 23]
we study singular fibers of a P!-fibration with a double section satisfying certain
conditions by introducing the notion of PDS configurations (cf. Definition 2I7).
Using properties of H-surfaces in [18, §7.2], we have some global properties of PDS
configurations in Proposition below. These properties and the equality in [I8]
Prop. 2.33(7)] on reducible fibers are applied to removing bad cases for the P!-
fibration Y — P! in proofs of Lemmas F.14] and below. As a consequence, we
can find the expected prime divisor B such that (V,A; + Ay + B) is a half-toric
surface.

The third crucial idea is in the proof of Lemma [5.I8 below on comparison of
ramification divisors for a certain finite morphism of normal projective surfaces
with compatible non-isomorphic surjective endomorphisms. Lemma [5.I8]is applied
to proving Theorem [E.I7, which is a structure theorem for (X, f) belonging to (R2)
containing no negative curves: Theorem mentioned above for this (X, f) is a
consequence of Theorem [F.17l In this case, X has two P!-fibrations over P! as con-
traction morphisms of extremal rays, and f descends to an endomorphism of each
base curve P'. Thus, we have an endomorphism of P! x P! and the induced finite
morphism ¢: X — P! x P! is compatible with endomorphisms of X and P! x P!.
We can determine the ramification divisor Ry by Lemma [5.I8 under a certain con-
dition (cf. Proposition [5.24]). The description of Ry is a key to prove Theorem [5.17
We apply the Perron—Frobenius theorem [3] to the proof of Lemma EI8

Organization of this article. In Section [2] we discuss some properties of linear
chains of rational curves and P!-fibrations over a non-singular curve. We recall
elementary properties of linear chains of rational curves and exceptional divisors
for the minimal resolutions of cyclic quotient singularities, in Section 211 Here,
we shall prove some results on simple normal crossing divisors of rational curves



having the dual graph of type D, as an application (cf. Lemma [23]). We investigate
singularities arising on P!-fibrations with respect to sections or double sections in
Sections and 23l Especially, in Section 23] we introduce PDS configurations
for double sections satisfying certain conditions, and study their properties. In
Section 24l we shall give sufficient conditions for a reduced divisor of rational
curves on a normal Moishezon surface to be a set-theoretic fiber of a P!-fibration.

Section [3] is devoted to the study of pseudo-toric surfaces. In Section Bl we
discuss in detail the structure of a pseudo-toric surface having a fibration to P*.
In Section B2, we analyze the universal cover of the complement of a part of the
boundary divisor of a pseudo-toric surface. As applications, in Section [3.3] we shall
prove Theorems [3.13] and [3.14] on endomorphisms.

In Section @ we introduce V-surfaces and study their structures. After giving
some remarks on half-toric surfaces in Section 1] we shall prove basic properties
of V-surfaces in Section [£.2] where two subclasses Va-surfaces and Vg-surfaces are
introduced. Section F3] is devoted to proving Theorem FI0l as a structure theo-
rem for Va-surfaces. The ordinary Vg-surfaces and extraordinary Vg-surfaces are
introduced in Section 4] where we shall prove Theorem [.2]] as an analogy of
Theorem for ordinary Vg-surfaces, and prove Theorem on the structure
of a normal projective surface admitting a non-isomorphic surjective endomorphism
belonging to the case (R3]). Extraordinary Vg-surfaces are studied in detail in Sec-
tion LAl where we obtain Theorem as a structure theorem.

Section[Hlis devoted to determining structures of surfaces X with non-isomorphic
surjective endomorphisms f such that p(X) = 2 and Kx + S is not pseudo-
effective. This covers (X, f) belonging to ([B2]). In Section .1l we treat the case
where X is irrational or —Kx is not big, and we shall prove Theorem (1] as a
structure theorem for such X. The structure theorem for (B2) is Theorem
mentioned above, and this is proved in Sections and .3t Section (resp.
B3) treats the case where X contains (resp. does not contain) a negative curve.
Theorem [B.17 related to our third crucial idea is proved in Section B3] which
implies Theorem in the case of no negative curves.

Section [ is the final section, where theorems in the introduction are all proved.

Notation and conventions. We use the same notation and conventions as in
[20] and [2]I]. In particular, we treat complex analytic spaces rather than schemes
over C, and a complex analytic variety is called a variety for short. A variety
of dimension 1 (resp. 2) is called a curve (resp. surface). As in [19, Rem. 2.3],
we avoid the use of “log terminal” in the sense of [25] and [14], and the notion
of “purely log terminal” is called “l-log-terminal” in this article. The important
notions of “pseudo-toric surfaces” and “half-toric surfaces” are defined in [18]. We
list our specific notation in Table [l Here, we note that the Weil-Picard number
p(X) = dim N(X) equals the Picard number p(X) if X is Q-factorial.

Acknowledgement. The author is grateful to Professor Yoshio Fujimoto for use-
ful discussions in seminars at Research Institute for Mathematical Sciences, Kyoto



TABLE 1. List of notations

Cc* 1-dimensional algebraic torus (= C \ {0})

Sing X singular locus of a reduced analytic space X

Xreg non-singular locus X \ Sing X

p(X) Picard number of a normal projective variety X

N(X) vector space of numerical classes of R-divisors on a normal projective

surface X (cf. [20] §1.1])
NE(X)  pseudo-effective cone in N(X) (cf. [20 §1.1])
Nef(X)  nef cone in N(X) (cf. [20, §1.1])

cl(D) numerical class of an R-divisor D
SuppD  support of an R-divisor D (= the union of prime components of D)
Dieq reduced divisor identified with Supp D for an effective R-divisor D
n(D) number of prime components of a reduced divisor D (cf. [I8], [21],
Def. 4.1])
w1 (U) fundamental group of a topological space U
Tn(AD) toric variety defined by a fan A of a free abelian group N of finite rank
0(X,S) defect of (X,S5) (= p(X)+2—n(S)) (cf. [I8, Def. 2.23])
For an endomorphism f:
Ry ramification divisor (cf. [19, §1.5])
Sy characteristic completely invariant divisor (cf. 20, Def. 2.16])
Ay refined ramification divisor (cf. [20, Def. 2.16])
Af the first dynamical degree (cf. [20, Def. 3.1])
deg f (mapping) degree
5f := (deg f)/? > 0 (cf. [20, Def. 3.2])

University. The author is partially supported by Grant-in-Aid for Scientific Re-
search (C), Japan Society for the Promotion of Science.

2. LINEAR CHAINS OF RATIONAL CURVES AND P'-FIBRATIONS

In Section 2] we recall and prove some elementary properties of linear chains of
rational curves and exceptional divisors for the minimal resolutions of cyclic quo-
tient singularities. Singularities arising on P!-fibrations are studied in Sections
and 23] with respect to sections or double sections. In Section 2.4 we shall give
sufficient conditions for a reduced divisor of rational curves to be a set-theoretic
fiber of a P!-fibration.

2.1. Remarks on linear chains of rational curves.

Definition. Let D be a non-zero compact reduced divisor on a normal surface
X and let D = Zle D; be the prime decomposition. We say that D is negative
definite (resp. negative semi-definite) if the intersection matrix (D;D;)1<; j<k 1S so.

Remark. The divisor D is negative definite if and only if £ < 0 for any non-zero
divisor £ on X such that Supp £ C D. The divisor D is not negative semi-definite
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if and only if there is a divisor B on X such that Supp B C D and B? > 0. These
are proved by considering eigenvalues of the matrix (D;D;)1<; j<k. Here, B is taken
as an effective divisor. In fact, if B = By — B for two effective divisors B; and By
without common prime components, then B2 > 0 implies that B > 0 or B? > 0.

Definition. Let D be a negative definite compact reduced divisor on a normal
surface X. Then there is a bimeromorphic morphism 7: X — X to another normal
surface X such that 7(D) is a finite set, D = 7=!(7(D)), and 7 induces an isomor-
phism X \ D ~ Y \ 7(D). This is known as the Grauert contraction theorem in
case X is non-singular (cf. [B (e), pp. 366-367], [16], [2, Cor. 6.12(b)]), and this is
proved in the singular case by [24, Thm. (1.2)] (cf. [I8 Thm. 2.6]). We call 7 the
contraction morphism of D.

Remark. Let 0: X — X’ be a bimeromorphic morphism of normal surfaces and
let D be a non-zero compact reduced divisor on X. If dimo (D) = 0, then D is
negative definite. When D = o~ ! D’ for a reduced divisor D’ on X', D is negative
definite (resp. negative semi-definite) if and only if D’ is so.

Lemma 2.1. Let D be a compact and connected reduced divisor on a normal surface
X such that D is negative semi-definite but not negative definite. Then there is an
effective divisor F' on X such that Supp F' = D and that FD; = 0 for any prime
component D; of D. If C is a compact reduced divisor on X such that CN D is a
non-empty finite set, then C' + D is not negative semi-definite.

Proof. By considering eigenvalues of the intersection matrix (D;D;); j, we can find
a non-zero divisor F' on X such that Supp F' C D and F'D; = 0 for any 1 < i <
k. We write F' = G — H for two effective divisors G and H having no common
prime components. Then G?> = GH = H? by FG = FH = 0. Since GH > 0
and D is negative semi-definite, we have G> = GH = H? = 0. In particular,
Supp G N Supp H = (). We may assume that G' # 0 by replacing F with —F if
necessary. If ' N G is a non-empty finite set for a prime component I" of D, then
(T + mG)? = T? +2mI'G > 0 for m > 0, violating the negative semi-definite
property of D. Since D is connected, we have SuppG = D and F = G. If
C is a compact reduced divisor such that C' N D is a non-empty finite set, then
(C +mF)? =C?+2mCF > 0 for m > 0, which shows the last assertion. O

Lemma 2.2. Let D be a compact simple normal crossing divisor on a non-singular
surface M forming a linear chain of rational curves. Then D is negative semi-
definite if and only if there exist a bimeromorphic morphism ¢: M — N to a non-
singular surface N and a compact simple normal crossing divisor E on N forming
a linear chain of rational curves satisfying one of conditions [I)-[@) below, where
E=F+ FEy+---+ E, is a prime decomposition with a dual graph

Ey E; E,

and where ¢ is either an isomorphism or a succession of blowings up at nodes of
inverse images of E:
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(1) n=1 and E? <0;

(2) n=2 and E} = E3 = —1;

(3) n>2 and E? < =2 for any 1 <i < n;

(4) n>2, E?=—1, and E? < =2 for any 1 < i < n;

(5) n>3, B2 =FE2=—1, E? <=2 for any 1 <i <n, and E} < =3 for some
1<k<mn

(6) n>3, B2 =E2=—1, and E? = =2 for any 1 <i < n.

Here, D is not negative definite if and only if E satisfies ([{l) with E? =0, @), or
).

Proof. The “if” part and the last assertion are shown as follows. Since D = ¢~ 'E,
E is negative semi-definite (resp. negative definite) if and only of D is so. It is
well known or easily shown that F is negative semi-definite by conditions (II)—(6).
Moreover, E is not negative definite if and only if () with E? = 0, (@), or (@) is
satisfied. This shows the “if” part and the last assertion.

The “only if” part is shown as follows. Now, D is negative semi-definite. If D
is irreducible, then it is enough to take ¢ as the identity morphism and () holds.
If D consists of two prime components, then it is enough to take ¢ as the identity
morphism and one of (@), @), and @) holds. Thus, we may assume that the number
n(D) of prime components of D is greater than 2. Then the union D% of non-end
components of D is not zero, and it is negative definite by Lemma 21l Let M — V
be the contraction morphism of D% and let N — V be the minimal resolution of
singularities. Then we have a morphism ¢: M — N over V, which is a succession
of contractions of (—1)-curves contained in images of Df. Then E = ¢,(D) is a
simple normal crossing divisor on N forming a linear chain of rational curves such
that

D = ¢~ 'E, and FE is negative semi-definite,

end components of E are images of end components of D under ¢,
¢ is a succession of blowings up at nodes of inverse images of F,
any non-end component of E is not a (—1)-curve.

Therefore, E satisfies one of conditions ([2)—(@]). Thus, we are done. O

Lemma 2.3. Let Z be a compact simple normal crossing divisor on a non-singular
surface M with a dual graph

D, Do D, C
(I1-1) ° ° .

for a prime decomposition Z = D1+ Dy + -+ Dy + C + Gy + Go, where | > 0.
Assume that every prime component of Z is a non-singular rational curve with
negative self-intersection number and that G3 = G3 = —2, and C? < —2. Then the
following hold:
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(1) Assume thatl =1 or Di2 < =2 for any 2 <i <. Then Z is negative semi-
definite. If Z is not negative definite, then D3 = —1 and D? = C? = -2
for any 2 <i <.

2) Assume that Z is not negative semi-definite and that l4_ D; is negative

g =1 g
definite. Then there is an integer 1 < a < | such that Zfl:a+1 D;+C+
G1 + G5 is not negative definite but negative semi-definite.

Proof. ([d): We set ¢ := —C? and d; := —D? for1<i<I. Thenc¢>2,dy > 1, and
d; > 2 for any 2 < i <[. We consider a Q-divisor

l
A= Zi:l z;D; +yC + 21G1 + 2G4

for rational numbers x;, y, z1, and z5. Then
2 _ ! A2>_ 2 5.2 2 ( = )
A = (Zi:1 diwy ) —cy” —2(27 + 23) + 2(my +y(21 + 22) + Zi:l TiTit1
l
_(1_ 2 g2 N2 R
=(1-d)ad+ (32— d)a?) +(2- 0’ — (21 — =)
-1

- (X @) @ —y)

Thus, A? < 0, and Z is negative semi-definite. The equality A2 = 0 holds if and
only if there is a rational number u such that

P—(y— (21 +22))%

u=z =2, 1=z, =y=2u, (Il-dhu=02—-dj))u=2—-cu=0

for any 2 < i <. Thus, if A2 =0 and A # 0, then u # 0, d; = 1, d; = 2 for any
2 <i <, and ¢ = 2. Thus, () has been shown.
@): By Lemmal[22] there exists a morphism ¢: M — N to a non-singular surface
N with a compact simple normal crossing divisor £ = E; + E5 + - - - + E,, forming
a linear chain of rational curves such that
e ¢ is an isomorphism or a succession of blowings up at nodes of inverse
images of F,
e Di+---+ D =¢ YE),
e the linear chain F of rational curves with this order F4, Es, ..., E,, or the
reverse order E,,, E,_1, ..., E; satisfies one of conditions (), @), @), and
@) of Lemma
We set C := ¢(C) and G; = ¢(G;) for j = 1, 2. We may assume that E; = ¢(D;)
and E,, = ¢(D;). Then Z := ¢.(2) =Y., E; + C + G1 + G5 has a dual graph

F Fs E, G

o Q)

/.
\.7

G

and we have Z = ¢~ 1(Z). In particular, Z is not negative semi-definite, £ =
Yi, E; is negative definite, 0% =% < -2, and é? =G5 =—2forj=1,2 By
(@) applied to Z, one of the following conditions is satisfied:

(i) n>2, B2 = —1, and E? < —2 for any i < n (cf. Lemma 2.2(#));
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(ii) n>3, B} = E2 =—1, E? < —2for any 1 <i < n, and E} < —3 for some
1<k <n (cf. Lemma Z2I[H])).
By considering successive contractions of (—1)-curves in images of 22;2 E;, we
have a morphism ¢: N — N to a non-singular surface N such that C := P(0) is
a negative curve. The pushforward 7 = .7 is a compact simple normal crossing
divisor Zle El +C+ (A;l + 62 consisting of rational curves with a dual graph

_ _ - G
E1 E2 Ek '
L]

c
[ ]

~

/ )
\ .2
in which k£ > 1 and the following conditions are satisfied for E = Zle Ei and for
some integer 1 < b < [:

e 1) is a succession of blowings up at nodes of inverse images of E+ 6’;

e E+C=4 Y E+C), E=¢"YE),and Y\_, E; + C = ¢y~ 1(0);

o By =(Ey), and éj =(G;) for j =1, 2.
Obviously, @f = G? = =2 for j =1, 2. We may assume that C?2=-1.In fact, if
C? < —2 and if Ez = —1, then we can contract Ek to get a similar situation. If
02 < —2 and if Ez < —2, then we can apply () to Z, which is not negative semi-
definite, and as a consequence, k > 2 and Eg = —1 for some 2 < p < k; however,
in this situation, E = ¢~'E does not satisfy ({) nor ({): This is a contradiction.

The linear chain C + G4 + G is not negative definite but negative semi-definite.

Now, Gj = ¢ (¢ ~(G;)) for j = 1,2, and 3\_, .| D; + C = ¢~ (~(C)) for
some 1 < a < [. Thus, Zé:aﬂ D; + C + Gy + G is not negative definite but
negative semi-definite. O

Lemma 2.4. Let u: Y — X be a bimeromorphic morphism of non-singular sur-
faces whose exceptional locus is u~*(P) for a point P € X. Assume that p=(P)
contains a unique (—1)-curve © and that © intersects the proper transform C' in
Y of a non-singular prime divisor C C X containing P. Then u~'(P) is a simple
normal crossing divisor forming a linear chain of rational curves such that

(1) © is an end component of p~(P) with C'© =1, and

(2) the other prime component is a (—2)-curve not intersecting C'.
If D is a non-singular prime divisor on X such that {P} = CND and D intersects
C transversely, then the following hold for the proper transform D' in'Y of D:

(3) If 7Y (P) =0, then D'O =1 and C' N D' = ().

(4) If u=Y(P) # ©, then D'OT =1 for the other end component O of u=1(P),

and D' does not intersect C' nor = (P) — 6f.

In other words, p='(P)UC"U D' has a dual graph

c’ ) D’ c’ (S of D’
[ ] ) “e

° ° or [ [ ] L JE.

Proof. We set B := p~'(P) as a reduced divisor on Y. Then (Ky + C")O =
—1+C'®>0and (Ky + C)T' > KyT' > 0 for any prime component " of B — O.
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Thus, Ky +C" is p-nef and Ky +C’ = p*(Kx +C) — E for a p-exceptional effective
divisor £. On the other hand, —F is effective by the logarithmic ramification
formula for the “birational pair” (C&X) (cf. [27, Prop. 2.1], [IIl, Part 2, Prop. 1],
[19, Prop. 1.40(2)]). This is also deduced from a property that (X,C) is 1-log-
terminal (cf. [I9, Def. 2.1, Rem. 2.3]), since F is Cartier. Thus,

Ky +C' = p*(Kx +C).

Consequently, C'O = 1, and T' is a (—2)-curve with ¢’ N T = () for any prime
component I' of B — ©. In particular, () and the latter part of () hold. By
shrinking X, we may assume the existence of the prime divisor D above. Then

Ky+C'+D' +B=p"(Kx+C+D)+G

for a p-exceptional effective divisor G by the logarithmic ramification formula (cf.
[9, §4, (R)], [I0, Thm. 11.5)) or by a property that (X,C + D) is log-canonical.
Hence, u*D = D'+ B — G, and we have G = 0. As a consequence, (Y,C’'+ D'+ B)
is also log-canonical. Then p is a toroidal blowing up (cf. [18] Def. 4.19, Cor. 4.22]).
Hence, B is a linear chain of rational curves with © as an end component and it
satisfies (B]) and (@). O

Here, we recall some well-known properties on 2-dimensional cyclic quotient
singularities.

Fact 2.5 (cf. [I8, Exam. 3.2]). Let X be a normal surface with a unique singular
point P such that (X, P) is a cyclic quotient singularity of order n > 2. Then (U, D)
is toroidal at P for an open neighborhood U of P and for a reduced divisor D 3 P,

e, U\ D < U is a toroidal embedding at P (cf. [I3, 1I, §1], [I8 Def. 3.12]).
Let pu: M — X be the minimal resolution of singularity. This is described as a
toric morphism. In particular, u~!(P) is a simple normal crossing divisor Zle r
forming a linear chain of rational curves, and moreover,

D r, Iy Ty D;

is a dual graph of pu~'(D), where D} and D) are proper transforms of prime
components D; and Dy of D locally at P. By Hirzebruch-Jung’s method (cf.
[8, §3.4]), there exist two series of integers 1 = p; < pa < -+ < pr < n and
n>q >qy >+ > qr =1 such that

(11'2) M*Dl D/+Z qz/n ; and M*DQ D2+Z pz/n

(cf. [15] Lem. 2.7, Rem. 2.9]). In particular, D1 Dy = (p*D1) D} = Dj(p*D2) = 1/n.
By the dual graph of u=!(P) and by ([I=2), we have

pic1 +pil7 +piv1 = g1+l + i1 =0



14

for any 1 < i < k, where we set p_1 = ¢x+1 = 0 and pgy1 = ¢—1 = n. Since
Ky + D+ DL+ Zle I'y = p*(Kx + D), we have

§ k
Ky =p"Kx — Zizl(l = (pi +@)/n)l's  and

Ky + Dy = p*(Kx + Dy) — Zle(l —pi/n)Ly
by ([[I=2). Since p; = 1, the second equality induces an equality
(Kx +D1)|p, = Kp, + (1 =1/n)P
of Q-divisors on D; by adjunction for (M, D7) and by the isomorphism D] ~ D,

induced by p. This means that Diffp, (0) = (1 — 1/n)P, where Diff p, (0) is the
different of (X, D;) in the sense of [I4, Prop.-Def. 16.5] (cf. [14, Prop. (16.6.3)]).

Remark 2.6. For integers p; and g; above, p;, and g; are coprime to n, and prq1 =
1 mod n (cf. [I5] Lem. 2.7]). Moreover, (X, P) is a cyclic quotient singularity of
type (n,px) or (n,q1) in the sense of [I8, Exam. 3.2], i.e., it is isomorphic to the
germ of the quotient surface of C? by the action of an automorphism

(x,y) = (("*x,¢y)  (resp. (x,y) = ((x,("y))

for a primitive n-th root ¢ of unity, where (x,y) is a coordinate of C2.

Remark 2.7. In the situation of Fact 23] n equals the numerical factorial index of
X at P (cf. [19, Def. 1.26]). This is shown as follows: We define Q-divisors E;) for
1 <4<k on M inductively by

k
Eqy=— Zizl(%/n)rh Eoy=T1+bEqy, Eu)y=1i+biEy — Eu)

for 2 < i < k—1 (cf. (I2)), where b; = —(T;)®. Then EI'; = 6;; for any
1 < i,5 < n. Hence, n equals the numerical factorial index by [19, Lem. 1.27].
Here, we have E(,) = — Zle(pi/n)l“i by ([I=2).

Lemma 2.8. For X and P in Fact 2.3, let C be a prime divisor on X containing
P and let C' be the proper transform of C in M. Then (X, C) is 1-log-terminal at
P in the sense of [19, Def. 2.1] if and only if

1, of i1=1, 0, if 1<k,
i or CT;= i
0, if i>0, 1, if i=k
Assume that (X,C) is 1-log-terminal with C'Ty, = 1. Then the following hold for
any prime diwvisor B on X such that BNC = { P}, where B’ is the proper transform
of B in M:

(1) If BC = 1/n, then (X, B + C) is log-canonical at P, B'NC' =0, and

(II-3) either C'T; = {

B’ Iy Iy Iy c’

is a dual graph of p= (B + C).
(2) If BC =2/n, then (X,(1/2)B+ C) is log-canonical at P, B'NC’' =10, and
one of the following two cases occurs:
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(a) BTy =2 and B'T; =0 for any i > 1; In particular,
B’ N I'y I C’

is a dual graph of p= (B + C);
b) k>2,T? = -2, BTy =1, and B'T; = 0 for any i # 2, and py = 2;
1
In particular,

Iy I I's Ty o

o B/

is a dual graph of p=Y(B + C).
(3) Ifk>2,T2 =-2, BTy =1, and B'T; =0 for any i # 2, then BC = 2/n.

Proof. If (X, C) is 1-log-terminal at P, then, by [19, Fact 2.5], we may assume that
C = D; or C = Dy for the divisor D in Fact 2.5 and hence, (II=3]) holds. Assume
that the second case of ([I-3) holds. Then

(11-4) prc=Cc + Z (pi/n)T
by ([I=2) in Fact Furthermore, by an argument in Fact [Z5] we have

k
Ky +0' = p"(Kx +C) =Y (1—q/n)Ty,

and it implies that (X, C) is 1-log-terminal at P, since 1 —¢;/n < 1 for any ¢. This
proves the first assertion.

In the second assertion, if BC' = 1/n (resp. BC = 2/n), then (X,B + C)
(resp. (X, (1/2)B + C)) is log-canonical at P by “inversion of adjunction” (cf. [14
Thm. 17.7]), since

Diffo(B) = Bl + (1—1/n)P = P
(resp. Diffc((1/2)B) = (1/2)Blc + (1 — 1/n)P = P)
by Fact 235l In case BC' = 1/n, (X, B+C) is toroidal at P by [19, Fact 2.5], and we
have ([Il) by Fact[ZH] since we may assume that Dy = B and Dy = C. If BC' = 2/n,
then one of two conditions () and (f) below holds by n > 2, B'Nu~!(P) # (), and
the equality
BC = B'(y*C) = B'C' + Z (pi/n)B

induced by ([I=4):

(i) B'C' =0, (B'Ty, B'T2) = (2,0), and B'T; = 0 for any i > 2;

(ii) B'C" =0, (B'Ty,B'Ts) = (0,1), ps = 2, and B'T; = 0 for any i > 2.
Consequently, B'NC’ = (), and (Zal) holds in case (). Moreover, (L) holds in case
(@), since we have I' = —2 by the equality po + p1I'? + p2 = 0 in Fact Thus,
(@) has been proved. In the situation of (@), we have BC = B'u*C = py/n and
0=T14*C = =2/n+ pa/n by ([[I4). In particular, p, = 2 and BC' = 2/n. Thus,
we are done. d
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2.2. Singularities on P!-fibrations. For a P!-fibration 7: X — T from a normal
surface X to a non-singular curve T, we shall study the structure of X under certain
conditions on singularity of pairs (X, C + Fyeq) for a fiber F' of 7 and for a prime
divisor C' on X which is either a section or a double section of w. Here, C is
called a double section if 7|c: C' — T is a finite morphism of degree 2. We fix the
P!-fibration 7: X — T throughout Section We begin with:

Remark 2.9. The vanishing R'm,Ox = 0 holds: This is well known and is proved
by the same method as in the proof of [I8, Prop. 2.33(2)]. As a consequence,
HY(E,0f) = 0 for any effective divisor E on X contained in fibers of 7, since
R'71,0x — R'7,Op is surjective. In particular, every prime component of any
fiber is a non-singular rational curve, and if a fiber F' is reduced and irreducible,
then F ~ P! and r is smooth along F' (cf. [I8, Prop. 2.33(3), (4)]).

Remark 2.10. Suppose that X is non-singular. Then every reducible fiber of m
contains a (—1)-curve. For, if not, KxI' > 0 for any prime component I'" on the
reducible fiber, since I'?> < 0, but it implies that KxF > 0 for a general fiber F,
contradicting that 7 is a P!'-fibration.

Lemma 2.11. For anyt € T, 7~ (t) N Xreg 18 a simple normal crossing divisor.
Moreover, if m=1(t) is reducible, then the following hold for any prime component
T of m=1(t):
(1) If a connected and reduced divisor D on X is contained in 7=1(t) —T, then
#D NI <1. If DNT C Xyeg in addition, then DI' < 1.
(2) IfT C Xyeg and if T2 = —1, then #(r~'(t) —T)NT = (=~ 1(t) - )T < 2.

Proof. If 7=1(t) is irreducible, then it is isomorphic to P! by Remark X0 Thus,
we may assume that 771(¢) is reducible. Assume that D NT' C X,¢q for a prime
component I' of 771(¢) and the divisor D in (). Then D is Cartier along D N T,
and we have an the exact sequence

0— OF(—D) = Ox(—D) ® Or — OF+D — Op — 0.

Then Hl(F, OF(—D)) =0 by HO(D,OD) ~ C and HI(X, ODJrF) =0 (Cf Re-
mark [Z9)). In particular, —1 < deg Or(—D) = —I'D. This shows the latter half of
). The inequality DT < 1 for arbitrary such I and D implies that 771 (¢) N Xyeq
is a simple normal crossing divisor (cf. [I8, Rem. 2.34]). For the first half of (),
let us consider the minimal resolution pu: M — X of singularities and the proper
transform IV of I" in M. Then D’ = u~!(D) is connected, and I + D’ is contained
in the fiber over ¢ of the P'-fibration 7o p: M — T. Thus, I'D’ < 1 by the latter
half of () for 7 o u. Hence, ' N D = (I’ N D’) consists of at most one point, and
we have proved ().

In the situation of (2)), 7~ (¢) is normal crossing along I', and # (7~ 1(¢)—T)NI =
(7=1(t) = D)T. Let ¢: X — X be the contraction morphism of the (=1)-curve T
Then there is a P'-fibration #: X — T such that 7 = # o ¢. Here, ¢ is the blowing
up at a non-singular point P of X, and the fiber #71(t) is normal crossing at P.
This implies that #(7~1(t) — ') NT < 2, and we have proved (2. O
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Lemma 2.12. For a pointt € T and an integer m > 1, assume that
e there is a cyclic cover 7: T' — T of degree m from a non-singular curve T"
such that 7*(t) = mt' for a point t' € T', and
o ' =mF,q for the fiber F' = m*(t).
Let X' be the normalization of X x1 T’ with morphisms v: X' — X and 7’ : X' —
T' induced by projections, which make a commutative diagram:

v

X — X

| K

T

77 ——— T.
Then F' = 7"™*(t') is reduced and v is étale in codimension 1 along F'. Here,
(X, Frea) is 1-log-terminal along Freq if and only if 7' is smooth along F’.

