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ABSTRACT. In the present paper, we study the arithmetic funda-
mental groups of curves over local fields from the point of view
of anabelian geometry. In particular, we prove that, under cer-
tain technical assumptions, a continuous isomorphism over the
absolute Galois group of the basefield between the tame funda-
mental groups of hyperbolic curves over a local field arises from
a unique isomorphism between the given hyperbolic curves over
the basefield. This “certain technical assumptions” are satisfied
whenever the basefield of the hyperbolic curves under considera-
tion is a mixed-characteristic local field. Thus, one may conclude
that an arbitrary continuous isomorphism over the absolute Galois
group of the basefield between the étale fundamental groups of hy-
perbolic curves over a mixed-characteristic local field arises from
a unique isomorphism between the given hyperbolic curves over
the basefield. Moreover, this conclusion, together with a “formal
argument” in anabelian geometry, leads to an alternative proof of
a famous anabelian theorem, i.e., for hyperbolic curves over sub-p-
adic fields for some prime number p, proved by Shinichi Mochizuki.
Let us recall that main ingredients of the proof of this anabelian
theorem by Mochizuki are various results in the study of p-adic
Hodge theory. In particular, the present paper yields an alterna-
tive proof of this famous anabelian theorem by Mochizuki in which
we never apply such a result in p-adic Hodge theory.
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INTRODUCTION

In the present paper, we study the arithmetic fundamental groups of
curves over local fields from the point of view of anabelian geometry.
In the present Introduction, let

e K be a field,
e K a separable closure of K, and
e /1, Z5 hyperbolic curves over K.

Write
def

e Gx = Gal(K/K) for the absolute Galois group of K deter-
mined by the separable closure K,

o 11, , I, for the respective tame fundamental groups of Zi,
Z5, relative to suitable choices of basepoints,

o Isomy(Zy, Zy) for the set of isomorphisms Z; = Z, over K,

e Isomg, (I1z,,11z,) for the set of continuous isomorphisms [T, —
I, over Gk, and

e Isomg, (I1z,,11z,) for the quotient set of Isomg, (Iz,,11z,)
with respect to the natural conjugation action of the kernel
of the natural continuous outer homomorphism Il,, — G.

Thus, the functoriality of the operation of taking tame fundamental
groups determines a natural map

Isomg (Zy, Zy) — Isomg, (I, , I14,).

The anabelian Grothendieck conjecture for hyperbolic curves may be
formulated as the bijectivity of this map under suitable choices of
(K, Zy,7Z5). A (special case of a) famous theorem proved by Shinichi
Mochizuki asserts the bijectivity of the map under consideration in the
case where K is sub-p-adic for some prime number p (cf. [18, Theorem

A)).
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Theorem A. Suppose that K is sub-p-adic for some prime number p,
i.e., that K is isomorphic to a subfield of a finitely generated extension
field of the p-adic completion of the field of rational numbers for some
prime number p (cf. [18, Definition 15.4]). Then the above map

Isomg (21, Zy) — Isomeg, (I1z,,112,)

18 bijective. Put another way, every continuous isomorphism Iz —
IT;, over G arises from a unique isomorphism Zy — Zs over K.

Let us recall that main ingredients of the proof of this theorem by
Mochizuki are various results in the study of p-adic Hodge theory. One
main purpose of the present paper is to yield an alternative proof of
this theorem in which we never apply such a result in p-adic Hodge
theory (cf. Corollary 11.3).

Next, let us explain the main theorem of the present paper. To this
end, in the remainder of the present Introduction, suppose that

the field K is a complete discrete valuation field.
Write

e R for the valuation ring of K (which is necessarily a complete
discrete valuation ring) and
e k for the residue field of R.

In the remainder of the present Introduction, suppose, moreover, that
the field k is perfect and of characteristic p > 0.

One may find two properties for continuous isomorphisms between
tame fundamental groups — i.e., LSF-compatibility and Prym-compatibility
— and one property of fields — i.e., x-Kummer-faithfulness — in the
statement of Theorem B below, i.e., the main theorem of the present
paper.

e We shall say that a continuous isomorphism ¢: Il — Ilg,
over G is LSF-compatible (where the “LSF” stands for “Log
Special Fiber”) if, roughly speaking, for suitable open sub-
groups H C Iz, of Iz, the induced isomorphism H — ¢(H)
induces an isomorphism between the “log special fibers” of the
respective connected finite étale coverings of 7y, Z, that cor-
respond to H C Iz, ¢(H) C IIz,. The precise definition of
the notion of LSF-compatibility is given in Definition 7.4.

e We shall say that a continuous isomorphism ¢: I, — Il
over Gk is Prym-compatible if, roughly speaking, for suitable
open subgroups H C Il of IIz, the induced isomorphism
H = ¢(H) is compatible with certain objects that are related
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to the homomorphism “.: Y — G ® K” of (6) that appears
in the definition of objects of the category DD, defined in
[6, Chapter III, §2]. The precise definition of the notion of
Prym-compatibility is given in Definition 10.7.

e We shall say that a field F' is x-Kummer-faithful if, for every
finite separable extension field F’ of F' and every semi-abelian
variety A over F', the intersection (), n - A(F’) — where n
ranges over the positive integers invertible in F' — is zero (cf.
Definition 10.4, (ii)).

The main theorem of the present paper is as follows (cf. Theorem 11.1,
Corollary 11.2):

Theorem B. Let ¢: 11, = Tz, be a continuous isomorphism over
Gk. Suppose that the isomorphism ¢ is LSF-compatible. Suppose,
moreover, that one of the following three conditions is satisfied:

(1) The field K is of characteristic zero and X -Kummer-faithful.

(2) The field K is of characteristic zero, and the isomorphism ¢ is
Prym-compatible.

(3) The field K is of characteristic p, the hyperbolic curve Zy over
K is nonisotrivial (cf. Definition 5.8, (i)), the field k is al-
gebraic over a finite field, and the isomorphism ¢ is Prym-
compatible.

Then the isomorphism ¢ arises from a unique isomorphism Z, = Z
over K.

Let us observe that if K is a mixed-characteristic local field (i.e.,
if K is of characteristic zero, and k is finite), then one may verify
that the isomorphism ¢ is LSF-compatible (cf. [17, Theorem 7.2]), and
the field K satisfies condition (1) of the statement of Theorem B (cf.
[15, Theorem 7]). In particular, it follows from Theorem B (i.e., in
the case where condition (1) is satisfied) that Theorem A in the case
where K is a mixed-characteristic local field holds. Moreover, it follows
immediately from this conclusion, together with a “formal argument”,
i.e., applied in the proof of [18, Corollary 15.5], that Theorem A for an
arbitrary “K” holds.

Next, let us discuss the strategy of the proof of Theorem B. One
important observation in the proof of Theorem B is the existence of
Prym-faithful Galois étale coverings of stable curves. In order to ex-
plain the notion of a Prym-faithful Galois étale covering, let us fix

e stable curves X, Y over the residue field k£ of R and

e a Galois étale covering Y — X over k of degree a prime number
invertible in k.
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Now suppose that we are given a stable curve X over R that is smooth
over K and an isomorphism X = X Xy k over k, by means of which
we identify X with X Xz k. Then it follows immediately from the
topological invariance of étale sites that the Galois étale covering Y —
X over k extends uniquely to a Galois étale covering YV — X over R,
where ) is a stable curve over R. In particular,

(a) by considering the restriction to X C X of the log structure on
X associated to the divisor X C X, one obtains a log structure
on X, hence also a log scheme X'°8 (whose underlying scheme
is X), and,

(b) by considering the “difference”, relative to the resulting cov-
ering ) — X, between the Jacobian varieties of X, ), one
obtains a polarized abelian scheme Py,y over R, i.e., the gen-
eralized Prym scheme Py, x associated to the Galois étale cov-
ering Y — X (cf. Definition 2.1) equipped with the Prym
semi-polarization Py x — Pj, , — where we write P}, , for
the dual semi-abelian scheme of Py x over R (cf., e.g., [22,
Chapitre IV, Théoreme 7.1, (i)]) — associated to the Galois
étale covering Y — X (cf. Definition 2.3, (ii)).

Then we shall say that the Galois étale covering ¥ — X is Prym-
faithful if, roughly speaking, the assignment “X > (X'°¢, Py x)” —
i.e., the assignment that assigns, to (the isomorphism class of) X as
above, the (isomorphism class of the) pair that consists of the log
scheme of (a) and the polarized abelian scheme of (b) — is injective.
The precise definition of the notion of a Prym-faithful Galois étale cov-
ering is given in Definition 2.5. Then one main technical result of the
present paper is as follows (cf. Theorem 4.5, Lemma 6.10):

Theorem C. There exist

® q positive integer n,
e a finite extension field ky of k,

o for eachi € {0,...,n}, a stable curve Y; over ky,
e for eachi € {1,...,n}, a Galois étale covering Y;_1 — Y; over
ky, and

e a Galois étale covering Y, — X over k

such that the Galois étale covering Yo — Y7 over ky is of degree a prime
number invertible in k, Prym-faithful, and new-ordinary (cf. Defini-
tion 2.2), i.e., and satisfies the condition that every abelian variety
quotient of the (semi-abelian variety over ky obtained by forming the)
cokernel of the natural homomorphism over ky from the Jacobian va-
riety of Y1 to the Jacobian variety of Yy is ordinary.
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Let us recall that Theorem C in the case where the stable curve X
is smooth over k was already essentially proved by Akio Tamagawa.
Indeed, Theorem C in the case where X is smooth over £ may be re-
garded as a formal consequence of [28, Theorem 0.5], [28, Theorem
0.7], [28, Proposition 0.8], and [28, Corollary 5.3]. Observe that the
problem of the existence of Prym-faithful Galois étale coverings of sta-
ble curves may be regarded as the logarithmic infinitesimal version of
the “Torelli problem-type result” for generalized Prym varieties. In
the present paper, in order to prove Theorem C, we apply the theory
of the arithmetic compactifications of Shimura varieties of PEL-type
discussed in [13].

Finally, let us explain the strategy of the proof of Theorem B espe-
cially in the case where condition (1) is satisfied. To this end, suppose
that the field K satisfies condition (1) (i.e., is of characteristic zero and
x-Kummer-faithful), and that we are given a hyperbolic curve Z over
K. Write I for the étale fundamental group of Z, relative to a suitable
choice of basepoint. Then, roughly speaking, the strategy of the proof
of Theorem B (i.e., to reconstruct the curve Z from the topological
group IIz group-theoretically) may be summarized as follows.

For simplicity, suppose that Z is proper over K. Then observe that
it follows from Theorem C, together with the Galois descent argument
and some well-known facts concerning the geometry of stable curves,
that, to reconstruct Z from Ilz, we may assume without loss of gener-
ality, by replacing Z by a suitable connected finite étale covering of Z,
that there exists a commutative diagram of schemes over R

X —— Z — Spec(K)

|

X —— Z —— Spec(R)

— where X is a (necessarily proper) hyperbolic curve over K, X and
Z are stable curves over R, the right-hand vertical arrow is the natural
open immersions, the two squares are cartesian, the left-hand horizontal
arrows are Galois étale coverings over R, and the Galois étale covering

XYy bk —z2¥ 25k

over k determined by the left-hand lower horizontal arrow is of degree a
prime number invertible in k&, Prym-faithful, and new-ordinary. Write

e Ay for the étale fundamental group of X xx K, relative to a
suitable choice of basepoint,
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Z'°8 for the log scheme obtained by equipping Z with the log
structure associated to the divisor Z C Z|

Z'"¢ for the log scheme obtained by equipping Z with the log

structure obtained by pulling back the log structure of Z'°¢ by
the natural closed immersion Z — Z,

® Py,z, Px/z for the respective generalized Prym schemes as-

sociated to the Galois étale coverings X — Z, X — Z (cf.
Definition 2.1), and

o P x/z for the Raynaud extension of the semi-abelian scheme

(i)

(iii)

Py/z over R (cf., e.g., [6, Chapter II, §1]).

First, observe that it follows from the LSF-compatibility as-
sumption in the statement of Theorem B that one may recon-
struct the log special fiber

Zlog
of Z and the Galois étale covering
X—Z

over k.

Next, observe that, by considering the generalized Prym scheme
associated to the Galois étale covering X — Z, which was re-
constructed in (i), one may reconstruct the special fiber

P&/§:PX/Z XR]C

of the generalized Prym scheme Py,z. Note that it is well-
known (cf., e.g., [6, Chapter II, §1]) that we have a natural
identification P/\g/Z XR k= Px/g XR k.

Next, consider the natural continuous outer action of Gg on
Ax. Then one may verify from some techniques in combi-
natorial anabelian geometry that one may reconstruct, as a
suitable G g-stable subquotient of the maximal pro-p quotient
of the topological abelianization of A x, the p-adic Tate module

Ty(Pax;z)

associated to the semi-abelian scheme P x/z equipped with the
natural continuous action of Gg. Thus, since (we have as-
sumed that) the field K is of characteristic zero, it follows from
a classical theorem in the study of p-divisible groups (cf. [30,
Theorem 4]) that one may reconstruct the p-divisible group

Py)z[p™]
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over R associated to Py/z.
Next, recall that we have assumed that the semi-abelian variety
Py/z = ﬁ;{/z xp k (cf. (ii)) over k is ordinary, which thus
implies that the p-divisible group over k associated to this semi-
abelian variety may be written as the direct product of an étale
p-divisible group over k£ and a multiplicative p-divisible group
over k. It follows from this ordinariness, together with our
assumption that the field K is of characteristic zero, that one
may reconstruct a natural identification between
e the p-divisible group Py,z[p™] over k associated to the
semi-abelian variety Py, z, which was reconstructed in (ii),
and _
e the special fiber Py, z[p™] X k of the p-divisible group

Py ;z[p™], which was reconstructed in (iii).
In particular, it follows from a classical theorem in the study of
deformations of ordinary semi-abelian varieties (cf. [12, Theo-
rem 1.2.1]) that one may reconstruct the semi-abelian scheme

Px/z

over R. We note that this reconstruction step gives rise to one
main reason why one cannot remove the assumption that K
is of characteristic zero from condition (1) of Theorem B (cf.
Remark 9.5.1).
Next, recall that we have assumed that the field K is of char-
acteristic zero and x-Kummer-faithful. In particular, by ap-
plying some techniques in combinatorial anabelian geometry
to the natural continuous outer action of Gg on Ay, one
may reconstruct the object — which consists of six items,
and whose first item is given by the Raynaud extension Py, z
reconstructed in (iv) — of the category DD, defined in [6,
Chapter 11, §2] that corresponds, relative to the equivalence
Mo1: DDyl 5 DEG, of categories of [6, Chapter III, Corol-
lary 7.2], to the generalized Prym scheme Py,z (i.e., strictly
speaking, equipped with the Prym semi-polarization associated
to the Galois étale covering ) — X — cf. Definition 2.3, (ii)).
Thus, by considering the equivalence M, : DDy — DEG
of categories of [6, Chapter III, Corollary 7.2], one may recon-
struct the semi-abelian scheme

Px,z

over R.
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(vi) Finally, observe that since (we have assumed that) the Galois
étale covering X — Z over k is Prym-faithful, one may recon-
struct, from the log special fiber Z!°% of (i) and the generalized
Prym scheme Py, z of (v), the stable curve

Z
over R, hence also the hyperbolic curve
A

over K, as desired.

This completes the rough explanation of the strategy of the proof of
Theorem B in the case where condition (1) is satisfied.

We have the following two remarks concerning the proofs of the main
results of the present paper.

e The proof of Theorem B given in the present paper may be
regarded as a substantial technical refinement of the argument
given in the final portion of [17, §9]. In [17, Theorem 9.7],
Mochizuki proved that, roughly speaking, if the field K is p-
adic local for some prime number p, and the Jacobian variety
of Z; has ordinary semistable reduction, then every continuous
isomorphism Iz, — Iz, over G determines functorially an
isomorphism Z; — Z, over K.

e According to Tamagawa, he has already established (but has
not written), more than two decades ago, a special case of
Theorem B by similar techniques to the techniques applied in
the proof of Theorem B. As pointed out in the discussion
following Theorem C, Tamagawa essentially gave the proof of
Theorem C in the case where the given stable curve is smooth,
which leads to a similar result to Theorem B in the case where
the given hyperbolic curves have good reduction.
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of 2022. The first author was supported by JSPS KAKENHI Grant
Numbers 21K03162 and 24K06668. The second author was supported
by JSPS KAKENHI Grant Number 20K14283. This research was sup-
ported by the Research Institute for Mathematical Sciences, an Inter-
national Joint Usage/Research Center located in Kyoto University.
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1. STABLE CURVES

In the present section, we introduce some notational conventions
related to the notion of a stable curve. In the present section, let

e S be a scheme and
e X a stable curve over S (cf. [4, Definition 1.1]).

Definition 1.1. We shall write

e wy for the dualizing sheaf of X over S (cf. the discussion fol-

lowing [4, Definition 1.1]) and

o Jx dof Picg(/s for the Jacobian variety of X over S, which is a

semi-abelian scheme over S (cf. [3, §9.4, Theorem 1]).

Definition 1.2. Suppose that S is the spectrum of a separably closed
field. Then we shall write

e ['y for the dual graph of the stable curve X over S,
e v(I'x) for the set of vertices of the graph I'x (i.e., the set of
irreducible components of X ), and
e ¢(I'x) for the set of edges of the graph I'x (i.e., the set of
singular points of X).
By abuse of notation, we shall regard e(I'x) as a closed subset of X in
the evident way.

Definition 1.3. Suppose that S is the spectrum of a field k. Let k be
a separable closure of k and v € v(I'y, 7) a vertex of 'y 7. Then we
shall write

e [X = I, for the irreducible component of X obtained by form-
ing the image in X of the irreducible component of X x; k that
corresponds to v and

e DX = D, for the closed subset of I, obtained by forming the
intersection of I, with the set of singular points of X.

