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Abstract. The structure of a normal projective surface X admitting a non-

isomorphic surjective endomorphism f is determined except for log del Pezzo

surfaces of Picard number 1. The structure of X is also determined in the case

where the first dynamical degree λf is not equal to the positive square root of

deg f .

1. Introduction

By the study of normal Moishezon surfaces X admitting non-isomorphic surjec-

tive endomorphisms f in [20] and [21], we have determined the structure of such

surfaces except the case where X is a rational surface with only quotient singulari-

ties and KX +Sf is not pseudo-effective. Here, KX stands for the canonical divisor

and Sf for the characteristic completely invariant divisor of f (cf. [20, Def. 2.16]).

By [21, §4], the following three subcases remain as unsolved cases:

(R1) X is a log del Pezzo surface of Picard number ρ(X) = 1;

(R2) ρ(X) = 2 and −KX is big;

(R3) (X,Sf ) is log-canonical, −(KX +Sf ) is nef and big, and the number n(Sf )

of prime components of Sf equals ρ(X) ≥ 3.

Determining the structure of (X, f) belonging to (R2) or (R3) is an outstanding

problem bothering the author many years, but at last, this is settled in this article.

Remark. The existence of non-isomorphic surjective endomorphism implies that X

is projective, by [20, Cor. B]. Suppose that X has only quotient singularities and

KX + Sf is not pseudo-effective. If ρ(X) = 1, then X is a log del Pezzo surface,

since −KX is ample. The following is an additional information for (X, f) with

ρ(X) ≥ 2 not belonging to (R2) nor (R3):

Assume that ρ(X) = 2. If X is irrational or if −KX is not big, then we have

known the structure of X by [20, Thm. 4.16] and [21, Thm. 4.7]. We shall prove a

stronger result for this X as Theorem 5.1 in Section 5.1 below.

Assume next that ρ(X) ≥ 3. Then (X,Sf ) is an L-surface in the sense of [21,

Def. 4.2] (cf. [21, Prop. 4.3]). In particular, X is rational. Moreover, we have the

following by the structure theorem [21, Thm. 4.5] on L-surfaces:

• Divisors −KX and Sf are big, and −(KX + Sf ) is semi-ample;
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• If n(Sf ) 6= ρ(X), then (X,Sf +B) is a toric surface for a prime divisor B.

Furthermore, by [21, Cor. 4.6], if −(KX +Sf ) is not big, then (X,Sf +B) is a toric

surface or a half-toric surface for a prime divisor B.

Remark. For a toric surface X and its boundary divisor D, the complement of the

open torus, the pair (X,D) is called also a toric surface by abuse of notation (cf.

[18, Conv. 1.4]). A half-toric surface is defined in [18, Def. 7.1], and it is a key

notion in this article: This is a pair (X,S) of a normal projective surface X and

a reduced divisor S such that KX + S 6∼ 0, 2(KX + S) ∼ 0, and (V, τ−1S) is a

toric surface for a double cover τ : V → X étale in codimension 1: We call τ the

characteristic double cover of (X,S) (cf. [18, §7.1]).

As a solution to the outstanding problem, we shall show in Theorems 4.23 and

5.6 below that one of the two conditions below is satisfied for any (X, f) belonging

to (R2) and that the latter condition is satisfied for any (X, f) belonging to (R3):

• There is a finite Galois cover X ′ → X étale in codimension 1 such that X ′

is a P1-bundle over P1 or over an elliptic curve, the Galois group preserves

the P1-bundle structure, and some power fk = f ◦ f ◦ · · · ◦ f : X → X lifts

to an endomorphism of X ′.

• There is a reduced divisor B such that (X,Sf + B) is a toric surface or a

half-toric surface.

Combining results in [21], we have:

Theorem 1.1. Let X be a normal projective surface. If X admits a non-isomorphic

surjective endomorphism f such that KX + Sf is not pseudo-effective, then one of

the following holds :

(1) The surface X is log del Pezzo of Picard number 1.

(2) There is a finite Galois cover V → X étale in codimension 1 from the

product V = P1 × T for a non-singular projective curve T of genus ≥ 2.

(3) There is a finite Galois cover V → X étale in codimension 1 from one of

the following P1-bundles V over an elliptic curve T :

• V = P1 × T ;

• V = PT (E) for an indecomposable locally free sheaf E of rank 2 and

degree 0;

• V = PT (OT ⊕ L) for an invertible sheaf L of degree 6= 0.

(4) There is a finite Galois cover V → X étale in codimension 1 from a pro-

jective cone V over an elliptic curve (cf. [20, Def. 1.16]).

(5) There is a finite Galois cover V → X étale in codimension 1 from a P1-

bundle V over P1 in which the Galois group Gal(V/X) preserves the P1-

bundle structure.

(6) The pair (X,Sf + B) is a toric surface for a non-zero reduced divisor B

having at most two prime components.

(7) The pair (X,Sf + B) is a half-toric surface for a prime divisor B, and B

is an end component of Sf +B.
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Moreover, in cases (2), (3), (4), and (5), some power fk : X → X lifts to an

endomorphism of V .

Remark. The divisor B in (6) and (7) of Theorem 1.1 has no common prime com-

ponent with Sf , since Sf + B is reduced. Moreover, every prime component of B

is nef, since Sf contains all the negative curves (cf. [20, Prop. 2.20(3)]).

Theorems 1.1, 4.23, and 5.6 are proved by arguments in [21, Sect. 4] and by

certain properties of P1-fibrations, pseudo-toric surfaces (cf. [18, Def. 6.1]), and

V-surfaces, which are discussed in Sections 2, 3, and 4 below, respectively. By

endomorphisms of toric and half-toric surfaces constructed in [22] and by adding

some results on the converse of Theorem 1.1, we have:

Theorem 1.2. Let X be a normal projective surface which is not a log del Pezzo

surface of Picard number 1. Then X admits a non-isomorphic surjective endomor-

phism f such that KX+Sf is not pseudo-effective if and only if one of the following

conditions is satisfied :

(1) There is a finite Galois cover V → X étale in codimension 1 which satisfies

one of conditions (2)–(5) of Theorem 1.1.

(2) There is a reduced divisor D such that (X,D) is a toric surface and that

some prime component of D is not a negative curve.

(3) There is a reduced divisor D with a prime component Γ such that

• (X,D) is a half-toric surface and Γ is an end component of the linear

chain D of rational curves,

• each prime component of τ∗Γ is not a negative curve for the charac-

teristic double cover τ : V → X of the half-toric surface (X,D).

We have the following update of [21, Thm. 1.1] by Theorem 1.1:

Theorem 1.3. Let X be a normal projective surface which is not a log del Pezzo

surface of Picard number 1. Then X admits a non-isomorphic surjective endomor-

phism if and only if there is a finite Galois cover V → X étale in codimension 1

from one of the following normal projective surfaces V :

(1) V = C × T for an elliptic curve C and a non-singular projective curve T

of genus ≥ 2;

(2) V is an abelian surface;

(3) V = P1 × T for a non-singular projective curve T of genus ≥ 2;

(4) V is a P1-bundle over an elliptic curve;

(5) V is a projective cone over an elliptic curve;

(6) V is a P1-bundle over P1 and the Galois group Gal(V/X) preserves the

P1-bundle structure;

(7) V is a toric surface and the Galois group Gal(V/X) preserves the open

torus.

Remark. By results in this article, only the case of log del Pezzo surface of Picard

number 1 remains unsolved in the problem of classifying normal Moishezon sur-

faces admitting non-isomorphic surjective endomorphisms. Even in the case, our
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arguments in this article, e.g. those in Section 3.3 below, seem to be effective for

the problem when the characteristic completely invariant divisor Sf is not zero.

However, now the author has no good idea if Sf = 0.

On the first dynamical degree λf (cf. [20, Def. 3.1]) of a non-isomorphic surjective

endomorphism f : X → X, we have a fundamental theorem as [20, Thm. D]. In

particular, if X has Picard number 1 or if X contains a negative curve, then λf
equals the positive square root δf := (deg f)1/2. By results in Section 5 below, we

can improve [20, Thm. D] to the following in the case where λf > δf :

Theorem 1.4. Let X be a normal projective surface admitting a non-isomorphic

surjective endomorphism f such that λf > δf . Then ρ(X) ≥ 2 and there exists a

finite Galois cover V → X étale in codimension 1 from one of the normal projective

surfaces V listed below, in which some power fk lifts to an endomorphism of V :

(1) V is an abelian surface;

(2) V = C × T for an elliptic curve C and a non-singular projective curve T

of genus ≥ 2;

(3) V = P1 × T for a non-singular projective curve T of genus ≥ 2;

(4) V is a P1-bundle PT (OT ⊕ L) over an elliptic curve T for an invertible

sheaf L of degree 0;

(5) V = P1 × P1.

Moreover, λf = deg f in cases (2) and (3), and λf is an integer dividing into deg f

in cases (4) and (5).

Remark. The inequality λf ≥ δf holds for any f (cf. [20, Prop. 3.3(2)]). If λf = δf ,

then the pullback homomorphism (fk)∗ : N(X) → N(X) is a scalar map for some

k > 0 by [20, Thm. D], where N(X) denotes the real vector space of numerical

classes of R-divisors on X (cf. [18, Def. 2.7], [20, §1.1]).

Crucial ideas. As is mentioned above, three cases (R1), (R2), and (R3) remain

unsolved in the problem determining the structure of a normal Moishezon surface

X admitting a non-isomorphic surjective endomorphism f .

Before explaining our crucial ideas, we shall note a relation between studies in

(R2) and (R3). For (X, f) in (R3), we know the following by the structure theorem

[21, Thm. 4.5] on L-surfaces:

• −(KX + Sf ) is semi-ample;

• Sf is a linear chain of rational curves (cf. [18, Def. 4.1]);

• (KX + Sf )C < 0 for one end component C of Sf ;

• the union S♮
f of non-end components is negative definite.

The target X of the contraction morphism φ : X → X of S♮
f is a normal projective

surface with ρ(X) = 2 and f descends to an endomorphism f̄ of X such that KX +

Sf = φ∗(KX +Sf̄ ). Hence, the study in the case (R3) is reduced to that in the case

(R2). Conversely, for (X, f) in (R2), if Sf is connected and reducible and if λf = δf ,

then a toroidal blowing up X̃ → X at a singular point of Sf produces a non-

isomorphic surjective endomorphism f̃ of a normal projective surface X̃ belonging

to (R3) (cf. [19, Cor. 5.7], [20, Thm. D]).
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We have three crucial ideas on pseudo-toric surfaces, half-toric surfaces, and a

comparison of ramification divisors. We shall explain how these idea are applied

to the study of (X, f) but not explain the ideas directly. The first crucial idea is

analyzing negative curves on some pseudo-toric surface which is a compactification

of the universal cover of a certain open subset of another pseudo-toric surface. Here,

we assume the following for (X, f):

• −(KX + Sf ) is nef,

• Sf is connected, and

• (KX +Sf )C1 < 0 and (KX +Sf )C2 < 0 for two prime components C1 and

C2 of Sf .

Then, by Lemma 3.12 below, Sf is a linear chain of rational curves with C1 and C2

as end components, and there is an effective divisor B ∼ −(KX + Sf ) such that

• (X,B + Sf ) is log-canonical along Sf , and

• B ∩ SuppSf consists of two points which are in C1 and C2.

By an argument generating a pencil on X, we have a situation of Proposition 3.11

below, by which we can find another non-zero reduced divisor B′ such that (X,B′+

Sf ) is a toric surface. The proof of Proposition 3.11 uses results on the universal

cover of a certain open subset of a pseudo-toric surface, which are prepared in

Section 3.2. If B is reducible, then we can prove easily that (X,Sf + B) is a toric

surface. When B is irreducible, we can show that (X,Sf + B) is a pseudo-toric

surface of defect 1 (cf. [18, Defs. 2.23 and 6.1]), and we shall consider the universal

cover above for (X,Sf +B), which extends to a finite Galois cover X̃ → X from a

normal projective surface X̃ by the Grauert–Remmert extension theorem (cf. [6],

[7, XII, Thm. 5.4]). Here, X̃ is also a pseudo-toric surface with the inverse image

of Sf +B as the boundary divisor (cf. Lemma 3.4), and we have an endomorphism

f̃ of X̃ as a lift of f (cf. Lemma 3.10). Our first crucial idea is analyzing negative

curves on X̃, which are all contained in Sf̃ . Necessary results on negative curves

on X̃ are prepared in Proposition 3.9, by which we can find the expected divisor

B′ such that (X,Sf +B′) is a toric surface.

The second crucial idea concerns Theorem 4.10 below on half-toric surfaces and

VA-surfaces (cf. Definitions 4.1 and 4.5(3)). Before the idea, we shall explain how V-

surfaces (cf. Definition 4.1) are related to the study of (X, f) in (R2): Suppose that

X contains two negative curves C1 and C2. Then λf = δf , Sf equals the linear chain

C1 + C2, and by the discussion above on the first crucial idea (cf. Theorem 3.14),

we may assume that −(KX +Sf ) is not ample; for example, (KX +Sf )C1 < 0 and

(KX+Sf )C2 = 0. Then (X,C1, C2) is a V-surface. Even ifX contains a unique neg-

ative curve, in many cases, we can find another prime divisor C ′ such that (X,C,C ′)

or (X,C ′, C) is a V-surface, by arguments in Section 5.2. Conversely, −KV is big for

any V-surface (V,Λ1,Λ2) by Lemma 4.4(2). The V-surfaces are divided into three

subclasses: VA-surfaces, ordinary VB-surfaces, and extraordinary VB-surfaces (cf.

Definitions 4.5(3) and 4.18). The V-surfaces (X,C1, C2), (X,C,C
′), and (X,C ′, C)

above are not extraordinary VB-surfaces (cf. Lemma 4.22). In Theorem 4.10 (resp.

4.21), we can prove that if (V,Λ1,Λ2) is a VA-surface (resp. an ordinary VB-surface),
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then (V,Λ1 + Λ2 + B) is a half-toric surface for a prime divisor B: Theorem 4.21

is proved by Theorem 4.10. These theorems prove Theorem 5.6 for many cases of

(X, f) belonging to (R2) in which X contains a negative curve and −(KX + Sf )

is not ample. Moreover, these theorems and Theorem 3.13 prove Theorem 4.23 on

(R3) by the above-mentioned reduction of the study in (R3) to that in (R2).

Our second crucial idea appears in the proof of Theorem 4.10 in the case where

Λ2
1 < 0: A VA-surface (V,Λ1,Λ2) with Λ2

1 < 0 satisfies the following (cf. Lemma 4.4):

• V is rational with ρ(V ) = 2;

• Λ1+Λ2 is connected and (V,Λ1+Λ2) is log-canonical with Λ2
1 < 0, Λ2

2 < 0,

(KV + Λ1 + Λ2)Λ1 < 0, and (KV + Λ1 + Λ2)Λ2 = 0;

• (Λ1 \ Λ2) ∩ Sing V is empty or consists of one point at which (V,Λ1) is

1-log-terminal;

• (Λ2 \ Λ1) ∩ Sing V consists of two A1-singular points.

Let Y → V be the minimal resolution of singularities lying on Λ1 + Λ2. Then the

dual graph of the total transform of Λ1+Λ2 is of type D (cf. Lemma 4.13). Applying

Lemma 2.3 and Corollary 2.31 to the dual graph, we can find a P1-fibration on Y →

P1 with a double section which is exceptional for Y → V (cf. Lemma 4.14). The

second crucial idea is analyzing singular fibers of the P1-fibration. In Section 2.3,

we study singular fibers of a P1-fibration with a double section satisfying certain

conditions by introducing the notion of PDS configurations (cf. Definition 2.17).

Using properties of H-surfaces in [18, §7.2], we have some global properties of PDS

configurations in Proposition 2.28 below. These properties and the equality in [18,

Prop. 2.33(7)] on reducible fibers are applied to removing bad cases for the P1-

fibration Y → P1 in proofs of Lemmas 4.14 and 4.15 below. As a consequence, we

can find the expected prime divisor B such that (V,Λ1 + Λ2 + B) is a half-toric

surface.

The third crucial idea is in the proof of Lemma 5.18 below on comparison of

ramification divisors for a certain finite morphism of normal projective surfaces

with compatible non-isomorphic surjective endomorphisms. Lemma 5.18 is applied

to proving Theorem 5.17, which is a structure theorem for (X, f) belonging to (R2)

containing no negative curves: Theorem 5.6 mentioned above for this (X, f) is a

consequence of Theorem 5.17. In this case, X has two P1-fibrations over P1 as con-

traction morphisms of extremal rays, and f descends to an endomorphism of each

base curve P1. Thus, we have an endomorphism of P1 × P1 and the induced finite

morphism φ : X → P1 × P1 is compatible with endomorphisms of X and P1 × P1.

We can determine the ramification divisor Rφ by Lemma 5.18 under a certain con-

dition (cf. Proposition 5.24). The description of Rφ is a key to prove Theorem 5.17.

We apply the Perron–Frobenius theorem [3] to the proof of Lemma 5.18.

Organization of this article. In Section 2, we discuss some properties of linear

chains of rational curves and P1-fibrations over a non-singular curve. We recall

elementary properties of linear chains of rational curves and exceptional divisors

for the minimal resolutions of cyclic quotient singularities, in Section 2.1. Here,

we shall prove some results on simple normal crossing divisors of rational curves
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having the dual graph of type D, as an application (cf. Lemma 2.3). We investigate

singularities arising on P1-fibrations with respect to sections or double sections in

Sections 2.2 and 2.3. Especially, in Section 2.3, we introduce PDS configurations

for double sections satisfying certain conditions, and study their properties. In

Section 2.4, we shall give sufficient conditions for a reduced divisor of rational

curves on a normal Moishezon surface to be a set-theoretic fiber of a P1-fibration.

Section 3 is devoted to the study of pseudo-toric surfaces. In Section 3.1, we

discuss in detail the structure of a pseudo-toric surface having a fibration to P1.

In Section 3.2, we analyze the universal cover of the complement of a part of the

boundary divisor of a pseudo-toric surface. As applications, in Section 3.3, we shall

prove Theorems 3.13 and 3.14 on endomorphisms.

In Section 4, we introduce V-surfaces and study their structures. After giving

some remarks on half-toric surfaces in Section 4.1, we shall prove basic properties

of V-surfaces in Section 4.2, where two subclasses VA-surfaces and VB-surfaces are

introduced. Section 4.3 is devoted to proving Theorem 4.10 as a structure theo-

rem for VA-surfaces. The ordinary VB-surfaces and extraordinary VB-surfaces are

introduced in Section 4.4, where we shall prove Theorem 4.21 as an analogy of

Theorem 4.10 for ordinary VB-surfaces, and prove Theorem 4.23 on the structure

of a normal projective surface admitting a non-isomorphic surjective endomorphism

belonging to the case (R3). Extraordinary VB-surfaces are studied in detail in Sec-

tion 4.5, where we obtain Theorem 4.29 as a structure theorem.

Section 5 is devoted to determining structures of surfaces X with non-isomorphic

surjective endomorphisms f such that ρ(X) = 2 and KX + Sf is not pseudo-

effective. This covers (X, f) belonging to (R2). In Section 5.1, we treat the case

where X is irrational or −KX is not big, and we shall prove Theorem 5.1 as a

structure theorem for such X. The structure theorem for (R2) is Theorem 5.6

mentioned above, and this is proved in Sections 5.2 and 5.3: Section 5.2 (resp.

5.3) treats the case where X contains (resp. does not contain) a negative curve.

Theorem 5.17 related to our third crucial idea is proved in Section 5.3, which

implies Theorem 5.6 in the case of no negative curves.

Section 6 is the final section, where theorems in the introduction are all proved.

Notation and conventions. We use the same notation and conventions as in

[20] and [21]. In particular, we treat complex analytic spaces rather than schemes

over C, and a complex analytic variety is called a variety for short. A variety

of dimension 1 (resp. 2) is called a curve (resp. surface). As in [19, Rem. 2.3],

we avoid the use of “log terminal” in the sense of [25] and [14], and the notion

of “purely log terminal” is called “1-log-terminal” in this article. The important

notions of “pseudo-toric surfaces” and “half-toric surfaces” are defined in [18]. We

list our specific notation in Table 1. Here, we note that the Weil–Picard number

ρ̂(X) = dimN(X) equals the Picard number ρ(X) if X is Q-factorial.

Acknowledgement. The author is grateful to Professor Yoshio Fujimoto for use-

ful discussions in seminars at Research Institute for Mathematical Sciences, Kyoto
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Table 1. List of notations

C⋆ 1-dimensional algebraic torus (= C \ {0})

SingX singular locus of a reduced analytic space X

Xreg non-singular locus X \ SingX

ρ(X) Picard number of a normal projective variety X

N(X) vector space of numerical classes of R-divisors on a normal projective

surface X (cf. [20, §1.1])

NE(X) pseudo-effective cone in N(X) (cf. [20, §1.1])

Nef(X) nef cone in N(X) (cf. [20, §1.1])

cl(D) numerical class of an R-divisor D

SuppD support of an R-divisor D (= the union of prime components of D)

Dred reduced divisor identified with SuppD for an effective R-divisor D

n(D) number of prime components of a reduced divisor D (cf. [18], [21,

Def. 4.1])

π1(U) fundamental group of a topological space U

TN(△) toric variety defined by a fan △ of a free abelian group N of finite rank

δ(X,S) defect of (X,S) (= ρ̂(X) + 2− n(S)) (cf. [18, Def. 2.23])

For an endomorphism f :

Rf ramification divisor (cf. [19, §1.5])

Sf characteristic completely invariant divisor (cf. [20, Def. 2.16])

∆f refined ramification divisor (cf. [20, Def. 2.16])

λf the first dynamical degree (cf. [20, Def. 3.1])

deg f (mapping) degree

δf := (deg f)1/2 > 0 (cf. [20, Def. 3.2])

University. The author is partially supported by Grant-in-Aid for Scientific Re-

search (C), Japan Society for the Promotion of Science.

2. Linear chains of rational curves and P1-fibrations

In Section 2.1, we recall and prove some elementary properties of linear chains of

rational curves and exceptional divisors for the minimal resolutions of cyclic quo-

tient singularities. Singularities arising on P1-fibrations are studied in Sections 2.2

and 2.3 with respect to sections or double sections. In Section 2.4, we shall give

sufficient conditions for a reduced divisor of rational curves to be a set-theoretic

fiber of a P1-fibration.

2.1. Remarks on linear chains of rational curves.

Definition. Let D be a non-zero compact reduced divisor on a normal surface

X and let D =
∑k

i=1Di be the prime decomposition. We say that D is negative

definite (resp. negative semi-definite) if the intersection matrix (DiDj)1≤i,j≤k is so.

Remark. The divisor D is negative definite if and only if E2 < 0 for any non-zero

divisor E on X such that SuppE ⊂ D. The divisor D is not negative semi-definite



9

if and only if there is a divisor B on X such that SuppB ⊂ D and B2 > 0. These

are proved by considering eigenvalues of the matrix (DiDj)1≤i,j≤k. Here, B is taken

as an effective divisor. In fact, if B = B1 −B2 for two effective divisors B1 and B2

without common prime components, then B2 > 0 implies that B2
1 > 0 or B2

2 > 0.

Definition. Let D be a negative definite compact reduced divisor on a normal

surface X. Then there is a bimeromorphic morphism τ : X → X to another normal

surface X such that τ(D) is a finite set, D = τ−1(τ(D)), and τ induces an isomor-

phism X \ D ≃ Y \ τ(D). This is known as the Grauert contraction theorem in

case X is non-singular (cf. [5, (e), pp. 366–367], [16], [2, Cor. 6.12(b)]), and this is

proved in the singular case by [24, Thm. (1.2)] (cf. [18, Thm. 2.6]). We call τ the

contraction morphism of D.

Remark. Let σ : X → X ′ be a bimeromorphic morphism of normal surfaces and

let D be a non-zero compact reduced divisor on X. If dimσ(D) = 0, then D is

negative definite. When D = σ−1D′ for a reduced divisor D′ on X ′, D is negative

definite (resp. negative semi-definite) if and only if D′ is so.

Lemma 2.1. Let D be a compact and connected reduced divisor on a normal surface

X such that D is negative semi-definite but not negative definite. Then there is an

effective divisor F on X such that SuppF = D and that FDi = 0 for any prime

component Di of D. If C is a compact reduced divisor on X such that C ∩D is a

non-empty finite set, then C +D is not negative semi-definite.

Proof. By considering eigenvalues of the intersection matrix (DiDj)i,j , we can find

a non-zero divisor F on X such that SuppF ⊂ D and FDi = 0 for any 1 ≤ i ≤

k. We write F = G − H for two effective divisors G and H having no common

prime components. Then G2 = GH = H2 by FG = FH = 0. Since GH ≥ 0

and D is negative semi-definite, we have G2 = GH = H2 = 0. In particular,

SuppG ∩ SuppH = ∅. We may assume that G 6= 0 by replacing F with −F if

necessary. If Γ ∩ G is a non-empty finite set for a prime component Γ of D, then

(Γ + mG)2 = Γ2 + 2mΓG > 0 for m ≫ 0, violating the negative semi-definite

property of D. Since D is connected, we have SuppG = D and F = G. If

C is a compact reduced divisor such that C ∩ D is a non-empty finite set, then

(C +mF )2 = C2 + 2mCF > 0 for m≫ 0, which shows the last assertion. �

Lemma 2.2. Let D be a compact simple normal crossing divisor on a non-singular

surface M forming a linear chain of rational curves. Then D is negative semi-

definite if and only if there exist a bimeromorphic morphism φ : M → N to a non-

singular surface N and a compact simple normal crossing divisor E on N forming

a linear chain of rational curves satisfying one of conditions (1)–(6) below, where

E = E1 + E2 + · · ·+ En is a prime decomposition with a dual graph

•
E1

•
E2

· · · •
En

and where φ is either an isomorphism or a succession of blowings up at nodes of

inverse images of E:
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(1) n = 1 and E2
1 ≤ 0;

(2) n = 2 and E2
1 = E2

2 = −1;

(3) n ≥ 2 and E2
i ≤ −2 for any 1 ≤ i ≤ n;

(4) n ≥ 2, E2
1 = −1, and E2

i ≤ −2 for any 1 < i ≤ n;

(5) n ≥ 3, E2
1 = E2

n = −1, E2
i ≤ −2 for any 1 < i < n, and E2

k ≤ −3 for some

1 < k < n;

(6) n ≥ 3, E2
1 = E2

n = −1, and E2
i = −2 for any 1 < i < n.

Here, D is not negative definite if and only if E satisfies (1) with E2
1 = 0, (2), or

(6).

Proof. The “if” part and the last assertion are shown as follows. Since D = φ−1E,

E is negative semi-definite (resp. negative definite) if and only of D is so. It is

well known or easily shown that E is negative semi-definite by conditions (1)–(6).

Moreover, E is not negative definite if and only if (1) with E2
1 = 0, (2), or (6) is

satisfied. This shows the “if” part and the last assertion.

The “only if” part is shown as follows. Now, D is negative semi-definite. If D

is irreducible, then it is enough to take φ as the identity morphism and (1) holds.

If D consists of two prime components, then it is enough to take φ as the identity

morphism and one of (2), (3), and (4) holds. Thus, we may assume that the number

n(D) of prime components of D is greater than 2. Then the union D♮ of non-end

components of D is not zero, and it is negative definite by Lemma 2.1. LetM → V

be the contraction morphism of D♮ and let N → V be the minimal resolution of

singularities. Then we have a morphism φ : M → N over V , which is a succession

of contractions of (−1)-curves contained in images of D♮. Then E = φ∗(D) is a

simple normal crossing divisor on N forming a linear chain of rational curves such

that

• D = φ−1E, and E is negative semi-definite,

• end components of E are images of end components of D under φ,

• φ is a succession of blowings up at nodes of inverse images of E,

• any non-end component of E is not a (−1)-curve.

Therefore, E satisfies one of conditions (2)–(6). Thus, we are done. �

Lemma 2.3. Let Z be a compact simple normal crossing divisor on a non-singular

surface M with a dual graph

(II-1) •
D1

•
D2

· · · •
Dl

•
C

•♦♦♦♦♦♦

G1

•
❖❖

❖❖
❖❖

G2

for a prime decomposition Z = D1 +D2 + · · · + Dl + C + G1 + G2, where l > 0.

Assume that every prime component of Z is a non-singular rational curve with

negative self-intersection number and that G2
1 = G2

2 = −2, and C2 ≤ −2. Then the

following hold :
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(1) Assume that l = 1 or D2
i ≤ −2 for any 2 ≤ i ≤ l. Then Z is negative semi-

definite. If Z is not negative definite, then D2
1 = −1 and D2

i = C2 = −2

for any 2 ≤ i ≤ l.

(2) Assume that Z is not negative semi-definite and that
∑l

i=1Di is negative

definite. Then there is an integer 1 ≤ a < l such that
∑l

i=a+1Di + C +

G1 +G2 is not negative definite but negative semi-definite.

Proof. (1): We set c := −C2 and di := −D2
i for 1 ≤ i ≤ l. Then c ≥ 2, d1 ≥ 1, and

di ≥ 2 for any 2 ≤ i ≤ l. We consider a Q-divisor

A =
∑l

i=1
xiDi + yC + z1G1 + z2G2

for rational numbers xi, y, z1, and z2. Then

A2 = −
(∑l

i=1
dix

2
i

)
− cy2 − 2(z21 + z22) + 2

(
xly + y(z1 + z2) +

∑l−1

i=1
xixi+1

)

= (1− d1)x
2
1 +

(∑l

i=2
(2− di)x

2
i

)
+ (2− c)y2 − (z1 − z2)

2

−
(∑l−1

i=1
(xi − xi+1)

2
)
− (xl − y)2 − (y − (z1 + z2))

2.

Thus, A2 ≤ 0, and Z is negative semi-definite. The equality A2 = 0 holds if and

only if there is a rational number u such that

u = z1 = z2, x1 = xi = y = 2u, (1− d1)u = (2− di)u = (2− c)u = 0

for any 2 ≤ i ≤ l. Thus, if A2 = 0 and A 6= 0, then u 6= 0, d1 = 1, di = 2 for any

2 ≤ i ≤ l, and c = 2. Thus, (1) has been shown.

(2): By Lemma 2.2, there exists a morphism φ : M → N to a non-singular surface

N with a compact simple normal crossing divisor E = E1 +E2 + · · ·+En forming

a linear chain of rational curves such that

• φ is an isomorphism or a succession of blowings up at nodes of inverse

images of E,

• D1 + · · ·+Dl = φ−1(E),

• the linear chain E of rational curves with this order E1, E2, . . . , En or the

reverse order En, En−1, . . . , E1 satisfies one of conditions (1), (3), (4), and

(5) of Lemma 2.2.

We set C := φ(C) and Gj = φ(Gj) for j = 1, 2. We may assume that E1 = φ(D1)

and En = φ(Dl). Then Z := φ∗(Z) =
∑n

i=1Ei + C +G1 +G2 has a dual graph

•
E1

•
E2

· · · •
En

•
C

•♦♦♦♦♦♦

G1

•
❖❖

❖❖
❖❖

G2

and we have Z = φ−1(Z). In particular, Z is not negative semi-definite, E =∑n
i=1Ei is negative definite, C

2
= C2 ≤ −2, and G

2

j = G2
j = −2 for j = 1, 2. By

(1) applied to Z, one of the following conditions is satisfied:

(i) n ≥ 2, E2
n = −1, and E2

i ≤ −2 for any i < n (cf. Lemma 2.2(4));
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(ii) n ≥ 3, E2
1 = E2

n = −1, E2
i ≤ −2 for any 1 < i < n, and E2

k ≤ −3 for some

1 < k < n (cf. Lemma 2.2(5)).

By considering successive contractions of (−1)-curves in images of
∑n

i=2Ei, we

have a morphism ψ : N → N̂ to a non-singular surface N̂ such that Ĉ := ψ(C) is

a negative curve. The pushforward Ẑ = ψ∗Z is a compact simple normal crossing

divisor
∑k

i=1 Êi + Ĉ + Ĝ1 + Ĝ2 consisting of rational curves with a dual graph

•
Ê1

•
Ê2

· · · •
Êk

•
Ĉ

•♦♦♦♦♦♦

Ĝ1

•
❖❖

❖❖
❖❖

Ĝ2

in which k ≥ 1 and the following conditions are satisfied for Ê :=
∑k

i=1 Êi and for

some integer 1 < b ≤ l:

• ψ is a succession of blowings up at nodes of inverse images of Ê + Ĉ;

• E + C = ψ−1(Ê + Ĉ), E = ψ−1(Ê), and
∑l

i=bEi + C = ψ−1(Ĉ);

• Ê1 = ψ(E1), and Ĝj = ψ(Gj) for j = 1, 2.

Obviously, Ĝ2
j = G2

j = −2 for j = 1, 2. We may assume that Ĉ2 = −1. In fact, if

Ĉ2 ≤ −2 and if Ê2
k = −1, then we can contract Êk to get a similar situation. If

Ĉ2 ≤ −2 and if Ê2
k ≤ −2, then we can apply (1) to Ẑ, which is not negative semi-

definite, and as a consequence, k ≥ 2 and Ê2
p = −1 for some 2 ≤ p ≤ k; however,

in this situation, E = ψ−1Ê does not satisfy (i) nor (ii): This is a contradiction.

The linear chain Ĉ+ Ĝ1+ Ĝ2 is not negative definite but negative semi-definite.

Now, Gj = ϕ−1(ψ−1(Ĝj)) for j = 1, 2, and
∑l

i=a+1Di + C = ϕ−1(ψ−1(C)) for

some 1 ≤ a < l. Thus,
∑l

i=a+1Di + C + G1 + G2 is not negative definite but

negative semi-definite. �

Lemma 2.4. Let µ : Y → X be a bimeromorphic morphism of non-singular sur-

faces whose exceptional locus is µ−1(P ) for a point P ∈ X. Assume that µ−1(P )

contains a unique (−1)-curve Θ and that Θ intersects the proper transform C ′ in

Y of a non-singular prime divisor C ⊂ X containing P . Then µ−1(P ) is a simple

normal crossing divisor forming a linear chain of rational curves such that

(1) Θ is an end component of µ−1(P ) with C ′Θ = 1, and

(2) the other prime component is a (−2)-curve not intersecting C ′.

If D is a non-singular prime divisor on X such that {P} = C ∩D and D intersects

C transversely, then the following hold for the proper transform D′ in Y of D:

(3) If µ−1(P ) = Θ, then D′Θ = 1 and C ′ ∩D′ = ∅.

(4) If µ−1(P ) 6= Θ, then D′Θ† = 1 for the other end component Θ† of µ−1(P ),

and D′ does not intersect C ′ nor µ−1(P )−Θ†.

In other words, µ−1(P ) ∪ C ′ ∪D′ has a dual graph

•
C ′

•
Θ

•
D′

or •
C ′

•
Θ

· · · •
Θ†

•
D′

.

Proof. We set B := µ−1(P ) as a reduced divisor on Y . Then (KY + C ′)Θ =

−1 + C ′Θ ≥ 0 and (KY + C ′)Γ ≥ KY Γ ≥ 0 for any prime component Γ of B −Θ.
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Thus, KY +C ′ is µ-nef and KY +C ′ = µ∗(KX+C)−E for a µ-exceptional effective

divisor E. On the other hand, −E is effective by the logarithmic ramification

formula for the “birational pair” (C&X) (cf. [27, Prop. 2.1], [11, Part 2, Prop. 1],

[19, Prop. 1.40(2)]). This is also deduced from a property that (X,C) is 1-log-

terminal (cf. [19, Def. 2.1, Rem. 2.3]), since E is Cartier. Thus,

KY + C ′ = µ∗(KX + C).