Proof. We may assume that 7 is étale outside ¢’ by shrinking T. Then the first
assertion is a consequence of [20, Lem. 4.2]. Now, we have an equality Kx/ + F' =
v*(Kx + Frea). By [19, Lem. 2.10(2), Prop. 2.12(2)], (X, Frea) is 1-log-terminal
along Fyeq if and only if (X', F’) is 1-log-terminal along F’. If 7’ is smooth along
F’, then (X', F’) is 1-log-terminal along F’. Conversely if (X', F’) is 1-log-terminal
along F’, then F” is non-singular (cf. [19, Fact 2.5]), and n’ is smooth along F’.
Thus, we are done. O

Lemma 2.13. Let C be a section of m and F a fiber of w such that (X, C+ Freq) is
log-canonical at a point P € CNFyeq. Then the prime component I of F' intersecting
C is unique, and moreover:
(1) If P € Xyeg, thenmultpy F =1, and if P € Sing X, then multy F' equals the
order of the cyclic quotient singularity (X, P).
Assume that P € Sing X and that F is irreducible, i.e., Fieq =T'. Then:
(2) The pair (X, Freq) is 1-log-terminal along Freq, and Fieq N Sing X \ {P}
consists of one point at which X has a cyclic quotient singularity of the
same order as (X, P).
(3) IfC1 is another section of m such that CNCTNE = (), then (X, C+CT+Freq)
is log-canonical along Fieq.

Proof. Since (X,C + Fieq) is toroidal at P (cf. [19] Fact. 2.5(1)]), Freq is locally
irreducible at P. Thus, I' is unique. If P € X,g, then CF = CT" = 1, and hence,
multr F = 1. If P € Sing X, then (X, P) is a cyclic quotient singularity of order
m > 1 such that CT' = 1/m, since (X, C + Fyeq) is toroidal at P; thus, m = multp
by CF = 1. This proves the first assertion and (). Next, we shall prove () and
@), where P € Sing X and F = mI for m > 1.

@): By replacing T with an open neighborhood of ¢ := 7(P), we have a cyclic
cover 7: T/ — T from a non-singular curve 7" such that 7*(¢t) = mt’ for a point
t’ € T” and that 7 is branched only at ¢. For morphisms v: X’ — X and 7’: X' —
T’ in Lemma defined by 7, we know that v is étale in codimension 1 and that
the fiber F' = n"*(¢') is reduced. Hence,

Kx' +C'+ F =v"(Kx + C + Frea)
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for the section C’ := v*C of 7/, and (X', C"+F") is log-canonical at the point { P’} =
v=1Y(P) = C’"NF' by [19, Lem. 2.10(1)]. This implies that F’ is irreducible, since
each prime component of F’ contains P’. Hence, F’ ~ P! and 7’ is smooth along
F’ (cf. Remark Z9). Then (X, Fieq) is 1-log-terminal along Fyeq by Lemma 212]
and it implies that (X, C + Fieq) is log-canonical along Fyeq. Since

(KX +C+Fred)Fred = (1/deg1/)(KX/ + ! +F’)F’ = 71/777, <0,

the rest of (2)) follows from [I8, Prop. 3.29] concerning conditions (E)—(H) there.
@B): We have CtF,eq = (1/m)CTF = 1/m. Let P! be the intersection point
of Ct and Fieq. Then P € Sing X and (X, P') is a cyclic quotient singularity of
order m by (Z). Moreover, the equality CtF..q = 1/m implies that (X, CT 4+ Fieq)
is log-canonical at P by Lemma Z8|(). Thus, we have () by ). O

Lemma 2.14. Let C be a section of m such that
(%) (X,C + Gy) is log-canonical at @y for any t € S(m) := n(C' N Sing X),
where Gy := 7~ 1(t) and {Q:} := C N Gy. Then the following hold:

(1) For any t € S(m), there is an integer my > 1 such that CGy = 1/my; and
that (X, Qy) is a cyclic quotient singularity of order my.

(2) The divisor Kx + C + X2 g(x) Gt is Cartier along C.

(3) One has the following equalities of Q-divisors on C:

(II-5) (Kx +C+ Ztesm) Gille = Ko + Ztes(w) @
o —1
(11-6) (Kx +C)lc = Ko + Ztes(w)(l —m; " )Q.

Proof. We have () by &) and by Lemma[2.I3l The divisor Kx +C + 3 5(r) Gt
is Cartier at Q; for any t € S(m) by (@), since Q; is a node of C'+ G;. On the other
hand, 7 is smooth along C N X, = C \ 77 18(7), and C N X,eg is non-singular.
Hence, Kx + C + 3 ,c5(x) Gt is Cartier along C; thus @) holds. For (@), we have
(IT=6) by ([I=5)), since m;G¢|c = Q; as a divisor on C. Thus, it is enough to prove
(II=5).

Let p: M — X be the minimal resolution of singularities lying on C' and let F;
be the exceptional divisor p=1(Q;) for t € S(r). Then

(11-7) Ky +C + Ztes(ﬂ)(ag +E) = (Kx +C+ > : Gy)

teS(w

for the proper transforms C’ and G} of C and G; in M, respectively, since p is a
toroidal blowing up (cf. [18, §4.3]). Here, C' N G}, = () and Fi|c is identified with
Q: by the isomorphism C’ ~ C induced by u. Thus, we have ([I55) by ([[I=Z)) and
by adjunction for (M, C"). O

Proposition 2.15. Let Cy and Cs be two sections of w and let F' be a fiber of w
such that
(i) C1NCoNF =0,
(ii) (X,C1 4 Cq + Freq) is log-canonical at Cy N Frea, and
(iii) (Kx 4+ C1 + Cy + Fieq)© < 0 for any prime component © of F.
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Then Fieq is a linear chain of rational curves, (X, C1 + Ca 4+ Fyeq) 18 log-canonical
along Freq, and the following hold:

(1) Kx 4+ C1 + Cy + Fieq is Cartier along Freq;
(2) Ox(Kx +C1+ Oy + Fred) ® Op, ., ~ OF, -

Proof. For the intersection point P; of C7 and F', let I' be a prime component of
F containing P;. Then I is unique by (i) and Lemma T3l Let p: X — X be the
contraction morphism of Fl.q — ', where ¢ is the identity morphism if Foq = I
Let 7: X — T be the induced P*-fibration such that 7 = Togp. We set C; := o(C;)
fori = 1,2, Py = ¢(P), T := ¢(), and F := 7*(7(P;)). Then F = m[ for
m := multr F, and

(11-8) Kx+Ci+Cy+Fea=¢"(Kx+C1+C24+D)+ E

for a @-exceptional effective Q-divisor F by (). Since ¢ is an isomorphism over
an open neighborhood of P4, we see that (Y, Ci1+Cs+ f) is log-canonical at P,
by () and that P; ¢ Cs, ie., C;NCyNT = (. Thus, (X,C; + Cy + 1) is log-
canonical along ' by Lemma 2I3I@) applied to 7. Now (K% +C; +C2+ )L =0
by F = mI, and hence, T NSupp F = 0 and (Kx + C1 + Co + Fleq)I' = 0 by (i)
and ([I=8)). If a prime component © of Fieq — I is not contained in Supp E, then
(Kx +C1 +Cy+ Freq)® = 0 and © N Supp F = 0 by (i) and ([I8). Since Freq is
connected, we have £ = 0. Therefore,

Kx +C1+Co+ Frea = " (K +C1 4+ C2 +1).

Consequently, (X, Cy 4+ Cy + Fieq) is log-canonical along Freq and (Kx +Cq +Co +
Frea)® = 0 for any prime component © of F. Then F,¢q is a linear chain of rational
curves by [I8] Lem. 4.5]. Moreover, we have () and (2) by [18, Prop. 3.29(C)] and
by the canonical isomorphism

Pic(Frea) ~ [ |
of Picard groups (cf. [I, Thm. (1.7)], [I8, Rem. 4.2]). O

Pic(©)

O©C Fred

Lemma 2.16. Let C be a double section of w. For a fiber F' of m and a point
P e F, assume that
(1) CNFreq = {P},
(ii) (X, C + Frea) is log-canonical at P, and
(iii) (Kx 4+ C + Fiea)T <0 for any prime component T' of Freq.

Then P € Creg, Frea s a linear chain of rational curves, (X,C + Fieq) is log-
canonical along Fyeq, and (Kx + C + Fieq)T' = 0 for any prime component T' of
Frea. Moreover, ¥ := (Fired)reg N Sing X \ {P} is not contained in any non-end
component of C' + Fieq, and X consists of either
(a) two Aq-singular points of X, or
(b) one point at which (X, Freq) is a log-canonical singularity of type D in the
sense of [18, Def. 3.23], i.e., (X, Fred) is log-canonical but not 1-log-terminal
at the point.
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Consequently, Kx + C + Fyeq is not Cartier at 3, but 2(Kx + C + Fieq) is Cartier
along Freq with an isomorphism

OX(Q(KX +C+ Fred)) Rox OFred = OFred'

Proof. By (), C is non-singular at P. By shrinking 7', we may assume that C
is non-singular, 7 is smooth over T\ {t}, where ¢ := 7(P), and the double cover
7|c: C — T is branched only at t. We rewrite 7|c: C' — T as a morphism 7: 77 —
T, and let X’ be the normalization of X xr 7’. Then we have a commutative
diagram

v

X — X

~| |=

T —— T
for the induced P!-fibration 7’: X’ — T’ and the induced double cover v: X' — X,
and we have two sections C] and C of 7’ such that v*C = C{+C%. Now, 7*(t) = 2t/
for a point ¢ € T'. We set F' := n"*(t'). Then

(I11-9) Kx/ +Cl+Ch+ Floyy =v*(Kx + C + Frea)

by [19, Lem. 1.39] as v is étale over X \ Freq. Hence, (X,C] + C4 + Fl.,) is log-
canonical along v~ (P) by () and [19, Lem. 2.10(1)]. In particular, C{NC5NF! 4 =
0 (cf. [19} Fact. 2.5]). Moreover, C;NC% = (), since 7|c: C — T is étale over T'\ {t}.
By (@), (Kx/ + C{ + C5 + F/, ,)I" < 0 for any prime component I of F’. Hence,
(X',C1 + C5 + Fl,) is log-canonical along F)_ 4, and

(Kx' +C1+Cy+ Flg)I' =0

for any prime component I of F’ by Proposition applied to 7': X' — T,
C}, C%, and F'. Then (X,C + Fyeq) is log-canonical along Fyeq by ([I59)) and [19,
Prop. 2.12(1)], and we have (Kx + C + Fieq)l' = 0 for any prime component I' of
F. As a consequence, Fi¢q is a linear chain of rational curves by [I8, Lem. 4.5].

Let Ty be a prime component of F containing P, which is unique, since (X, C +
Fleq) is log-canonical at P (cf. Lemma2T3]). Here, (K x+Freq)l'o = —CTy < 0, and
(Kx + Freq)T = —CF = 0 for any prime component ' of F.q — I'p. In particular,
if Fleq is reducible, then Ty is an end component of Fieq, by [I8, Lem. 4.5(3)].

If F is irreducible, i.e., Freq = [, then 3 C Ty, and either (@) or (b)) holds by [18|
Prop. 3.29] concerning conditions (G), and (H) there, since (Kx + C + Fyoq)T' = 0.
If F is reducible, then ¥ is contained in the other end component of the linear chain
Fred, and either (@) or (D)) holds by [I8, Prop. 3.29] concerning (C), (G), and (H)
there. In both cases, ¥ is not contained in any non-end component of C+ Fyeq. The
last assertion on Kx + C + Fyeq is a consequence of [18, Prop. 3.29, Rem. 4.2]. O

2.3. PDS configurations. We introduce the notion of PDS configurations for
the study of double sections of a P!-fibration in Definition .17 below. We shall
discuss relations among irreducible PDS configurations, basic PDS configurations,
and standard PDS configurations (cf. Definition [Z20).
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Definition 2.17. Let 7: X — T be a P!'-fibration from a normal surface X to a
non-singular curve T. Let C' be a double section of m and let D be a set-theoretic
fiber of w. We say that (7: X — T, C, D) is a practical double section configuration,
or a PDS configuration for short, if C' N D consists of one point P and the following
conditions are satisfied:

(1) (X,C) is 1-log-terminal at P;

(2) CD € {1/n,2/n} for the numerical factorial index n of X at P;

(3) a prime component B of D intersecting C' is unique.

The point P and its image 7(P) are called the intersection point and the base point
of (X/T,C, D), respectively. The prime divisor B in (B]) is called the distinguished
component of D. The integer n in () is called the index of (X/T,C, D). If CD =
1/n (resp. CD = 2/n) in (@), then (X/T,C, D) is called a PDS configuration of type
I, (vesp. I1,,), or type I (resp. I1), for simplicity. The PDS configuration (X /T, C, D)
is said to be irreducible if D is irreducible.

Lemma 2.18. Let (m: X — T,C, D) be a PDS configuration of index n with the
intersection point P € X, the base point o = w(P) € T, and the distinguished
component B of D. Then:
(1) Ewvery prime component of D is isomorphic to P*, and DN Xyep is a simple
normal crossing divisor. In particular, D is locally irreducible at P.
(2) The curve C' is non-singular at P. If P € X,cq, then n = 1; if P € Sing X,
then n equals the order of the cyclic quotient singularity (X, P).
(3) There is an open neighborhood U of o in T such that w is smooth over
U\ {o} and that w|c: C — T is étale over U\ {o}. In particular, CNm~U
18 non-singular.
(4) If (X/T,C,D) is of type 1, (resp. 11,,), then multp 7*(0) = 2n (resp.
multg 7*(0) = n).
(5) Assume that D is reducible and let ¢: X — X be the contraction morphism
of D — B. Then (X/T,C,D) is an irreducible PDS configuration of the
same type as (X/T,C, D) for C = ¢(C) and D = ¢, D.

Proof. Assertion (Il follows from Remark 2.9 and Definition ZT7(@B]). We have (2)
by (D), Definition ZT7([l), and Remark 271 For @), it is enough to set U to be
the complement of S\ {0} in T, where S is the set of points ¢t € T such that
7*(t) or (w|c)*(t) is not smooth. We have @) by 2 = Cr*(0) = (multg 7*(0))CD.
Assertion () holds trivially by definition, since ¢ is an isomorphism along C. O

Lemma 2.19. For a PDS configuration (X/T,C, D), it is of type I if and only if
(X,C + D) is log-canonical at the intersection point.

Proof. Let n be the index of (X/T,C, D) and let P be the intersection point. If the
type is I, i.e., CD = 1/n, then (X,C + D) is log-canonical at P by Lemma 2|[T]).
Assume that the type is I, i.e.. CD =2/n. If P € X,cq, then (X,C + D) is not
log-canonical at P, since C' intersects D tangentially at P. Thus, we may assume
that P € Sing X. Then (X, P) is a cyclic quotient singularity of order n > 1 (cf.
Lemma [ZT8[2)), and we can apply Lemma Z8@) to (X,C, P) and D, since D
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is locally irreducible at P (cf. Lemma ZI8()). Let pu: M — X be the minimal
resolution of singularity (X, P) and let B’ be the proper transform in M of the
distinguished component B of D. If (X, C + D) is log-canonical at P, then y=!(P)
is a linear chain of rational curves, and B’ intersects ;1 (P) transversely at just one
point contained in an end component of the linear chain. However, this contradicts
Lemma 28|[2). Hence, if the type is II, then (X,C + D) is not log-canonical at
P. |

Definition 2.20. A PDS configuration (X/T,C, D) is said to be standard if D C
Xieg and if D is a simple normal crossing divisor expressed as E 4+ Z; + 25 for a
linear chain E of rational curves and for two (—2)-curves =; and E5 such that

C Eq E, El/

(II-].O) [ [ ) [ ] Y

N

o =5

—_
=
—

1

is a dual graph of C' + D, where F,, Es, ..., E; are prime components of E. If F
is irreducible, then (X/T,C, D) is said to be basic.

Remark. The standard PSD configuration is of type I;, where F; is just the dis-
tinguished component of D. The linear chain E of rational curves contains a (—1)-
curve by Remark 2100 If (X/T,C, D) is basic, then 7*(0) = 2F + Z1 + =5 for the
P!-fibration 7: X — T and for the base point o.

Lemma 2.21. For the standard PDS configuration (X/T,C, D) in Definition 220,
the following hold:
(1) The Q-divisor Kx + C + E + (1/2)(Z1 + Z2) is numerically trivial on D,
i.e.,
(Kx +C+E+(1/2)(Z1 +Z2)) T =0
for any prime component I' of D.
(2) If Ey is a (—1)-curve, then (X/T,C, D) is basic.
(3) If E is reducible and if Ey is a unique (—1)-curve contained in E, then E;
is a (—2)-curve for any i > 1.
(4) If E is reducible, then there exists a basic PDS configuration (Y /T, Cy, Dy)
with a bimeromorphic morphism ¢: X — Y over T such that ¢(C) = Cy

and ¢.D = Dy and that ¢ is a succession of blowings up at nodes of inverse
images of (C + E).

Proof. We have () from the dual graph ([I-I0) in Definition by calculation
of intersection numbers. If E} is a (—1)-curve, then E; + Z; + E» is not negative
definite, and hence, D = E; + Z; + Z,, i.e.,, F is irreducible. This proves (2.
Assertion (3] follows from Lemma 2Z3|(I)). We shall show (), where F is reducible.
Since FE is negative definite, by Lemma [2.2] we have a bimeromorphic morphism
¢: X — XT to a normal surface Xt such that

e ET:=¢,(F) is a linear chain of rational curves contained in (X1),eg,
e F satisfies one of three conditions @), @), and (&) of Lemma 22
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e ¢ is a succession of blowings up at nodes of inverse images of Et.

In particular, E' is reducible, ¢(E;) and ¢(E;) are the end components of Et.
Moreover, a P!-fibration X — T is induced and (Xt/T, CT, D) is a standard PDS
configuration for CT = »(C) and DT = ¢, D. Here, DT = ET + Ei + E; for (—2)-
curves 2l = ¢(21) and E} = ¢(Z,). There is a (—1)-curve contained in ET by
Remark ZI0L If ¢(F;) is a (—1)-curve, then Ef = p(E;) by (@), contradicting the
reducibility of ET. Hence, ¢(E};) is not a (—1)-curve, E' satisfies Lemma2.2i@]), and
©(E4) is a unique (—1)-curve in ET. By (@), every prime component of ET — ¢(Ey)
is a (—2)-curve. Let XT — Y be the contraction morphism of Ef — (FE;) and
let ¢: X — Y be the composite with ¢. Then (Y/T, ¢(C), ¢.(D)) is a basic PDS

configuration for the induced P'-fibration Y — 7. Thus, we are done. (|

Remark 2.22. Basic PDS configurations and irreducible PDS configurations of type
IT; are connected by bimeromorphic morphisms as follows: Let (X/T,C, D) be an
irreducible PDS configuration of type II;. Then the P!-fibration X — 7T is smooth
along D, and D intersects C' tangentially at the intersection point P. In particular,
D C X,eg. Let p: M — X be the composite of two blowings up at points lying
over P such that u=!(C + D) is normal crossing and let C’ and D’ be the proper
transforms of C'and D in M, respectively. Then =1 D = D'+T+0 for a (—2)-curve
I' and a (—1)-curve ©, and

o T

c’ S D’

is a dual graph of u=1(C'+D). Hence, (M/T,C’, u~1 D) is a basic PDS configuration
with © as the distinguished component. Note that if C' is compact, then

(I1-11) C? = (C")? +2

by construction. Conversely, every basic PDS configuration is obtained from an
irreducible PDS configuration of type IT; by this process. In fact, if (M /T, C, 5) isa
basic PDS configuration with two (—2)-curves Z; and Z5 in D, then the contraction
morphism of D-=, (or D— E9) produces an irreducible PDS configuration of type
I1;.

Lemma 2.23. Let (m: Y — T,C, D) be an irreducible PDS configuration of type
I and let u: M — 'Y be the minimal resolution of singularities lying on D. Then
(M/T,C’, Dyy) is a standard PDS configuration for the proper transform C' of C
in M and for Dy; = p~'D, in which the proper transform D in M is a unique
(=1)-curve contained in Dyy. In particular, C' + Dy has a dual graph

O/ /

(11-12) . .

™~

.
[1]

1

[1]

2

for two (—2)-curves 21 and 2. Moreover, (Y,C+ D) is log-canonical along D, and
the following hold for the index n of (Y/T,C, D) and the set ¥ = (D\ C)NSingY:
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(1) If #X =2, then (M/T,C’, Dyr) is basic and 3 consists of two A;-singular
points.

(2) If n > 1, then X consists of one point at which (Y, D) is log-canonical of
type D (cf. [18| Def. 3.23]).

(3) If n =1 and #X # 2, then ¥ consists of a rational double point of type D,,
for some m > 3.

Proof. Let P and o = 7w(P), respectively, be the intersection point and the base
point of (Y/T,C,D). Then CD = 1/n, (Y,C + D) is log-canonical at P and
7*(0) = 2nD by Lemma By applying Lemma to Freq = D, we see that
(Y,C + D) is log-canonical along D, and ¥ = DN SingY \ {P} consists of either

e two Aj-singular points, or

e one point at which (Y, D) is log-canonical of type D.
By well-known descriptions of minimal resolutions of such singularities (cf. [12]
Thm. 9.6], [I8, Thm. 3.22, Fig. 2]), we have a dual graph of u=*(C+ D) = C'+ Dy,
as ([I-12). As a consequence, (M/T,C’, Dyy) is a standard PDS configuration. For
the proper transform D’ of D in M, every prime component of Dy; — D’ is not a
(—1)-curve, since it is p-exceptional and g is minimal. Thus, D’ is a (—1)-curve
(cf. Remark 210). The remaining assertions are shown as follows.

@: If #X = 2, then ¥ consists of two Aj-singular point; hence, D’ equals
the prime component of D intersecting Z; + Zq, and (M/T,C’, D) is basic by
Lemma 22T|[2)).

@): If n > 1, then D’ # B, and we have #X # 2 by (. Thus, (@) follows from
the possibility of 3 above.

@): Assume that n = 1. Then P ¢ SingY, and D’ equals the distinguished
component B of Dy;. If #3 # 2, then every prime component of Dy — B is a
(—2)-curve by Lemma 22T|[3)), and hence, ¥ consists of one D,,-singular point for
the number m of prime components of Dy; — B. Thus, we are done. (I

Ezample 2.24. By Lemmas 2.21] and 2:23] every irreducible PDS configuration of
type I is obtained from a basic PDS configuration by the following method: Let
(m: M — T,C, D) be a basic PDS configuration with the distinguished component
B of D and prime components Z; and Zy of D — B. Let 8: M’ — M be an
isomorphism or a succession of blowings up whose center in each step is a node of
the inverse image of C' + D contained in a (—1)-curve in the inverse image of D;
in particular, the center is lying over the intersection point P of C' and D. Then
B~Y(D) contains a unique (—1)-curve I', and 371(C + D) has a dual graph

=/

o -

C’ B’ !
o N ./

\ .

.,_2

for the proper transforms C’; B’, 2}, and Z), of C, B, Z1, and =5 in M’, respectively.
Here, if 3 is not an isomorphism, then I # B’. By construction, (M’'/T,C’, 371 D)
is a standard PDS configuration and S is the morphism in Lemma 22TH]) for
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(M'/T,C’",37'D) when B is not an isomorphism. Let a: M’ — Y be the con-
traction morphism of 371(D + =1 + =) — I, and set Cy := a(C’) and Dy =
a,(B71D) = a(T). Then « is the minimal resolution of singularities of Y lying on
Dy, and (Y,Cy + Dy) is log-canonical along Dy, since

Ky 4+ C' + E'+ (1/2)(E1 + B2) = o (Ky + Cy + Dy)

for the linear chain B’ = 871D — 2} — =) of rational curves (cf. Lemma 2.2T|]).
By Lemma 219 (Y/T,Cy, Dy) is an irreducible PDS configuration of type L.

Example 2.25. We shall explain a method producing an irreducible PDS config-
uration of type II, for an odd integer n > 1 from a basic PDS configuration by
bimeromorphic morphisms. Let (w: M — T,C, D) be a basic PDS configuration
with the distinguished component B and (—2)-curves E; and Z; in D. Then B is
a (—1)-curve and 7*(0) = 2B + £ + E; for the base point 0 € T. Let 8: M’ — M
be a succession of blowings up whose center in each step is a node of the inverse
image of B + =5 contained in the proper transform of B. Assume that (3 is not an
isomorphism. Then S~!(C + D) is a simple normal crossing divisor with a dual
graph

= e—2
(11-13) o B o T Iy =5
° ° ° ° ° °
—(141) -1 -2 —2 -3

for the proper transforms C’, B/, 2}, and = in M of C, B, =, and =5, respectively,
where [ is the number of point blowings up, I'y, ..., I'; are the S-exceptional prime
divisors, and —1, —2, —3, —(I + 1) indicate self-intersection numbers. From the

dual graph ([I-13]), we have
(I1-14) 2B’ + 2 + & +Z (2i + D)T; = B*(2B + E; + =),

Ky +C' + B+ (1/2)(2 +:’2+Z
= B* (KM+O+B+(1/2)(~1 + E5))

(11-15)

by calculation. Let a: M’ — X be the contraction morphism of 371(D)—T'; and let
wx: X — T be the induced P'-fibration such that 7x oo = wo 3. Note that « is the
minimal resolution of singularities of X. We set Cx := a(C"), Dx := a.(371D) =
a(Ty), and {Px} := Cx N Dx. Then a Y(Px) = ) + B/, and (X,Cx + Dx) is
not log-canonical at Px by the dual graph ([I=13]). However, we have

Ky 4+ C' + B+ (1/2) H1+H2+Z ) =a*(Kx + Cx + (1/2)Dx)

by ([I=18), which implies that (X,Cx + (1/2)Dx) is log-canonical at Px and
(X, Cx) is 1-log-terminal at Pyx. On the other hand, we have
1

* / * _
o Cx =C +721+1( " +2B) and 7w%(0o)=(20+1)Dx
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by (II=13) and ([I=14)). Hence, the order n of the cyclic quotient singularity (X, Px)
equals 20 + 1 and Cx Dx = 2/n. Therefore, (X/T,Cx, Bx) is an irreducible PDS
configuration of type II,, for n =20 + 1.

Theorem 2.26. Every irreducible PDS configuration (X/T,C, D) of type 1L, for
n > 1 is obtained from a basic PDS configuration (M/T,Cyr, Dpr) by the method
of Example 228 In particular, the following hold:

(1) The integer n is odd, (X, P) is a cyclic quotient singularity of type (n,2)
(¢f. Remark [Z8) for the intersection point P.

(2) There is a point Pt € D such that (D \ C) N Sing X = {P'}, (X,D) is
1-log-terminal at P, and (X, P") is a cyclic quotient singularity of type
(n,n —2).

(3) If C is compact, then C? = (Cyr)? + 2/n.

Proof. Let m: X — T be the P!-fibration and let 0 = 7(P) be the base point. We
shall prove Theorem by the following seven steps.

Step 1 (On the minimal resolution of singularities of X along D). Let a: M/ — X
be the minimal resolution of singularities lying on D and let ¢’ and D’ be the
proper transforms of C' and D in M’, respectively. We also set Dyy 1= o~ 'D.
Since (X, C) is 1-log-terminal at P and since C'D = 2/n for the numerical factorial
index n of X at P, by applying Lemma 28, we see that a~*(P) is a linear chain
Zle T'; of rational curves and that either (2a) or (2h) of Lemma 28 occurs for
(D', C") instead of (B’,C"). If Lemma 2.82al) occurs, then I'y and D’ are prime
components of a~!(771(0)) with D'T'y = 2: This contradicts LemmaZIT|(). Thus,
Lemma 22D occurs. In particular, k = n(a=}(P)) > 2, I'? = -2, I,D' =1,
C'ND' =0, and T'; N D' = for any i # 2; hence,

o D

c’ Iy Iy I

is a dual graph of C’ + D’ + a~1(P). Since « is minimal, any prime component of
Dy = oY (7m71(0)) except D’ has self-intersection number < —2. Thus, D’ is a

(—1)-curve (cf. Remark 2.10).

Step 2 (Constructing some bimeromorphic morphisms). We set

-1 -1 k
E:=a"'D—a Y(P)= Dy —Zizlri
as a connected reduced divisor on M’. If D' # E, then a(E—D’) C DNSing X \{P}.
Let v: M’ — Y be the contraction morphism of F and set {Q} := v(F). Let
p: M — Y be the minimal resolution of the singularity at Q. Then po g = v
for a bimeromorphic morphism 3: M’ — M by the minimality, and 8 and 7 are
isomorphisms along C’+Z#2 T';. We have Pl-fibrations 7ty : Y — T and mar: M —
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T with a commutative diagram

M’%M
X Y
™M
Ty
\ l k
T,

where «, 3, 7, and p are isomorphisms over T\ {o}. We set
Cy := ’Y(C/), Dy :=~.Dyp = 71';,1(0), Fy’i = ’Y(Fi).
Cnm = B(C"), Dy := B.Dypy = 7/ (0), Loz == B(IT)

for 1 <i<k. Then Dy = Zle I'vi, Dy = Zle Tari + B E, Cy (resp. Chy) is
a double section of 7y (resp. mr), Q € Iy, Q € Ty, for any i # 2, E = y~1(Q),
and 8. FE = = 1(Q).

