Submodularity and Discrete Convexity

Satoru Fujishige

Research Institute for Mathematical Sciences Kyoto University

4th Workshop on Discrete Optimization in Machine Learning (DISCML)

December 7, 2012 Lake Tahoe, Nevada, United States E: a nonempty finite set

A submodular function $f: 2^E \to \mathbf{R}$

$$f(X) + f(Y) \ge f(X \cup Y) + f(X \cap Y)$$
 $(\forall X, Y \subseteq E)$

E: a nonempty finite set

A submodular function $f: 2^E \to \mathbf{R}$

$$f(X) + f(Y) \ge f(X \cup Y) + f(X \cap Y)$$
 $(\forall X, Y \subseteq E)$

Lemma: $\mathcal{D}_{\min}(f)$: the set of all minimizers of f

$$X, Y \in \mathcal{D}_{\min}(f) \implies X \cup Y, X \cap Y \in \mathcal{D}_{\min}(f)$$

i.e., $\mathcal{D}_{\min}(f)$ is a distributive lattice.

E: a nonempty finite set

A submodular function $f: 2^E \to \mathbf{R}$

$$f(X) + f(Y) \ge f(X \cup Y) + f(X \cap Y) \qquad (\forall X, Y \subseteq E)$$

Lemma: $\mathcal{D}_{\min}(f)$: the set of all minimizers of f

$$X, Y \in \mathcal{D}_{\min}(f) \implies X \cup Y, X \cap Y \in \mathcal{D}_{\min}(f)$$

i.e., $\mathcal{D}_{\min}(f)$ is a distributive lattice.

It leads us to a Characterization of Submodular Functions

Theorem: A set function $f: 2^E \to \mathbf{R}$ is a submodular function

\$

For \forall modular function $\mu: 2^E \to \mathbf{R}$, $\mathcal{D}_{\min}(f - \mu)$ is a distributive lattice.

 \longrightarrow

Distributive Lattices and Posets

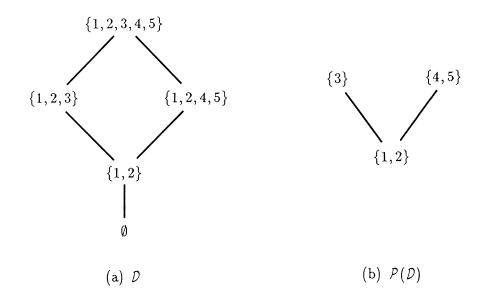
Theorem (Birkhoff-Iri): $\mathcal{D} \subseteq 2^E$, $\emptyset, E \in \mathcal{D}$.

 $\mathcal D$ is a distributive lattice with respect to \cup and \cap as lattice operations.

There exists a partially ordered set (poset) $\mathcal{P}=(\Pi(E),\preceq)$ on a partition $\Pi(E)$ of E such that \mathcal{D} is given by

$$\mathcal{D} = \{ X \subseteq E \mid \exists \text{ ideal } \mathcal{J} \text{ of } \mathcal{P} : X = \bigcup_{F \in \mathcal{J}} F \}.$$

 $(X \subseteq E \text{ is an ideal of } \mathcal{P} \text{ if } e \in X \text{ and } e' \preceq e \text{ always imply } e' \in X.)$



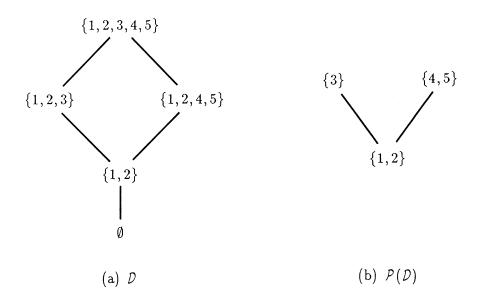
Theorem (Birkhoff-Iri): $\mathcal{D} \subseteq 2^E$, $\emptyset, E \in \mathcal{D}$.

 $\mathcal D$ is a distributive lattice with respect to \cup and \cap as lattice operations. \updownarrow

There exists a partially ordered set (poset) $\mathcal{P}=(\Pi(E),\preceq)$ on a partition $\Pi(E)$ of E such that \mathcal{D} is given by

$$\mathcal{D} = \{ X \subseteq E \mid \exists \text{ ideal } \mathcal{J} \text{ of } \mathcal{P} : X = \bigcup_{F \in \mathcal{J}} F \}.$$

 $(X \subseteq E \text{ is an ideal of } \mathcal{P} \text{ if } e \in X \text{ and } e' \leq e \text{ always imply } e' \in X.)$



A simple distributive lattice \mathcal{D} : every component of partition $\Pi(E)$ is a singleton, i.e., $\mathcal{D} = \mathbf{2}^{\mathcal{P}}$ (the set of all ideals of $\mathcal{P} = (E, \preceq)$).