Consequently, C ′Θ = 1, and Γ is a (−2)-curve with C ′ ∩ Γ = ∅ for any prime

component Γ of B − Θ. In particular, (2) and the latter part of (1) hold. By

shrinking X, we may assume the existence of the prime divisor D above. Then

KY + C ′ +D′ +B = µ∗(KX + C +D) +G

for a µ-exceptional effective divisor G by the logarithmic ramification formula (cf.

[9, §4, (R)], [10, Thm. 11.5]) or by a property that (X,C + D) is log-canonical.

Hence, µ∗D = D′+B−G, and we have G = 0. As a consequence, (Y,C ′+D′+B)

is also log-canonical. Then µ is a toroidal blowing up (cf. [18, Def. 4.19, Cor. 4.22]).

Hence, B is a linear chain of rational curves with Θ as an end component and it

satisfies (3) and (4). �

Here, we recall some well-known properties on 2-dimensional cyclic quotient

singularities.

Fact 2.5 (cf. [18, Exam. 3.2]). Let X be a normal surface with a unique singular

point P such that (X,P ) is a cyclic quotient singularity of order n ≥ 2. Then (U,D)

is toroidal at P for an open neighborhood U of P and for a reduced divisor D ∋ P ,

i.e., U \ D →֒ U is a toroidal embedding at P (cf. [13, II, §1], [18, Def. 3.12]).

Let µ : M → X be the minimal resolution of singularity. This is described as a

toric morphism. In particular, µ−1(P ) is a simple normal crossing divisor
∑k

i=1 Γi

forming a linear chain of rational curves, and moreover,

•
D′

1
•
Γ1

•
Γ2

· · · •
Γk

•
D′

2

is a dual graph of µ−1(D), where D′
1 and D′

2 are proper transforms of prime

components D1 and D2 of D locally at P . By Hirzebruch–Jung’s method (cf.

[8, §3.4]), there exist two series of integers 1 = p1 < p2 < · · · < pk < n and

n > q1 > q2 > · · · > qk = 1 such that

(II-2) µ∗D1 = D′
1 +

∑k

i=1
(qi/n)Γi and µ∗D2 = D′

2 +
∑k

i=1
(pi/n)Γi

(cf. [15, Lem. 2.7, Rem. 2.9]). In particular, D1D2 = (µ∗D1)D
′
2 = D′

1(µ
∗D2) = 1/n.

By the dual graph of µ−1(P ) and by (II-2), we have

pi−1 + p1Γ
2
i + pi+1 = qi−1 + qiΓ

2
i + qi+1 = 0
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for any 1 ≤ i ≤ k, where we set p−1 = qk+1 = 0 and pk+1 = q−1 = n. Since

KM +D′
1 +D′

2 +
∑k

i=1 Γi = µ∗(KX +D), we have

KM = µ∗KX −
∑k

i=1
(1− (pi + qi)/n)Γi and

KM +D′
1 = µ∗(KX +D1)−

∑k

i=1
(1− pi/n)Γi

by (II-2). Since p1 = 1, the second equality induces an equality

(KX +D1)|D1
= KD1

+ (1− 1/n)P

of Q-divisors on D1 by adjunction for (M,D′
1) and by the isomorphism D′

1 ≃ D1

induced by µ. This means that DiffD1
(0) = (1 − 1/n)P , where DiffD1

(0) is the

different of (X,D1) in the sense of [14, Prop.-Def. 16.5] (cf. [14, Prop. (16.6.3)]).

Remark 2.6. For integers pi and qj above, pk and q1 are coprime to n, and pkq1 ≡

1 mod n (cf. [15, Lem. 2.7]). Moreover, (X,P ) is a cyclic quotient singularity of

type (n, pk) or (n, q1) in the sense of [18, Exam. 3.2], i.e., it is isomorphic to the

germ of the quotient surface of C2 by the action of an automorphism

(x, y) 7→ (ζpkx, ζy) (resp. (x, y) 7→ (ζx, ζq1y))

for a primitive n-th root ζ of unity, where (x, y) is a coordinate of C2.

Remark 2.7. In the situation of Fact 2.5, n equals the numerical factorial index of

X at P (cf. [19, Def. 1.26]). This is shown as follows: We define Q-divisors E(i) for

1 ≤ i ≤ k on M inductively by

E(1) = −
∑k

i=1
(qi/n)Γi, E(2) = Γ1 + b1E(1), E(i+1) = Γi + biE(i) − E(i−1)

for 2 ≤ i ≤ k − 1 (cf. (II-2)), where bi = −(Γi)
2. Then E(i)Γj = δi,j for any

1 ≤ i, j ≤ n. Hence, n equals the numerical factorial index by [19, Lem. 1.27].

Here, we have E(k) = −
∑k

i=1(pi/n)Γi by (II-2).

Lemma 2.8. For X and P in Fact 2.5, let C be a prime divisor on X containing

P and let C ′ be the proper transform of C in M . Then (X,C) is 1-log-terminal at

P in the sense of [19, Def. 2.1] if and only if

(II-3) either C ′Γi =

{
1, if i = 1,

0, if i > 0,
or C ′Γi =

{
0, if i < k,

1, if i = k.

Assume that (X,C) is 1-log-terminal with C ′Γk = 1. Then the following hold for

any prime divisor B on X such that B∩C = {P}, where B′ is the proper transform

of B in M :

(1) If BC = 1/n, then (X,B + C) is log-canonical at P , B′ ∩ C ′ = ∅, and

•
B′

•
Γ1

•
Γ2

· · · •
Γk

•
C ′

is a dual graph of µ−1(B + C).

(2) If BC = 2/n, then (X, (1/2)B+C) is log-canonical at P , B′ ∩C ′ = ∅, and

one of the following two cases occurs :
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(a) B′Γ1 = 2 and B′Γi = 0 for any i > 1; In particular,

•
B′

•
Γ1

•
Γ2

· · · •
Γk

•
C ′

is a dual graph of µ−1(B + C);

(b) k ≥ 2, Γ2
1 = −2, B′Γ2 = 1, and B′Γi = 0 for any i 6= 2, and p2 = 2;

In particular,

•
Γ1

•
Γ2

• B′

•
Γ3

· · · •
Γk

•
C ′

is a dual graph of µ−1(B + C).

(3) If k ≥ 2, Γ2
1 = −2, B′Γ2 = 1, and B′Γi = 0 for any i 6= 2, then BC = 2/n.

Proof. If (X,C) is 1-log-terminal at P , then, by [19, Fact 2.5], we may assume that

C = D1 or C = D2 for the divisor D in Fact 2.5, and hence, (II-3) holds. Assume

that the second case of (II-3) holds. Then

(II-4) µ∗C = C ′ +
∑k

i=1
(pi/n)Γi

by (II-2) in Fact 2.5. Furthermore, by an argument in Fact 2.5, we have

KM + C ′ = µ∗(KX + C)−
∑k

i=1
(1− qi/n)Γi,

and it implies that (X,C) is 1-log-terminal at P , since 1− qi/n < 1 for any i. This

proves the first assertion.

In the second assertion, if BC = 1/n (resp. BC = 2/n), then (X,B + C)

(resp. (X, (1/2)B + C)) is log-canonical at P by “inversion of adjunction” (cf. [14,

Thm. 17.7]), since

DiffC(B) = B|C + (1− 1/n)P = P
(
resp. DiffC((1/2)B) = (1/2)B|C + (1− 1/n)P = P

)

by Fact 2.5. In case BC = 1/n, (X,B+C) is toroidal at P by [19, Fact 2.5], and we

have (1) by Fact 2.5, since we may assume that D1 = B and D2 = C. If BC = 2/n,

then one of two conditions (i) and (ii) below holds by n ≥ 2, B′ ∩ µ−1(P ) 6= ∅, and

the equality

BC = B′(µ∗C) = B′C ′ +
∑k

i=1
(pi/n)B

′Γi

induced by (II-4):

(i) B′C ′ = 0, (B′Γ1, B
′Γ2) = (2, 0), and B′Γi = 0 for any i > 2;

(ii) B′C ′ = 0, (B′Γ1, B
′Γ2) = (0, 1), p2 = 2, and B′Γi = 0 for any i > 2.

Consequently, B′ ∩C ′ = ∅, and (2a) holds in case (i). Moreover, (2b) holds in case

(ii), since we have Γ2
1 = −2 by the equality p0 + p1Γ

2
1 + p2 = 0 in Fact 2.5. Thus,

(2) has been proved. In the situation of (3), we have BC = B′µ∗C = p2/n and

0 = Γ1µ
∗C = −2/n + p2/n by (II-4). In particular, p2 = 2 and BC = 2/n. Thus,

we are done. �
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2.2. Singularities on P1-fibrations. For a P1-fibration π : X → T from a normal

surface X to a non-singular curve T , we shall study the structure of X under certain

conditions on singularity of pairs (X,C + Fred) for a fiber F of π and for a prime

divisor C on X which is either a section or a double section of π. Here, C is

called a double section if π|C : C → T is a finite morphism of degree 2. We fix the

P1-fibration π : X → T throughout Section 2.2. We begin with:

Remark 2.9. The vanishing R1π∗OX = 0 holds: This is well known and is proved

by the same method as in the proof of [18, Prop. 2.33(2)]. As a consequence,

H1(E,OE) = 0 for any effective divisor E on X contained in fibers of π, since

R1π∗OX → R1π∗OE is surjective. In particular, every prime component of any

fiber is a non-singular rational curve, and if a fiber F is reduced and irreducible,

then F ≃ P1 and π is smooth along F (cf. [18, Prop. 2.33(3), (4)]).

Remark 2.10. Suppose that X is non-singular. Then every reducible fiber of π

contains a (−1)-curve. For, if not, KXΓ ≥ 0 for any prime component Γ on the

reducible fiber, since Γ2 < 0, but it implies that KXF ≥ 0 for a general fiber F ,

contradicting that π is a P1-fibration.

Lemma 2.11. For any t ∈ T , π−1(t) ∩Xreg is a simple normal crossing divisor.

Moreover, if π−1(t) is reducible, then the following hold for any prime component

Γ of π−1(t):

(1) If a connected and reduced divisor D on X is contained in π−1(t)−Γ, then

#D ∩ Γ ≤ 1. If D ∩ Γ ⊂ Xreg in addition, then DΓ ≤ 1.

(2) If Γ ⊂ Xreg and if Γ2 = −1, then #(π−1(t)− Γ) ∩ Γ = (π−1(t)− Γ)Γ ≤ 2.

Proof. If π−1(t) is irreducible, then it is isomorphic to P1 by Remark 2.9. Thus,

we may assume that π−1(t) is reducible. Assume that D ∩ Γ ⊂ Xreg for a prime

component Γ of π−1(t) and the divisor D in (1). Then D is Cartier along D ∩ Γ,

and we have an the exact sequence

0 → OΓ(−D) = OX(−D)⊗OΓ → OΓ+D → OD → 0.

Then H1(Γ,OΓ(−D)) = 0 by H0(D,OD) ≃ C and H1(X,OD+Γ) = 0 (cf. Re-

mark 2.9). In particular, −1 ≤ degOΓ(−D) = −ΓD. This shows the latter half of

(1). The inequality DΓ ≤ 1 for arbitrary such Γ and D implies that π−1(t) ∩Xreg

is a simple normal crossing divisor (cf. [18, Rem. 2.34]). For the first half of (1),

let us consider the minimal resolution µ : M → X of singularities and the proper

transform Γ′ of Γ in M . Then D′ = µ−1(D) is connected, and Γ′ +D′ is contained

in the fiber over t of the P1-fibration π ◦ µ : M → T . Thus, Γ′D′ ≤ 1 by the latter

half of (1) for π ◦ µ. Hence, Γ ∩D = µ(Γ′ ∩D′) consists of at most one point, and

we have proved (1).

In the situation of (2), π−1(t) is normal crossing along Γ, and #(π−1(t)−Γ)∩Γ =

(π−1(t) − Γ)Γ. Let φ : X → X̂ be the contraction morphism of the (−1)-curve Γ.

Then there is a P1-fibration π̂ : X̂ → T such that π = π̂ ◦ φ. Here, φ is the blowing

up at a non-singular point P̂ of X̂, and the fiber π̂−1(t) is normal crossing at P̂ .

This implies that #(π−1(t)− Γ) ∩ Γ ≤ 2, and we have proved (2). �
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Lemma 2.12. For a point t ∈ T and an integer m > 1, assume that

• there is a cyclic cover τ : T ′ → T of degree m from a non-singular curve T ′

such that τ∗(t) = mt′ for a point t′ ∈ T ′, and

• F = mFred for the fiber F = π∗(t).

Let X ′ be the normalization of X ×T T
′ with morphisms ν : X ′ → X and π′ : X ′ →

T ′ induced by projections, which make a commutative diagram:

X ′ ν
−−−−→ X

π′

y
yπ

T ′ τ
−−−−→ T.

Then F ′ = π′∗(t′) is reduced and ν is étale in codimension 1 along F ′. Here,

(X,Fred) is 1-log-terminal along Fred if and only if π′ is smooth along F ′.

Proof. We may assume that τ is étale outside t′ by shrinking T . Then the first

assertion is a consequence of [20, Lem. 4.2]. Now, we have an equality KX′ + F ′ =

ν∗(KX + Fred). By [19, Lem. 2.10(2), Prop. 2.12(2)], (X,Fred) is 1-log-terminal

along Fred if and only if (X ′, F ′) is 1-log-terminal along F ′. If π′ is smooth along

F ′, then (X ′, F ′) is 1-log-terminal along F ′. Conversely if (X ′, F ′) is 1-log-terminal

along F ′, then F ′ is non-singular (cf. [19, Fact 2.5]), and π′ is smooth along F ′.

Thus, we are done. �

Lemma 2.13. Let C be a section of π and F a fiber of π such that (X,C+Fred) is

log-canonical at a point P ∈ C∩Fred. Then the prime component Γ of F intersecting

C is unique, and moreover :

(1) If P ∈ Xreg, then multΓ F = 1, and if P ∈ SingX, then multΓ F equals the

order of the cyclic quotient singularity (X,P ).

Assume that P ∈ SingX and that F is irreducible, i.e., Fred = Γ. Then:

(2) The pair (X,Fred) is 1-log-terminal along Fred, and Fred ∩ SingX \ {P}

consists of one point at which X has a cyclic quotient singularity of the

same order as (X,P ).

(3) If C† is another section of π such that C∩C†∩F = ∅, then (X,C+C†+Fred)

is log-canonical along Fred.

Proof. Since (X,C + Fred) is toroidal at P (cf. [19, Fact. 2.5(1)]), Fred is locally

irreducible at P . Thus, Γ is unique. If P ∈ Xreg, then CF = CΓ = 1, and hence,

multΓ F = 1. If P ∈ SingX, then (X,P ) is a cyclic quotient singularity of order

m > 1 such that CΓ = 1/m, since (X,C+Fred) is toroidal at P ; thus, m = multΓ F

by CF = 1. This proves the first assertion and (1). Next, we shall prove (2) and

(3), where P ∈ SingX and F = mΓ for m > 1.

(2): By replacing T with an open neighborhood of t := π(P ), we have a cyclic

cover τ : T ′ → T from a non-singular curve T ′ such that τ∗(t) = mt′ for a point

t′ ∈ T ′ and that τ is branched only at t. For morphisms ν : X ′ → X and π′ : X ′ →

T ′ in Lemma 2.12 defined by τ , we know that ν is étale in codimension 1 and that

the fiber F ′ = π′∗(t′) is reduced. Hence,

KX′ + C ′ + F ′ = ν∗(KX + C + Fred)
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for the section C ′ := ν∗C of π′, and (X ′, C ′+F ′) is log-canonical at the point {P ′} =

ν−1(P ) = C ′ ∩ F ′ by [19, Lem. 2.10(1)]. This implies that F ′ is irreducible, since

each prime component of F ′ contains P ′. Hence, F ′ ≃ P1 and π′ is smooth along

F ′ (cf. Remark 2.9). Then (X,Fred) is 1-log-terminal along Fred by Lemma 2.12,

and it implies that (X,C + Fred) is log-canonical along Fred. Since

(KX + C + Fred)Fred = (1/deg ν)(KX′ + C ′ + F ′)F ′ = −1/m < 0,

the rest of (2) follows from [18, Prop. 3.29] concerning conditions (E)–(H) there.

(3): We have C†Fred = (1/m)C†F = 1/m. Let P † be the intersection point

of C† and Fred. Then P † ∈ SingX and (X,P †) is a cyclic quotient singularity of

order m by (2). Moreover, the equality C†Fred = 1/m implies that (X,C† + Fred)

is log-canonical at P † by Lemma 2.8(1). Thus, we have (3) by (2). �

Lemma 2.14. Let C be a section of π such that

(∗) (X,C +Gt) is log-canonical at Qt for any t ∈ S(π) := π(C ∩ SingX),

where Gt := π−1(t) and {Qt} := C ∩Gt. Then the following hold :

(1) For any t ∈ S(π), there is an integer mt > 1 such that CGt = 1/mt and

that (X,Qt) is a cyclic quotient singularity of order mt.

(2) The divisor KX + C +
∑

t∈S(π)Gt is Cartier along C.

(3) One has the following equalities of Q-divisors on C:

(KX + C +
∑

t∈S(π)
Gt)|C = KC +

∑
t∈S(π)

Qt,(II-5)

(KX + C)|C = KC +
∑

t∈S(π)
(1−m−1

t )Qt.(II-6)

Proof. We have (1) by (∗) and by Lemma 2.13. The divisor KX +C +
∑

t∈S(π)Gt

is Cartier at Qt for any t ∈ S(π) by (∗), since Qt is a node of C+Gt. On the other

hand, π is smooth along C ∩ Xreg = C \ π−1S(π), and C ∩ Xreg is non-singular.

Hence, KX + C +
∑

t∈S(π)Gt is Cartier along C; thus (2) holds. For (3), we have

(II-6) by (II-5), since mtGt|C = Qt as a divisor on C. Thus, it is enough to prove

(II-5).

Let µ : M → X be the minimal resolution of singularities lying on C and let Et

be the exceptional divisor µ−1(Qt) for t ∈ S(π). Then

(II-7) KM + C ′ +
∑

t∈S(π)
(G′

t + Et) = µ∗(KX + C +
∑

t∈S(π)
Gt)

for the proper transforms C ′ and G′
t of C and Gt in M , respectively, since µ is a

toroidal blowing up (cf. [18, §4.3]). Here, C ′ ∩G′
t = ∅ and Et|C′ is identified with

Qt by the isomorphism C ′ ≃ C induced by µ. Thus, we have (II-5) by (II-7) and

by adjunction for (M,C ′). �

Proposition 2.15. Let C1 and C2 be two sections of π and let F be a fiber of π

such that

(i) C1 ∩ C2 ∩ F = ∅,

(ii) (X,C1 + C2 + Fred) is log-canonical at C1 ∩ Fred, and

(iii) (KX + C1 + C2 + Fred)Θ ≤ 0 for any prime component Θ of F .
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Then Fred is a linear chain of rational curves, (X,C1 +C2 + Fred) is log-canonical

along Fred, and the following hold :

(1) KX + C1 + C2 + Fred is Cartier along Fred;

(2) OX(KX + C1 + C2 + Fred)⊗OFred
≃ OFred

.

Proof. For the intersection point P1 of C1 and F , let Γ be a prime component of

F containing P1. Then Γ is unique by (ii) and Lemma 2.13. Let ϕ : X → X be the

contraction morphism of Fred − Γ, where ϕ is the identity morphism if Fred = Γ.

Let π̄ : X → T be the induced P1-fibration such that π = π̄ ◦ϕ. We set Ci := ϕ(Ci)

for i = 1, 2, P 1 = ϕ(P1), Γ := ϕ(Γ), and F := π̄∗(π(P1)). Then F = mΓ for

m := multΓ F , and

(II-8) KX + C1 + C2 + Fred = ϕ∗(KX + C1 + C2 + Γ) + E

for a ϕ-exceptional effective Q-divisor E by (iii). Since ϕ is an isomorphism over

an open neighborhood of P 1, we see that (X,C1 + C2 + Γ) is log-canonical at P 1

by (ii) and that P 1 6∈ C2, i.e., C1 ∩ C2 ∩ Γ = ∅. Thus, (X,C1 + C2 + Γ) is log-

canonical along Γ by Lemma 2.13(3) applied to π̄. Now (KX +C1 +C2 +Γ)Γ = 0

by F = mΓ, and hence, Γ ∩ SuppE = ∅ and (KX + C1 + C2 + Fred)Γ = 0 by (iii)

and (II-8). If a prime component Θ of Fred − Γ is not contained in SuppE, then

(KX +C1 + C2 + Fred)Θ = 0 and Θ ∩ SuppE = ∅ by (iii) and (II-8). Since Fred is

connected, we have E = 0. Therefore,

KX + C1 + C2 + Fred = ϕ∗(KX + C1 + C2 + Γ).

Consequently, (X,C1+C2+Fred) is log-canonical along Fred and (KX +C1+C2+

Fred)Θ = 0 for any prime component Θ of F . Then Fred is a linear chain of rational

curves by [18, Lem. 4.5]. Moreover, we have (1) and (2) by [18, Prop. 3.29(C)] and

by the canonical isomorphism

Pic(Fred) ≃
∏

Θ⊂Fred

Pic(Θ)

of Picard groups (cf. [1, Thm. (1.7)], [18, Rem. 4.2]). �

Lemma 2.16. Let C be a double section of π. For a fiber F of π and a point

P ∈ F , assume that

(i) C ∩ Fred = {P},

(ii) (X,C + Fred) is log-canonical at P , and

(iii) (KX + C + Fred)Γ ≤ 0 for any prime component Γ of Fred.

Then P ∈ Creg, Fred is a linear chain of rational curves, (X,C + Fred) is log-

canonical along Fred, and (KX + C + Fred)Γ = 0 for any prime component Γ of

Fred. Moreover, Σ := (Fred)reg ∩ SingX \ {P} is not contained in any non-end

component of C + Fred, and Σ consists of either

(a) two A1-singular points of X, or

(b) one point at which (X,Fred) is a log-canonical singularity of type D in the

sense of [18, Def. 3.23], i.e., (X,Fred) is log-canonical but not 1-log-terminal

at the point.
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Consequently, KX +C +Fred is not Cartier at Σ, but 2(KX +C +Fred) is Cartier

along Fred with an isomorphism

OX(2(KX + C + Fred))⊗OX
OFred

≃ OFred
.

Proof. By (ii), C is non-singular at P . By shrinking T , we may assume that C

is non-singular, π is smooth over T \ {t}, where t := π(P ), and the double cover

π|C : C → T is branched only at t. We rewrite π|C : C → T as a morphism τ : T ′ →

T , and let X ′ be the normalization of X ×T T ′. Then we have a commutative

diagram

X ′ ν
−−−−→ X

π′

y
yπ

T ′ τ
−−−−→ T

for the induced P1-fibration π′ : X ′ → T ′ and the induced double cover ν : X ′ → X,

and we have two sections C ′
1 and C

′
2 of π

′ such that ν∗C = C ′
1+C

′
2. Now, τ

∗(t) = 2t′

for a point t′ ∈ T ′. We set F ′ := π′∗(t′). Then

(II-9) KX′ + C ′
1 + C ′

2 + F ′
red = ν∗(KX + C + Fred)

by [19, Lem. 1.39] as ν is étale over X \ Fred. Hence, (X,C ′
1 + C ′

2 + F ′
red) is log-

canonical along ν−1(P ) by (ii) and [19, Lem. 2.10(1)]. In particular, C ′
1∩C

′
2∩F

′
red =

∅ (cf. [19, Fact. 2.5]). Moreover, C ′
1∩C

′
2 = ∅, since π|C : C → T is étale over T \{t}.

By (iii), (KX′ + C ′
1 + C ′

2 + F ′
red)Γ

′ ≤ 0 for any prime component Γ′ of F ′. Hence,

(X ′, C ′
1 + C ′

2 + F ′
red) is log-canonical along F

′
red, and

(KX′ + C ′
1 + C ′

2 + F ′
red)Γ

′ = 0

for any prime component Γ′ of F ′ by Proposition 2.15 applied to π′ : X ′ → T ′,

C ′
1, C

′
2, and F

′. Then (X,C + Fred) is log-canonical along Fred by (II-9) and [19,

Prop. 2.12(1)], and we have (KX + C + Fred)Γ = 0 for any prime component Γ of

F . As a consequence, Fred is a linear chain of rational curves by [18, Lem. 4.5].

Let Γ0 be a prime component of F containing P , which is unique, since (X,C +

Fred) is log-canonical at P (cf. Lemma 2.13). Here, (KX+Fred)Γ0 = −CΓ0 < 0, and

(KX + Fred)Γ = −CF = 0 for any prime component Γ of Fred − Γ0. In particular,

if Fred is reducible, then Γ0 is an end component of Fred, by [18, Lem. 4.5(3)].

If F is irreducible, i.e., Fred = Γ0, then Σ ⊂ Γ0, and either (a) or (b) holds by [18,

Prop. 3.29] concerning conditions (G), and (H) there, since (KX +C +Fred)Γ = 0.

If F is reducible, then Σ is contained in the other end component of the linear chain

Fred, and either (a) or (b) holds by [18, Prop. 3.29] concerning (C), (G), and (H)

there. In both cases, Σ is not contained in any non-end component of C+Fred. The

last assertion on KX +C +Fred is a consequence of [18, Prop. 3.29, Rem. 4.2]. �

2.3. PDS configurations. We introduce the notion of PDS configurations for

the study of double sections of a P1-fibration in Definition 2.17 below. We shall

discuss relations among irreducible PDS configurations, basic PDS configurations,

and standard PDS configurations (cf. Definition 2.20).
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Definition 2.17. Let π : X → T be a P1-fibration from a normal surface X to a

non-singular curve T . Let C be a double section of π and let D be a set-theoretic

fiber of π. We say that (π : X → T,C,D) is a practical double section configuration,

or a PDS configuration for short, if C ∩D consists of one point P and the following

conditions are satisfied:

(1) (X,C) is 1-log-terminal at P ;

(2) CD ∈ {1/n, 2/n} for the numerical factorial index n of X at P ;

(3) a prime component B of D intersecting C is unique.

The point P and its image π(P ) are called the intersection point and the base point

of (X/T,C,D), respectively. The prime divisor B in (3) is called the distinguished

component of D. The integer n in (2) is called the index of (X/T,C,D). If CD =

1/n (resp. CD = 2/n) in (2), then (X/T,C,D) is called a PDS configuration of type

In (resp. IIn), or type I (resp. II), for simplicity. The PDS configuration (X/T,C,D)

is said to be irreducible if D is irreducible.

Lemma 2.18. Let (π : X → T,C,D) be a PDS configuration of index n with the

intersection point P ∈ X, the base point o = π(P ) ∈ T , and the distinguished

component B of D. Then:

(1) Every prime component of D is isomorphic to P1, and D∩Xreg is a simple

normal crossing divisor. In particular, D is locally irreducible at P .

(2) The curve C is non-singular at P . If P ∈ Xreg, then n = 1; if P ∈ SingX,

then n equals the order of the cyclic quotient singularity (X,P ).

(3) There is an open neighborhood U of o in T such that π is smooth over

U \{o} and that π|C : C → T is étale over U \{o}. In particular, C ∩π−1U

is non-singular.

(4) If (X/T,C,D) is of type In (resp. IIn), then multB π
∗(o) = 2n (resp.

multB π
∗(o) = n).

(5) Assume that D is reducible and let φ : X → X be the contraction morphism

of D − B. Then (X/T,C,D) is an irreducible PDS configuration of the

same type as (X/T,C,D) for C = φ(C) and D = φ∗D.

Proof. Assertion (1) follows from Remark 2.9 and Definition 2.17(3). We have (2)

by (1), Definition 2.17(1), and Remark 2.7. For (3), it is enough to set U to be

the complement of S \ {o} in T , where S is the set of points t ∈ T such that

π∗(t) or (π|C)
∗(t) is not smooth. We have (4) by 2 = Cπ∗(o) = (multB π

∗(o))CD.

Assertion (5) holds trivially by definition, since φ is an isomorphism along C. �

Lemma 2.19. For a PDS configuration (X/T,C,D), it is of type I if and only if

(X,C +D) is log-canonical at the intersection point.

Proof. Let n be the index of (X/T,C,D) and let P be the intersection point. If the

type is I, i.e., CD = 1/n, then (X,C +D) is log-canonical at P by Lemma 2.8(1).

Assume that the type is II, i.e.. CD = 2/n. If P ∈ Xreg, then (X,C +D) is not

log-canonical at P , since C intersects D tangentially at P . Thus, we may assume

that P ∈ SingX. Then (X,P ) is a cyclic quotient singularity of order n > 1 (cf.

Lemma 2.18(2)), and we can apply Lemma 2.8(2) to (X,C, P ) and D, since D
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is locally irreducible at P (cf. Lemma 2.18(1)). Let µ : M → X be the minimal

resolution of singularity (X,P ) and let B′ be the proper transform in M of the

distinguished component B of D. If (X,C +D) is log-canonical at P , then µ−1(P )

is a linear chain of rational curves, and B′ intersects µ−1(P ) transversely at just one

point contained in an end component of the linear chain. However, this contradicts

Lemma 2.8(2). Hence, if the type is II, then (X,C + D) is not log-canonical at

P . �

Definition 2.20. A PDS configuration (X/T,C,D) is said to be standard if D ⊂

Xreg and if D is a simple normal crossing divisor expressed as E + Ξ1 + Ξ2 for a

linear chain E of rational curves and for two (−2)-curves Ξ1 and Ξ2 such that

(II-10) •
C

•
E1

•
E2

· · · •
El

•♦♦♦♦♦♦

Ξ1

•
❖❖

❖❖
❖❖

Ξ2

is a dual graph of C +D, where E1, E2, . . . , El are prime components of E. If E

is irreducible, then (X/T,C,D) is said to be basic.

Remark. The standard PSD configuration is of type I1, where E1 is just the dis-

tinguished component of D. The linear chain E of rational curves contains a (−1)-

curve by Remark 2.10. If (X/T,C,D) is basic, then π∗(o) = 2E + Ξ1 + Ξ2 for the

P1-fibration π : X → T and for the base point o.

Lemma 2.21. For the standard PDS configuration (X/T,C,D) in Definition 2.20,

the following hold :

(1) The Q-divisor KX + C + E + (1/2)(Ξ1 + Ξ2) is numerically trivial on D,

i.e., (
KX + C + E + (1/2)(Ξ1 + Ξ2)

)
Γ = 0

for any prime component Γ of D.

(2) If El is a (−1)-curve, then (X/T,C,D) is basic.

(3) If E is reducible and if E1 is a unique (−1)-curve contained in E, then Ei

is a (−2)-curve for any i > 1.

(4) If E is reducible, then there exists a basic PDS configuration (Y/T,CY , DY )

with a bimeromorphic morphism φ : X → Y over T such that φ(C) = CY

and φ∗D = DY and that φ is a succession of blowings up at nodes of inverse

images of φ(C + E).

Proof. We have (1) from the dual graph (II-10) in Definition 2.20 by calculation

of intersection numbers. If El is a (−1)-curve, then El + Ξ1 + Ξ2 is not negative

definite, and hence, D = El + Ξ1 + Ξ2, i.e., E is irreducible. This proves (2).

Assertion (3) follows from Lemma 2.3(1). We shall show (4), where E is reducible.

Since E is negative definite, by Lemma 2.2, we have a bimeromorphic morphism

ϕ : X → X† to a normal surface X† such that

• E† := ϕ∗(E) is a linear chain of rational curves contained in (X†)reg,

• E satisfies one of three conditions (3), (4), and (5) of Lemma 2.2,
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• ϕ is a succession of blowings up at nodes of inverse images of E†.

In particular, E† is reducible, ϕ(E1) and ϕ(El) are the end components of E†.

Moreover, a P1-fibration X† → T is induced and (X†/T,C†, D†) is a standard PDS

configuration for C† = ϕ(C) and D† = ϕ∗D. Here, D† = E† + Ξ†
1 + Ξ†

2 for (−2)-

curves Ξ†
1 = ϕ(Ξ1) and Ξ†

2 = ϕ(Ξ2). There is a (−1)-curve contained in E† by

Remark 2.10. If ϕ(El) is a (−1)-curve, then E† = ϕ(El) by (2), contradicting the

reducibility of E†. Hence, ϕ(El) is not a (−1)-curve, E† satisfies Lemma 2.2(4), and

ϕ(E1) is a unique (−1)-curve in E†. By (3), every prime component of E† −ϕ(E1)

is a (−2)-curve. Let X† → Y be the contraction morphism of E† − ϕ(El) and

let φ : X → Y be the composite with ϕ. Then (Y/T, φ(C), φ∗(D)) is a basic PDS

configuration for the induced P1-fibration Y → T . Thus, we are done. �

Remark 2.22. Basic PDS configurations and irreducible PDS configurations of type

II1 are connected by bimeromorphic morphisms as follows: Let (X/T,C,D) be an

irreducible PDS configuration of type II1. Then the P1-fibration X → T is smooth

along D, and D intersects C tangentially at the intersection point P . In particular,

D ⊂ Xreg. Let µ : M → X be the composite of two blowings up at points lying

over P such that µ−1(C +D) is normal crossing and let C ′ and D′ be the proper

transforms of C andD inM , respectively. Then µ−1D = D′+Γ+Θ for a (−2)-curve

Γ and a (−1)-curve Θ, and

•
C ′

•
Θ

• Γ

•
D′

is a dual graph of µ−1(C+D). Hence, (M/T,C ′, µ−1D) is a basic PDS configuration

with Θ as the distinguished component. Note that if C is compact, then

(II-11) C2 = (C ′)2 + 2

by construction. Conversely, every basic PDS configuration is obtained from an

irreducible PDS configuration of type II1 by this process. In fact, if (M/T, C̃, D̃) is a

basic PDS configuration with two (−2)-curves Ξ1 and Ξ2 in D̃, then the contraction

morphism of D̃−Ξ1 (or D̃−Ξ2) produces an irreducible PDS configuration of type

II1.

Lemma 2.23. Let (π : Y → T,C,D) be an irreducible PDS configuration of type

I and let µ : M → Y be the minimal resolution of singularities lying on D. Then

(M/T,C ′, DM ) is a standard PDS configuration for the proper transform C ′ of C

in M and for DM = µ−1D, in which the proper transform D in M is a unique

(−1)-curve contained in DM . In particular, C ′ +DM has a dual graph

(II-12) •
C ′

• · · · •

•♦♦♦♦♦♦

Ξ1

•
❖❖

❖❖
❖❖

Ξ2

for two (−2)-curves Ξ1 and Ξ2. Moreover, (Y,C+D) is log-canonical along D, and

the following hold for the index n of (Y/T,C,D) and the set Σ = (D \C)∩ Sing Y :
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(1) If #Σ = 2, then (M/T,C ′, DM ) is basic and Σ consists of two A1-singular

points.

(2) If n > 1, then Σ consists of one point at which (Y,D) is log-canonical of

type D (cf. [18, Def. 3.23]).