Step 3. We shall show that Dy N SingY = {Q}. Assume the contrary. Then Y
is non-singular along Dy, and (T'y;)? = I'? < —2 for any i # 2. Thus, 'y is
a (—1)-curve (cf. Remark ZI0). Since (I'y;;1)? = —2 and since the linear chain
Zle I'y,; of rational curves is negative semi-definite but not negative definite, the
integer k is equal to 3, and I'y 3 is a (—2)-curve by Lemma However, in this
case, my-(0) = I'y1 + 2I'y2 + I'y 3, and it implies that Cynj (o) = CyTys = 1,
contradicting that Cy is a double section of my. Therefore, Dy N SingY = {Q}.
Step 4 (k = n(a~'(P)) = 2). Any prime component of Dy except I'js 2 has self-
intersection number < —2 by the minimality of p and by (Ips;)? = T'? < -2 for
any 7 # 2. Thus, I'jz 2 is a (—1)-curve (cf. Remark 210). Since Dy NSingY = {Q}
by Step Bl there is a prime component Z of 8.E C Djs such that u(E) = {Q}
and ENTyo # 0. Here, ZET)2 = 1 by Lemma ZTI|), and =Ty = 0 by
B«ENT a1 = B(ENT) = 0. If k > 3, then three prime divisors 'y 1, ar,3, and 2
intersect the (—1)-curve I'pso: this contradicts Lemma 2ITI2). Therefore, k = 2.
In particular, Dy =Tp1 + Tare + B<(E) and Dy =Ty 1 + Tyo.

Step 5 (Proofs of () and (@)). The equality k = 2 implies that
Oé*C = Cl + (1/n)F1 + (2/n)F2,

since Lemma 2Z8I2b)) occurs for (D', C") (cf. Step [l Fact 25). Then n is odd and
(X, P) is a cyclic quotient singularity of type (n,2) by Remark 2.6} hence () holds.
Moreover, we have

(I1-16) 3=—(n+1)/2

by 0 =Ty(a*C) = 14 1/n + (2/n)I'2. Similarly, if C is compact, then
C? = C'(a*C) = (C")? + (2/n)C'Ty = (Cyr)? + 2/n.

Thus, @) has been proved.
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Step 6. We shall show that @ is an A;-singular point of Y. Let p: Y — Y be the
contraction morphism of the (—2)-curve I'y; and let 7: Y — T be the induced
P!-fibration such that 1y = 7o p. We set C := p(Cy) and D := p,Dy = p(T'ys) =
771(0), and define three points Qg, @1, and Q- of Y by

{Qo} :=p(Cy NDy)=CnND, {Qi}:=pTy1), and Q2:=p(Q).

Then C is a double section of #, (Y, C'+ D) is log-canonical at Qo, and (Kv+ C +
D)D = 0. Moreover, D N SingY \ {Qo} = {Q1,Q2}. By Lemma 216, we see that
(Y,C + D) is log-canonical along D, and Q9 is a A;-singular point. Therefore, Q
is an A;-singular point of Y, since p is an isomorphism outside I'y ;.

Step 7 (Final step). By Step [6 the p-exceptional locus u~1(Q) equals the prime
divisor Z introduced in Step [ and it is a (—2)-curve. Then S, F = = and Dy =
a1+ Tarz +Z. Therefore, (M/T,Car, Dar) is a basic PDS configuration. Let =T
be the proper transform in = in M’. It is a prime component of E = vy~ 1(Q) =
B71=. Note that D’ is a unique (—1)-curve contained in E, D’ N Ty # (), and
(E—D")NTy = 0 (cf. Step[)). By Lemmal2Z4] F is a linear chain of rational curves
with a prime decomposition F = Zi:o ©, for an integer [ > 0 with Oy = =,
©; = D’ such that

T, D’ O1-1 O, =t
[ ] [ ] [ ] e [ ] [ ]
—(1+1) -1 -2 -9 -3

is a dual graph of I's + F, where —1, —2, —3, and — (I + 1) indicate self-intersection
numbers, since =% = —2 and (I'p72)? = —1. Note that the dual graph is

I D’ =t
[ ) [ ]

-2 -1 -3

when [ = 1. In particular, n = 2l + 1 by —T'3 = (n +1)/2 = [ + 1 (cf. (IE106) in
Step (). Hence,

oI,

(O D’ 0,1 O =t

=
° [ ] ° e —— 1+ — @O [ ]

is a dual graph of a=1(C + D), and (X/T,C, D) is obtained from the basic PDS
configuration (M /T, Cpr, Dps) by the method of Example The dual graph of
Iy + E above implies that (D \ C) N Sing X = {PT} for the image P of E — D' =
=+ Zi: ©; under a: M’ — X. By calculation, we have

-1
pD =1/l + (2/ml2+ D' + (1/m)E" + Y ((2i+1)/n)6;.

Hence, (X, P") is a cyclic quotient singularity of type (20 + 1,21 — 1) = (n,n — 2)
(cf. Fact 25)) even in case | = 1, and moreover, (X, D) is 1-log-terminal at P by
Lemma[2.8] since D’ intersects a~*(PT) transversely one point of an end component
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of the linear chain a~!(P") = = + Zi;} ©; of rational curves. Thus, (2]) has been
proved, and the proof of Theorem [2.26] has been completed. O

Corollary 2.27. For an irreducible PDS configuration (X/T,C, D), if #(D\ C)N
Sing X > 1, then it is of type 11, DNSing X consists of two Aq-singular points, and
(M/T,C", u=1D) is a basic PDS configuration for the minimal resolution yu: M —
X of singularities and the proper transform C' of C in M.

Proof. The type is not II by Theorem Z2012]) (cf. Remark 222]). Then the assertion
follows from () and (@) of Lemma 2231 O

Proposition 2.28. Let m: X — T ~ P! be a P'-fibration from a normal projective
rational surface X and let C be a double section. For two points ty, to € T, assume
that 7 is smooth over T'\ {t1,t2} and that (X/T,C, D;) is a PDS configuration for
any i =1, 2, where D; := 7 1(t;).
(1) If (X/T,C,D;) is basic for any i = 1, 2, then (X,C + Dy + D3) is an
H-surface (cf. [I8, Def. 7.7]); In particular, C* = 0.
(2) If (X/T,C, D;) is irreducible of type 1 for any i = 1, 2, then (X, C+D1+Ds)
s a half-toric surface.
(3) If (X/T,C, D) is basic and if (X/T,C, Dy) is of type 11,,, then C% = 2/n.
(4) If Dy is irreducible with #(D1 \ C) N SingY > 1 and if (X/T,C, D3) is of
type 11,,, then C? = 2/n.

Proof. ([{): This follows from Definition and [I8, Lem. 7.8].

@): Let u: M — X be the minimal resolution of singularities. For the proper
transform C’ of C in M, (M/T,C’',u=*D;) is a standard PDF configuration for
i = 1, 2 by Lemma 223 Moreover, by Lemma [Z2T|{]), there is a birational
morphism ¢: M — Y of non-singular surfaces over T' such that

e (Y/T,Cy,Dy,)is abasic PDS configuration for i = 1, 2, where Cy = ¢(C")

and Dy,; = ¢, (n'D;),

e ¢ is a succession of blowings up at nodes of inverse images of Cy + Dy 1 +

Dy 5 lying over Cy N (Dy,1 + Dy32).
By @), (Y,Cy + Dy + Dy.) is an H-surface. Let py: Y — Y be the contraction
morphisms of four (—2)-curves in Dy,; + Dy2 and let ppr: M — M Dbe the con-
traction morphism of the inverse images of these four (—2)-curves. Then (Y, F) is
a half-toric surface of Picard number 2 for E := py.(Cy + Dy + Dy.) by [18]
Prop. 7.15]. By construction, there exist birational morphisms ¢: M — Y and
fi: M — X such that

o pyop=¢opy and opy = p,

e ¢ is a toroidal blowing up with respect to the log-canonical pair (Y, F),

e ¢ 'E = pyr(C'+ Dy + 1 Dy) and i (¢'E) = C + Dy + Ds.
Hence, (M, ¢ 'E) and (X, C'+ Dy + Dy) are half-toric surfaces by [18, Lem. 7.2(2),
(3)).

@B): We may also assume that Dy = 7~ 1(t3) is irreducible by replacing X with
the surface obtained by contracting prime components of Do not intersecting C' (cf.
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Lemma ZI8#)). By Theorem 226 and Remark [Z22] there exists a bimeromorphic
map ¢: X --+— M to a non-singular surface M over T such that

e ¢ is an isomorphism over T\ {t2},

o (M/T,C' 7y} (t;)) is a basic PDS configuration for i = 1, 2,

o C? = (C"?+2/n,
where C is the proper transform of C' in M and mp: M — T is the structure
morphism. Here, (C’)? = 0 by (). Thus, C? = 2/n.

@): By Corollary 227 D; N Sing X consisting of two Aj-singular points and
(Y/T,C’, Dy,1) is a basic PDS configuration for the minimal resolution v: ¥ — X
of the A;-singularities, the proper transform C’ of C' in Y, and Dy, := v=!(Dy).
Here, (C")? = C2. Hence, by replacing Y with X, we may assume that (X /T, C, D)
is a basic PDS configuration. Then () follows from (B]). Thus, we are done. O

2.4. Existence of P!'-fibrations. We shall present some sufficient conditions for
the existence of a P'-fibration on a normal surface.

Lemma 2.29. Let X be a normal Moishezon surface with an effective divisor D
such that

(i) 0 # Supp D C Xieg,
(i) DD; =0 for any prime component D; of D,
(iii) Dyea @s a simple normal crossing divisor forming a linear chain of rational
curves.

Then X is projective and there is a P'-fibration m: X — T to a non-singular
projective curve T such that D = mn*(t) for a point t € T and a positive integer
m and that 7 (t) is reduced along the end components of Dryeq.

Proof. The reduced divisor D,q is not negative definite but negative semi-definite.
In fact, if it is negative definite, then D = 0 by (i), contradicting (). If it is not
negative semi-definite, then there is an effective divisor P supported on D,¢q such
that P? > 0, where DP = D? = (0 by (), and we have D = 0 by the Hodge
index theorem, contradicting (). Let X — X’ be the blowing down of a (—1)-
curve which is a non-end component of D..q. Then the image of D,oq is a simple
normal crossing divisor in X/, forming a linear chain of rational curves, and D
is the pullback of an effective divisor on X’ by (@). Thus, for the proof, we may
replace X with X’. Hence, by Lemma 2.2] we may assume one of the following for
the prime decomposition D;eq = Zle D;:

(a) k=1, i.e., Dyeq is irreducible;

(b) k=2, and D; and D5 are (—1)-curves;

(¢c) k > 3, Dy and Dy, are (—1)-curves being end components of Dyeq, and

Df:72forany2§i§kfl.

In cases @) and (D), D = mD,eq for some m > 0. In case @), D = m(D; +
2(Dg + -+ + Dy_1) + Dy,) for some m > 0. In cases (b) and (@), we can consider
the contraction morphism p: X — X of the linear chain D,eq — D1, where X is
normal and D := p(Dyed) = p(D1) C Xyeg. By construction, D ~ P!, D= 0, and
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D = mp*(D). Therefore, for the proof, by replacing X with X, we may assume
that D ~ P! and D? = 0.

Let u: M — X be the minimal resolution of singularities. Then p*D ~ P!
and (pu*D)? = 0. Suppose that there is a surjective morphism f: M — T to a
projective curve T' which contracts p* D to a point. By Stein factorization, we may
assume that f is a fibration and T is non-singular. Then the p-exceptional locus
is contained in a union of fibers of f, since it is away from p*D. Hence, there is
a fibration 7: X — T such that f = 7o u. Since D? = 0, there is a point t € T
such that D = 7~ 1(¢). Let ¢ be a positive integer such that 7*(¢t) = c¢D. For a
general fiber F of 7, we have KxF = cKxD = —2c. Thus, ¢ = 1 and F ~ P
Hence, 7 is a P'-fibration and 7*(t) = D. As a consequence, X is projective by [I8]
Prop. 2.33(1)].

Therefore, we may assume that X is a non-singular projective surface, D ~ P!,
and D? = 0, and it suffices to construct a surjection 7: X — T to a projective curve
T which contracts D to a point. If H*(X,Ox) # 0, then D ~ P! is contracted to a
point by the non-trivial Albanese morphism of X; hence, we have such a morphism
X — T for the image T of the Albanese morphism. Thus, we may assume that
H'(X,0x) =0. Then the canonical exact sequence

O%OX*)OX(D)*)O)((D)(@ODZOD*)O

induces a surjection H°(X,Ox (D)) — H°(D,Op) ~ C, and the linear system |D|
is a base point free pencil. Hence, D is contracted to a point by the morphism
X — P! associated with the pencil. Thus, we are done. (I

Lemma 2.30. Let X be a normal Moishezon surface and D a non-zero reduced
divisor on X such that D C X,eq and D is a simple normal crossing divisor forming
a linear chain of rational curves. If each prime component of D is a negative curve
and if D is not negative semi-definite, then there is a P'-fibration 7: X — T ~ P!
such that 7=1(t) is a linear chain of rational curves contained in D for somet € T.
If a prime component C' of D satisfies C ¢ 7= 1(t) and CNw=1(t) # 0, then C is
a section of .

Proof. Let D = Dy + -+ D,, be a prime decomposition of D with a dual graph
D, D, D,

First, we shall prove the following assertion (@) by induction on n = n(D):

(*) There exist integers 1 < a < b < n such that (a,b) # (1,n) and that
Z?:a D; is not negative definite but negative semi-definite.

Since D is not negative semi-definite, we have n > 3 and D,, is a (—1)-curve for
some 1 < p < n by Lemma2l Let ¢: X — X be the contraction morphism of D,,.
Then D := ¢,(D) is a simple normal crossing divisor on X expressed as a linear
chain Dy + - - -+ D,,_; of rational curve, where

. JeDi), ifi<p;
" eDig), ifi>p.
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Assume that n = 3. Then p = 2, and either D. = 0 or Do = 0 by Lemma 23]
since D is not negative semi-definite. Thus, either D; + Dy or Dy + D3 is not
negative definite but negative semi-definite. Hence (@) holds when n = 3. Assume
that n > 3. By induction, we. have integers 1 < @’ < b < m — 1 such that
(a',b') # (1,n — 1) and that Zz o+ Di is not negative definite but negative semi-
definite. Now, there exist integers 1 < a < b < n such that (a,b) # (1,n) and that
©* (Zf/:a, D;) = Zi.):a D;. Thus, (@) holds for any n.

By (@), we have a non-zero effective divisor G on X such that Gyeq = Z?:a D
and that GD; = 0 for any a < i < b. By applying Lemma 229 to G, we have a P'-
fibration 7: X — T such that G = mn*(¢) for a point ¢ € T and an integer m > 0.
We may assume that m = 1 by replacing G. Then multp, G = multp, G = 1 by
Lemma Let C be a prime component of D such that C ¢ G and C NG # 0.
Then C' = D,_1 with a # 1 or C' = Dy with b # n, and we have

CD,=1, ifC=D, 1,

Cr*(t) = CG =
CDy=1, ifC = Dy1.

Thus, C is a section of w, and T ~ P!, (I

Corollary 2.31. In the situation of Lemma Z3\2), if M C Xieg for a normal
Moishezon surface X, then X is a projective rational surface and there exists a
P'-fibration m: X — T ~ P! with a point t € T, such that

(1) 771(8) = iqsr Di+C + G+ Go,

(2) D, is a double section of w,

(3) (X/T,D,,n~1(t)) is a standard PDS configuration,

for the integer 1 < a < | in Lemma Z3I@). In particular, (X /T, w (D ),ﬁ_l(t)) is
a basic PDS configuration for the contraction morphism w: X — X ofz D;

and for the induced P'-fibration 7: X — T such that 1 = T o w.

1=a+1

Proof. The morphism ¢ o ¢: M — N in the proof of Lemma [Z3|[2) extends to a
blmeromorphlc morphism ¢: X — Y to a normal Moishezon surface Y such that
N c Yieg and that ¢ is an isomorphism over Y’ \ E for E = gp*(zl 1 D;). Prime
divisors C and G for j =1, 2 on N defined in the proof of Lemma [Z3I[2]) are
regarded as prime divisors ¢(C') and ¢(G;) on Y, respectively, and similarly, every
prime component of Eis expressed as ¢(D;) for some 1 < ¢ <. The following hold
by the proof of Lemma 2.3/2):

(4) E+C+Gi+ Gy C Yiey;

(5) Cisa (— 1) -curve, and éj is a (—=2)-curve for j =1, 2;

6) o (C+ G +Go) =31 oi1 Di+C + G+ Ga;

(7) D, is the proper transform in X of the end component Ek of E such that
EC = 1;
By (@) and by Lemma[2Z29 applied to the linear chain C —i—CA}’l —&-62 of rational curves
on Y, there is a P'-fibration my : Y — T to a non-singular projective curve 1" such
that 73 (t) = 2C + Gy + Gy for a point ¢t € T. Then E’k is a double section of 7y
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by ([@). In particular, T~ P!, and (Y/T, Ek,ﬁ{,l(t)) is a basic PDS configuration.
The composite 7 := 70 p: X — T ~ P! is also a P!-fibration, where

) = e (7)) =+ Gr+ G =

z=a+1Di+C+G1+G2

by (@). Thus, X is projective and rational (cf. [I8, Prop. 2.33(1)]), and (D) holds.
Moreover, we have (@) and (@) by (7). The last assertion for X is deduced from
the proof of Proposition ZZTI[) or from the following argument: By construction,
there is a bimeromorphic morphism v: X — Y such that ¢ = yow and that the ~-
exceptional locus is contained in w, (Zf;zl D;). In particular v is an isomorphism
over an open neighborhood of ¢ in 7. Thus, (X/T,w(D,),7 %(t)) is basic as

(Y/T, Ek,ﬂ;l(t)) is s0. Thus, we are done. O

3. ON PSEUDO-TORIC SURFACES

Let (X,S) be a pseudo-toric surface in the sense of [I8, Def. 6.1]. Then, by
definition and by [I8 Lem. 6.3],

e X is a normal projective rational surface with only rational singularities,

e S is a cyclic chain of rational curves and is big,

e (X,9) is log-canonical with Kx + S ~ 0.
The defect §(X,S) := p(X) + 2 — n(S) is always non-negative for any pseudo-
toric surface (X,S) by [18, Prop. 6.4], in which §(X,S) = 0 if and only if (X, 5)
is a toric surface. In Section Bl we discuss several properties of a pseudo-toric
surface admitting a fibration to P'. We shall study the universal cover of the open
subset X,eg \ (S — B) for a prime component B of S under some condition in
Section As applications, in Section [3.3], we shall prove Theorems [B.13] and [3.14]
on endomorphisms and toric surfaces.

3.1. Pseudo-toric surfaces with a fibration. We shall prove some results on
pseudo-toric surfaces admitting fibrations to P! by applying results in [18].

Lemma 3.1. Let (Y,X) be a pseudo-toric surface with a fibration 7: Y — T ~ PL.
Assume that ¥ contains two set-theoretic fibers D1 = w=1(t1) and Dy = 7 1(t2).
Then:

(1) 7 is a P1-fibration and ¥ = ©1+Oa+ D1+ Do for mutually disjoint sections
©1 and O3 of ;

(2) for any point o € T \ {t1,t2}, the fiber F, = 7*(0) is reduced, (Y,% + F,)
1s log-canonical, and ©1 + F, + O is a linear chain of rational curves with
end components ©1 and O, where F, intersects ©1 4+ Oo transversely.

Moreover, the following hold for the reducible fibers G1, G2, ..., Gy of m over
T \ {th tQ}:

(3) The equality 6(Y,X) = ZZ:1("(Gk) — 1) holds.

(4) For each 1 < k < b, let Gy 1) be the end component of Gy intersecting
©1. Then there is a birational morphism ¢: Y — Y to a normal projective
surface Y such that the exceptional locus of ¢ equals ZZ:1(G1€ - Gr,1))
and that (Y, %) is a toric surface for ¥ = ¢, 3.
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(5) In @), let #: Y — T be the induced P-fibration such that ® = 7o ¢. Then
7:(Y,%) = (T,t1 + t2) is a toric morphism (cf. [I8, §3.1], [19, Def. 4.5]).

Proof. Assertion (1)) follows from [I8, Lem. 5.2]. We have [@]) as a consequence of
[18, Lem. 5.4], but here we present another proof applying Proposition We
set Gy := (Fp)red- Since Ky + X ~ 0, by () and Proposition 210 G, is a linear
chain of rational curves, (Y, X+ G,) is log-canonical, Ky + ¥+ G, ~ G, is Cartier,
and

Oy (Ky +YX+G,)® O¢, ~ Oy (G,) ® O¢, ~Ogq,.

By the vanishing R'7,Oy = 0 (cf. Remark 29) and by the exact sequence
0— Oy = Oy (G,) = Oy(G,) ® Og, — 0,

we have an isomorphism 7*(7,.Oy (G,)) = Oy (G,). Tt implies that G, = F,, i.e.,
F, is reduced. Then, ©,F, =1 for j =1, 2. Since (Y,0; + F,) is log-canonical, it
is toroidal at ©; N F, (cf. [19, Fact 2.5]), and we have ©; N F, C Yiee. Thus, F,
intersects ©1 + Oa transversely. Moreover, ©; is an end component of the linear
chain ©1 4+ F, + ©5. In fact, any prime component I' of F, intersects exactly two
prime components of ©1 + F, + ©3 —I' by [I8, Prop. 3.29], since (Y, 0; + F, + ©2)
is log-canonical, Ky + ©1 + F, + O4 is Cartier, and

(Ky + 01 + F, + ©,)I = (F, — D; — D,)[ = 0.

Thus, (@) has been proved. The equality in [B)) is derived from an equality
b
p(Y) =2=(n(D1) = 1)+ (n(D2) = 1) + > (n(Gi) — 1)

obtained by [I8, Prop. 2.32(7)]. Since GT := ZZ=1(Gk — G, (1)) is negative definite,
we have the contraction morphism ¢: Y — Y of GT. Then (Y,¥) is a pseudo-toric
surface by [I8, Lem. 6.3(7)], and its defect is 0 by (3] applied to 7: Y — T. Thus,
(Y,X) is a toric surface and 7 is a toric morphism (Y,X) — (T,t; + t2) by [I8,
Prop. 5.3(3)]. This proves ) and (&), and we are done. O

Proposition 3.2. Let X be a normal projective surface with two points Py, P> and
let S1 and S5 be reduced divisors satisfying the following conditions:
(i) S1 NSy ={Py, P2} and (X, S + S2) is log-canonical at Sy N Sa;
(i) —(Kx + 1 + 5) is nef;
(iii) there exist effective Cartier divisors By and By satisfying Supp By C S,
Supsz C SQ, {Pl,PQ} = SuppB1 n SuppBg, and B1 ~ BQ.
Then Sy and Sy are linear chains of rational curves, and (X, S1+ S2) is a pseudo-
toric surface. Moreover, there exist a toroidal blowing up p: Y — X with respect
to (X,S1 + S2) and a Pl-fibration m: Y — T =~ P' such that
o (Y,X) is a pseudo-toric surface for ¥ = u=(S; + Ss),
e §(YV,X) =0(X,51+52),
e the proper transforms D1 and Do in'Y of S1 and Ss, respectively, are
mutually distinct set-theoretic fibers of ,
e =014 05+4 Dy + D> for two mutually disjoint sections ©1 and O2 of 7.
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Proof. For 1 <i,j <2, there exist a unique prime component S; (; of S; containing
Pj, and (X, Sy (j)+S2,(j)) is toroidal at P;, by () and [19, Fact. 2.5]. Let pt: YT —
X be the blowing up along the scheme-theoretic intersection By N By for effective
divisors B; and By in ({), and let u*: Y — YT be the normalization. Then, as in
the proof of [I8, Lem. 4.23], the composite u = pfou*: Y — X is a toroidal blowing
up with respect to (X, Sy ;) + Sa,¢j)) at P; for j = 1, 2. Then, for the reduced
divisor ¥ = p~1(S1 + S2), the pair (V,3) is log-canonical along the u-exceptional
locus pu~1{P;, P>}, and

(Hl—l) Ky—FZ:/L*(Kx—FSl +SQ)

(cf. [I8, Def. 4.19]). The surface YT is just the graph of the rational map X ---— P!
associated with the pencil generated by By and By. Let m: Y — T be a fibration
obtained as the Stein factorization of the composite of uf and the projection Y —
P'. Then any pu-exceptional divisor dominates T, since its image in YT is not a
point. By construction, there exist a p-exceptional Cartier divisor Z on Y and
effective divisors ¢; and eg on T such that

p (B1) —E=m"¢;, wp"(Bz)—E=m"ea, and Suppe; N Suppes = 0.

We set D; := 7*(¢;)req for i = 1, 2. Then ¥ = Zeq + D1 + Do, p=1S; = D; + Zreq
for i« = 1, 2, and moreover, —(Ky + X) is nef by () and ([II-I). Hence, 7 is a
P!-fibration by Ky F < —XF < 0 for a general fiber F of 7. Thus, Z,eq = ©1 + 05
for two sections ©; and Oy of 7 such that ©; = p~(P;) for j = 1, 2. Since p
is a toroidal blowing up, we have ©; ~ @y ~ T ~ P! In particular, Y and X
are rational surfaces. Moreover, Suppe; consists of a point t; and D; = 7 1(¢;)
for i = 1, 2, since ©; N D; consists of one point lying over P; for 1 < 4,5 < 2.
Consequently, D; is the proper transform of S; in Y for ¢ =1, 2.

We shall show that (Y, X) is a pseudo-toric surface. Since (Y, X) is log-canonical
along pu={ P, P}, (Y,0; + D; + Os) is also log-canonical along D; N (01 + ©3)
for any 1 < 4 < 2. Thus, the following hold for any 7, by Proposition 2Tl since
—(Ky + X) is nef:

e D, is a linear chain of rational curves;

e (Y,0; + D, + ©5) is log-canonical along D;;

e (Ky 4+ 01+ D; + 05)I" = 0 for any prime component I of D;.
Consequently, (Y, X)) is log-canonical along ¥ and (Ky + X)IY = 0 for any prime
component IV of ¥. Then Y has only rational singularities, (Y, X) is log-canonical,
¥ is a cyclic chain of rational curves, and Ky + % ~ 0 by (i) and by [I8, Lem. 4.7]
with its remark. Therefore, (Y, ) is a pseudo-toric surface (cf. [I8] Def. 6.1]).

As a consequence, (XS] 4+ S3) is a pseudo-toric surface by [I8, Lem. 6.3(7)].
Here, S; = p.D; is a linear chain of rational curves for ¢ = 1, 2. Moreover,

O(Y, %) = 0(X, 51+ 52) = p(Y) — p(X) — (n(X) —n(S + 52)) =0,
since the p-exceptional divisor ©; + O is contained in ¥. Thus, we are done. [

Corollary 3.3. In Proposition B2, let G1, G, ..., Gy be the reducible fibers of w
different from Dy and Ds.
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(1) If n(Gy) > 3 for some 1 < k < b, then there is a negative curve C' on X
such that C' N (S1 4+ S3) = 0.

(2) If b >3 orif b =2 and one of Sy and Sy is reducible, then there is an index
J € {1,2} such that C NSy = C NSy = {P;} for at least b — 1 negative
curves C on X.

(3) For any 1 < j < 2, assume that C? > 0 for any prime divisor C on X
satisfying C NSy = C NSy C {P;}. Then §(X,S51 + S2) < 2, and if the
equality holds, then X has no negative curve, p(X) = 2, and there exist
two P -fibrations X — P! in which S1 and So are sections.

Proof. ([@): In this case, a non-end component of the linear chain Gy is a negative
curve not intersecting ¥ = p~1(S; + So). It is enough to take C as its image under
w'Y — X.

@): For 1 <k <bandforl<j<2 let ka(j) be the end component of the
linear chain G intersecting ©; (cf. Lemma B.I(2). Then Ty ;) := u(Gy ;) is a
prime divisor on X such that

Li,y NS =T 5y N S2 = {P}}

for any 1 < k,j <2. If T'y (1) is a negative curve for any 1 <k < b, then () holds
for P;. Thus, we may assume that I'; (1) is not negative.

Note that T'j o) N Ty (1) = 0 for any 2 < k < b. Hence, 2222 [k, (2) is negative
semi-definite by the Hodge index theorem. In particular, if b > 3, then (I‘k7(2))2 <0
for any 2 < k < b, since ZZ:z [ (2) is connected and reducible. More directly, if
(T'1,1))? > 0, then (T (2))? < 0 for any 2 < k < b by the Hodge index theorem. If
S; is reducible for some ¢ € {1,2}, then

Lh2) N (1) + Sia)) =0

for any 2 < k < b and for the end component S; (1 of the linear chain S; containing
Py; thus, (T'j,2))? < 0 by the Hodge index theorem, since I'y (1) + S; (1) is big.
Therefore, (@) is satisfied by negative curves I'y, (o) for 2 < k < b if (Fl’(l))z > 0,
b > 3, or if S; is reducible for some ¢ € {1,2}. This proves ().