By abuse of notation, write
o [X = ], for the reduced closed subscheme of X whose under-
lying closed subset is given by I, C X.

Moreover, we shall write

° Uj( = U, def I, \ D, for the open subscheme of I, obtained by

forming the complement of D, in I,,
e X, for the smooth proper curve over k obtained by forming
the smooth compactification of U,,
e gX = g, for the genus of the smooth proper curve X, over k,
o Oy, def Q&U sy, for the sheaf of relative differentials of X, over

k, and
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o JX = J, ¥ Pick, ;; for the Jacobian variety of X, over k,
which is an abelian variety over k (cf. [3, §9.2, Proposition 3]).

Observe that one verifies easily that if & is perfect, then U, is a hy-
perbolic curve over k. If k is perfect, then we shall refer to U, as the
hyperbolic curve over k associated to v.

Definition 1.4. Suppose that S is the spectrum of a separably closed
field k. Let v € v(I'x) be a vertex of I'x such that I, is smooth over k.
Then observe that one verifies easily that the natural open immersions
U, — I, and U, — X, determine an identification between I, with X,
ie., I, = X,. By abuse of notation, write D, for the reduced divisor
on [, = X, whose support is given by the closed subset D, C I, = X,,.

Remark 1.4.1. Let us recall from [14, Chapter 10, Lemma 3.12, (b)]
that, in the situation of Definition 1.4, the natural closed immersion
X, — X determines an isomorphism of Oy, -modules

wx|x, = Qx,(Dy).

Definition 1.5. Suppose that S is the spectrum of a field k. Let k be
a separable closure of k.
(i) We shall say that the stable curve X over k is sturdy if the

inequality g, *** > 1 holds for every v € v(I'y, 5)-
(ii) We shall say that the stable curve X over k is untangled if

IX*#% is smooth over k for every v € v(Dx, z)-

(iii) We shall say that the stable curve X over k is split if the natural

action of Gal(k/k) on the graph 'y  is trivial.

Observe that one verifies easily that each of these conditions does not
depend on the choice of k.

Remark 1.5.1. Suppose that S is the spectrum of a field k, and that
the stable curve X over k is split. Then one verifies easily that the
natural morphism X xj k — X determines respective bijections from
(L, 7)s e(lxy, ) to the set of irreducible components of X, the set
of singular points of X.

Lemma 1.6. The natural homomorphism Autg(X) — Auts(Jx) is
mjective.
Proof. This assertion follows from [4, Theorem 1.13]. O

2. PRYM-FAITHFUL GALOIS ETALE COVERINGS

In the present section, we give the definition of the notion of a Prym-
faithful Galois étale covering of a stable curve (cf. Definition 2.5 below),
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which will play a central role in the proof of the main result of the
present paper. In the present section, let

e S be a scheme,

e g > 2 an integer,

e X a stable curve of genus g over S,

e Y a stable curve over S,

e [ a prime number invertible on S, and

e f: Y — X a Galois étale covering of degree [ over S (which

thus implies that Y is of genus gy o [(g—1)+1), whose Galois
group we denote by G.

By considering the natural (necessarily faithful — cf. Lemma 1.6) ac-
tion of G on Jy (cf. Definition 1.1) (i.e., induced by the action of G on
Y'), we shall regard G as a subgroup of the automorphism group of Jy
over S.

Definition 2.1. We shall write

def
new:l_g T.

TeG

Thus, it follows from [28, Proposition-Definition 4.1], together with the
discussion following [28, Proposition-Definition 4.1] in the case where
we take the “N” of the discussion to be [, that there exists a unique
group subscheme of Jy

Py,;x CJy
such that

(1) the group scheme Py, x is geometrically connected over S and
is an open group subscheme of the closed group subscheme
Ker(l = hyew: Jy — Jy) C Jy (which thus implies that Py, x
is a semi-abelian scheme over S), and, moreover,

(2) the endomorphism hyey of Jy factors as the composite of a
surjective smooth homomorphism Jy — Py, x over S with the
natural inclusion Py/x < Jy.

We shall refer to this semi-abelian scheme Py x over S as the general-
ized Prym scheme associated to the Galois étale covering f: Y — X.

Definition 2.2. Suppose that S is the spectrum of a field k of positive
characteristic. Then we shall say that the Galois étale covering f: Y —
X is new-ordinary if the generalized Prym scheme associated to the
Galois étale covering f: Y — X (cf. Definition 2.1) is an ordinary semi-
abelian variety over k (i.e., satisfies the condition that every abelian
variety quotient is ordinary).
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Definition 2.3. Suppose that

e the scheme S is noetherian, normal, and integral, that

e the structure morphism Y — S of Y has a splitting (i.e., a
morphism S — Y over S), and that

e there exists a nonempty open subscheme U C S of S such that

the stable curve Xy, e ¥ X g U over U, hence also the stable

def .
curve Yy = Y Xg U over U, is smooth.

Write Py/x for the generalized Prym scheme associated to the Galois
étale covering f: Y — X. Observe that it follows from [3, §9.2, Propo-
sition 3] that the semi-abelian scheme Jy, = Jy xg U over U, hence
also the semi-abelian scheme Py, /x, = Py;x xsU over U, is an abelian
scheme over S. Write Pf// « for the dual semi-abelian scheme of Py, x

over S (cf., e.g., [22, Chapitre IV, Théoreme 7.1, (i)]).

(i) Suppose that the stable curve X over S, hence also the stable
curve Y over S, is smooth. Then we shall refer to the polar-
ization Py/x — Pf,/ « on Py x that arises from the restriction
to Py,x C Jy of the (necessarily ample) invertible sheaf on Jy
determined by the theta divisor on Pic%? and some splitting
of the structure morphism Y — S as the Prym polarization
associated to the Galois étale covering f: Y — X. Observe
that one verifies easily that this polarization does not depend
on the choice of such a splitting of the structure morphism
Y —» S.

(ii) Observe that it follows from [6, Chapter I, Proposition 2.7]
that the Prym polarization Py, x, = Px/y XsU — Pit/u/XU =
P)t< e sU associated to the Galois étale covering Yy — Xy de-
termined by f extends uniquely to a homomorphism Py/x —
Pf,/X over S. Moreover, observe that one also verifies eas-
ily that this extension Py/x — Pf// + does not depend on the
choice of U. We shall refer to this extension Py/x — Pf,/ <
as the Prym semi-polarization associated to the Galois étale
covering f: Y — X.

Remark 2.3.1. Suppose that we are in the situation of Definition 2.3,
(). Suppose, moreover, that S is the spectrum of a field. Then observe
that one verifies easily that the equality h% , = lhyey holds. Thus, it
follows immediately from the discussion preceding [2, Theorem 5.3.2],
together with condition (2) of Definition 2.1 and the primitivity of
the norm-endomorphisms associated to nontrivial abelian subvarieties

proved in [2, Norm-endomorphism Criterion 5.3.4], that the exponent
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(cf. the discussion preceding [2, Lemma 5.3.1]) in Jy of the generalized
Prym scheme Py, x associated to the Galois étale covering f: Y — X
divides ! (which thus implies that the Prym polarization Py,x — P, /X
associated to the Galois étale covering f: Y — X is of degree a power
of [). In particular, the kernel of the Prym polarization Py, x — Pf// X
is a finite étale commutative group scheme of rank a power of [ over S.

Definition 2.4. Suppose that S is the spectrum of a field k. Let R be
a noetherian complete local domain whose residue field is given by k
and X a stable curve (necessarily of genus g) over R whose special fiber
X X gk is given by X. Then it follows immediately from [7, Exposé X,
Théoreme 2.1] that there exist

e a unique, up to isomorphism over X, stable curve ) (necessar-
ily of genus gy ) over R and
e a unique Galois étale covering ®: )Y — X of degree [ over R

that fit into a commutative diagram of schemes over R

Y——Y

il e

X——X

— where the upper horizontal arrow is a morphism that determines
an isomorphism Y = Y xpr k over k, and the lower horizontal arrow
is the natural closed immersion. Then we shall say that the Galois
étale covering ®: Y — X over R is the deformation of the Galois étale
covering f: Y — X associated to the stable curve X over R.

Definition 2.5. Suppose that S is the spectrum of a separably closed
field k. Then we shall say that the Galois étale covering f: Y — X is
Prym-faithful if the following condition is satisfied: Let R be a complete
discrete valuation ring whose residue field is given by k. For each
i € {1,2}, let X; be a stable curve (necessarily of genus g) over R that
is generically smooth over R and ¢;: X; x gk — X an isomorphism over
S. Then if the following two conditions are satisfied, then the composite

1t o X xpk = Xy xp k lifts to an isomorphism X; — X, over R:
(1) Write
e Spec(R)"® for the log scheme obtained by equipping Spec(R)
with the log structure associated to the divisor with nor-
mal crossings determined by the closed point of Spec(R)
and
e S8 for the log scheme obtained by equipping S with the
log structure obtained by pulling back the log structure of
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Spec(R)°8 by the natural surjective homomorphism R —»
k.
Moreover, for each i € {1,2}, write
° X;Og for the log scheme over Spec(R)'® obtained by equip-
ping A; with the log structure associated to the divisor
Xi XR k - Xz and
o (X;xrk)s for the log scheme over S'°% obtained by equip-
ping &; X g k with the log structure obtained by pulling
back the log structure of X;°¢ by the natural closed im-
mersion X; Xp k — X.
Then the composite L2_1 ou: Xy Xpk = Xy xg k induces an
isomorphism (X; x g k)18 5 (X, x g k)'°® of log schemes over
Slog.
For each i € {1,2}, write
e f; for the Galois étale covering (necessarily of degree 1)
of &X; xg k obtained by pulling back f: Y — X by the
isomorphism ¢;: X; xz k — X over S and
e YV, — A, for the deformation of the Galois étale covering
fi associated to the stable curve X; over R (cf. Defini-
tion 2.4).
Then the isomorphism Py, /v, Xg k = Py,/x, Xg k (cf. Defi-
nition 2.1) of semi-abelian schemes over S determined by the
composite Lgl ou: Xy xpk 5 X, xg k lifts to an isomor-
phism Py, /x, — Py, x, of semi-abelian schemes over R that
is compatible with the respective Prym semi-polarizations as-
sociated to the Galois étale coverings Yy — Xy, Vo — Xy (cf.
Definition 2.3, (ii)).

3. A SUFFICIENT CONDITION TO BE PRYM-FAITHFUL

In the present section, we establish a sufficient condition for a Galois

étale covering of a stable curve to be Prym-faithful (cf. Theorem 3.4
below).
the beginning of the preceding §2. Suppose, moreover, that the scheme
S is given by the spectrum of a separably closed field k of characteristic
p > 0. Write

In the present section, suppose that we are in the situation at

e [ for the set of prime numbers invertible in k,
e 7" for the pro-prime-to-0J completion of Z,
e Zy € Q for the localization of Z by the multiplicatively closed

subset of Z generated by the elements of [, and



16

YUICHIRO HOSHI AND YU YANG

O for the Zm-algebra obtained by forming
k if p=0,
W(k) ifp>0

— where we write W (k) for the ring of Witt vectors with co-
efficients in k.

Definition 3.1. We shall write

Mg for the moduli stack over O that parametrizes stable curves
of genus g over O (cf. [4, §5]),

M, for the open substack of Mg that parametrizes smooth sta-
ble curves of genus g over O,

Rx for the completion of a strict henselization of Mg at the
geometric point obtained by forming the classifying morphism
of the stable curve X of genus g over k,

K for the field of fractions (cf. Remark 3.1.1, (i), below) of

Rx (necessarily of characteristic zero),

m Spec(Rx) — M, for the natural morphism over O,

m, < m Xm, Mg — My for the base-change of the natural

morphism 9T — Mg by the natural open immersion My — Mg,
gMe for the log scheme obtained by equipping 9t with the
log structure associated to the divisor 9t \ 9, with normal
crossings (cf. [4, Theorem 5.2]),

X for the stable curve of genus g over 91 that corresponds to
the natural morphism 97t — Mg,

fr: X — 9 for the structure morphism of the stable curve X
over M,

X, for the (necessarily smooth) stable curve of genus g over
M, that corresponds to the morphism M, — M,

f: ) — X for the Galois étale covering (necessarily of degree
[) obtained by forming the deformation (cf. Definition 2.4) of
the Galois étale covering f: Y — X associated to the stable

curve X over M (cf. Remark 3.1.1, (i), below),

Iy o fxof: Y — X — M for the structure morphism of the

stable curve ) over 91,
), for the (necessarily smooth) stable curve over 91, obtained
by forming the base-change of fy: ) — 91 by the natural open

immersion M, — I,

oY def Py/x, Bo def Py, /x, (cf. Definition 2.1),

B, PL for the respective dual semi-abelian schemes of P, R,
over M, M, (cf., e.g., [22, Chapitre IV, Théoreme 7.1, (i)]),
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e Lic(Jx), Lie(Jy), Lie(*P), Lie(P") for the R x-modules obtained
by forming the tangent spaces of the semi-abelian schemes Jy,
Jy (cf. Definition 1.1), P, P over M, respectively,

e Lie"(Jx), Lie"(Jy), Lie" (), Lie" (P?) for the Rx-modules ob-
tained by forming the Rx-duals of the Rx-modules Lie(Jx),
Lie(Jy), Lie(P), Lie(P"), respectively,

e \.: P, — P! for the Prym polarization associated to the Ga-
lois étale covering %), — X, determined by f (cf. Definition 2.3,
(1)), and

e \: P — P! for the Prym semi-polarization associated to the
Galois étale covering f: ) — X (cf. Definition 2.3, (ii)).

Remark 3.1.1.

(i) Since the moduli stack M, is smooth over O (cf. [4, Theorem
5.2]), the completion Ry is a noetherian complete local regular
domain.

(ii) It follows from [3, §9.2, Proposition 3] that the semi-abelian
scheme Jy, over M, hence also the semi-abelian scheme ‘B,
over M, is an abelian scheme over IN,.

Definition 3.2. Observe that one verifies easily that there exist a sub-
field F' of Kx, an field embedding F' — C, and a polarized abelian vari-
ety (Ap, Ap) over F' such that the polarized abelian variety (Bo, Ao) X ry
Kx over Kx determined by (., o) and the natural inclusion Ry <
K is isomorphic to the polarized abelian variety (Ap, Ap) X p Kx over
Kx determined by (Ar, Ar) and the natural inclusion F' — Kx. In the
remainder of present Definition 3.2, we shall identify (B, A\o) Xr, Kx
with (Ap, \r) X Kx by means of some fixed isomorphism. Then we
shall write

e (Pc, Ac) for the polarized abelian variety over C obtained by
forming the base-change of (Ar, Ap) by the natural inclusion
F—C,

oL = (L,(--),h) for the PEL-type Z-lattice (cf. [13, Defini-
tion 1.2.1.3]) — i.e., in the case where we take the “(B,*, Q)"
of [13, §1.2.1] to be (Q,idg,Z) — that arises from the polar-
ized Hodge structure of weight —1 associated to the polarized
abelian variety (B, Ac) over C, and

e G for the affine group scheme defined in [13, Definition 1.2.1.6]
— i.e., in the case where we take the “(L,(-,-),h)” of [13,
Definition 1.2.1.6] to be L.

Observe that one verifies easily that the reflex field (cf. [13, Definition
1.2.5.4]) of (L ®z R, (-,),h) is given by Q. Moreover, it follows from
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Remark 2.3.1 that the triple (B, Ao, Z — Endgyn, (B,)) forms a triple
as in [13, Definition 1.3.6.1] — i.e., in the case where we take the
“((Ly (-,+),h),0)” of [13, §1.3.6] to be (L,d). Moreover, we shall write

e a = {ay} for the level-G(Z) structure of (Po, Ao, Z — Endm, (Bo))
of type (L @7z Z", (-,-)) (cf. [13, Definition 1.3.7.6]) — i.e., in
the case where we take the “H” of [13, Definition 1.3.7.6] to be
G(Z") — that consists of the evident identification a; between

L/L = {0} and Bc(C)[1] = {0}.
Note that one verifies easily that, by considering the natural identifi-
cations L/nL = Pc(C)[n], where n ranges over the positive integers
prime to p, one may conclude that the evident identification «; between
L/L = {0} and Bc(C)[1] = {0} forms a principal level-1 structure
of (Po, Ao, Z > Enday, (Bo)) of type (L @z Z7, (-,-)) (cf. [13, Defini-
tion 1.3.6.2]). Thus, one verifies easily that the tuple (Po, Ao, Z —
Enday, (Bs), @) forms an object of the category Mgzo) (o) defined in
[13, Definition 1.4.1.4], which thus implies that the tuple (%, A\, Z —
Endgn (), ) forms a degenerating family of type MQ(ZD) over M (cf.
[13, Definition 5.3.2.1]). Let ¥ be a compatible choice of admissible
smooth rational polyhedral cone decomposition data for Mg@g) (cf.
[13, Definition 6.3.3.4], [13, Proposition 6.3.3.5]). Then we shall write

° Mg’&m) w. for the proper smooth algebraic stack over Z dis-

cussed in [13, Theorem 6.4.1.1].