(3) If n = 1 and #Σ 6= 2, then Σ consists of a rational double point of type Dm

for some m ≥ 3.

Proof. Let P and o = π(P ), respectively, be the intersection point and the base

point of (Y/T,C,D). Then CD = 1/n, (Y,C + D) is log-canonical at P and

π∗(o) = 2nD by Lemma 2.19. By applying Lemma 2.16 to Fred = D, we see that

(Y,C +D) is log-canonical along D, and Σ = D ∩ Sing Y \ {P} consists of either

• two A1-singular points, or

• one point at which (Y,D) is log-canonical of type D.

By well-known descriptions of minimal resolutions of such singularities (cf. [12,

Thm. 9.6], [18, Thm. 3.22, Fig. 2]), we have a dual graph of µ−1(C+D) = C ′+DM

as (II-12). As a consequence, (M/T,C ′, DM ) is a standard PDS configuration. For

the proper transform D′ of D in M , every prime component of DM −D′ is not a

(−1)-curve, since it is µ-exceptional and µ is minimal. Thus, D′ is a (−1)-curve

(cf. Remark 2.10). The remaining assertions are shown as follows.

(1): If #Σ = 2, then Σ consists of two A1-singular point; hence, D′ equals

the prime component of D intersecting Ξ1 + Ξ2, and (M/T,C ′, DM ) is basic by

Lemma 2.21(2).

(2): If n > 1, then D′ 6= B, and we have #Σ 6= 2 by (1). Thus, (2) follows from

the possibility of Σ above.

(3): Assume that n = 1. Then P 6∈ Sing Y , and D′ equals the distinguished

component B of DM . If #Σ 6= 2, then every prime component of DM − B is a

(−2)-curve by Lemma 2.21(3), and hence, Σ consists of one Dm-singular point for

the number m of prime components of DM −B. Thus, we are done. �

Example 2.24. By Lemmas 2.21 and 2.23, every irreducible PDS configuration of

type I is obtained from a basic PDS configuration by the following method: Let

(π : M → T,C,D) be a basic PDS configuration with the distinguished component

B of D and prime components Ξ1 and Ξ2 of D − B. Let β : M ′ → M be an

isomorphism or a succession of blowings up whose center in each step is a node of

the inverse image of C + D contained in a (−1)-curve in the inverse image of D;

in particular, the center is lying over the intersection point P of C and D. Then

β−1(D) contains a unique (−1)-curve Γ, and β−1(C +D) has a dual graph

•
C ′

• · · · • •
B′

•♦♦♦♦♦♦

Ξ′
1

•
❖❖

❖❖
❖❖

Ξ′
2

for the proper transforms C ′, B′, Ξ′
1, and Ξ′

2 of C, B, Ξ1, and Ξ2 inM
′, respectively.

Here, if β is not an isomorphism, then Γ 6= B′. By construction, (M ′/T,C ′, β−1D)

is a standard PDS configuration and β is the morphism in Lemma 2.21(4) for
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(M ′/T,C ′, β−1D) when β is not an isomorphism. Let α : M ′ → Y be the con-

traction morphism of β−1(D + Ξ1 + Ξ2) − Γ, and set CY := α(C ′) and DY =

α∗(β
−1D) = α(Γ). Then α is the minimal resolution of singularities of Y lying on

DY , and (Y,CY +DY ) is log-canonical along DY , since

KM ′ + C ′ + E′ + (1/2)(Ξ1 + Ξ2) = α∗(KY + CY +DY )

for the linear chain E′ = β−1D − Ξ′
1 − Ξ′

2 of rational curves (cf. Lemma 2.21(1)).

By Lemma 2.19, (Y/T,CY , DY ) is an irreducible PDS configuration of type I.

Example 2.25. We shall explain a method producing an irreducible PDS config-

uration of type IIn for an odd integer n > 1 from a basic PDS configuration by

bimeromorphic morphisms. Let (π : M → T,C,D) be a basic PDS configuration

with the distinguished component B and (−2)-curves Ξ1 and Ξ2 in D. Then B is

a (−1)-curve and π∗(o) = 2B +Ξ1 +Ξ2 for the base point o ∈ T . Let β : M ′ →M

be a succession of blowings up whose center in each step is a node of the inverse

image of B + Ξ2 contained in the proper transform of B. Assume that β is not an

isomorphism. Then β−1(C + D) is a simple normal crossing divisor with a dual

graph

(II-13)
•
C ′

•
B′

−(l + 1)

•−2Ξ′
1

•
Γl

−1
•

Γl−1

−2
· · · •

Γ1

−2
•
Ξ′
2

−3

for the proper transforms C ′, B′, Ξ′
1, and Ξ′

2 inM of C, B, Ξ1, and Ξ2, respectively,

where l is the number of point blowings up, Γ1, . . . , Γl are the β-exceptional prime

divisors, and −1, −2, −3, −(l + 1) indicate self-intersection numbers. From the

dual graph (II-13), we have

2B′ + Ξ′
1 + Ξ′

2 +
∑l

i=1
(2i+ 1)Γi = β∗(2B + Ξ1 + Ξ2),(II-14)

KM ′ + C ′ +B′ + (1/2)
(
Ξ′
1 + Ξ′

2 +
∑l

i=1
Γi

)

= β∗(KM + C +B + (1/2)(Ξ1 + Ξ2))
(II-15)

by calculation. Let α : M ′ → X be the contraction morphism of β−1(D)−Γl and let

πX : X → T be the induced P1-fibration such that πX ◦α = π◦β. Note that α is the

minimal resolution of singularities of X. We set CX := α(C ′), DX := α∗(β
−1D) =

α(Γl), and {PX} := CX ∩ DX . Then α−1(PX) = Ξ′
1 + B′, and (X,CX + DX) is

not log-canonical at PX by the dual graph (II-13). However, we have

KM ′ + C ′ +B′ + (1/2)
(
Ξ′
1 + Ξ′

2 +
∑l

i=1
Γi

)
= α∗(KX + CX + (1/2)DX)

by (II-15), which implies that (X,CX + (1/2)DX) is log-canonical at PX and

(X,CX) is 1-log-terminal at PX . On the other hand, we have

α∗CX = C ′ +
1

2l + 1
(Ξ′

1 + 2B′) and π∗
X(o) = (2l + 1)DX
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by (II-13) and (II-14). Hence, the order n of the cyclic quotient singularity (X,PX)

equals 2l + 1 and CXDX = 2/n. Therefore, (X/T,CX , BX) is an irreducible PDS

configuration of type IIn for n = 2l + 1.

Theorem 2.26. Every irreducible PDS configuration (X/T,C,D) of type IIn for

n > 1 is obtained from a basic PDS configuration (M/T,CM , DM ) by the method

of Example 2.25. In particular, the following hold :

(1) The integer n is odd, (X,P ) is a cyclic quotient singularity of type (n, 2)

(cf. Remark 2.6) for the intersection point P .

(2) There is a point P † ∈ D such that (D \ C) ∩ SingX = {P †}, (X,D) is

1-log-terminal at P †, and (X,P †) is a cyclic quotient singularity of type

(n, n− 2).

(3) If C is compact, then C2 = (CM )2 + 2/n.

Proof. Let π : X → T be the P1-fibration and let o = π(P ) be the base point. We

shall prove Theorem 2.26 by the following seven steps.

Step 1 (On the minimal resolution of singularities of X along D). Let α : M ′ → X

be the minimal resolution of singularities lying on D and let C ′ and D′ be the

proper transforms of C and D in M ′, respectively. We also set DM ′ := α−1D.

Since (X,C) is 1-log-terminal at P and since CD = 2/n for the numerical factorial

index n of X at P , by applying Lemma 2.8, we see that α−1(P ) is a linear chain∑k
i=1 Γi of rational curves and that either (2a) or (2b) of Lemma 2.8 occurs for

(D′, C ′) instead of (B′, C ′). If Lemma 2.8(2a) occurs, then Γ1 and D′ are prime

components of α−1(π−1(o)) withD′Γ1 = 2: This contradicts Lemma 2.11(1). Thus,

Lemma 2.8(2b) occurs. In particular, k = n(α−1(P )) ≥ 2, Γ2
1 = −2, Γ2D

′ = 1,

C ′ ∩D′ = ∅, and Γi ∩D
′ = ∅ for any i 6= 2; hence,

•
C ′

•
Γk

· · · • •
Γ2

• D′

•
Γ1

is a dual graph of C ′ +D′ + α−1(P ). Since α is minimal, any prime component of

DM ′ = α−1(π−1(o)) except D′ has self-intersection number ≤ −2. Thus, D′ is a

(−1)-curve (cf. Remark 2.10).

Step 2 (Constructing some bimeromorphic morphisms). We set

E := α−1D − α−1(P ) = DM ′ −
∑k

i=1
Γi

as a connected reduced divisor onM ′. IfD′ 6= E, then α(E−D′) ⊂ D∩SingX\{P}.

Let γ : M ′ → Y be the contraction morphism of E and set {Q} := γ(E). Let

µ : M → Y be the minimal resolution of the singularity at Q. Then µ ◦ β = γ

for a bimeromorphic morphism β : M ′ → M by the minimality, and β and γ are

isomorphisms along C ′+
∑

i6=2 Γi. We have P1-fibrations πY : Y → T and πM : M →
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T with a commutative diagram

M ′

α
}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

γ
!!❈

❈❈
❈❈

❈❈
❈

β
// M

µ
}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

πM

~~

X

π
((◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗ Y

πY

��

T,

where α, β, γ, and µ are isomorphisms over T \ {o}. We set

CY := γ(C ′), DY := γ∗DM ′ = π−1
Y (o), ΓY,i := γ(Γi).

CM := β(C ′), DM := β∗DM ′ = π−1
M (o), ΓM,i := β(Γi)

for 1 ≤ i ≤ k. Then DY =
∑k

i=1 ΓY,i, DM =
∑k

i=1 ΓM,i + β∗E, CY (resp. CM ) is

a double section of πY (resp. πM ), Q ∈ ΓY,2, Q 6∈ ΓY,i for any i 6= 2, E = γ−1(Q),

and β∗E = µ−1(Q).

Step 3. We shall show that DY ∩ Sing Y = {Q}. Assume the contrary. Then Y

is non-singular along DY , and (ΓY,i)
2 = Γ2

i ≤ −2 for any i 6= 2. Thus, ΓY,2 is

a (−1)-curve (cf. Remark 2.10). Since (ΓY,1)
2 = −2 and since the linear chain∑k

i=1 ΓY,i of rational curves is negative semi-definite but not negative definite, the

integer k is equal to 3, and ΓY,3 is a (−2)-curve by Lemma 2.2. However, in this

case, π∗
Y (o) = ΓY,1 + 2ΓY,2 + ΓY,3, and it implies that CY π

∗
Y (o) = CY ΓY,3 = 1,

contradicting that CY is a double section of πY . Therefore, DY ∩ Sing Y = {Q}.

Step 4 (k = n(α−1(P )) = 2). Any prime component of DM except ΓM,2 has self-

intersection number ≤ −2 by the minimality of µ and by (ΓM,i)
2 = Γ2

i ≤ −2 for

any i 6= 2. Thus, ΓM,2 is a (−1)-curve (cf. Remark 2.10). Since DY ∩Sing Y = {Q}

by Step 3, there is a prime component Ξ of β∗E ⊂ DM such that µ(Ξ) = {Q}

and Ξ ∩ ΓM,2 6= ∅. Here, ΞΓM,2 = 1 by Lemma 2.11(1), and ΞΓM,1 = 0 by

β∗E∩ΓM,1 = β(E ∩Γ1) = ∅. If k ≥ 3, then three prime divisors ΓM,1, ΓM,3, and Ξ

intersect the (−1)-curve ΓM,2: this contradicts Lemma 2.11(2). Therefore, k = 2.

In particular, DM = ΓM,1 + ΓM,2 + β∗(E) and DY = ΓY,1 + ΓY,2.

Step 5 (Proofs of (1) and (3)). The equality k = 2 implies that

α∗C = C ′ + (1/n)Γ1 + (2/n)Γ2,

since Lemma 2.8(2b) occurs for (D′, C ′) (cf. Step 1, Fact 2.5). Then n is odd and

(X,P ) is a cyclic quotient singularity of type (n, 2) by Remark 2.6; hence (1) holds.

Moreover, we have

(II-16) Γ2
2 = −(n+ 1)/2

by 0 = Γ2(α
∗C) = 1 + 1/n+ (2/n)Γ2

2. Similarly, if C is compact, then

C2 = C ′(α∗C) = (C ′)2 + (2/n)C ′Γ2 = (CM )2 + 2/n.

Thus, (3) has been proved.
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Step 6. We shall show that Q is an A1-singular point of Y . Let ρ : Y → Y be the

contraction morphism of the (−2)-curve ΓY,1 and let π̄ : Y → T be the induced

P1-fibration such that πY = π̄ ◦ρ. We set C := ρ(CY ) and D := ρ∗DY = ρ(ΓY,2) =

π̄−1(o), and define three points Q0, Q1, and Q2 of Y by

{Q0} := ρ(CY ∩DY ) = C ∩D, {Q1} := ρ(ΓY,1), and Q2 := ρ(Q).

Then C is a double section of π̄, (Y ,C +D) is log-canonical at Q0, and (KY +C +

D)D = 0. Moreover, D ∩ Sing Y \ {Q0} = {Q1, Q2}. By Lemma 2.16, we see that

(Y ,C +D) is log-canonical along D, and Q2 is a A1-singular point. Therefore, Q

is an A1-singular point of Y , since ρ is an isomorphism outside ΓY,1.

Step 7 (Final step). By Step 6, the µ-exceptional locus µ−1(Q) equals the prime

divisor Ξ introduced in Step 4, and it is a (−2)-curve. Then β∗E = Ξ and DM =

ΓM,1 +ΓM,2 +Ξ. Therefore, (M/T,CM , DM ) is a basic PDS configuration. Let Ξ†

be the proper transform in Ξ in M ′. It is a prime component of E = γ−1(Q) =

β−1Ξ. Note that D′ is a unique (−1)-curve contained in E, D′ ∩ Γ2 6= ∅, and

(E−D′)∩Γ2 = ∅ (cf. Step 1). By Lemma 2.4, E is a linear chain of rational curves

with a prime decomposition E =
∑l

i=0 Θi for an integer l > 0 with Θ0 = Ξ†,

Θl = D′ such that

•
Γ2

−(l + 1)
•
D′

−1
•

Θl−1

−2
· · · •

Θ1

−2
•
Ξ†

−3

is a dual graph of Γ2+E, where −1, −2, −3, and −(l+1) indicate self-intersection

numbers, since Ξ2 = −2 and (ΓM,2)
2 = −1. Note that the dual graph is

•
Γ2

−2
•
D′

−1
•
Ξ†

−3

when l = 1. In particular, n = 2l + 1 by −Γ2
2 = (n + 1)/2 = l + 1 (cf. (II-16) in

Step 5). Hence,

•
C ′

•
Γ2

• Γ1

•
D′

•
Θl−1

· · · •
Θ1

•
Ξ†

is a dual graph of α−1(C + D), and (X/T,C,D) is obtained from the basic PDS

configuration (M/T,CM , DM ) by the method of Example 2.25. The dual graph of

Γ2 +E above implies that (D \C) ∩ SingX = {P †} for the image P † of E −D′ =

Ξ† +
∑l−1

i=1 Θi under α : M
′ → X. By calculation, we have

µ∗D = (1/n)Γ1 + (2/n)Γ2 +D′ + (1/n)Ξ† +
∑l−1

i=1
((2i+ 1)/n)Θi.

Hence, (X,P †) is a cyclic quotient singularity of type (2l + 1, 2l − 1) = (n, n − 2)

(cf. Fact 2.5) even in case l = 1, and moreover, (X,D) is 1-log-terminal at P † by

Lemma 2.8, sinceD′ intersects α−1(P †) transversely one point of an end component
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of the linear chain α−1(P †) = Ξ† +
∑l−1

i=1 Θi of rational curves. Thus, (2) has been

proved, and the proof of Theorem 2.26 has been completed. �

Corollary 2.27. For an irreducible PDS configuration (X/T,C,D), if #(D \C)∩

SingX > 1, then it is of type I1, D∩SingX consists of two A1-singular points, and

(M/T,C ′, µ−1D) is a basic PDS configuration for the minimal resolution µ : M →

X of singularities and the proper transform C ′ of C in M .

Proof. The type is not II by Theorem 2.26(2) (cf. Remark 2.22). Then the assertion

follows from (1) and (2) of Lemma 2.23. �

Proposition 2.28. Let π : X → T ≃ P1 be a P1-fibration from a normal projective

rational surface X and let C be a double section. For two points t1, t2 ∈ T , assume

that π is smooth over T \ {t1, t2} and that (X/T,C,Di) is a PDS configuration for

any i = 1, 2, where Di := π−1(ti).

(1) If (X/T,C,Di) is basic for any i = 1, 2, then (X,C + D1 + D2) is an

H-surface (cf. [18, Def. 7.7]); In particular, C2 = 0.

(2) If (X/T,C,Di) is irreducible of type I for any i = 1, 2, then (X,C+D1+D2)

is a half-toric surface.

(3) If (X/T,C,D1) is basic and if (X/T,C,D2) is of type IIn, then C
2 = 2/n.

(4) If D1 is irreducible with #(D1 \ C) ∩ Sing Y > 1 and if (X/T,C,D2) is of

type IIn, then C
2 = 2/n.

Proof. (1): This follows from Definition 2.20 and [18, Lem. 7.8].

(2): Let µ : M → X be the minimal resolution of singularities. For the proper

transform C ′ of C in M , (M/T,C ′, µ−1Di) is a standard PDF configuration for

i = 1, 2 by Lemma 2.23. Moreover, by Lemma 2.21(4), there is a birational

morphism φ : M → Y of non-singular surfaces over T such that

• (Y/T,CY , DY,i) is a basic PDS configuration for i = 1, 2, where CY = φ(C ′)

and DY,i = φ∗(µ
−1Di),

• φ is a succession of blowings up at nodes of inverse images of CY +DY,1 +

DY,2 lying over CY ∩ (DY,1 +DY,2).

By (1), (Y,CY +DY,1 +DY,2) is an H-surface. Let ρY : Y → Y be the contraction

morphisms of four (−2)-curves in DY,1 + DY,2 and let ρM : M → M be the con-

traction morphism of the inverse images of these four (−2)-curves. Then (Y ,E) is

a half-toric surface of Picard number 2 for E := ρY ∗(CY + DY,1 + DY,2) by [18,

Prop. 7.15]. By construction, there exist birational morphisms φ̄ : M → Y and

µ̄ : M → X such that

• ρY ◦ φ = φ̄ ◦ ρM and µ̄ ◦ ρM = µ,

• φ̄ is a toroidal blowing up with respect to the log-canonical pair (Y ,E),

• φ̄−1E = ρM∗(C
′ + µ−1D1 + µ−1D2) and µ̄∗(φ̄

−1E) = C +D1 +D2.

Hence, (M, φ̄−1E) and (X,C+D1+D2) are half-toric surfaces by [18, Lem. 7.2(2),

(3)].

(3): We may also assume that D2 = π−1(t2) is irreducible by replacing X with

the surface obtained by contracting prime components of D2 not intersecting C (cf.
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Lemma 2.18(5)). By Theorem 2.26 and Remark 2.22, there exists a bimeromorphic

map φ : X ···→M to a non-singular surface M over T such that

• φ is an isomorphism over T \ {t2},

• (M/T,C ′, π−1
M (ti)) is a basic PDS configuration for i = 1, 2,

• C2 = (C ′)2 + 2/n,

where C ′ is the proper transform of C in M and πM : M → T is the structure

morphism. Here, (C ′)2 = 0 by (1). Thus, C2 = 2/n.

(4): By Corollary 2.27, D1 ∩ SingX consisting of two A1-singular points and

(Y/T,C ′, DY,1) is a basic PDS configuration for the minimal resolution ν : Y → X

of the A1-singularities, the proper transform C ′ of C in Y , and DY,1 := ν−1(D1).

Here, (C ′)2 = C2. Hence, by replacing Y withX, we may assume that (X/T,C,D1)

is a basic PDS configuration. Then (4) follows from (3). Thus, we are done. �

2.4. Existence of P1-fibrations. We shall present some sufficient conditions for

the existence of a P1-fibration on a normal surface.

Lemma 2.29. Let X be a normal Moishezon surface with an effective divisor D

such that

(i) ∅ 6= SuppD ⊂ Xreg,

(ii) DDi = 0 for any prime component Di of D,

(iii) Dred is a simple normal crossing divisor forming a linear chain of rational

curves.

Then X is projective and there is a P1-fibration π : X → T to a non-singular

projective curve T such that D = mπ∗(t) for a point t ∈ T and a positive integer

m and that π∗(t) is reduced along the end components of Dred.

Proof. The reduced divisor Dred is not negative definite but negative semi-definite.

In fact, if it is negative definite, then D = 0 by (ii), contradicting (i). If it is not

negative semi-definite, then there is an effective divisor P supported on Dred such

that P 2 > 0, where DP = D2 = 0 by (ii), and we have D = 0 by the Hodge

index theorem, contradicting (i). Let X → X ′ be the blowing down of a (−1)-

curve which is a non-end component of Dred. Then the image of Dred is a simple

normal crossing divisor in X ′
reg forming a linear chain of rational curves, and D

is the pullback of an effective divisor on X ′ by (ii). Thus, for the proof, we may

replace X with X ′. Hence, by Lemma 2.2, we may assume one of the following for

the prime decomposition Dred =
∑k

i=1Di:

(a) k = 1, i.e., Dred is irreducible;

(b) k = 2, and D1 and D2 are (−1)-curves;

(c) k ≥ 3, D1 and Dk are (−1)-curves being end components of Dred, and

D2
i = −2 for any 2 ≤ i ≤ k − 1.

In cases (a) and (b), D = mDred for some m > 0. In case (c), D = m(D1 +

2(D2 + · · · +Dk−1) +Dk) for some m > 0. In cases (b) and (c), we can consider

the contraction morphism ρ : X → X of the linear chain Dred − D1, where X is

normal and D := ρ(Dred) = ρ(D1) ⊂ Xreg. By construction, D ≃ P1, D
2
= 0, and
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D = mρ∗(D). Therefore, for the proof, by replacing X with X, we may assume

that D ≃ P1 and D2 = 0.

Let µ : M → X be the minimal resolution of singularities. Then µ∗D ≃ P1

and (µ∗D)2 = 0. Suppose that there is a surjective morphism f : M → T to a

projective curve T which contracts µ∗D to a point. By Stein factorization, we may

assume that f is a fibration and T is non-singular. Then the µ-exceptional locus

is contained in a union of fibers of f , since it is away from µ∗D. Hence, there is

a fibration π : X → T such that f = π ◦ µ. Since D2 = 0, there is a point t ∈ T

such that D = π−1(t). Let c be a positive integer such that π∗(t) = cD. For a

general fiber F of π, we have KXF = cKXD = −2c. Thus, c = 1 and F ≃ P1.

Hence, π is a P1-fibration and π∗(t) = D. As a consequence, X is projective by [18,

Prop. 2.33(1)].

Therefore, we may assume that X is a non-singular projective surface, D ≃ P1,

and D2 = 0, and it suffices to construct a surjection π : X → T to a projective curve

T which contracts D to a point. If H1(X,OX) 6= 0, then D ≃ P1 is contracted to a

point by the non-trivial Albanese morphism of X; hence, we have such a morphism

X → T for the image T of the Albanese morphism. Thus, we may assume that

H1(X,OX) = 0. Then the canonical exact sequence

0 → OX → OX(D) → OX(D)⊗OD ≃ OD → 0

induces a surjection H0(X,OX(D)) → H0(D,OD) ≃ C, and the linear system |D|

is a base point free pencil. Hence, D is contracted to a point by the morphism

X → P1 associated with the pencil. Thus, we are done. �

Lemma 2.30. Let X be a normal Moishezon surface and D a non-zero reduced

divisor on X such that D ⊂ Xreg and D is a simple normal crossing divisor forming

a linear chain of rational curves. If each prime component of D is a negative curve

and if D is not negative semi-definite, then there is a P1-fibration π : X → T ≃ P1

such that π−1(t) is a linear chain of rational curves contained in D for some t ∈ T .

If a prime component C of D satisfies C 6⊂ π−1(t) and C ∩ π−1(t) 6= ∅, then C is

a section of π.

Proof. Let D = D1 + · · ·+Dn be a prime decomposition of D with a dual graph

•
D1

•
D2

· · · •
Dn

.

First, we shall prove the following assertion (∗) by induction on n = n(D):

(∗) There exist integers 1 ≤ a < b ≤ n such that (a, b) 6= (1, n) and that∑b
i=aDi is not negative definite but negative semi-definite.

Since D is not negative semi-definite, we have n ≥ 3 and Dp is a (−1)-curve for

some 1 < p < n by Lemma 2.2. Let ϕ : X → X be the contraction morphism of Dp.

Then D := ϕ∗(D) is a simple normal crossing divisor on X expressed as a linear

chain D1 + · · ·+Dn−1 of rational curve, where

Di =

{
ϕ(Di), if i < p;

ϕ(Di+1), if i ≥ p.
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Assume that n = 3. Then p = 2, and either D
2

1 = 0 or D
2

2 = 0 by Lemma 2.2,

since D is not negative semi-definite. Thus, either D1 + D2 or D2 + D3 is not

negative definite but negative semi-definite. Hence (∗) holds when n = 3. Assume

that n > 3. By induction, we have integers 1 ≤ a′ < b′ ≤ n − 1 such that

(a′, b′) 6= (1, n − 1) and that
∑b′

i=a′ Di is not negative definite but negative semi-

definite. Now, there exist integers 1 ≤ a < b ≤ n such that (a, b) 6= (1, n) and that

ϕ∗(
∑b′

i=a′ Di) =
∑b

i=aDi. Thus, (∗) holds for any n.

By (∗), we have a non-zero effective divisor G on X such that Gred =
∑b

i=aDi

and that GDi = 0 for any a ≤ i ≤ b. By applying Lemma 2.29 to G, we have a P1-

fibration π : X → T such that G = mπ∗(t) for a point t ∈ T and an integer m > 0.

We may assume that m = 1 by replacing G. Then multDa
G = multDb

G = 1 by

Lemma 2.29. Let C be a prime component of D such that C 6⊂ G and C ∩G 6= ∅.

Then C = Da−1 with a 6= 1 or C = Db+1 with b 6= n, and we have

Cπ∗(t) = CG =

{
CDa = 1, if C = Da−1,

CDb = 1, if C = Db+1.

Thus, C is a section of π, and T ≃ P1. �

Corollary 2.31. In the situation of Lemma 2.3(2), if M ⊂ Xreg for a normal

Moishezon surface X, then X is a projective rational surface and there exists a

P1-fibration π : X → T ≃ P1 with a point t ∈ T , such that

(1) π−1(t) =
∑l

i=a+1Di + C +G1 +G2,

(2) Da is a double section of π,

(3) (X/T,Da, π
−1(t)) is a standard PDS configuration,

for the integer 1 ≤ a < l in Lemma 2.3(2). In particular, (X/T,̟(Da), π̄
−1(t)) is

a basic PDS configuration for the contraction morphism ̟ : X → X of
∑l

i=a+1Di

and for the induced P1-fibration π̄ : X → T such that π = π̄ ◦̟.

Proof. The morphism ψ ◦ φ : M → N̂ in the proof of Lemma 2.3(2) extends to a

bimeromorphic morphism ϕ : X → Y to a normal Moishezon surface Y such that

N̂ ⊂ Yreg and that ϕ is an isomorphism over Y \ Ê for Ê = ϕ∗(
∑l

i=1Di). Prime

divisors Ĉ and Ĝj for j = 1, 2 on N̂ defined in the proof of Lemma 2.3(2) are

regarded as prime divisors ϕ(C) and ϕ(Gj) on Y , respectively, and similarly, every

prime component of Ê is expressed as ϕ(Di) for some 1 ≤ i ≤ l. The following hold

by the proof of Lemma 2.3(2):

(4) Ê + Ĉ + Ĝ1 + Ĝ2 ⊂ Yreg;

(5) Ĉ is a (−1)-curve, and Ĝj is a (−2)-curve for j = 1, 2;

(6) ϕ−1(Ĉ + Ĝ1 + Ĝ2) =
∑l

i=a+1Di + C +G1 +G2;

(7) Da is the proper transform in X of the end component Êk of Ê such that

ÊkC = 1;

By (5) and by Lemma 2.29 applied to the linear chain Ĉ+Ĝ1+Ĝ2 of rational curves

on Y , there is a P1-fibration πY : Y → T to a non-singular projective curve T such

that π∗
Y (t) = 2Ĉ + Ĝ1 + Ĝ2 for a point t ∈ T . Then Êk is a double section of πY
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by (7). In particular, T ≃ P1, and (Y/T, Êk, π
−1
Y (t)) is a basic PDS configuration.

The composite π := π̂ ◦ ϕ : X → T ≃ P1 is also a P1-fibration, where

π−1(t) = ϕ−1(π̂−1(t)) = ϕ−1(Ĉ + Ĝ1 + Ĝ2) =
∑l

i=a+1
Di + C +G1 +G2

by (6). Thus, X is projective and rational (cf. [18, Prop. 2.33(1)]), and (1) holds.

Moreover, we have (2) and (3) by (7). The last assertion for X is deduced from

the proof of Proposition 2.21(4) or from the following argument: By construction,

there is a bimeromorphic morphism γ : X → Y such that ϕ = γ ◦̟ and that the γ-

exceptional locus is contained in ̟∗(
∑a−1

i=2 Di). In particular γ is an isomorphism

over an open neighborhood of t in T . Thus, (X/T,̟(Da), π̄
−1(t)) is basic as

(Y/T, Êk, π
−1
Y (t)) is so. Thus, we are done. �

3. On pseudo-toric surfaces

Let (X,S) be a pseudo-toric surface in the sense of [18, Def. 6.1]. Then, by

definition and by [18, Lem. 6.3],

• X is a normal projective rational surface with only rational singularities,

• S is a cyclic chain of rational curves and is big,

• (X,S) is log-canonical with KX + S ∼ 0.

The defect δ(X,S) := ρ(X) + 2 − n(S) is always non-negative for any pseudo-

toric surface (X,S) by [18, Prop. 6.4], in which δ(X,S) = 0 if and only if (X,S)

is a toric surface. In Section 3.1, we discuss several properties of a pseudo-toric

surface admitting a fibration to P1. We shall study the universal cover of the open

subset Xreg \ (S − B) for a prime component B of S under some condition in

Section 3.2. As applications, in Section 3.3, we shall prove Theorems 3.13 and 3.14

on endomorphisms and toric surfaces.

3.1. Pseudo-toric surfaces with a fibration. We shall prove some results on

pseudo-toric surfaces admitting fibrations to P1 by applying results in [18].

Lemma 3.1. Let (Y,Σ) be a pseudo-toric surface with a fibration π : Y → T ≃ P1.

Assume that Σ contains two set-theoretic fibers D1 = π−1(t1) and D2 = π−1(t2).

Then:

(1) π is a P1-fibration and Σ = Θ1+Θ2+D1+D2 for mutually disjoint sections

Θ1 and Θ2 of π;

(2) for any point o ∈ T \ {t1, t2}, the fiber Fo = π∗(o) is reduced, (Y,Σ + Fo)

is log-canonical, and Θ1 +Fo +Θ2 is a linear chain of rational curves with

end components Θ1 and Θ2, where Fo intersects Θ1 +Θ2 transversely.

Moreover, the following hold for the reducible fibers G1, G2, . . . , Gb of π over

T \ {t1, t2}:

(3) The equality δ(Y,Σ) =
∑b

k=1(n(Gk)− 1) holds.

(4) For each 1 ≤ k ≤ b, let Gk,(1) be the end component of Gk intersecting

Θ1. Then there is a birational morphism φ : Y → Y to a normal projective

surface Y such that the exceptional locus of φ equals
∑b

k=1(Gk − Gk,(1))

and that (Y ,Σ) is a toric surface for Σ = φ∗Σ.
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(5) In (4), let π̄ : Y → T be the induced P1-fibration such that π = π̄ ◦ φ. Then

π̄ : (Y ,Σ) → (T, t1 + t2) is a toric morphism (cf. [18, §3.1], [19, Def. 4.5]).

Proof. Assertion (1) follows from [18, Lem. 5.2]. We have (2) as a consequence of

[18, Lem. 5.4], but here we present another proof applying Proposition 2.15: We

set Go := (Fo)red. Since KY + Σ ∼ 0, by (1) and Proposition 2.15, Go is a linear

chain of rational curves, (Y,Σ+Go) is log-canonical, KY +Σ+Go ∼ Go is Cartier,

and

OY (KY +Σ+Go)⊗OGo
≃ OY (Go)⊗OGo

≃ OGo
.

By the vanishing R1π∗OY = 0 (cf. Remark 2.9) and by the exact sequence

0 → OY → OY (Go) → OY (Go)⊗OGo
→ 0,

we have an isomorphism π∗(π∗OY (Go))
≃
−→ OY (Go). It implies that Go = Fo, i.e.,

Fo is reduced. Then, ΘjFo = 1 for j = 1, 2. Since (Y,Θj + Fo) is log-canonical, it

is toroidal at Θj ∩ Fo (cf. [19, Fact 2.5]), and we have Θj ∩ Fo ⊂ Yreg. Thus, Fo

intersects Θ1 + Θ2 transversely. Moreover, Θj is an end component of the linear

chain Θ1 + Fo + Θ2. In fact, any prime component Γ of Fo intersects exactly two

prime components of Θ1 +Fo +Θ2 −Γ by [18, Prop. 3.29], since (Y,Θ1 +Fo +Θ2)

is log-canonical, KY +Θ1 + Fo +Θ2 is Cartier, and

(KY +Θ1 + Fo +Θ2)Γ = (Fo −D1 −D2)Γ = 0.

Thus, (2) has been proved. The equality in (3) is derived from an equality

ρ(Y )− 2 = (n(D1)− 1) + (n(D2)− 1) +
∑b

k=1
(n(Gk)− 1)

obtained by [18, Prop. 2.32(7)]. Since G† :=
∑b

k=1(Gk−Gk,(1)) is negative definite,

we have the contraction morphism φ : Y → Y of G†. Then (Y ,Σ) is a pseudo-toric

surface by [18, Lem. 6.3(7)], and its defect is 0 by (3) applied to π̄ : Y → T . Thus,

(Y ,Σ) is a toric surface and π̄ is a toric morphism (Y ,Σ) → (T, t1 + t2) by [18,

Prop. 5.3(3)]. This proves (4) and (5), and we are done. �

Proposition 3.2. Let X be a normal projective surface with two points P1, P2 and

let S1 and S2 be reduced divisors satisfying the following conditions :

(i) S1 ∩ S2 = {P1, P2} and (X,S1 + S2) is log-canonical at S1 ∩ S2;

(ii) −(KX + S1 + S2) is nef ;

(iii) there exist effective Cartier divisors B1 and B2 satisfying SuppB1 ⊂ S1,

SuppB2 ⊂ S2, {P1, P2} = SuppB1 ∩ SuppB2, and B1 ∼ B2.