@): Under the assumption, when b > 0, we have the following by (), (), and
their proofs:
n(Gy) =2 for any 1 < k < b;
e h <2
° (Fk,(j))2:Oforany1§k§band1§j§2;
e if b =2, then S; and S, are irreducible.
In particular, §(X, S1+S2) = §(Y, %) = b < 2 by LemmaBI[3) and Proposition 3.2l
Assume that b = 2. Then p(X) = n(S; + S2) + 6(X,S1 + S2) —2 = 2. Since
—Kx is big, I'y (;) is semi-ample by [20, Prop. 1.5]. Thus, we have fibrations ¢,
©2: X — P! such that I'y,(1) and Ty (o) are set-theoretic fibers of ¢ and that I'y (o)
and I'y (1) are set-theoretic fibers of 3. Then NE(X) = Rxqcl(®1) + Rxgcl(®2)
for a general fiber ®; of ¢; for [ = 1, 2. In particular, X has no negative curve,

and every fiber of ¢ is irreducible for [ = 1, 2. Since Kx + 51 + S2 ~ 0, ¢; is a
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P!-fibration with S; and Sy as sections for [ = 1, 2. Thus, (@) holds, and we are
done. O

3.2. Universal covers of some open subsets of a pseudo-toric surface. For
the pseudo-toric surface (Y,X) (resp. (X,S1 + S2)) in Lemma Bl (resp. Proposi-
tion3.2)), the fundamental group of the open subset Yieg \ (X — Da) (resp. Xyeg \S1)
is shown to be finite and cyclic under some extra condition in Proposition 3.7
(resp. B.9) below. Furthermore, the universal cover of the open subset extends to
a cyclic cover to Y (resp. X) from another pseudo-toric surface, on which we shall
study some properties. The properties on negative curves in Proposition [3.9] below
concern our first crucial idea explained in the introduction.

Lemma 3.4. For a pseudo-toric surface (X,5S), let v: X 5 X bea finite cover
from a normal projective surface X which is étale in codimension 1 over X \ S.
Then (X, S) is a pseudo-toric surface for S =v=18S.

Proof. Now, K¢ + S = 1" (Kx +S) ~ 0 by [19 Lem. 1.39], and (X, 5) is log-
canonical by [19, Lem. 2.10(1)]. The divisor § = v~1§ is big, and each connected
component of S is either an elliptic curve or a cyclic chain of rational curves by
[18, Cor. 4.6]. If S is disconnected, then a connected component of S is negative
definite by the Hodge index theorem, since S is big. Hence, if v is Galois, then S is
connected, and it is a cyclic chain of rational curves, since it covers S. Even if v is
not Galois, by considering the Galois closure of v, we see that Sis also a cyclic chain
of rational curves. Hence, ()?, §) is a pseudo-toric surface by [I8, Rem. 6.2]. O

We have the following by Grauert—Remmert’s extension theorem (cf. [6], [7, XII,
Thm. 5.4]):

Lemma 3.5. Let X be a normal variety with a non-empty Zariski-open subset U.
Then, for a finite étale cover U' — U from another normal variety U’, there exist
a finite cover v: X' — X from a normal variety X' such that v='U ~ U’ over U,
and furthermore, such an extension v is unique up to isomorphism over X.

Remark 3.6. By the uniqueness of the extension v, the category of complex analytic
spaces finite étale over U is equivalent to the category of normal complex analytic
spaces finite over X and étale over U. In particular, if the cover U’ — U is Galois,
then the extension v is also Galois with the same Galois group.

Convention. A finite surjective morphism v: X’ — X of normal varieties is said
to giving a universal cover over U for a non-empty Zariski-open subset U C Xjeg
if v7'U — U is a universal covering map of U, i.e., v is étale over U and v~ 'U is
simply connected.

Proposition 3.7. In Lemma Bl assume that §(Y,X) > 0 and that the fiber
Dy = w=Y(ta) is irreducible. We set U := Yyeg \ (X — D2) and do := mult p, 7*(t2).
Then:

(1) The fundamental group 71 (U) is finite and cyclic, and its order is a multiple

Of dg.
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(2) There is a pseudo-toric surface (Y, %) with a cyclic cover v: Y —'Y such
that © = v7I%, 8§(Y,%) = da8(Y, %), and that v gives a universal cover
over U.
For the cyclic cover v, let 7: Y = T ~P! be q P! -fibration with a finite surjective
morphism T — T obtained as the Stein factorization of mov: Y = T. Then:

(3) The finite morphism T—Tisa cyclic cover of degree do branched only at
t1 and to. In particular, l~)1 =v~ 1Dy and 132 = v~1D, are set-theoretic
fibers of w. Here, 52 is a smooth fiber of 7.

(4) The number of reducible fibers of T different from D is equal to dab.

(5) A reducible fiber of T different from D, is a connected component of v~ Gy,
for some 1 <k <b, and n(G}) equals the number of prime components of
the reducible fiber.

Proof. We shall prove by the following five steps.

Step 1. We shall show that 71 (U) is a cyclic group. Let N be the group of 1-
parameter subgroups of the toric surface (Y,Y) in Lemma BIE) and let A be
the fan defining Y, ie., Y = Tn(A) (cf. [18, §3.1], [19, §4.1]). For the birational
morphism ¢: Y — Y, the divisor Dy = ¢(Ds) is a prime component of the boundary
divisor ¥, and it corresponds to a 1-dimensional cone R € A. Then U := Y \(X—D>)
is the open affine toric surface Ty(R) associated with R. Hence, U ~ C x C*,
and m(U) ~ Z. Since ¢ ' (U) ~ U and ¢~ '(U) C U, we have a surjection
Z~m1(U) = w1 (U). As a consequence, w1 (U) is cyclic.

Step 2 (Extension of a finite étale cover over U). Let U — U be a finite étale cover
from a (connected) surface U. Thisis a cyclic cover by Step [ By Lemma [B.0]
there exists uniquely up to isomorphism over Y a cyclic cover v: Y - Y from a
normal projective surface Y such that #~U ~ U over U. Since Y \XcU, (Y E)
is a pseudo-toric surface for S = 07ly by Lemma 3.4l By Stein factorization,
Tob =fo# for a fibration #: Y — T and a finite morphism 7: T — T, where
T ~ P! as Y is rational. By applying Lemma BI(I) to #: (Y,S) — T, we see that
# is a P!-fibration and that the following hold for ©; := #~16; and D; := 0~ D;
for any 4, j € {1,2}:
(1) @j is a section of 7;

(i) there is a point #; € T such that #~1(¢;) = {#;} and D; = #71(%).
Moreover, for any fiber Fof#over T \ {t1,%2}, we see that

(iii) F is reduced,

(iv) F is a lincar chain of rational curves intersecting O1 + 60, transversely,
by applying Lemma BII2) to #: (}7, i) —T.
Step 3. We shall prove the following lemma concerning Step

Lemma 3.8. In the situation of Step B, if do = 1, then the following hold, where
Gr=0"1Gy for 1 <k <b:

(a) Ds is a smooth fiber of m;

(b) 7 is an isomorphism;



39

t)

(c) = (deg V)@ for any j =1 and 2;

(d) # is smooth outside Dy + Zk G
) =n(Gy) forany 1 <k < b, and I(Y,X)=46(Y,%);
)

(e ) =
) is finite.

(f
Proof of Lemma B8 We have (@) by [18, Prop. 2.33(4)], since multp, 7*(t2) =
dy = 1. If deg7 > 1, then 7 is branched at ¢35 and © is branched along Dy by
Step BI), but it contradicts the étaleness of & over U D Dy NU # (. This shows
(B). Furthermore, (b)) and Step i) imply (@). Remaining assertions are shown as
follows:

(d): The étaleness of ¥ over U implies that #*(fy) = #*Ds is reduced, i.e
D*Dy = 1327 and that the induced morphism

ﬁg\(élUég)—>D2ﬁU=D2\(@1U@2)EC

S

0,
(G
m (U

is étale. Hence, 52 is irreducible, since (:)1 + 52 + @2 is a linear chain of rational
curves as a part of 3. Therefore, Dy is a smooth fiber of # by [18, Prop. 2.33(4)].
For the rest, by Step RYim) and [18, Prop. 2.33(4)], it suffices to prove that t any fiber
F of # over T\ {t1,t2} different from Gl, .. Gb is irreducible. Here, F=0'F
for a smooth fiber F' of 7 over T'\ {t1,t2}. By the same argument as above for Ds,
we see that the induced morphism

F\(01UBy) 5 FNU=F)\ (0;UB,) ~C*

is étale. Hence, F is irreducible by Step 2Iivl). Thus, (dl) holds.

@): By (), Gi, ..., Gy are the reducible fibers of # over T'\ {f;}. Thus, the
latter equality of (& ) on 8(Y,3) is derived from the first equalities on n(G}) by
Lemma BIB) applied to 7 and #. In order to prove n(G;c) = n(Gy), we set

A= Sing Gk, K = Sing @k, Q= Gk n (@1 U @2), ﬁ = @k N (@1 U ég)

Note that ©;4+G+05 and =1 (01 +Gj,+0,) = O, 4G, +O, are both linear chains
of rational curves by Lemma BII[2) (cf. Step RIM)). In particular, #A = n(Gg)+1
and #/A\ = n(ak) + 1. The cyclic cover © is étale over an open neighborhood of
Gr\ (AUQ), and Gy \ (AU Q) consists of n(Gy) connected components which
are all isomorphic to C*. Thus, 771Q = Q and 7 induces a bijection 0 —Q In
particular, an end component of G}, satisfies the following condition ([{]) for prime
components I' of Gj:

(0) [ = *T is a prime component of G and the cyclic cover T — I induced
by ¥ is étale over I'\ (QUA) =~ C*.
If a prime component I satisfies ({]), then any prime component intersecting I" also
satisfies (Q]), since #~1(01 + G+ ©O2) is a linear chain of rational curves. Therefore,
(€] holds for any prime component I" of G}.. In particular, A= p~1A, and ¥ induces
a bijection A — A. Hence, n(Gy) = n(Gy), and (@) holds.

[@: In the proof of (@), (Y,P) is at most a cyclic quotient singularity for any
point P € A. Thus, there is a connected open neighborhood & of P in Y such
that the fundamental group 71 (U \ {P}) is finite. Here, we may assume that 7 is
étale over U \ {P} and that 7=/ \ {P}) = #71U \ {P} is connected for a point
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Pel lying over P, since A—Alis bijective. This shows that, for any surjection
71 (U) = G to a finite group G, the composite w1 (U \ {P}) — =1 (U) — G is also
surjective. Hence, 71 (U) is finite, since 71 (U) is cyclic (cf. Step [l), and its order
is divisible by the order of the cyclic quotient singularity (Y, P) for P € A. Thus,
Lemma [3.8 has been proved. O

Step 4 (Toward reduction to the case: da = 1). Assume that do > 1 and let
7:T' ~P' — T be a cyclic cover of degree dy branched at t; and t5. Let t, € T’
be the inverse image of t; for ¢ = 1, 2. For the normalization Y’ of Y xp T”, let
n:Y' =Y and 7’: Y’ — T’ be morphisms induced by projections which make a
commutative diagram:

y — 15 v

~| |~

T

77— T.
We set D! :=n~tD; = 7#'~1(t}) for i = 1, 2. Since 7*(t2) = d2 Dy and since (Y, D3)
is 1-log-terminal along D,

e 7' is smooth along D} = 7'*(t5), and
° 77*1U — U is an étale cover of degree ds

by Lemma In particular, we have a surjection m1(U) — Z/d2Z. On the
other hand, (Y’,%’) is a pseudo-toric surface for ¥’ = 7~ by Lemma 3.4 We
set © :=n~'0; for j =1, 2. Then X' = O] + 04 + D} + Dj, and @) and O} are
mutually disjoint sections of 77’ by Lemma BII[). Since 7 is étale over T\ {t1, %2},
for any 1 < k < b, n*Gy is the disjoint union of reducible fibers of 7’ lying over
G, and each fiber of 7’ in n*G}, is isomorphic to Gy by 7. Hence, the number of
reducible fibers of 7’ different from D] equals dab, and

(IT1-2) S(Y',S) = dy8(Y,%) >0

by Lemma BII@). Therefore, (Y',%), «’: Y’ — T’, and D) satisfy the same
assumptions in Proposition B required for (YV,X), 7: Y — T, and Ds, where
mult p, 7'*(th) = 1. Here, the open subset U’ := Y., \ (X' — Dj) contains 5~ 'U, and
the complement U’ \ 71U is a finite set contained in n~! Sing Y. Thus, m;(U’) ~
T (7771 U) .

Step 5 (Final step). We shall prove ([I)-() of Proposition B7l The fundamental
group m1(U’) of the open subset U’ C Y’ in Step M is finite by Lemma B8|[f) in
Step Bl Since w1 (n~'U) ~ m(U’) is isomorphic to the kernel of the surjection
71(U) — Z/doZ, we have (@) by Step[Il The universal covering map of U’ extends
to a cyclic cover Y — Y’ as in Step Bl and the composite v: Y — Y’ — Y
gives a universal cover over U. Hence, (2)) holds by Step [ except the equality
8(Y,%) = dy6(Y,¥), which is shown by ([I=2) in Step H and by Lemma B3i@)
applied to Y’. By StepH] the finite morphism T — T in Proposition B1is identified
with the morphism 7: 77 — T, and we have (3], except the smoothness of 7 along
D,, which is verified by Lemma BR|[d). The remaining assertions (@) and (B are
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shown by Step @ and by (b)) and (d)) of Lemma [3.8 applied to Y’ and to the cyclic
cover Y — Y’. Thus, we have finished the proof of Proposition B.71 O

Proposition 3.9. In Proposition B2, assume that §( X, S1 + S2) > 0 and that So
is irreducible. Then the following hold for U := X,eg \ S1 and dy := multp, 7 (t2),
where m: Y — T is the P'-fibration in Proposition B.2), and Do is a set-theoretic
fiber m=1(t2) identified with the proper transform of Sy in Y:

(1) The fundamental group w1(U) is finite and cyclic. In particular, there is
a finite cyclic cover v: XX from a mormal projective surface X which
gives a universal cover over U.

(2) For the cover v in @), (X, (Sy + S3)) is a pseudo-toric surface and

(X, v (S1 + 52)) = dad(X, S, + S5).

(3) If 0(X,S1 + S2) = do = 1, then there exist two prime divisors By and Bs
such that (X,S1 + B1 + Bs) is a toric surface.
(4) If 8(X,S1 + S2) > 0 and if da > 1, then one of the following holds:
(a) There is a negative curve C on X such that C ¢ (S + S2).
(b) There is a point P € v=(S1NSs) and exist at least two negative curves
C such that

Cnv 'S =Cnv 'S, = {P}.
(¢) There is no negative curve on X, pX X)=dy =2, 6(X,51 + %) =1,

and there exist two P'-fibrations X — P! in both of which v=1S; and
v~=18y are sections.

Proof. ([{): The assertion on 71 (U) follows from Proposition B[] applied to the
open subset Uy := Yieg \ (X — Ds), since p is an isomorphism outside S NSy and
it induces an isomorphism Uy ~ U. The rest follows from Lemma [3.5]

([@): Note that (X, S; +52) and (Y, X) are pseudo-toric surfaces with §(X, 51 +
S,) = 8(Y, %) by Proposition32 Weset S; = v~15; for i = 1, 2. Then (X, 5;+55)
is a pseudo toric surface by Lemma [3.4] since v is étale over U D Xyeq \ (S1uU 52)
Let Y be the normalization of X Xx Y and let vy : Y — Y and i Y — X be
induced morphisms, which make a commutative diagram:

y 5 X
|l

v 2 X
We set 3 = vy 'Y = fi1(S1 4 S3). Then (Y,X) is a pseudo-toric surface and
d(Y,X) = d2d(Y, ) by Lemma B4 and Proposition B7([), since vy is étale over
Uy D Yieg \ . On the other hand,

8(Y, ) = 8(X, 51+ 5) = p(Y) = p(X) = (n(E) — n(S)) - n(S,)) =0

since the fi-exceptional locus is contained in 5. This shows @.

@): By 8(Y,%X) = §(X, S +S2) = 1 and by Lemma BII@]), there is a unique
reducible fiber G of 7 different from D; and Ds such that n(G) = 2. Here, G is
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reduced and is a linear chain G(1) + G 2) of rational curves, where ;) is the prime
component intersecting the section ©; C X for j = 1, 2, by Lemma B.I([). On the
other hand, D5 is irreducible as the proper transform of Ss, and 7*(t2) = Dy by
dy = 1. Thus, D5 is a smooth fiber of = (cf. [I8, Prop. 2.33(4)]). Hence, G ~ Do,
and Ky + X! ~ 0 for

»t =X =Dy+G=01+02+ G+ G+ Di.

Then (Y, Sg,) is a toric surface by [26] Thm. 6.4] (cf. [I8, Thm. 1.1]), since (Y, Sg/)
is log-canonical (cf. Lemma BI}2)) and since n(Sg/) =n(Sy)+1=pY)+2
Thus, (X, S%) is also a toric surface for S* := M*Sg, by [18] Lem. 3.9], since the u-
exceptional divisor ©1405 is contained in Sg/. Therefore, @3] holds for B; = u(G;))
for j =1, 2.

@): Let Gal(v) be the Galois group of the cyclic cover v: X — X. Assume that
there is a negative curve Con X satisfying

(I11-3) CN(S+8y) =0

Then the transform o(C) is also a negative curve satisfying ([I3) for any o €
Gal(v), and the image C = v(C) in X satisfies C' N (S; + S2) = 0}, since we have

1/71(0) - ZJGGal(v) U(5>

Thus, C is a negative curve by the Hodge index theorem as S; + Sy is big, and as
a consequence, ({al) holds in this case.
Assume next that there is a negative curve C' on X satisfying

(I11-4) CNS =CnNS,={P}

for some j € {1,2}. Then the transform o(C) is also a negative curve satisfying
([@I=4) for any o € Gal(v). If o(C) # C for some ¢ € Gal(v), then (@R) holds. If
o(C) = C for any o € Gal(v), then C' = v~1C for a negative curve C' on X such
that C'NS; = C NSy = {P;}; thus, () holds.

As the Stein factorization of 7 o vy : Y — T, we have a P'-fibration 7: Y —
T ~ P! and a finite morphism T—T (cf. Lemma B.T]). By the observation above
on negative curves on X and by Corollary B3@) applied to (X S1,8s, Y —
X,7:Y — T) instead of (X, 51, 82,11 Y = X,m: Y = T), we see that if (a)) and
(@L) do not hold, then 8(X, S, +52) = d20(X, 51 + 52) = 2 (cf. @), p(X) = 2,
and there exist two P!-fibrations X — P! in both of which §1 and 52 are sections;
in particular, do = 2, §(X, 51 +S2) = 1, and ({@d) holds. Thus, we are done. O

3.3. Applications to endomorphisms. We shall prove Theorems B.I3] and B.14]
below on endomorphisms and toric surfaces by applying results in Section

Lemma 3.10. Let f be a surjective endomorphism of a normal projective surface
X and let S be an f-completely invariant divisor, where S is allowed to be zero.
Assume that the fundamental group of the open subset U := Xyeq \ S s ﬁmte Let
vi X = X be a finite surjective morphism from a normal projective surface X which
gives a universal cover over U. Then there is an endomorphism f X — X such
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that vo f = fow. In particular, deg f = deg f, and Sf = v~ 18} for characteristic
completely invariant divisors S¢ and Sy (cf. [20, Def. 2.16]).

Proof. Since f is finite and f~'S = S, there is a finite subset £ C X,o such
that X,eg N f71U = U\ E. Let X’ be the normalization of the fiber product X x x X
of v and f over X, and consider the induced commutative diagram

X - . X

| |-
x . x

where p and ¢ are finite morphisms and q is étale over f~'U. Then g is étale over
U, since Z is finite. In particular, we have a finite morphism v~1U — ¢~'U over U
from the universal cover v~ 1U of U, and it extends to a finite morphism &: XX
over X by Remark BBl We set f :=po&: X — X. Then vo f= fov. It implies
that deg f = deg f, and moreover, we have S§= v~1S; by [20, Lem. 2.19(3)]. O

Proposition 3.11. Let X be a normal projective surface admitting a non-isomor-
phic surjective endomorphism f and let B be an effective divisor on X such that
(i) Kx+ Sf+ B ~0,
(ii) #SfNSupp B =2,
(iii) (X,Sf+ B) is log-canonical along Sy N Supp B,
(iv) mB ~ D for a positive integer m and an effective Cartier divisor D such
that Supp D C Sy and Supp D N Supp B = S N Supp B.

Then (X, Sy + B) is a pseudo-toric surface. Moreover, if

(v) Sy is reducible with n(Sy) > p(X)
in addition, then there is a reduced divisor B' such that n(B’) < 2 and that (X, B’ +
S¢) ts a toric surface.

Proof. Note that B # 0 by [l), and Kx + Sy o 0 by (). Since Sy contains all the
negative curves on X (cf. [20, Prop. 2.20(3)]), every prime component of B is nef by
@@, and —(Kx + S+ Breda) = —(Kx + S5+ B)+ (B — Brea) is also nef by ({). Thus,
the required conditions of Proposition are satisfied for S; = Sy and Sy = Byed,
by (), (@), and (). As a consequence of Proposition B2} (X,Sf + Byed) is a
pseudo-toric surface. In particular, Kx + St 4+ Breq ~ 0, and we have B = B,¢q by
(@{). This proves the first assertion.

For the rest, assume ([@). By Shokurov’s criterion for toric surfaces [26, Thm. 6.4]
(cf. [I8, Thm. 1.3]), we have

0<8(X, S+ B) = p(X) +2 — n(Sy) — n(B) <2 n(B),

where the equality 6 (X, Sy+B) = 0 holds if and only if (X, S;+B) is a toric surface.
If B is reducible, then n(B) = 2, §(X,S; + B) = 0, and hence, (X,Sf + B) is a
toric surface. Thus, we may assume that B is irreducible and (X, Sy + B) = 1.
We can apply Proposition B9 to X, S; = Sy, and Sy = B. If the number ds
in Proposition is equal to 1, then (X, Sy + B’) is a toric surface for a reduced
divisor B’ with n(B’) = 2 by Proposition B9B]). In case dy > 1, we shall derive a
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contradiction as follows: Let v: X — X be the finite cyclic cover giving a universal
cover over U = X,¢g \ Sf (cf. Proposition B9|(l)). Then we have a non-isomorphic
surjective endomorphism f: X — X such that vo f = fov by Lemma [B.10, where
Sy =Sy (resp. v718; = v = S7) contains all the negative curves on X (resp.
X). Since S + is reducible, no case of Proposition B9IH) does not hold. This is a

contradiction. Thus, we are done. [l

Remark. By applying results on Section [5.3] we can weaken the condition (@) to
(v') n(Sy) = p(X).

In fact, it is enough to consider the case where Sy is irreducible and p(X) = 1, and
the assertion holds if do = 1 as in the proof above. When ds > 1, we can derive a
contradiction as follows: By Proposition BIIH), we may assume that dy = p(X) = 2
and that there exist two P'-fibrations X — P! in both of which =15, = Siis a
section. Since oy = 0y > 1, Sy is a union of fibers of two P!-fibrations X — P! by
Corollary (.25l This is a contradiction. The assertion for (]) can be applied to the
study of endomorphisms in the case of Picard number 1, but we do not proceed it
in this article.

Lemma 3.12. Let X be a normal projective surface with a reduced reducible con-
nected divisor S such that

e (X,5) is log-canonical,
o —(Kx +5) is nef, and
o (Kx +5)C <0 for two prime components C' of S.

Then S is a linear chain of rational curves such that (Kx + S)C1 <0 and (Kx +
S)Cy < 0 for the end components C1 and Co of S, and there is an effective divisor
B such that Kx+S+B ~ 0, (X, S+ B) is log-canonical along S, and SNSupp B =
{P1, Py} for two points P, € Cy, Ps € Cs.

Proof. The assertion except on B follows from [18, Lem. 4.5]. To show the existence
of B, first we consider the case where n(S) > 3, and set S%:= S — C; — Cy. Then
Kx + S is Cartier along S* and

Ox(Kx 4+ 85) ®0y Ogs ~ Ogs

by [18 Lem. 4.5(3)]. Since (Kx + S)C; <0 fori =1, 2, t(Cy + Cs) —2(Kx + S5)
is nef and big for some 0 < ¢t < 1 by [2I], Lem. 4.4]. Thus,

H'(X,0x(-Kx —8—5%)=0

by a version of Kawamata—Viehweg’s vanishing theorem [24], Thm. (5.1)] (cf. [19]
Prop. 2.15]), since

Kx +I—t(01 +CQ) —2(KX +S)—I =—Kx —S—Sh.
Hence, the restriction homomorphism

H(X,0x(-Kx — S)) = H'(X,0x(~Kx — 8) ® Og:) ~ H°(S% Og:)
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is surjective, and we have an effective divisor B ~ —(Kx + S) such that S% N
Supp B = (). In particular, BC; = —(Kx + S)C; > 0 for i = 1, 2. By [18]
Prop. 3.29], the following hold for each i = 1, 2:

(a) If C; N Sing X C S% then (Kx + S)C; = —1.
(b) If C;NSing X ¢ S% then C;NSing X \ S* = {P;} and (Kx +S)C; = —1/n;
for a cyclic quotient singular point P; of order n,.

In case @), BC; = 1, and hence, (X,S + B) is log-canonical at BN C;. In case
([®), BN C; = {P;} with BC; = 1/n;, and (X, S + B) is log-canonical at P; by
Lemma Z8|[I)). Thus, we are done in the case where n(S) > 3.

Next, we treat the case: n(S) < 3. Then S = C} + Cs, since S is reducible.
For the intersection point P of C; and C5, we can take a non-isomorphic toroidal
blowing up ¢: Y — X at P with respect to (X,S). We set Sy := ¢~1S. Then
p(Y) >3, (Y, Sy) is log-canonical, Ky +Sy = ¢*(Kx+.5), and Sy is a linear chain
of rational curves whose end components are proper transforms C] and C} of C;
and Cy, respectively. In particular, —(Ky +Sy) is nef on Sy and (Ky +Sy)C} <0
for ¢ = 1, 2. Applying the previous argument to (Y, Sy ), we can find an effective
divisor By on Y such that Ky + Sy + By ~ 0, (Y,Sy + By) is log-canonical
along Sy, ¢~ *(P) N Supp By = 0, and that Sy N Supp By = {P/, P} for points
P| € Cf and Pj € CY. Thus, B = ¢, By satisfies the required condition, since ¢ is
an isomorphism over X \ P. (]

Theorem 3.13. Let X be a normal projective surface admitting a non-isomorphic
surjective endomorphism f such that

(i) p(X) =3,
(ii) Kx + Sy is not pseudo-effective,
(i) (Kx +Sf)C <0 for two prime components C' of Sy.
(

Then (X, Sy + B) is a toric surface for a reduced divisor B with n(B) < 2.

Proof. By (i) and [2I, Thm. 1.3], we have n(Sy) < p(X)+1, in which the equality
holds if and only if (X, B + Sf) is a toric surface for a prime divisor B. Thus, we
may assume that n(Sy) < p(X). By @), (@), and [2I} Prop. 4.3], the pair (X, Sy) is
an L-surface (cf. [21], Def. 4.2]). Thus, the following hold by () and [2I, Thm. 4.5):

(1) X is a rational surface with only rational singularities; in particular, X
is Q-factorial and the numerical equivalence coincides with the Q-linear
equivalence for Q-divisors on X;

(2) NE(X) is generated by the numerical classes of negative curves on X;

(3) —Kx and Sy are big, and —(Kx + Sy) is semi-ample;

(4) p(X) =n(Sy), and Sy is the union of all the negative curves on X;

(5) Sy is a linear chain of rational curves, and (Kx + S§)C7 < 0 and (Kx +
Sy)Cs < 0 for the end components C; and Cy of Sy;

(6) Sy — C1 — Cy is negative definite.

By (@) and Lemma[3I2] there is an effective divisor B such that Kx +S¢+ B ~ 0,
(X, Sy + B) is log-canonical along Sy, and Sy N Supp B = {P;, P>} for two points
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P, € Cy and P, € Cy. Hence, by (@), (@), and {@l), we have a positive integer m
and an effective Cartier divisor D such that Supp D C Sy and mB ~ D.

We shall show that Supp D = S;. Assume the contrary. Then the numerical
classes of prime components of D generate a proper face of the polyhedral cone
NE(X) by @) and @). In particular, D is not big. Then B ~ —(Kx + Sy)
is not big, and BD = mB? = 0 by @). Hence, Supp D N Supp B = (), and
Supp D C Sy — C1 — Cy; this contradicts (@).

Therefore, (X, Sy, B) satisfies all the conditions ({)—(@) of Proposition BI1] and
as a consequence, (X,Sy + B’) is a toric surface for a reduced divisor B’ with
n(B’) < 2. O

Theorem 3.14. Let X be a normal projective surface admitting a non-isomorphic
surjective endomorphism f such that p(X) = 2, Sy is singular, and —(Kx + Sy) is
ample. Then (X, S+ B) is a toric surface for a reduced divisor B with n(B) < 2.

Proof. Since —(K x +Sy) is ample, by [2I, Thm. 1.3], We have n(Sy) < p(X)+1 =
3, in which the equality holds if and only if (X, Sy + B) is a toric surface for a prime
divisor B. Hence, we may assume that n(Sy) < 2.

If a prime component C' of Sy is singular, then (Kx + Sy)C = 0 by [18|
Prop. 3.29], violating the ampleness of —(Kx + Sy). Thus Sy is reducible and
connected. Moreover, by the ampleness of —(Kx + Sy) and by Lemma B12] Sy is
a linear chain C + C5 of rational curves for two prime components Cy and Cs, and
there exists a divisor B such that Kx + Sy + B ~ 0, (X, Sy + B) is log-canonical
along Sy, and that Sy N Supp B = {P;, P»} for two points P, € Cy and P5 € Cs.

Claim. The pseudo-effective cone NE(X) is generated by cl(C;) and cl(Cy). In
particular, X is a rational surface with only rational singularities.