Submodular System (\mathcal{D},f) on E

 $\mathcal{D} \subseteq 2^E$: a distributive lattice $(\emptyset, E \in \mathcal{D})$ $X, Y \in \mathcal{D} \implies X \cup Y, X \cap Y \in \mathcal{D}$ $f(: \mathcal{D} \to \mathbf{R})$: a submodular function $(f(\emptyset) = 0)$ $\forall X, Y \in \mathcal{D} : f(X) + f(Y) \ge f(X \cup Y) + f(X \cap Y)$

$$\mathcal{D} \subseteq 2^E$$
: a distributive lattice $(\emptyset, E \in \mathcal{D})$

$$X, Y \in \mathcal{D} \implies X \cup Y, X \cap Y \in \mathcal{D}$$

$$f(: \mathcal{D} \to \mathbf{R})$$
: a submodular function $(f(\emptyset) = 0)$

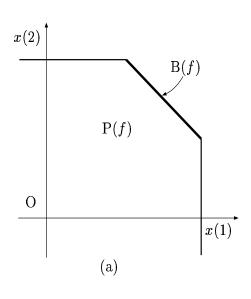
$$\forall X, Y \in \mathcal{D} : f(X) + f(Y) \ge f(X \cup Y) + f(X \cap Y)$$

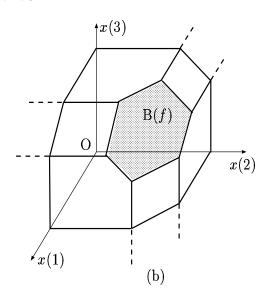
$$P(f) = \{ x \in \mathbf{R}^E \mid \forall X \in \mathcal{D} : x(X) \le f(X) \}$$

(Submodular Polyhedron)

$$x(X) = \sum_{e \in X} x(e), \qquad x(\emptyset) = 0$$

$$B(f) = \{x \mid x \in P(f), \ x(E) = f(E)\}$$
 (Base Polyhedron)





$$\mathcal{D} \subseteq 2^E$$
: a distributive lattice $(\emptyset, E \in \mathcal{D})$

$$X, Y \in \mathcal{D} \implies X \cup Y, X \cap Y \in \mathcal{D}$$

$$f(: \mathcal{D} \to \mathbf{R})$$
: a submodular function $(f(\emptyset) = 0)$

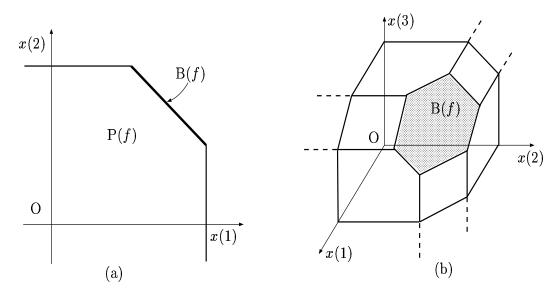
$$\forall X, Y \in \mathcal{D} : f(X) + f(Y) \ge f(X \cup Y) + f(X \cap Y)$$

$$P(f) = \{ x \in \mathbf{R}^E \mid \forall X \in \mathcal{D} : x(X) \le f(X) \}$$

(Submodular Polyhedron)

$$x(X) = \sum_{e \in X} x(e), \qquad x(\emptyset) = 0$$

$$B(f) = \{x \mid x \in P(f), \ x(E) = f(E)\}$$
 (Base Polyhedron)



Remark: Submodular system $(\mathcal{D}, f) \overset{1:1}{\longleftrightarrow}$ Base polyhedron $\mathrm{B}(f)$ (Submodular polyhedron $\mathrm{P}(f)$)

Define a supermodular system (\mathcal{D}, g) and its associated supermodular polyhedron P(g) and base polyhedron B(g) in a dual manner.