Then S1 and S2 are linear chains of rational curves, and (X,S1 + S2) is a pseudo-

toric surface. Moreover, there exist a toroidal blowing up µ : Y → X with respect

to (X,S1 + S2) and a P1-fibration π : Y → T ≃ P1 such that

• (Y,Σ) is a pseudo-toric surface for Σ = µ−1(S1 + S2),

• δ(Y,Σ) = δ(X,S1 + S2),

• the proper transforms D1 and D2 in Y of S1 and S2, respectively, are

mutually distinct set-theoretic fibers of π,

• Σ = Θ1+Θ2+D1+D2 for two mutually disjoint sections Θ1 and Θ2 of π.
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Proof. For 1 ≤ i, j ≤ 2, there exist a unique prime component Si,(j) of Si containing

Pj , and (X,S1,(j)+S2,(j)) is toroidal at Pj , by (i) and [19, Fact. 2.5]. Let µ† : Y † →

X be the blowing up along the scheme-theoretic intersection B1 ∩ B2 for effective

divisors B1 and B2 in (iii), and let µ‡ : Y → Y † be the normalization. Then, as in

the proof of [18, Lem. 4.23], the composite µ = µ†◦µ‡ : Y → X is a toroidal blowing

up with respect to (X,S1,(j) + S2,(j)) at Pj for j = 1, 2. Then, for the reduced

divisor Σ = µ−1(S1 + S2), the pair (Y,Σ) is log-canonical along the µ-exceptional

locus µ−1{P1, P2}, and

(III-1) KY +Σ = µ∗(KX + S1 + S2)

(cf. [18, Def. 4.19]). The surface Y † is just the graph of the rational map X ···→P1

associated with the pencil generated by B1 and B2. Let π : Y → T be a fibration

obtained as the Stein factorization of the composite of µ‡ and the projection Y † →

P1. Then any µ-exceptional divisor dominates T , since its image in Y † is not a

point. By construction, there exist a µ-exceptional Cartier divisor Ξ on Y and

effective divisors e1 and e2 on T such that

µ∗(B1)− Ξ = π∗
e1, µ∗(B2)− Ξ = π∗

e2, and Supp e1 ∩ Supp e2 = ∅.

We set Di := π∗(ei)red for i = 1, 2. Then Σ = Ξred +D1 +D2, µ
−1Si = Di + Ξred

for i = 1, 2, and moreover, −(KY + Σ) is nef by (ii) and (III-1). Hence, π is a

P1-fibration by KY F ≤ −ΣF < 0 for a general fiber F of π. Thus, Ξred = Θ1 +Θ2

for two sections Θ1 and Θ2 of π such that Θj = µ−1(Pj) for j = 1, 2. Since µ

is a toroidal blowing up, we have Θ1 ≃ Θ2 ≃ T ≃ P1. In particular, Y and X

are rational surfaces. Moreover, Supp ei consists of a point ti and Di = π−1(ti)

for i = 1, 2, since Θj ∩ Di consists of one point lying over Pj for 1 ≤ i, j ≤ 2.

Consequently, Di is the proper transform of Si in Y for i = 1, 2.

We shall show that (Y,Σ) is a pseudo-toric surface. Since (Y,Σ) is log-canonical

along µ−1{P1, P2}, (Y,Θ1 + Di + Θ2) is also log-canonical along Di ∩ (Θ1 + Θ2)

for any 1 ≤ i ≤ 2. Thus, the following hold for any i, by Proposition 2.15, since

−(KY +Σ) is nef:

• Di is a linear chain of rational curves;

• (Y,Θ1 +Di +Θ2) is log-canonical along Di;

• (KY +Θ1 +Di +Θ2)Γ
′ = 0 for any prime component Γ′ of Di.

Consequently, (Y,Σ) is log-canonical along Σ and (KY + Σ)Γ′ = 0 for any prime

component Γ′ of Σ. Then Y has only rational singularities, (Y,Σ) is log-canonical,

Σ is a cyclic chain of rational curves, and KY +Σ ∼ 0 by (ii) and by [18, Lem. 4.7]

with its remark. Therefore, (Y,Σ) is a pseudo-toric surface (cf. [18, Def. 6.1]).

As a consequence, (X,S1 + S2) is a pseudo-toric surface by [18, Lem. 6.3(7)].

Here, Si = µ∗Di is a linear chain of rational curves for i = 1, 2. Moreover,

δ(Y,Σ)− δ(X,S1 + S2) = ρ(Y )− ρ(X)− (n(Σ)− n(S1 + S2)) = 0,

since the µ-exceptional divisor Θ1 +Θ2 is contained in Σ. Thus, we are done. �

Corollary 3.3. In Proposition 3.2, let G1, G2, . . . , Gb be the reducible fibers of π

different from D1 and D2.
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(1) If n(Gk) ≥ 3 for some 1 ≤ k ≤ b, then there is a negative curve C on X

such that C ∩ (S1 + S2) = ∅.

(2) If b ≥ 3 or if b = 2 and one of S1 and S2 is reducible, then there is an index

j ∈ {1, 2} such that C ∩ S1 = C ∩ S2 = {Pj} for at least b − 1 negative

curves C on X.

(3) For any 1 ≤ j ≤ 2, assume that C2 ≥ 0 for any prime divisor C on X

satisfying C ∩ S1 = C ∩ S2 ⊂ {Pj}. Then δ(X,S1 + S2) ≤ 2, and if the

equality holds, then X has no negative curve, ρ(X) = 2, and there exist

two P1-fibrations X → P1 in which S1 and S2 are sections.

Proof. (1): In this case, a non-end component of the linear chain Gk is a negative

curve not intersecting Σ = µ−1(S1 +S2). It is enough to take C as its image under

µ : Y → X.

(2): For 1 ≤ k ≤ b and for 1 ≤ j ≤ 2, let Gk,(j) be the end component of the

linear chain Gk intersecting Θj (cf. Lemma 3.1(2)). Then Γk,(j) := µ(Gk,(j)) is a

prime divisor on X such that

Γk,(j) ∩ S1 = Γk,(j) ∩ S2 = {Pj}

for any 1 ≤ k, j ≤ 2. If Γk,(1) is a negative curve for any 1 ≤ k ≤ b, then (2) holds

for P1. Thus, we may assume that Γ1,(1) is not negative.

Note that Γk,(2) ∩ Γ1,(1) = ∅ for any 2 ≤ k ≤ b. Hence,
∑b

k=2 Γk,(2) is negative

semi-definite by the Hodge index theorem. In particular, if b ≥ 3, then (Γk,(2))
2 < 0

for any 2 ≤ k ≤ b, since
∑b

k=2 Γk,(2) is connected and reducible. More directly, if

(Γ1,(1))
2 > 0, then (Γk,(2))

2 < 0 for any 2 ≤ k ≤ b by the Hodge index theorem. If

Si is reducible for some i ∈ {1, 2}, then

Γk,(2) ∩ (Γ1,(1) + Si,(1)) = ∅

for any 2 ≤ k ≤ b and for the end component Si,(1) of the linear chain Si containing

P1; thus, (Γk,(2))
2 < 0 by the Hodge index theorem, since Γ1,(1) + Si,(1) is big.

Therefore, (2) is satisfied by negative curves Γk,(2) for 2 ≤ k ≤ b if (Γ1,(1))
2 > 0,

b ≥ 3, or if Si is reducible for some i ∈ {1, 2}. This proves (2).

(3): Under the assumption, when b > 0, we have the following by (1), (2), and

their proofs:

• n(Gk) = 2 for any 1 ≤ k ≤ b;

• b ≤ 2;

• (Γk,(j))
2 = 0 for any 1 ≤ k ≤ b and 1 ≤ j ≤ 2;

• if b = 2, then S1 and S2 are irreducible.

In particular, δ(X,S1+S2) = δ(Y,Σ) = b ≤ 2 by Lemma 3.1(3) and Proposition 3.2.

Assume that b = 2. Then ρ(X) = n(S1 + S2) + δ(X,S1 + S2) − 2 = 2. Since

−KX is big, Γk,(j) is semi-ample by [20, Prop. 1.5]. Thus, we have fibrations ϕ1,

ϕ2 : X → P1 such that Γ1,(1) and Γ2,(2) are set-theoretic fibers of ϕ1 and that Γ1,(2)

and Γ2,(1) are set-theoretic fibers of ϕ2. Then NE(X) = R≥0 cl(Φ1) + R≥0 cl(Φ2)

for a general fiber Φl of ϕl for l = 1, 2. In particular, X has no negative curve,

and every fiber of ϕl is irreducible for l = 1, 2. Since KX + S1 + S2 ∼ 0, ϕl is a
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P1-fibration with S1 and S2 as sections for l = 1, 2. Thus, (3) holds, and we are

done. �

3.2. Universal covers of some open subsets of a pseudo-toric surface. For

the pseudo-toric surface (Y,Σ) (resp. (X,S1 + S2)) in Lemma 3.1 (resp. Proposi-

tion 3.2), the fundamental group of the open subset Yreg \ (Σ−D2) (resp. Xreg \S1)

is shown to be finite and cyclic under some extra condition in Proposition 3.7

(resp. 3.9) below. Furthermore, the universal cover of the open subset extends to

a cyclic cover to Y (resp. X) from another pseudo-toric surface, on which we shall

study some properties. The properties on negative curves in Proposition 3.9 below

concern our first crucial idea explained in the introduction.

Lemma 3.4. For a pseudo-toric surface (X,S), let ν : X̂ → X be a finite cover

from a normal projective surface X̂ which is étale in codimension 1 over X \ S.

Then (X̂, Ŝ) is a pseudo-toric surface for Ŝ = ν−1S.

Proof. Now, KX̂ + Ŝ = ν∗(KX + S) ∼ 0 by [19, Lem. 1.39], and (X̂, Ŝ) is log-

canonical by [19, Lem. 2.10(1)]. The divisor Ŝ = ν−1S is big, and each connected

component of Ŝ is either an elliptic curve or a cyclic chain of rational curves by

[18, Cor. 4.6]. If Ŝ is disconnected, then a connected component of Ŝ is negative

definite by the Hodge index theorem, since Ŝ is big. Hence, if ν is Galois, then Ŝ is

connected, and it is a cyclic chain of rational curves, since it covers S. Even if ν is

not Galois, by considering the Galois closure of ν, we see that Ŝ is also a cyclic chain

of rational curves. Hence, (X̂, Ŝ) is a pseudo-toric surface by [18, Rem. 6.2]. �

We have the following by Grauert–Remmert’s extension theorem (cf. [6], [7, XII,

Thm. 5.4]):

Lemma 3.5. Let X be a normal variety with a non-empty Zariski-open subset U .

Then, for a finite étale cover U ′ → U from another normal variety U ′, there exist

a finite cover ν : X ′ → X from a normal variety X ′ such that ν−1U ≃ U ′ over U ,

and furthermore, such an extension ν is unique up to isomorphism over X.

Remark 3.6. By the uniqueness of the extension ν, the category of complex analytic

spaces finite étale over U is equivalent to the category of normal complex analytic

spaces finite over X and étale over U . In particular, if the cover U ′ → U is Galois,

then the extension ν is also Galois with the same Galois group.

Convention. A finite surjective morphism ν : X ′ → X of normal varieties is said

to giving a universal cover over U for a non-empty Zariski-open subset U ⊂ Xreg

if ν−1U → U is a universal covering map of U , i.e., ν is étale over U and ν−1U is

simply connected.

Proposition 3.7. In Lemma 3.1, assume that δ(Y,Σ) > 0 and that the fiber

D2 = π−1(t2) is irreducible. We set U := Yreg \ (Σ−D2) and d2 := multD2
π∗(t2).

Then:

(1) The fundamental group π1(U) is finite and cyclic, and its order is a multiple

of d2.
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(2) There is a pseudo-toric surface (Ỹ , Σ̃) with a cyclic cover ν : Ỹ → Y such

that Σ̃ = ν−1Σ, δ(Ỹ , Σ̃) = d2δ(Y,Σ), and that ν gives a universal cover

over U .

For the cyclic cover ν, let π̃ : Ỹ → T̃ ≃ P1 be a P1-fibration with a finite surjective

morphism T̃ → T obtained as the Stein factorization of π ◦ ν : Ỹ → T . Then:

(3) The finite morphism T̃ → T is a cyclic cover of degree d2 branched only at

t1 and t2. In particular, D̃1 = ν−1D1 and D̃2 = ν−1D2 are set-theoretic

fibers of π̃. Here, D̃2 is a smooth fiber of π̃.

(4) The number of reducible fibers of π̃ different from D̃1 is equal to d2b.

(5) A reducible fiber of π̃ different from D̃1 is a connected component of ν−1Gk

for some 1 ≤ k ≤ b, and n(Gk) equals the number of prime components of

the reducible fiber.

Proof. We shall prove by the following five steps.

Step 1. We shall show that π1(U) is a cyclic group. Let N be the group of 1-

parameter subgroups of the toric surface (Y ,Σ) in Lemma 3.1(4) and let △ be

the fan defining Y , i.e., Y = TN(△) (cf. [18, §3.1], [19, §4.1]). For the birational

morphism φ : Y → Y , the divisorD2 = φ(D2) is a prime component of the boundary

divisor Σ, and it corresponds to a 1-dimensional cone R ∈ △. Then U := Y \(Σ−D2)

is the open affine toric surface TN(R) associated with R. Hence, U ≃ C × C⋆,

and π1(U) ≃ Z. Since φ−1(U) ≃ U and φ−1(U) ⊂ U , we have a surjection

Z ≃ π1(U) → π1(U). As a consequence, π1(U) is cyclic.

Step 2 (Extension of a finite étale cover over U). Let Û → U be a finite étale cover

from a (connected) surface Û . This is a cyclic cover by Step 1. By Lemma 3.5,

there exists uniquely up to isomorphism over Y a cyclic cover ν̂ : Ŷ → Y from a

normal projective surface Ŷ such that ν̂−1U ≃ Û over U . Since Y \Σ ⊂ U , (Ŷ , Σ̂)

is a pseudo-toric surface for Σ̂ := ν̂−1Σ by Lemma 3.4. By Stein factorization,

π ◦ ν̂ = τ̂ ◦ π̂ for a fibration π̂ : Ŷ → T̂ and a finite morphism τ̂ : T̂ → T , where

T̂ ≃ P1 as Ŷ is rational. By applying Lemma 3.1(1) to π̂ : (Ŷ , Σ̂) → T̂ , we see that

π̂ is a P1-fibration and that the following hold for Θ̂j := ν̂−1Θj and D̂i := ν̂−1Di

for any i, j ∈ {1, 2}:

(i) Θ̂j is a section of π̂;

(ii) there is a point t̂i ∈ T̂ such that τ̂−1(ti) = {t̂i} and D̂i = π̂−1(t̂i).

Moreover, for any fiber F̂ of π̂ over T̂ \ {t̂1, t̂2}, we see that

(iii) F̂ is reduced,

(iv) F̂ is a linear chain of rational curves intersecting Θ̂1 + Θ̂2 transversely,

by applying Lemma 3.1(2) to π̂ : (Ŷ , Σ̂) → T̂ .

Step 3. We shall prove the following lemma concerning Step 2.

Lemma 3.8. In the situation of Step 2, if d2 = 1, then the following hold, where

Ĝk := ν̂−1Gk for 1 ≤ k ≤ b:

(a) D2 is a smooth fiber of π;

(b) τ̂ is an isomorphism;
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(c) ν̂∗Θj = (deg ν̂)Θ̂j for any j = 1 and 2;

(d) π̂ is smooth outside D̂1 +
∑b

k=1 Ĝk;

(e) n(Ĝk) = n(Gk) for any 1 ≤ k ≤ b, and δ(Ŷ , Σ̂) = δ(Y,Σ);

(f) π1(U) is finite.

Proof of Lemma 3.8. We have (a) by [18, Prop. 2.33(4)], since multD2
π∗(t2) =

d2 = 1. If deg τ̂ > 1, then τ̂ is branched at t2 and ν̂ is branched along D2 by

Step 2(ii), but it contradicts the étaleness of ν̂ over U ⊃ D2 ∩ U 6= ∅. This shows

(b). Furthermore, (b) and Step 2(i) imply (c). Remaining assertions are shown as

follows:

(d): The étaleness of ν̂ over U implies that π̂∗(t̂2) = ν̂∗D2 is reduced, i.e.,

ν̂∗D2 = D̂2, and that the induced morphism

D̂2 \ (Θ̂1 ∪ Θ̂2) → D2 ∩ U = D2 \ (Θ1 ∪Θ2) ≃ C⋆

is étale. Hence, D̂2 is irreducible, since Θ̂1 + D̂2 + Θ̂2 is a linear chain of rational

curves as a part of Σ̂. Therefore, D̂2 is a smooth fiber of π̂ by [18, Prop. 2.33(4)].

For the rest, by Step 2(iii) and [18, Prop. 2.33(4)], it suffices to prove that any fiber

F̂ of π̂ over T̂ \ {t̂1, t̂2} different from Ĝ1, . . . , Ĝb is irreducible. Here, F̂ = ν̂−1F

for a smooth fiber F of π over T \ {t1, t2}. By the same argument as above for D2,

we see that the induced morphism

F̂ \ (Θ̂1 ∪ Θ̂2) → F ∩ U = F \ (Θ1 ∪Θ2) ≃ C⋆

is étale. Hence, F is irreducible by Step 2(iv). Thus, (d) holds.

(e): By (d), Ĝ1, . . . , Ĝb are the reducible fibers of π̂ over T̂ \ {t̂1}. Thus, the

latter equality of (e) on δ(Ŷ , Σ̂) is derived from the first equalities on n(Ĝk) by

Lemma 3.1(3) applied to π and π̂. In order to prove n(Ĝk) = n(Gk), we set

Λ := SingGk, Λ̂ := Sing Ĝk, Ω := Gk ∩ (Θ1 ∪Θ2), Ω̂ := Ĝk ∩ (Θ̂1 ∪ Θ̂2).

Note that Θ1+Gk+Θ2 and ν̂
−1(Θ1+Gk+Θ2) = Θ̂1+Ĝk+Θ̂2 are both linear chains

of rational curves by Lemma 3.1(2) (cf. Step 2(iv)). In particular, #Λ = n(Gk)+1

and #Λ̂ = n(Ĝk) + 1. The cyclic cover ν̂ is étale over an open neighborhood of

Gk \ (Λ ∪ Ω), and Gk \ (Λ ∪ Ω) consists of n(Gk) connected components which

are all isomorphic to C⋆. Thus, ν̂−1Ω = Ω̂, and ν̂ induces a bijection Ω̂ → Ω. In

particular, an end component of Gk satisfies the following condition (♦) for prime

components Γ of Gk:

(♦) Γ̂ = ν̂∗Γ is a prime component of Ĝk and the cyclic cover Γ̂ → Γ induced

by ν̂ is étale over Γ \ (Ω ∪ Λ) ≃ C⋆.

If a prime component Γ satisfies (♦), then any prime component intersecting Γ also

satisfies (♦), since ν̂−1(Θ1+Gk+Θ2) is a linear chain of rational curves. Therefore,

(♦) holds for any prime component Γ of Gk. In particular, Λ̂ = ν̂−1Λ, and ν̂ induces

a bijection Λ̂ → Λ. Hence, n(Ĝk) = n(Gk), and (e) holds.

(f): In the proof of (e), (Y, P ) is at most a cyclic quotient singularity for any

point P ∈ Λ. Thus, there is a connected open neighborhood U of P in Y such

that the fundamental group π1(U \ {P}) is finite. Here, we may assume that π̂ is

étale over U \ {P} and that π̂−1(U \ {P}) = π̂−1U \ {P̂} is connected for a point
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P̂ ∈ Λ̂ lying over P , since Λ̂ → Λ is bijective. This shows that, for any surjection

π1(U) → G to a finite group G, the composite π1(U \ {P}) → π1(U) → G is also

surjective. Hence, π1(U) is finite, since π1(U) is cyclic (cf. Step 1), and its order

is divisible by the order of the cyclic quotient singularity (Y, P ) for P ∈ Λ. Thus,

Lemma 3.8 has been proved. �

Step 4 (Toward reduction to the case: d2 = 1). Assume that d2 > 1 and let

τ : T ′ ≃ P1 → T be a cyclic cover of degree d2 branched at t1 and t2. Let t′i ∈ T ′

be the inverse image of ti for i = 1, 2. For the normalization Y ′ of Y ×T T
′, let

η : Y ′ → Y and π′ : Y ′ → T ′ be morphisms induced by projections which make a

commutative diagram:

Y ′ η
−−−−→ Y

π′

y
yπ

T ′ τ
−−−−→ T.

We set D′
i := η−1Di = π′−1(t′i) for i = 1, 2. Since π∗(t2) = d2D2 and since (Y,D2)

is 1-log-terminal along D2,

• π′ is smooth along D′
2 = π′∗(t2), and

• η−1U → U is an étale cover of degree d2

by Lemma 2.12. In particular, we have a surjection π1(U) → Z/d2Z. On the

other hand, (Y ′,Σ′) is a pseudo-toric surface for Σ′ = η−1Σ by Lemma 3.4. We

set Θ′
j := η−1Θj for j = 1, 2. Then Σ′ = Θ′

1 +Θ′
2 +D′

1 +D′
2, and Θ′

1 and Θ′
2 are

mutually disjoint sections of π′ by Lemma 3.1(1). Since τ is étale over T \ {t1, t2},

for any 1 ≤ k ≤ b, η∗Gk is the disjoint union of reducible fibers of π′ lying over

Gk, and each fiber of π′ in η∗Gk is isomorphic to Gk by η. Hence, the number of

reducible fibers of π′ different from D′
1 equals d2b, and

(III-2) δ(Y ′,Σ′) = d2δ(Y,Σ) > 0

by Lemma 3.1(3). Therefore, (Y ′,Σ′), π′ : Y ′ → T ′, and D′
2 satisfy the same

assumptions in Proposition 3.7 required for (Y,Σ), π : Y → T , and D2, where

multD′

2
π′∗(t′2) = 1. Here, the open subset U ′ := Y ′

reg\(Σ
′−D′

2) contains η
−1U , and

the complement U ′ \ η−1U is a finite set contained in η−1 Sing Y . Thus, π1(U
′) ≃

π1(η
−1U).

Step 5 (Final step). We shall prove (1)–(5) of Proposition 3.7. The fundamental

group π1(U
′) of the open subset U ′ ⊂ Y ′ in Step 4 is finite by Lemma 3.8(f) in

Step 3. Since π1(η
−1U) ≃ π1(U

′) is isomorphic to the kernel of the surjection

π1(U) → Z/d2Z, we have (1) by Step 1. The universal covering map of U ′ extends

to a cyclic cover Ỹ → Y ′ as in Step 2, and the composite ν : Ỹ → Y ′ → Y

gives a universal cover over U . Hence, (2) holds by Step 2 except the equality

δ(Ỹ , Σ̃) = d2δ(Y,Σ), which is shown by (III-2) in Step 4 and by Lemma 3.8(e)

applied to Y ′. By Step 4, the finite morphism T̃ → T in Proposition 3.7 is identified

with the morphism τ : T ′ → T , and we have (3), except the smoothness of π̃ along

D̃2, which is verified by Lemma 3.8(d). The remaining assertions (4) and (5) are
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shown by Step 4 and by (b) and (d) of Lemma 3.8 applied to Y ′ and to the cyclic

cover Ỹ → Y ′. Thus, we have finished the proof of Proposition 3.7. �

Proposition 3.9. In Proposition 3.2, assume that δ(X,S1 + S2) > 0 and that S2

is irreducible. Then the following hold for U := Xreg \ S1 and d2 := multD2
π∗(t2),

where π : Y → T is the P1-fibration in Proposition 3.2, and D2 is a set-theoretic

fiber π−1(t2) identified with the proper transform of S2 in Y :

(1) The fundamental group π1(U) is finite and cyclic. In particular, there is

a finite cyclic cover ν : X̃ → X from a normal projective surface X̃ which

gives a universal cover over U .

(2) For the cover ν in (1), (X̃, ν−1(S1 + S2)) is a pseudo-toric surface and

δ(X̃, ν−1(S1 + S2)) = d2δ(X,S1 + S2).

(3) If δ(X,S1 + S2) = d2 = 1, then there exist two prime divisors B1 and B2

such that (X,S1 +B1 +B2) is a toric surface.

(4) If δ(X,S1 + S2) > 0 and if d2 > 1, then one of the following holds :

(a) There is a negative curve C on X such that C 6⊂ (S1 + S2).

(b) There is a point P̃ ∈ ν−1(S1∩S2) and exist at least two negative curves

C̃ such that

C̃ ∩ ν−1S1 = C̃ ∩ ν−1S2 = {P̃}.

(c) There is no negative curve on X̃, ρ(X̃) = d2 = 2, δ(X,S1 + S2) = 1,

and there exist two P1-fibrations X̃ → P1 in both of which ν−1S1 and

ν−1S2 are sections.

Proof. (1): The assertion on π1(U) follows from Proposition 3.7(1) applied to the

open subset UY := Yreg \ (Σ−D2), since µ is an isomorphism outside S1 ∩ S2 and

it induces an isomorphism UY ≃ U . The rest follows from Lemma 3.5.

(2): Note that (X,S1 + S2) and (Y,Σ) are pseudo-toric surfaces with δ(X,S1 +

S2) = δ(Y,Σ) by Proposition 3.2. We set S̃i = ν−1Si for i = 1, 2. Then (X̃, S̃1+S̃2)

is a pseudo-toric surface by Lemma 3.4, since ν is étale over U ⊃ Xreg \ (S1 ∪ S2).

Let Ỹ be the normalization of X̃ ×X Y and let νY : Ỹ → Y and µ̃ : Ỹ → X̃ be

induced morphisms, which make a commutative diagram:

Ỹ
µ̃

−−−−→ X̃

νY

y
yν

Y
µ

−−−−→ X.

We set Σ̃ := ν−1
Y Σ = µ̃−1(S̃1 + S̃2). Then (Ỹ , Σ̃) is a pseudo-toric surface and

δ(Ỹ , Σ̃) = d2δ(Y,Σ) by Lemma 3.4 and Proposition 3.7(2), since νY is étale over

UY ⊃ Yreg \ Σ. On the other hand,

δ(Ỹ , Σ̃)− δ(X̃, S̃1 + S̃2) = ρ(Ỹ )− ρ(X̃)− (n(Σ̃)− n(S̃1)− n(S̃2)) = 0,

since the µ̃-exceptional locus is contained in Σ̃. This shows (2).

(3): By δ(Y,Σ) = δ(X,S1 + S2) = 1 and by Lemma 3.1(3), there is a unique

reducible fiber G of π different from D1 and D2 such that n(G) = 2. Here, G is
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reduced and is a linear chain G(1)+G(2) of rational curves, where G(j) is the prime

component intersecting the section Θj ⊂ Σ for j = 1, 2, by Lemma 3.1(2). On the

other hand, D2 is irreducible as the proper transform of S2, and π∗(t2) = D2 by

d2 = 1. Thus, D2 is a smooth fiber of π (cf. [18, Prop. 2.33(4)]). Hence, G ∼ D2,

and KY +Σ♯ ∼ 0 for

Σ♯ := Σ−D2 +G = Θ1 +Θ2 +G(1) +G(2) +D1.

Then (Y, S♯
Y ) is a toric surface by [26, Thm. 6.4] (cf. [18, Thm. 1.1]), since (Y, S♯

Y )

is log-canonical (cf. Lemma 3.1(2)) and since n(S♯
Y ) = n(SY ) + 1 = ρ(Y ) + 2.

Thus, (X,S♯) is also a toric surface for S♯ := µ∗S
♯
Y by [18, Lem. 3.9], since the µ-

exceptional divisor Θ1+Θ2 is contained in S♯
Y . Therefore, (3) holds forBj = µ(G(j))

for j = 1, 2.

(4): Let Gal(ν) be the Galois group of the cyclic cover ν : X̃ → X. Assume that

there is a negative curve C̃ on X̃ satisfying

(III-3) C̃ ∩ (S̃1 + S̃2) = ∅.

Then the transform σ(C̃) is also a negative curve satisfying (III-3) for any σ ∈

Gal(ν), and the image C = ν(C̃) in X satisfies C ∩ (S1 + S2) = ∅, since we have

ν−1(C) =
∑

σ∈Gal(ν)
σ(C̃).

Thus, C is a negative curve by the Hodge index theorem as S1 + S2 is big, and as

a consequence, (4a) holds in this case.

Assume next that there is a negative curve C̃ on X̃ satisfying

(III-4) C̃ ∩ S̃1 = C̃ ∩ S̃2 = {P̃j}

for some j ∈ {1, 2}. Then the transform σ(C̃) is also a negative curve satisfying

(III-4) for any σ ∈ Gal(ν). If σ(C̃) 6= C̃ for some σ ∈ Gal(ν), then (4b) holds. If

σ(C̃) = C̃ for any σ ∈ Gal(ν), then C̃ = ν−1C for a negative curve C on X such

that C ∩ S1 = C ∩ S2 = {Pj}; thus, (4a) holds.

As the Stein factorization of π ◦ νY : Ỹ → T , we have a P1-fibration π̃ : Ỹ →

T̃ ≃ P1 and a finite morphism T̃ → T (cf. Lemma 3.1). By the observation above

on negative curves on X̃ and by Corollary 3.3(3) applied to (X̃, S̃1, S̃2, µ̃ : Ỹ →

X̃, π̃ : Ỹ → T̃ ) instead of (X,S1, S2, µ : Y → X,π : Y → T ), we see that if (4a) and

(4b) do not hold, then δ(X̃, S̃1 + S̃2) = d2δ(X,S1 + S2) = 2 (cf. (2)), ρ(X̃) = 2,

and there exist two P1-fibrations X̃ → P1 in both of which S̃1 and S̃2 are sections;

in particular, d2 = 2, δ(X,S1 + S2) = 1, and (4c) holds. Thus, we are done. �

3.3. Applications to endomorphisms. We shall prove Theorems 3.13 and 3.14

below on endomorphisms and toric surfaces by applying results in Section 3.2.

Lemma 3.10. Let f be a surjective endomorphism of a normal projective surface

X and let S be an f -completely invariant divisor, where S is allowed to be zero.

Assume that the fundamental group of the open subset U := Xreg \ S is finite. Let

ν : X̃ → X be a finite surjective morphism from a normal projective surface X̃ which

gives a universal cover over U . Then there is an endomorphism f̃ : X̃ → X̃ such
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that ν ◦ f̃ = f ◦ ν. In particular, deg f̃ = deg f , and Sf̃ = ν−1Sf for characteristic

completely invariant divisors Sf̃ and Sf (cf. [20, Def. 2.16]).

Proof. Since f is finite and f−1S = S, there is a finite subset Ξ ⊂ Xreg such

thatXreg∩f
−1U = U \Ξ. Let X̃ ′ be the normalization of the fiber product X̃×XX

of ν and f over X, and consider the induced commutative diagram

X̃ ′ p
−−−−→ X̃

q

y
yν

X
f

−−−−→ X,

where p and q are finite morphisms and q is étale over f−1U . Then q is étale over

U , since Ξ is finite. In particular, we have a finite morphism ν−1U → q−1U over U

from the universal cover ν−1U of U , and it extends to a finite morphism ξ : X̃ → X̃ ′

over X by Remark 3.6. We set f̃ := p ◦ ξ : X̃ → X̃. Then ν ◦ f̃ = f ◦ ν. It implies

that deg f̃ = deg f , and moreover, we have Sf̃ = ν−1Sf by [20, Lem. 2.19(3)]. �

Proposition 3.11. Let X be a normal projective surface admitting a non-isomor-

phic surjective endomorphism f and let B be an effective divisor on X such that

(i) KX + Sf +B ∼ 0,

(ii) #Sf ∩ SuppB = 2,

(iii) (X,Sf +B) is log-canonical along Sf ∩ SuppB,

(iv) mB ∼ D for a positive integer m and an effective Cartier divisor D such

that SuppD ⊂ Sf and SuppD ∩ SuppB = Sf ∩ SuppB.

Then (X,Sf +B) is a pseudo-toric surface. Moreover, if

(v) Sf is reducible with n(Sf ) ≥ ρ(X)

in addition, then there is a reduced divisor B′ such that n(B′) ≤ 2 and that (X,B′+

Sf ) is a toric surface.

Proof. Note that B 6= 0 by (ii), and KX + Sf 6∼ 0 by (i). Since Sf contains all the

negative curves on X (cf. [20, Prop. 2.20(3)]), every prime component of B is nef by

(ii), and −(KX+Sf +Bred) = −(KX+Sf +B)+(B−Bred) is also nef by (i). Thus,

the required conditions of Proposition 3.2 are satisfied for S1 = Sf and S2 = Bred,

by (ii), (iii), and (iv). As a consequence of Proposition 3.2, (X,Sf + Bred) is a

pseudo-toric surface. In particular, KX + Sf +Bred ∼ 0, and we have B = Bred by

(i). This proves the first assertion.

For the rest, assume (v). By Shokurov’s criterion for toric surfaces [26, Thm. 6.4]

(cf. [18, Thm. 1.3]), we have

0 ≤ δ(X,Sf +B) = ρ(X) + 2− n(Sf )− n(B) ≤ 2− n(B),

where the equality δ(X,Sf+B) = 0 holds if and only if (X,Sf+B) is a toric surface.

If B is reducible, then n(B) = 2, δ(X,Sf + B) = 0, and hence, (X,Sf + B) is a

toric surface. Thus, we may assume that B is irreducible and δ(X,Sf +B) = 1.

We can apply Proposition 3.9 to X, S1 = Sf , and S2 = B. If the number d2
in Proposition 3.9 is equal to 1, then (X,Sf + B′) is a toric surface for a reduced

divisor B′ with n(B′) = 2 by Proposition 3.9(3). In case d2 > 1, we shall derive a
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contradiction as follows: Let ν : X̃ → X be the finite cyclic cover giving a universal

cover over U = Xreg \ Sf (cf. Proposition 3.9(1)). Then we have a non-isomorphic

surjective endomorphism f̃ : X̃ → X̃ such that ν ◦ f̃ = f ◦ ν by Lemma 3.10, where

S1 = Sf (resp. ν−1S1 = ν−1Sf = Sf̃ ) contains all the negative curves on X (resp.

X̃). Since Sf is reducible, no case of Proposition 3.9(4) does not hold. This is a

contradiction. Thus, we are done. �

Remark. By applying results on Section 5.3, we can weaken the condition (v) to

(v′) n(Sf ) ≥ ρ(X).

In fact, it is enough to consider the case where Sf is irreducible and ρ(X) = 1, and

the assertion holds if d2 = 1 as in the proof above. When d2 > 1, we can derive a

contradiction as follows: By Proposition 3.9(4), we may assume that d2 = ρ(X̃) = 2

and that there exist two P1-fibrations X̃ → P1 in both of which ν−1Sf = Sf̃ is a

section. Since δf̃ = δf > 1, Sf̃ is a union of fibers of two P1-fibrations X̃ → P1 by

Corollary 5.25. This is a contradiction. The assertion for (v′) can be applied to the

study of endomorphisms in the case of Picard number 1, but we do not proceed it

in this article.

Lemma 3.12. Let X be a normal projective surface with a reduced reducible con-

nected divisor S such that

• (X,S) is log-canonical,

• −(KX + S) is nef, and

• (KX + S)C < 0 for two prime components C of S.

Then S is a linear chain of rational curves such that (KX + S)C1 < 0 and (KX +

S)C2 < 0 for the end components C1 and C2 of S, and there is an effective divisor

B such that KX+S+B ∼ 0, (X,S+B) is log-canonical along S, and S∩SuppB =

{P1, P2} for two points P1 ∈ C1, P2 ∈ C2.