Proof. The latter assertion follows from the first. In fact, Sy is big, since cl(Sy)
lies in the interior of NE(X), and it implies the latter assertion by [I8, Lem. 4.7].
Since p(X) = dimNE(X) = 2 (cf. [20, Prop. C]), the cone NE(X) is fan-shaped.
Thus, for the first assertion, it suffices to show that each extremal ray R of NE(X)
contains cl(Cy) or cl(Cy). By replacing f with f2 if necessary, we may assume that
f71C; = C; for i = 1, 2, and that f*R = R for the endomorphism f*: N(X) —
N(X). Since —(Kx +Sy) is ample, by the contraction theorem (cf. [20, Thm. 1.10]),
we have the contraction morphism 7: X — T of R, in which dim7 > 0. If 7 is
birational, then R contains cl(Cy) or cl(Cs), since Sy contains all the negative
curves. Thus, we may assume that dim7 = 1. By [20, Lem. 3.16], there is an
endomorphism h: T — T such that w o f = hon. Let G be the set-theoretic fiber
of 7 passing through the intersection point P of C; N Cy. Since f~(P) = {P}, we
have h=!(n(P)) = {n(P)} and f~1G = G. If C; and Cy are not fibers of 7, then
the reduced divisor Cy + Cy + G is f-completely invariant, but (X, Cy + Cy + G) is
not log-canonical at P, violating [20, Thm. E]. Therefore, Cy or Cs is a fiber of ,
and its numerical class belongs to R. ]

Proof of Theorem 314 continued. By the Claim, as in the proof of Theorem [3.13]
we can find a positive integer m and an effective Cartier divisor D such that mB ~
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D and Supp D C Sy. Here, Supp D = Sy, since D ~ —m(Kx +S¢) is ample but C;
is not ample for i = 1, 2. Therefore, (X, Sy, B) satisfies all the conditions ([{)—(w) of
Proposition B.IT] and as a consequence, (X, Sy + B’) is a toric surface for a reduced
divisor B’ with n(B’) < 2. O

Remark. In Theorem B4 if the first dynamical degree Ay (cf. [20, Def. 3.1]) is
equal to §f = (deg f)/2, then we have another proof by applying Theorem [BI3]
to a toroidal blowing up X’ — X at the intersection point of C; and Cy with an
endomorphism X’ — X’ as a lift of f (cf. [I9, Prop. 5.6]).

4. ON V-SURFACES

Definition 4.1. Let V be a normal projective surface and let A; and As be two
prime divisors on V. The triplet (V, A1, As) is called a V-surface if
(i) V is rational and p(V) = 2,
(i) the pair (V,A; + As) is log-canonical,
(iii) (A1)? <0, (A2)? <0, (Kyv + A1+ A2)Ay <0, and (Ky + Ay + A2)As = 0.
For a V-surface (V, A1, As), we set
Y= (A \ (A1 NAy))NSingY

for i =1, 2, and call ¥; (resp. X2) the first (resp. second) external singular locus.

In Section El we shall study the structure of V-surfaces and give an application
to the study of non-isomorphic surjective endomorphism concerning (R3] in the
introduction. After giving some remarks on half-toric surfaces (cf. [I8, §7]) in Sec-
tion L1l we shall explain basic properties of V-surfaces in Section 4.2] where two
subclasses Va-surfaces and Vg-surfaces are defined (cf. Definition [5]). Section A3l
is devoted to proving Theorem which asserts that any Va-surface becomes a
half-toric surface by adding a prime divisor, i.e., (V,A; + Ag + B) is an half-toric
surface for a prime divisor B. Our second crucial ideal explained in the intro-
duction concerns the proof of Theorem In Section [£.4] we introduce ordinary
Vi-surfaces and extraordinary Vg-surfaces (cf. Definition fI8) as subclasses of V-
surfaces, and prove that any ordinary Vg-surface also becomes a half-toric surface
by adding a prime divisor, but this is not true for any extraordinary Vg-surface (cf.
Proposition ET9 and Theorem 2T]). Moreover, in Section 4] as an application of
Theorems .10 and [£2]] we shall prove Theorem [£23] on the structure of a normal
projective surface X of Picard number > 3 admitting a non-isomorphic surjective
endomorphism f such that Kx + Sf is not pseudo-effective, i.e., X belonging to
(R3). In Section L5l we shall prove Theorem on the structure of an extraor-
dinary Vp-surface with the notion of (2n + 1, 2)-blowings up (cf. Definition [£.24]).

4.1. Remarks on half-toric surfaces. The half-toric surfaces are defined and
studied in [I8, §7]. We shall give two additional results. One is Lemma below
on negative curves and the pseudo-effective cone. The other is Lemma 3] below
on endomorphisms, which is applied to the proof of Theorem (cf. Section [G).

Lemma 4.2. Let (X, D) be a half-toric surface. Then:
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(1) Ewery negative curve on X is contained in D.
(2) The pseudo-effective cone NE(X) is generated by numerical classes of prime
components of D.

Proof. [l): There is a double cover 7: Y — X étale in codimension 1 such that
(Y,7*D) is a toric surface: this double cover is unique up to isomorphism and is
called the characteristic double cover (cf. [I8], §7.1]). Let ' be a negative curve on
X. Then every prime component of 7*I" is a negative curve. On the other hand,
every negative curve on Y is contained in the boundary divisor 7*D, since it is
preserved by the action of open torus Y \ 7*D. Hence, 7T’ C 7*D, and ' C D.
@): Let v: X’ — X be a non-isomorphic toroidal blowing up with respect
to (X, D). Then p(X’) > 3, and (X’,v~1D) is also a half-toric surface (cf. [I8|
Lem. 7.4(2)]). In particular, —Kx/ & v~ D is big (cf. [I8 Def. 7.1(i), Lem. 7.2(2)]),
and NE(X') is generated by numerical classes of negative curves on X’ by [20}
Thm. 1.13]. By (), negative curves on X’ are all contained in »=*D. Thus, (&)
holds by NE(X) = v, NE(X"). O

Lemma 4.3. For a half-toric surface (X, D), let f be a non-isomorphic surjective
endomorphism of X such that Sy = D — B for an end component B of D. Then
every prime component of T* B is nef for the characteristic double cover 7:' Y — X.

Proof. Since Sy contains all the negative curves on X (cf. [20, Prop. 2.20(3)]),
the prime divisor B is nef. Thus, we may assume that 7*B is reducible. By [I8]
Prop. 4.18(3)], (B\ (D — B))NSing X consists of one point Q of type D, i.e., (X, B)
is not 1-log-terminal at @, and 7B = I'y 4+I'5 for two prime divisors I'; and I's such
that Ty N Ty = 771(Q) = {P} for a point P. Here, Y is a toric surface expressed
as Tn(A) for a complete fan A of a free abelian group N of rank 2, and 7*D is the
boundary divisor, the complement of the open torus Ty({0}).

For the complement U of D — B in X, the inverse image 77 'U is expressed as
Tn(o) for the two-dimensional cone o € A corresponding to P. For i = 1, 2, let
R; € A be a ray corresponding to the prime component I'; of 7*D; and let W; be
the toric open subset Tn(R;). Then o = Ry + Ry, and Wy U Wy = 71U \ {P}.
We shall show that the fundamental group (771U \ {P}) is finite. By inclusions
Y\7*D C W; C Wy UW, for i = 1, 2, we have surjections

N ~ Tl'l(Y\T*D) — 7\'1(Wi) — 71'1<W1 UWQ),

where 71 (W;) ~ N/(NNR;) (cf. [4, §3.2]). This implies that 71 (W1 U W>) is finite,
since (NN R;) + (NN R2) is a finite index subgroup of N and it is contained in the
kernel of N — 71 (W7 N W3). As a consequence, the fundamental group U \ {Q} is
also finite.

Let v: X — X be the finite surjective morphism from a normal projective surface
X which gives a universal cover over Ureg = UN{Q} = X1eg\(D—B) = X1eg\Sy. By
Lemma [3.10, there is a non-isomorphic surjective endomorphism f of X such that
vof= fovand Si= v~1S¢ = v=1(D — B). In particular, every prime component
v~ 1B is nef. On the other hand, v factors through 7, since 7=1(U \ {Q}) =
771U\ {P} = W UWj is connected and étale cover U\ {Q} (cf. Lemma[3.5]). Then
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T'; is nef for ¢ = 1, 2, since the inverse image of I'; in X is contained in »~'B. Thus,
we are done. 0

4.2. Basic properties of V-surfaces. Some basic properties of V-surfaces are
obtained in Lemma 4] below, and Va-surfaces and Vg-surfaces are introduced in
Definition below. Moreover, we discuss sufficient conditions for a V-surface to
become a half-toric surface by adding a prime divisor.

Lemma 4.4. The following hold for any V-surface (V, A1, As):

(1) The cone NE(V) is generated by the numerical classes of Ay and Ay. In
particular, V contains no negative curves other than Ay or As.

(2) The divisor —(Ky + A1+ Ag) is nef and big. In particular, —Ky is big and
any nef Q-divisor on V' is semi-ample.

(3) The surface V' has only rational singularities, and the numerical equivalence
coincides with the Q-linear equivalence for Q-divisors on V.

(4) The divisor Ay + A is a linear chain of rational curves. In particular,
Ay ~ Ay ~ P, Ay N Ay consists of one point Py, and AyAy = 1/ny for a
positive integer ny: If ny =1, then Py € Vieg, and if ny > 1, then (V, Py)
is a cyclic quotient singularity of order ny .

(5) The pair (V, A1) is 1-log-terminal along Ay \{Pv}, and (Kv +A1+A2)A1 =
—1/my for a positive integer my. If my = 1, then the first external
singular locus X1 is empty, and if my > 1, then X1 consists of one point
at which V' has a cyclic quotient singularity of order my .

(6) One of the following holds for the second external singular locus Ya:

(a) 3g consists of two Aq-singular points at which (V, Ag) is 1-log-terminal;

(b) X9 consists of one point at which (V,As) is log-canonical of type D in
the sense of [18, Def. 3.23]; in other words, (V, A2) is not 1-log-terminal
at the point (cf. [19, Def. 2.1, Fact 2.5]).

(7) The divisor Ky + Ay + Ay is not Cartier along Yo but 2(Ky + A + Ag) is
Cartier along Ao with an isomorphism

Ov(2(Kv + A1 + Ag)) ® Op, = Oy,.

Proof. (l): Fori = 1, 2, the ray R; = R>q cl(A;) of NE(V) is extremal, since A? < 0
(cf. Definition EIJ(])) and since NE(V) is fan-shaped by p(V') = 2. Here, Ry # Ra:
For, otherwise, A; is also a negative curve, and we have A; = As, a contradiction.
For a negative curve on V, its numerical class generates an extremal ray of NE(X);
hence the negative curve is either A; or As. This shows ().

@): The divisor —(Ky 4+ Aj + Ag) is nef by () and Definition EIN). If it is not
big, then its numerical class belongs to an extremal ray R of NE(V'), but we have
R 75 Ry and R 7& Ro by (KV + A +A2)A2 =0 and A% < 0. ‘ThUS7 —(Kv + Ay —|—A2)
is big. In particular, —Ky is big, and the rest of (@) follows from [20, Prop. 1.5].

@): This follows from [I8] Lem. 2.31] and the bigness of — Ky, since V' is rational
with H2(‘/, Ov) = HO(‘/, Ov(Kv)) =0.

@): For the contraction morphism ¢: V' — V' of the negative curve Ag, V' is
a normal projective surface with p(V') = 1 and ¢(A1)? > 0. Hence, Ay N Ay # ()
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by A? < 0. In particular, A; + Ay is connected. Then A; + Ay is a linear chain
of rational curves by [I8, Lem. 4.5], since (V,A; + A3) is log-canonical and since
—(Kv 4+ A1 + Ay) is nef with (Ky + A; + As)A; < 0. The assertion for ny follows
from a well-known property of 2-dimensional log-canonical pairs (cf. [I9, Fact. 2.5]).

E)—(@): There are derived from [I8, Prop. 3.29] on cases (E)—(H) there. O

Definition 4.5. Let (V, A1, As) be a V-surface.

(1) The integer ny in Lemma [ is called the internal index, and the point
Py is called the central point.

(2) The integer my in Lemma [ are called the first external index.

(3) If Lemma [EAGal) (resp. EA(GL)) holds, then (V,A1,As) is called a Va-

surface (resp. Vp-surface).

Remark. The internal index ny equals the numerical factorial index of V at Py (cf.
[19, Def. 1.26]). The first external index my is the smallest positive integer m such
that m(Ky + A1) (resp. mA;) is Cartier along Ay \ { Py} (cf. Fact 23] Lemma [2.])).
If we consider the second external index as an analogy of the first external index,
then it should be 2 by Lemma 4|[T).

Lemma 4.6. For a V-surface (V, A1, As), there is an effective divisor E such that
AoNSuppE =0 and E ~ —=2(Ky + Ay + Ag). In this case, (X, A1 + Az + (1/2)E)
is log-canonical along A1 + As.

Proof. There is a positive number ¢ < 1 such that eA; — 3(Ky + A1 + Ag) is nef
and big by Definition EI|(]) and Lemma FE4IR]) and by [21, Lem. 4.4]. Since

Ky +TeAl — S(KV + A+ Ag)—l = —Q(Kv + A1+ AQ) — AQ,

we have HY(V,Oy(—2(Ky + A1 + A3) — A2)) = 0 by a version of Kawamata—
Viehweg’s vanishing theorem [24] Thm. (5.1)] (cf. [I9, Prop. 2.15]). Hence, the
restriction homomorphism

Ii[o(‘/'7 Ov(—2(Kv + A1+ A2)) — HO(V, Ox(—2(Kv + A1+ Az)) ® OAQ)
= HO(AQa OAz) ~C

is surjective (cf. Lemma EA[@])), and we can find an effective divisor E such that
E ~ —2(Ky + A1 + As) and Ao N Supp E = 0. Thus, we have proved the first
assertion.

For the latter assertion, since ENAs = (), it is enough to prove the log-canonicity
of (VA1 + (1/2)E) along Ay N Supp E. Now, EAy = 2/my and #¥; < 1 by
Lemma [L4[H). Hence, one of the following holds:

(1) #A1 NSupp £ > 2;

(2) Ay N Supp FE consists of one point of Ap \ 3.

(3) AiNSupp E = %;.
If (@) holds, then my =1, 31 =0, and F intersects A; transversely at two points;
thus, (V, A1+ E) and (V, A1 + (1/2)E) are log-canonical along A; N Supp E. If @)
holds and if my > 1, then my = 2 and F intersects A; transversely at one point;
thus, (V,A; + E) and (V,A; + (1/2)E) are log-canonical along Ay N Supp E. If
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@) holds and if my = 1, then E intersects A; tangentially at one point {P’} =
A1 NSupp E by EAy = 2; in this case, (V,A1 + (1/2)E) is log-canonical at P’
by “inversion of adjunction” (cf. [I4, Thm. 17.7]), since P’ € X,eq and A; is non-
singular. If (3] holds, then my > 1 by X1 # 0, and (V, A1 +(1/2)E) is log-canonical
along A; N Supp £ by Lemma 2.82). Thus, we are done. O

Proposition 4.7. For a V-surface (V,A1,As), let B be an effective divisor on V
such that Ky +A1 + Ay +B &0 and Ao NSupp B = (. Then B is a prime divisor,
(V,A1 + Ao + B) is a half-toric surface, and B and Ay are end components of the
linear chain B + Ay + As of rational curves.

Proof. By Lemmal[L4[{]), BA1 = 1/my and BN A; consists of one point Q1 # Py .
Let I' be a prime component of B. Then I'A; > 0 by 'Ay = 0 and p(V) =
2, and we have myT'A; € Z, since my Ay is Cartier along A; \ {Py}. Hence,
(B—T)N(A1+A2) =0, and it implies that I' = B. Therefore, B is a prime divisor.
Moreover, (V, A1 + Ao + B) is log-canonical at Q1 by Lemma 2J|[]).

By (@) and (@) of Lemmald4] there exist an effective Cartier divisor A on V and a
positive integer m such that Supp A C A; +As and mB ~ A. Then Supp A = A1 +
A5 as B is nef and big (cf. Lemma[L42])), and BNSupp A = {@Q1}. Leto: V' =V
be the normalization of the blowing up along the scheme-theoretic intersection
mB N A. Let A}, A}, B’ and A’ be the proper transforms of Aj, As, B, and A in
V', respectively, and we set © := 0~ 1(Q1) and S := 07 (A + Ag) = O + A} + Ab.
Then o is a toroidal blowing up at ()1 with respect to (V, A1 + Az + B), and the
following hold as in the proof of Proposition

e O~P o71A; =0, + A}, 0*Ay = A}, and S is a linear chain of rational
curves with end components ©; and Aj;
e Ky +S+B =c*(Ky+ A +A2+ B)”O0;
e (V'S + B’) is log-canonical along ©;
e there is a positive integer e such that e© is Cartier and that mB’' =
o*(mB) —eO and A’ = 0*(A4) — €0;
e there exist a fibration 7: V/ — T ~ P! and points tp # t4 of T such that
B’ =n7Y(tp) and Supp A’ = 7~ 1(t4).
A general fiber F of 7 is rational and ©F = 2 by (Ky/+0)F = (Ky.+S+B')F = 0.
Then B’ ~ P! and (V', S+ B’) is log-canonical along B’ by Lemma[ZI6l Therefore,
(V,A1 + Ay + B) is log-canonical along A; + As + B. Now, n(A; + Ao + B) =3 =
p(V)+1, Ky +A1+A2+B &0, and B+A;+ As is a linear chain of rational curves
with end components B and Ay. Thus, (V,A; + Az + B) is a half-toric surface by
18, Thm. 1.3]. O

Corollary 4.8. If the effective divisor E in Lemma is not a prime divisor,
then (V, Ay + As + B) is a half-toric surface for any prime component B of E.

Proof. Let B be a prime component of £. Then B and E — B intersect A; by
BAs = (E — B)Ay =0 and p(V) = 2. Now, EA; = 2/my by Lemma [LAH]), and
myA; is Cartier along A; N Supp E. Thus, BA; = (F — B)A1 = 1/my. Hence,
Ky + Ay + Ay + B &0, and the assertion follows from Proposition [4.71 O
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Corollary 4.9. Let (V,A1,As) be a V-surface admitting a numerically trivial di-
visor L such that Ky + Ay + Ay + L is Cartier along As. Then (V,A1 + Ay + B)
is a half-toric surface for a prime divisor B.

Proof. By the assumption for L and by Lemma |[7), we have an isomorphism
Ov(Ky + A1+ Ay + L) @ Op, ~ Oy,

since Ag ~ PL. We know that eA; —2(Ky +A1+As)— L is nef and big for 0 < e < 1
by [2I, Lem. 4.4] and Lemma [LA([2) and by (Ky + A1 + A2)A; < 0. Then

HYV,0p(=Ay — (Ky + A1+ Ay + 1)) =0

by a version of Kawamata—Viehweg’s vanishing theorem [24, Thm. (5.1)] (cf. [19]
Prop. 2.15]), since

Kv+r€A1—2(Kv +A1+A2)—L_‘:—AQ—(KV+A1+A2+L).

Hence, the restriction homomorphism

IJO(V7 Ov(—(Kv + A1+ Ay + L))) — HO(‘/, Ov(—(Kv + A+ Ay + L)) [029] OA2)
~ HO(A2,0A2> ~C

is surjective and we have an effective divisor B on V such that B ~ —(Ky + Aq +
Ao+ L) and Ao NSupp B = (). Therefore, B is a prime divisor and (V, A1 + Az + B)
is a half-toric surface by Proposition 7] since Kyy + A1 + Ao + B~ —-L&~0. O

4.3. Structure of a Vj-surface. We shall prove the following:

Theorem 4.10. For any Va-surface (V,A1,As), there is a prime divisor B such
that (V, A1 + As + B) is a half-toric surface.

The proof is given at the end of this section. First, we treat an easy case.
Lemma 4.11. Theorem B0 holds if A2 = 0.

Proof. Let m: V' — T be the contraction morphism of the extremal ray R>q cl(A1),
where (Ky + A; + A2)A; < 0. Then 7'~ P! and 7 is a P!-fibration with only
irreducible fibers. Moreover, Ag is a section of m by (Ky + A1 + A2)F = (Ky +
Ao)F < 0 for a general fiber F of . The second external locus 2y consists of two Aj-
singular points P4 1 and P4 o at which (V, A2) is 1-log-terminal (cf. Lemma [ 4)[Ga)
and Definition BH[)). For ¢ = 1, 2, we set t; := w(Pa,), F; = 7*(t;), and
G; == Y(t;). Then G; N Ay = {Pa;}. We can show that F; = 2G; for i = 1,
2. In fact, F; = m;G; for an integer m;, and AxG; = 1/m;. Here m; > 1 by
[18, Prop. 2.33(4)], and we have m; = 2, since the numerical factorial index of an
A;-singularity is equal to 2. As a consequence, (V, Az + G;) is log-canonical at Py ;
by Lemma R §(l). We can prove also that L := G7 — G2 satisfies conditions of
Corollary 9 In fact, 2L ~ 0 by 2G;1 ~ 2G5 ~ F, and Ky + A + Ay + L is Cartier
along Ay by the log-canonicity of (V, Az + G;). Therefore, (V,A; + Ay + B) is a
half-toric surface for a prime divisor B by Corollary O
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In what follows in Section 3] we fix a Va-surface (V, A1, Az) such that A? < 0.
We also fix an effective divisor £ on V such that Ay N SuppE = @ and that
E ~ —2(Ky + Ay + Ay). This divisor E exists by Corollary [£6 and we may
assume that E is a prime divisor by Corollary

Definition 4.12. Let pu: Y — V be the minimal resolution of singularities lying
on Ay + Ay and set D := p~1(A; + Ay); in particular, Y\ D ~ V' \ (A; UAs) by pu.
We set D; to be the proper transform of A; in Y for ¢ = 1, 2, and set Ey to be the
proper transform of E in Y. For two A;-singular points P41 and P42 in Yo (cf.
Definition EE5I[E]), Lemma EA([Ga)), we set Zg := p~1(Pa ) for k = 1, 2, which is a
(—2)-curve.

Lemma 4.13. The divisor D is a simple normal crossing divisor on Y, and has
a prime decomposition

m n — —
LTS HECER SRS

with a dual graph

[
w

Fl Fm D1 @1 @n D2
(IV_]_) ® — ... e ° /

[1]
V)

for some integers m > 0 and n > 0. Moreover, the equality
(IV-2) Ky +D = p"(Kyv + A+ A2) + (1/2)(Ey + Z2)
holds and the following conditions are satisfied:
(1) For the central point Py (cf. Definition EI()), if Pv € Vieg, then n = 0;
if Py & Vieg, then n >0 and Z;’L:I 0; = u 1 (Py).
(2) The first external locus ¥y consists of a point Qy, and Y i~ T = p=H(Qv).

(3) The p-exceptional locus equals

D~ Dy — D, :leriJrZ::l@jJrElJrag
and p(Y) =m+n+4.
(4) One has D? = —1 and D3 < —2.
(5) There is a positive integer a < m such that

D_ZZZID‘=ZZQ+1Fi+D1+Z::1@j+D2+El+EQ

is not negative definite but negative semi-definite.
(6) One of the following holds:
(a) Eyl'1 =2 and By N (D —T1) =0.
(b) m > 2, F% =-2, Eyl's =1, and Ey N (D *Fg) = 0.
() m=1,T2=-2, EyDy =1, and Ey N (D — Dy) = 0.

Proof. We have ([V=2)) by a well-known description of the minimal resolution, since
(V, A1 + As) is toroidal at the central point Py and is 1-log-terminal along 3 U o,
where #%1 < 1 and Yo = {P41,Pa2} (cf. Lemma AA[), Definition @12 [19,
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Fact 2.5]). By Lemma ILAH), we can define 337, ©; as in (). By Lemma L),
we can define the linear chain Z?il T'; of rational curves as u~'%; when %7 # 0; we
set m = 0 when X; = (). Then we have the prime decomposition of D above with the
dual graph ([V=1)) in which the case: m = 0 is allowed. In particular, D— D — Dy is
the p-exceptional locus, and we have @B) by p(Y)—2 = p(Y)—p(V) =n(D) -2 =
m+n+2.

We shall show (@) assuming that m > 0. Then X1 # ), my > 1, and EA; =
2/my by Lemma [ZA@). If A; N E # ¥y, then my =2, m =1, EA; =1, and (Gd)
is satisfied. If A; N E = ¥, then either (6al) or (GD) is satisfied by Lemma 28|[2)
on minimal resolutions applied to E. Thus, (@) holds true if m > 0.

Since (@) implies m > 0, it is enough to prove ) and (). The divisors I'; and ©;
for 1 <i<m and 1 < j <n are non-singular rational curves with self-intersection
number < —2 by the minimality of p. The divisors

—1 o m ) n ' 1 B n v - -
H A1—ZZ_:1FZ+D1+Z]_:1@] and g A27Zj21®j+pz+_1+_2

are negative definite by A2 < 0 and A2 < 0. In particular, Z; + Dy + Zy is
negative definite, and we have D2 < —2 by the dual graph. Moreover, D? = —1 by
Lemma 2.3), since D = u~(A; + A) is big. Then we have the expected positive
integer a in (@) by Lemma 23|2). Thus, @) and (&) have been proved, and we are
done. |

Lemma 4.14. There is a P*-fibration n: Y — T ~ P! with two points t1, to € T
such that

(1) 7 is smooth over T \ {t1,ta},
and the following hold for the integer a in Lemma EI3|E):

(2) The prime component T'y of D is a double section of m and T, is étale over

T\ {t1,t2}.
(3) The set-theoretic fiber m=1(t2) equals

D — Z; T, = ZZGH T; + Dy + Z; ©; + Dy + 51 + Zo.

(4) If a =1, then m—1(t1) is irreducible.
(5) If a>1, then a > 3, Lemma EI3|6R) holds, and

a—1
7 (t) = By + Zi:l L.

Proof. By applying Lemma 2.3 and Corollary 23Tl to D (cf. Lemma [LT3I[H])), we
have a P!-fibration 7: Y — T ~ P! with a point t5 € T such that I', is a double
section of 7 and that (8] is satisfied for a branched point t3 of 7|p,: I'y — T. In
particular, ([2]) holds for the other branched point ¢; of 7|p,. Every irreducible fiber
of m over T\ {t1,t2} is reduced, since it intersects ', transversely at two points;
hence, 7 is smooth along irreducible fibers over T'\ {¢1,t2} (cf. [I8], Prop. 2.33(4)]).
Therefore, () follows from:

(1) every fiber over T \ {t1,t2} is irreducible.
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In order to show (), we apply [I8, Prop. 2.33(7)]. Note that
(IV-3) p(Y)=m+n+4 and n(r (ty))=m—a+n+4

by Lemma EI3IB]) and by @). If a = 1, then p(Y) — 2 — (n(7~1(t2)) — 1) = 0 by
(IV=3), and every fiber of w over T'\ {t2} is irreducible by [18, Prop. 2.33(7)]. This
shows () and @) in the case where a = 1.

It is enough to prove (L) and (B)) in the case where a > 2. Then either (Gal) or (Gh)
of Lemma T3] is satisfied, since m > a > 2. If Lemma ET3|[6al) is satisfied, then
Ey + Ty is contained in a fiber of 7, since it does not intersect 7r_1(t2). Moreover,
in this case, By NT1 C D C Y and EyI'y = 2, contradicting Lemma ZTTI().
Therefore, Lemma EET3|(6D]) is satisfied. Let to € T\ {t1} be a point such that
Iy € 7 Y(to). Since I'? < 0, 7 (tg) is reducible, i.e., n(r~1(ty)) > 2. Assume
that @ > 3. Then Ey + Y.7"'T; € 7~ 1(to) and n(7~'(ty)) > a, and we have

p(Y) =2~ (n(r"}(to)) = 1) = (n(x"}(t2)) = 1) = a —n(r'(ty)) <0
by (V=3). Hence, n(7~1(ty)) = a and every fiver of w over T'\ {t¢,t2} is irreducible
by [I8, Prop. 2.33(7)]. In particular, 7~ (t) = Ey + >0~ T; and #r ' (to) T, =
#T, 1 NT, = 1; hence, ty = t;. Thus, () and (@) hold when a > 3.

It remains to show that a # 2. Assume the contrary. Then 7~ !(to) = I'; + I'f
for a prime divisor I'f. By Lemma EI3IGh), Ey N7~ '(t2) = Ey NIy = 0 and
#Ey NTy = 1. Thus, tg # t; and By = 7 1(¢1). In particular, 7*(¢o) intersects
I'y transversely at two points, and hence, 7*(ty) = I'y + I'f with I''T'y = 1 by
I'1Ts = 1. On the other hand, I/ T'T = 2 by I'? = —2. This contradicts the latter
half of Lemma ZIT|(T), since I'y N\TT € D C Yieg. Therefore, a # 2. Thus, we are
done. |

Lemma 4.15. Let p: Y — X be the contraction morphism of
D—-T,—Dy= Zlgigm,i#a I's+ D+ Zj:l @j + =1+ 2y

and let mx: X — T be the induced P -fibration such that m = wx o w. Then
(1) the double section Cx = ¢(T,) of mx is a negative curve,
(2) (X/T,Cx,my"(t2)) is an irreducible PDS configuration of type I (cf. Def-
inition 2.17),
(3) #(rx (t2) \ Cx) NSing X = 2.

Moreover, the integer a equals 1, and 7*(t1) = 2G for a prime divisor G.

Proof. Since A; is a negative curve, we have () by
-1 _ mon " -1
v Cx _Zi:1 F1+D1+Zj:1 O =p Ay

Assertions (2) and (B]) are consequences of Corollary Z3T] applied to D.