Now observe that one verifies immediately (cf. also Remark 3.1.1, (i);
[1, Chapter II, Corollary 4.9, (i)]) that one may replace ¥ by a suitable
compatible choice of admissible smooth rational polyhedral cone de-
composition data for M, (#0) 8O that the degenerating family (I3, A\, Z —
Enda(B), @) of type Mg z0, over DM satisfies the condition discussed
in [13, Theorem 6.4.1.1.6]), which thus implies that we have a clas-
sifying morphism 9t — Mtgo(rZD) s Xz, O of the degenerating family
(B, A, Z = Endm(B), a) of type Mg 50, over 9. Then we shall write

tor

gO(ZD),z X2
O at the geometric point obtained by forming the composite of
the natural closed immersion Spec(k) < 9t and the classifying
morphism 9 — Mtgo(rim) s Xz, O of the degenerating family

(B, A\, Z — Endgpn(*B), ) of type Mg zo) over D,

N Spec(Rp) — I\/Itgo(rzm)’E X70, O for the natural morphism

e Rp for the completion of a strict henselization of M

over O,
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.m —mXMtor

g(Z0), =Xy ©

of the natural morphism 91 — Mtgo(rzm) .

open immersion Mg(ZD) Xz, O — l\/ltor
statement of [13, Theorem 6.4.1.1]),

e N for the log scheme obtained by equipping 0N with the log
structure associated to the divisor 91\, with normal crossings
relative to O (cf. [13, Theorem 6.4.1.1.3]),

o t: M — N for the morphism over O induced by the classifying
morphism 9 — Mtgo(rzmm Xz0 O of the degenerating family
(B, A\, Z — Endgpn(*B), ) of type Mg o, over 90T, and

o tlo5: Mloe s M8 for the morphism of log schemes determined
by the morphism t: 9t — N (cf. Remark 3.1.1, (ii)).

Lemma 3.3. Let £ be an invertible sheaf on X that is of order | and
trivialized by the Galois étale covering §: Y — X. By considering the
natural (necessarily faithful — cf. Lemma 1.6) action of G on Lie(Jy)
(i.e., induced by the action of G on'Y) ), we shall regard G as a subgroup
of the automorphism group of the Rx-module Lie(Jy). Write

hoew € 1= 7, ho 17037

TEG TG

) (Mg oy Xz, O) for the base-change
Xz O by the natural

(@0),2 XZ(D) @ (Cf the

(cf. Definition 2.1). In the remainder of present Lemma 3.3, we shall
identify Lie(Jy) with @'_) H'(X, L&) by means of the composite

Lie(Jy) — H'(Y, Oy) — H'(X,.0y)

Iy (35 é_é £®") @ HY (%, £%)
=0

— where the first arrow is the isomorphism of [3, §8.4, Theorem 1, (a)],
the second arrow is the isomorphism determined by the Galois étale
covering §: Y — X, the third arrow is the isomorphism induced by a
trivialization of *L, and the fourth arrow is the natural isomorphism.
Then the following assertions hold:

(i) The diagram of Rx-modules

Lie(Jy) —2 Lie(Jy)

|

Lie(Jx) —= H'(X, Ox)



20 YUICHIRO HOSHI AND YU YANG

— where the lower horizontal arrow is the isomorphism of |3,
§8.4, Theorem 1, (a)], the left-hand vertical arrow is the ho-
momorphism induced by the Galois étale covering §: ) — X,
and the right-hand vertical arrow s the natural inclusion —
commutes.

(ii) The factorization of hyey

Lie(.Jy) — Lie(J)— Lic(.Jy)

(cf. condition (2) of Definition 2.1) determines an isomor-
phism of Rx-modules

-1

Lie(P) — P H' (X, L™).

i=1
(iii) The diagram of Rx-modules
Liev (C’B) ®RX Liev (C’B) F(mv t*Qf_lnlog/(’))

zi
-1
45 (F(ae, wr ®oy LY) @Ry T(X, wx ®o; LY ))

ij=1
-1

@ (F(f,w% R0, E@i) ®R, F(%, wx ®o, £®(lfi)))

|

D(X, wi?)

F(mt’ Qé}tlog/(’))

— where

e the upper horizontal arrow is the homomorphism deter-
mined by the extended Kodaira-Spencer map discussed in
[13, Theorem 6.4.1.1.4] (cf. also [13, Definition 6.3.1]) and
the isomorphism Lie() = Lie(*B!) induced by the homo-
morphism \: P — P (cf. Remark 2.53.1),

e the lower horizontal arrow is the isomorphism that arises
from the Kodaira-Spencer homomorphism with respect to
the stable curve X — N,

e the left-hand upper vertical arrow is the isomorphism de-
termined by the isomorphism of (ii),
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e the left-hand middle vertical arrow is the natural projec-
tion homomorphism,
e the left-hand lower vertical arrow is the natural homomor-
phism determined by a trivialization of L%, and
e the right-hand vertical arrow is the homomorphism in-
duced by the morphism £1°8: 9Nle — MNloe
— commutes up to multiplication by an element of R%.
(iv) Suppose that the natural homomorphism determined by a triv-
ialization of L|§

T'(X,wx ®ox L]x) @k T(X,wx Qoy L|S) —= T(X,w?)

is surjective. Then the morphism t°¢: & — 918 s log for-
mally unramified (cf. [23, Chapter IV, Definition 3.1.1] ).

Proof. Assertion (i) follows immediately from the various definitions
involved. Assertion (ii) follows from assertion (i), together with the
equality 1 = hg + 71 - hyew. Next, we verify assertion (iii). Let us
first observe that one verifies immediately that every Ry-modules that
appear in the diagram of assertion (iii) are free Rx-modules of finite
rank. In particular, to verify assertion (iii), it suffices to verify that
the diagram of K x-vector spaces obtained by applying “(—) ®pg, Kx”
to the diagram of assertion (iii) commutes up to multiplication by an
element of RY. On the other hand, since the stable curve X xp, Kx
over Kx is smooth, this commutativity follows immediately from a
similar argument to the argument that was applied in the proofs of
24, Theorem 2.6] and [28, Theorem 4.6]. This completes the proof of
assertion (iii).

Finally, we verify assertion (iv). Let us first observe that it follows
from [23, Chapter IV, Proposition 2.3.1] and [23, Chapter IV, Propo-
sition 3.1.3] that, to verify assertion (iv), it suffices to verify that the
right-hand vertical arrow of the diagram of assertion (iii) is surjective.
In particular, since (one verifies immediately that) every Rx-modules
that appear in the diagram of assertion (iii) are free Ry-modules of
finite rank, it follows from assertion (iii) that, to verify assertion (iv),
it suffices to verify that the homomorphism of k-vector spaces obtained
by applying “(—) ®g, k" to the left-hand lower vertical arrow of the
diagram of assertion (iii) is surjective. On the other hand, this surjec-
tivity follows from our assumption (i.e., that appears in the statement
of assertion (iv)). This completes the proof of assertion (iv), hence also
of Lemma 3.3. U

The main result of the present section is as follows.
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Theorem 3.4. Let

e k be a separably closed field,

e X, Y stable curves over k,

e [ a prime number invertible in k,

o /Y — X a Galois étale covering of degree | over k, and

e L an invertible sheaf on X that is of order | and trivialized by
the Galois étale covering f: Y — X.

Suppose that the natural homomorphism determined by a trivialization
of L%

T'(X,wx @0, L) @ T(X,wx @0, L2D) —=T(X, w(?)

1s surjective. Then the Galois étale covering f: Y — X over k is
Prym-faithful (cf. Definition 2.5).

Proof. Let n be a positive integer and R a complete discrete valuation

ring whose residue field is given by k. Write m C R for the maximal

ideal of R and ,R & R/m™. For each i € {1,2}, let A; be a stable

curve over R that is generically smooth over R and ¢;: X; x gk — X an
isomorphism over k. Suppose that conditions (1), (2) of Definition 2.5
are satisfied. For each i € {1,2}, write, moreover,

e Spec(,, R) for the log scheme obtained by equipping Spec(,, R)
with the log structure obtained by pulling back the log struc-
ture of Spec(R)® (cf. condition (1) of Definition 2.5) by the
natural surjective homomorphism R — , R,

e s5;: Spec(R) — M for the classifying morphism of the stable
curve X; over R,

e ,s;: Spec(,R) — 9 for the composite of the natural closed
immersion Spec(,R) < Spec(R) with s;,

ot LS s;: Spec(R) — 9 — M for the composite of s; and ¢,
and

e ,t;: Spec(,R) — M for the composite of the natural closed
immersion Spec(,, R) < Spec(R) with t;.

Now observe that since (we have assumed that) X}, X5 are generically
smooth over R, the morphisms s;, s3: Spec(R) — 9t uniquely deter-
mine morphisms s\°%, sy®: Spec(R)18 — M8 of log schemes, respec-
tively. Write %8 4 flog o glog 4log 4 ylog o Jlog . gpoc(R)los —y gplos
Mo Write, moreover,

log log . lo, lo, log log . lo lo
nS1 7, nSy o Spec(, R)%® —= 8, 1% t5%: Spec(, R) % — N
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for the respective composites of the natural strict closed immersion
Spec(, R)'2 < Spec(R)"8 with 5%, sy % £i°8 Then observe that it
follows immediately from condition (1) of Definition 2.5, together with
[11, Theorem 4.1], that the equality

log log
151 = 159

holds. Also, observe that it follows immediately from condition (2)
of Definition 2.5 (cf. also the uniqueness discussed in [13, Theorem
6.4.1.1.6]) that the equality ¢; = t,, hence also the equality ¢% = &%,
holds, which thus implies the equality

tlog_ log
nt1 — nlg -

In particular, by considering the commutative diagram of log schemes
over Spec(R)°8

Spec(R/m)"*6C— Spec(R/m™)!s

log

nSy
1 8110g=18120g ntllog:ntl;g

log
nSy

log log

m T

: : 1 1
we conclude from Lemma 3.3, (iv), that the equality ,s® = ,55°

holds. In particular, it follows formally that the equality si® = s

hence also the equality s; = ss, holds, as desired. This completes the
proof of Theorem 3.4. O

4. EXISTENCE OF PRYM-FAITHFUL NEW-ORDINARY COVERINGS

In the present section, we prove the existence of a Prym-faithful new-
ordinary Galois étale covering of a suitable stable curve over a separably
closed field of positive characteristic (cf. Theorem 4.5 below). In the
present section, let

e k be a separably closed field,

e X a stable curve over k that is sturdy (cf. Definition 1.5, (i))
and untangled (cf. Definition 1.5, (ii)), and

e L an invertible sheaf on X.

Write
£ Homo, (£, 0x).
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Also, for each vertex v € v(I'x) of I'y, write

def

L, Ly, L) Homoy, (L,, Ox,).
Definition 4.1. Let d be a positive integer. Then we shall write
r=4(X, L) CT(X, L)

for the subspace obtained by forming the pull-back of the subspace

@ F(Xva‘cv(_de))g @ F(XU7‘C’U)

vev(Tx) vev(Tx)

by the natural homomorphism

I(X,L)— P T(X., L)

vev(Tx)

Lemma 4.2. Let d be a positive integer. Then the natural homomor-
phism
I(X.L)— P T(X,.L)

vev(lx)

restricts to an isomorphism of subspaces

24X, L) —= B T'(X,,L(—dD,)).

vev(lx)
Proof. This assertion is immediate. U

Lemma 4.3. Suppose that the invertible sheaf L, on X, is nontrivial
and of nonnegative degree for each v € v(I'x). Then the following
assertions hold:

(i) The natural homomorphism

F(X, wx ®@X ,C) — @ wx ®k ,C ®k k(m)

z€e(T'x)

18 surjective.
(ii) The k-vector space T'(X,wy ®oy L)/T21 (X, wx Qo L) is of
dimension #e(I'x).

(iii) Suppose that T'(X,, LY (D,)) = {0} for each v € v(I'x). (For
example, this will be the case if the inequality deg(L,) > deg(D,)
holds for eachv € v(T'x).) Then the k-vector space T=1 (X, wx®e,
L)/T22(X,wx oy L) is of dimension 2 - #e(T'x).
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Proof. First, we verify assertion (i). Write mx : X — X for the normal-

ization of X and )3 for the sheaf of relative differentials of X over k.
Then it follows immediately from the existence of the exact sequence
of invertible sheaves on X (cf. [14, Chapter 10, Lemma 3.12, (a)])

OH(Wx)*Q)N( ®OX LHQ}X ®(9X £*> @ wx ®k£®k k}(l‘) *>0
z€e(I'x)

that, to verify assertion (i), it suffices to verify that T'(X,, L)) = {0}
for each v € v(I'x). On the other hand, this assertion follows from
our assumption that the invertible sheaf £, on X, is nontrivial and of
nonnegative degree for each v € v(I'x). This completes the proof of
assertion (i). Assertion (ii) is a formal consequence of assertion (i).

Finally, we verify assertion (iii). Observe that it follows from Lemma 4.2
(cf. also Remark 1.4.1) that the k-vector space '} (X, wx®ep, L) /T=*(X, wx Qo
L) is isomorphic to the k-vector space

( @ (X, Qx, Qoy, £v))/( @ I'(Xo, Qx, ®oy, LU(_DU))>_
vev(l'x) vev(Tx)

On the other hand, for each v € v(I'y), since (we have assumed that)
the invertible sheaf £, on X, is nontrivial and of nonnegative degree,
it follows that dimy(H'(X,,Qx, ®o,, L,)) = dimg(I(X,,LY)) = 0,
which thus implies that

dimy, (F(XU, Qx, ®ox, Ev)) =g, — 1 +deg(L,).

Moreover, for each v € v(I'x), since (we have assumed that) 0 =
dim (I'(X,,, £Y(D,))) = dimy(H'(X,, Qx, ®oy, Lo(—Dy))), it follows
that

din (T (X, Qx, @oy, Lu(-Da))) = go — 1+ deg(L,) — deg(D,).
Thus, assertion (iii) follows from the easily verified equality
2-#e(Tx) = Y deg(Dy).
vev(lx)
This completes the proof of assertion (iii), hence also Lemma 4.3. [

Lemma 4.4. Suppose that, for each vertex v € v(I'x) of I'x, the fol-
lowing three conditions are satisfied:

(1) The natural map
px,c,t T(Xo, Qx, ®oy, Lo) @k T(X, Qx, ®oy, L) — T(X,, QF7)
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18 surjective.
(2) The invertible sheaf L, on X, is nontrivial and of degree zero.
(3) The equality T'(X,, L) (D,)) = {0} holds.

Then the natural map
pxc: DX, wy ®oy L) @ T(X, wx ®oy L) — (X, wd?)
18 surjective.

Proof. Let us first observe that, for each v € v(I'x), we have a commu-
tative diagram of k-vector spaces

KX, L

FZI(X7 Wx ®(9X ‘C) Rk le(Xu wx ®OX E\/) F22(X’ w?f)

| |

F(Xva QXU ®OXU 'Cv) ®k F(Xva QXv ®OX1; /Cv) F(Xva Q?}i)

HXy, Ly

— where the vertical arrows are the homomorphism induced by the nat-
ural closed immersion X, < X (cf. also Remark 1.4.1 and Lemma 4.2).
Thus, it follows immediately from Lemma 4.2, together with condition
(1), that the homomorphism

I(X, wx ®oy, L) @ T2HX wyx oy LY) — 22X, wi?)

determined by the homomorphism gy o is surjective. In particular, to
verify Lemma 4.4, it suffices to verify that the composite

HX,c

N(X,wx ®oy L) @ T(X,wx R0, LY) —>T(X,w§?)

— D(X,w§?) /T (X, i)

— where the second arrow is the natural surjective homomorphism —
is surjective.

Next, observe that it follows from Lemma 4.3, (i), together with
condition (2), that there exists an element a € I'(X,wx ®o, £L¥) whose
image in wx ®o, LY @y k(z) is nonzero for each = € e(I'x). Write ¢,
for the composite

IN'(X,wx ®oy L) — (X, w$?) —= (X, w?)/T22(X, wF?)

— where the first arrow is the homomorphism given by mapping s —
pxc(s ® a), and the second arrows is the natural surjective homo-
morphism. Observe that it follows immediately from our choice of
a € T'(X,wy ®o, L") that the equality Ker(¢,) = I'>*(X,wx Qo L)
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holds. In particular, the homomorphism ¢, determines an injective
homomorphism

F<X> wx ®(9X E)/FZQ(X’ wx ®Ox ‘C)C—> F(Xa w§2)/F22(X7 w??)'

On the other hand, it follows from Lemma 4.3, (ii), (iii), together
with conditions (2), (3) (cf. also Remark 1.4.1), that both the domain
and the codomain of this injective homomorphism are of dimension 3 -
#e(T'x). In particular, this injective homomorphism is an isomorphism,
which thus implies that the composite under consideration is surjective,
as desired. This completes the proof of Lemma 4.4. ([l

The main result of the present section is as follows.

Theorem 4.5. Let

e k be a separably closed field and

e X a stable curve over k that is untangled (cf. Definition 1.5,
Suppose that, for each vertex v € v(I'x) of I'x, the following two con-
ditions are satisfied:

(a) The inequality deg(D,) < g, holds, which thus implies that the
stable curve X over k is sturdy (cf. Definition 1.5, (i)).

(b) The smooth proper curve X, over k is of gonality > 5, i.e.,
every finite morphism from X, onto the projective line over k
s of degree > 5.

Then there exist

e a stable curve Y owver k,
e a prime number | invertible in k, and
e a Galois étale covering f: Y — X of degree | over k

such that the following three conditions are satisfied:

(1) For each vertexv € v(T'x) of I'x, the inverse image f~'X, CY
15 irreducible.

(2) The Galois étale covering f:Y — X is Prym-faithful (cf. Def-
inition 2.5).

(3) If, moreover, the field k is of positive characteristic, then the
Galois étale covering f:Y — X is new-ordinary (cf. Defini-
tion 2.2).

Proof. Let v € v(I'y) be a vertex of I'x. Let us first observe that it
follows immediately from condition (a) (cf., e.g., [28, Lemma 1.2, (ii)]
and [28, Remark 1.7]) that
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(t;) there exists a nonempty open subscheme U C J, of J, such
that, for each j € U(k), the invertible sheaf &, on X, of de-
gree zero that corresponds to j € U(k) satisfies the following
condition: The equality T'( X,/ (D,)) = {0} holds.