Proof. The assertion except on B follows from [18, Lem. 4.5]. To show the existence

of B, first we consider the case where n(S) ≥ 3, and set S♮ := S − C1 − C2. Then

KX + S is Cartier along S♮ and

OX(KX + S)⊗OX
OS♮ ≃ OS♮

by [18, Lem. 4.5(3)]. Since (KX + S)Ci < 0 for i = 1, 2, t(C1 + C2) − 2(KX + S)

is nef and big for some 0 < t < 1 by [21, Lem. 4.4]. Thus,

H1(X,OX(−KX − S − S♮)) = 0

by a version of Kawamata–Viehweg’s vanishing theorem [24, Thm. (5.1)] (cf. [19,

Prop. 2.15]), since

KX + pt(C1 + C2)− 2(KX + S)q = −KX − S − S♮.

Hence, the restriction homomorphism

H0(X,OX(−KX − S)) → H0(X,OX(−KX − S)⊗OS♮) ≃ H0(S♮,OS♮)
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is surjective, and we have an effective divisor B ∼ −(KX + S) such that S♮ ∩

SuppB = ∅. In particular, BCi = −(KX + S)Ci > 0 for i = 1, 2. By [18,

Prop. 3.29], the following hold for each i = 1, 2:

(a) If Ci ∩ SingX ⊂ S♮, then (KX + S)Ci = −1.

(b) If Ci∩SingX 6⊂ S♮, then Ci∩SingX \S♮ = {Pi} and (KX +S)Ci = −1/ni
for a cyclic quotient singular point Pi of order ni.

In case (a), BCi = 1, and hence, (X,S + B) is log-canonical at B ∩ Ci. In case

(b), B ∩ Ci = {Pi} with BCi = 1/ni, and (X,S + B) is log-canonical at Pi by

Lemma 2.8(1). Thus, we are done in the case where n(S) ≥ 3.

Next, we treat the case: n(S) < 3. Then S = C1 + C2, since S is reducible.

For the intersection point P of C1 and C2, we can take a non-isomorphic toroidal

blowing up ϕ : Y → X at P with respect to (X,S). We set SY := ϕ−1S. Then

ρ(Y ) ≥ 3, (Y, SY ) is log-canonical, KY +SY = ϕ∗(KX+S), and SY is a linear chain

of rational curves whose end components are proper transforms C ′
1 and C ′

2 of C1

and C2, respectively. In particular, −(KY +SY ) is nef on SY and (KY +SY )C
′
i < 0

for i = 1, 2. Applying the previous argument to (Y, SY ), we can find an effective

divisor BY on Y such that KY + SY + BY ∼ 0, (Y, SY + BY ) is log-canonical

along SY , ϕ
−1(P ) ∩ SuppBY = ∅, and that SY ∩ SuppBY = {P ′

1, P
′
2} for points

P ′
1 ∈ C ′

1 and P ′
2 ∈ C ′

2. Thus, B = ϕ∗BY satisfies the required condition, since ϕ is

an isomorphism over X \ P . �

Theorem 3.13. Let X be a normal projective surface admitting a non-isomorphic

surjective endomorphism f such that

(i) ρ(X) ≥ 3,

(ii) KX + Sf is not pseudo-effective,

(iii) (KX + Sf )C < 0 for two prime components C of Sf .

Then (X,Sf +B) is a toric surface for a reduced divisor B with n(B) ≤ 2.

Proof. By (ii) and [21, Thm. 1.3], we have n(Sf ) ≤ ρ(X)+1, in which the equality

holds if and only if (X,B + Sf ) is a toric surface for a prime divisor B. Thus, we

may assume that n(Sf ) ≤ ρ(X). By (i), (ii), and [21, Prop. 4.3], the pair (X,Sf ) is

an L-surface (cf. [21, Def. 4.2]). Thus, the following hold by (iii) and [21, Thm. 4.5]:

(1) X is a rational surface with only rational singularities; in particular, X

is Q-factorial and the numerical equivalence coincides with the Q-linear

equivalence for Q-divisors on X;

(2) NE(X) is generated by the numerical classes of negative curves on X;

(3) −KX and Sf are big, and −(KX + Sf ) is semi-ample;

(4) ρ(X) = n(Sf ), and Sf is the union of all the negative curves on X;

(5) Sf is a linear chain of rational curves, and (KX + Sf )C1 < 0 and (KX +

Sf )C2 < 0 for the end components C1 and C2 of Sf ;

(6) Sf − C1 − C2 is negative definite.

By (3) and Lemma 3.12, there is an effective divisor B such that KX +Sf +B ∼ 0,

(X,Sf + B) is log-canonical along Sf , and Sf ∩ SuppB = {P1, P2} for two points
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P1 ∈ C1 and P2 ∈ C2. Hence, by (1), (2), and (4), we have a positive integer m

and an effective Cartier divisor D such that SuppD ⊂ Sf and mB ∼ D.

We shall show that SuppD = Sf . Assume the contrary. Then the numerical

classes of prime components of D generate a proper face of the polyhedral cone

NE(X) by (2) and (4). In particular, D is not big. Then B ∼ −(KX + Sf )

is not big, and BD = mB2 = 0 by (3). Hence, SuppD ∩ SuppB = ∅, and

SuppD ⊂ Sf − C1 − C2; this contradicts (6).

Therefore, (X,Sf , B) satisfies all the conditions (i)–(v) of Proposition 3.11, and

as a consequence, (X,Sf + B′) is a toric surface for a reduced divisor B′ with

n(B′) ≤ 2. �

Theorem 3.14. Let X be a normal projective surface admitting a non-isomorphic

surjective endomorphism f such that ρ(X) = 2, Sf is singular, and −(KX +Sf ) is

ample. Then (X,Sf +B) is a toric surface for a reduced divisor B with n(B) ≤ 2.

Proof. Since −(KX+Sf ) is ample, by [21, Thm. 1.3], We have n(Sf ) ≤ ρ(X)+1 =

3, in which the equality holds if and only if (X,Sf +B) is a toric surface for a prime

divisor B. Hence, we may assume that n(Sf ) ≤ 2.

If a prime component C of Sf is singular, then (KX + Sf )C = 0 by [18,

Prop. 3.29], violating the ampleness of −(KX + Sf ). Thus Sf is reducible and

connected. Moreover, by the ampleness of −(KX + Sf ) and by Lemma 3.12, Sf is

a linear chain C1+C2 of rational curves for two prime components C1 and C2, and

there exists a divisor B such that KX + Sf + B ∼ 0, (X,Sf + B) is log-canonical

along Sf , and that Sf ∩ SuppB = {P1, P2} for two points P1 ∈ C1 and P2 ∈ C2.

Claim. The pseudo-effective cone NE(X) is generated by cl(C1) and cl(C2). In

particular, X is a rational surface with only rational singularities.

Proof. The latter assertion follows from the first. In fact, Sf is big, since cl(Sf )

lies in the interior of NE(X), and it implies the latter assertion by [18, Lem. 4.7].

Since ρ(X) = dimNE(X) = 2 (cf. [20, Prop. C]), the cone NE(X) is fan-shaped.

Thus, for the first assertion, it suffices to show that each extremal ray R of NE(X)

contains cl(C1) or cl(C2). By replacing f with f2 if necessary, we may assume that

f−1Ci = Ci for i = 1, 2, and that f∗R = R for the endomorphism f∗ : N(X) →

N(X). Since −(KX+Sf ) is ample, by the contraction theorem (cf. [20, Thm. 1.10]),

we have the contraction morphism π : X → T of R, in which dimT > 0. If π is

birational, then R contains cl(C1) or cl(C2), since Sf contains all the negative

curves. Thus, we may assume that dimT = 1. By [20, Lem. 3.16], there is an

endomorphism h : T → T such that π ◦ f = h ◦ π. Let G be the set-theoretic fiber

of π passing through the intersection point P of C1 ∩C2. Since f
−1(P ) = {P}, we

have h−1(π(P )) = {π(P )} and f−1G = G. If C1 and C2 are not fibers of π, then

the reduced divisor C1 +C2 +G is f -completely invariant, but (X,C1 +C2 +G) is

not log-canonical at P , violating [20, Thm. E]. Therefore, C1 or C2 is a fiber of π,

and its numerical class belongs to R. �

Proof of Theorem 3.14 continued. By the Claim, as in the proof of Theorem 3.13,

we can find a positive integer m and an effective Cartier divisor D such that mB ∼
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D and SuppD ⊂ Sf . Here, SuppD = Sf , since D ∼ −m(KX +Sf ) is ample but Ci

is not ample for i = 1, 2. Therefore, (X,Sf , B) satisfies all the conditions (i)–(v) of

Proposition 3.11, and as a consequence, (X,Sf +B
′) is a toric surface for a reduced

divisor B′ with n(B′) ≤ 2. �

Remark. In Theorem 3.14, if the first dynamical degree λf (cf. [20, Def. 3.1]) is

equal to δf = (deg f)1/2, then we have another proof by applying Theorem 3.13

to a toroidal blowing up X ′ → X at the intersection point of C1 and C2 with an

endomorphism X ′ → X ′ as a lift of f (cf. [19, Prop. 5.6]).

4. On V-surfaces

Definition 4.1. Let V be a normal projective surface and let Λ1 and Λ2 be two

prime divisors on V . The triplet (V,Λ1,Λ2) is called a V-surface if

(i) V is rational and ρ(V ) = 2,

(ii) the pair (V,Λ1 + Λ2) is log-canonical,

(iii) (Λ1)
2 ≤ 0, (Λ2)

2 < 0, (KV + Λ1 + Λ2)Λ1 < 0, and (KV + Λ1 + Λ2)Λ2 = 0.

For a V-surface (V,Λ1,Λ2), we set

Σi := (Λi \ (Λ1 ∩ Λ2)) ∩ Sing Y

for i = 1, 2, and call Σ1 (resp. Σ2) the first (resp. second) external singular locus.

In Section 4, we shall study the structure of V-surfaces and give an application

to the study of non-isomorphic surjective endomorphism concerning (R3) in the

introduction. After giving some remarks on half-toric surfaces (cf. [18, §7]) in Sec-

tion 4.1, we shall explain basic properties of V-surfaces in Section 4.2, where two

subclasses VA-surfaces and VB-surfaces are defined (cf. Definition 4.5). Section 4.3

is devoted to proving Theorem 4.10 which asserts that any VA-surface becomes a

half-toric surface by adding a prime divisor, i.e., (V,Λ1 + Λ2 + B) is an half-toric

surface for a prime divisor B. Our second crucial ideal explained in the intro-

duction concerns the proof of Theorem 4.10. In Section 4.4, we introduce ordinary

VB-surfaces and extraordinary VB-surfaces (cf. Definition 4.18) as subclasses of VB-

surfaces, and prove that any ordinary VB-surface also becomes a half-toric surface

by adding a prime divisor, but this is not true for any extraordinary VB-surface (cf.

Proposition 4.19 and Theorem 4.21). Moreover, in Section 4.4, as an application of

Theorems 4.10 and 4.21, we shall prove Theorem 4.23 on the structure of a normal

projective surface X of Picard number ≥ 3 admitting a non-isomorphic surjective

endomorphism f such that KX + Sf is not pseudo-effective, i.e., X belonging to

(R3). In Section 4.5, we shall prove Theorem 4.29 on the structure of an extraor-

dinary VB-surface with the notion of (2n+ 1, 2)-blowings up (cf. Definition 4.24).

4.1. Remarks on half-toric surfaces. The half-toric surfaces are defined and

studied in [18, §7]. We shall give two additional results. One is Lemma 4.2 below

on negative curves and the pseudo-effective cone. The other is Lemma 4.3 below

on endomorphisms, which is applied to the proof of Theorem 1.2 (cf. Section 6).

Lemma 4.2. Let (X,D) be a half-toric surface. Then:
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(1) Every negative curve on X is contained in D.

(2) The pseudo-effective cone NE(X) is generated by numerical classes of prime

components of D.

Proof. (1): There is a double cover τ : Y → X étale in codimension 1 such that

(Y, τ∗D) is a toric surface: this double cover is unique up to isomorphism and is

called the characteristic double cover (cf. [18, §7.1]). Let Γ be a negative curve on

X. Then every prime component of τ∗Γ is a negative curve. On the other hand,

every negative curve on Y is contained in the boundary divisor τ∗D, since it is

preserved by the action of open torus Y \ τ∗D. Hence, τ∗Γ ⊂ τ∗D, and Γ ⊂ D.

(2): Let ν : X ′ → X be a non-isomorphic toroidal blowing up with respect

to (X,D). Then ρ(X ′) ≥ 3, and (X ′, ν−1D) is also a half-toric surface (cf. [18,

Lem. 7.4(2)]). In particular, −KX′
∼∼∼ ν−1D is big (cf. [18, Def. 7.1(i), Lem. 7.2(2)]),

and NE(X ′) is generated by numerical classes of negative curves on X ′ by [20,

Thm. 1.13]. By (1), negative curves on X ′ are all contained in ν−1D. Thus, (2)

holds by NE(X) = ν∗ NE(X
′). �

Lemma 4.3. For a half-toric surface (X,D), let f be a non-isomorphic surjective

endomorphism of X such that Sf = D − B for an end component B of D. Then

every prime component of τ∗B is nef for the characteristic double cover τ : Y → X.

Proof. Since Sf contains all the negative curves on X (cf. [20, Prop. 2.20(3)]),

the prime divisor B is nef. Thus, we may assume that τ∗B is reducible. By [18,

Prop. 4.18(3)], (B \(D−B))∩SingX consists of one point Q of type D, i.e., (X,B)

is not 1-log-terminal at Q, and τ∗B = Γ1+Γ2 for two prime divisors Γ1 and Γ2 such

that Γ1 ∩ Γ2 = τ−1(Q) = {P} for a point P . Here, Y is a toric surface expressed

as TN(△) for a complete fan △ of a free abelian group N of rank 2, and τ∗D is the

boundary divisor, the complement of the open torus TN({0}).

For the complement U of D − B in X, the inverse image τ−1U is expressed as

TN(σ) for the two-dimensional cone σ ∈ △ corresponding to P . For i = 1, 2, let

Ri ∈ △ be a ray corresponding to the prime component Γi of τ
∗D, and let Wi be

the toric open subset TN(Ri). Then σ = R1 + R2, and W1 ∪W2 = τ−1U \ {P}.

We shall show that the fundamental group π1(τ
−1U \ {P}) is finite. By inclusions

Y \ τ∗D ⊂Wi ⊂W1 ∪W2 for i = 1, 2, we have surjections

N ≃ π1(Y \ τ∗D) → π1(Wi) → π1(W1 ∪W2),

where π1(Wi) ≃ N/(N∩Ri) (cf. [4, §3.2]). This implies that π1(W1 ∪W2) is finite,

since (N ∩ R1) + (N ∩ R2) is a finite index subgroup of N and it is contained in the

kernel of N → π1(W1 ∩W2). As a consequence, the fundamental group U \ {Q} is

also finite.

Let ν : X̃ → X be the finite surjective morphism from a normal projective surface

X̃ which gives a universal cover over Ureg = U\{Q} = Xreg\(D−B) = Xreg\Sf . By

Lemma 3.10, there is a non-isomorphic surjective endomorphism f̃ of X̃ such that

ν ◦ f̃ = f ◦ν and Sf̃ = ν−1Sf = ν−1(D−B). In particular, every prime component

ν−1B is nef. On the other hand, ν factors through τ , since τ−1(U \ {Q}) =

τ−1U \{P} =W1∪W2 is connected and étale cover U \{Q} (cf. Lemma 3.5). Then
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Γi is nef for i = 1, 2, since the inverse image of Γi in X̃ is contained in ν−1B. Thus,

we are done. �

4.2. Basic properties of V-surfaces. Some basic properties of V-surfaces are

obtained in Lemma 4.4 below, and VA-surfaces and VB-surfaces are introduced in

Definition 4.5 below. Moreover, we discuss sufficient conditions for a V-surface to

become a half-toric surface by adding a prime divisor.

Lemma 4.4. The following hold for any V-surface (V,Λ1,Λ2):

(1) The cone NE(V ) is generated by the numerical classes of Λ1 and Λ2. In

particular, V contains no negative curves other than Λ1 or Λ2.

(2) The divisor −(KV +Λ1+Λ2) is nef and big. In particular, −KV is big and

any nef Q-divisor on V is semi-ample.

(3) The surface V has only rational singularities, and the numerical equivalence

coincides with the Q-linear equivalence for Q-divisors on V .

(4) The divisor Λ1 + Λ2 is a linear chain of rational curves. In particular,

Λ1 ≃ Λ2 ≃ P1, Λ1 ∩ Λ2 consists of one point PV , and Λ1Λ2 = 1/nV for a

positive integer nV : If nV = 1, then PV ∈ Vreg, and if nV > 1, then (V, PV )

is a cyclic quotient singularity of order nV .

(5) The pair (V,Λ1) is 1-log-terminal along Λ1\{PV }, and (KV +Λ1+Λ2)Λ1 =

−1/mV for a positive integer mV . If mV = 1, then the first external

singular locus Σ1 is empty, and if mV > 1, then Σ1 consists of one point

at which V has a cyclic quotient singularity of order mV .

(6) One of the following holds for the second external singular locus Σ2:

(a) Σ2 consists of two A1-singular points at which (V,Λ2) is 1-log-terminal ;

(b) Σ2 consists of one point at which (V,Λ2) is log-canonical of type D in

the sense of [18, Def. 3.23]; in other words, (V,Λ2) is not 1-log-terminal

at the point (cf. [19, Def. 2.1, Fact 2.5]).

(7) The divisor KV +Λ1 +Λ2 is not Cartier along Σ2 but 2(KV +Λ1 +Λ2) is

Cartier along Λ2 with an isomorphism

OV (2(KV + Λ1 + Λ2))⊗OΛ2
≃ OΛ2

.

Proof. (1): For i = 1, 2, the ray Ri = R≥0 cl(Λi) of NE(V ) is extremal, since Λ2
i ≤ 0

(cf. Definition 4.1(iii)) and since NE(V ) is fan-shaped by ρ(V ) = 2. Here, R1 6= R2:

For, otherwise, Λ1 is also a negative curve, and we have Λ1 = Λ2, a contradiction.

For a negative curve on V , its numerical class generates an extremal ray of NE(X);

hence the negative curve is either Λ1 or Λ2. This shows (1).

(2): The divisor −(KV +Λ1+Λ2) is nef by (1) and Definition 4.1(iii). If it is not

big, then its numerical class belongs to an extremal ray R of NE(V ), but we have

R 6= R1 and R 6= R2 by (KV +Λ1+Λ2)Λ2 = 0 and Λ2
2 < 0. Thus, −(KV +Λ1+Λ2)

is big. In particular, −KV is big, and the rest of (2) follows from [20, Prop. 1.5].

(3): This follows from [18, Lem. 2.31] and the bigness of −KV , since V is rational

with H2(V,OV ) = H0(V,OV (KV )) = 0.

(4): For the contraction morphism φ : V → V ′ of the negative curve Λ2, V
′ is

a normal projective surface with ρ(V ′) = 1 and φ(Λ1)
2 > 0. Hence, Λ1 ∩ Λ2 6= ∅
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by Λ2
1 ≤ 0. In particular, Λ1 + Λ2 is connected. Then Λ1 + Λ2 is a linear chain

of rational curves by [18, Lem. 4.5], since (V,Λ1 + Λ2) is log-canonical and since

−(KV +Λ1 +Λ2) is nef with (KV +Λ1 +Λ2)Λ1 < 0. The assertion for nV follows

from a well-known property of 2-dimensional log-canonical pairs (cf. [19, Fact. 2.5]).

(5)–(7): There are derived from [18, Prop. 3.29] on cases (E)–(H) there. �

Definition 4.5. Let (V,Λ1,Λ2) be a V-surface.

(1) The integer nV in Lemma 4.4(4) is called the internal index, and the point

PV is called the central point.

(2) The integer mV in Lemma 4.4(5) are called the first external index.

(3) If Lemma 4.4(6a) (resp. 4.4(6b)) holds, then (V,Λ1,Λ2) is called a VA-

surface (resp. VB-surface).

Remark. The internal index nV equals the numerical factorial index of V at PV (cf.

[19, Def. 1.26]). The first external index mV is the smallest positive integer m such

that m(KV +Λ1) (resp. mΛ1) is Cartier along Λ1 \{PV } (cf. Fact 2.5, Lemma 2.8).

If we consider the second external index as an analogy of the first external index,

then it should be 2 by Lemma 4.4(7).

Lemma 4.6. For a V-surface (V,Λ1,Λ2), there is an effective divisor E such that

Λ2 ∩ SuppE = ∅ and E ∼ −2(KV +Λ1 +Λ2). In this case, (X,Λ1 +Λ2 + (1/2)E)

is log-canonical along Λ1 + Λ2.

Proof. There is a positive number ε < 1 such that εΛ1 − 3(KV + Λ1 + Λ2) is nef

and big by Definition 4.1(iii) and Lemma 4.4(2) and by [21, Lem. 4.4]. Since

KV + pεΛ1 − 3(KV + Λ1 + Λ2)q = −2(KV + Λ1 + Λ2)− Λ2,

we have H1(V,OV (−2(KV + Λ1 + Λ2) − Λ2)) = 0 by a version of Kawamata–

Viehweg’s vanishing theorem [24, Thm. (5.1)] (cf. [19, Prop. 2.15]). Hence, the

restriction homomorphism

H0(V,OV (−2(KV + Λ1 + Λ2)) → H0(V,OX(−2(KV + Λ1 + Λ2))⊗OΛ2
)

≃ H0(Λ2,OΛ2
) ≃ C

is surjective (cf. Lemma 4.4(6)), and we can find an effective divisor E such that

E ∼ −2(KV + Λ1 + Λ2) and Λ2 ∩ SuppE = ∅. Thus, we have proved the first

assertion.

For the latter assertion, since E∩Λ2 = ∅, it is enough to prove the log-canonicity

of (V,Λ1 + (1/2)E) along Λ1 ∩ SuppE. Now, EΛ1 = 2/mV and #Σ1 ≤ 1 by

Lemma 4.4(5). Hence, one of the following holds:

(1) #Λ1 ∩ SuppE ≥ 2;

(2) Λ1 ∩ SuppE consists of one point of Λ1 \ Σ1.

(3) Λ1 ∩ SuppE = Σ1.

If (1) holds, then mV = 1, Σ1 = ∅, and E intersects Λ1 transversely at two points;

thus, (V,Λ1 +E) and (V,Λ1 + (1/2)E) are log-canonical along Λ1 ∩ SuppE. If (2)

holds and if mV > 1, then mV = 2 and E intersects Λ1 transversely at one point;

thus, (V,Λ1 + E) and (V,Λ1 + (1/2)E) are log-canonical along Λ1 ∩ SuppE. If
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(2) holds and if mV = 1, then E intersects Λ1 tangentially at one point {P ′} =

Λ1 ∩ SuppE by EΛ1 = 2; in this case, (V,Λ1 + (1/2)E) is log-canonical at P ′

by “inversion of adjunction” (cf. [14, Thm. 17.7]), since P ′ ∈ Xreg and Λ1 is non-

singular. If (3) holds, thenmV > 1 by Σ1 6= ∅, and (V,Λ1+(1/2)E) is log-canonical

along Λ1 ∩ SuppE by Lemma 2.8(2). Thus, we are done. �

Proposition 4.7. For a V-surface (V,Λ1,Λ2), let B be an effective divisor on V

such that KV +Λ1 +Λ2 +B ∼∼∼ 0 and Λ2 ∩ SuppB = ∅. Then B is a prime divisor,

(V,Λ1 + Λ2 + B) is a half-toric surface, and B and Λ2 are end components of the

linear chain B + Λ1 + Λ2 of rational curves.

Proof. By Lemma 4.4(5), BΛ1 = 1/mV and B ∩Λ1 consists of one point Q1 6= PV .

Let Γ be a prime component of B. Then ΓΛ1 > 0 by ΓΛ2 = 0 and ρ(V ) =

2, and we have mV ΓΛ1 ∈ Z, since mV Λ1 is Cartier along Λ1 \ {PV }. Hence,

(B−Γ)∩ (Λ1+Λ2) = ∅, and it implies that Γ = B. Therefore, B is a prime divisor.

Moreover, (V,Λ1 + Λ2 +B) is log-canonical at Q1 by Lemma 2.8(1).

By (1) and (3) of Lemma 4.4, there exist an effective Cartier divisor A on V and a

positive integer m such that SuppA ⊂ Λ1+Λ2 and mB ∼ A. Then SuppA = Λ1+

Λ2 as B is nef and big (cf. Lemma 4.4(2)), and B∩SuppA = {Q1}. Let σ : V
′ → V

be the normalization of the blowing up along the scheme-theoretic intersection

mB ∩ A. Let Λ′
1, Λ

′
2, B

′ and A′ be the proper transforms of Λ1, Λ2, B, and A in

V ′, respectively, and we set Θ := σ−1(Q1) and S := σ−1(Λ1 +Λ2) = Θ+ Λ′
1 +Λ′

2.

Then σ is a toroidal blowing up at Q1 with respect to (V,Λ1 + Λ2 + B), and the

following hold as in the proof of Proposition 3.2:

• Θ ≃ P1, σ−1Λ1 = Θ1 + Λ′
1, σ

∗Λ2 = Λ′
2, and S is a linear chain of rational

curves with end components Θ1 and Λ′
2;

• KV ′ + S +B′ = σ∗(KV + Λ1 + Λ2 +B) ∼∼∼ 0;

• (V ′, S +B′) is log-canonical along Θ;

• there is a positive integer e such that eΘ is Cartier and that mB′ =

σ∗(mB)− eΘ and A′ = σ∗(A)− eΘ;

• there exist a fibration π : V ′ → T ≃ P1 and points tB 6= tA of T such that

B′ = π−1(tB) and SuppA′ = π−1(tA).

A general fiber F of π is rational and ΘF = 2 by (KV ′+Θ)F = (KV ′+S+B′)F = 0.

Then B′ ≃ P1 and (V ′, S+B′) is log-canonical along B′ by Lemma 2.16. Therefore,

(V,Λ1 +Λ2 +B) is log-canonical along Λ1 +Λ2 +B. Now, n(Λ1 +Λ2 +B) = 3 =

ρ(V )+1, KV +Λ1+Λ2+B ∼∼∼ 0, and B+Λ1+Λ2 is a linear chain of rational curves

with end components B and Λ2. Thus, (V,Λ1 + Λ2 + B) is a half-toric surface by

[18, Thm. 1.3]. �

Corollary 4.8. If the effective divisor E in Lemma 4.6 is not a prime divisor,

then (V,Λ1 + Λ2 +B) is a half-toric surface for any prime component B of E.

Proof. Let B be a prime component of E. Then B and E − B intersect Λ1 by

BΛ2 = (E − B)Λ2 = 0 and ρ(V ) = 2. Now, EΛ1 = 2/mV by Lemma 4.4(5), and

mV Λ1 is Cartier along Λ1 ∩ SuppE. Thus, BΛ1 = (E − B)Λ1 = 1/mV . Hence,

KV + Λ1 + Λ2 +B ∼∼∼ 0, and the assertion follows from Proposition 4.7. �
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Corollary 4.9. Let (V,Λ1,Λ2) be a V-surface admitting a numerically trivial di-

visor L such that KV + Λ1 + Λ2 + L is Cartier along Λ2. Then (V,Λ1 + Λ2 + B)

is a half-toric surface for a prime divisor B.

Proof. By the assumption for L and by Lemma 4.4(7), we have an isomorphism

OV (KV + Λ1 + Λ2 + L)⊗OΛ2
≃ OΛ2

,

since Λ2 ≃ P1. We know that εΛ1−2(KV +Λ1+Λ2)−L is nef and big for 0 < ε≪ 1

by [21, Lem. 4.4] and Lemma 4.4(2) and by (KV + Λ1 + Λ2)Λ1 < 0. Then

H1(V,OV (−Λ2 − (KV + Λ1 + Λ2 + L))) = 0

by a version of Kawamata–Viehweg’s vanishing theorem [24, Thm. (5.1)] (cf. [19,

Prop. 2.15]), since

KV + pεΛ1 − 2(KV + Λ1 + Λ2)− Lq = −Λ2 − (KV + Λ1 + Λ2 + L).

Hence, the restriction homomorphism

H0(V,OV (−(KV + Λ1 + Λ2 + L))) → H0(V,OV (−(KV + Λ1 + Λ2 + L))⊗OΛ2
)

≃ H0(Λ2,OΛ2
) ≃ C

is surjective and we have an effective divisor B on V such that B ∼ −(KV +Λ1 +

Λ2+L) and Λ2∩SuppB = ∅. Therefore, B is a prime divisor and (V,Λ1+Λ2+B)

is a half-toric surface by Proposition 4.7, since KV + Λ1 + Λ2 +B ∼ −L ∼∼∼ 0. �

4.3. Structure of a VA-surface. We shall prove the following:

Theorem 4.10. For any VA-surface (V,Λ1,Λ2), there is a prime divisor B such

that (V,Λ1 + Λ2 +B) is a half-toric surface.

The proof is given at the end of this section. First, we treat an easy case.

Lemma 4.11. Theorem 4.10 holds if Λ2
1 = 0.

Proof. Let π : V → T be the contraction morphism of the extremal ray R≥0 cl(Λ1),

where (KV + Λ1 + Λ2)Λ1 < 0. Then T ≃ P1 and π is a P1-fibration with only

irreducible fibers. Moreover, Λ2 is a section of π by (KV + Λ1 + Λ2)F = (KV +

Λ2)F < 0 for a general fiber F of π. The second external locus Σ2 consists of two A1-

singular points PA,1 and PA,2 at which (V,Λ2) is 1-log-terminal (cf. Lemma 4.4(6a)

and Definition 4.5(3)). For i = 1, 2, we set ti := π(PA,i), Fi := π∗(ti), and

Gi := π−1(ti). Then Gi ∩ Λ2 = {PA,i}. We can show that Fi = 2Gi for i = 1,

2. In fact, Fi = miGi for an integer mi, and Λ2Gi = 1/mi. Here mi > 1 by

[18, Prop. 2.33(4)], and we have mi = 2, since the numerical factorial index of an

A1-singularity is equal to 2. As a consequence, (V,Λ2 +Gi) is log-canonical at PA,i

by Lemma 2.8(1). We can prove also that L := G1 − G2 satisfies conditions of

Corollary 4.9. In fact, 2L ∼ 0 by 2G1 ∼ 2G2 ∼ F , and KV +Λ1+Λ2+L is Cartier

along Λ2 by the log-canonicity of (V,Λ2 + Gi). Therefore, (V,Λ1 + Λ2 + B) is a

half-toric surface for a prime divisor B by Corollary 4.9. �



53

In what follows in Section 4.3, we fix a VA-surface (V,Λ1,Λ2) such that Λ2
1 < 0.

We also fix an effective divisor E on V such that Λ2 ∩ SuppE = ∅ and that

E ∼ −2(KV + Λ1 + Λ2). This divisor E exists by Corollary 4.6, and we may

assume that E is a prime divisor by Corollary 4.8.

Definition 4.12. Let µ : Y → V be the minimal resolution of singularities lying

on Λ1 +Λ2 and set D := µ−1(Λ1 +Λ2); in particular, Y \D ≃ V \ (Λ1 ∪Λ2) by µ.

We set Di to be the proper transform of Λi in Y for i = 1, 2, and set EY to be the

proper transform of E in Y . For two A1-singular points PA,1 and PA,2 in Σ2 (cf.

Definition 4.5(3), Lemma 4.4(6a)), we set Ξk := µ−1(PA,k) for k = 1, 2, which is a

(−2)-curve.

Lemma 4.13. The divisor D is a simple normal crossing divisor on Yreg and has

a prime decomposition
∑m

i=1
Γi +D1 +

∑n

j=1
Θj +D2 + Ξ1 + Ξ2

with a dual graph

(IV-1) •
Γ1

· · · •
Γm

•
D1

•
Θ1

· · · •
Θn

•
D2

•♦♦♦♦♦♦

Ξ1

•
❖❖

❖❖
❖❖

Ξ2

for some integers m > 0 and n ≥ 0. Moreover, the equality

(IV-2) KY +D = µ∗(KV + Λ1 + Λ2) + (1/2)(Ξ1 + Ξ2)

holds and the following conditions are satisfied :

(1) For the central point PV (cf. Definition 4.5(1)), if PV ∈ Vreg, then n = 0;

if PV 6∈ Vreg, then n > 0 and
∑n

j=1 Θj = µ−1(PV ).

(2) The first external locus Σ1 consists of a point QV , and
∑m

i=1 Γi = µ−1(QV ).

(3) The µ-exceptional locus equals

D −D1 −D2 =
∑m

i=1
Γi +

∑n

j=1
Θj + Ξ1 + Ξ2

and ρ(Y ) = m+ n+ 4.

(4) One has D2
1 = −1 and D2

2 ≤ −2.

(5) There is a positive integer a ≤ m such that

D −
∑a

i=1
Γi =

∑m

i=a+1
Γi +D1 +

∑n

j=1
Θj +D2 + Ξ1 + Ξ2

is not negative definite but negative semi-definite.

(6) One of the following holds :

(a) EY Γ1 = 2 and EY ∩ (D − Γ1) = ∅.

(b) m ≥ 2, Γ2
1 = −2, EY Γ2 = 1, and EY ∩ (D − Γ2) = ∅.

(c) m = 1, Γ2
1 = −2, EYD1 = 1, and EY ∩ (D −D1) = ∅.

Proof. We have (IV-2) by a well-known description of the minimal resolution, since

(V,Λ1+Λ2) is toroidal at the central point PV and is 1-log-terminal along Σ1∪Σ2,

where #Σ1 ≤ 1 and Σ2 = {PA,1, PA,2} (cf. Lemma 4.4(5), Definition 4.12, [19,
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Fact 2.5]). By Lemma 4.4(4), we can define
∑n

j=1 Θj as in (1). By Lemma 4.4(5),

we can define the linear chain
∑m

i=1 Γi of rational curves as µ
−1Σ1 when Σ1 6= ∅; we

setm = 0 when Σ1 = ∅. Then we have the prime decomposition ofD above with the

dual graph (IV-1) in which the case: m = 0 is allowed. In particular, D−D1−D2 is

the µ-exceptional locus, and we have (3) by ρ(Y )−2 = ρ(Y )−ρ(V ) = n(D)−2 =

m+ n+ 2.

We shall show (6) assuming that m > 0. Then Σ1 6= ∅, mV > 1, and EΛ1 =

2/mV by Lemma 4.4(5). If Λ1 ∩ E 6= Σ1, then mV = 2, m = 1, EΛ1 = 1, and (6c)

is satisfied. If Λ1 ∩ E = Σ1, then either (6a) or (6b) is satisfied by Lemma 2.8(2)

on minimal resolutions applied to E. Thus, (6) holds true if m > 0.