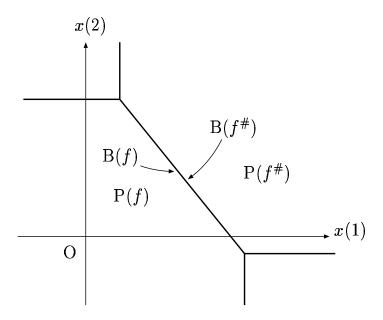
Define a supermodular system (\mathcal{D}, g) and its associated supermodular polyhedron P(g) and base polyhedron B(g) in a dual manner.

Duality

$$\bar{\mathcal{D}} = \{ E \setminus X \mid X \in \mathcal{D} \}$$

$$f^{\#}(E \setminus X) = f(E) - f(X) \qquad (X \in \mathcal{D})$$

 $(\bar{\mathcal{D}},f^{\#})$: the supermodular system dual to submodular system (\mathcal{D},f)



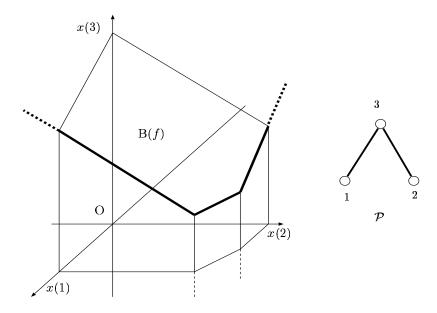
$$B(f) = B(f^{\#})$$

 \longrightarrow

$(\mathcal{D},f)\mathbf{:A}$ submodular system on E

Proposition: The base polyhedron of (\mathcal{D}, f) has an **extreme point**.

 $\iff \mathcal{D} \text{ is simple.}$



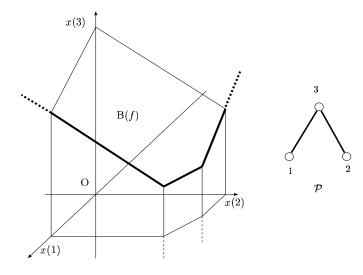
$(\mathcal{D},f)\mathbf{:A}$ submodular system on E

Proposition: The base polyhedron of (\mathcal{D}, f) has an extreme point.

 $\iff \mathcal{D}$ is simple.

Proposition: The base polyhedron of (\mathcal{D}, f) is **bounded**.

 \Leftrightarrow $\mathcal{D} = 2^E$ (a **Boolean** lattice)



(\mathcal{D},f) : A submodular system on E

Proposition: The base polyhedron of (\mathcal{D}, f) has an extreme point.

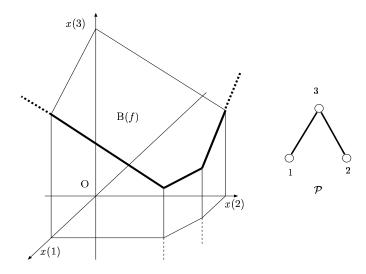
 $\iff \mathcal{D}$ is simple.

Proposition: The base polyhedron of (\mathcal{D}, f) is bounded.

 $\iff \mathcal{D} = 2^E$ (a Boolean lattice)

Proposition: Suppose \mathcal{D} is simple. Then, all the extreme bases are nonnegative

 $\iff f$ is monotone nondecreasing.



(\mathcal{D}, f) : A submodular system on E

Proposition: The base polyhedron of (\mathcal{D}, f) has an extreme point.

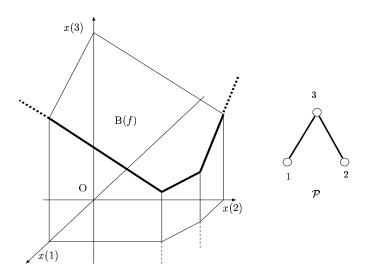
 $\iff \mathcal{D}$ is simple.

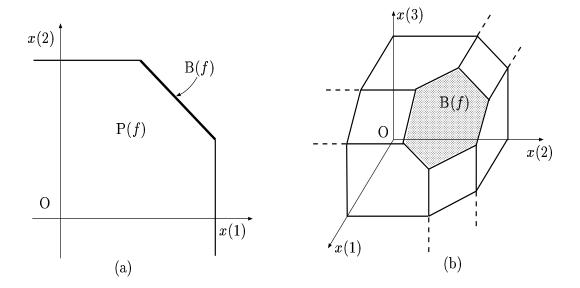
Proposition: The base polyhedron of (\mathcal{D}, f) is bounded.

 $\iff \mathcal{D} = 2^E$ (a Boolean lattice)

Proposition: Suppose \mathcal{D} is simple. Then, all the extreme bases are nonnegative $\iff f$ is monotone nondecreasing.