Assume that @ # 1. Then a > 3 and 75'(t1) = ¢(Ey) by Lemma EZIA(G).
We set Ex := ¢(Ey) and {Px} := Cx N Ex. Then (X, Px) is a cyclic quotient
singularity and ¢ gives the minimal resolution of the singularity (X, Px), since
o HPx) = Z?:_ll I';. By Lemma 28 (X,Cx) is 1-log-terminal at Px, since T',
intersects the end component I',_; of the linear chain ¢~ (Pyx) of rational curves
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transversely at one point. For the order 7 of the cyclic quotient singularity (X, Px),
we have Cx Ex = 2/ by Lemmas 28([3) and EI3|[6L). Hence, (X/T,Cx, Ex) is an
irreducible PDS of type II. Then C% > 0 by Proposition 2Z228(#): This contradicts
m.
Therefore, a = 1. Then G := m~!(¢;) is irreducible by Lemma EET4(@). We set
Gx = ¢(G) = mx'(t1). Assume that 7* (1) is reduced, i.e., 7*(t1) = G. Then 7 is
smooth along G (cf. Remark 29), GT', = 2 and (Y/T,T,, G) is an irreducible PDS
configuration of type I1;. Since ¢ is an isomorphism along G, (X/T,Cx,Gx) is also
an irreducible PDS configuration of type II;. Then C% > 0 by Proposition ZZS|{):
This contradicts (). Therefore, 7*(¢1) is not reduced, and we have 7*(t1) = 2G
and GI'y =1 by I'y C D C Y;ee. Thus, we are done. O

Now, we are ready to prove Theorem 10l

Proof. Let (V,A1,A2) be a Vj-surface. By Lemma [LTI] we may assume that
(A1)? < 0. We fix an effective divisor E in Lemma 6, which is assumed to a
prime divisor by Corollary .8 Considering the birational morphism p: Y — V in
Definition and we shall apply results above on Y and FE.

Now, multr, p*A; = 1/my by Fact23H since (V, A;) is 1-log-terminal at {Qv } =
% (cf. LemmalA[0]), Lemma L I3|[2)). We set B := u(G) for the prime divisor G =
77 1(t1) in Lemma EI5 Then BA; = Gu*A; = (1/my)GTy = 1/my, and (Ky +
A1+Ay+B)A; = 0. Moreover, BNAy = 0 by GNu~tAy € GN7T~1(ty) = (). Hence,
(Kyv + Ay + Ay + B)Ay = 0 (cf. Definition ATI([{). As a consequence, Ky + Ay +
Ay + B &0, since cl(A1) and cl(A3) generate N(V') (cf. Lemma (). Therefore,
(V, A1 + Ay + B) is a half-toric surface by Proposition @77l Thus, Theorem .10 has
been proved. O

4.4. Structure of an ordinary Vg-surface. We shall introduce two subclasses of
Vg-surfaces: ordinary Vg-surfaces and extraordinary Vg-surfaces in Definition I8
below. Then we shall prove in Theorem 2Tl that any ordinary Vg-surface becomes
a half-toric surface by adding a prime divisor: This is an analogy of Theorem (.10,
and Proposition E.19] below is considered as a result on the converse direction.
As an application of Theorems 10 and E2]] we shall prove Theorem £23] on
endomorphisms concerning (R3) in the introduction. We begin with a setup for
Vp-surfaces.

Definition 4.16. Let (V, A1, As) be a Vp-surface and let v: Y — V be the standard
partial resolution of the singularity at the second external singular locus ¥o with
respect to the log-canonical pair (V, A2) in the sense of [19, Def. 4.27, Exam. 4.28].
Note that 3o consists of one point at which (V; A1 + Ag) is not 1-log-terminal (cf.
Lemma E|(6H), Definition E5IB)). We define S := v~ (A} + Ag), E := v~ 13%,,
and define Ay; as the proper transform of A; in Y for ¢ = 1, 2. Then S is a linear
chain of rational curves expressed as Ay + Ay + E, and v*A; = Ay,;. We set
C to be the end component of the linear chain E not intersecting Ay o and set
Yy = ENSingY.
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Remark 4.17. By the definition of standard partial resolution, ¥y consists of two
Ai-singular points contained in C'. In particular, Ky and 2C are Cartier along FE.
Moreover,

(IV-4) Ky + 8 = v*(Ky + Ay + Ay).

Definition 4.18. A Vg-surface (V, A1, A3) is said to be ordinary if any negative
curve on Y is contained in S. If not, it is said to be extraordinary.

Proposition 4.19. Let (V,A + B) be a half-toric surface for a reduced connected
divisor A and a prime divisor B ¢ A. Assume that p(V) = 2 and B®> > 0. Then
(V,A1,As) is a V-surface for the prime components Ay and Ay of A. Moreover,
(V, A1, As) is either a Va-surface or an ordinary Vg-surface.

Proof. Since (V, A+ B) is log-canonical (cf. [I8, Thm. 1.7(1)]), the pair (V, A) is so.
Now, A + B is a linear chain of rational curves with n(A+ B) = p(V) +1 =3 (cf.
[18, Thm. 1.7(1)]). Hence, A is a linear chain consisting of two prime components,
and B is an end component of A+ B. Let As be the other end component of A+ B
and let A; be the non-end component of A + B. Then A = A; + Ay, Ay N B # (),
and A; N B = (. Hence, (Ky + A)A; = —BA; <0 and (Ky + A)As = —BA2 =0
by 2(Ky + A+ B) ~ 0 (cf. [I8, Def. 7.1(i)]). By the Hodge index theorem, we have
A% < 0by BAy = 0. The cone NE(V) is fan-shaped by p(V') = 2, and the numerical
class cl(Ag) generates a ray of NE(V). Since B2 > 0, cl(B) lies in the interior of
NE(V). Hence, cl(A;) generates the other ray of NE(V) by Lemma E2[E). As a
consequence, A? < 0. Therefore, (V, A1, Ag) is a V-surface.

For the last assertion, we may assume that (V, A1, Ag) is a Vp-surface. For the

standard partial resolution v: Y — V at ¥s, v*B is the proper transform of B in
Y, and (Y,v71(A; + As) + v*B) is also a half-toric surface by [I8, Lem. 7.4(2)],
since A, N B = (). Every negative curve on Y is contained in v~!'(A; + As) by
Lemma [L2(), since v*B is nef. Hence, the Vg-surface (V, A, As) is ordinary.
Thus, we are done. ([l

Lemma 4.20. Let (V,A1,As) be an ordinary Vg-surface. For the standard partial
resolutionv: Y — V and divisors on'Y introduced in Definition X186, let ¢: Y — W
be the contraction morphism of v™1(A2) —C = Ay s+ FE —C, and set C; = ¢(Ay1)
and Cy := ¢(C). Then (W,C4,C3) is a Va-surface, and

(IV—5) Ky+S:¢*(KW—|—Cl+CQ)
As a consequence, A2 < 0 for any ordinary Vg-surface (V, A1, As).

Proof. By construction, we have p(W) = p(Y) — n(p7tAy) +1 = p(V) = 2.
By ([V-4) in Remark LT and by Lemma EAR]), —(Ky + S) is nef and big, and
in particular, —Ky is big. Then NE(Y) is a polyhedral cone generated by the
numerical classes of negative curves on Y by [20, Thm. 1.13], since p(Y) > 3.
Thus, NE(W) = ¢, NE(Y) is generated by the numerical classes of C; and Cy, since
(V,A1,Az) is ordinary. In particular, C3 < 0 and C3 < 0. Here, we have C3 < 0
by A3 < 0, since ¢~ 1(C2) = v=1(Az) is negative definite. Now, (Ky + S)© = 0
for any prime component © of y~!'Ay = Oy + E by ([V=4) in Remark {17 and
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by (Kv + A1 + Ag)Ay = 0 (cf. Definition EETI[). Hence, (IV=5)) holds, and as a
consequence, (W, Cy + Cs) is log-canonical. Moreover,

(KW + C1 + 02)01 = (Ky + S)I/*Al = (Kv + A1+ Ag)Al <0 and
(Kw + C1 + C2)Cy = (Ky +5)C = (Ky + A1 + A)v,.C =0

by ([IV=4) and ([V=5). Therefore, (W, C1, Cs) is a Va-surface. Now, v*A; is a prime
component of the reducible linear chain ¢~!(C;) = S — C of rational curves, and
¢~1(C1) is negative semi-definite by C? < 0. Hence, A7 = (v*A;)? < 0. O

Theorem 4.21. For an ordinary Vg-surface (V,A1,A2), there is a prime divisor
B such that (V,A1 + As + B) is a half-toric surface.

Proof. Applying Theorem to the Vp-surface (W, Cq,Cs) in Lemma 20, we
can find a prime divisor By on W such that (W,Cy + Cy + By) is a half-toric
surface. Then (V,A; 4+ Az + B) is also a half-toric surface for B = v, (¢*Bw). In
fact, we have By N Cy = () by By Cy = —(Kw + C1 + C3)Co = 0, and it implies
that ¢ and v are isomorphisms along ¢ 'By = v~ !B. Thus, the log-canonicity
of (V,A1 + A2 + B) is deduced from that of (W,Cy + Cy + Bw). Moreover, we
have 2(Ky + S + ¢*Bw) ~ 0 by 2(Kw + C1 + C2 + Bw) ~ 0 and by ([V=5) in
Lemma 200 Hence, 2(Ky + A1+ A2+ B) ~ 0, and (V, A; + Ay + B) is a half-toric
surface by Proposition 71 O

Lemma 4.22. Let (V,A1,As) be a Vp-surface with a non-isomorphic surjective
endomorphism f: V — V such that Sy = A + Ay, Then (V, A1, A2) is ordinary.

Proof. For the standard partial resolution v: Y — V of singularities at o, we
have an endomorphism fy of Y such that vo fy = f2 ov by [2I} Prop. 5.9]. Here,
Sty = v 1Sy = v (A1 + Ag) by [20, Lem. 3.15(3)]. Since Sy, contains all the
negative curves on Y (cf. [20, Prop. 2.20(3)]), (V, A1, A3) is ordinary. O

Theorem 4.23. Let X be a normal projective surface admitting a non-isomorphic
surjective endomorphism f: X — X. Assume that p(X) > 3 and Kx + Sy is not
pseudo-effective. Then one of the following holds:
e (X,Sf+ B) is a toric surface for a reduced divisor B such that 1 < n(B) <
2
o (X,Sy+ B) is a half-toric surface for a prime dwisor B, and B is an end
component of the linear chain Sy + B.

Proof. The pair (X, Sy) is an L-surface by [2I, Prop. 4.3]. Hence, X is rational,
—(Kx + Sf) is semi-ample, and Sy is a linear chain of rational curves by [21],
Thm. 4.5]. In particular, if (X,S; + B) is a half-toric surface, then B is an end
component of Sy + B. We have known the following:
o If n(Sy) # p(X) or if the union S; of non-end components of S is not
negative definite, then (X, Sy + B) is a toric surface for a prime divisor B
by [21, Thm. 4.5].
o If —(Kx + Sy) is not big, then (X, Sy + B) is a toric surface or a half-toric
surface for a prime divisor B by [2I, Cor. 4.6].
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o If (Kx +Sy)C < 0 for two end components C of S¢, then (X, Sy + B) is a
toric surface for a reduced divisor B with 1 < n(B) < 2 by Theorem B.13

Therefore, we may assume that p(X) = n(Sy), —(Kx + Sy) is big, and SEC is
negative definite. Moreover, for end components C; and C of Sy, we may assume
that C7 < 0, (Kx + Sf)C1 <0, and (Kx + Sf)Co = 0 (cf. [2I, Thm. 4.5(6)]).

Let 0: X — V be the contraction morphism of S; and set Ay := o(C1) and
As := 0(Cs). We shall show that (V, Ay, Ag) is a Vg-surface. Now, p(V) = p(X) —
(n(Sy) —2) =2, and

Kx + 5 =0"(Ky + A1+ Ag)
by 0,57 = A1+ Ag and by Ox (Kx + Sf)|SEc ~ (’)S? (cf. [2I, Thm. 4.5(7)]). Hence,
(V, A1 + Ag) is log-canonical, —(Ky + A1 + Ag) is nef and big,

(Kv + A1+ Ao)Ay = (Kx + Sp)C1 <0, (Ky + Ay +Ay)Ay = (Kx + Sp)Ca = 0,

and AZ < 0 by the Hodge index theorem. By [21, Thm. 4.5], NE(X) is a polyhedral
cone generated by numerical classes of prime components of S;. Hence, NE(V) is
generated by cl(A1) and cl(Az), and we have A? < 0. Therefore, (V,A1,Az) is a
V-surface (cf. Definition E.T]).

The endomorphism f descends to an endomorphism fy: V. — V with Sy, =
0.5 = Ay + Ay by [20, Lems. 3.14 and 3.15(3)]. Hence, (V,A1,A5) is an Va-
surface or an ordinary Vg-surface, by Lemma There is a prime divisor By
such that (V, A; + Ay + By ) is a half-toric surface by Theorems .10 and L2211 For
the proper transform B of By in X, (X, Sy + B) is also a half-toric surface by [L8]
Prop. 7.5], since o is an isomorphism over V' \ Ay D B. Thus, we are done. ([

4.5. Structure of an extraordinary Vg-surface. We shall determine the struc-
ture of an extraordinary Vg-surface in Theorem [£.29 below by using the notion of
(2n + 1, 2)-blowings up defined as follows:

Definition 4.24. Let X be a non-singular surface and let C' be a non-singular
curve on X with a point P € C. For an integer n > 0, a bimeromorphic morphism
p:'Y — X is called a (2n+ 1, 2)-blowing up at P with respect to (X, C), if it is the
blowing up along the following O x-ideal J,,, where m stands for the maximal ideal
at P:

e If n =0, then m? C Jy # m and Ox (—C) + Jy = m;

e If n >0, then

Jn = m2ntl 4 m”+1(9x(—0) + Ox(—QC).

Ezample 4.25. We shall give an example of (2n + 1, 2)-blowings up as a toric mor-
phism. Let X is the affine toric surface Tn(o) = Specan C[o¥ N M] =~ C? for a free
abelian group N = Ze; @ Ze, of rank 2 with a free basis (e, e2) and for the standard
cone o = R>gpe; + Rspez in Ng = N ® R, where M = Hom(N,Z) and oV is the
dual cone of o. Let (m1,ms2) be the basis of M dual to (e1,e2), i.e., (m;,e;) = d; ;
for the canonical pairing {( , }: M x N = Z. Then oV = R>omi + R>gmg. For
1 =1, 2, let t; be the function on X corresponding to m; in the semi-group ring
CleY N M], and let D; be the prime divisor on X corresponding to the ray R>ge;,
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which is a face of o. Then (t1,t3) is a coordinate of X ~ C?, and D; = {t; = 0}
fori=1, 2.
We set v, := (2n + 1)ey + 2e2, and consider cones

o1 = Rzoel + Rzovn and oy = Rzovn + Rzoeg

in Ng. Then o7 and o2 give a subdivision of o and the faces of o1 and o5 form a
fan A of N. Let Y be the toric surface Ty(A) = Tn(o1) U Tny(o2) with a proper
birational toric morphism p: Y — X.

For i = 1, 2, let @; be the point of Tn(o;) forming the 0-dimensional orbit of
the torus Ty = Specan C[M]. We have the following:

(1) (Y,Q1) is an A;-singularity;

(2) if n =0, then SingY = {@Q1 };

(3) ifn > 0, then SingY = {Q1,Q2}, and (Y, Q2) is a cyclic quotient singularity

of type (2n + 1,2).

These are shown by [23] Prop 1.24] applied to the affine toric surface Tn(o1) or
Tn(oz). In fact, (e1,ne; + es) is a basis of N and v, = e; + 2(ne; + e3), which
imply (). Similarly, (es,e;) is a basis of N and v, = 2es + (2n+ 1)e;, which imply
@), since 2 < 2n + 1 when n > 0. When n = 0, (vg, e2) = (€1 + 2es, €2) is a basis
of N, and hence, Q2 ¢ SingY. Thus, (@) holds.

Let I be the prime divisor on Y corresponding to the ray R>ov,, which is a
unique p-exceptional prime divisor. For ¢ = 1, 2, let D} be the proper transform
of D; in Y, which corresponds to the ray Rsge; € A. Then D;NT = {Q;}, and
by [@)-@B]), we see that 2(2n + 1)T" is Cartier and that DiT" = 1/2 and DiT" =
1/(2n+1). In particular, the y-ample invertible sheaf Oy (—2(2n+1)) is generated
by I, :== H(Y, Oy (—=2(2n+1)T")) (cf. [4, §3.4]). Here, the ideal I, C H°(Y,Oy) =
H°(X,0x) is generated by monomials ¢{'¢3? for a1, as € Z>¢ such that

(aymy 4+ asma,vy) = (2n + 1)ag + 2a2 > 2(2n + 1).
Hence, I,, is generated by t3, t1t5, and 3" 1. If n > 0, then
I, = m*" ™ 4 m" MOy (~Dy) + Ox(—2Dy),

for the maximal ideal m at the origin. If n = 0, then Iy = m? + Ox(—D3), and
we have m? C Iy # m and Iy + Ox(—D;) = m. Therefore, u: ¥ — X is a
(2n + 1, 2)-blowing up at the origin with respect to (X, Dy).

Lemma 4.26. Let X be a non-singular surface and let C be a non-singular curve
on X with a point P € C. Let u: Y — X be a (2n + 1,2)-blowing up at P with
respect to (X, C) for an integer n > 0. Then'Y is a normal surface, p has a unique
exceptional divisor T isomorphic to P', and the following hold on SingY:

(1) For the proper transform C' of C in'Y, the intersection C' N T consists of
one point Q1, in which (Y,Q1) is an Aq-singularity and (Y,C") is 1-log-
terminal at Q1.

(2) If n =0, then SingY = {Q1}. If n > 1, then SingY = {Q1,Q2} for a
point Q2 € T\ {Q1}, and (Y,Q2) is a cyclic quotient singularity of type
(2n+1,2).
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Moreover, p*C = C’' + (2n+ 1)T', C'T =1/2, and Ky +C' = p*(Kx +C) +T.

Proof. If n > 0, then J, is defined only by m and Ox(—C). If n = 0, then
Jo = m? + Ox(—CT) for a non-singular curve C't defined locally on X such that
C+ C' is normal crossing at P. By embedding an open neighborhood of P into C2,
we may assume that X = Tn(e), C = Dy, and p: Y — X is the toric morphism
Tn(A) — Tn(o) in Example We proceed the argument in Example
Assertions (@) and (@), and the equalities C'T" = D|T" = 1/2 have been shown in
Example By considering principal divisors of functions ¢; and t5, we have

w Dy = (my,e1) D] + (mq,v,)T = D] + (2n+ 1),
w* Dy = (ma, e3) D) + (mag,v,)T = D) + 2T
(cf. [, §3.3, Lem.]). On the other hand, Ky + D] +T'+ D} = u*(Kx + D1+ D3) ~ 0,

since p is a toric morphism. Hence,
Ky + Dy =p"(Kx +D1)+pu*Dy — Dy —T = pu*(Kx + Dy) +T.
Since C' is identified with Dy, the required properties are all verified. (Il

Proposition 4.27. Let X be a non-singular surface and let C' be a non-singular
curve on X with a point P € C. Let u: Y — X be a bimeromorphic morphism
from a normal surface Y with a unique u-exceptional prime divisor I' such that, for
the proper transform C' of C inY,

e C'NT consists of one point, at which Y has an Ai-singularity, and
o TC' =1/2.
Then p is a (2n+ 1,2)-blowing up at P with respect to (X, C) for an integer n > 0.

Proof. We set Q1 to be the intersection point of C and I'. Let 3: Y - Y be
the blowing up at Q1. Then Y is non- singular along the exceptional (—2)-curve
©:=p" 10, and we have CNT = @ and CO =TO = 1 for proper transforms C
and T of ' and T in Y respectively. In partlcular SlngY cT. Let v: Y - Y be
the minimal resolution of singularities and let C 97 and T be proper transforms
in Y of 6‘, O, and f, respectively. Then the composite 3 o v: Y — Y is the
minimal resolution of singularities, the further composite ¢ := o fowv: Y = X is
a bimeromorphic morphism of non-singular surfaces, and

¢ (P)=v (BT =0+T+E
for a v-exceptional reduced divisor E. Here, E = 0 if and only if v is an iso-
morphism. By construction, I' is a unique (—1)-curve in ¢~}(P). Let v: Y — Y

be the blowdown of I'. Then we have a bimeromorphic morphism ¢: Y — X of
non-singular surfaces such that ¢ = ¢ o . Now, we have a commutative diagram:

}7 B

LA — Y
\l

m
4‘#))(.

Y

<l=—=2
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The image ¥(©) in Y is a unique (—1)-curve in (¢)~!(P), and it intersects the
proper transform 7(5) of C'in Y. By Lemma [Z4] ’y*(é + E) is a linear chain of
rational curves with 'y(é) as an end component, and any prime component of v, E
is a (—2)-curve when E # 0. Hence, if E # 0, then F has a prime decomposition

>, E; for some integer n > 0 such that

&) r Ey Ey E,
[} [ ] [ ] e ——— .- 'Y
-2 -1 -3 -2 -2

is a dual graph of ¢~ (P), where —1, —2, and —3 indicate self-intersection numbers.
Note that if n =1, then E = Ej is a (—3)-curve. Note also that if n = 0, then the
linear chain ¢~!(P) is the union of the (—2)-curve © and the (—1)-curve .

We shall prove the assertion by toric descriptions of bimeromorphic morphisms ¢,
¢, and p1. Let N = Zey ©Zes, o0 = Rsge; +Rxoez, vy, and A be as in Example E25
We set u; = ie; + eq for ¢ > 0, and consider cones

o) = Ryou; + Ryougy, Ontl,00 = Rxolnyr +Rxpeq,

o)1 = R>oun + R>ovp, O (n)2 = R>ovn + R>ouny1,

where v, = u, + Upy1 = (2n + 1)e; + 2e2. Then cones ;) for 0 < i < n and
On+1,00 give a subdivision of o, and cones o (,); and o (,), give a subdivision of
om)- Let A be the fan of N consisting of faces of cones o ;) for 0 < i < n and
Ontl,00- Let A be the fan of N consisting of faces of cones o ;) for 0 <7 <n —1,
O (n)15 O(n)2, and 041,00 Then we have a commutative diagram

Tn(A) —— Tn(A)

l I

TN(A) —_— TN(U')

of associated proper birational toric morphisms. By replacing X with an open
neighborhood of P, we may assume that X is an open subset of Ty(o) in which C =
D1|x and {P} = DN D, for the boundary prime divisors Dy and D5 corresponding
to rays R>ge; and R>geg, respectively. Then ¢:Y — X is isomorphic to the base
change of Tn(A) — Tn(o) by X < Tn(o). In fact, ¢ is a succession of blowings
up at points of the proper transforms of C' lying over P.

For describing «, we first assume that n = 0. Then ¢ is just the blowing up
at P. Let P be the center of the blowing up ~: Y - Y, which is contained in
v(©) \ 7(C). For the open immersion X < Ty(o) and for the prime divisor Dy
corresponding to the ray Rsges, we may assume that P is just the intersection
point of proper transforms of C' = D;|x and Dg|x in Y. Then + is isomorphic to
the base change of Tn(A) — Tn(A) by the open immersion Y < Ty(2A). Next,
assume that n > 0. Then the center of v: Y 5 Y is just the intersection point of
v(©) and y(E)). By the open immersion Y < Ty(Z), this point corresponds to
the cone o) = o)1 Uoye) € A. Thus, v is isomorphic to the base change of

Tn(A) — Tn(A) by the open immersion Y < Ty (A).
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By the description of 7, we see that ¢ is isomorphic to the base change of
TN(A) — Tn(o) by the open immersion X < Ty(o). The morphism S o v is just
the contraction morphism of all the prime components of ¢~!(P) except r. Thus,
@Y — X is also isomorphic to base change of Tn(A) — Tn(o) by X — Tn(o).
Hence, we have toric descriptions of j, ¢, and ¢. As a consequence, p is a (2n+1, 2)-

blowing up at P by Example O

By the notion of (2n + 1,2)-blowing up, we shall construct a Vg-surface from a
certain projective toric surface.

Lemma 4.28. Let (X, D) be a projective toric surface of Picard number 2 with a
prime decomposition D = Ay + As + Cy + Co of the boundary divisor D such that
(i) AANCr=A4NCy =10,
(ii) C1Cy =1/2,
(iii) A? <0 and A3 < 0.

In particular, D is a cyclic chain of rational curves with

Ay e * Ay

Cre—— ()
as a dual graph. Let n be a non-negative integer satisfying
(IV-6) — Ai(n+1/2 - C?) > (A2C))%
For a point P € Cy \ (A2 + E2), let u: Y — X be a birational morphism such that

e 1 is an isomorphism over X \ {P}
o 1 is a (2n + 1,2)-blowing up at P with respect to (X,C) over an open
neighborhood of P.
Then the proper transform C1 of C1 in'Y is negative definite, and one can consider
the contraction morphism'Y — V of C{. Let A; be the proper transform of A; in
V fori=1,2. Then (V,A1,As) is an extraordinary Vg-surface.

Proof. By Lemmald26, u*Cy = C1+(2n+1)I' and C1T" = 1/2 for the p-exceptional
prime divisor I'. Hence, (C})? = C? — (2n +1)/2 < 0 by () and (IV=6). Let
¢: Y — V be the contraction morphism of C7. Then p(V) = p(Y)—1 = p(X) =2,
and p*A; is the proper transform of A; in Y for ¢ = 1, 2. Here, (*A; = p* Ay, and
we have A? = A? < 0 by (). The divisor (~'Ay = pu* Ay + C} is negative definite
by (i) and ([V=6)), since (u*As)? = A% <0, (C})? < 0, and

(1% A2)%(C1)? — (1 A2)C1)? = A3(CT — (20 +1)/2) — (A2C1)* > 0.
In particular, A3 < 0. Since Kx + D ~ 0, we have

Ky + A1+ pAs + Cl = p" (Kx + A1 + Ay + C1) + T ~ T — p*Cy
by Lemma[L.26l Moreover, since I'C| = (u*C2)Cy = C1C2 = 1/2 (cf. (@), we have
(IV-7) Ky + p* Ay + p*As + O = C(Ky + A1 + Ag).



64

In particular, (V,A; + As) is log-canonical, since (Y, pu*A4; + pu*Ay + C}) is log-
canonical (cf. Lemma 26]). Moreover, for i = 1, 2, we have

= (Kx + A1+ Ay + C1)A;, = —CLA;.

Hence, (Ky +A1+A2)A; <0and (Ky +A1+A2)A2 = 0 by (@) and (). Therefore,
(V, A1, As) is a Vp-surface.
We shall show that (V, A1, Ag) is extraordinary. Note that

CiNSingY C (C; Np*Az) U (CyNu*Cqy) U (CyNT),

where Cf N p*Cy (resp. C7 NT) consists of an Aj-singular point by () (resp. by
Lemma E20/)). Let ¥ — Y be the minimal resolution of singularities at the
intersection point of C] and p*As. Then the composite Y = Vis just the standard
partial resolution of the singularity at the second external singular locus Yo of
(V,A1,As), by (V=D). The proper transform of I' in Y is a negative curve not
contained in the inverse image of Ay + Ay by Y — V. Therefore, (V,A1,As) is
extraordinary. O

Theorem 4.29. Let (V, A1, As) be an extraordinary Vg-surface. Then it is obtained
by the method in Lemma from a projective toric surface of Picard number 2
and a non-negative integer satisfying conditions [{)-(@@) and the inequality ([V-0))
in Lemma A28

Proof. Let v:' Y — V be the standard partial resolution of the second external
singular locus Yo of (V, A1, A2). Then

(IV—S) Ky+S:V*(Kv+A1 +A2)

for S := v~ 1(A; +Az). Let Ay,; be the proper transform of A; in Y for ¢ =1, 2, and
set F := v~ !¥,. Then FE is a linear chain of rational curves with S = Ay 1+Ay+E,
and Yy := E N SingY consists of two Aj-singular points, which are contained
C'N Eyeq for the end component C' of E not intersecting Ay 2. By assumption, there
is a negative curve I' on Y not contained in v~*(A; + Ag). The image v(T') is not
a point nor a negative curve by Lemma Z(]). By the Hodge index theorem and

by ([V-8)) and Lemma EA2]), we have

(IV-9) (Ky +S)I' = (Kv + Ay + A)v(T') <0.

Then I'NS = {P} for a point P € E by [18, Lem. 2.18] and by X2 C v(T'). Let
v:Y — X be the contraction morphism of T, and set Sx := v(95), Cx := v(C),
and Px := v(P). Then (X, Sx) is log-canonical and is 1-log-terminal at Px by
(IV=9) and [19, Lem. 2.4]. In particular, Px € (Sx)reg, and hence, P € S,ee. By
(IV=]), there is a positive rational number a such that

(IV—IO) Ky—FS:’y*(Kx—FS)()—FOzF.

Note that —(Kx + Sx) is nef and big by ([V=8) and Lemma FLAI[2]).
Let A be the unique prime component of S containing P. Then (Kx+Sx)v(A) <
0 by (IV=10)), and y(A) is an end component of the linear chain Sx of rational curves
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by [18, Prop. 3.29]. Therefore, A = C, and P € C' N E,¢. Let @ be a point in
Yy \T = Xy \ {P}. Then Qx := 7(Q) is an Aj-singular point of X, which is
contained in the end component Cx of Sx. Since (Kx + Sx)Cx < 0, we have
{@x} =Cx N(Sx)reg NSing X and (Kx + Sx)Cx = —1/2 by [18, Prop. 3.29(F)].
Hence, Px € X,¢e and we have

(IV-11) aCT =1/2

by (IV-1I0) and by C(Ky + S) = Cv*(Ky + A1 + Az) = 0 (cf. (V=]))). Since 2C

is Cartier along C' N Eyeg, we have a~! = 2CT € Z. On the other hand, there is a

positive integer d such that v*(Sx) = S + dI', since Sx is Cartier at Px. Then
Ky =v"Kx + (a+d)T

by (IV=10). Here, o + d € Z, since Kx is Cartier at Px. Therefore, « = 1 and

CT = ST =1/2. As a consequence, {P,Q} = Zy.