Thus, it follows from (t,), together with [28, Lemma 3.9], that

(t5) there exists a positive integer ¢ such that, for each prime num-
ber [ invertible in &, the set that consists of isomorphism classes
of invertible sheaves &, on X, of order [ that satisfy the fol-
lowing condition is of cardinality > [?9=2(I?> — ¢): The equality
I'(X,, &/ (D,)) = {0} holds.

In particular, we conclude immediately from (f,), [28, Corollary 3.10]
(cf. also condition (b)), and [28, Corollary 5.3] (cf. also [25, Théoreme
4.3.1]) that

(t3) there exists a prime number [, such that, for each prime num-
ber [ > [,, there exists an invertible sheaf &, on X, of order [
that satisfies the following three conditions:

e The natural map

['(X,,Qx, ®oy, &) @k D(X,, Qx, @0y, &) — (X, 05)

is surjective.
e The equality I'(X,, £/ (D,)) = {0} holds.

vy v
e If the field k is of positive characteristic, then the Galois
étale covering of X, of degree [ that trivializes &, is new-

ordinary.

Thus, it follows from (f5) (cf. also [3, §9.2, Example 8]) that there
exist a prime number [ and an invertible sheaf £ on X of degree [
such that, for each vertex v € v(I'x) of I'x, the restriction of £ to
X, C X satisfies the three conditions that appear in (f;). Then it
follows from Theorem 3.4 and Lemma 4.4 (cf. also [3, §9.2, Example
8]) that the Galois étale covering of X of degree [ that trivializes &
satisfies conditions (1), (2), (3) in the statement of Theorem 4.5. This
completes the proof of Theorem 4.5. O

5. CYCLOTOMES ASSOCIATED TO HYPERBOLIC CURVES

In the present section, we introduce some notational conventions re-
lated to the notion of a hyperbolic curve and the notion of a cyclotome.
Moreover, we prove some basic facts concerning these notions. In the
present section, let

e R be a complete discrete valuation ring whose field of fractions
we denote by K, and whose residue field we denote by k,
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e K a separable closure of K, and
e / a hyperbolic curve over K.

Suppose that
e the field k is perfect and of characteristic p > 0.

Definition 5.1. We shall write

o K C K'™ C K for the Lnaximal unramified, tamely ramified
extension fields of K in K, respectively,
e k for the algebraic closure of k obtained by forming the residue

field of the normalization of R in K",

o Gx ¥ Cal(K/K) — G & Gal(K™/K) — Gu ¥ Gal(K™/K) S

Gal(k/k), and
o P Ker(Grg — G%) C Ik o Ker(Gx — GY¥) for the wild
inertia, inertia subgroups of G, respectively.

Definition 5.2. We shall write

e 7, for the profinite (respectively, pro-prime-to-char(K)) com-
pletion of the module Z whenever char(K) = 0 (respectively,
char(K) # 0) and

e Ay for the Tate module of the multiplicative group scheme
G, over K.

For a topological module M, we shall write

o MP Y Hom(M, Ay) for the topological module of continuous
homomorphisms M — Ag.

Remark 5.2.1. One verifies easily that the module A has a natural
structure of free Zy-module of rank one. In particular, if M is a free

zx—module of finite rank, then we have a natural identification M =
(MP)P.

Definition 5.3. We shall write

e 77 for the smooth compactification of the hyperbolic curve Z

over K,
— def

o/ = ZXKKQZ-FdéfZ—i_ XKF,

e 11, Az for the respective tame fundamental groups of (Z*, Z*\
7Z), (Z*+,Z*\ Z) (i.e., the respective fundamental groups as-
sociated to the Galois categories of finite flat coverings of ZT,
Z* that are at most tamely ramified along Z+\ Z, Z+ \ Z),
relative to suitable choices of basepoints, and

e 11+, Ay+ for the respective étale fundamental groups of Z7,
Z*, relative to suitable choices of basepoints.
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Thus, the natural morphisms Z < Z* — Spec(K) determine a com-
mutative diagram of topological groups

1 AZ HZ GK 1
1——= Ay T, Gx 1

— where the horizontal sequences are exact, and the vertical arrows
are surjective.

Remark 5.3.1. Let W' — ZT be a connected finite flat covering of
Z7 that is at most tamely ramified along Z* \ Z. Write W C W for
the open subscheme of W obtained by forming the inverse image of
the open subscheme Z C Z*. Then one verifies easily from the various
definitions involved that the scheme W is a hyperbolic curve over the
algebraic closure of K in the function field of W.

Definition 5.4. If the smooth proper curve Z* over K is of genus > 1,
then we shall write Ay & Homs (H*(A g+, Zy), Ly).

Remark 5.4.1. If the smooth proper curve Z* over K is of genus > 1,
then it is well-known (cf., e.g., [16, Chapter VI, Theorem 11.1, (a)])
that

(i) the module Az has a natural structure of free Zy-module of
rank one, and that
(ii) there exists a natural Gg-equivariant isomorphism Az = Az.

Definition 5.5. Let Z;, Z, be hyperbolic curves over K and ¢y, : 11z, =
Iz, (cf. Definition 5.3) a continuous isomorphism over G. Then we
shall say that the isomorphism ¢, is compactification-compatible if
the following condition is satisfied: Let H; C IIz, be an open sub-

group of II,. Write Hy o ¢n,(Hy) C Ilg,. For each i € {1,2}, write
W+ — ZF for the finite flat covering of Z;" that corresponds to the
open subgroup H; C Il which thus implies that we have an identifi-
cation H; = Iy, (cf. Definition 5.3), where we write W; for the open
subscheme of W;" obtained by forming the inverse image of Z; C Z;
(cf. Remark 5.3.1). Then the continuous isomorphism Iy, — Iy,
determined by the isomorphism ¢y, fits into a commutative diagram
of topological groups
Iy, — Iy +

zl |

I Wa II Wyt
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(cf. Definition 5.3) — where the horizontal arrows are the continuous
outer surjective homomorphisms that arise from the open immersions
Wy — Wi, Wy — W, respectively, and the right-hand vertical arrow
is a continuous isomorphism.

Lemma 5.6. Let Zy, Zy be hyperbolic curves over K and ¢r,: 1z, 5
Iz, (cf. Definition 5.3) a continuous isomorphism over G. Suppose
that the l-adic cyclotomic character Gx — Z; on Gk for some prime
number | invertible in K is an open homomorphism. (For example,
this will be the case if either the field k is finite, or the field K is of
characteristic zero.) Then the isomorphism ¢, is compactification-
compatible.

Proof. This assertion follows from [21, Corollary 2.7, (i)]. O

Definition 5.7. Let Z;, Z, be hyperbolic curves over K and ¢ry, : 117, —
Iz, (cf. Definition 5.3) a continuous isomorphism over Gx. Then we
shall say that the isomorphism ¢y, is cyclotomically compatible if the
isomorphism ¢y, is compactification-compatible, and, moreover, the

following condition is satisfied: Let H; C Ilz be an open subgroup

of IIz,. Write Hy o ¢n,(Hy) C Igz. For each i € {1,2}, write

W+t — ZF for the finite flat covering of Z;" that corresponds to the
open subgroup H; C Il which thus implies that we have an identifi-
cation H; = Iy, (cf. Definition 5.3), where we write W; for the open
subscheme of W;" obtained by forming the inverse image of Z; C Z;
(cf. Remark 5.3.1). Suppose that the smooth proper curve W;" is of
genus > 1. Then the smooth proper curve W,' is of genus > 1. More-

over, the diagram of topological modules

(cf. Definition 5.4) — where the horizontal arrow is the isomorphism in-
duced by the right-hand vertical arrow of the diagram of Definition 5.5,
and the two diagonal arrows are the respective natural isomorphisms
of Remark 5.4.1, (ii) — commutes.

Definition 5.8. Let C be a smooth curve over K.

(i) We shall say that the smooth curve C over K is isotrivial
if there exist a smooth curve Cj over the separable closure
Ky in K of the minimal subfield of K and an isomorphism
CxxgKS O, Xfofoverf.
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(ii) We shall say that the smooth curve C over K has a good model
(respectively, nonsmooth stable model; nonsmooth sturdy stable
model) if there exist a stable curve C over R and an isomor-
phism C xp K = C over K such that the stable curve C xp k
over k is smooth (respectively, not smooth; sturdy and not
smooth) over k.

Remark 5.8.1. Let C' be a smooth curve over K. Suppose that C' has
either a good model or a nonsmooth stable model. Then it is immediate
that the smooth curve C' is a proper hyperbolic curve over K.

Lemma 5.9. The following assertions hold:

(i) For each integer go, there exists a connected finite flat covering
W+ — ZT of ZT that is at most tamely ramified along Z+\ Z
such that the smooth proper curve W is of genus > go.

(ii) Suppose that the smooth curve Z (respectively, the smooth proper
curve Z) over K is nonisotrivial. Let W+ — ZT be a con-
nected finite flat covering of Z* that is at most tamely ram-
ified along Z+\ Z. Write W for the open subscheme of W+
obtained by forming the inverse image of Z C Z*t. Then the
smooth curve W (respectively, the smooth proper curve W) is
nonisotrivial.

(iii) Suppose that the smooth proper curve Z+ over K has a non-
smooth stable model. Let W — ZT be a connected finite flat
covering of ZT that is at most tamely ramified along Z* \ Z.
Then the smooth proper curve W does not have any good
model.

(iv) Suppose that the smooth curve Z over K is nonisotrivial. Then
there exists a connected finite flat covering W+ — Z* of Z*
that is at most tamely ramified along Z* \ Z such that the
smooth proper curve W is nonisotrivial.

Proof. Assertion (i) follows immediately from the well-known Riemann-
Hurwitz formula, together with the well-known structure of the maxi-
mal pro-l quotient of the étale fundamental group of a hyperbolic curve
over an algebraically closed field of characteristic # [ (cf., e.g., [26,
Proposition 1.1, (i), (ii)]). Assertion (ii) follows immediately from [27,
Lemma 1.32]. Assertion (iii) follows immediately from [19, Corollary
7.4].

Next, we verify assertion (iv). Let us first observe that it follows from
assertions (i), (ii) that, to verify assertion (iv), we may assume without
loss of generality, by replacing Z by the inverse image of Z C Z* by a
suitable finite flat covering of Z*, that the smooth proper curve Z% is
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of genus > 2. Let W+ — Z* be a Galois finite flat covering of Z* that
is at most tamely ramified along Z* \ Z whose branch locus is given
by Z\ Z. (Observe that it follow immediately from the well-known
structure of the maximal pro-I quotient of the étale fundamental group
of a hyperbolic curve over an algebraically closed field of characteristic
# 1 — cf., e.g., [26, Proposition 1.1, (i), (ii)] — that such a covering
always exists.) Write W C W for the open subscheme of W obtained
by forming the inverse image of Z C Z* and L C K for the algebraic
closure of K in the function field of W.

Assume that the smooth proper curve W over L is isotrivial, i.e.,
that there exist a smooth curve W™ over the separable closure Ly in
K of the minimal subfield of L and an isomorphism W+ x, K =
W %1, K over K. Then observe that it follows immediately from [4,

Theorem 1.11] that the natural action of Gal(W+ x K/Z* x; K) on
W+ x K over K descends uniquely, relative to a fixed isomorphism
WHx K 5 Wy XZOF as above, to an action on W over Ly. Write Z;
for the quotient of the resulting action of Gal(W+ x;, K/Z% xx K) on
W, and Zy C Z; for the étale locus of the natural (necessarily finite
flat) morphism W, — Zf. Then one verifies immediately from the
various definitions involved that there exists an isomorphism Z x x K —
Z XEO? over K. In particular, the smooth curve Z over K is isotrivial,
in contradiction to our assumption that the smooth curve Z over K
is nonisotrivial. In particular, the smooth proper curve W over L is

nonisotrivial. This completes the proof of assertion (iv), hence also of
Lemma 5.9. U

6. THE LOG FUNDAMENTAL GROUPS OF LOG SPECIAL FIBERS

In the present section, we discuss some fundamental facts concerning
the log fundamental groups of the log special fibers of stable curves over
complete discrete valuation rings. In the present section, suppose that
we are in the situation at the beginning of the preceding §5. Moreover,
let

e X be a stable curve over R.
Suppose that

e the structure morphism X — Spec(R) is generically smooth,

i.e., that the generic fiber X © X g K is smooth over K.

Definition 6.1. We shall write

e XY ¥ s o K XY ¥k, XY X xiE,
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o X8 for the log scheme obtained by equipping X with the log
structure associated to the divisor X C X,

o X'°¢ for the log scheme obtained by equipping X with the log
structure obtained by pulling back the log structure of X'°¢ by
the natural closed immersion X — X,

e Spec(R)"8 for the log scheme obtained by equipping Spec(R)
with the log structure associated to the divisor with normal
crossings determined by the closed point of Spec(R), and

e Spec(k)°8 for the log scheme obtained by equipping Spec(k)
with the log structure obtained by pulling back the log struc-
ture of Spec(R)'® by the natural surjective homomorphism
R — k.

Lemma 6.2. The natural immersions X — X < X determine a
sequence of finite (cf. [4, Theorem 1.11]) groups

Autg (X) <—— Autp(X)— Auty(X)

— where the first arrow is an isomorphism, and the second arrow is
imjective.

Proof. The bijectivity of the first arrow is immediate. The injectivity
of the second arrow follows from [4, Theorem 1.11]. O

Definition 6.3. We shall write

o IIy, Ay for the respective étale fundamental groups of X, X,
relative to suitable choices of basepoints,
° Hl)(ég for the log fundamental group of X' relative to a suitable

choice of basepoint, and

adm def log tm
o AF™ = Ker(Ily® — GF').

Thus, the natural commutative diagram of schemes
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determines (cf. also Remark 6.3.1 below) a commutative diagram of
topological groups

1 AX HX GK 1
1 ——= Aj™ Hlf Gim 1

— where the horizontal sequences are exact, and the vertical arrows
are surjective. We shall write

® spy: Iy — Hlig for the middle vertical continuous surjective
homomorphism of this diagram.

We shall refer to this homomorphism sp,: [Ixy — Hlig as the special-
1zation homomorphism associated to the stable curve X over R.

Remark 6.3.1. Let us recall from [8, Corollary 1] and [8, Proposi-
tion B.7] that the natural open immersion X — X" induces a continu-
ous outer isomorphism of the tame fundamental group of (X, X) (i.e.,
the fundamental group associated to the Galois category of finite flat
coverings of X’ that are at most tamely ramified along X') with Hl;g.

Lemma 6.4. Suppose that one of the following two conditions is sat-
isfied:
(1) The field K is of characteristic zero.
(2) The smooth proper curve X over K is nonisotrivial, and the
field k 1s algebraic over a finite field.

Then there exists a Galois étale covering Y — X of X such that if one
writes L C K for the algebraic closure of K in the function field of Y,
then the smooth proper curve Y over L has a nonsmooth stable model.

Proof. Let us first observe that it is immediate that, to verify Lemma 6.4,
we may assume without loss of generality that X is smooth over k.
Next, observe that it follows immediately from [26, Lemma 5.5] (cf.
also Remark 6.3.1 and [4, Corollary 2.7]) that, to verify Lemma 6.4, it
suffices to verify that the continuous surjective homomorphism A x —
A?m determined by the specialization homomorphism sp ,: [Ix — Hlég
associated to the stable curve X over R is not an isomorphism. If con-
dition (1) is satisfied, then this assertion follows from [26, Proposition
1.1, (i), (ii)]. If condition (2) is satisfied, then this assertion follows
from [28, Theorem 0.3]. This completes the proof of Lemma 6.4. [

Lemma 6.5. Let H C Ilx be an open subgroup of llx. Write XH_—> X
for the finite étale covering of X that corresponds to H, Ky C K for
the finite extension field of K that corresponds to the image of H in G,
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and Rg C Kg for the normalization of R in Kg. Then the following
assertions hold:

(i)

Suppose that the kernel of the specialization homomorphism
spy: lx — I8 associated to the stable curve X over R is
contained in H C Ilx. Then the following four conditions are
satisfied:

(1) The inclusion Ky C K™ holds.

(2) There exist a stable curve Xy over Ry and an isomor-
phism Xg X g, Kg 5 Xy over K. In the remainder of
the present (i), we shall identify Xy X r,, Kg with Xg by
means of such a fived isomorphism Xy Xg,, Kg 5 Xg.
In particular, it follows from [19, Corollary 7.4] that the
finite étale covering Xy — X extends uniquely to a proper
surjective morphism Xg — X.

(3) The resulting morphism Xy — X of (2) is finite.

(4) Let v € v(I'y) (cf. Definition 1.2) be a vertex of I'y and
w e v(F;H)YCf. Definition 1.2, Definition 6.1) a vertex of
Iz, that lies over v € v(I'z). Then the induced morphism
(X1)w — X, (cf Definition 1.3) restricts to a finite étale
covering UXn — UX (cf. Definition 1.3) and is at most
tamely ramified along DX C X, (cf. Definition 1.3).

Suppose, moreover, that the open subgroup H C Ilx of Ilx s

normal. Then the kernel of the specialization homomorphism

spy: lx — I8 associated to the stable curve X over R is
contained in H C Ilx if and only if (1), (2), (3) of (i) are
satisfied, and, moreover, the following condition is satisfied:

(5) In the situation of (2) of (i), for each verter v € v(I'y, )
of I'z,,, the subgroup of the Galois group Gal(Xpy/X) (cf.
Definition 6.1) that consists of elements that stabilize the
closed subscheme 1% C Xy (cf. Definition 1.3) and in-
duce the identity automorphism of the function field of
I s of order prime to p.