Since (5) impliesm > 0, it is enough to prove (4) and (5). The divisors Γi and Θj

for 1 ≤ i ≤ m and 1 ≤ j ≤ n are non-singular rational curves with self-intersection

number ≤ −2 by the minimality of µ. The divisors

µ−1Λ1 =
∑m

i=1
Γi +D1 +

∑n

j=1
Θj and µ−1Λ2 =

∑n

j=1
Θj +D2 + Ξ1 + Ξ2

are negative definite by Λ2
1 < 0 and Λ2

2 < 0. In particular, Ξ1 + D2 + Ξ2 is

negative definite, and we have D2
2 ≤ −2 by the dual graph. Moreover, D2

1 = −1 by

Lemma 2.3(1), since D = µ−1(Λ1 +Λ2) is big. Then we have the expected positive

integer a in (5) by Lemma 2.3(2). Thus, (4) and (5) have been proved, and we are

done. �

Lemma 4.14. There is a P1-fibration π : Y → T ≃ P1 with two points t1, t2 ∈ T

such that

(1) π is smooth over T \ {t1, t2},

and the following hold for the integer a in Lemma 4.13(5):

(2) The prime component Γa of D is a double section of π and Γa is étale over

T \ {t1, t2}.

(3) The set-theoretic fiber π−1(t2) equals

D −
∑a

i=1
Γi =

∑m

i=a+1
Γi +D1 +

∑n

j=1
Θj +D2 + Ξ1 + Ξ2.

(4) If a = 1, then π−1(t1) is irreducible.

(5) If a > 1, then a ≥ 3, Lemma 4.13(6b) holds, and

π−1(t1) = EY +
∑a−1

i=1
Γi.

Proof. By applying Lemma 2.3 and Corollary 2.31 to D (cf. Lemma 4.13(5)), we

have a P1-fibration π : Y → T ≃ P1 with a point t2 ∈ T such that Γa is a double

section of π and that (3) is satisfied for a branched point t2 of π|Γa
: Γa → T . In

particular, (2) holds for the other branched point t1 of π|Γa
. Every irreducible fiber

of π over T \ {t1, t2} is reduced, since it intersects Γa transversely at two points;

hence, π is smooth along irreducible fibers over T \ {t1, t2} (cf. [18, Prop. 2.33(4)]).

Therefore, (1) follows from:

(1′) every fiber over T \ {t1, t2} is irreducible.
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In order to show (1′), we apply [18, Prop. 2.33(7)]. Note that

(IV-3) ρ(Y ) = m+ n+ 4 and n(π−1(t2)) = m− a+ n+ 4

by Lemma 4.13(3) and by (3). If a = 1, then ρ(Y ) − 2 − (n(π−1(t2)) − 1) = 0 by

(IV-3), and every fiber of π over T \ {t2} is irreducible by [18, Prop. 2.33(7)]. This

shows (1′) and (4) in the case where a = 1.

It is enough to prove (1′) and (5) in the case where a ≥ 2. Then either (6a) or (6b)

of Lemma 4.13 is satisfied, since m ≥ a ≥ 2. If Lemma 4.13(6a) is satisfied, then

EY + Γ1 is contained in a fiber of π, since it does not intersect π−1(t2). Moreover,

in this case, EY ∩ Γ1 ⊂ D ⊂ Yreg and EY Γ1 = 2, contradicting Lemma 2.11(1).

Therefore, Lemma 4.13(6b) is satisfied. Let t0 ∈ T \ {t1} be a point such that

Γ1 ⊂ π−1(t0). Since Γ2
1 < 0, π−1(t0) is reducible, i.e., n(π−1(t0)) ≥ 2. Assume

that a ≥ 3. Then EY +
∑a−1

i=1 Γi ⊂ π−1(t0) and n(π−1(t0)) ≥ a, and we have

ρ(Y )− 2− (n(π−1(t0))− 1)− (n(π−1(t2))− 1) = a− n(π−1(t0)) ≤ 0

by (IV-3). Hence, n(π−1(t0)) = a and every fiver of π over T \{t0, t2} is irreducible

by [18, Prop. 2.33(7)]. In particular, π−1(t0) = EY +
∑a−1

i=1 Γi and #π−1(t0)∩Γa =

#Γa−1 ∩ Γa = 1; hence, t0 = t1. Thus, (1
′) and (5) hold when a ≥ 3.

It remains to show that a 6= 2. Assume the contrary. Then π−1(t0) = Γ1 + Γ†

for a prime divisor Γ†. By Lemma 4.13(6b), EY ∩ π−1(t2) = EY ∩ Γ1 = ∅ and

#EY ∩ Γ2 = 1. Thus, t0 6= t1 and EY = π−1(t1). In particular, π∗(t0) intersects

Γ2 transversely at two points, and hence, π∗(t0) = Γ1 + Γ† with Γ†Γ2 = 1 by

Γ1Γ2 = 1. On the other hand, Γ1Γ
† = 2 by Γ2

1 = −2. This contradicts the latter

half of Lemma 2.11(1), since Γ1 ∩ Γ† ⊂ D ⊂ Yreg. Therefore, a 6= 2. Thus, we are

done. �

Lemma 4.15. Let ϕ : Y → X be the contraction morphism of

D − Γa −D2 =
∑

1≤i≤m, i6=a
Γi +D1 +

∑n

j=1
Θj + Ξ1 + Ξ2

and let πX : X → T be the induced P1-fibration such that π = πX ◦ ϕ. Then

(1) the double section CX := ϕ(Γa) of πX is a negative curve,

(2) (X/T,CX , π
−1
X (t2)) is an irreducible PDS configuration of type I1 (cf. Def-

inition 2.17),

(3) #(π−1
X (t2) \ CX) ∩ SingX = 2.

Moreover, the integer a equals 1, and π∗(t1) = 2G for a prime divisor G.

Proof. Since Λ1 is a negative curve, we have (1) by

ϕ−1CX =
∑m

i=1
Γi +D1 +

∑n

j=1
Θj = µ−1Λ1.

Assertions (2) and (3) are consequences of Corollary 2.31 applied to D.

Assume that a 6= 1. Then a ≥ 3 and π−1
X (t1) = ϕ(EY ) by Lemma 4.14(5).

We set EX := ϕ(EY ) and {PX} := CX ∩ EX . Then (X,PX) is a cyclic quotient

singularity and ϕ gives the minimal resolution of the singularity (X,PX), since

ϕ−1(PX) =
∑a−1

i=1 Γi. By Lemma 2.8, (X,CX) is 1-log-terminal at PX , since Γa

intersects the end component Γa−1 of the linear chain ϕ−1(PX) of rational curves
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transversely at one point. For the order n̄ of the cyclic quotient singularity (X,PX),

we have CXEX = 2/n̄ by Lemmas 2.8(3) and 4.13(6b). Hence, (X/T,CX , EX) is an

irreducible PDS of type II. Then C2
X ≥ 0 by Proposition 2.28(4): This contradicts

(1).

Therefore, a = 1. Then G := π−1(t1) is irreducible by Lemma 4.14(4). We set

GX := ϕ(G) = π−1
X (t1). Assume that π∗(t1) is reduced, i.e., π

∗(t1) = G. Then π is

smooth along G (cf. Remark 2.9), GΓa = 2 and (Y/T,Γa, G) is an irreducible PDS

configuration of type II1. Since ϕ is an isomorphism along G, (X/T,CX , GX) is also

an irreducible PDS configuration of type II1. Then C
2
X ≥ 0 by Proposition 2.28(4):

This contradicts (1). Therefore, π∗(t1) is not reduced, and we have π∗(t1) = 2G

and GΓ1 = 1 by Γ1 ⊂ D ⊂ Yreg. Thus, we are done. �

Now, we are ready to prove Theorem 4.10.

Proof. Let (V,Λ1,Λ2) be a VA-surface. By Lemma 4.11, we may assume that

(Λ1)
2 < 0. We fix an effective divisor E in Lemma 4.6, which is assumed to a

prime divisor by Corollary 4.8. Considering the birational morphism µ : Y → V in

Definition 4.12 and we shall apply results above on Y and E.

Now, multΓ1
µ∗Λ1 = 1/mV by Fact 2.5, since (V,Λ1) is 1-log-terminal at {QV } =

Σ1 (cf. Lemma 4.4(5), Lemma 4.13(2)). We set B := µ(G) for the prime divisor G =

π−1(t1) in Lemma 4.15. Then BΛ1 = Gµ∗Λ1 = (1/mV )GΓ1 = 1/mV , and (KV +

Λ1+Λ2+B)Λ1 = 0. Moreover, B∩Λ2 = ∅ by G∩µ−1Λ2 ⊂ G∩π−1(t2) = ∅. Hence,

(KV + Λ1 + Λ2 +B)Λ2 = 0 (cf. Definition 4.1(iii)). As a consequence, KV + Λ1 +

Λ2 +B ∼∼∼ 0, since cl(Λ1) and cl(Λ2) generate N(V ) (cf. Lemma 4.4(1)). Therefore,

(V,Λ1+Λ2+B) is a half-toric surface by Proposition 4.7. Thus, Theorem 4.10 has

been proved. �

4.4. Structure of an ordinary VB-surface. We shall introduce two subclasses of

VB-surfaces: ordinary VB-surfaces and extraordinary VB-surfaces in Definition 4.18

below. Then we shall prove in Theorem 4.21 that any ordinary VB-surface becomes

a half-toric surface by adding a prime divisor: This is an analogy of Theorem 4.10,

and Proposition 4.19 below is considered as a result on the converse direction.

As an application of Theorems 4.10 and 4.21, we shall prove Theorem 4.23 on

endomorphisms concerning (R3) in the introduction. We begin with a setup for

VB-surfaces.

Definition 4.16. Let (V,Λ1,Λ2) be a VB-surface and let ν : Y → V be the standard

partial resolution of the singularity at the second external singular locus Σ2 with

respect to the log-canonical pair (V,Λ2) in the sense of [19, Def. 4.27, Exam. 4.28].

Note that Σ2 consists of one point at which (V,Λ1 + Λ2) is not 1-log-terminal (cf.

Lemma 4.4(6b), Definition 4.5(3)). We define S := ν−1(Λ1 + Λ2), E := ν−1Σ2,

and define ΛY,i as the proper transform of Λi in Y for i = 1, 2. Then S is a linear

chain of rational curves expressed as ΛY,1 + ΛY,2 + E, and ν∗Λ1 = ΛY,1. We set

C to be the end component of the linear chain E not intersecting ΛY,2 and set

ΣY := E ∩ Sing Y .
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Remark 4.17. By the definition of standard partial resolution, ΣY consists of two

A1-singular points contained in C. In particular, KY and 2C are Cartier along E.

Moreover,

(IV-4) KY + S = ν∗(KV + Λ1 + Λ2).

Definition 4.18. A VB-surface (V,Λ1,Λ2) is said to be ordinary if any negative

curve on Y is contained in S. If not, it is said to be extraordinary.

Proposition 4.19. Let (V,Λ + B) be a half-toric surface for a reduced connected

divisor Λ and a prime divisor B 6⊂ Λ. Assume that ρ(V ) = 2 and B2 > 0. Then

(V,Λ1,Λ2) is a V-surface for the prime components Λ1 and Λ2 of Λ. Moreover,

(V,Λ1,Λ2) is either a VA-surface or an ordinary VB-surface.

Proof. Since (V,Λ+B) is log-canonical (cf. [18, Thm. 1.7(1)]), the pair (V,Λ) is so.

Now, Λ +B is a linear chain of rational curves with n(Λ +B) = ρ(V ) + 1 = 3 (cf.

[18, Thm. 1.7(1)]). Hence, Λ is a linear chain consisting of two prime components,

and B is an end component of Λ+B. Let Λ2 be the other end component of Λ+B

and let Λ1 be the non-end component of Λ + B. Then Λ = Λ1 + Λ2, Λ1 ∩ B 6= ∅,

and Λ2 ∩ B = ∅. Hence, (KV + Λ)Λ1 = −BΛ1 < 0 and (KV + Λ)Λ2 = −BΛ2 = 0

by 2(KV +Λ+B) ∼ 0 (cf. [18, Def. 7.1(i)]). By the Hodge index theorem, we have

Λ2
2 < 0 by BΛ2 = 0. The cone NE(V ) is fan-shaped by ρ(V ) = 2, and the numerical

class cl(Λ2) generates a ray of NE(V ). Since B2 > 0, cl(B) lies in the interior of

NE(V ). Hence, cl(Λ1) generates the other ray of NE(V ) by Lemma 4.2(2). As a

consequence, Λ2
1 ≤ 0. Therefore, (V,Λ1,Λ2) is a V-surface.

For the last assertion, we may assume that (V,Λ1,Λ2) is a VB-surface. For the

standard partial resolution ν : Y → V at Σ2, ν
∗B is the proper transform of B in

Y , and (Y, ν−1(Λ1 + Λ2) + ν∗B) is also a half-toric surface by [18, Lem. 7.4(2)],

since Λ2 ∩ B = ∅. Every negative curve on Y is contained in ν−1(Λ1 + Λ2) by

Lemma 4.2(1), since ν∗B is nef. Hence, the VB-surface (V,Λ1,Λ2) is ordinary.

Thus, we are done. �

Lemma 4.20. Let (V,Λ1,Λ2) be an ordinary VB-surface. For the standard partial

resolution ν : Y → V and divisors on Y introduced in Definition 4.16, let φ : Y →W

be the contraction morphism of ν−1(Λ2)−C = ΛY,2+E−C, and set C1 = φ(ΛY,1)

and C2 := φ(C). Then (W,C1, C2) is a VA-surface, and

(IV-5) KY + S = φ∗(KW + C1 + C2).

As a consequence, Λ2
1 < 0 for any ordinary VB-surface (V,Λ1,Λ2).

Proof. By construction, we have ρ(W ) = ρ(Y ) − n(µ−1Λ2) + 1 = ρ(V ) = 2.

By (IV-4) in Remark 4.17 and by Lemma 4.4(2), −(KY + S) is nef and big, and

in particular, −KY is big. Then NE(Y ) is a polyhedral cone generated by the

numerical classes of negative curves on Y by [20, Thm. 1.13], since ρ(Y ) ≥ 3.

Thus, NE(W ) = φ∗ NE(Y ) is generated by the numerical classes of C1 and C2, since

(V,Λ1,Λ2) is ordinary. In particular, C2
1 ≤ 0 and C2

2 ≤ 0. Here, we have C2
2 < 0

by Λ2
2 < 0, since φ−1(C2) = ν−1(Λ2) is negative definite. Now, (KY + S)Θ = 0

for any prime component Θ of µ−1Λ2 = ΘY,2 + E by (IV-4) in Remark 4.17 and
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by (KV + Λ1 + Λ2)Λ2 = 0 (cf. Definition 4.1(iii)). Hence, (IV-5) holds, and as a

consequence, (W,C1 + C2) is log-canonical. Moreover,

(KW + C1 + C2)C1 = (KY + S)ν∗Λ1 = (KV + Λ1 + Λ2)Λ1 < 0 and

(KW + C1 + C2)C2 = (KY + S)C = (KV + Λ1 + Λ2)ν∗C = 0

by (IV-4) and (IV-5). Therefore, (W,C1, C2) is a VA-surface. Now, ν
∗Λ1 is a prime

component of the reducible linear chain φ−1(C1) = S − C of rational curves, and

φ−1(C1) is negative semi-definite by C2
1 ≤ 0. Hence, Λ2

1 = (ν∗Λ1)
2 < 0. �

Theorem 4.21. For an ordinary VB-surface (V,Λ1,Λ2), there is a prime divisor

B such that (V,Λ1 + Λ2 +B) is a half-toric surface.

Proof. Applying Theorem 4.10 to the VA-surface (W,C1, C2) in Lemma 4.20, we

can find a prime divisor BW on W such that (W,C1 + C2 + BW ) is a half-toric

surface. Then (V,Λ1 + Λ2 + B) is also a half-toric surface for B = ν∗(φ
∗BW ). In

fact, we have BW ∩ C2 = ∅ by BWC2 = −(KW + C1 + C2)C2 = 0, and it implies

that φ and ν are isomorphisms along φ−1BW = ν−1B. Thus, the log-canonicity

of (V,Λ1 + Λ2 + B) is deduced from that of (W,C1 + C2 + BW ). Moreover, we

have 2(KY + S + φ∗BW ) ∼ 0 by 2(KW + C1 + C2 + BW ) ∼ 0 and by (IV-5) in

Lemma 4.20. Hence, 2(KV +Λ1+Λ2+B) ∼ 0, and (V,Λ1+Λ2+B) is a half-toric

surface by Proposition 4.7. �

Lemma 4.22. Let (V,Λ1,Λ2) be a VB-surface with a non-isomorphic surjective

endomorphism f : V → V such that Sf = Λ1 + Λ2. Then (V,Λ1,Λ2) is ordinary.

Proof. For the standard partial resolution ν : Y → V of singularities at Σ2, we

have an endomorphism fY of Y such that ν ◦ fY = f2V ◦ ν by [21, Prop. 5.9]. Here,

SfY = ν−1Sf = ν−1(Λ1 + Λ2) by [20, Lem. 3.15(3)]. Since SfY contains all the

negative curves on Y (cf. [20, Prop. 2.20(3)]), (V,Λ1,Λ2) is ordinary. �

Theorem 4.23. Let X be a normal projective surface admitting a non-isomorphic

surjective endomorphism f : X → X. Assume that ρ(X) ≥ 3 and KX + Sf is not

pseudo-effective. Then one of the following holds :

• (X,Sf +B) is a toric surface for a reduced divisor B such that 1 ≤ n(B) ≤

2;

• (X,Sf +B) is a half-toric surface for a prime divisor B, and B is an end

component of the linear chain Sf +B.

Proof. The pair (X,Sf ) is an L-surface by [21, Prop. 4.3]. Hence, X is rational,

−(KX + Sf ) is semi-ample, and Sf is a linear chain of rational curves by [21,

Thm. 4.5]. In particular, if (X,Sf + B) is a half-toric surface, then B is an end

component of Sf +B. We have known the following:

• If n(Sf ) 6= ρ(X) or if the union S♮
f of non-end components of Sf is not

negative definite, then (X,Sf +B) is a toric surface for a prime divisor B

by [21, Thm. 4.5].

• If −(KX +Sf ) is not big, then (X,Sf +B) is a toric surface or a half-toric

surface for a prime divisor B by [21, Cor. 4.6].
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• If (KX + Sf )C < 0 for two end components C of Sf , then (X,Sf +B) is a

toric surface for a reduced divisor B with 1 ≤ n(B) ≤ 2 by Theorem 3.13.

Therefore, we may assume that ρ(X) = n(Sf ), −(KX + Sf ) is big, and S♮
f is

negative definite. Moreover, for end components C1 and C2 of Sf , we may assume

that C2
1 < 0, (KX + Sf )C1 < 0, and (KX + Sf )C2 = 0 (cf. [21, Thm. 4.5(6)]).

Let σ : X → V be the contraction morphism of S♮
f and set Λ1 := σ(C1) and

Λ2 := σ(C2). We shall show that (V,Λ1,Λ2) is a VB-surface. Now, ρ(V ) = ρ(X)−

(n(Sf )− 2) = 2, and

KX + Sf = σ∗(KV + Λ1 + Λ2)

by σ∗Sf = Λ1 +Λ2 and by OX(KX + Sf )|S♮
f
≃ OS♮

f
(cf. [21, Thm. 4.5(7)]). Hence,

(V,Λ1 + Λ2) is log-canonical, −(KV + Λ1 + Λ2) is nef and big,

(KV +Λ1 +Λ2)Λ1 = (KX + Sf )C1 < 0, (KV +Λ1 +Λ2)Λ2 = (KX + Sf )C2 = 0,

and Λ2
2 < 0 by the Hodge index theorem. By [21, Thm. 4.5], NE(X) is a polyhedral

cone generated by numerical classes of prime components of Sf . Hence, NE(V ) is

generated by cl(Λ1) and cl(Λ2), and we have Λ2
1 ≤ 0. Therefore, (V,Λ1,Λ2) is a

V-surface (cf. Definition 4.1).

The endomorphism f descends to an endomorphism fV : V → V with SfV =

σ∗Sf = Λ1 + Λ2 by [20, Lems. 3.14 and 3.15(3)]. Hence, (V,Λ1,Λ2) is an VA-

surface or an ordinary VB-surface, by Lemma 4.22. There is a prime divisor BV

such that (V,Λ1 +Λ2 +BV ) is a half-toric surface by Theorems 4.10 and 4.21. For

the proper transform B of BV in X, (X,Sf +B) is also a half-toric surface by [18,

Prop. 7.5], since σ is an isomorphism over V \ Λ2 ⊃ B. Thus, we are done. �

4.5. Structure of an extraordinary VB-surface. We shall determine the struc-

ture of an extraordinary VB-surface in Theorem 4.29 below by using the notion of

(2n+ 1, 2)-blowings up defined as follows:

Definition 4.24. Let X be a non-singular surface and let C be a non-singular

curve on X with a point P ∈ C. For an integer n ≥ 0, a bimeromorphic morphism

µ : Y → X is called a (2n+1, 2)-blowing up at P with respect to (X,C), if it is the

blowing up along the following OX -ideal Jn, where m stands for the maximal ideal

at P :

• If n = 0, then m
2 ⊂ J0 6= m and OX(−C) + J0 = m;

• If n > 0, then

Jn = m
2n+1 +m

n+1OX(−C) +OX(−2C).

Example 4.25. We shall give an example of (2n+ 1, 2)-blowings up as a toric mor-

phism. Let X is the affine toric surface TN(σ) = SpecanC[σ∨ ∩M] ≃ C2 for a free

abelian group N = Ze1⊕Ze2 of rank 2 with a free basis (e1, e2) and for the standard

cone σ = R≥0e1 + R≥0e2 in NR = N ⊗ R, where M = Hom(N,Z) and σ∨ is the

dual cone of σ. Let (m1,m2) be the basis of M dual to (e1, e2), i.e., 〈mi, ej〉 = δi,j
for the canonical pairing 〈 , 〉 : M × N → Z. Then σ∨ = R≥0m1 + R≥0m2. For

i = 1, 2, let ti be the function on X corresponding to mi in the semi-group ring

C[σ∨ ∩M], and let Di be the prime divisor on X corresponding to the ray R≥0ei,
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which is a face of σ. Then (t1, t2) is a coordinate of X ≃ C2, and Di = {ti = 0}

for i = 1, 2.

We set vn := (2n+ 1)e1 + 2e2, and consider cones

σ1 = R≥0e1 + R≥0vn and σ2 = R≥0vn + R≥0e2

in NR. Then σ1 and σ2 give a subdivision of σ and the faces of σ1 and σ2 form a

fan △ of N. Let Y be the toric surface TN(△) = TN(σ1) ∪ TN(σ2) with a proper

birational toric morphism µ : Y → X.

For i = 1, 2, let Qi be the point of TN(σi) forming the 0-dimensional orbit of

the torus TN = SpecanC[M]. We have the following:

(1) (Y,Q1) is an A1-singularity;

(2) if n = 0, then Sing Y = {Q1};

(3) if n > 0, then Sing Y = {Q1, Q2}, and (Y,Q2) is a cyclic quotient singularity

of type (2n+ 1, 2).

These are shown by [23, Prop 1.24] applied to the affine toric surface TN(σ1) or

TN(σ2). In fact, (e1, ne1 + e2) is a basis of N and vn = e1 + 2(ne1 + e2), which

imply (1). Similarly, (e2, e1) is a basis of N and vn = 2e2 +(2n+1)e1, which imply

(3), since 2 < 2n + 1 when n > 0. When n = 0, (v0, e2) = (e1 + 2e2, e2) is a basis

of N, and hence, Q2 6∈ Sing Y . Thus, (2) holds.

Let Γ be the prime divisor on Y corresponding to the ray R≥0vn, which is a

unique µ-exceptional prime divisor. For i = 1, 2, let D′
i be the proper transform

of Di in Y , which corresponds to the ray R≥0ei ∈ △. Then D′
i ∩ Γ = {Qi}, and

by (1)–(3), we see that 2(2n + 1)Γ is Cartier and that D′
1Γ = 1/2 and D′

2Γ =

1/(2n+1). In particular, the µ-ample invertible sheaf OY (−2(2n+1)) is generated

by In := H0(Y,OY (−2(2n+1)Γ)) (cf. [4, §3.4]). Here, the ideal In ⊂ H0(Y,OY ) =

H0(X,OX) is generated by monomials ta1

1 t
a2

2 for a1, a2 ∈ Z≥0 such that

〈a1m1 + a2m2, vn〉 = (2n+ 1)a1 + 2a2 ≥ 2(2n+ 1).

Hence, In is generated by t21, t1t
n+1
2 , and t2n+1

2 . If n > 0, then

In = m
2n+1 +m

n+1OX(−D1) +OX(−2D1),

for the maximal ideal m at the origin. If n = 0, then I0 = m
2 + OX(−D2), and

we have m
2 ⊂ I0 6= m and I0 + OX(−D1) = m. Therefore, µ : Y → X is a

(2n+ 1, 2)-blowing up at the origin with respect to (X,D1).

Lemma 4.26. Let X be a non-singular surface and let C be a non-singular curve

on X with a point P ∈ C. Let µ : Y → X be a (2n + 1, 2)-blowing up at P with

respect to (X,C) for an integer n ≥ 0. Then Y is a normal surface, µ has a unique

exceptional divisor Γ isomorphic to P1, and the following hold on Sing Y :

(1) For the proper transform C ′ of C in Y , the intersection C ′ ∩ Γ consists of

one point Q1, in which (Y,Q1) is an A1-singularity and (Y,C ′) is 1-log-

terminal at Q1.

(2) If n = 0, then Sing Y = {Q1}. If n > 1, then Sing Y = {Q1, Q2} for a

point Q2 ∈ Γ \ {Q1}, and (Y,Q2) is a cyclic quotient singularity of type

(2n+ 1, 2).



61

Moreover, µ∗C = C ′ + (2n+ 1)Γ, C ′Γ = 1/2, and KY + C ′ = µ∗(KX + C) + Γ.

Proof. If n > 0, then Jn is defined only by m and OX(−C). If n = 0, then

J0 = m
2 + OX(−C†) for a non-singular curve C† defined locally on X such that

C+C† is normal crossing at P . By embedding an open neighborhood of P into C2,

we may assume that X = TN(σ), C = D1, and µ : Y → X is the toric morphism

TN(△) → TN(σ) in Example 4.25. We proceed the argument in Example 4.25.

Assertions (1) and (2), and the equalities C ′Γ = D′
1Γ = 1/2 have been shown in

Example 4.25. By considering principal divisors of functions t1 and t2, we have

µ∗D1 = 〈m1, e1〉D
′
1 + 〈m1, vn〉Γ = D′

1 + (2n+ 1)Γ,

µ∗D2 = 〈m2, e2〉D
′
2 + 〈m2, vn〉Γ = D′

2 + 2Γ

(cf. [4, §3.3, Lem.]). On the other hand, KY +D′
1+Γ+D′

2 = µ∗(KX+D1+D2) ∼ 0,

since µ is a toric morphism. Hence,

KY +D′
1 = µ∗(KX +D1) + µ∗D2 −D′

2 − Γ = µ∗(KX +D1) + Γ.

Since C is identified with D1, the required properties are all verified. �

Proposition 4.27. Let X be a non-singular surface and let C be a non-singular

curve on X with a point P ∈ C. Let µ : Y → X be a bimeromorphic morphism

from a normal surface Y with a unique µ-exceptional prime divisor Γ such that, for

the proper transform C ′ of C in Y ,

• C ′ ∩ Γ consists of one point, at which Y has an A1-singularity, and

• ΓC ′ = 1/2.

Then µ is a (2n+1, 2)-blowing up at P with respect to (X,C) for an integer n ≥ 0.

Proof. We set Q1 to be the intersection point of C ′ and Γ. Let β : Ŷ → Y be

the blowing up at Q1. Then Ŷ is non-singular along the exceptional (−2)-curve

Θ := β−1Q1, and we have Ĉ ∩ Γ̂ = ∅ and ĈΘ = Γ̂Θ = 1 for proper transforms Ĉ

and Γ̂ of C ′ and Γ in Ŷ , respectively. In particular, Sing Ŷ ⊂ Γ̂. Let ν : Ỹ → Ŷ be

the minimal resolution of singularities and let C̃, Θ̃, and Γ̃ be proper transforms

in Ỹ of Ĉ, Θ, and Γ̂, respectively. Then the composite β ◦ ν : Ỹ → Y is the

minimal resolution of singularities, the further composite φ := µ ◦ β ◦ ν : Ỹ → X is

a bimeromorphic morphism of non-singular surfaces, and

φ−1(P ) = ν−1(β−1Γ) = Θ̃ + Γ̃ + E

for a ν-exceptional reduced divisor E. Here, E = 0 if and only if ν is an iso-

morphism. By construction, Γ̃ is a unique (−1)-curve in φ−1(P ). Let γ : Ỹ → Y

be the blowdown of Γ̃. Then we have a bimeromorphic morphism φ̄ : Y → X of

non-singular surfaces such that φ = φ̄ ◦ γ. Now, we have a commutative diagram:

Ỹ
ν

//

γ

��

φ

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖ Ŷ

β
// Y

µ

��

Y
φ̄

// X.
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The image γ(Θ̃) in Y is a unique (−1)-curve in (φ̄)−1(P ), and it intersects the

proper transform γ(C̃) of C in Y . By Lemma 2.4, γ∗(Θ̃ + E) is a linear chain of

rational curves with γ(Θ̃) as an end component, and any prime component of γ∗E

is a (−2)-curve when E 6= 0. Hence, if E 6= 0, then E has a prime decomposition∑n
i=1Ei for some integer n ≥ 0 such that

•
Θ̃

−2
•
Γ̃

−1
•
E1

−3
•
E2

−2
· · · •

En

−2

is a dual graph of φ−1(P ), where −1, −2, and −3 indicate self-intersection numbers.

Note that if n = 1, then E = E1 is a (−3)-curve. Note also that if n = 0, then the

linear chain φ−1(P ) is the union of the (−2)-curve Θ̃ and the (−1)-curve Γ̃.

We shall prove the assertion by toric descriptions of bimeromorphic morphisms φ,

φ̄, and µ. Let N = Ze1⊕Ze2, σ = R≥0e1+R≥0e2, vn, and △ be as in Example 4.25.

We set ui = ie1 + e2 for i ≥ 0, and consider cones

σ(i) = R≥0ui + R≥0ui+1, σn+1,∞ = R≥0un+1 + R≥0e1,

σ(n)1 = R≥0un + R≥0vn, σ(n)2 = R≥0vn + R≥0un+1,

where vn = un + un+1 = (2n + 1)e1 + 2e2. Then cones σ(i) for 0 ≤ i ≤ n and

σn+1,∞ give a subdivision of σ, and cones σ(n)1 and σ(n)2 give a subdivision of

σ(n). Let △ be the fan of N consisting of faces of cones σ(i) for 0 ≤ i ≤ n and

σn+1,∞. Let △̃ be the fan of N consisting of faces of cones σ(i) for 0 ≤ i ≤ n− 1,

σ(n)1, σ(n)2, and σn+1,∞. Then we have a commutative diagram

TN(△̃) −−−−→ TN(△)
y

y

TN(△) −−−−→ TN(σ)

of associated proper birational toric morphisms. By replacing X with an open

neighborhood of P , we may assume that X is an open subset of TN(σ) in which C =

D1|X and {P} = D1∩D2 for the boundary prime divisors D1 and D2 corresponding

to rays R≥0e1 and R≥0e2, respectively. Then φ̄ : Y → X is isomorphic to the base

change of TN(△) → TN(σ) by X →֒ TN(σ). In fact, φ̄ is a succession of blowings

up at points of the proper transforms of C lying over P .

For describing γ, we first assume that n = 0. Then φ̄ is just the blowing up

at P . Let P be the center of the blowing up γ : Ŷ → Y , which is contained in

γ(Θ̃) \ γ(C̃). For the open immersion X →֒ TN(σ) and for the prime divisor D2

corresponding to the ray R≥0e2, we may assume that P is just the intersection

point of proper transforms of C = D1|X and D2|X in Y . Then γ is isomorphic to

the base change of TN(△̃) → TN(△) by the open immersion Y →֒ TN(△). Next,

assume that n > 0. Then the center of γ : Ỹ → Y is just the intersection point of

γ(Θ̃) and γ(E1). By the open immersion Y →֒ TN(△), this point corresponds to

the cone σ(n) = σ(n)1 ∪ σn(2) ∈ △. Thus, γ is isomorphic to the base change of

TN(△̃) → TN(△) by the open immersion Y →֒ TN(△).
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By the description of γ, we see that φ is isomorphic to the base change of

TN(△̃) → TN(σ) by the open immersion X →֒ TN(σ). The morphism β ◦ ν is just

the contraction morphism of all the prime components of φ−1(P ) except Γ̃. Thus,

µ : Y → X is also isomorphic to base change of TN(△) → TN(σ) by X →֒ TN(σ).

Hence, we have toric descriptions of µ, φ, and φ̄. As a consequence, µ is a (2n+1, 2)-

blowing up at P by Example 4.25. �

By the notion of (2n+ 1, 2)-blowing up, we shall construct a VB-surface from a

certain projective toric surface.

Lemma 4.28. Let (X,D) be a projective toric surface of Picard number 2 with a

prime decomposition D = A1 +A2 + C1 + C2 of the boundary divisor D such that

(i) A1 ∩ C1 = A2 ∩ C2 = ∅,

(ii) C1C2 = 1/2,

(iii) A2
1 ≤ 0 and A2

2 < 0.

In particular, D is a cyclic chain of rational curves with

•A1

•C2

• A2

• C1

as a dual graph. Let n be a non-negative integer satisfying

(IV-6) −A2
2(n+ 1/2− C2

1 ) > (A2C1)
2.

For a point P ∈ C1 \ (A2 + E2), let µ : Y → X be a birational morphism such that

• µ is an isomorphism over X \ {P}

• µ is a (2n + 1, 2)-blowing up at P with respect to (X,C1) over an open

neighborhood of P .

Then the proper transform C ′
1 of C1 in Y is negative definite, and one can consider

the contraction morphism Y → V of C ′
1. Let Λi be the proper transform of Ai in

V for i = 1, 2. Then (V,Λ1,Λ2) is an extraordinary VB-surface.

Proof. By Lemma 4.26, µ∗C1 = C ′
1+(2n+1)Γ and C ′

1Γ = 1/2 for the µ-exceptional

prime divisor Γ. Hence, (C ′
1)

2 = C2
1 − (2n + 1)/2 < 0 by (iii) and (IV-6). Let

ζ : Y → V be the contraction morphism of C ′
1. Then ρ(V ) = ρ(Y )−1 = ρ(X) = 2,

and µ∗Ai is the proper transform of Λi in Y for i = 1, 2. Here, ζ∗Λ1 = µ∗A1, and

we have Λ2
1 = A2

1 ≤ 0 by (iii). The divisor ζ−1Λ2 = µ∗A2 + C ′
1 is negative definite

by (iii) and (IV-6), since (µ∗A2)
2 = A2

2 < 0, (C ′
1)

2 < 0, and

(µ∗A2)
2(C ′

1)
2 − ((µ∗A2)C

′
1)

2 = A2
2(C

2
1 − (2n+ 1)/2)− (A2C1)

2 > 0.

In particular, Λ2
2 < 0. Since KX +D ∼ 0, we have

KY + µ∗A1 + µ∗A2 + C ′
1 = µ∗(KX +A1 +A2 + C1) + Γ ∼ Γ− µ∗C2

by Lemma 4.26. Moreover, since ΓC ′
1 = (µ∗C2)C

′
1 = C1C2 = 1/2 (cf. (ii)), we have

(IV-7) KY + µ∗A1 + µ∗A2 + C ′
1 = ζ∗(KV + Λ1 + Λ2).
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In particular, (V,Λ1 + Λ2) is log-canonical, since (Y, µ∗A1 + µ∗A2 + C ′
1) is log-

canonical (cf. Lemma 4.26). Moreover, for i = 1, 2, we have

(KV + Λ1 + Λ2)Λi = (KY + µ∗A1 + µ∗A2 + C ′
1)µ

∗Ai

= (KX +A1 +A2 + C1)Ai = −C2Ai.