By Proposition 27, v: Y — X is a (2n + 1,2)-blowing up at Px with respect
to (X, Sx) for an integer n > 0. Now, p(Y) = p(V) + n(E) = n(S), and p(X) =
pY)—1=mn(S)—1 = n(Sx) — 1. Since (X,Sx) is log-canonical and since
—(Kx + Sx) is nef and big, there is a prime divisor C; such that (X, Sx + C;() is
a toric surface, by [I8, Thm. 1.3].

We set Ax,; := y(Ayy;) for i = 1, 2, and set Ex := v.E. Then Sx = Ax1 +
Axs+ Ex and CL ~ —(Kx 4 Sx). We shall show that

(a) A§(71 <0, AX71 NEx =0, and AXJ N AX72 #* 0;
(b) Ax1NCk #0and Ax,NCL =0
(¢) CxCh =1/2 and Cx N C = {Qx};
(d) Ax2+ Ex — Cx is negative definite.
We have (@), since A? < 0 and A; N Ay # 0 and since v and v are isomorphisms

around Ay ;. By (IV=8) and (IV=10)), we have
ClAx,; = —(Kv + A1 + Ag)A,
for 4 = 1, 2. This shows (b)) by Definition I)l). Moreover,
CLCOx = (I = (Ky + Sy))C = 1/2
by ([V=10) with o = 1. This implies (@), since {Qx} = Cx N (Sx )reg N Sing X. We
have (d)) by (A2)? < 0 and by
v Axz+ Ex —Cx) =Aya+ E—C=v"'A, — C.

Let Y — Y (resp. X — X) be the contraction morphism of E — C (resp.
Ex — Cx). Then v and v induce birational morphisms 7: ¥ — V and 7: Y — X
with a commutative diagram
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Let A; be the proper transform of A; in X for i = 1, 2, and let C; (resp. Cy) be
the images of C' (resp. CT) under Y — X — X. Then (X, A; + Ay + C; + Cy)
is a toric surface of Picard number 2 satisfying conditions ({)—(i) of Lemma 28]
by @)-(d) above. The integer n satisfies (IV=6) in Lemma 28] since (A3)? < 0
and since v~ 'A; is the union of the proper transforms of A, and C; in Y. By
construction, ¥ is a (2n + 1, 2)-blowing up and 7 is the contraction morphism of
the proper transform of Cy. Therefore, (V, A1, As) is obtained by the method of
Lemma E28 from (X, A; + Ay + C; + Cy). Thus, we are done. O

5. THE CASE OF PICARD NUMBER 2

We shall determine the structure of a normal projective surface X admitting a
non-isomorphic surjective endomorphism f such that p(X) = 2 and Kx + Sy is not
pseudo-effective. We consider the following three cases for X:

(I) X is irrational or —Kx is not big;
(IT) X is rational, —Kx is big, and X contains a negative curve;
(ITI) X is rational, —Kx is big, and X contains no negative curve.

Note that (R2)) in the introduction is divided into ([Il) and ([[II)). The cases (T, (),
and ([IIl) are treated separately in Sections 5.1l [5.2] and 5.3 below. Theorem 5.1 in
Section [5.1lis a structure theorem for (I). Theorem in Section is a structure
theorem for () and ([II). We shall prove another structure theorem for ([II) as
Theorem B.I7 in Section 53] in which we do not assume that Kx + Sy is not
pseudo-effective. Theorem (.17 implies Theorem in the case ([I)).

5.1. Case (I). We shall prove:

Theorem 5.1. Let X be a normal projective surface such that p(X) = 2. Assume
either that X is irrational or that —Kx is not big. Then there is a non-isomorphic
surjective endomorphism f of X such that Kx + Sy is not pseudo-effective if and
only if there is a finite Galois cover v: V. — X étale in codimension 1 from a
normal projective surface V' satisfying one of the following conditions:

(1) V ~ P! x T for a non-singular projective curve T of genus > 0;

(2) V is a P*-bundle over an elliptic curve associated with an indecomposable
locally free sheaf of rank 2 degree 0;

(3) V is a P-bundle over an elliptic curve having a negative section.

Moreover, for a non-isomorphic surjective endomorphism f: X — X with Kx + Sy

being not pseudo-effective, there exist an endomorphism fy of V and a positive
integer k such that vo fy = fFouv.

Note that Theorem [l is not deduced from [20, Thm. 4.16] and [2T, Thm. 4.7].
After showing preliminary results, which are similar to some results in [21], we shall
prove Theorem [5.T] at the end of Section EIl We begin with:

Lemma 5.2. Let G be a finite group acting on P*. Then there is a non-isomorphic
surjective endomorphism f: P' — P! such that f is G-equivariant and deg Sy < 1.
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Proof. We may assume that G is a subgroup of SL(2,C). We first consider the case
where G is a cyclic group or a dihedral group, i.e., G ~Z/mZ or G ~7Z/m x Z/27
for an integer m > 2. For a homogeneous coordinate (x,y) of P!, we may assume
that a generator of Z/mZ acts as (x:y) — ((x:{"'y) for a primitive m-th root ¢
of unity and that when G is dihedral, a generator of Z/2Z acts as (x:y) — (—y:x).
Let f: P! — P! be an endomorphism defined by

(x:y) = (7 4 xy®™ 2™y 4y,
Then f is G-equivariant of degree 2m + 1. If the ramification index of f at a point
is 2m + 1, then
a(x®" T+ xy®™) + b(x*"y + y* ) = (ax + By)* !
for some (a,b), (o, B) € C%\ {(0,0)}, and by comparing coefficients, we have
a=ao®"" = 2m+ Dap* and b= = 2m+1)a*3:

This is impossible. This implies that Sy = 0. In fact, if P € Sy, then f*(f(P)) =
(deg f)P. Thus, the assertion holds if G is cyclic or dihedral.

It suffices to prove that G is cyclic or dihedral if there is a G-equivariant endo-
morphism f satisfying deg Sy > 2. Here, deg Sy = 2 by the equality Kx + Sy =
[*(Kx +Sf)+ Ay (cf. 20, Lem. 2.17]). Thus, f*(f(P)) = (deg f)P for two points
P € S¢. By composing f with an automorphism, we may assume that f is given
by (x:y) — (x™:y") for an integer n > 1, where Sy consists of (1:0) and (0:1). If

a matrix
o a b
“\e d

in SL(2,C) is contained in G, then o o f = f o o implies that
(ax™ + by" : cx™ +dy"™) = ((ax + by)" : (cx + dy)"),
or equivalently,

(ax”™ +by")(cx + dy)" = (ax + by)" (cx" + dy™)
as a homogeneous polynomial: By comparing coefficients of monomials x?7, x?"~ !y,
xy?"~1 and y?", we have

ac” = a", nac" 'd =na" " tbe, nbed ! =nab”td, bd" = b"d.

If ac # 0, then a” ! = ¢! and ad = be, a contradiction. If bd # 0, then
b"~1 = d"! and ad = bc, a contradiction. Hence, ac = bd = 0, i.e.,

o a 0 or 0 b
~\0 ot bt 0

for some a, b € C\ {0}. This implies that G is cyclic or dihedral. Thus, we are
done. [l

Corollary 5.3. Let X be a normal projective surface with a finite Galois cover
V — X étale in codimension 1 such that V ~ P! x T for a non-singular projective
curve T and that the Galois group Gal(V/T) preserves the second projection V.— T.
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Then there is a non-isomorphic surjective endomorphism f of X such that Kx +Sf
is mot pseudo-effective.

Proof. 1t is enough to construct a non-isomorphic surjective endomorphism g of V'
such that g is equivariant under G = Gal(V/X) and that Ky + S, is not pseudo-
effective. In fact, g induces a non-isomorphic surjective endomorphism f of X such
that v o g = f o v by the G-equivariance, where v: V — X is the Galois cover,
and we have deg f = degg > 1 and Sy = v*S¢ (cf. [20, Lem. 2.19(3)]). Moreover,
Ky + Sy =v*(Kx + Sy), since v is étale in codimension 1. Thus, Kx + Sy is not
pseudo-effective.

The action of G on V = P! x T is diagonal by [21, Lem. 2.3]. By Lemma [5.2]
there is a non-isomorphic surjective endomorphism h: P! — P! such that h is
equivariant under the action of G on P! and that degS;, < 1. We set g := h x idp
as an endomorphism of V. Then g is G-equivariant, degg = degh > 1, and
S, = pi(Sp) for the first projection p;: V — P! (cf. [20, Lem. 2.19(2)]). Moreover,
(Kv + 84)F = deg(Kp1 + Sp) < 0 for any fiber F' of the second projection V' — T.
Thus, Ky + S is not pseudo-effective, and we are done. O

Lemma 5.4. Let T be an elliptic curve and consider it as a complex torus by fizing
an origin. Let p,: T — T be the multiplication map by an integer m > 1. Then:

(1) For any surjective endomorphism h: T — T, there is a surjective endomor-
phism B : T — T such that pm oh' = ho .
(2) If a finite group acts on T, then there is a finite group G' acting on T with
a surjective homomorphism p: G' — G such that i, is equivariant under
actions of G' and G with respect to p and that the kernel of p is isomorphic
to the Galois group of py,.
(3) Let m: V. — T be a P-bundle and let 7': V' — T be the base change of ™
by oy : T — T
(a) If [ is a surjective endomorphism of V', then there is a surjective en-
domorphism f' of V' such that po f' = f op for the first projection
p: V/:VXTT%V.

(b) If a finite group G acts on V, then there is a finite group G’ acting
on V' with a surjective homomorphism p: G' — G such that V! — V
s equivariant under actions of G' and G with respect to p and that
G'\V'~G\V.

Proof. ([@): The endomorphism h is expressed as the composite tr(b) oy of a surjec-
tive group homomorphism ¢: T — T and the translation morphism tr(b) by b € T,
which is given by ¢ + t + b for t € T. We take a point b’ € T such that u,, (') = b.
Then pi,, o h' = h oy, for the endomorphism A’ = tr(b') o p: T/ — T".

@): Let G’ be the set of pairs (¢, 0) of an automorphism ¢ of T' and an element
o € G such that p,, o ¢ = L, o py,, where L, stands for the automorphism of T
defined as the left action of o. Then G is a group by composition (¢1, 01)(¢2,02) =
(¢1 009, 0102), and we have a group homomorphism p: G’ — G defined by p(¢,0) =
o. We have another group homomorphism G’ — Aut(T’) by (¢,0) — ¢. In
particular, G’ acts on T, and p,, is equivariant under the actions of G’ and G with
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respect to p. By (), p is surjective, and the kernel of p is identified with the Galois
group of p, in Aut(T").

(Bal): The endomorphism f induces a surjective endomorphism h of T such
that w o f = h ox by a universal property of Albanese morphism. We have a
surjective endomorphism h’ of T such that u,, o ' = ho u, by [{). Hence,
fxh':VxT—V xT induces a surjective endomorphism f’ of V! =V x+ T such
that po f' = fop (cf. 20, Lem. 4.1]).

(BB): By the universality of Albanese morphism, the finite group G acts on T
so that 7 is G-equivariant. By (2)), we have a finite group G’ acting on T with a
surjective homomorphism p: G — G such that u,, is equivariant under actions of
G’ and G with respect to p. Then G’ acts on V x T diagonally so that the action
on the first factor V is given by that of G through p and that the action on the
second factor T is given as that of G’. It induces an action of G’ on V! =V x0T
such that p: V' — V is equivariant under actions of G’ and G with respect to p.
By (@), we may assume that the kernel of p is identified with the Galois group of
p. Hence, G'\V’ ~ G\ V. Thus, we are done. O

Lemma 5.5. Let X be a P'-bundle over an elliptic curve T associated with Or @© L
for an invertible sheaf L such that deg L = 0 but L is not a torsion element of
Pic(T'). Let ©1 and Oz be sections of X — T corresponding to projections Op@®L —
Or and Or ® L — L, respectively. Then:

(1) If a prime divisor T on X dominates T and satisfies T? = 0, then T = ©;
or ©,.

(2) If an endomorphism f: X — X is surjective, then (f~10, f~10,) =
(@1,@2) or (fil@l,fil@z) = (@2,@1).

(3) If f: X — X is a non-isomorphic surjective endomorphism, then Sy =
O + 6, ande+SfN0.

Proof. We have ©2 = ©2 = 0 and Ox(03) ~ Ox(0;) ® 7*L for the structure
morphism 7: X — T. The pseudo-effective cone NE(X) of X is generated by the
numerical class of a fiber of # and by cl(©1) = cl(©3). In particular, X has no
negative curve.

(@): There exist a positive integer m and a divisor ¢ on T such that ' ~ m©, +
m*e, and we have dege = 0 by

0 =17 =m?03 + 2mBOyr*e = 2mdege.

Hence, '©; = 'Oy = 0. Assume that I' # ©;. Then 'N©O; =0, and ¢ ~ 0 by
I'le, ~ ¢. Hence, I' ~ mO,, and moreover, I' = Oq, since O(I'|e,) ~ L™ has no
non-zero global section. Therefore, I' = ©1 or Os.

@): Let T be a prime component of f~1©; for i = 1 or 2. Then I'? = 0, since
f71©; is not big and I'? > 0. Thus, I' = ©; or ©, by (). This proves (2.

@): By @), ©1 + Oz is f-completely invariant and Kx + O1 + ©3 ~ 0. Thus,
S§ < ©1 4 O by [20, Thm. 2.24]. Since ©; & O, there is a positive integer d
such that (f*(")h f*@g) = (d@l, d@g) or (f*(")l, f*@g) = (d@g, d@1) Ifd > 1, then
St =01+ 03 and Kx + S§ ~ 0. Therefore, it is enough to prove that d > 1.
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Let h: T — T be the surjective endomorphism induced by f, which satisfies
mof = hom Let mp: X, — T be the base change of m# by h. Then X; ~
Pr(Or @ h*L), and we have a commutative diagram

f
5 s

XX, —2>X

Nk

T—— T.

Here, d > 1 if and only if deg ¢ > 1. Assume that deg¢ = 1. Then deg f = degv =
degh > 1, and the pullback homomorphism h*: Pic?(T) — Pic’(T) is a surjection
whose kernel is a finite group of order deg h. In particular, h*L is also not a torsion
element of Pic’(T'). The inverse image h* £ is not isomorphic to £ nor L&, In fact,
if h*£ ~ L, then £ is contained in the kernel of h* —id: Pic®(T) — Pic’(T"), which
is also a finite group (cf. [I7, II, §7, Cor. 2]). This is a contradiction, since £ is not a
torsion element. Similarly, we have a contradiction by assuming that h*L£ ~ £~
Therefore, X, # X as a P!-bundle over 7. This contradicts deg¢ = 1. Thus,
d > 1, and we are done. O

Now, we are ready to prove Theorem (.11

Proof of Theorem 5.1l First, we shall prove the “only if” part and the last assertion.
Let X be a normal projective surface such that p(X) = 2 and that X is irrational
or —Kx is not big. Let f be a non-isomorphic surjective endomorphism of X such
that Kx + Sy is not pseudo-effective. Then Kx is also not pseudo-effective. Thus,
we can apply [20, Thm. 4.16] for irrational X, and can apply [2I, Thm. 4.7] for X
with non-big —Kx. Consequently, there is a finite Galois cover v: V' — X étale in
codimension 1 with an endomorphism fi- of X such that v o fy = f* o v for some
k > 0 and that either

e V ~ P! x T for an irrational curve T, i.e., Theorem .Y holds, or
e V is a Pl-bundle over an elliptic curve 7.

Note that, in [20, Thm. 4.16(1)], we can take the finite morphism v: P! x T'— X
as a Galois cover by the proof there which uses [20, Thm. 4.9]. Thus, for the proof
of “only if” part and the last assertion, we may assume that V is a non-trivial

P-bundle over an elliptic curve T. By [21, Fact 2.23], we may assume that one of
the following holds for V:

(A) V =Pr(€) for a stable locally free sheaf £ of rank 2 degree 1;
(B) V =Pp(Or @ L) for an invertible sheaf £ of degree 0.

If (&) holds, then the base change V' = V x¢T — T of V — T by the multiplication
map po: T — T by 2 is a trivial P-bundle by [21, Fact 2.23(C)], where we consider
T as a complex Lie group by fixing an origin. Here, the endomorphism fy lifts to an
endomorphism of V/ and the composite V' — V — X is Galois by Lemma BA[).
Thus, in this case, Theorem BI(I) holds for V' — X as well as the last assertion
of Theorem Bl If (B]) holds, then £ is a torsion element by Lemma BEBIB]), and
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hence, u} £ ~ Or for the multiplication map pm,: T — T by a certain positive
integer m with respect to a complex Lie group structure of 7. In particular, the
base change V! — T of V — T by p,, is a trivial P'-bundle. Thus, in this case,
Theorem BEII() holds for V! — X as well as the last assertion of Theorem B by
Lemma B4[@), as in the same argument as above. This proves the “only if” part
and the last assertion of Theorem [5.11

Next, we shall prove the “if” part. We have already proved it in Corollary £.3]
in the case where Theorem B[ is satisfied. As in the argument in the proof of
Corollary 2.3 it suffices to construct a non-isomorphic surjective endomorphism g
of V' such that g is equivariant under the action of the Galois group of v: V —
X and that Ky + 5, is not pseudo-effective. If Theorem [EII[) holds, then the
endomorphism ¢ in [2I, Cor. 2.27] is an expected one. In fact, S, is just the
negative section and Ky + S, is not pseudo-effective. If Theorem [EII2) holds,
then we have a G-equivariant étale non-isomorphic endomorphism g of V' by [21],
Prop. 2.25(2)], where Ky +S,; = Ky is not pseudo-effective. Thus, we are done. [

5.2. Case (II). The following is a structure theorem for cases ([I) and (III):

Theorem 5.6. Let f: X — X be a non-isomorphic surjective endomorphism of a
normal projective rational surface X such that p(X) =2, —Kx s big, and Kx+S§
is not pseudo-effective. Then one of the following holds:

(1) There exist a finite Galois cover v: X' — X étale in codimension 1 and an
endomorphism f': X' — X' such that
o X' is a P'-bundle over P! or over an elliptic curve,
o the Galois group of v preserves the P'-bundle structure, and
° yof’:fkoyforsomek>0.
(2) The pair (X,S§ + B) is a toric surface for a non-zero reduced divisor B
having at most two prime components.
(3) The pair (X, Sy + B) is a half-toric surface for a prime divisor B, and B
is an end component of the linear chain Sy + B.

Remark 5.7. The condition () has a meaning only when X’ ~ P! x P!. In fact, if
X' % P! x P!, then either X’ is a P!-bundle over an elliptic curve or X’ admits a
negative section. In both cases, any automorphism of X’ preserves the P!-bundle
structure. Moreover, when X’ ~ P! x P!, () implies that the action of the Ga-
lois group on X' is diagonal, i.e., it preserves two projections X’ — P! (cf. [21]
Lem. 2.3]).

Remark 5.8. The divisor S contains all the negative curves (cf. [20, Prop. 2.20(3)]),
the pair (X, Sy) is log-canonical (cf. [20, Thm. E}), and —(Kx + Sf) is semi-ample
(cf. |21, Lem. 5.2]). If n(Sy) > 3, then n(Sy) = 3 and there is a prime divisor
B such that (X, B + Sy) is a toric surface by [2I, Thm. 1.3]. Therefore, we may
assume that n(Sy) < 2 for the proof of Theorem

In Section5.2] we shall prove Theorem [5.6in the case where X admits a negative
curve; the proof is at the end of Section[5.2l Before the proof, we assume in addition
that n(Sy) < 2 (cf. Remark [5.8). In particular, the number of negative curves on
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X is 1 or 2. Proposition 5.9 below is a result in the case where X has two negative
curves. When X has a unique negative curve, we have three cases as in Lemma[5. 10
and Propositions 514 B.15] and B.16] below treat these three cases, separately.

Proposition 5.9. Assume that X has two negative curves. Then S is the sum of
these two negative curves, and the following hold:
(1) If —(Kx + Sf) is ample, then (X, Sy + B) is a toric surface for a reduced
divisor B with n(B) = 2.
(2) If —(Kx + Sy) is not ample, then (X, Sy + B) is a half-toric surface for a
prime divisor B.

Proof. Let Cy and Cs be two negative curves. Then Sy = C; + Cy and NE(X) =
R0 cl(C1) + R>ocl(C2) by p(X) = 2 and by the assumption: n(Sy) < 2. Hence,
C1Cy > 0, and Sy is connected. Thus, () follows from Theorem BI4l Assume
that —(Kx + Sy) is not ample. Since Kx + Sy is not nef, we may assume that
(Kx + Sf)C1 < 0. Then (Kx + S¢)Cy = 0, and (X,Cy,C5) is a V-surface (cf.
Definition 1], Remark [5.8). Thus, (@) follows from Theorems FI0] and E21] and
Lemma [£22] d

Lemma 5.10. Assume that X has a unique negative curve C. Then f*C = 6:C
for 6; = (deg f)*/? > 0, and there exists a P'-fibration 7: X — T ~ P' such that
m(C) =T and that one of the following holds for a general fiber F' of m:

(a) (KX + Sf)F <0 and (Kx + Sf)C < 0;

(b) (Kx +Sp)F <0 and (Kx + S;)C =0;

(¢) (Kx + Sf)F =0 and (Kx + Sf)C’ < 0.
Moreover, there is an endomorphism h of T such that mo f = hom and degh = dy.

Proof. The equality f*C = §;C holds by the uniqueness of C' and by (f*C)* =
(deg f)C. Note that Sy > C and that —(Kx + Sf) is semi-ample (cf. Remark (£.8]).
First, we consider the case where (Kx + S§)C' = 0. By the cone theorem (cf.
[20, Thm. 1.9]), there is an extremal ray R of NE(X) such that (Kx + Sf)R < 0.
Thus, NE(X) = R+ R>qcl(C), and we have a P!-fibration 7: X — T ~ P! as the
contraction morphism of R (cf. [20, Thm. 1.10(2)]). Then #(C) =T by CF > 0 for
a general fiber F' of 7, and () holds.

Second, we consider the case where (Kx + Sy)C < 0. Then —(Kx + Sy) is
either ample or (Kx +Sf)? = 0. In fact, if —(Kx +Sy) is big but not ample, then
(Kx+Sy5)C" = 0 for a negative curve C’, which does not exist by assumption. When
—(Kx + Sf) is ample, we have a P!-fibration 7: X — T ~ P! as the contraction
morphism of an extremal ray R of NE(X) such that NE(X) = R+Rxq cl(C); hence,
7(C) =T and (@) holds. When (K x+Sy)? = 0, the semi-ample divisor —(Kx +S¢)
defines a P!-fibration 7: X — T ~ P! such that Ky + Sy is m-numerically trivial;
hence, 7(C) =T and (@) holds.

In any case above, f*: N(X) — N(X) is a scalar map and f*R = R for the
ray R of NE(X) generated by the numerical class of a general fiber F of 7 by [20,
Lem. 3.7], since f*C = §;C. Hence, the last assertion is a consequence of [20]
Lem. 3.16]. d
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Definition 5.11. For the fibration 7: X — T in Lemma (.10, let F' denote a
general fiber. For t € T, we set Gy := 7w~ 1(t), which is a prime divisor by p(X) = 2
(cf. [I8, Prop. 2.33(7)]). We define a positive integer m; by 7*(t) = m:G:, and set
Spi={teT|m > 1}

Remark 5.12. The P!-fibration 7 is smooth over T'\ S, by [I8, Prop. 2.33(4)].
Moreover, the horizontal part S;‘Or of S with respect to 7 is non-singular, (X, S}lor) is

1-log-terminal, and (X, Si}or—i—Gt) is log-canonical for any ¢ € T, by [20, Prop. 3.17].

Lemma 5.13. In Lemma BI0) the following hold:
(1) If (Kx +Sf)F <0, then C is a section of m and is a unique prime compo-
nent of Sy dominating T'.
(2) If a prime component C' of Sy is a section of w, then

(KX + C/)|C’ = KC/ —+ Ztesw(l — l/mt)Qt,
where {Q} := G NC".

Proof. Since Sy > C, we have —2+CF = (Kx +C)F < (Kx + Sy)F. This implies
). We have @) by ([I=6) in Lemma 214l and by Remark O

Proposition 5.14. Assume that Lemma BEI0(@) s satisfied.

(1) If Sy # C, then Sy = C + G, for a set-theoretic fiber G, = 7~ 1(0) of =,
and (X, Sy + B) is a toric surface for a divisor B.

(2) If Sy = C and #S, < 2, then (X, Sy + B) is a toric surface for a divisor
B.

(3) If Sy = C and #Sx > 3, then #S, = 3, and there exist a finite Galois cover
v: X' — X étale in codimension 1 and an endomorphism f': X' — X' such
that vo f' = fov and that X' is a P'-bundle over P with a negative section.

Proof. [Il): We can write Sy = C + G, for some o € T by n(Sf) < 2 and by
Lemma BT3|[), and the assertion follows from Theorem B4l
[@): We choose two points ¢; and t3 of T such that S, C {t1,t2}. Then

(Kx +C+ Gy +G)F=-1 and (Kx+C+Gy, +Gy)C =0

by Lemma BI3I@). Since (X,C + Gy, + Gi,) is log-canonical (cf. Remark B512)),
(X,C + Gy, + Gy, + ©) is a toric surface for a prime divisor © by [I8, Thm. 1.3].
Thus, it is enough to take B = Gy, + G4, + O.

@): Since (Kx + C)C < 0, we have >, s (1 —1/m;) < 2 by Lemma B.T3IE).
Thus, #S; = 3. Moreover, if S, = {t1,t2,t3} with ms, < my, < my,, then
(my, , My, My, ) is one of

(2,2,m>2) (2,3,3), (2,3,4), (2,3,5).

We have a finite Galois cover 7: T” ~ P! — T such that 7*(¢;) = my,71(¢;) for any
1 < i < 3 and that 7 is étale over T'\ S;. In fact, we can express 7 as the quotient
morphism P! — P!/& by the action of a polyhedral subgroup & of Aut(P'). For
the normalization X’ of X X T, the induced finite morphism v: X’ — X is étale
in codimension 1 and the induced P!-fibration 7': X’ — T” has only reduced fibers
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by [20, Lem. 4.2]. Furthermore, 7’ is smooth by Lemmas and ZI3[) and
Remark Hence, X' is a P!-bundle over T’ ~ P! with a negative section v*C.
Since X' is simply connected, by applying Lemma B.10] to the case where S = 0, we
have an endomorphism f’: X’ — X’ such that vo f' = f owv. Thus, (@) has been
proved, and we are done. O

Proposition 5.15. Assume that Lemma BIO[M) is satisfied.

(1) If S§ # C, then Sy = C+G, for someo € T, and (X, Sy+B) is a half-toric
surface for a section B of ™ such that BN C = (.

(2) If Sy = C, then there exist a finite cyclic cover v: X' — X étale in codi-
mension 1 and an endomorphism f': X' — X’ such that vo f' = fov and
that X' is a P -bundle over an elliptic curve with a negative section.

Proof. [I): We can write Sy = C 4+ G, by n(Sy) < 2 and by Lemma [G.I3|[]).
Then (X, G,,C) is a Va-surface with G2 = 0 (cf. Definitions A1 and ELH(@)) by
Lemma EI0(D), since (X, Sy) is log-canonical and (X,C) is 1-log-terminal (cf.
Remarks 5.8 and [.12). Then (X, Sy + B) is a half-toric surface for a prime divisor
B by Theorem 10 (cf. Lemma ETIT]). Here, BN C = () and B is a section of 7 by
BC = —(KX —|—Sf)C=0 and BF = —(KX —|—Sf)F = —(KX +C)F—

@): Since (Kx + S§)C =0 and f*C = 6;C, we have C' N Supp Ay = 0 by [20],
Prop. 2.20(5)]. Then any prime component of Ay dominates 7', and any prime
component of Ry dominates 7' by Supp Ry C Sy USupp Ay (cf. [20, Lem. 2.17(4)]).
By Lemma BI3[@) and by (Kx + C)C = 0, we have

Ztesw(l - 1/my) =

In particular, S, # (. By replacing the endomorphism h: T — T in Lemma E10
with a power h* and by [20, Lem. 4.2 and Prop. 4.3], we can find a finite cyclic cover
7: T — T from an elliptic curve T' and an endomorphism h': T" — T’ such that
7oh/ = hor and the following are satisfied for the normalization X’ of X xp T":

e The morphism 7 is étale over T'\ S, and 7*(t) = m;71(t) for any t € S,.

e The induced finite cyclic cover v: X’ — X is étale in codimension 1.

e The induced P'-fibration n’: X’ — T" has only reduced fibers.

e There is an endomorphism f’: X’ — X’ such that vo f/ = fowv and

7_(_/ o f/ — h/ o 7_[_/

Then any fiber of 7’ is isomorphic to P! by Lemmas 212 and EI3I@) and by
Remark Thus, 7’ is a P!-bundle over the elliptic curve 77, and v*C is a
negative section of 7’. O

Proposition 5.16. Assume that Lemma BI0@) is satisfied.
(1) If Sy > C+ ' for another prime divisor C' dominating T, then C and C’
are sections of m such that C'* >0, CNC' =0, and Sy = C + C".
(2) If Sy = C+C" for another prime divisor C' dominating T and if #Sx < 2,
then (X, Sy + B) is a toric surface for a union B of two set-theoretic fibers
of m.
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(3) If Sy = C+C' for another prime divisor C' dominating T and if #Sx > 3,
then #S, = 3, and there exist a finite Galois cover v: X' — X étale in
codimension 1 and an endomorphism f': X' — X’ such that vo f' = fov
and that X' is a P -bundle over P with a negative section.