Proof. First, we verify assertion (i). The assertion that conditions (1),
(2), (3) are satisfied is a formal consequence of Remark 6.3.1. Moreover,
the assertion that condition (4) is satisfied is well-known (cf., e.g., [29,
Proposition 2.2, (ii)]). This completes the proof of assertion (i). As-
sertion (ii) follows immediately from Abhyankar’s lemma (cf., e.g., [7,
Exposé XIII, Proposition 5.5]) and the Zariski-Nagata purity theorem
(cf., e.g., [7, Exposé X, Théoreme 3.1]), together with Remark 6.3.1.
This completes the proof of Lemma 6.5. 0
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Definition 6.6. Let [ be a prime number. Then we shall write

o AL for the topological abelianization of the maximal pro-I
quotient of Ax.

For each vertex v € v(I'z) of 'y, we shall write
o Al[} 2, AL for the respective topological abelianizations of the

maximal pro-l quotients of the étale fundamental groups of the
smooth curves U2, X, (cf. Definition 1.3) over k, relative to
suitable choices of basepoints, and

o D2 C ALY for the decomposition subgroup of AL associated
to v € v(I'y).

For each edge e € e(I'y) (cf. Definition 1.2) of 'y, we shall write

e D2 C AL for the decomposition subgroup of AP associated

to e € e(I'y).

Lemma 6.7. Let | be a prime number invertible in R. Then the fol-
lowing assertions hold:

(i) Letv € v(I'g) be a vertex of I'yy. Then the kernel of the natural
continuous surjective homomorphism AZU‘ % — D2 induced by

v

the natural open immersion UX — X (cf. condition (4) of
Lemma 6.5, (i)) is contained in the kernel of the continuous

(necessarily surjective) homomorphism All}a?b —» A%ab induced
'[T v

by the natural open immersion UUX > X,, ie.,

Ker(AZ%’ — D) C Ker(Al(}azb — Alz’ib).

(ii) Suppose that the stable curve X over k is sturdy. Let v, w €
v(I'%) be vertices of I'ss. Then the equality v = w holds if and
only if the equality D5 = D% holds.

(iii) Suppose that the graph I's is 2-connected (i.e., that, for each
vertex of I'g, the subgraph of ' obtained by removing the
vertex from Ty is connected). Let v € v(I's) be a vertex of
I's. Then the natural continuous surjective homomorphism
Al;%’ ®z, By — DvA ®z, F induced by the natural open immer-

sion UX — X (c¢f. condition (4) of Lemma 6.5, (i)) is an
1somorphism.

Proof. Assertions (i), (ii) follow immediately from [9, Lemma 1.4]. As-
sertion (iii) follows from [31, Corollary 3.5] (cf. also [29, Proposition
3.4]). O
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Lemma 6.8. Let Y — X be a finite étale covering of X. Write Ky C
K for the algebraic closure of K in the function field of Y and Ry C Ky
for the normalization of R in Ky. Suppose that the open subgroup
[Ty C Ilx of llx that corresponds to the finite étale coveringY — X of
X contains the kernel of the specialization homomorphism spy: Illx —
Hl;g associated to the stable curve X over R. In particular, it follows
from condition (2) of Lemma 6.5, (i), that there exist a stable curve
Y over Ry and an isomorphism Y Xp, Ky 5 Y over Ky. In the
remainder of the present Lemma 6.8, we shall identify Y X g, Ky with
Y by means of such a fived isomorphism Y X g, Ky — Y. Then the
following assertions hold:

(i) Suppose that the stable curve X over k is sturdy. Then the
stable curve Y (cf. Definition 6.1) over k is sturdy.
(ii) Suppose that the stable curve X over k untangled. Then the
stable curve Y over k is untangled.
(iii) Let v € v(I'z) be a vertex of I'y and w € v(I'y) (cf. Defini-
tion 1.2, Definition 6.1) a vertex of I'y that lies overv € v(l'z).
Suppose that the inequality deg(DvZ) < gg (cf. Definition 1.3)

holds. Then the inequality deg(Dg) < g% (cf. Definition 1.3)
holds.

Proof. Assertions (i), (ii) are immediate. Assertion (iii) follows imme-
diately from the well-known Riemann-Hurwitz formula, together with
condition (4) of Lemma 6.5, (i). O

Definition 6.9.

(i) We shall say that a subgroup H of a group G is subnormal
if there exist a positive integer n and a sequence H = Hy C
H C...CH, C H, =G of subgroups of G such that, for
each i € {1,...,n}, the subgroup H; ; is normal in H;.

(ii) We shall define a sub-Galois étale covering of a scheme to be
a (necessarily connected) finite étale covering of the scheme
obtained by forming the composite of finitely many Galois étale
coverings.

Lemma 6.10. There exists a sub-Galois étale covering Y — X of X
such that if one writes Ky C K for the algebraic closure of K in the
function field of Y and Ry C Ky for the normalization of R in Ky,
then the following four conditions are satisfied:
(1) The open subgroup Iy C Ilx of Iy that corresponds to the
finite étale covering Y — X of X contains the kernel of the
specialization homomorphism spy: lIx —» Hljég assoctated to
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the stable curve X over R. In particular, it follows from con-
dition (2) of Lemma 6.5, (i), that there exist a stable curve
Y over Ry and an tsomorphism Y Xp, Ky 5 Y over Ky.
In the remainder of the present Lemma 6.10, we shall iden-
tify Y xXgr, Ky with Y by means of such a fized isomorphism
y X Ry KY :) Y.

(2) The stable curve Y (cf. Definition 6.1) over k is untangled.

(3) For each vertex v € v(I'y;) (cf. Definition 1.2, Definition 6.1)

of I's;, the inequality deg(DvX) < gUX (cf. Definition 1.3) holds
(which thus implies that the stable curve Y over k is sturdy).

(4) For each vertex v € v(I'y;) of I'y;, the smooth proper curve Y,
(cf. Definition 1.3) over k is of gonality > 5, i.e., every finite
morphism from Y, onto the projective line over k is of degree
> 5.

Proof. Let us first observe that it follows immediately from [21, Remark
1.1.5] and [32, Lemma 3.2], together with Lemma 6.8, (i), (ii), that,
to verify Lemma 6.10, we may assume without loss of generality, by
replacing X by a suitable sub-Galois étale covering of X, that

(a) the stable curve X over k is sturdy and untangled, that,

(b) for each vertex of I'y, there exist at least two edges of 'y that
abut to the vertex, and that -

(c) the graph I'y is 2-connected.

Let us fix a vertex vy € v(I'y) of I'y. Let Iy be an odd prime
number invertible in R. Then it follows immediately from (a), (b),
(c), and Lemma 6.7, (iii), together with the well-known structure of
the maximal pro-l quotient of the admissible fundamental group of a
stable curve over an algebraically closed field of characteristic # [ (cf.,
e.g., [26, Proposition 1.1, (i), (ii)], [9, Lemma 1.4]), that there exists a
continuous surjective homomorphism Al)‘{ab — I, such that,

e for each v € v(I'y), the image by this continuous surjective

homomorphism of D5 C Al)%'ab is nontrivial, and, moreover,
e for each e € ¢(I'y) that abuts to vg, the image by this contin-

uous surjective homomorphism of D2 C Aé(}'ab is nontrivial.

In particular, one concludes from Lemma 6.8, (ii), and the well-known
Riemann-Hurwitz formula, together with condition (4) of Lemma 6.5,
(i) (cf. also our assumption that [, > 2, and that the stable curve X
over k is sturdy), that there exists a Galois étale covering Y — X
of X such that conditions (1), (2) of the statement of the present



40 YUICHIRO HOSHI AND YU YANG

Lemma 6.10 are satisfied, and, moreover, a similar inequality to the in-

equality “deg(DvX) < g¥” for each vertex of I'y; that lies over vy € v(I'y)
is satisfied. Thus, by considering a connected component of the fiber
product of these “*°Y” over X — where vy ranges over the vertices of
'y — one verifies immediately from Lemma 6.8, (ii), (iii), that there
exists a sub-Galois étale covering of X such that conditions (1), (2), (3)
of the statement of the present Lemma 6.10 are satisfied. In particu-
lar, it follows immediately from [28, Theorem 0.7] and [28, Proposition
0.8, (i), (ii)], together with Lemma 6.8, (ii), (iii) (cf. also [9, Lemma
1.4]), that there exists a sub-Galois étale covering of X such that con-
ditions (1), (2), (3), (4) of the statement of the present Lemma 6.10
are satisfied, as desired. This completes the proof of Lemma 6.10. []

7. RECONSTRUCTION OF LOG SPECIAL FIBERS

In the present section, we show how the log special fiber of a stable
curve can be recovered from the étale fundamental group (cf. Lemma 7.3,
(iv), below). In the present section, suppose that we are in the situation
at the beginning of the preceding §6.

Lemma 7.1. Suppose that the equality k = k holds, and that the stable
curve X over k is sturdy. Let [ be a prime number invertible in R
and H C Ilx a normal open subgroup of llx. Write Xg — X for the
Galois étale covering that corresponds to H, Ky C K for the finite
Galois extension field of K that corresponds to the image of H in G,
and Ry C Ky for the normalization of R in Ky. Then the following
assertions hold:

(i) Condition (1) of Lemma 6.5, (i), is satisfied if and only if the
image of H in G contains the subgroup Py C Gk.

(ii) Condition (2) of Lemma 6.5, (i), is satisfied if and only if there
exists a sub-Zy-module M C ARE> (cf. Definition 6.6) of AE>
such that the conjugation action of H on Aé‘(‘i) determines the
respective trivial actions of H on M and AK> /M.

(iii) Suppose that condition (2) of Lemma 6.5, (1), is satisfied. Thus,
there exist a stable curve Xy over Ry and an isomorphism
Xy Xpr, Ko = Xy over Ky. Here, we shall identify Xy X Ry
Ky with Xy by means of such a fized isomorphism Xy X g,
Ky = Xpg. Then condition (3) of Lemma 6.5, (i), is sal-
isfied if and only if, for each vertex v € v(I'z, ) (cf. Defini-
tion 1.2, Definition 6.1) of I'z,, the image of D& C Al)'(if
(cf. Definition 6.6) by the natural continuous homomorphism
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Aé‘fi’ — AL has a natural structure of free Zj-module of rank
>4,

(iv) Suppose that condition (2) of Lemma 6.5, (i), is satisfied. Thus,
there exist a stable curve Xy over Ry and an isomorphism
Xy Xr, Ko = Xy over Ky. Here, we shall identify Xy X Ry
Ky with Xy by means of such a fized isomorphism Xy X g,
Ky = Xg. Then condition (5) of Lemma 6.5, (ii), is satisfied
if and only if, for each vertex v € v(I'y, ) of 'z, , the subgroup
of Ax/Ax, (cf. Definition 6.3) that consists of v € Ax/Ax,
such that the conjugation action of v on Al)}? stabilizes the
closed subgroup D2 C Aé}f and induces the identity automor-
phism of D% is of order prime to p.

Proof. Assertion (i) is immediate. Assertion (ii) follows from the well-
known stable reduction criterion (cf., e.g., [3, §7.4, Theorem 6]), to-
gether with [4, Theorem 2.4]. Assertion (iii) follows immediately from
Lemma 6.7, (i), together with the well-known structure of the maximal
pro-I quotient of the étale fundamental group of a hyperbolic curve over
an algebraically closed field of characteristic # [ (cf., e.g., [26, Proposi-
tion 1.1, (i), (ii)]). Assertion (iv) follows immediately from Lemma 1.6
and Lemma 7.2, (i), below, together with Lemma 6.7, (i), (ii). O

Lemma 7.2. Let A be an abelian variety over K and | an odd prime
number invertible in K. Then the following assertions hold:

(i) Write All] C A for the group subscheme of A obtained by
forming the kernel of the endomorphism of A given by mul-
tiplication by . Then the natural homomorphism Autg(A) —
Aut(A[l](K)) is injective.

(ii) Let B be an abelian variety over K. Write Ti(A), Ty\(B) for
the respective l-adic Tate modules of A, B. Then the natural

map Homg (A, B) — Homg(T;(A), T)(B)) is injective.

Proof. Assertion (i) follows from [5, Lemme 5.17]. Assertion (ii) fol-
lows from the (easily verified) fact that the subset of the underlying
topological space of A that consists of torsion points of A of [-power
order is dense. U

Lemma 7.3. Let Xy, X5 be stable curves over R such that the generic

fibers X et Xy xpr K, X5 dof Xy X g K are smooth over K, respectively,
and ¢n, : Ux, — Ilx, (cf. Definition 6.3) a continuous isomorphism
over G. Suppose that the stable curve Xy (cf. Definition 6.1) over k

15 sturdy. Then the following assertions hold:
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(i) Letl be a prime number. Then, for each vy € v(I'z,) (cf. Def-
inition 1.2, Definition 6.1), there exists a unique vertex vy €
v(T'y,) such that the image of Dy C AEY (¢f. Definition 6.6)
by the isomorphism AKE> = A'EY induced by the isomorphism
¢y is given by Dy C AREP. Moreover, for each ey € e(lg,)
(cf. Definition 1.2), there exists a(n) (not necessarily unique)
edge ey € e(I'y,) such that the image of DEA1 C AP (¢f. Def-
inition 6.6) by the isomorphism AR = AR induced by the
isomorphism ¢, is given by D5 C AKEP

(ii) The isomorphism ¢, fits into a commutative diagram of topo-
logical groups

SPx, lo
o g
HXl H&l

N

t
ériy |2 Pulgs |1 Gy

/

(cf. Definition 5.1, Definition 6.1, Definition 6.3) — where
the diagonal arrows are the natural continuous surjective ho-
momorphisms, and the vertical arrows are continuous 1S0mor-
phisms.

(iii) Suppose, moreover, that the field k is finite, and that Xy is not
smooth over R. Then there exists an isomorphism ¢y: X1 —
Xy of schemes (not necessarily over k). Moreover, the assign-
ment “pr, — ¢x” is functorial.

(iv) Suppose, moreover, that the field k is finite, that X is not
smooth over R, and that the isomorphism ¢mn, s cyclotomi-

~

E . . lo lo
cally compatible. Then the isomorphism ¢H1;g: I35 = 1135 of

log
—_—
HX2 stQ H&Q

11) arises from an iSomorphism @ yios: X log & yle cf. Defi-
X 1 2
nition 6.1) over Spec(k)"8.

Proof. Assertion (i) follows immediately — in light of Lemma 6.7, (ii),
Lemma 6.8, (i), and [4, Corollary 2.7] — by applying [21, Corollary
2.7, (iii)] to the various isomorphisms between the respective maximal
pro-q quotients of suitable open subgroups of Ax,, Ax, for some prime
number ¢ invertible in R. Assertion (ii) follows from Lemma 6.5, (ii),
and Lemma 7.1, together with assertion (i).
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Next, we verify assertions (iii), (iv). We begin by observing that, to
verify assertions (iii), (iv), by applying Lemma 5.9, (iii), and Lemma 6.8,
(i), together with Galois descent, we may pass to a suitable Galois
étale covering of X;. In particular, it follows from Lemma 6.10, to-
gether with Lemma 6.8, (ii), that, to verify assertions (iii), (iv), we
may assume without loss of generality that each of the stable curves
Xy, Xo over k is sturdy, untangled, and split. Then assertion (iii)
follows immediately from a similar argument to the argument applied
in the discussion given in [17, pp.600-602]. Moreover, assertion (iv)
follows immediately from a similar argument to the argument applied
in the proof of [17, Theorem 7.2] (cf. also the discussion preceding [17,
Theorem 7.2]). This completes the proofs of assertions (iii), (iv), hence
also of Lemma 7.3. O

Definition 7.4. Let Z;, Z, be hyperbolic curves over K and ¢ry, : 11z, 5
11z, (cf. Definition 5.3) a continuous isomorphism over Gg. Then we
shall say that the isomorphism ¢y, is LSF-compatible (where the “LSF”
stands for “Log Special Fiber”) if the isomorphism ¢y, is compactification-
compatible (cf. Definition 5.5), and, moreover, the following condi-

tion is satisfied: Let H; C Il be an open subgroup of I1. Write

H, dof ¢n,(H;) C Iz, L C K for the finite extension field of K that

corresponds to the image of H; (i.e., of Hs) in Gk, Ry, C L for the
normalization of R in L, and kj, for the residue field of R;. Moreover,
for each i € {1,2}, write W, — Z;" for the finite flat covering of Z;
that corresponds to the open subgroup H; C Iz, which thus implies
that we have an identification H; = Iy, (cf. Definition 5.3), where
we write W; for the open subscheme of W," obtained by forming the
inverse image of Z; C Z" (cf. Remark 5.3.1). Suppose that there exist
a stable curve W, over Ry, such that Wy (cf. Definition 6.1) is sturdy
and not smooth over k; and an isomorphism W, xp, L 5 Wfr over
L. Then there exist a stable curve W, over R; and an isomorphism
Ws Xp, L = Wj over L. Moreover, if we identify W, xg, L with
W.* by means of such a fixed isomorphism W; xg, L — W for each
i € {1,2}, then the isomorphism ¢Hlé)g: Hlﬁgl = H@i (cf. Definition 6.1,

Definition 6.3) induced by ¢, (cf. Lemma 7.3, (ii); our assumption
that the isomorphism ¢, is compactification-compatible) arises from
an isomorphism W 5 W2 (cf. Definition 6.1) over Spec(kz )8 (cf.
Definition 6.1).

Lemma 7.5. Let Zy, Zy be hyperbolic curves over K and ¢, : 1z 5
Iz, (cf. Definition 5.3) a continuous isomorphism over G. Suppose
that the field k is finite, and that the isomorphism ¢, s cyclotomically
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compatible (cf. Definition 5.7). Then the isomorphism ¢y, is LSF-
compatible.