Hence, (KV +Λ1+Λ2)Λ1 ≤ 0 and (KV +Λ1+Λ2)Λ2 = 0 by (i) and (iii). Therefore,

(V,Λ1,Λ2) is a VB-surface.

We shall show that (V,Λ1,Λ2) is extraordinary. Note that

C ′
1 ∩ Sing Y ⊂ (C ′

1 ∩ µ
∗A2) ∪ (C ′

1 ∩ µ
∗C2) ∪ (C ′

1 ∩ Γ),

where C ′
1 ∩ µ

∗C2 (resp. C ′
1 ∩ Γ) consists of an A1-singular point by (ii) (resp. by

Lemma 4.26(1)). Let Ỹ → Y be the minimal resolution of singularities at the

intersection point of C ′
1 and µ∗A2. Then the composite Ỹ → V is just the standard

partial resolution of the singularity at the second external singular locus Σ2 of

(V,Λ1,Λ2), by (IV-7). The proper transform of Γ in Ỹ is a negative curve not

contained in the inverse image of Λ1 + Λ2 by Ỹ → V . Therefore, (V,Λ1,Λ2) is

extraordinary. �

Theorem 4.29. Let (V,Λ1,Λ2) be an extraordinary VB-surface. Then it is obtained

by the method in Lemma 4.28 from a projective toric surface of Picard number 2

and a non-negative integer satisfying conditions (i)–(iii) and the inequality (IV-6)

in Lemma 4.28.

Proof. Let ν : Y → V be the standard partial resolution of the second external

singular locus Σ2 of (V,Λ1,Λ2). Then

(IV-8) KY + S = ν∗(KV + Λ1 + Λ2)

for S := ν−1(Λ1+Λ2). Let ΛY,i be the proper transform of Λi in Y for i = 1, 2, and

set E := ν−1Σ2. Then E is a linear chain of rational curves with S = ΛY,1+ΛY,2+E,

and ΣY := E ∩ Sing Y consists of two A1-singular points, which are contained

C∩Ereg for the end component C of E not intersecting ΛY,2. By assumption, there

is a negative curve Γ on Y not contained in ν−1(Λ1 + Λ2). The image ν(Γ) is not

a point nor a negative curve by Lemma 4.4(1). By the Hodge index theorem and

by (IV-8) and Lemma 4.4(2), we have

(IV-9) (KY + S)Γ = (KV + Λ1 + Λ2)ν(Γ) < 0.

Then Γ ∩ S = {P} for a point P ∈ E by [18, Lem. 2.18] and by Σ2 ⊂ ν(Γ). Let

γ : Y → X be the contraction morphism of Γ, and set SX := γ(S), CX := γ(C),

and PX := γ(P ). Then (X,SX) is log-canonical and is 1-log-terminal at PX by

(IV-9) and [19, Lem. 2.4]. In particular, PX ∈ (SX)reg, and hence, P ∈ Sreg. By

(IV-8), there is a positive rational number α such that

(IV-10) KY + S = γ∗(KX + SX) + αΓ.

Note that −(KX + SX) is nef and big by (IV-8) and Lemma 4.4(2).

Let ∆ be the unique prime component of S containing P . Then (KX+SX)γ(∆) <

0 by (IV-10), and γ(∆) is an end component of the linear chain SX of rational curves
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by [18, Prop. 3.29]. Therefore, ∆ = C, and P ∈ C ∩ Ereg. Let Q be a point in

ΣY \ Γ = ΣY \ {P}. Then QX := γ(Q) is an A1-singular point of X, which is

contained in the end component CX of SX . Since (KX + SX)CX < 0, we have

{QX} = CX ∩ (SX)reg ∩ SingX and (KX + SX)CX = −1/2 by [18, Prop. 3.29(F)].

Hence, PX ∈ Xreg and we have

(IV-11) αCΓ = 1/2

by (IV-10) and by C(KY + S) = Cν∗(KV + Λ1 + Λ2) = 0 (cf. (IV-8)). Since 2C

is Cartier along C ∩ Ereg, we have α−1 = 2CΓ ∈ Z. On the other hand, there is a

positive integer d such that γ∗(SX) = S + dΓ, since SX is Cartier at PX . Then

KY = γ∗KX + (α+ d)Γ

by (IV-10). Here, α + d ∈ Z, since KX is Cartier at PX . Therefore, α = 1 and

CΓ = SΓ = 1/2. As a consequence, {P,Q} = ΣY .

By Proposition 4.27, γ : Y → X is a (2n + 1, 2)-blowing up at PX with respect

to (X,SX) for an integer n ≥ 0. Now, ρ(Y ) = ρ(V ) + n(E) = n(S), and ρ(X) =

ρ(Y ) − 1 = n(S) − 1 = n(SX) − 1. Since (X,SX) is log-canonical and since

−(KX +SX) is nef and big, there is a prime divisor C†
X such that (X,SX +C†

X) is

a toric surface, by [18, Thm. 1.3].

We set ΛX,i := γ(ΛY,i) for i = 1, 2, and set EX := γ∗E. Then SX = ΛX,1 +

ΛX,2 + EX and C†
X ∼ −(KX + SX). We shall show that

(a) Λ2
X,1 ≤ 0, ΛX,1 ∩ EX = ∅, and ΛX,1 ∩ ΛX,2 6= ∅;

(b) ΛX,1 ∩ C
†
X 6= ∅ and ΛX,2 ∩ C

†
X = ∅;

(c) CXC
†
X = 1/2 and CX ∩ C†

X = {QX};

(d) ΛX,2 + EX − CX is negative definite.

We have (a), since Λ2
1 ≤ 0 and Λ1 ∩ Λ2 6= ∅ and since ν and γ are isomorphisms

around ΛY,1. By (IV-8) and (IV-10), we have

C†
XΛX,i = −(KV + Λ1 + Λ2)Λi

for i = 1, 2. This shows (b) by Definition 4.1(iii). Moreover,

C†
XCX = (Γ− (KY + SY ))C = 1/2

by (IV-10) with α = 1. This implies (c), since {QX} = CX ∩ (SX)reg ∩ SingX. We

have (d) by (Λ2)
2 < 0 and by

γ−1(ΛX,2 + EX − CX) = ΛY,2 + E − C = ν−1Λ2 − C.

Let Y → Y (resp. X → X) be the contraction morphism of E − C (resp.

EX − CX). Then ν and γ induce birational morphisms ν̄ : Y → V and γ̄ : Y → X

with a commutative diagram

Y

ν

&&

γ

��

// Y
ν̄

//

γ̄

��

V

X // X.
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Let Ai be the proper transform of Λi in X for i = 1, 2, and let C1 (resp. C2) be

the images of C (resp. C†) under Y → X → X. Then (X,A1 + A2 + C1 + C2)

is a toric surface of Picard number 2 satisfying conditions (i)–(iii) of Lemma 4.28,

by (a)–(d) above. The integer n satisfies (IV-6) in Lemma 4.28, since (Λ2)
2 < 0

and since ν−1Λ2 is the union of the proper transforms of A2 and C1 in Y . By

construction, γ̄ is a (2n + 1, 2)-blowing up and ν̄ is the contraction morphism of

the proper transform of C1. Therefore, (V,Λ1,Λ2) is obtained by the method of

Lemma 4.28 from (X,A1 +A2 + C1 + C2). Thus, we are done. �

5. The case of Picard number 2

We shall determine the structure of a normal projective surface X admitting a

non-isomorphic surjective endomorphism f such that ρ(X) = 2 and KX +Sf is not

pseudo-effective. We consider the following three cases for X:

(I) X is irrational or −KX is not big;

(II) X is rational, −KX is big, and X contains a negative curve;

(III) X is rational, −KX is big, and X contains no negative curve.

Note that (R2) in the introduction is divided into (II) and (III). The cases (I), (II),

and (III) are treated separately in Sections 5.1, 5.2, and 5.3 below. Theorem 5.1 in

Section 5.1 is a structure theorem for (I). Theorem 5.6 in Section 5.2 is a structure

theorem for (II) and (III). We shall prove another structure theorem for (III) as

Theorem 5.17 in Section 5.3, in which we do not assume that KX + Sf is not

pseudo-effective. Theorem 5.17 implies Theorem 5.6 in the case (III).

5.1. Case (I). We shall prove:

Theorem 5.1. Let X be a normal projective surface such that ρ(X) = 2. Assume

either that X is irrational or that −KX is not big. Then there is a non-isomorphic

surjective endomorphism f of X such that KX + Sf is not pseudo-effective if and

only if there is a finite Galois cover ν : V → X étale in codimension 1 from a

normal projective surface V satisfying one of the following conditions :

(1) V ≃ P1 × T for a non-singular projective curve T of genus > 0;

(2) V is a P1-bundle over an elliptic curve associated with an indecomposable

locally free sheaf of rank 2 degree 0;

(3) V is a P1-bundle over an elliptic curve having a negative section.

Moreover, for a non-isomorphic surjective endomorphism f : X → X with KX +Sf

being not pseudo-effective, there exist an endomorphism fV of V and a positive

integer k such that ν ◦ fV = fk ◦ ν.

Note that Theorem 5.1 is not deduced from [20, Thm. 4.16] and [21, Thm. 4.7].

After showing preliminary results, which are similar to some results in [21], we shall

prove Theorem 5.1 at the end of Section 5.1. We begin with:

Lemma 5.2. Let G be a finite group acting on P1. Then there is a non-isomorphic

surjective endomorphism f : P1 → P1 such that f is G-equivariant and degSf ≤ 1.
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Proof. We may assume that G is a subgroup of SL(2,C). We first consider the case

where G is a cyclic group or a dihedral group, i.e., G ≃ Z/mZ or G ≃ Z/m⋊Z/2Z

for an integer m ≥ 2. For a homogeneous coordinate (x, y) of P1, we may assume

that a generator of Z/mZ acts as (x : y) 7→ (ζx : ζ−1
y) for a primitive m-th root ζ

of unity and that when G is dihedral, a generator of Z/2Z acts as (x : y) 7→ (−y : x).

Let f : P1 → P1 be an endomorphism defined by

(x : y) 7→ (x2m+1 + xy
2m : x2my+ y

2m+1).

Then f is G-equivariant of degree 2m+1. If the ramification index of f at a point

is 2m+ 1, then

a(x2m+1 + xy
2m) + b(x2my+ y

2m+1) = (αx+ βy)2m+1

for some (a, b), (α, β) ∈ C2 \ {(0, 0)}, and by comparing coefficients, we have

a = α2m+1 = (2m+ 1)αβ2m and b = β2m+1 = (2m+ 1)α2mβ :

This is impossible. This implies that Sf = 0. In fact, if P ∈ Sf , then f
∗(f(P )) =

(deg f)P . Thus, the assertion holds if G is cyclic or dihedral.

It suffices to prove that G is cyclic or dihedral if there is a G-equivariant endo-

morphism f satisfying degSf ≥ 2. Here, degSf = 2 by the equality KX + Sf =

f∗(KX +Sf )+∆f (cf. [20, Lem. 2.17]). Thus, f∗(f(P )) = (deg f)P for two points

P ∈ Sf . By composing f with an automorphism, we may assume that f is given

by (x : y) 7→ (xn : yn) for an integer n > 1, where Sf consists of (1 : 0) and (0 : 1). If

a matrix

σ =

(
a b

c d

)

in SL(2,C) is contained in G, then σ ◦ f = f ◦ σ implies that

(axn + byn : cxn + dyn) = ((ax+ by)n : (cx+ dy)n),

or equivalently,

(axn + byn)(cx+ dy)n = (ax+ by)n(cxn + dyn)

as a homogeneous polynomial: By comparing coefficients of monomials x2n, x2n−1
y,

xy
2n−1, and y

2n, we have

acn = anc, nacn−1d = nan−1bc, nbcdn−1 = nabn−1d, bdn = bnd.

If ac 6= 0, then an−1 = cn−1 and ad = bc, a contradiction. If bd 6= 0, then

bn−1 = dn−1 and ad = bc, a contradiction. Hence, ac = bd = 0, i.e.,

σ =

(
a 0

0 a−1

)
or

(
0 b

−b−1 0

)

for some a, b ∈ C \ {0}. This implies that G is cyclic or dihedral. Thus, we are

done. �

Corollary 5.3. Let X be a normal projective surface with a finite Galois cover

V → X étale in codimension 1 such that V ≃ P1 × T for a non-singular projective

curve T and that the Galois group Gal(V/T ) preserves the second projection V → T .
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Then there is a non-isomorphic surjective endomorphism f of X such that KX+Sf

is not pseudo-effective.

Proof. It is enough to construct a non-isomorphic surjective endomorphism g of V

such that g is equivariant under G = Gal(V/X) and that KV + Sg is not pseudo-

effective. In fact, g induces a non-isomorphic surjective endomorphism f of X such

that ν ◦ g = f ◦ ν by the G-equivariance, where ν : V → X is the Galois cover,

and we have deg f = deg g > 1 and Sg = ν∗Sf (cf. [20, Lem. 2.19(3)]). Moreover,

KV + Sg = ν∗(KX + Sf ), since ν is étale in codimension 1. Thus, KX + Sf is not

pseudo-effective.

The action of G on V = P1 × T is diagonal by [21, Lem. 2.3]. By Lemma 5.2,

there is a non-isomorphic surjective endomorphism h : P1 → P1 such that h is

equivariant under the action of G on P1 and that degSh ≤ 1. We set g := h× idT
as an endomorphism of V . Then g is G-equivariant, deg g = deg h > 1, and

Sg = p∗1(Sh) for the first projection p1 : V → P1 (cf. [20, Lem. 2.19(2)]). Moreover,

(KV + Sg)F = deg(KP1 + Sh) < 0 for any fiber F of the second projection V → T .

Thus, KV + Sg is not pseudo-effective, and we are done. �

Lemma 5.4. Let T be an elliptic curve and consider it as a complex torus by fixing

an origin. Let µm : T → T be the multiplication map by an integer m > 1. Then:

(1) For any surjective endomorphism h : T → T , there is a surjective endomor-

phism h′ : T → T such that µm ◦ h′ = h ◦ µm.

(2) If a finite group acts on T , then there is a finite group G′ acting on T ′ with

a surjective homomorphism ρ : G′ → G such that µm is equivariant under

actions of G′ and G with respect to ρ and that the kernel of ρ is isomorphic

to the Galois group of µm.

(3) Let π : V → T be a P1-bundle and let π′ : V ′ → T be the base change of π

by µm : T → T .

(a) If f is a surjective endomorphism of V , then there is a surjective en-

domorphism f ′ of V ′ such that p ◦ f ′ = f ◦ p for the first projection

p : V ′ = V ×T T → V .

(b) If a finite group G acts on V , then there is a finite group G′ acting

on V ′ with a surjective homomorphism ρ : G′ → G such that V ′ → V

is equivariant under actions of G′ and G with respect to ρ and that

G′\V ′ ≃ G\V .

Proof. (1): The endomorphism h is expressed as the composite tr(b)◦ϕ of a surjec-

tive group homomorphism ϕ : T → T and the translation morphism tr(b) by b ∈ T ,

which is given by t 7→ t+ b for t ∈ T . We take a point b′ ∈ T such that µm(b′) = b.

Then µm ◦ h′ = h ◦ µm for the endomorphism h′ = tr(b′) ◦ ϕ : T ′ → T ′.

(2): Let G′ be the set of pairs (φ, σ) of an automorphism φ of T and an element

σ ∈ G such that µm ◦ φ = Lσ ◦ µm, where Lσ stands for the automorphism of T

defined as the left action of σ. Then G′ is a group by composition (φ1, σ1)(φ2, σ2) =

(φ1◦φ2, σ1σ2), and we have a group homomorphism ρ : G′ → G defined by ρ(φ, σ) =

σ. We have another group homomorphism G′ → Aut(T ′) by (φ, σ) 7→ φ. In

particular, G′ acts on T ′, and µm is equivariant under the actions of G′ and G with
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respect to ρ. By (1), ρ is surjective, and the kernel of ρ is identified with the Galois

group of µm in Aut(T ′).

(3a): The endomorphism f induces a surjective endomorphism h of T such

that π ◦ f = h ◦ π by a universal property of Albanese morphism. We have a

surjective endomorphism h′ of T such that µm ◦ h′ = h ◦ µm by (1). Hence,

f ×h′ : V ×T → V ×T induces a surjective endomorphism f ′ of V ′ = V ×T T such

that p ◦ f ′ = f ◦ p (cf. [20, Lem. 4.1]).

(3b): By the universality of Albanese morphism, the finite group G acts on T

so that π is G-equivariant. By (2), we have a finite group G′ acting on T with a

surjective homomorphism ρ : G′ → G such that µm is equivariant under actions of

G′ and G with respect to ρ. Then G′ acts on V × T diagonally so that the action

on the first factor V is given by that of G through ρ and that the action on the

second factor T is given as that of G′. It induces an action of G′ on V ′ = V ×T T

such that p : V ′ → V is equivariant under actions of G′ and G with respect to ρ.

By (2), we may assume that the kernel of ρ is identified with the Galois group of

p. Hence, G′\V ′ ≃ G\V . Thus, we are done. �

Lemma 5.5. Let X be a P1-bundle over an elliptic curve T associated with OT ⊕L

for an invertible sheaf L such that degL = 0 but L is not a torsion element of

Pic(T ). Let Θ1 and Θ2 be sections of X → T corresponding to projections OT⊕L →

OT and OT ⊕ L → L, respectively. Then:

(1) If a prime divisor Γ on X dominates T and satisfies Γ2 = 0, then Γ = Θ1

or Θ2.

(2) If an endomorphism f : X → X is surjective, then (f−1Θ1, f
−1Θ2) =

(Θ1,Θ2) or (f−1Θ1, f
−1Θ2) = (Θ2,Θ1).

(3) If f : X → X is a non-isomorphic surjective endomorphism, then Sf =

Θ1 +Θ2 and KX + Sf ∼ 0.

Proof. We have Θ2
1 = Θ2

2 = 0 and OX(Θ2) ≃ OX(Θ1) ⊗ π∗L for the structure

morphism π : X → T . The pseudo-effective cone NE(X) of X is generated by the

numerical class of a fiber of π and by cl(Θ1) = cl(Θ2). In particular, X has no

negative curve.

(1): There exist a positive integer m and a divisor e on T such that Γ ∼ mΘ2 +

π∗
e, and we have deg e = 0 by

0 = Γ2 = m2Θ2
2 + 2mΘ2π

∗
e = 2mdeg e.

Hence, ΓΘ1 = ΓΘ2 = 0. Assume that Γ 6= Θ1. Then Γ ∩ Θ1 = ∅, and e ∼ 0 by

Γ|Θ1
∼ e. Hence, Γ ∼ mΘ2, and moreover, Γ = Θ2, since O(Γ|Θ2

) ≃ L⊗m has no

non-zero global section. Therefore, Γ = Θ1 or Θ2.

(2): Let Γ be a prime component of f−1Θi for i = 1 or 2. Then Γ2 = 0, since

f−1Θi is not big and Γ2 ≥ 0. Thus, Γ = Θ1 or Θ2 by (1). This proves (2).

(3): By (2), Θ1 + Θ2 is f -completely invariant and KX + Θ1 + Θ2 ∼ 0. Thus,

Sf ≤ Θ1 + Θ2 by [20, Thm. 2.24]. Since Θ1
∼∼∼ Θ2, there is a positive integer d

such that (f∗Θ1, f
∗Θ2) = (dΘ1, dΘ2) or (f

∗Θ1, f
∗Θ2) = (dΘ2, dΘ1). If d > 1, then

Sf = Θ1 +Θ2 and KX + Sf ∼ 0. Therefore, it is enough to prove that d > 1.
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Let h : T → T be the surjective endomorphism induced by f , which satisfies

π ◦ f = h ◦ π. Let πh : Xh → T be the base change of π by h. Then Xh ≃

PT (OT ⊕ h∗L), and we have a commutative diagram

X
φ

//

f

&&

π
  ❇

❇❇
❇❇

❇❇
❇ Xh

πh

��

ν
// X

π

��

T
h

// T.

Here, d > 1 if and only if deg φ > 1. Assume that deg φ = 1. Then deg f = deg ν =

deg h > 1, and the pullback homomorphism h∗ : Pic0(T ) → Pic0(T ) is a surjection

whose kernel is a finite group of order deg h. In particular, h∗L is also not a torsion

element of Pic0(T ). The inverse image h∗L is not isomorphic to L nor L⊗−1. In fact,

if h∗L ≃ L, then L is contained in the kernel of h∗− id : Pic0(T ) → Pic0(T ), which

is also a finite group (cf. [17, II, §7, Cor. 2]). This is a contradiction, since L is not a

torsion element. Similarly, we have a contradiction by assuming that h∗L ≃ L⊗−1.

Therefore, Xh 6≃ X as a P1-bundle over T . This contradicts deg φ = 1. Thus,

d > 1, and we are done. �

Now, we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. First, we shall prove the “only if” part and the last assertion.

Let X be a normal projective surface such that ρ(X) = 2 and that X is irrational

or −KX is not big. Let f be a non-isomorphic surjective endomorphism of X such

that KX + Sf is not pseudo-effective. Then KX is also not pseudo-effective. Thus,

we can apply [20, Thm. 4.16] for irrational X, and can apply [21, Thm. 4.7] for X

with non-big −KX . Consequently, there is a finite Galois cover ν : V → X étale in

codimension 1 with an endomorphism fV of X such that ν ◦ fV = fk ◦ ν for some

k > 0 and that either

• V ≃ P1 × T for an irrational curve T , i.e., Theorem 5.1(1) holds, or

• V is a P1-bundle over an elliptic curve T .

Note that, in [20, Thm. 4.16(1)], we can take the finite morphism ν : P1 × T → X

as a Galois cover by the proof there which uses [20, Thm. 4.9]. Thus, for the proof

of “only if” part and the last assertion, we may assume that V is a non-trivial

P1-bundle over an elliptic curve T . By [21, Fact 2.23], we may assume that one of

the following holds for V :

(A) V = PT (E) for a stable locally free sheaf E of rank 2 degree 1;

(B) V = PT (OT ⊕ L) for an invertible sheaf L of degree 0.

If (A) holds, then the base change V ′ = V ×T T → T of V → T by the multiplication

map µ2 : T → T by 2 is a trivial P1-bundle by [21, Fact 2.23(C)], where we consider

T as a complex Lie group by fixing an origin. Here, the endomorphism fV lifts to an

endomorphism of V ′ and the composite V ′ → V → X is Galois by Lemma 5.4(3).

Thus, in this case, Theorem 5.1(1) holds for V ′ → X as well as the last assertion

of Theorem 5.1. If (B) holds, then L is a torsion element by Lemma 5.5(3), and
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hence, µ∗
mL ≃ OT for the multiplication map µm : T → T by a certain positive

integer m with respect to a complex Lie group structure of T . In particular, the

base change V ′ → T of V → T by µm is a trivial P1-bundle. Thus, in this case,

Theorem 5.1(1) holds for V ′ → X as well as the last assertion of Theorem 5.1, by

Lemma 5.4(3), as in the same argument as above. This proves the “only if” part

and the last assertion of Theorem 5.1.

Next, we shall prove the “if” part. We have already proved it in Corollary 5.3

in the case where Theorem 5.1(1) is satisfied. As in the argument in the proof of

Corollary 5.3, it suffices to construct a non-isomorphic surjective endomorphism g

of V such that g is equivariant under the action of the Galois group of ν : V →

X and that KV + Sg is not pseudo-effective. If Theorem 5.1(3) holds, then the

endomorphism g in [21, Cor. 2.27] is an expected one. In fact, Sg is just the

negative section and KV + Sg is not pseudo-effective. If Theorem 5.1(2) holds,

then we have a G-equivariant étale non-isomorphic endomorphism g of V by [21,

Prop. 2.25(2)], whereKV +Sg = KV is not pseudo-effective. Thus, we are done. �

5.2. Case (II). The following is a structure theorem for cases (II) and (III):

Theorem 5.6. Let f : X → X be a non-isomorphic surjective endomorphism of a

normal projective rational surface X such that ρ(X) = 2, −KX is big, and KX+Sf

is not pseudo-effective. Then one of the following holds :

(1) There exist a finite Galois cover ν : X ′ → X étale in codimension 1 and an

endomorphism f ′ : X ′ → X ′ such that

• X ′ is a P1-bundle over P1 or over an elliptic curve,

• the Galois group of ν preserves the P1-bundle structure, and

• ν ◦ f ′ = fk ◦ ν for some k > 0.

(2) The pair (X,Sf + B) is a toric surface for a non-zero reduced divisor B

having at most two prime components.

(3) The pair (X,Sf + B) is a half-toric surface for a prime divisor B, and B

is an end component of the linear chain Sf +B.

Remark 5.7. The condition (1) has a meaning only when X ′ ≃ P1 × P1. In fact, if

X ′ 6≃ P1 × P1, then either X ′ is a P1-bundle over an elliptic curve or X ′ admits a

negative section. In both cases, any automorphism of X ′ preserves the P1-bundle

structure. Moreover, when X ′ ≃ P1 × P1, (1) implies that the action of the Ga-

lois group on X ′ is diagonal, i.e., it preserves two projections X ′ → P1 (cf. [21,

Lem. 2.3]).

Remark 5.8. The divisor Sf contains all the negative curves (cf. [20, Prop. 2.20(3)]),

the pair (X,Sf ) is log-canonical (cf. [20, Thm. E]), and −(KX +Sf ) is semi-ample

(cf. [21, Lem. 5.2]). If n(Sf ) ≥ 3, then n(Sf ) = 3 and there is a prime divisor

B such that (X,B + Sf ) is a toric surface by [21, Thm. 1.3]. Therefore, we may

assume that n(Sf ) ≤ 2 for the proof of Theorem 5.6.

In Section 5.2, we shall prove Theorem 5.6 in the case where X admits a negative

curve; the proof is at the end of Section 5.2. Before the proof, we assume in addition

that n(Sf ) ≤ 2 (cf. Remark 5.8). In particular, the number of negative curves on
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X is 1 or 2. Proposition 5.9 below is a result in the case where X has two negative

curves. WhenX has a unique negative curve, we have three cases as in Lemma 5.10,

and Propositions 5.14, 5.15, and 5.16 below treat these three cases, separately.

Proposition 5.9. Assume that X has two negative curves. Then Sf is the sum of

these two negative curves, and the following hold :

(1) If −(KX + Sf ) is ample, then (X,Sf + B) is a toric surface for a reduced

divisor B with n(B) = 2.

(2) If −(KX + Sf ) is not ample, then (X,Sf +B) is a half-toric surface for a

prime divisor B.

Proof. Let C1 and C2 be two negative curves. Then Sf = C1 + C2 and NE(X) =

R≥0 cl(C1) + R≥0 cl(C2) by ρ(X) = 2 and by the assumption: n(Sf ) ≤ 2. Hence,

C1C2 > 0, and Sf is connected. Thus, (1) follows from Theorem 3.14. Assume

that −(KX + Sf ) is not ample. Since KX + Sf is not nef, we may assume that

(KX + Sf )C1 < 0. Then (KX + Sf )C2 = 0, and (X,C1, C2) is a V-surface (cf.

Definition 4.1, Remark 5.8). Thus, (2) follows from Theorems 4.10 and 4.21 and

Lemma 4.22. �

Lemma 5.10. Assume that X has a unique negative curve C. Then f∗C = δfC

for δf = (deg f)1/2 > 0, and there exists a P1-fibration π : X → T ≃ P1 such that

π(C) = T and that one of the following holds for a general fiber F of π:

(a) (KX + Sf )F < 0 and (KX + Sf )C < 0;

(b) (KX + Sf )F < 0 and (KX + Sf )C = 0;

(c) (KX + Sf )F = 0 and (KX + Sf )C < 0.

Moreover, there is an endomorphism h of T such that π ◦ f = h ◦π and deg h = δf .

Proof. The equality f∗C = δfC holds by the uniqueness of C and by (f∗C)2 =

(deg f)C. Note that Sf ≥ C and that −(KX +Sf ) is semi-ample (cf. Remark 5.8).

First, we consider the case where (KX + Sf )C = 0. By the cone theorem (cf.

[20, Thm. 1.9]), there is an extremal ray R of NE(X) such that (KX + Sf )R < 0.

Thus, NE(X) = R+ R≥0 cl(C), and we have a P1-fibration π : X → T ≃ P1 as the

contraction morphism of R (cf. [20, Thm. 1.10(2)]). Then π(C) = T by CF > 0 for

a general fiber F of π, and (b) holds.

Second, we consider the case where (KX + Sf )C < 0. Then −(KX + Sf ) is

either ample or (KX +Sf )
2 = 0. In fact, if −(KX +Sf ) is big but not ample, then

(KX+Sf )C
′ = 0 for a negative curve C ′, which does not exist by assumption. When

−(KX + Sf ) is ample, we have a P1-fibration π : X → T ≃ P1 as the contraction

morphism of an extremal ray R of NE(X) such that NE(X) = R+R≥0 cl(C); hence,

π(C) = T and (a) holds. When (KX+Sf )
2 = 0, the semi-ample divisor −(KX+Sf )

defines a P1-fibration π : X → T ≃ P1 such that KX + Sf is π-numerically trivial;

hence, π(C) = T and (c) holds.

In any case above, f∗ : N(X) → N(X) is a scalar map and f∗R = R for the

ray R of NE(X) generated by the numerical class of a general fiber F of π by [20,

Lem. 3.7], since f∗C = δfC. Hence, the last assertion is a consequence of [20,

Lem. 3.16]. �
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Definition 5.11. For the fibration π : X → T in Lemma 5.10, let F denote a

general fiber. For t ∈ T , we set Gt := π−1(t), which is a prime divisor by ρ(X) = 2

(cf. [18, Prop. 2.33(7)]). We define a positive integer mt by π
∗(t) = mtGt, and set

Sπ := {t ∈ T | mt > 1}.

Remark 5.12. The P1-fibration π is smooth over T \ Sπ by [18, Prop. 2.33(4)].

Moreover, the horizontal part Shor
f of S with respect to π is non-singular, (X,Shor

f ) is

1-log-terminal, and (X,Shor
f +Gt) is log-canonical for any t ∈ T , by [20, Prop. 3.17].

Lemma 5.13. In Lemma 5.10, the following hold :

(1) If (KX +Sf )F < 0, then C is a section of π and is a unique prime compo-

nent of Sf dominating T .

(2) If a prime component C ′ of Sf is a section of π, then

(KX + C ′)|C′ = KC′ +
∑

t∈Sπ

(1− 1/mt)Qt,

where {Qt} := Gt ∩ C
′.

Proof. Since Sf ≥ C, we have −2+CF = (KX +C)F ≤ (KX +Sf )F . This implies

(1). We have (2) by (II-6) in Lemma 2.14 and by Remark 5.12. �

Proposition 5.14. Assume that Lemma 5.10(a) is satisfied.

(1) If Sf 6= C, then Sf = C + Go for a set-theoretic fiber Go = π−1(o) of π,

and (X,Sf +B) is a toric surface for a divisor B.

(2) If Sf = C and #Sπ ≤ 2, then (X,Sf + B) is a toric surface for a divisor

B.

(3) If Sf = C and #Sπ ≥ 3, then #Sπ = 3, and there exist a finite Galois cover

ν : X ′ → X étale in codimension 1 and an endomorphism f ′ : X ′ → X ′ such

that ν◦f ′ = f ◦ν and that X ′ is a P1-bundle over P1 with a negative section.

Proof. (1): We can write Sf = C + Go for some o ∈ T by n(Sf ) ≤ 2 and by

Lemma 5.13(1), and the assertion follows from Theorem 3.14.

(2): We choose two points t1 and t2 of T such that Sπ ⊂ {t1, t2}. Then

(KX + C +Gt1 +Gt2)F = −1 and (KX + C +Gt1 +Gt2)C = 0

by Lemma 5.13(2). Since (X,C + Gt1 + Gt2) is log-canonical (cf. Remark 5.12),

(X,C + Gt1 + Gt2 + Θ) is a toric surface for a prime divisor Θ by [18, Thm. 1.3].

Thus, it is enough to take B = Gt1 +Gt2 +Θ.

(3): Since (KX + C)C < 0, we have
∑

t∈Sπ
(1 − 1/mt) < 2 by Lemma 5.13(2).

Thus, #Sπ = 3. Moreover, if Sπ = {t1, t2, t3} with mt1 ≤ mt2 ≤ mt3 , then

(mt1 ,mt2 ,mt3) is one of

(2, 2,m ≥ 2) (2, 3, 3), (2, 3, 4), (2, 3, 5).

We have a finite Galois cover τ : T ′ ≃ P1 → T such that τ∗(ti) = mtiτ
−1(ti) for any

1 ≤ i ≤ 3 and that τ is étale over T \ Sπ. In fact, we can express τ as the quotient

morphism P1 → P1/G by the action of a polyhedral subgroup G of Aut(P1). For

the normalization X ′ of X ×T T
′, the induced finite morphism ν : X ′ → X is étale

in codimension 1 and the induced P1-fibration π′ : X ′ → T ′ has only reduced fibers
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by [20, Lem. 4.2]. Furthermore, π′ is smooth by Lemmas 2.12 and 2.13(2) and

Remark 5.12. Hence, X ′ is a P1-bundle over T ′ ≃ P1 with a negative section ν∗C.

Since X ′ is simply connected, by applying Lemma 3.10 to the case where S = 0, we

have an endomorphism f ′ : X ′ → X ′ such that ν ◦ f ′ = f ◦ ν. Thus, (3) has been

proved, and we are done. �

Proposition 5.15. Assume that Lemma 5.10(b) is satisfied.

(1) If Sf 6= C, then Sf = C+Go for some o ∈ T , and (X,Sf+B) is a half-toric

surface for a section B of π such that B ∩ C = ∅.

(2) If Sf = C, then there exist a finite cyclic cover ν : X ′ → X étale in codi-

mension 1 and an endomorphism f ′ : X ′ → X ′ such that ν ◦ f ′ = f ◦ ν and

that X ′ is a P1-bundle over an elliptic curve with a negative section.

Proof. (1): We can write Sf = C + Go by n(Sf ) ≤ 2 and by Lemma 5.13(1).

Then (X,Go, C) is a VA-surface with G2
o = 0 (cf. Definitions 4.1 and 4.5(3)) by

Lemma 5.10(b), since (X,Sf ) is log-canonical and (X,C) is 1-log-terminal (cf.

Remarks 5.8 and 5.12). Then (X,Sf +B) is a half-toric surface for a prime divisor

B by Theorem 4.10 (cf. Lemma 4.11). Here, B ∩ C = ∅ and B is a section of π by

BC = −(KX + Sf )C = 0 and BF = −(KX + Sf )F = −(KX + C)F = 1.

(2): Since (KX + Sf )C = 0 and f∗C = δfC, we have C ∩ Supp∆f = 0 by [20,

Prop. 2.20(5)]. Then any prime component of ∆f dominates T , and any prime

component of Rf dominates T by SuppRf ⊂ Sf ∪Supp∆f (cf. [20, Lem. 2.17(4)]).