(4) If C is a unique prime component of Sy dominating T, then C is a double
section of m, and Sy = C' + Gy, for a branched point t1 € T of the double
cover m|c: C — T. Moreover, (X, Sy + Gy,) is a half-toric surface for the
other branched point ty of 7|c.

Proof. ([l): Since (Kx + Sf)F =0, C and C’ are sections of w, and Sy = C + C’
by n(Sy) < 2. Here, C'+ C’ is non-singular by Remark [512] and it implies that
CNC" = 0. Moreover, C'? > 0, since cl(C’") does not belong to R>qcl(C) nor
RZO CI(F)

@): We set B := Gy, + Gy, for two points ¢t and ¢ such that S C {t1,t2}.
Then (Kx + Sy + B)F = 0, and (Kx + Sy + B)C = (Kx +C + B)C = 0 by
(@) and Lemma EI3I@). In particular, Kx + Sy + B & 0. Since (X, Sy + B) is
log-canonical (cf. Remark [5.12)), (X, Sy + B) is a toric surface by [26, Thm. 6.4] (cf.
[18, Thm. 1.1]).

@): Now, (Kx +C)C = (Kx + S§)C < 0 by (). Thus, @) is shown by the
same argument as in the proof of Proposition ETZI[3).

@): Since (Kx + Sy)F = 0, C is a double section of w. Let t; and t; € T
be the branched points of 7|c. For each ¢ = 1, 2, my, is even and (X/T,C,GYy,)
is an irreducible PDS configuration of type I,, for n; = my, /2 by Lemma 2.19]
since (X, C + Gy,) is log-canonical (cf. Remark [5.12) and since CGy;, = 2/my,. In
particular, {t1,t2} C Sy. If t € T\ {t1,%2}, then G; intersects C transversely at two
points, and hence, m; = 1. Thus, 7 is smooth over T\ {t1,t2} and S; = {t1,%2}.
Therefore, (X,C + G, + Gy,) is a half-toric surface by Proposition Z28|[2). This
finishes the proof. O

Remark. An example satistying Proposition B.I6[E]) is provided in [21, Exam. 2.19].

Proof of Theorem in the case where X contains a negative curve. We may as-
sume that n(Sy) < 2 by Remark [E.8 There exist at most two negative curves on
X by p(X) = 2. If two negative curves exist, then either [2) or ([B]) of Theorem
holds by Proposition If X has a unique negative curve, then we have three
cases (@), (0)), and (@) in Lemma[5.I0 and in each case, Theorem [5.6] holds true by

Propositions 514, 5.15] and [5.16] respectively. O
5.3. Case (III)). We shall prove:

Theorem 5.17. Let f be a non-isomorphic surjective endomorphism of a normal
projective rational surface X such that p(X) =2, —Kx is big, and that X has no
negative curve. Then:
(1) There is a finite Galois cover v: X' — X étale in codimension 1 from
X' =P! x P! with an endomorphism f': X' = X' such that
e the action of the Galois group of v on X' is diagonal, i.e., it preserves
two projections X' — P* (cf. Remark B1), and
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e vof = fFouv for somek > 0.
(2) If Kx + Sy is not pseudo-effective and if Sy is connected and reducible,
then (X, Sy + B) is a toric surface for a divisor B.

Theorem in the case where X admits no negative curve is a consequence
of Theorem B.I71 The proofs of Theorems [B.17] and are given at the end of
Section (3 Lemma B8 below is a key result concerning our third crucial idea
explained in the introduction.

Lemma 5.18. Let 7: X — Y be a finite surjective morphism of normal projective
surfaces and let f: X — X and g: Y — Y be non-isomorphic surjective endomor-
phisms such that Tof = gor. Assume that Ay < deg f for the first dynamical degree
Ar of f (c¢f. [20, Def. 3.1]). Then there exist positive integers k and n satisfying

(V-1) Supp R C f¥(r=* Supp Ry»)
for the ramification divisors R, and Rgn of 7: X =Y and g": Y — Y, respectively.

Proof. For any n > 1, we have an equality

(V-2) Ren + (f")* Ry = R + 7" Rgn

by 7o f" = g"or. Let S be the set of prime components © of R, such that (f*)*©
has no common prime component with 77! Supp Ryn for any k¥ > 1 and n > 1.
Assume that S = (). Then, for any prime component © of R, there is a common
prime component ©’ of (f*)*@ and 7! Supp Rgn for some k and n. Here, we can

take k£ and n independently of the choice of prime components © of R,. In fact,
we may replace (k,n) with (k 4+ m,n + m) for any m > 1, because

771 Supp Rymin D 77 1(g™) " Supp Ryn = (f™)'7 ! Supp Ryn
by Rg7rz+n = Rgm + (gm)*Rgn ThuS, (m) hOldS by
0 = f5(0') C f*(r7" Supp Ryn).

Therefore, it is enough to prove that S = 0.

If © € S, then (f¥)*© < R, for any k > 1 by (V=2), and hence, any prime
component of f*© belongs to S. Let V = Vg be the free R-vector space generated
by elements of S, and we define

>0 .__
V20 .= Z@es RO

as a polyhedral cone of V. Then O — f*O gives rise to an R-linear endomorphism
f*: V=V preserving V29, and the diagram
v L v

CIJ( lcl

N(X) —F— N(X)
is commutative for the class map cl: V — N(X) given by © — cl(©). By a version
of Perron-Frobenius theorem (cf. [3]), we can find a non-zero vector D in V=9

such that f*D = AD for the spectral radius A of f*: V — V. Since cl(D) # 0,
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A is also an eigenvalue of f*: N(X) — N(X). Hence, A € {05, Af,deg f/As} by
[20, Prop. 3.3(4)], and we have A > 1 by the assumption: Ay < deg f. We write
D = 3" r;0; for prime divisors ©; € S and r; > 0. Then

ND = (fY)"D=>"ri(f*)'0; < (> rj)R-

for any k > 1: This contradicts D # 0 and A > 1. Therefore, S = (), and we are
done. O

Lemma 5.19. In Theorem B.I10, —Kx is ample, and there exist an integer k €
{1,2}, two P*-fibrations 71: X — Ty ~ P! and my: X — Ty ~ P!, and endomor-
phisms h1: Ty — T1 and ho: Ty — T5 such that

o ¢ :=(m,m): X = Ty x Ty is a finite surjective morphism, and

o mioff =hjom foranyi=1, 2.
In particular, (deg f)* = deg hy deg ha, and (\;)* = max{deg hy,deg hs}.

Proof. The absence of negative curves implies that — K x is ample. In fact, —Kx is
nef and big, since the negative part of the Zariski-decomposition is 0, and if —Kx
not ample, then (—Kx)C = 0 for a prime divisor C, and in this case, C? < 0
by the Hodge index theorem, contradicting the assumption. Since p(X) = 2,
ﬁ(X) = R;+Ry for extremal rays Ry and Ry, and for each ¢ = 1, 2, the contraction
morphism of R; is a P!-fibration m;: X — T; ~ P'. The induced morphism ¢ =
(m,m2): X — T x Ty is finite and surjective as p(X) = p(T1 x Tz) = 2.

If A\ > 0; = (deg f)1/2, then f*: N(X) — N(X) has two distinct eigenvalues
and each R; is generated by an eigenvector; hence, f*R; = R; for i = 1, 2 (cf. [20]
Lem. 3.7(2)]). Evenif Ay = &7, (f?)*R; =R, fori =1, 2, and (f2)*: N(X) — N(X)
is the multiplication map by 6]20 = deg f (cf. [20, Lem. 3.7(1)]). Thus, we may
assume that f*R; = R; for i = 1, 2, by replacing f with f? if necessary. Then, for
each ¢+ = 1, 2, we have an endomorphism h;: T; — T; such that m; o f = h; o7,
by [20, Lem. 3.16]. Here, ¢po f = go ¢ for g := hy X hg: Ty X Ty — Ty x Ty,
and deg f = degg = deghjideghy. If Ay > §y, then deghy # deghy and Ay =
max{deg hy,degho}. If Ay = d;, then Ay = deghy = deg ho. O

Lemma 5.20. Theorem B.I7 holds if deghy = 1 or deghy = 1. Moreover, in
this case, if S¢ # 0, then Sy is non-singular: In particular, the assumption of
Theorem BITNR) is not satisfied.

Proof. We may assume that deghs = 1. By [20, Thm. 4.9] applied to the P!-
fibration mo: X — Tb, there exist a finite Galois cover v: X’ — X étale in codimen-
sion 1 and an endomorphism f’: X’ — X’ such that X’ ~ P! xT” for a non-singular
projective curves 7" with a finite Galois cover 7" — T and that v o f' = fl o v for
some [ > 0. Here, 7" ~ P! as —Ky, = v*(—Kx) is ample. Since the action of the
Galois group of v preserves the second projection X’ — T”, the action is diagonal
by [2I, Lem. 2.3]. Thus, Theorem EIT() holds. The last assertion on S follows
from [20, Lem. 4.4(1)]. O

By Lemma [5.20] and by replacing f with f? if necessary, we may assume Condi-
tion (.21 below for the proof of Theorem BE.I71
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Condition 5.21. The morphisms ¢ = (m,m2): X — 11 x T in Lemma [(.19] is
not an isomorphism. Moreover, for each i = 1, 2, the endomorphism h;: T; — T;
in Lemma [5.19 satisfies m; o f = h; o m; and degh; > 1.

Definition 5.22. For ¢ = 1, 2, we set S; to be the set of points ¢ € T; such that

7} (t) is not reduced. We regard S; also as a reduced divisor on T;. Moreover, for

t € T;, we set Gii) = m; }(t) and set mii) to be the multiplicity of 7} (¢). Thus,
() = m"GY for any t € Ty and S; = {t € T, | m{”) > 1}. We also define

G = Zj:l Ztesi Ggi) - 7r1_1(51) + 772_1(82)-
Remark. Every fiber of m;: X — T; is irreducible. If t € T; \ S;, then Ggi) =7/ ()
is a smooth fiber of m; by [I8], Prop. 2.33(4)].
Lemma 5.23. For any t; € Ty and ts € T, one has
deg ¢ = my}'m() GG
In particular, mgi) | deg @ for anyi=1, 2 and any t € ;.

Proof. Let F) be a general fiber of m;: X — T;. Then FWF®) = deg¢, and
FO ~ mgi)Ggi) for any ¢ € T;. This implies the first assertion. The second
assertion is deduced from m(i)F(j)Ggi) = deg ¢ and F(j)Ggi) € Zfor {i,j} ={1,2}
and t € T;. O

Proposition 5.24. Under Condition 521, the ramification divisor Ry of ¢: X —
Ty, x Ty is expressed as

2 i i
(v-3) RBo =3 D (i — DG,

and the following equality holds for any i =1 and 2:

(1) _ o
(V-4) D e, Wi = #8i—2+2/ dego.
In particular, 2 < #S,; < 3. Moreover, the pair (X, G) is log-canonical and
(V-5) Kx +G =7 (Kn, +S81) +m5(Krp, + Sa).

As a consequence, (X, G,@) is 1-log-terminal for any t € S; and for i =1, 2.

Proof. By Lemma [5.19] and Condition B.21] we have Ay < deg f, since deghy > 1,
degho = deg f/deghy > 1, and Ay = max{deghy,deghs}. By Lemma [5I8 there
exist positive integers k£ and n such that
Supp Ry C f*(¢™" Supp Ryn) = f*(my " Supp Rpp) U f* (75" Supp Riy)
C mp (R (Supp Rup)) Uy * (his (Supp Rag))
for the endomorphism g = hy X hg: T X Ty — T x Ty. In particular, Supp Ry is

contained in a union of fibers of 71 and 7. For ¢ = 1, 2 and for any ¢ € T;, note
that ¢(GEZ)) = pi_l(t) for the ¢-th projection p;: T} x To — T; and that

¢*(H(G)) = mr(t) = m{V G
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Hence, the ramification index of ¢ along Ggi) equals mgi). Thus, we have (V=3)),
and the ramification formula of ¢ is equivalent to Kx + G = ¢* (K, x1, + H) for
the normal crossing divisor

2
H= 21':1 Ztes,, pi () =pr'S1+py Sy

on T; x Ty. Hence, (V=5)) holds and (X, G) is log-canonical by [19, Lem. 2.10(1)].
Since mr; is smooth over T; \ S; for ¢ = 1, 2, we have

GV NSing X c G N7ytS, and G NSing X € G NS

for any t; € 8; and t2 € Sy. Hence, (X, Ggi)) is 1-log-terminal for any ¢t € S; (cf.
[19, Fact 2.5]).
If (V=4) holds, then 2 < #8; < 3 by deg¢ > 1 and
(4) )
Zte& 1/my” < (1/2)#S:.

Hence, for the rest of Proposition [£.24] it is enough to prove (V=4)) for i = 2.
Let ' = F() be a general fiber of 7;. Then F ~ P and my|p: F — T} is a finite
surjective morphism of degree ¢. By the ramification formula Kx = ¢* K7, 1, + Ry
with adjunction Krp = (Kx + F)|r ~ Kx|r and by (V=3)), we have

X 2 2 X 2

Kp = (malp) Kty (m? =16 |p = (malp) (K + ), (1=1/m?)0).
Consequently, 7o |p is étale over Ts \ So and

9 _ _ (2)

2= (deg)(~2+ Y, (1= 1/m®).
which is equivalent to (V=4)) for 4 = 2. Thus, we are done. O
Corollary 5.25. Under Condition 521, one has
Sy = 7T1_15h1 + 7T2_15h2.

Proof. By the equality Ry + f*Ry = Ry + 7" Rh, xh,, we have

Supp Ry C Supp Ry U 771 Supp Rp, xhy-

Thus, Supp Ry is contained in a union of fibers of m; and 7 by Proposition
Since Sy C Supp R+ for some k& > 0 (cf. [20, Lem. 2.17(4)]), each prime component
of Sy is a fiber of m; or my. Thus, the required equality for Sy holds by [20,
Lem. 2.19(2)]. O

Corollary 5.26. Under Condition 5211, for each i € {1,2}, the following condi-
tions are equivalent:

(i) #Si=2;

(ii) m,(f) = deg ¢ for any (resp. some) t € S;;

(iii) Ggi) is a section of w; for any (resp. some) t € S;, where {5} = {1,2}\ {i}.

Proof. We have () = () by (V=4) in Proposition and by mgi) | deg ¢ shown
in Lemma [5.23] We have (@) < () by Lemma [5.23] since mﬁJ)GE,J) ~ Ft(,]) for
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t' € Tj. It suffices to show: (@) = ({). Assume that ml(f) = deg ¢ for some b € S;.
Then

(1/2)(#8; — 1) > Zte&\{b} 1/m{") = #8;, =241/ deg ¢

by (V=) in Proposition 524 and it implies that #8; = 2, since #S; > 2. Thus,
we are done. ([l

Proposition 5.27. Under Condition B.21], assume that #S1 < 3 or #S3 < 3.
Then #81 = #S2 = 2, and (X, G) is a toric surface. Moreover, there exist a cyclic
cover v: T{ x Ty — X and a cyclic cover 7;: T] ~P* — T; with an endomorphism
R} T! — T} fori=1, 2, such that

e v is étale in codimension 1,

o 7 X Ty =¢ov as a morphism T] x Ty — Ty x Ty,

e degm = degm = degr = deg o,

e the Galois group of v is isomorphic to that of T; and the i-th projection

i T x Ty — T} is equivariant under the action for each i =1, 2,
e vo(hl xhh)=fov, and
e ;ohl=h;or fori=1, 2.

In particular, the cubic diagram

X/ X
\ \fA
S (L X
(V-6) <
h;
k T \

is commutative for X' :=T] x Ty and f':= h} x hi.

Proof. We may assume that #Ss = 2, since 2 < #S; < 3 (cf. Proposition [5.24)).
Let 7o: Ty ~ P! — Ty be the cyclic cover of degree deg¢ branched at S,. For
the normalization X’ of X xp, T3, the induced cyclic cover v: X' — X is étale in
codimension 1 and the induced P!-fibration 75: X’ — T4 has only reduced fibers,
by Corollary B.26([) and [20, Lem. 4.2]. By construction, the Galois group Gal(v)
of v is identified with the Galois group Gal(rz) of 72, and 74: X' — T4 is Gal(v)-
equivariant.

A smooth fiber FO of 7 lies in Xreg, and hence, V_l(F(l)) is a disjoint union
of deg ¢ copies of P! which are all sections of 7}, since deg F(")) /Ty = deg¢ (cf.
Lemma [5.23)). Hence, the Stein factorization of m ov: X’ — T} consists of a finite
cover 11: T} — Ty of degree ¢ and a fibration 7}: X' — T}, where X' is also
isomorphic to the normalization of X xp, T]. Moreover, 71 is a cyclic cover, since
v: X' — X is so. Similarly to the case of 75, we can identify Gal(v) with the Galois
group Gal(my) of 71, and 7f: X' — T is Gal(v)-equivariant. As a consequence,
(rh,7h): X' — T x T4 is an isomorphism over T; x Ty by

deg X' /(T}y x Ty) = (deg ¢)* = deg(T}| x T3)/(T) x T).
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In particular, X’ ~ P! x P!, and 7/ corresponds to the i-th projection P! x P! — P*
for i = 1, 2. By applying [20, Lem. 4.2] to m1: X — T} and 71: Ty — T1, we see
that 7 is étale over Ty \ &1 and that 75 (t) = mgl)rfl(t) for any t € S;. Then we
have #8; = 2 by considering the action of the cyclic group Gal(r) on T} ~ P!.

We shall show that (X,G) is a toric surface. Now, ¢ induces a finite étale
morphism

X\G—) (Tl\Sl) X (TQ\SQ) ZGE,

where G, stands for the 1-dimensional algebraic torus. Assume that the toric
surface (T1 x T, 81 x S2) is defined by a fan A of the free abelian group N =
w1 (Th x To \ (81 X 82)) = Z%2 ie., Th x Ty = Tn(A). Then, by Lemma B8 (X, G)
is isomorphic over T x Ty to the toric surface Tn:(A) for the finite index subgroup
N =m (X \G) of N.

Finally, we shall construct the required endomorphism h}: T/ — T/ for i = 1,
2. Since X' is simply connected, by Lemma [3.10] applied to the case where S = 0,
there is an endomorphism f’: X’ — X’ such that v o f' = fowv. By the i-th
projection m,: X’ — T and the Stein factorization of =} o f': X' — T/, we have
an endomorphism hf: T/ — T} such that 7} o f' = h} on} and 7, 0 h; = h; o 7;. As
a consequence, f' = h} x h}, and we have the cubic commutative diagram (V=0)).
Thus, we are done. O

Now, we shall finish the proof of Theorem B.I7}

Proof of Theorem .17 By Lemma [5.200 we may assume Condition [5.21} For the
proof of Theorem BI7(), by Proposition B.27 we may assume that #S51 = #S2 =
3. Now,

Zt682<1 —1/mP)=2-2/deg¢ < 2

by (V=4)) in Proposition Then, as in the proof of Proposition BEI4B), we
have a possible list of the collection (m,(f))tesz, and there is a finite Galois cover
Ty Ty ~ Pt — T, such that 7, is étale over Ty \ Sy and that 75 (t) = m§2)72_1(t)
for any ¢t € Sp. For the normalization X’ of X X7, T”, the induced finite morphism
v: X' — X is étale in codimension 1 and the induced P!-fibration 74: X' — T’
has only reduced fibers by [20, Lem. 4.2]. By construction, the Galois group Gal(v)
of v is identified with the Galois group Gal(7z) of 7, and 75: X' — T" is Gal(v)-
equivariant. Since (X, ng)) is 1-log-terminal for any ¢ € Ty (cf. Proposition B.24]),
the P!-fibration 7} is smooth by Lemma Hence, X’ is a P'-bundle over T}
and it is a trivial bundle P* x Tj ~ P! x P!  since it has another ruling induced
by m ov: X’ — X — Tj. Then the action of Gal(v) is diagonal by [2I], Lem. 2.3].
There is an endomorphism f’: X’ — X’ satisfying v o f' = f o v by Lemma B.I0]
since X’ is simply connected. This shows Theorem BIT7|[]).

For the proof of Theorem EI7([), we may assume that n(Sy) = 2 by the same
reason as in Remark 5.8l Then Sy = C; + C5 for two prime components C; and
Cy, where C; = G for a point t; € S, C T; for i = 1, 2, by Corollary Since
Kx + Sy is not nef, (Kx + Sf)F(i) < 0 fori=1or 2, for a general fiber F(®) of m;.
Hence, we may assume that C; is a section of m3. Then #8; = 2 by Corollary [£.26
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Moreover, #8; = 2, Cs is also a section of 71, and (X, G) is a toric surface, by
Proposition [5.27, where G O Sy = C; 4+ Ca. This shows Theorem EIT2), and we
are done. O

Finally in Section Bl we finish the proof of Theorem

Proof of Theorem .6l Tt has been proved in Section in the case where X con-
tains a negative curve. When X contains no negative curve, Theorem E.G[]) holds
by Theorem [BI7(). Thus, we are done. O

6. PROOFS OF THEOREMS IN THE INTRODUCTION

Finally, we shall prove Theorems [Tl [L2] [[.3] and [[.4]in the introduction.

Proof of Theorem [T We are given a normal projective surface X with a non-
isomorphic surjective endomorphism f such that Kx + S is not pseudo-effective.
If X has a non-quotient singularity, then Theorem [LT(#) holds with a lift of f* to
V by [2I, Thm. 1.2]. Thus, we may assume that X has only quotient singularities.

If p(X) =1, then X is a log del Pezzo surface, since Kx is not pseudo-effective;
thus, Theorem [LTI(M) holds. If p(X) = 2 and —Kx is not big, then @) or @) of
Theorem [T holds with a lift of f* by Theorem [E.11

If p(X) =2 and —Kx is big, then one of @), (@), @), and ([{) of Theorem [Tl
holds, by Theorem [5.6] where the existence of a lift of f* to V is also proved in
cases @) and ). If p(X) > 3, then either (@) or () of Theorem [I1] holds by
Theorem (231 Thus, we are done. O

Before going to the proof of Theorem [[.2] we shall show:

Lemma 6.1. Let X be a normal projective surface having a finite cover v: V. — X
étale in codimension 1 from a projective cone V' over an elliptic curve. Then there
exists a non-isomorphic surjective endomorphism f of X such that Kx + Sy is not
pseudo-effective.

Proof. We may assume v to be a Galois cover by an argument in the proof of [21],
Lem. 3.3(5)]. Let G be the Galois group. It suffices to construct a G-equivariant
non-isomorphic surjective endomorphism g: V' — V such that S, = 0. In fact, g
induces a non-isomorphic surjective endomorphism f of X such that vog= fov,
and we have Sy = 0 by [20, Lem. 2.19]; as a consequence, Kx + Sy = Kx is not
pseudo-effective, since Ky = v*Kx is so.

Let p: W — V be the minimal resolution of singularities. Then we have a P!-
bundle structure 7: W — T over an elliptic curve T in which the p-exceptional
locus © is a negative section of w. Moreover, the action of G lifts to W and
T so that morphisms p and 7 are G-equivariant and that the divisor © is G-
invariant. By [2I, Lem. 2.14], there is another G-invariant section ©’ of = such
that ®© N ©® = (. Then we can find a G-equivariant non-isomorphic surjective
endomorphism gy : W — W such that Sy, = © by [21, Cor. 2.27]. It induces a G-
equivariant non-isomorphic surjective endomorphism g of V' such that pogy = gop,
and we have S, = 11,54, = 0 by [20, Lem. 3.15(3)]. Thus, we are done. O
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Proof of Theorem [L2l The “only if” part follows from Theorem [T Iland Lemma[Z3]
It is enough to construct a non-isomorphic surjective endomorphism f of X such
that Kx + Sy is not pseudo-effective assuming one of conditions (), [@)), and (@)
of Theorem

If Theorem [L2(]) holds, i.e., one of [2)—(E]) in Theorem [[I] holds, then we have
an expected endomorphism f by Theorem Bl and Lemma If Theorem [L24[2)
holds, then, for the prime component I' of D which is not a negative curve, there
is a non-isomorphic surjective endomorphism f of X such that Sy = D —I' by
[22, Thm. 6.1], where Kx + Sy ~ —I' is not pseudo-effective. If Theorem [L2)E)
holds, then there is a non-isomorphic surjective endomorphism f of X such that
S§ =D —T for the end component I' by [22, Thm. 6.2], where Kx + Sy & —T" is
not pseudo-effective. Thus, we are done. O

Proof of Theorem [L3l If there is a finite Galois cover V' — X satisfying one of
conditions ([{)—(d) of Theorem [[3] except (@), then X admits a non-isomorphic
surjective endomorphism by [2I, Thm. 1.1]. Even in the exceptional case (@), we
have a non-isomorphic surjective endomorphism of V' equivariant under the action
of the Galois group of V- — X by [2I, Lem. 2.3 and Cor. 2.18], and it induces
a non-isomorphic surjective endomorphism of X. For the rest, by [20, Thm. A]
and [2I, Thm. 1.1], it is enough to consider a normal projective rational surface
X admitting a non-isomorphic surjective endomorphism f: X — X such that X
has only quotient singularities, —Kx is big, p(X) > 2, and that Kx + Sy is not
pseudo-effective. Then one of conditions (), @), (B, (@), and (@) of Theorem [[Tis
satisfied. Hence, one of conditions @), @), (@), and (@) of Theorem [ is satisfied.
Thus, we are done. (Il

Proof of Theorem [L4. By [20, Thms. D and 3.25], one of the following holds:

(i) There is a finite Galois cover A — X étale in codimension 1 from an abelian
surface A with an endomorphism f4: A — A as a lift of A.

(ii) There is a finite Galois cover C x T — X étale in codimension 1 for an
elliptic curve C and a non-singular projective curve T' of genus > 2, where
Ay = deg f and some power f* lifts to an endomorphism of C' x T.

(iii) There is a P'-fibration 7: X — T to a non-singular projective curve T with
an endomorphism h: T — T such that mo f = h om, X has no negative
curves, p(X) = 2, and Ay = max{degh,deg f/degh} € Z.

In the case () (resp. (), Theorem [[4 holds for V' in (@) (resp. @) in the list.
Thus, we may assume (). In particular, Kx is not pseudo-effective and Ay is an
integer dividing into deg f. Note that if the genus of T in (i) is greater than 1,
then degh =1 and Ay = deg f. We can consider the following four conditions:

(a) Kx + Sy is not pseudo-effective, and either X is irrational or —Kx is not
big;

(b) Kx + Sy is not pseudo-effective, X is rational, and —Kx is big;

(c) Kx + Sy is pseudo-effective and Kx + Sy 9q 0;

(d) Kx +Sf ~Q 0.
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First, assume @). Then, by Theorem Bl and [2I, Lem. 4.11], there is a finite
Galois cover P! x T — X étale in codimension 1 for a non-singular projective
curve T" of genus > 0 with an endomorphism g of P! x 7" as a lift of a power f*.
Here, Ay = Aprx = (A7)¥ and degg = deg f* = (deg f)* by [20, Cor. 3.5], and the
condition () above holds also for g: P! x T" — P! x T”. In particular, in this case,
Theorem [ holds for V' in ([B) or (@) in the list. Here, if ([B]) holds, then Ay = deg f
by (i) for g, since A\, = degg.

We can prove the assertion in cases (Bl) and (@) by arguments similar to the above:
Assume (). Then, by Theorem [EI7] there is a finite Galois cover P! x P! — X
étale in codimension 1 and some power f* lifts to an endomorphism g of P* x P!,
which satisfies (i), since we have A, = (Af)* > (67)F = §, by [20, Cor. 3.5]. Thus,
in this case, Theorem [[4] holds for V in (@). Assume (@). Then, since Kx is not
pseudo-effective, by [20, Thm. A], there is a finite Galois cover P! x T — X étale in
codimension 1 for a non-singular projective curve T of genus > 2 and some power
f* lifts to an endomorphism g of P! x T', which satisfies ({il) by the same argument
as above. Thus, in this case, Theorem [[.4] holds for V in (), where Ay = deg f
holds by (i) for g, since A\, = deg g.

Finally, assume (d). Then, by [20, Thm. A], there is a finite Galois cover v: V —
X étale in codimension 1, f lifts to an endomorphism g: V' — V', and one of the
following conditions is satisfied:

(d-1) V is a P'-bundle over an elliptic curve 7" and S, = v*Sy is a disjoint union
of two sections of V' — T”;
(d-2) V is a toric surface with S, = v*S; as the boundary divisor.

Since Ay = A, and deg f = degg (cf. 20, Cor. 3.5]), g: V. — V satisfies the
condition () above. In particular, p(V) =2 and V contains no negative curves.
If (d=1) holds, then V ~ Pz (O & L) for an invertible sheaf £ on T” of degree
0; thus, Theorem [[.4] holds for V in (@). If (d=2]) holds, then, by Theorem BE.IT(),
there is a finite cover v': V! — V étale in codimension 1 from V' = P! x P! and
some power g¢¥ lifts to an endomorphism of V’. Here, the composite vov': V' — X
is Galois, since it is étale in codimension 1 and since V' is non-singular and simply
connected. Hence, Theorem [L4] holds for V in (&) by replacing V with V’. Thus,
we have completed the proof of Theorem [[.4l O
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