Proof. This assertion follows immediately from Lemma 7.3, (iv) (cf,
also Lemma 5.6). O

Definition 7.6. Suppose that the field K is of characteristic p. Let n
be a nonnegative integer. Then we shall write

e Iri(n) for the absolute p™-th power Frobenius endomorphism
of Spec(K),

e Z(n) for the hyperbolic curve over K obtained by pulling back
the hyperbolic curve Z over K by Fry(n), and

o Fry/x(n): Z — Z(n) for the relative p"-th power Frobenius
morphism over K (i.e., the morphism determined by the abso-
lute p™-th power Frobenius endomorphism of 7).

Remark 7.6.1. One verifies easily that, in the situation of Defini-
tion 7.6, the continuous outer homomorphism Iz — Ilz(,) (cf. Defini-
tion 5.3) induced by the morphism Frz/x(n): Z — Z(n) is a continuous
outer isomorphism.

Lemma 7.7. Let Zy, Zy be hyperbolic curves over K and ¢, : 1z 5
Iz, (cf. Definition 5.3) a continuous isomorphism over G. Suppose
that the field k is finite. Then the following assertions hold:

(i) Suppose that the field K is of characteristic zero. Then the
isomorphism ¢, 1s cyclotomically compatible.

(ii) Suppose that the field K is of characteristic p, and that the
hyperbolic curve Zy over K is nonisotrivial. Then there ex-
ists a uniquely determined integer n that satisfies the follow-
ing condition: If n is nonnegative, then the composite 115, —
Hz,my (cf. Definition 5.3, Definition 7.6) of the given iso-
morphism ém,: 1z, = Iz, with the continuous isomorphism
Iy, = g,y induced by Frz, i (n) (cf. Remark 7.6.1) is cy-
clotomically compatible. If n is negative, then the composite
Iz, ) = Iy, of the inverse of the continuous isomorphism
Iy, = Iz, () induced by Fry, i (n) with the given isomorphism
b, 1z, = g, is cyclotomically compatible.

Proof. Observe that it follows from [16, Chapter VI, Theorem 11.1,
(a)], together with Lemma 5.9, (ii), that, to verify Lemma 7.7, we may
pass to a suitable finite étale covering of Z;. In particular, it follows
from Lemma 6.4 and Lemma 6.10, together with Lemma 5.9, (iii), that
we may assume without loss of generality that Z;7, hence also Z; (cf.
Lemma 7.3, (iv)), has a nonsmooth sturdy stable model. Then, by
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applying a similar argument to the argument applied in the discussion
given in [17, pp.601-603] (or, alternatively, by applying [10, Lemma
5.2, (ii)]), one concludes that the diagram of topological modules

Age == Ay

| |

Ag —— Ag

— where the vertical arrows are the respective natural isomorphisms
of Remark 5.4.1, (ii), the upper horizontal arrow is the isomorphism
induced by ¢, (cf. Lemma 5.6), and the lower horizontal arrow is the
isomorphism obtained by multiplying 1 (respectively, a power of p) if K
is of characteristic zero (respectively, of characteristic p) — commutes.
Thus, the desired assertion follows immediately from the definition of
the relative p™-th power Frobenius morphism defined in Definition 7.6.
This completes the proof of Lemma 7.7. (l

8. TATE MODULES OF RAYNAUD EXTENSIONS OF GENERALIZED
PRYM SCHEMES

In the present section, we introduce some notational conventions
related to the notion of the generalized Prym scheme of a finite étale
covering of a stable curve and the notion of the Raynaud extension
of the generalized Prym scheme. Moreover, we prove some basic facts
concerning these notions. In the present section, suppose that we are
in the situation at the beginning of §6. Moreover, let

e ) be a stable curve over R such that the generic fiber Y o
Y X g K is smooth over K,

e [ a prime number invertible in R, and

e )V — X a Galois étale covering of degree [ over R, whose Galois
group we denote by G.

By considering the natural (necessarily faithful — cf. Lemma 1.6, Lemma 6.2)
action of G on the Jacobian variety .Jy (cf. Definition 1.1) of the sta-

ble curve Y = Y x g k (cf. Definition 6.1) over k (i.e., induced by the
action of G on ) over R), we shall regard G as a subgroup of the
automorphism group of Jy over k. Suppose, moreover, that

e the structure morphism ) — Spec(R) of Y has a splitting, and
that
e the stable curve ) over £ is split.

Definition 8.1. We shall write
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o Jj, Pjt, Jx for the respective dual semi-abelian schemes (cf., e.g.,
[22, Chapitre IV, Théoreme 7.1, (i)]) of the Jacobian variety
Jy of Y over R, the generalized Prym scheme Py, x associated
to the Galois étale covering Y — X’ (cf. Definition 2.1),

° 0 — T(Jy) = Jy — A(Jy) — 0,0 — T(Py/x) — Py/X —
A(Py/x) — 0, 0 — T(Jt) = J, = A(JL) — 0,0 —

T(Pg,/x) — Pt Y = AP y/)c) — 0 for the respecrtive Ray-

naud extensions associated to Jy, Py/x, J3, Py 5 (cf.; e.g., [6,

Chapter II, §1)), N N

© To(). TulPyya). TulJh), Tul(Pys). Tu(T(T3)). Tu(Ty).
To(A(J9)), Tx(T(Pyx)), Tx (Pya), Tx (A(Pyx)), Tx(T(J5)),
Tu(J5), Tx(A()), Tx(T(PY)a)) Tx(Py ), Tx(APY)x)

for the respective full profinite (respectively, pro-prime-to-char( K)-

adic) Tate modules of (the generic fibers of) Jy, Pyx, Jy,
Py T(Jy), Jy, A(Jy), T(Py/X) Pysx, A(Pyx), T(J5),
g5, A(Jt) T(PS,/X) PS,/X, A(Py/X) whenever char(K) = 0
(respectively, char(K') # 0), and

)
o C(Jy), C(Pysx), C(JY), C(PS,/X) for the respective character
groups of the tori T'(Jy), T(Py/ ) T(Jt ) T(PS,/X) over R.

Remark 8.1.1.

(i) It is well-known (cf., e.g., [6], Chapter II, §1) that we have a
natural identification Jy = J. y X g k, which thus determines a
natural identification of the connected component of Ker(l —
hyew: Jy = Jy) with Py/X X g k (cf. Definition 2.1).

(ii) It is well-known (cf., e.g., [6], Chapter I, §1; [6], Chapter III,
Corollary 7.4) that there exist natural commutative diagrams
of topological modules

0 —— Tu(Pyjz) —= T (Pyja) —= C(Ply ) 02 e — 0

L

0 —— Ty (Jy) — Tx(Jy)

C(Jt ) ®z Zy — 0,

0 ——T.(J%) T, (J%) C(Jy) @z Ly —0

| | N

00— Tx(ﬁgz/x) —— T« (Pyx) —= C(Pyx) @z Zy —0
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— where the horizontal sequences are exact, and the vertical
arrows of the first diagram are injective.
(iii) It is well-known (cf., e.g., [6], Chapter II, §2) that the abelian

scheme A(P], ) over R is the dual abelian scheme of A(Py x)-

(iv) It is immediate that we have natural identifications T\ (T(Jy)) =
C’({y)D (cf. Definition 5.2), T« (T'(Pyx)) = C(Py,x)?, T« (T(JY)) =
C(T)P, T(T (P ) = C(PYy )P,

(v) It follows from (iii), (iv) (cf. also Remark 5.2.1) that, by apply-
ing “(—)"” to the natural exact sequences 0 — T (T'(Py,x)) —
"]I‘X(Py/jg) — Ty (A(Py/x)) = 0,0 — TX(T(PS,/X)) — TX(PS;/;() —
T« (A(P5,x)) — 0, we obtain exact sequences of topological
modules

0 —= T (A(PY)x)) — Tu(Pyjx)” —= C(Pyx) ®2 Ly —=0,

0 —= T (A(Pyjx)) —= T (Pl )P —= C (Pl ) @z Ly — 0.

Definition 8.2. We shall write

e M,y for the topological abelianization of (respectively, the topo-
logical abelianization of the maximal pro-prime-to-char(K’) quo-
tient of) Ay whenever char(K) = 0 (respectively, char(K) #
0) and

° Mirym C My for the image of the endomorphism of the topo-
logical group My determined by hpey-

Remark 8.2.1. It follows from the well-known theory of Jacobian va-
rieties of curves that the morphism Y — Jy (cf. Definition 1.1) deter-
mined by a splitting of the structure morphism of ) over R determines
a G g-equivariant continuous isomorphism

My L> TX (Jy)

Moreover, this isomorphism does not depend on the choice of a splitting
of the structure morphism of ) over R.

Lemma 8.3. The isomorphism My — T, (Jy) of Remark 8.2.1 fits
into a commutative diagram of topological modules

P
Myrym % MY

P

Ty (Py/X)C—> T (Jy)
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— where the horizontal arrows are the natural inclusions (cf. also Re-
mark 8.1.1, (ii)), and the vertical arrows are continuous isomorphisms.

Proof. This assertion follows immediately from the various definitions
involved. U

Definition 8.4. We shall write

o M2dm for the topological quotient of My determined by the
quotient Aiﬂm (cf. Definition 6.3) of Ay,

° M{/v " for the topological quotient of M2d™ by the closed sub-
group of M#™ topologically generated by the images of the
decomposition subgroups of A‘j‘,dm associated to the elements
of v(I'y;) (cf. Definition 1.2, Definition 6.1),

o MyF C My for the kernel of the natural continuous surjective
homomorphism My — M{,V 5

o MmN € MEY™ for the intersection of ML™™
with My,

o ((M{/V )P) pre-prym C (M™™)P for the image by the natural ho-
momorphism M2 — (MY™™)2 of the closed subgroup (M{™)2 C
My,

o ((M{/V )P)prym C (MY™)P for the kernel of the natural homo-
morphism from (M3¥™)? onto

(™) /(M) ecprym) @2 Q,

o MY C MP™ for the image of the submodule T, (T(Py /x)) €
T, (Py,x) (cf. Remark 8.1.1, (ii)) by the inverse of the left-hand
vertical arrow of the diagram of Lemma 8.3,

° Mgrym'(/ nd) def Mip/rym /I\/JISP/K*VI“’nd for the quotient of Mip/rym by
the submodule M}Y™ ™ € My™™ of MY™, and

3 ((M{,nd)D )prym © (MY™)P for the kernel of the natural homo-

morphisms from (M}™)? onto
(7P 0P @, Q

Prym-(/ud))

— where we regard (M, as a subgroup of (M}~Y™)P

by the natural continuous injective homomorphism (M}~™ /)P

(My™™)".

c%

Lemma 8.5. The following assertions hold:
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(i) The isomorphism My — Ty (Jy) of Remark 8.2.1 fits into a
commutative diagram of topological modules

M}Pirym -nd ¢ M}P;rym -VI ¢ M}Pirym C MY

C
T (T(Pyjx)) — To(Pyyx) — TxU‘L/X)g Tx(ljy)

— where the horizontal arrows are the natural inclusions (cf.
also Remark 8.1.1, (ii)), and the vertical arrows are continuous
1somorphisms.

(ii) The diagram of (i) determines a commutative diagram of topo-
logical modules

Prym-vr Prym-vr Prym-nd
M, — M, /My

: Lz

Ty (Py)x) Ty (A(Py)x))

— where the horizontal arrows are the natural surjective ho-
momorphisms, and the vertical arrows are continuous isomor-
phisms.

(iii) The isomorphism Ty (J3,) = MYy determined by the isomor-
phism of Remark 8.2.1 fits into a commutative diagram of topo-
logical modules

T (T<ﬁg//2())(—> TX<ﬁ§//2{)(—> TX(PJt//X) ~— Ty (J;)

) j ] |

(M) gy (MEPHP), s (MP™)P «——— MY

— where the horizontal arrows are the natural homomorphisms
(cf. also Remark 8.1.1, (ii)), and the vertical arrows are con-
tinuous isomorphisms.

(iv) The diagram of (iii) determines a commutative diagram of
topological modules

Tx (ﬁg)//’\f> TX (A(ﬁSJ/X))

j j

<(M{/Hd)D> Prym ((M{/nd)D) Prym/ ((M{/Vr)D) Prym
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— where the horizontal arrows are the natural surjective ho-
momorphisms, and the vertical arrows are continuous 1S0mor-
phisms.

(v) The natural identification My™™ = ((My~>™)P)? (cf. Remark 5.2.1)

. . . . . Prym
determines an identification of the quotients of My

M}P;r}'m /Mip/rym—vr ( ((Mé/vr)D) Prym> D :

which fits into the decomposition

T (Pyyae) /T Pyjie) <= MY M — ((ME)P) )

= Ty (T(PYy)0)) P == C(PY)x) @2 Ly

— where the first arrow is the isomorphism determined by the
diagram of (i), the second arrow is the isomorphism deter-
mined by the left-hand vertical arrow of the diagram of (iii),
and the second equality is the equality determined by the equal-
ity Tx(T(PY,x)) = C(PY,x)" that appears in Remark 8.1.1,

(iv) — of the natural identification ']I‘X(Py/x)/']rx(ﬁy/x) =

~

C(PS;/X) Rz Ly that appears in the upper horizontal sequence
of the first diagram of Remark 8.1.1, (ii).

Proof. These assertions follow immediately from [3, §9.2, Example 8]
(cf. also [6, Chapter III, Corollary 8.2]). O

Lemma 8.6. Let
o X, Xy be stable curves over R such that, for each i € {1,2},

— the generic fiber X; o X; xr K is smooth over K, and
that
— the stable curve X; (cf. Definition 6.1) over k is sturdy,

e Vi, Vs, stable curves over R such that, for each i € {1,2},

— the generic fiber Y; o Vi xr K is smooth over K, that

— the structure morphism Y; — Spec(R) has a splitting, and
that
— the stable curve Y; (cf. Definition 6.1) over k is split, and
o Vi — X1, Vo — Xy Galois étale coverings of degree | over R.

Let ¢ny: Iy, = Ilx, (cf. Definition 6.3) be a continuous isomor-
phism over G that restricts to an isomorphism Iy, = Iy, (cf. Defi-
nition 6.3) necessarily over Gg. Then the following assertions hold:
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(i) The isomorphism My, = My, (cf. Definition 8.2) determined
by the isomorphism ¢n, fits into a commutative diagram of
topological groups

MPrym—Vr C MPrym C MY
Y1 Y1 1

b

Prym-vr Prym
My, —— My,”" —— My,

(cf. Definition 8.4) — where the horizontal arrows are the nat-
ural inclusions, and the vertical arrows are continuous isomor-
phisms.

(ii) The isomorphism MY, = MY determined by the isomorphism
¢ny fits into a commutative diagram of topological groups

(M) pryy = (MET™)P ~— M

NN

(M) ppyy = (M) —— M

(cf. Definition 8.4) — where the horizontal arrows are the nat-
ural homomorphisms, and the vertical arrows are continuous
1somorphisms.

Proof. These assertions follow from Lemma 7.3, (i), (ii), together with
the various definitions involved (cf. also Lemma 6.8, (i)). O

9. RECONSTRUCTION OF RAYNAUD EXTENSIONS OF GENERALIZED
PRYM SCHEMES

In the present section, we show how the Raynaud extension of the
generalized Prym scheme of a finite étale covering in a certain situation
can be recovered from the étale fundamental group (cf. Lemma 9.3
below). In the present section, suppose that we are in the situation at
the beginning of the preceding §8.

Definition 9.1. Suppose that the field K is of characteristic zero.
Then we shall write

° 153; /x[p™°] for the p-divisible group over R determined by the

semi-abelian scheme Py x,
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e &y, x for the p-divisible group over R whose p-adic Tate mod-
ule is given (cf. [30, Theorem 4]; Lemma 8.5, (i)) by the G-
module obtained by forming the maximal G -stable torsion-
free quotient of MLY™ " ®3 Z, on which the natural action of
I (cf. Definition 5.1) is trivial, and

e Ty,x for the p-divisible group over R whose p-adic Tate mod-
ule is given (cf. [30, Theorem 4]; Lemma 8.5, (i)) by the G-
module (((My™™)P) )P .7, where we write (MyY™"")P)Ix C
(My™ )P for the submodule of (M}Y™")P of I-invariants.

Remark 9.1.1. It is immediate that if the field K is of characteristic
zero, then the p-divisible group Py ,x[p*°] over R is the p-divisible group
over R whose p-adic Tate module is given (cf. [30, Theorem 4]) by the
Gr-module T (Py/x) ®z Zp.

Lemma 9.2. Suppose that the field K is of characteristic zero, and
that the Galois étale covering Y — X is new-ordinary (cf. Defini-

~

tion 2.2). Then the isomorphism MyY™™ 5 Tx(ﬁy/)() that appears
in Lemma 8.5, (i), determines (cf. also Remark 9.1.1, [30, Theorem
4]) an isomorphism of p-divisible groups over k

(gy/X X Ty/;\_») XR k A ﬁy/x[poo] XR k.

Proof. Let us first recall that since (we have assumed that) the field k&
is perfect, every p-divisible group over £ may be decomposed into the
product of an étale p-divisible group over k and a connected p-divisible
group over k. Moreover, one verifies easily that an arbitrary homo-
morphism over k from an étale (respectively, a connected) p-divisible
group over k to a connected (respectively, an étale) p-divisible group
over k is trivial. Now let us recall that we have assumed that the Ga-
lois étale covering Y — X is new-ordinary. Thus, the desired assertion
follows immediately from the well-known structure of the p-adic Tate
module of the p-divisible group over R that arises from an extension
by a torus over R of an abelian scheme over R whose special fiber over
k is ordinary. This completes the proof of Lemma 9.2. U

Lemma 9.3. Let
o X, X, be stable curves over R such that, for each i € {1,2},
— the generic fiber X; o X; xr K 1s smooth over K, and
that
— the stable curve X; (cf. Definition 6.1) over k is sturdy

and not smooth over k,
e Vi, Vs stable curves over R such that, for each i € {1,2},
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— the generic fiber Y; o Vi xXr K is smooth over K, that
— the structure morphism Y; — Spec(R) has a splitting, and
that
— the stable curve Y; (cf. Definition 6.1) over k is split, and
o Vi — X1, Vo — Xy Galois étale coverings of degree | over R.
Let ¢r,, : Ly, = 1Ly, (cf. Definition 6.3) be a continuous isomorphism
over Gy that restricts to an isomorphism Ily, = Ily, (cf. Defini-
tion 6.3) necessarily over Gg. Suppose that the following three con-
ditions are satisfied:
o The field K is of characteristic zero.
o The Galois étale covering Y1 — X4 is new-ordinary.
e The isomorphism ¢n, is LSF-compatible (cf. Definition 7.4).
Then the isomorphism M;rym'vr = ngm'vr (cf. Definition 8.4) de-
termined by ¢n, (cf. Lemma 8.6, (i)) arises — relative to the second
vertical arrow of the diagram of Lemma 8.5, (i) — from an isomor-

phism Pyl/XI = Py2/x2 (cf. Definition 8.1) of semi-abelian schemes
over R (cf. Remark 9.5.1 below).