By Lemma 5.13(2) and by (KX + C)C = 0, we have
∑

t∈Sπ

(1− 1/mt) = 2.

In particular, Sπ 6= ∅. By replacing the endomorphism h : T → T in Lemma 5.10

with a power hk and by [20, Lem. 4.2 and Prop. 4.3], we can find a finite cyclic cover

τ : T ′ → T from an elliptic curve T ′ and an endomorphism h′ : T ′ → T ′ such that

τ ◦ h′ = h ◦ τ and the following are satisfied for the normalization X ′ of X ×T T
′:

• The morphism τ is étale over T \ Sπ and τ∗(t) = mtτ
−1(t) for any t ∈ Sπ.

• The induced finite cyclic cover ν : X ′ → X is étale in codimension 1.

• The induced P1-fibration π′ : X ′ → T ′ has only reduced fibers.

• There is an endomorphism f ′ : X ′ → X ′ such that ν ◦ f ′ = f ◦ ν and

π′ ◦ f ′ = h′ ◦ π′.

Then any fiber of π′ is isomorphic to P1 by Lemmas 2.12 and 2.13(2) and by

Remark 5.12. Thus, π′ is a P1-bundle over the elliptic curve T ′, and ν∗C is a

negative section of π′. �

Proposition 5.16. Assume that Lemma 5.10(c) is satisfied.

(1) If Sf ≥ C +C ′ for another prime divisor C ′ dominating T , then C and C ′

are sections of π such that C ′2 > 0, C ∩ C ′ = ∅, and Sf = C + C ′.

(2) If Sf = C+C ′ for another prime divisor C ′ dominating T and if #Sπ ≤ 2,

then (X,Sf +B) is a toric surface for a union B of two set-theoretic fibers

of π.
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(3) If Sf = C+C ′ for another prime divisor C ′ dominating T and if #Sπ ≥ 3,

then #Sπ = 3, and there exist a finite Galois cover ν : X ′ → X étale in

codimension 1 and an endomorphism f ′ : X ′ → X ′ such that ν ◦ f ′ = f ◦ ν

and that X ′ is a P1-bundle over P1 with a negative section.

(4) If C is a unique prime component of Sf dominating T , then C is a double

section of π, and Sf = C + Gt1 for a branched point t1 ∈ T of the double

cover π|C : C → T . Moreover, (X,Sf +Gt2) is a half-toric surface for the

other branched point t2 of π|C .

Proof. (1): Since (KX + Sf )F = 0, C and C ′ are sections of π, and Sf = C + C ′

by n(Sf ) ≤ 2. Here, C + C ′ is non-singular by Remark 5.12, and it implies that

C ∩ C ′ = ∅. Moreover, C ′2 > 0, since cl(C ′) does not belong to R≥0 cl(C) nor

R≥0 cl(F ).

(2): We set B := Gt1 + Gt2 for two points t1 and t2 such that Sπ ⊂ {t1, t2}.

Then (KX + Sf + B)F = 0, and (KX + Sf + B)C = (KX + C + B)C = 0 by

(1) and Lemma 5.13(2). In particular, KX + Sf + B ∼∼∼ 0. Since (X,Sf + B) is

log-canonical (cf. Remark 5.12), (X,Sf +B) is a toric surface by [26, Thm. 6.4] (cf.

[18, Thm. 1.1]).

(3): Now, (KX + C)C = (KX + Sf )C < 0 by (1). Thus, (3) is shown by the

same argument as in the proof of Proposition 5.14(3).

(4): Since (KX + Sf )F = 0, C is a double section of π. Let t1 and t2 ∈ T

be the branched points of π|C . For each i = 1, 2, mti is even and (X/T,C,Gti)

is an irreducible PDS configuration of type Ini
for ni = mti/2 by Lemma 2.19,

since (X,C + Gti) is log-canonical (cf. Remark 5.12) and since CGti = 2/mti . In

particular, {t1, t2} ⊂ Sπ. If t ∈ T \{t1, t2}, then Gt intersects C transversely at two

points, and hence, mt = 1. Thus, π is smooth over T \ {t1, t2} and Sπ = {t1, t2}.

Therefore, (X,C + Gt1 + Gt2) is a half-toric surface by Proposition 2.28(2). This

finishes the proof. �

Remark. An example satisfying Proposition 5.16(3) is provided in [21, Exam. 2.19].

Proof of Theorem 5.6 in the case where X contains a negative curve. We may as-

sume that n(Sf ) ≤ 2 by Remark 5.8. There exist at most two negative curves on

X by ρ(X) = 2. If two negative curves exist, then either (2) or (3) of Theorem 5.6

holds by Proposition 5.9. If X has a unique negative curve, then we have three

cases (a), (b), and (c) in Lemma 5.10, and in each case, Theorem 5.6 holds true by

Propositions 5.14, 5.15, and 5.16, respectively. �

5.3. Case (III). We shall prove:

Theorem 5.17. Let f be a non-isomorphic surjective endomorphism of a normal

projective rational surface X such that ρ(X) = 2, −KX is big, and that X has no

negative curve. Then:

(1) There is a finite Galois cover ν : X ′ → X étale in codimension 1 from

X ′ = P1 × P1 with an endomorphism f ′ : X ′ → X ′ such that

• the action of the Galois group of ν on X ′ is diagonal, i.e., it preserves

two projections X ′ → P1 (cf. Remark 5.7), and
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• ν ◦ f ′ = fk ◦ ν for some k > 0.

(2) If KX + Sf is not pseudo-effective and if Sf is connected and reducible,

then (X,Sf +B) is a toric surface for a divisor B.

Theorem 5.6 in the case where X admits no negative curve is a consequence

of Theorem 5.17. The proofs of Theorems 5.17 and 5.6 are given at the end of

Section 5.3. Lemma 5.18 below is a key result concerning our third crucial idea

explained in the introduction.

Lemma 5.18. Let τ : X → Y be a finite surjective morphism of normal projective

surfaces and let f : X → X and g : Y → Y be non-isomorphic surjective endomor-

phisms such that τ◦f = g◦τ . Assume that λf < deg f for the first dynamical degree

λf of f (cf. [20, Def. 3.1]). Then there exist positive integers k and n satisfying

(V-1) SuppRτ ⊂ fk(τ−1 SuppRgn)

for the ramification divisors Rτ and Rgn of τ : X → Y and gn : Y → Y , respectively.

Proof. For any n ≥ 1, we have an equality

(V-2) Rfn + (fn)∗Rτ = Rτ + τ∗Rgn

by τ ◦fn = gn ◦ τ . Let S be the set of prime components Θ of Rτ such that (fk)∗Θ

has no common prime component with τ−1 SuppRgn for any k ≥ 1 and n ≥ 1.

Assume that S = ∅. Then, for any prime component Θ of Rτ , there is a common

prime component Θ′ of (fk)∗Θ and τ−1 SuppRgn for some k and n. Here, we can

take k and n independently of the choice of prime components Θ of Rτ . In fact,

we may replace (k, n) with (k +m,n+m) for any m ≥ 1, because

τ−1 SuppRgm+n ⊃ τ−1(gm)−1 SuppRgn = (fm)−1τ−1 SuppRgn

by Rgm+n = Rgm + (gm)∗Rgn . Thus, (V-1) holds by

Θ = fk(Θ′) ⊂ fk(τ−1 SuppRgn).

Therefore, it is enough to prove that S = ∅.

If Θ ∈ S, then (fk)∗Θ ≤ Rτ for any k ≥ 1 by (V-2), and hence, any prime

component of f∗Θ belongs to S. Let V = VS be the free R-vector space generated

by elements of S, and we define

V≥0 :=
∑

Θ∈S
R≥0Θ

as a polyhedral cone of V. Then Θ 7→ f∗Θ gives rise to an R-linear endomorphism

f∗ : V → V preserving V≥0, and the diagram

V
f∗

−−−−→ V

cl

y
ycl

N(X)
f∗

−−−−→ N(X)

is commutative for the class map cl : V → N(X) given by Θ 7→ cl(Θ). By a version

of Perron–Frobenius theorem (cf. [3]), we can find a non-zero vector D in V≥0

such that f∗D = λD for the spectral radius λ of f∗ : V → V. Since cl(D) 6= 0,
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λ is also an eigenvalue of f∗ : N(X) → N(X). Hence, λ ∈ {δf , λf , deg f/λf} by

[20, Prop. 3.3(4)], and we have λ > 1 by the assumption: λf < deg f . We write

D =
∑
rjΘj for prime divisors Θj ∈ S and rj ≥ 0. Then

λkD = (fk)∗D =
∑

rj(f
k)∗Θj ≤ (

∑
rj)Rτ

for any k ≥ 1: This contradicts D 6= 0 and λ > 1. Therefore, S = ∅, and we are

done. �

Lemma 5.19. In Theorem 5.17, −KX is ample, and there exist an integer k ∈

{1, 2}, two P1-fibrations π1 : X → T1 ≃ P1 and π2 : X → T2 ≃ P1, and endomor-

phisms h1 : T1 → T1 and h2 : T2 → T2 such that

• φ := (π1, π2) : X → T1 × T2 is a finite surjective morphism, and

• πi ◦ f
k = hi ◦ π for any i = 1, 2.

In particular, (deg f)k = deg h1 deg h2, and (λf )
k = max{deg h1, deg h2}.

Proof. The absence of negative curves implies that −KX is ample. In fact, −KX is

nef and big, since the negative part of the Zariski-decomposition is 0, and if −KX

not ample, then (−KX)C = 0 for a prime divisor C, and in this case, C2 < 0

by the Hodge index theorem, contradicting the assumption. Since ρ(X) = 2,

NE(X) = R1+R2 for extremal rays R1 and R2, and for each i = 1, 2, the contraction

morphism of Ri is a P1-fibration πi : X → Ti ≃ P1. The induced morphism φ =

(π1, π2) : X → T1 × T2 is finite and surjective as ρ(X) = ρ(T1 × T2) = 2.

If λf > δf = (deg f)1/2, then f∗ : N(X) → N(X) has two distinct eigenvalues

and each Ri is generated by an eigenvector; hence, f∗Ri = Ri for i = 1, 2 (cf. [20,

Lem. 3.7(2)]). Even if λf = δf , (f
2)∗Ri = Ri for i = 1, 2, and (f2)∗ : N(X) → N(X)

is the multiplication map by δ2f = deg f (cf. [20, Lem. 3.7(1)]). Thus, we may

assume that f∗Ri = Ri for i = 1, 2, by replacing f with f2 if necessary. Then, for

each i = 1, 2, we have an endomorphism hi : Ti → Ti such that πi ◦ f = hi ◦ πi,

by [20, Lem. 3.16]. Here, φ ◦ f = g ◦ φ for g := h1 × h2 : T1 × T2 → T1 × T2,

and deg f = deg g = deg h1 deg h2. If λf > δf , then deg h1 6= deg h2 and λf =

max{deg h1, deg h2}. If λf = δf , then λf = deg h1 = deg h2. �

Lemma 5.20. Theorem 5.17 holds if deg h1 = 1 or deg h2 = 1. Moreover, in

this case, if Sf 6= 0, then Sf is non-singular : In particular, the assumption of

Theorem 5.17(2) is not satisfied.

Proof. We may assume that deg h2 = 1. By [20, Thm. 4.9] applied to the P1-

fibration π2 : X → T2, there exist a finite Galois cover ν : X ′ → X étale in codimen-

sion 1 and an endomorphism f ′ : X ′ → X ′ such that X ′ ≃ P1×T ′ for a non-singular

projective curves T ′ with a finite Galois cover T ′ → T2 and that ν ◦ f ′ = f l ◦ ν for

some l > 0. Here, T ′ ≃ P1 as −KX′ = ν∗(−KX) is ample. Since the action of the

Galois group of ν preserves the second projection X ′ → T ′, the action is diagonal

by [21, Lem. 2.3]. Thus, Theorem 5.17(1) holds. The last assertion on Sf follows

from [20, Lem. 4.4(1)]. �

By Lemma 5.20 and by replacing f with f2 if necessary, we may assume Condi-

tion 5.21 below for the proof of Theorem 5.17.
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Condition 5.21. The morphisms φ = (π1, π2) : X → T1 × T2 in Lemma 5.19 is

not an isomorphism. Moreover, for each i = 1, 2, the endomorphism hi : Ti → Ti
in Lemma 5.19 satisfies πi ◦ f = hi ◦ πi and deg hi > 1.

Definition 5.22. For i = 1, 2, we set Si to be the set of points t ∈ Ti such that

π∗
i (t) is not reduced. We regard Si also as a reduced divisor on Ti. Moreover, for

t ∈ Ti, we set G
(i)
t := π−1

i (t) and set m
(i)
t to be the multiplicity of π∗

i (t). Thus,

π∗
i (t) = m

(i)
t G

(i)
t for any t ∈ Ti and Si = {t ∈ Ti | m

(i)
t > 1}. We also define

G :=
∑2

i=1

∑
t∈Si

G
(i)
t = π−1

1 (S1) + π−1
2 (S2).

Remark. Every fiber of πi : X → Ti is irreducible. If t ∈ Ti \ Si, then G
(i)
t = π∗

i (t)

is a smooth fiber of πi by [18, Prop. 2.33(4)].

Lemma 5.23. For any t1 ∈ T1 and t2 ∈ T2, one has

deg φ = m
(1)
t1 m

(2)
t2 G

(1)
t1 G

(2)
t2 .

In particular, m
(i)
t | deg φ for any i = 1, 2 and any t ∈ Si.

Proof. Let F (i) be a general fiber of πi : X → Ti. Then F (1)F (2) = deg φ, and

F (i) ∼ m
(i)
t G

(i)
t for any t ∈ Ti. This implies the first assertion. The second

assertion is deduced from m(i)F (j)G
(i)
t = deg φ and F (j)G

(i)
t ∈ Z for {i, j} = {1, 2}

and t ∈ Ti. �

Proposition 5.24. Under Condition 5.21, the ramification divisor Rφ of φ : X →

T1 × T2 is expressed as

(V-3) Rφ =
∑2

i=1

∑
t∈Si

(m
(i)
t − 1)G

(i)
t ,

and the following equality holds for any i = 1 and 2:

(V-4)
∑

t∈Si

1/m
(i)
t = #Si − 2 + 2/deg φ.

In particular, 2 ≤ #Si ≤ 3. Moreover, the pair (X,G) is log-canonical and

(V-5) KX +G = π∗
1(KT1

+ S1) + π∗
2(KT2

+ S2).

As a consequence, (X,G
(i)
t ) is 1-log-terminal for any t ∈ Si and for i = 1, 2.

Proof. By Lemma 5.19 and Condition 5.21, we have λf < deg f , since deg h1 > 1,

deg h2 = deg f/deg h1 > 1, and λf = max{deg h1, deg h2}. By Lemma 5.18, there

exist positive integers k and n such that

SuppRφ ⊂ fk(φ−1 SuppRgn) = fk(π−1
1 SuppRhn

1
) ∪ fk(π−1

2 SuppRhn
2
)

⊂ π−1
1 (hk1(SuppRhn

1
)) ∪ π−1

2 (hk2(SuppRhn
2
))

for the endomorphism g = h1 × h2 : T1 × T2 → T1 × T2. In particular, SuppRφ is

contained in a union of fibers of π1 and π2. For i = 1, 2 and for any t ∈ Ti, note

that φ(G
(i)
t ) = p−1

i (t) for the i-th projection pi : T1 × T2 → Ti and that

φ∗(φ(G
(i)
t )) = π∗

i (t) = m
(i)
t G

(i)
t .
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Hence, the ramification index of φ along G
(i)
t equals m

(i)
t . Thus, we have (V-3),

and the ramification formula of φ is equivalent to KX + G = φ∗(KT1×T2
+H) for

the normal crossing divisor

H =
∑2

i=1

∑
t∈Si

p−1
i (t) = p−1

1 S1 + p−1
2 S2

on T1 × T2. Hence, (V-5) holds and (X,G) is log-canonical by [19, Lem. 2.10(1)].

Since πi is smooth over Ti \ Si for i = 1, 2, we have

G
(1)
t1 ∩ SingX ⊂ G

(1)
t1 ∩ π−1

2 S2 and G
(2)
t2 ∩ SingX ⊂ G

(2)
t2 ∩ π−1

1 S1

for any t1 ∈ S1 and t2 ∈ S2. Hence, (X,G
(i)
t ) is 1-log-terminal for any t ∈ Si (cf.

[19, Fact 2.5]).

If (V-4) holds, then 2 ≤ #Si ≤ 3 by deg φ > 1 and
∑

t∈Si

1/m
(i)
t ≤ (1/2)#Si.

Hence, for the rest of Proposition 5.24, it is enough to prove (V-4) for i = 2.

Let F = F (1) be a general fiber of π1. Then F ≃ P1 and π2|F : F → T2 is a finite

surjective morphism of degree φ. By the ramification formulaKX = φ∗KT1×T2
+Rφ

with adjunction KF = (KX + F )|F ∼ KX |F and by (V-3), we have

KF = (π2|F )
∗KT2

+
∑

t∈S2

(m
(2)
t −1)G

(2)
t |F = (π2|F )

∗(KT2
+
∑

t∈S2

(1−1/m
(2)
t )t).

Consequently, π2|F is étale over T2 \ S2 and

−2 = (deg φ)(−2 +
∑

t∈S2

(1− 1/m
(2)
t )),

which is equivalent to (V-4) for i = 2. Thus, we are done. �

Corollary 5.25. Under Condition 5.21, one has

Sf = π−1
1 Sh1

+ π−1
2 Sh2

.

Proof. By the equality Rf + f∗Rφ = Rφ + τ∗Rh1×h2
, we have

SuppRf ⊂ SuppRφ ∪ τ−1 SuppRh1×h2
.

Thus, SuppRf is contained in a union of fibers of π1 and π2 by Proposition 5.24.

Since Sf ⊂ SuppRfk for some k > 0 (cf. [20, Lem. 2.17(4)]), each prime component

of Sf is a fiber of π1 or π2. Thus, the required equality for Sf holds by [20,

Lem. 2.19(2)]. �

Corollary 5.26. Under Condition 5.21, for each i ∈ {1, 2}, the following condi-

tions are equivalent :

(i) #Si = 2;

(ii) m
(i)
t = deg φ for any (resp. some) t ∈ Si;

(iii) G
(i)
t is a section of πj for any (resp. some) t ∈ Si, where {j} = {1, 2}\{i}.

Proof. We have (i) ⇒ (ii) by (V-4) in Proposition 5.24 and by m
(i)
t | deg φ shown

in Lemma 5.23. We have (ii) ⇔ (iii) by Lemma 5.23, since m
(j)
t G

(j)
t′ ∼ F

(j)
t′ for
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t′ ∈ Tj . It suffices to show: (ii) ⇒ (i). Assume that m
(i)
b = deg φ for some b ∈ Si.

Then

(1/2)(#Si − 1) ≥
∑

t∈Si\{b}
1/m

(i)
t = #Si − 2 + 1/deg φ

by (V-4) in Proposition 5.24, and it implies that #Si = 2, since #Si ≥ 2. Thus,

we are done. �

Proposition 5.27. Under Condition 5.21, assume that #S1 < 3 or #S2 < 3.

Then #S1 = #S2 = 2, and (X,G) is a toric surface. Moreover, there exist a cyclic

cover ν : T ′
1 × T ′

2 → X and a cyclic cover τi : T
′
i ≃ P1 → Ti with an endomorphism

h′i : T
′
i → T ′

i for i = 1, 2, such that

• ν is étale in codimension 1,

• τ1 × τ2 = φ ◦ ν as a morphism T ′
1 × T ′

2 → T1 × T2,

• deg τ1 = deg τ2 = deg ν = deg φ,

• the Galois group of ν is isomorphic to that of τi and the i-th projection

π′
i : T

′
1 × T ′

2 → T ′
i is equivariant under the action for each i = 1, 2,

• ν ◦ (h′1 × h′2) = f ◦ ν, and

• τi ◦ h
′
i = hi ◦ τi for i = 1, 2.

In particular, the cubic diagram

(V-6)

X ′

f ′ &&▼
▼▼

▼▼
▼▼

▼
ν

//

π′

i

��

X
f

&&▲
▲▲

▲▲
▲▲

▲

πi

��

X ′ ν
//

π′

i

��

X

πi

��

T ′
i

h′

i %%▲
▲▲

▲▲
▲▲

▲

τi
// Ti

hi

%%❑
❑❑

❑❑
❑❑

❑

T ′
i

τi
// Ti

is commutative for X ′ := T ′
1 × T ′

2 and f ′ := h′1 × h′2.

Proof. We may assume that #S2 = 2, since 2 ≤ #Si ≤ 3 (cf. Proposition 5.24).

Let τ2 : T
′
2 ≃ P1 → T2 be the cyclic cover of degree deg φ branched at S2. For

the normalization X ′ of X ×T2
T ′
2, the induced cyclic cover ν : X ′ → X is étale in

codimension 1 and the induced P1-fibration π′
2 : X

′ → T ′
2 has only reduced fibers,

by Corollary 5.26(ii) and [20, Lem. 4.2]. By construction, the Galois group Gal(ν)

of ν is identified with the Galois group Gal(τ2) of τ2, and π
′
2 : X

′ → T ′
2 is Gal(ν)-

equivariant.

A smooth fiber F (1) of π1 lies in Xreg, and hence, ν−1(F (1)) is a disjoint union

of deg φ copies of P1 which are all sections of π′
2, since degF (1)/T2 = deg φ (cf.

Lemma 5.23). Hence, the Stein factorization of π1 ◦ ν : X
′ → T1 consists of a finite

cover τ1 : T
′
1 → T1 of degree φ and a fibration π′

1 : X
′ → T ′

1, where X ′ is also

isomorphic to the normalization of X ×T1
T ′
1. Moreover, τ1 is a cyclic cover, since

ν : X ′ → X is so. Similarly to the case of τ2, we can identify Gal(ν) with the Galois

group Gal(τ1) of τ1, and π′
1 : X

′ → T ′
1 is Gal(ν)-equivariant. As a consequence,

(π′
1, π

′
2) : X

′ → T ′
1 × T ′

2 is an isomorphism over T1 × T2 by

degX ′/(T1 × T2) = (deg φ)2 = deg(T ′
1 × T ′

2)/(T1 × T2).
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In particular, X ′ ≃ P1×P1, and π′
i corresponds to the i-th projection P1×P1 → P1

for i = 1, 2. By applying [20, Lem. 4.2] to π1 : X → T1 and τ1 : T
′
1 → T1, we see

that τ1 is étale over T1 \ S1 and that τ∗1 (t) = m
(1)
t τ−1

1 (t) for any t ∈ S1. Then we

have #S1 = 2 by considering the action of the cyclic group Gal(τ1) on T
′
1 ≃ P1.

We shall show that (X,G) is a toric surface. Now, φ induces a finite étale

morphism

X \G→ (T1 \ S1)× (T2 \ S2) ≃ G2
m,

where Gm stands for the 1-dimensional algebraic torus. Assume that the toric

surface (T1 × T2,S1 × S2) is defined by a fan △ of the free abelian group N =

π1(T1×T2 \ (S1×S2)) ≃ Z⊕2, i.e., T1×T2 = TN(△). Then, by Lemma 3.5, (X,G)

is isomorphic over T1 ×T2 to the toric surface TN′(△) for the finite index subgroup

N
′ = π1(X \G) of N.

Finally, we shall construct the required endomorphism h′i : T
′
i → T ′

i for i = 1,

2. Since X ′ is simply connected, by Lemma 3.10 applied to the case where S = 0,

there is an endomorphism f ′ : X ′ → X ′ such that ν ◦ f ′ = f ◦ ν. By the i-th

projection π′
i : X

′ → T ′
i and the Stein factorization of π′

i ◦ f
′ : X ′ → T ′

i , we have

an endomorphism h′i : T
′
i → T ′

i such that π′
i ◦ f

′ = h′i ◦ π
′
i and τi ◦ h

′
i = hi ◦ τi. As

a consequence, f ′ = h′1 × h′2, and we have the cubic commutative diagram (V-6).

Thus, we are done. �

Now, we shall finish the proof of Theorem 5.17:

Proof of Theorem 5.17. By Lemma 5.20, we may assume Condition 5.21. For the

proof of Theorem 5.17(1), by Proposition 5.27, we may assume that #S1 = #S2 =

3. Now, ∑
t∈S2

(1− 1/m
(2)
t ) = 2− 2/deg φ < 2

by (V-4) in Proposition 5.24. Then, as in the proof of Proposition 5.14(3), we

have a possible list of the collection (m
(2)
t )t∈S2

, and there is a finite Galois cover

τ2 : T
′
2 ≃ P1 → T2 such that τ2 is étale over T2 \ S2 and that τ∗2 (t) = m

(2)
t τ−1

2 (t)

for any t ∈ S2. For the normalization X ′ of X ×T2
T ′, the induced finite morphism

ν : X ′ → X is étale in codimension 1 and the induced P1-fibration π′
2 : X

′ → T ′

has only reduced fibers by [20, Lem. 4.2]. By construction, the Galois group Gal(ν)

of ν is identified with the Galois group Gal(τ2) of τ2, and π
′
2 : X

′ → T ′ is Gal(ν)-

equivariant. Since (X,G
(2)
t ) is 1-log-terminal for any t ∈ T2 (cf. Proposition 5.24),

the P1-fibration π′
2 is smooth by Lemma 2.12. Hence, X ′ is a P1-bundle over T ′

2

and it is a trivial bundle P1 × T ′
2 ≃ P1 × P1, since it has another ruling induced

by π1 ◦ ν : X
′ → X → T1. Then the action of Gal(ν) is diagonal by [21, Lem. 2.3].

There is an endomorphism f ′ : X ′ → X ′ satisfying ν ◦ f ′ = f ◦ ν by Lemma 3.10,

since X ′ is simply connected. This shows Theorem 5.17(1).

For the proof of Theorem 5.17(2), we may assume that n(Sf ) = 2 by the same

reason as in Remark 5.8. Then Sf = C1 + C2 for two prime components C1 and

C2, where Ci = G
(i)
ti for a point ti ∈ Shi

⊂ Ti for i = 1, 2, by Corollary 5.25. Since

KX +Sf is not nef, (KX +Sf )F
(i) < 0 for i = 1 or 2, for a general fiber F (i) of πi.

Hence, we may assume that C1 is a section of π2. Then #S1 = 2 by Corollary 5.26.
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Moreover, #S2 = 2, C2 is also a section of π1, and (X,G) is a toric surface, by

Proposition 5.27, where G ⊃ Sf = C1 + C2. This shows Theorem 5.17(2), and we

are done. �

Finally in Section 5, we finish the proof of Theorem 5.6.

Proof of Theorem 5.6. It has been proved in Section 5.2 in the case where X con-

tains a negative curve. When X contains no negative curve, Theorem 5.6(1) holds

by Theorem 5.17(1). Thus, we are done. �

6. Proofs of Theorems in the introduction

Finally, we shall prove Theorems 1.1, 1.2, 1.3, and 1.4 in the introduction.

Proof of Theorem 1.1. We are given a normal projective surface X with a non-

isomorphic surjective endomorphism f such that KX + Sf is not pseudo-effective.

If X has a non-quotient singularity, then Theorem 1.1(4) holds with a lift of fk to

V by [21, Thm. 1.2]. Thus, we may assume that X has only quotient singularities.

If ρ(X) = 1, then X is a log del Pezzo surface, since KX is not pseudo-effective;

thus, Theorem 1.1(1) holds. If ρ(X) = 2 and −KX is not big, then (2) or (3) of

Theorem 1.1 holds with a lift of fk by Theorem 5.1.

If ρ(X) = 2 and −KX is big, then one of (3), (5), (6), and (7) of Theorem 1.1

holds, by Theorem 5.6, where the existence of a lift of fk to V is also proved in

cases (3) and (5). If ρ(X) ≥ 3, then either (6) or (7) of Theorem 1.1 holds by

Theorem 4.23. Thus, we are done. �

Before going to the proof of Theorem 1.2, we shall show:

Lemma 6.1. Let X be a normal projective surface having a finite cover ν : V → X

étale in codimension 1 from a projective cone V over an elliptic curve. Then there

exists a non-isomorphic surjective endomorphism f of X such that KX +Sf is not

pseudo-effective.

Proof. We may assume ν to be a Galois cover by an argument in the proof of [21,

Lem. 3.3(5)]. Let G be the Galois group. It suffices to construct a G-equivariant

non-isomorphic surjective endomorphism g : V → V such that Sg = 0. In fact, g

induces a non-isomorphic surjective endomorphism f of X such that ν ◦ g = f ◦ ν,

and we have Sf = 0 by [20, Lem. 2.19]; as a consequence, KX + Sf = KX is not

pseudo-effective, since KV = ν∗KX is so.

Let µ : W → V be the minimal resolution of singularities. Then we have a P1-

bundle structure π : W → T over an elliptic curve T in which the µ-exceptional

locus Θ is a negative section of π. Moreover, the action of G lifts to W and

T so that morphisms µ and π are G-equivariant and that the divisor Θ is G-

invariant. By [21, Lem. 2.14], there is another G-invariant section Θ′ of π such

that Θ ∩ Θ′ = ∅. Then we can find a G-equivariant non-isomorphic surjective

endomorphism gW : W →W such that SgW = Θ by [21, Cor. 2.27]. It induces a G-

equivariant non-isomorphic surjective endomorphism g of V such that µ◦gW = g◦µ,

and we have Sg = µ∗SgW = 0 by [20, Lem. 3.15(3)]. Thus, we are done. �
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Proof of Theorem 1.2. The “only if” part follows from Theorem 1.1 and Lemma 4.3.

It is enough to construct a non-isomorphic surjective endomorphism f of X such

that KX + Sf is not pseudo-effective assuming one of conditions (1), (2), and (3)

of Theorem 1.2.

If Theorem 1.2(1) holds, i.e., one of (2)–(5) in Theorem 1.1 holds, then we have

an expected endomorphism f by Theorem 5.1 and Lemma 6.1. If Theorem 1.2(2)

holds, then, for the prime component Γ of D which is not a negative curve, there

is a non-isomorphic surjective endomorphism f of X such that Sf = D − Γ by

[22, Thm. 6.1], where KX + Sf ∼ −Γ is not pseudo-effective. If Theorem 1.2(3)

holds, then there is a non-isomorphic surjective endomorphism f of X such that

Sf = D − Γ for the end component Γ by [22, Thm. 6.2], where KX + Sf
∼∼∼ −Γ is

not pseudo-effective. Thus, we are done. �

Proof of Theorem 1.3. If there is a finite Galois cover V → X satisfying one of

conditions (1)–(7) of Theorem 1.3 except (6), then X admits a non-isomorphic

surjective endomorphism by [21, Thm. 1.1]. Even in the exceptional case (6), we

have a non-isomorphic surjective endomorphism of V equivariant under the action

of the Galois group of V → X by [21, Lem. 2.3 and Cor. 2.18], and it induces

a non-isomorphic surjective endomorphism of X. For the rest, by [20, Thm. A]

and [21, Thm. 1.1], it is enough to consider a normal projective rational surface

X admitting a non-isomorphic surjective endomorphism f : X → X such that X

has only quotient singularities, −KX is big, ρ(X) ≥ 2, and that KX + Sf is not

pseudo-effective. Then one of conditions (2), (3), (5), (6), and (7) of Theorem 1.1 is

satisfied. Hence, one of conditions (3), (4), (6), and (7) of Theorem 1.3 is satisfied.

Thus, we are done. �

Proof of Theorem 1.4. By [20, Thms. D and 3.25], one of the following holds:

(i) There is a finite Galois cover A→ X étale in codimension 1 from an abelian

surface A with an endomorphism fA : A→ A as a lift of A.

(ii) There is a finite Galois cover C × T → X étale in codimension 1 for an

elliptic curve C and a non-singular projective curve T of genus ≥ 2, where

λf = deg f and some power fk lifts to an endomorphism of C × T .

(iii) There is a P1-fibration π : X → T to a non-singular projective curve T with

an endomorphism h : T → T such that π ◦ f = h ◦ π, X has no negative

curves, ρ(X) = 2, and λf = max{deg h, deg f/deg h} ∈ Z.

In the case (i) (resp. (ii)), Theorem 1.4 holds for V in (1) (resp. (2)) in the list.

Thus, we may assume (iii). In particular, KX is not pseudo-effective and λf is an

integer dividing into deg f . Note that if the genus of T in (iii) is greater than 1,

then deg h = 1 and λf = deg f . We can consider the following four conditions:

(a) KX + Sf is not pseudo-effective, and either X is irrational or −KX is not

big;

(b) KX + Sf is not pseudo-effective, X is rational, and −KX is big;

(c) KX + Sf is pseudo-effective and KX + Sf 6∼Q 0;

(d) KX + Sf ∼Q 0.
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First, assume (a). Then, by Theorem 5.1 and [21, Lem. 4.11], there is a finite

Galois cover P1 × T ′ → X étale in codimension 1 for a non-singular projective

curve T ′ of genus > 0 with an endomorphism g of P1 × T ′ as a lift of a power fk.

Here, λg = λfk = (λf )
k and deg g = deg fk = (deg f)k by [20, Cor. 3.5], and the

condition (iii) above holds also for g : P1×T ′ → P1×T ′. In particular, in this case,

Theorem 1.4 holds for V in (3) or (4) in the list. Here, if (3) holds, then λf = deg f

by (iii) for g, since λg = deg g.

We can prove the assertion in cases (b) and (c) by arguments similar to the above:

Assume (b). Then, by Theorem 5.17, there is a finite Galois cover P1 × P1 → X

étale in codimension 1 and some power fk lifts to an endomorphism g of P1 × P1,

which satisfies (iii), since we have λg = (λf )
k > (δf )

k = δg by [20, Cor. 3.5]. Thus,

in this case, Theorem 1.4 holds for V in (5). Assume (c). Then, since KX is not

pseudo-effective, by [20, Thm. A], there is a finite Galois cover P1×T → X étale in

codimension 1 for a non-singular projective curve T of genus ≥ 2 and some power

fk lifts to an endomorphism g of P1×T , which satisfies (iii) by the same argument

as above. Thus, in this case, Theorem 1.4 holds for V in (3), where λf = deg f

holds by (iii) for g, since λg = deg g.

Finally, assume (d). Then, by [20, Thm. A], there is a finite Galois cover ν : V →

X étale in codimension 1, f lifts to an endomorphism g : V → V , and one of the

following conditions is satisfied:

(d-1) V is a P1-bundle over an elliptic curve T ′ and Sg = ν∗Sf is a disjoint union

of two sections of V → T ′;

(d-2) V is a toric surface with Sg = ν∗Sf as the boundary divisor.

Since λf = λg and deg f = deg g (cf. [20, Cor. 3.5]), g : V → V satisfies the

condition (iii) above. In particular, ρ(V ) = 2 and V contains no negative curves.

If (d-1) holds, then V ≃ PT ′(OT ′ ⊕ L) for an invertible sheaf L on T ′ of degree

0; thus, Theorem 1.4 holds for V in (4). If (d-2) holds, then, by Theorem 5.17(1),

there is a finite cover ν′ : V ′ → V étale in codimension 1 from V ′ = P1 × P1 and

some power gk lifts to an endomorphism of V ′. Here, the composite ν ◦ν′ : V ′ → X

is Galois, since it is étale in codimension 1 and since V ′ is non-singular and simply

connected. Hence, Theorem 1.4 holds for V in (5) by replacing V with V ′. Thus,

we have completed the proof of Theorem 1.4. �
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