CORRIGENDUM TO "RATIONALITY OF ADMISSIBLE AFFINE VERTEX ALGEBRAS IN THE CATEGORY O" DUKE. MATH. J, VOLUME 165, NUMBER 1 (2016), 67-93.

TOMOYUKI ARAKAWA

The definition of the set Pr^k needs to be fixed in the case that \mathfrak{g} is of type C_l and q is even. It should be defined as the set of admissible weights λ such that $\widehat{\Delta}(\lambda) = y(\widehat{\Delta}(k\Lambda_0))$ for some $y \in \widetilde{W}$. This set coincides with the set of admissible weights λ such that $\widehat{\Delta}(\lambda) \cong \widehat{\Delta}(k\Lambda_0)$ if \mathfrak{g} is not of type C_l or q is odd. However, in type C_l when q is even, there are admissible weights λ that $\widehat{\Delta}(\lambda) \cong \widehat{\Delta}(k\Lambda_0)$ but are not of the form $y(\widehat{\Delta}(k\Lambda_0))$ for any $y \in \widetilde{W}$, which correspond to the case $\sigma_l(\Pi^{\vee})$ in Table 1 of [KW2]. Accordingly, Main Theorem on page 68 should be fixed as the following.

Main Theorem. Let k be an admissible number, λ a weight of $\hat{\mathfrak{g}}$ of level k. Then $L(\lambda)$ is a module over $L(k\Lambda_0)$ if and only if it is an admissible representation such that $\widehat{\Delta}(\lambda) = y(\widehat{\Delta}(k\Lambda_0))$ for some $y \in \widetilde{W}$. In particular, any $\widehat{\mathfrak{g}}$ -module from the category \mathcal{O} is an $L(k\Lambda_0)$ -module if and only if it is a direct sum of such admissible representations of $\widehat{\mathfrak{g}}$ of level k.

We are grateful to Jethro van Ekeren for pointing out this error.

Also, on page 85, Proposition 4.5 and its proof should be replaced by the following.

Proposition 4.5. Suppose that $L(\lambda)$ is an $L(k\Lambda_0)$ -module. Then there exsits $\mu \in P^{\vee}$ such that $\widehat{\Delta}(\lambda) = t_{-\mu}(\widehat{\Delta}(k\Lambda_0))$.

Proof. By Lemma 4.4, $\langle \lambda + \rho, \alpha_i^{\vee} \rangle \in \frac{2}{(\alpha_i | \alpha_i)q} \mathbb{Z}$ for all $i = 1, \dots l$. Hence there exists $n_i \in \mathbb{Z}$ for each $i = 1, \dots, l$ such that

$$\alpha_i + n\delta \in \widehat{\Delta}(\lambda) \iff n \equiv n_i \begin{cases} (\text{mod } q\mathbb{Z}) \text{ if } (q, r^{\vee}) = 1 \text{ or } \alpha_i \text{ is a long root,} \\ (\text{mod } \frac{q}{r^{\vee}}\mathbb{Z}) \text{ if } (q, r^{\vee}) = r^{\vee} \text{ and } \alpha_i \text{ is a short root.} \end{cases}$$

Set $\mu = \sum_{i=1}^{l} n_i \varpi_i^{\vee} \in P^{\vee}$, where ϖ_i^{\vee} is the *i*-th fundamental coweight. Then

 $\alpha_i + n\delta \in \widehat{\Delta}(t_\mu \circ \lambda) \iff n \equiv 0 \begin{cases} (\text{mod } q\mathbb{Z}) \text{ if } (q, r^{\vee}) = 1 \text{ or } \alpha_i \text{ is a long root,} \\ (\text{mod } \frac{q}{r^{\vee}}\mathbb{Z}) \text{ if } (q, r^{\vee}) = r^{\vee} \text{ and } \alpha_i \text{ is a short root.} \end{cases}$

It follows that

$$\widehat{\Delta}(t_{\mu} \circ \lambda) = \{ \alpha + nq\delta \mid \alpha \in \Delta, \ n \in \mathbb{Z} \} \quad \text{if} \quad (q, r^{\vee}) = 1,$$

and

$$\widehat{\Delta}(t_{\mu} \circ \lambda)^{\vee} = \{ \alpha^{\vee} + nq\delta \mid \alpha \in \Delta, \ n \in \mathbb{Z} \} \quad \text{if} \quad (q, r^{\vee}) = r^{\vee}.$$

That is, $\widehat{\Delta}(t_{\mu} \circ \lambda) = \widehat{\Delta}(k\Lambda_0)$, and we get that $\widehat{\Delta}(\lambda) = t_{-\mu}(\widehat{\Delta}(k\Lambda_0)).$

TOMOYUKI ARAKAWA

On page 87, in the proof of the "only if" part of Main Theorem, the sentense "By Proposition 4.5, $\widehat{\Delta}(\lambda) \cong \widehat{\Delta}(k\Lambda_0)$ " should be replaced by "By Proposition 4.5, $\widehat{\Delta}(\lambda) = t_{-\mu}(\widehat{\Delta}(k\Lambda_0))$ for some $\mu \in P_+$ ".

References

[KW2] V. G. Kac and M. Wakimoto. Classification of modular invariant representations of affine algebras. In Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), volume 7 of Adv. Ser. Math. Phys., pages 138–177. World Sci. Publ., Teaneck, NJ, 1989.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502 JAPAN

 $E\text{-}mail\ address: \verb"arakawa@kurims.kyoto-u.ac.jp"$