Proof. Let us first observe that since (we have assumed that) the iso-
morphism ¢, is LSF-compatible, the isomorphism Hlog = Hlog (cf.
Definition 6.3) induced by ¢, (cf. Lemma 7.3, (ii)) arises (cf also
Lemma 5.9, (iii)) from an isomorphism J\*% 5 XIZOg (cf. Definition 6.1)
over Spec(k )log (cf. Definition 6.1), which determines (cf. Remark 8.1.1,
(1)) an isomorphism Pyl/;ﬁ Xpk = Pyz/XQ X g k over k. In particular,
since (we have assumed that) the field K is of characteristic zero, and
the Galois étale covering )y — X5, hence also the Galois étale covering
Yo — Xy, is new- ordlnary, one concludes 1mmed1ately from Lemma 9.2
that the isomorphism Py, 0[] Xk = Py2 126 [P] xRk (cf Defini-
tion 9.1) induced by the above 1somorphlsm Pyl s, X Rk = Py2 Jx, XRK
coincides with the isomorphism Py, 0[P Xp k= Py, 12, X R K

induced by the isomorphism Py, 20 (0] = Py, x,[p™] determined (cf.
Remark 9.1.1, [30, Theorem 4]) by the composite

D ~ Prym-vr  ~ Prym-vr  ~ D
Tu(Py,ja) <— My ——= My, "™ —— T (Py, /a,)

(cf. Definition 8.1) — where the first and third arrows are the second
vertical arrow of the diagram of Lemma 8.5, (i), and the second arrow
is the isomorphism determined by ¢r,. Thus, it follows immediately
from [12, Theorem 1.2.1] that the isomorphism My>™™ 55 My™¥™
determined by ¢, arises — relative to the second vertical arrow of the
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diagram of Lemma 8.5, (i) — from an isomorphism Py, Ja — Py, /X
of semi-abelian schemes over R, as desired. This completes the proof
of Lemma 9.3. 0

Remark 9.3.1. Suppose that, in the situation of Lemma 9.3, we
are given an isomorphism Pyl Jx — Py2 /x, of semi-abelian schemes
over R. Then observe that one verifies easily that this isomorphism
Py1 X — Py2 /x, of semi-abelian schemes over R determines a commu-
tative diagram of semi-abelian schemes over R

0— T<Py1/X1) - Pyl/Xl - A<Py1/)(1) —0

| | |
0—— T<Py2/X2) - Pyz/Xz - A<Py2/X2) —0

(cf. Definition 8.1) — where the horizontal sequences are exact, the
vertical arrows are isomorphisms, and the left-hand vertical arrow de-
termines an isomorphism of modules

C(ﬁyl/zﬂ) — C(ﬁyz//'\&)
(cf. Definition 8.1).

Definition 9.4. Let Z;, Z, be hyperbolic curves over K and ¢ry, : 11z, 5
Iz, (cf. Definition 5.3) a continuous isomorphism over Gg. Then
we shall say that the isomorphism ¢y, is REP-compatible (where the
“REP” stands for “Raynaud Extension of the generalized Prym scheme”)
if the isomorphism ¢y, is compactification-compatible (cf. Definition 5.5),
and, moreover, the following condition is satisfied: Let H] C Hy C Il
be open subgroups of 11z, such that the image of H{ in G coincides

with the image of H; in G . Write H), def ¢, (Hy) C Hy def ¢, (Hy) C
Iy, L C K for the finite extension field of K that corresponds to the
image of H; (i.e., of Hy) in G, Ry C L for the normalization of R in L,
and kg, for the residue field of Ry. Moreover, for each ¢ € {1,2}, write
VE — W — ZF (cf. Definition 5.3) for the finite flat coverings of Z;"
that correspond to the open subgroups H; C H; C Il , respectively.

Suppose that there exist
e a prime number ¢ invertible in R,
e stable curves Vi, Wy, Vo, W5 over Ry, and
e isomorphisms V; xp, L = V;", Wy xg, L = Wi" Vo xg, L =
Vot, Wa Xg, L = W, over L, by means of which we identify
Vi Xg, L, Wy Xp, L, Vo Xg, L, Wy xp, L with V|, W}V,
W, respectively,
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such that

e cach of the stable curves Vi, Wy, Vo, Wy (cf. Definition 6.1)
over kp, is sturdy, split, and not smooth over kj, that

e cach of the morphisms V; — Wi, Vo — W, induced by the
finite flat coverings Vit — Wi, Vit — W' (cf. [19, Corollary
7.4]), respectively, is a Galois étale covering of degree ¢ and
new-ordinary, and, moreover, that

e cach of the structure morphisms V; — Spec(Rp), Vo — Spec(Ry)
has a splitting.

Then the isomorphism M‘};Ym'vr = M‘P;Ym'vr (cf. Definition 8.4) de-
1 2

termined by ¢n, (cf. our assumption that the isomorphism ¢r, is
compactification-compatible; Lemma 8.6, (i)) arises — relative to the
second vertical arrow of the diagram of Lemma 8.5, (i) — from an
isomorphism Py, I lBVQ/WQ (cf. Definition 8.1) of semi-abelian
schemes over Rj,.

Lemma 9.5. Let Z, Zy be hyperbolic curves over K and ¢, : 1z 5
Iz, (cf. Definition 5.3) a continuous isomorphism over G. Suppose
that the field K is of characteristic zero, and that the isomorphism ¢,
is LSF-compatible. Then the isomorphism ¢, is REP-compatible.

Proof. This assertion follows from Lemma 9.3. U

Remark 9.5.1. One main difficulty to work with basefields of positive
characteristic in the present paper is as follows. Suppose that the Galois
étale covering Y — X is new-ordinary. As discussed in Lemma 9.2, in
the case where the field K is of characteristic zero, one may relate
the p-divisible group Py,x[p™] associated to the semi-abelian scheme

ﬁy sx with the étale fundamental group IIy of the generic fiber X of
X. On the other hand, in the case where the field K is of positive
characteristic, since every nontrivial multiplicative p-divisible group
over K is not étale, at the time of writing, the authors of the present
paper are not able to relate Py, x[p™] with IIx. In particular, at the
time of writing, the authors of the present paper are not able to prove
Lemma 9.5 without assuming that K is of characteristic zero.

10. RECONSTRUCTION OF GENERALIZED PRYM SCHEMES

In the present section, we show how the generalized Prym scheme of
a finite étale covering in a certain situation can be recovered from the
étale fundamental group (cf. Lemma 10.6, (iii), below). In the present
section, suppose that we are in the situation at the beginning of §8.

Definition 10.1. We shall write
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o \y: Jy = J}, for the isomorphism over R obtained by forming
the uniquely determined extension of the principal polarization
on Jy determined by the theta divisor on Picf,y/;(l, where we
write gy for the genus of the curve Y over K, and some splitting
of the structure morphism ) — Spec(R),

° )\5 st Pyjxe = Pjt, /x for the Prym semi-polarization associated
to the Galois étale covering J — X (cf. Definition 2.3, (ii)),

o )‘34;//\?: A(Py/x) — A(PS,/X) for the polarization on A(Py,x)

(cf. Remark 8.1.1, (iii)) induced by )\ﬁ/x: Py x — Pjt,/x,

o )\g/xz C(ﬁfwx) — C(ﬁy//y) forNthe homom(fphism deter-
mined by the homomorphism T'(Py,x) — T(P3, ) induced

by )‘5/2(: Pyjx — Py 5, and
) TX()\)))I TX(Jy) :> TX(J:;) = TX(Jy)D, TX (/\5/)() TX(P)J/X> —
TX(PgtJ/Nx) = TX(PJ//X)D: TX()‘é/ﬂ: Tx(A(Py/x)) — TX(A(PS;/X)) =
T« (A(Py,x))? (cf. Definition 5.2) for the continuous homo-
morphisms induced by Ay, )\§ /200 )\f, /200 respectively.
Lemma 10.2. The following assertions hold:

(i) The cup pairing

Homy, (My, M) = H'(Ay, Z) @5, H'(Ay, Ag)

— HQ(Ay, Af) = I‘IOITli>< (Ay, AF)

determines a continuous isomorphism

~

My —— My ®5 Homs (Ay,Ag).

(ii) The isomorphism My = My ®; Homg (Ag, Ay) determined
by the isomorphism of (i) fits into a commutative diagram of
topological modules

My ~ My ©®; Homg (Ag, Ay) —— My
! 2T
T (Jy) = T (Jy) === Tx(Jy)"”

Ty ()‘)})

— where the vertical arrows are the isomorphisms determined
by the isomorphism of Remark 8.2.1, and the right-hand upper
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horizontal arrow is the isomorphism determined by the isomor-
phism
ZX — HOIIli>< (Ay, AF)

given by the natural isomorphism Ay = Az of Remark 5.4.1,
(ii) (cf. also Remark 5.2.1; Remark 5.4.1, (i)).

(iii) The composite My — ML of the upper horizontal arrows of the
diagram of (ii) fits into a commutative diagram of topological
modules

Prym-nd Prym-vr Prym
YA S, V)¢ (S V(L S— Y

| | |

(ML) o (MEPHP), s (MPY™)P < M

— where the upper sequence is the upper sequence of the dia-
gram of Lemma 8.5, (i), and the lower sequence is the lower
sequence of the diagram of Lemma 8.5, (iii).

(iv) We have a commutative diagram of topological modules

Mirynl—vr /M)Pirym—nd ((M{/Hd)D) Prym/ ((M{/VF)D> Prym

zl I

Ty (A(Py)x)) Ty (A(PY))

Tx (A5, %)

— where the upper horizontal arrow is the homomorphism de-
termined by the diagram of (iii), and the left-hand, right-hand
vertical arrows are the right-hand vertical arrows of the dia-
grams of Lemma 8.5, (ii), (iv), respectively.

(v) We have a commutative diagram of topological modules

M}Pirynl -nd ( (M{/Vr ) b ) Prym

T, (T(Py,x)) == C(Py/x)” C(PYx)” =T« (T(P5))

(cf. Remark 8.1.1, (iv)) — where the upper horizontal arrow
is the left-hand vertical arrow of the diagram of (iii), the lower
horizontal arrow is the homomorphism induced by )‘S/X? and
the left-hand, right-hand vertical arrows are the right-hand ver-
tical arrows of the diagrams of Lemma 8.5, (i), (i), respec-
tively.
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Proof. These assertions follow immediately from the well-known theory
of Jacobian varieties of curves, together with the various definitions
involved. 0

Lemma 10.3. Consider the diagram

(M}Pirym—nd ) D

()0 )

ZT |

C(Pyx) ©z L C(PY)x) ®z Ly

AS) %
obtained by applying “(—)P 7 to the diagram of Lemma 10.2, (v) (cf.
also Remark 5.2.1). In the remainder of Lemma 10.3, we identify
(Merle—nd)D; (((MQF)D)PWHI)D with C(Py/)() X7z ZX, C(PSJ/X> X7 ZX
by means of the left-hand, right-hand vertical arrows of this diagram, re-
spectively. Let C' C (((M{)’r)D)pIym)D be a submodule of(((M{)’r)D)prym)D
and fo: C — C(Py/x) a homomorphism of modules. Then the follow-
ing two conditions are equivalent:

(1) The equality (C, fo) = (C(PY2), AS,) holds.

(2) The inclusion C — (((MQY)D)prym)D determines an isomor-
phism C @7 Ly (((M{,Vr)D)prym)D, and, moreover, the ho-
momorphism (((M{)’r)D)prym)D — (MY YD determined by
this resulting isomorphism and the homomorphism fo: C —
C(ﬁy/)() under consideration coincides with the upper hori-
zontal arrow (((M{}’r)D)prym)D — (MNP of the above di-
agram.

Proof. This assertion follows immediately from the (easily verified) fact
that the modules C(Pyx), C(PY,),) are ﬁniﬁely generateii and free,
and, moreover, the homomorphism )\JC) Jx C(P}, Jx) = C(Py/x) is an

injective homomorphism whose cokernel is (finite and) of order a power
of | (cf. Remark 2.3.1), hence also prime to p. O

Definition 10.4. Let F be a field and F a separable closure of F.

(i) Let A be a semi-abelian variety over F'. Then we shall refer to
the homomorphism A(F) — HY(Gal(F/F), Ty (A)) — where
we write T, (A) for the full profinite (respectively, pro-prime-
to-char(K)-adic) Tate module of A whenever char(K) = 0 (re-
spectively, char(K) # 0) — induced by the various Kummer
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exact sequences associated to A as the x-Kummer homomor-
phism associated to the semi-abelian variety A over F'.

(ii) We shall say that the field F'is x-Kummer-faithful if, for ev-
ery finite extension field F’ of F' contained in F and every
semi-abelian variety A over I, the x-Kummer homomorphism
A(F') — HY(Gal(F/F"), T« (A)) associated to A is injective.
Observe that one verifies easily that this condition does not
depend on the choice of F.

Definition 10.5. We shall refer to the homomorphisms
C(PYyx) —= A(Pyx)(K), C(Pyx) — Pyx(K)

discussed in [6, Chapter 1T, Theorem 6.2, (3)], [6, Chapter II, Theorem
6.2, (5)] associated to the semi-abelian scheme Py x over R, equipped
with the Prym semi-polarization associated to the Galois étale cover-
ing Y — X, as the dual-extension-homomorphism, the Prym-period-
homomorphism associated to the Galois étale covering ) — X', respec-
tively.

Remark 10.5.1. Suppose that the field K is x-Kummer-faithful. Then
one verifies immediately from the various definitions involved (respec-
tively, from [6, Chapter III, Corollary 7.3]) that the dual-extension-

homomorphism C’(]ig,/x) — A’Eﬁy/x)(K) (respectively, the Prym-period-
homomorphism C(P3, ) — Py x(K)) associated to the Gali)is étale
covering Y — X' is a uniquely determined homomorphism C(PY, ) —
A(ﬁy/x)(ff) (respectively, C(ﬁg,/x) — ﬁy/x(K)) such that tEe image
of c € C’(Pty/x) by the CompoEite of thihomomorphism C’(Pg,/x) —
A(Py,x)(K) (respectively, C(PS)/X) —>fy/X(K)) under consideraticin
with the x-Kummer homomorphism A(Py,x)(K) = H'(Gk, T« (A(Pyx)))
(respectively, Py, x(K) — H* (G, T«x(Py,x))) associated to A(Py/x)X g
K (respectively, Py, x x gpK) is given by the G g-torsor under T (A(Py/x))
(respectively, Ty (Py/x)) obtained by forming the fiber of ¢ ® 1 €
C(PS, Jx) ®z Ly by the third arrow of the second exact sequence of
Remark 8.1.1, (v) (respectively, the third arrow of the upper horizon-
tal sequence of the first diagram of Remark 8.1.1, (ii)).
Lemma 10.6. Let

o X, Xy be stable curves over R such that, for each i € {1,2},

— the generic fiber X; aof X; xr K is smooth over K, and

that
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— the stable curve X; (cf. Definition 6.1) over k is sturdy,
e Vi, YV, stable curves over R such that, for each i € {1,2},
— the generic fiber Y; def Y; xgr K 1is smooth over K, that
— the structure morphism Y; — Spec(R) has a splitting, and
that
— the stable curve Y; (cf. Definition 6.1) over k is split, and
o Vi — X1, Vo — Xy Glalois étale coverings of degree | over R.

Let ¢n,, : My, = Ilx, (c¢f. Definition 6.3) be a continuous isomorphism
over Gg that restricts to an isomorphism Ily, — Iy, (cf. Defini-
tion 6.3) necessarily over Gg. Suppose that the following two con-
ditions are satisfied:

(a) The isomorphism ¢, is cyclotomically compatible (cf. Defini-
tion 5.7).

(b) The isomorphism M,f;fym'” = ngm'vr (cf. Definition 8.4) de-
termined by ¢, (cf. Lemma 8.6, (i)) arises — relative to the
second vertical arrow of the diagram of Lemma 8.5, (i) — from
an isomorphism ﬁyl/;ﬁ = 133;2/;‘/2 (cf. Definition 8.1) of semi-
abelian schemes over R.

Then the following assertions hold:

(i) The isomorphism ((My")P)prym)? 5 (M) )prym)? (cf.
Definition 8.4) determined by ¢u, (cf. Lemma 8.6, (ii)) arises
— relative to the right-hand vertical arrow of the diagram of
Lemma 10.8 — from an isomorphism C(PY, 5,) = C(P%, 4,)
(cf. Definition 8.1) of modules. Moreover, the resulting iso-
morphism C’(ﬁg,l/xl) = 0(15312/;«2) fits into a commutative di-
agram of modules

= )\36;1/?51 =
C(Pgil/Xl) C<Py1/X1)
Zl l?
C<P372/X2) )\C C(PyZ/XZ)
Vo /Xy

(cf. Definition 8.1) — where the right-hand vertical arrow is
the isomorphism induced by the isomorphism of (b) (cf. also
Remark 9.3.1).
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(ii) If the field K is x-Kummer-faithful, then the diagrams of groups

C(ﬁg)l/)ﬁ) HA(ﬁyl/Xl)(K) C(ﬁtyl/)q) - ﬁyl/é\ﬁ(K)
C(ﬁgig/)fg) HA(ﬁyZ/XQ)(K)7 C(ﬁgig/)fg) - ﬁ)b/xz(K)

(cf. Definition 8.1) — where the first and third vertical arrows
are the isomorphism obtained by (i), the second and fourth ver-
tical arrows are the isomorphisms induced by the isomorphism
Py, jx, = Py, x, of condition (b) (cf. Remark 9.5.1), the left-
hand upper, lower horizontal arrows are the dual-extension-
homomorphisms associated to the Galois étale coverings Y, —
X1, Vo — A&y, respectively, and the right-hand upper, lower hor-
izontal arrows are the Prym-period-homomorphisms associated
to the Galois étale coverings YV — X1, Yo — Xa, respectively
— commute.

(i) Suppose that the two diagrams of (ii) commute. Then the iso-
morphism Mgfym = ngm (cf. Definition 8.4) determined
by ¢y (cf Lemma 8.6, (i)) arises — relative to the third
vertical arrow of the diagram of Lemma 8.5, (i) — from an
isomorphism Py, jx, — Py, x, (cf. Definition 8.1) of semi-
abelian schemes over R that is compatible with the respective
Prym semi-polarizations associated to the Galois étale cover-
ings Y1 — X1, Yo — Xy (cf. Definition 2.8, (ii)).

Proof. First, we verify assertion (i). Observe that it follows from condi-
tion (a) that we obtain a commutative diagram of topological modules

(7)) — ()

( ((Mgr)D) Prym) D____ (ngm-nd)p

— where the horizontal arrows are the upper horizontal arrow of the
diagram of Lemma 10.3, and the vertical arrows are continuous iso-
morphisms determined by the isomorphism ¢, (cf. Lemma 8.6, (ii);
condition (b); Remark 9.3.1). Moreover, observe that it follows from
condition (b) (cf. also Remark 9.3.1) that the right-hand vertical arrow
of this diagram restricts — relative to the left-hand vertical arrow of the
diagram of Lemma 10.3 — to an isomorphism C(Py, /x,) = C(Py,/x,)
of submodules. In particular, assertion (i) follows from Lemma 10.3.
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This completes the proof of assertion (i). Assertion (ii) follows immedi-
ately form Lemma 8.5, (i), (ii), (v), and Lemma 8.6, (i), together with
assertion (i) and Remark 10.5.1.

Next, we verify assertion (iii). Let us first observe that it follows
from condition (b), together with Remark 9.3.1, that we have

(1) a commutative diagram of semi-abelian schemes over R

0—— T<ﬁy1/){1) - ﬁyl/?ﬁ - A<ﬁy1/?f1) —0

j | |

0—— T(ﬁyZ/XQ) - ﬁyQ/XQ - A(ﬁyQ/XQ) —0

— where the horizontal sequences are exact, the vertical ar-
rows are isomorphisms, and the middle vertical arrow is the
isomorphism of condition (b).

Next, recall that it follows from assertion (i) that we have

(2) an isomorphism of modules

Next, recall that it follows from our assumption that we have

(3) a commutative diagram of groups

C(ﬁg)l//\ﬁ) - A(ﬁyl/X1>(K)

| |

C<ﬁ§22//\,’2) - A(ﬁyz/Xz)(K)

— where the left-hand vertical arrow is the isomorphism of
(2), the right-hand vertical arrow is the isomorphism deter-
mined by the right-hand vertical arrow of the diagram of (1),
and the upper, lower horizontal arrows are the dual-extension-
homomorphisms associated to the Galois étale coverings ), —
X1, Yo — X, respectively.

Next, observe that it follows from Lemma 8.5, (ii), (iv); Lemma 8.6,
(i), (ii); Lemma 10.2, (iv), together with Lemma 7.2, (ii), and condition
(a), that we have
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(4) a commutative diagram of abelian schemes over R

o /\§1/X1 o
A(Pyl/Xl) A(Pg)l/Xl)
Zl l?
A(ﬁyQ/XQ) A(ﬁS)Q/XQ)
Vo /X2

— where the left-hand vertical arrow is the right-hand vertical
arrow of the diagram of (1), and the right-hand vertical arrow
is the isomorphism determined by the left-hand vertical arrow
(cf. also Remark 8.1.1, (iii)).

Next, recall that it follows from assertion (i) that we have

(5) a commutative diagram of modules

~ XS/ x, ~
C(Péil/.)(l) ' C(Pyl/Xl)
Zl ll
C(‘Ptyg/.)(g) /\5 Jx C(PyQ/XQ)
2/2

— where the left-hand vertical arrow is the isomorphism of (2),
and the right-hand vertical arrow is the isomorphism induced
by the left-hand vertical arrow of the diagram of (1).

Next, recall that it follows from our assumption that we have

(6) a commutative diagram of groups

C(ﬁﬁt))l//\’l) - ﬁyl/xl (K)

Zl il
C(ﬁ?))g/.)(g) - ﬁyQ/XZ(K)

— where the left-hand vertical arrow is the isomorphism of (2),
the right-hand vertical arrow is the isomorphism determined
by the middle vertical arrow of the diagram of (1), and the
upper, lower horizontal arrows are the respective Prym-period-

homomorphisms associated to the Galois étale coverings ), —
X1, Vo — A,

Thus, one concludes immediately from the equivalence Mo1: DDpop —
DEG,q of categories of [6, Chapter III, Corollary 7.2] that the iso-
morphism MlP/fym = ngm determined by ¢, arises — relative to
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the third vertical arrow of the diagram of Lemma 8.5, (i) — from an
isomorphism Py, ,x, — Py, x, of semi-abelian schemes over R that is
compatible with the respective Prym semi-polarizations associated to
the Galois étale coverings YV, — X, Vo — As, as desired. This com-
pletes the proof of assertion (iii), hence also of Lemma 10.6. 0

Definition 10.7. Let Z;, Z, be hyperbolic curves over K and ¢ry, : 11z, 5
Iz, (cf. Definition 5.3) a continuous isomorphism over Gx. Then we
shall say that the isomorphism ¢y, is Prym-compatible if the isomor-
phism ¢, is cyclotomically compatible and REP-compatible, and,
moreover, in the situation discussed in Definition 9.4, the diagrams
of groups

C<ﬁ§)1/wl) - A(ﬁvl/V\h)(L) C(ﬁﬁzl/m) - ﬁvl/wl (L)
C<ﬁ€}2/W2) - A(IBVZ/WQ)(L)7 C(ﬁﬁb/Wg) - ﬁvz/W2<L)

(cf. Definition 8.1) — where the first and third vertical arrows are the
isomorphisms obtained by Lemma 10.6, (i) (cf. our assumption that the
isomorphism ¢y, is cyclotomically compatible and REP-compatible),
the second and fourth vertical arrows are the isomorphisms induced by
the isomorphism Py, — Py,w, (cf. Remark 9.3.1), the left-hand
upper, lower horizontal arrows are the dual-extension-homomorphisms
associated to the Galois étale coverings V; — Wi, Vo — Ws, re-
spectively, and the right-hand upper, lower horizontal arrows are the
Prym-period-homomorphisms associated to the Galois étale coverings
Vi — Wi, Vo — W, respectively — commute.

Lemma 10.8. Let Z;, Zy be hyperbolic curves over K and ¢, : 1z, 5
Iz, (cf. Definition 5.3) a continuous isomorphism over G. Suppose
that the field K is of characteristic zero and x-Kummer-faithful, and
that the isomorphism ¢, is LSF-compatible. Then the isomorphism
¢n, s Prym-compatible.

Proof. This assertion follows from Lemma 7.7, (i); Lemma 9.5; Lemma 10.6,
(i), (ii). O
11. ANABELIAN CONSEQUENCES

In the present section, we give proofs of the main results of the
present paper (cf. Theorem 11.1, Corollary 11.2, Corollary 11.3 below).

Theorem 11.1. Let
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e R be a complete discrete valuation ring whose field of fractions
we denote by K, and whose residue field we denote by k,

e K a separable closure of K, and

e 7y, Zy hyperbolic curves over K.

Let ¢n,: Mz = Mg, (cf. Definition 5.3) be a continuous isomorphism
over Gy (cf. Definition 5.1). Suppose that the following three condi-
tions are satisfied.

(a) The field k is perfect and of characteristic p > 0.

(b) The isomorphism ¢n, is LSF-compatible (cf. Definition 7.4)
and Prym-compatible (cf. Definition 10.7).

(c) If K is of characteristic p, then the hyperbolic curve Zy over
K is nonisotrivial (cf. Definition 5.8, (1)), and the field k is
algebraic over a finite field.

Then the isomorphism ¢, arises from a unique isomorphism Zy — Zs
over K.

Proof. The uniqueness portion of Theorem 11.1 follows immediately

from a similar argument to the argument applied in the first paragraph

of the proof of [18, Theorem 14.1], together wth Lemma 7.7, (ii).
Next, to verify the existence portion of Theorem 11.1, let H; C Il

be a subnormal (cf. Definition 6.9, (i)) open subgroup of IIz. Write

H, def ¢, (Hy) C Tz, L C K for the finite extension field of K

that corresponds to the image of H; (i.e., of Hy) in Gg, R, C L
for the normalization of R in L, and kj for the residue field of Rj.
Moreover, for each i € {1,2}, write W;* — Z (cf. Definition 5.3) for
the finite flat covering of Z;" that corresponds to the open subgroup
H; C 11z, which thus implies that we have an identification H; = Ilyy,
(cf. Definition 5.3), where we write W; for the open subscheme of W;"
obtained by forming the inverse image of Z; C Z; (cf. Remark 5.3.1).
Then it follows from [4, Corollary 2.7] (cf. also Lemma 5.9, (i)), together
with the well-known structure of the maximal pro-I quotient of the étale
fundamental group of a hyperbolic curve over an algebraically closed
field of characteristic # [ (cf., e.g., [26, Proposition 1.1, (i), (ii)]), that
we may take “H;” so that,

(1) for each i € {1,2}, there exist a stable curve W; over Ry, and
an isomorphism W; xg, L = W;" over L, by means of which
we identify W; x g, L with W;" and, moreover,

(2) for each i € {1,2}, the branch locus of the finite flat covering
Wt — ZF is given by Z;" \ Z,.

Next, observe that it follows from Lemma 6.4, together with Lemma 5.9,
(i), (iv), that we may take “H;” so that W, has a nonsmooth stable
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model. Thus, it follows from Lemma 6.10, together with Lemma 5.9,
(iii), that we may take “H;” so that

(3) the stable curve Wy (cf. Definition 6.1) over kj, is untangled
and not smooth over kj,
(4) for each vertex w € v(I'yy,) (cf. Definition 1.2, Definition 6.1)

of I'yy,, the inequality deg(DX*) < g2 (cf. Definition 1.3)
holds (which thus implies that the stable curve Wi over kp is
sturdy), and, moreover,

(5) for each vertex w € v(I'yy,) of I'yy,, the smooth proper curve

(W1)w (cf. Definition 1.3) over k is of gonality > 5.

In particular, it follows from Theorem 4.5 that we may assume with-
out loss of generality, after possibly replacing L by a suitable finite
extension field of L in K, that there exist

e a stable curve V; over Ry,

e a prime number [ invertible in R, and
e a Galois étale covering V1 — W, of degree [ over Ry,

such that

(6) the induced Galois étale covering V; — W, (cf. Definition 6.1)
over k is Prym-faithful and new-ordinary.
Write H{ C H; for the open subgroup of H; that corresponds to the
induced Galois étale covering V;" Ly, Xp, L — W, H) o o, (Hy) C
Hsy, Vot — Wy for the finite flat covering of Wy that corresponds to
the open subgroup H) C H;. Then it follows from condition (2) of
Lemma 6.5, (i), and Lemma 7.3, (ii) (cf. also (4); Lemma 5.6), that
there exist a stable curve V, over Ry, and an isomorphism Vs Xp, L 5
V," over L, by means of which we identify V, xp, L with V,'.
Next, observe that since (we have assumed that) the isomorphism
¢, is LSF-compatible (cf. also (3); (4); Lemma 6.8, (i)),

(7) the commutative diagram of topological groups
1 1
My — Iy,
zl lz
1 1
My; — Iy,
(cf. Definition 6.1, Definition 6.3) — where the horizontal ar-
rows are the natural homomorphisms, and the vertical arrows

are continuous isomorphisms — induced by ¢, (cf. Lemma 5.6;
Lemma 7.3, (ii)) arises from a commutative diagram of log
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schemes over Spec(kr,)°¢ (cf. Definition 6.1)

1 1
Vit ——= Wr*

zi lz
ElQog wlzog

(cf. Definition 6.1) — where the horizontal arrows are the nat-
ural morphisms, and the vertical arrows are isomorphisms.

In particular, one concludes from (4), (6) that

(8) the stable curve Wy over ki, is StlEdy, agi, moreover,
(9) the induced Galois étale covering Vo — W, (cf. Definition 6.1)
over k is Prym-faithful and new-ordinary.

Moreover, it is immediate that we may assume without loss of gener-
ality, after possibly replacing L by a suitable finite extension field of L
in K, that

(10) each of the stable curves V1, Wi, Vo, W over ky, is split, and,
moreover,

(11) each of the structure morphisms V; — Spec(Ry,), Vo — Spec(Ry)
has a splitting.

Next, observe that since (we have assumed that) the isomorphism
¢, is Prym-compatible, it follows from Lemma 10.6, (iii) (cf. also (4),
(6), (8), (9), (10), (11)), that

(12) the isomorphism M‘P;iym = M‘P/Ym (cf. Definition 8.4) deter-
mined by ¢, (cf. Lemma 8.6,2 (i) arises — relative to the
third vertical arrow of the diagram of Lemma 8.5, (i) — from
an isomorphism Py, yy, — Py, w, (cf. Definition 8.1) of semi-
abelian schemes over Ry, that is compatible with the respective
Prym semi-polarizations associated to the Galois étale cover-
ings Vi — Wi, Vo — W (cf. Definition 2.3, (ii)).

In particular, it follows immediately from (6), (7), (9) that the iso-
morphism W; = W, determined by the isomorphism WY& 5 yis
that appears in (7) lifts uniquely (cf. Lemma 6.2) to an isomorphism
W1 = W, over Ry, which restricts to an isomorphism W, = W, over
L.

Next, observe that since (we have assumed that) the open subgroup
H, C Ilz of Il is subnormal, for each ¢ € {1,2}, the finite flat
covering W;© — Z:" may be written as the composite of finitely many
Galois finite flat coverings. In particular, by applying Galois descent
inductively, one concludes immediately that this isomorphism W;~ =
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W,F fits into a commutative diagram of schemes over K

W — 2z

zl lz
Wy —— Z.F

— where the horizontal arrows are the natural finite flat coverings,
and the vertical arrows are isomorphisms. In particular, it follows
from (2) that the lower horizontal arrow restricts to an isomorphism
fz:Zv 5 Zy over K.

Finally, observe that one verifies immediately from the various defini-
tions involved that the assignment “¢p, — fz” is functorial, i.e., with
respect to isomorphisms. Thus, one concludes formally, by applying
the assignment “¢r, — fz” to the restrictions of ¢, to the various
normal open subgroups of 11, that the isomorphism ¢r, arises from
the isomorphism f;. This completes the proof of Theorem 11.1. O

Corollary 11.2. Let

e R be a complete discrete valuation ring whose field of fractions
we denote by K and whose residue field we denote by k,

e K a separable closure of K, and

e 7y, Zy hyperbolic curves over K.

Suppose that the field k is perfect and of characteristic p > 0. Let
ém,: Mz, = Uy, (cf. Definition 5.3) be a continuous isomorphism over
Gk (cf. Definition 5.1). Suppose, moreover, that the field K is of
characteristic zero and X-Kummer-faithful (cf. Definition 10.4, (ii)),
and that the isomorphism ¢, is LSF-compatible (cf. Definition 7.4).
Then the isomorphism ¢, arises from a unique isomorphism Zy — Zy
over K.

Proof. Observe that since (we have assumed that) the field K is of char-
acteristic zero and x-Kummer-faithful, and the isomorphism ¢y, is
LSF-compatible, it follows from Lemma 10.8 that the isomorphism ¢y,
is Prym-compatible. Thus, Corollary 11.2 follows from Theorem 11.1.
This completes the proof of Corollary 11.2. O

Corollary 11.3. Let p be a prime number, K a sub-p-adic field (cf.
[18, Definition 15.4]), K an algebraic closure of K, and Zi, Zy hy-
perbolic curves over K. Then every continuous isomorphism 11z, —
Iz, (c¢f. Definition 5.3) over Gk (cf. Definition 5.1) arises from a
unique isomorphism Z1 — Zy over K. Put another way, if one writes
Isomy (Z1, Zo) for the set of isomorphisms Zy = Zy over K, Isomg,. (I1z,,11,)
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for the set of continuous isomorphisms Iz, = Iz, over G, and
Isomg, (Iz,,z,) for the quotient set of Isomg,, (I1z,, Iz, with respect
to the natural conjugation action of the kernel of the natural continuous
outer homomorphism 11, — Gk, then the natural map

ISOHIK(Zl, Z2) —— ISOHIGK (Hzl, HZQ)
15 bijective.
Proof. If K is a p-adic local field, then this assertion follows from Corol-
lary 11.2, together with Lemma 7.5; Lemma 7.7, (i); [15, Theorem 7].

The general case follows then immediately from this case, together

with a “formal argument”, i.e., applied in the proof of [18, Corollary
15.5]. O
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