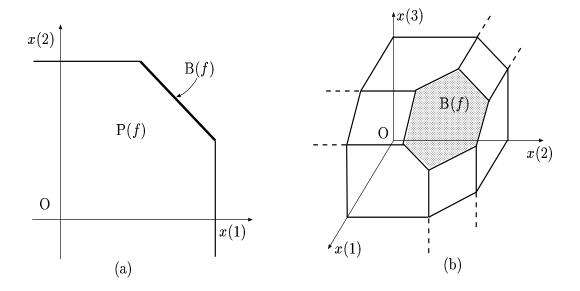
Proposition: Suppose \mathcal{D} is simple. Then, all **the extreme bases are integral** \iff f is **integer-valued**.





Polymatroid (Edmonds):

$$\mathcal{D}=2^E$$
 and f is monotone nondecreasing $(X\subseteq Y\subseteq E\Longrightarrow f(X)\le f(Y)).$ $\iff \mathrm{B}(f)\subset \mathbf{R}_+^E$



Polymatroid (Edmonds):

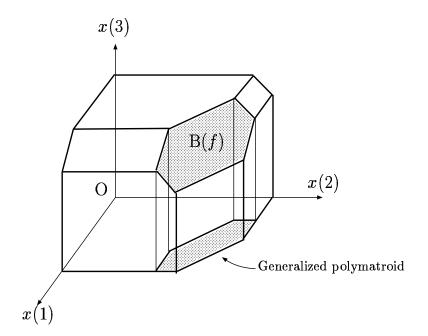
$$\mathcal{D}=2^E$$
 and f is monotone nondecreasing $(X\subseteq Y\subseteq E\Longrightarrow f(X)\le f(Y)).$ $\iff \mathrm{B}(f)\subset \mathbf{R}_+^E$

Matroid (Whitney):

Furthermore,
$$f$$
 is integer-valued and has a unit-increase property. $\forall X \in 2^E, \ \forall e \in E \setminus X: \ f(X) \leq f(X \cup \{e\}) \leq f(X) + 1$ (extreme bases \longleftrightarrow matroid bases)

 \longrightarrow

Generalized polymatroids (Frank, Hassin) and Base Polyhedra



Theorem (Tomizawa): For a bounded polyhedron $P \subset \mathbf{R}^E$, P is a base polyhedron \updownarrow all the edge vectors of P are of form $(0,\cdots,0,\pm 1,0,\cdots,0,\mp 1,0,\cdots,0)$

Theorem (Tomizawa): For a bounded polyhedron $P \subset \mathbf{R}^E$,

P is a base polyhedron

1

all the edge vectors of P are of form

$$(0,\cdots,0,\pm 1,0,\cdots,0,\mp 1,0,\cdots,0)$$

Corollary: For a bounded polyhedron $P \subset \mathbf{R}^E$,

P is a generalized polymatroid

1

all the edge vectors of P are of form

$$(0, \dots, 0, \pm 1, 0, \dots, 0, \mp 1, 0, \dots, 0)$$
 or $(0, \dots, 0, \pm 1, 0, \dots, 0)$

Remark: The above two are also valid for pointed polyhedra.

The Intersection Theorem and Its Equivalents

 $(\mathcal{D}_i, f_i) \ (i=1,2)$: submodular systems on E

The Intersection Theorem (Edmonds):

$$\max\{x(E) \mid x \in P(f_1) \cap P(f_2)\}$$

$$= \min\{f_1(X) + f_2(E \setminus X) \mid X \in \mathcal{D}_1, \ E \setminus X \in \mathcal{D}_2\}$$
(+ Integrality)

The Intersection Theorem and Its Equivalents

 $(\mathcal{D}_i, f_i) \ (i = 1, 2)$: submodular systems on E

The Intersection Theorem (Edmonds):

$$\max\{x(E) \mid x \in P(f_1) \cap P(f_2)\}$$

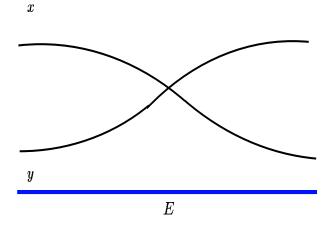
$$= \min\{f_1(X) + f_2(E \setminus X) \mid X \in \mathcal{D}_1, \ E \setminus X \in \mathcal{D}_2\}$$
(+ Integrality)

The Intersection Theorem':

$$\max\{x \wedge y(E) \mid x \in B(f_1), \ y \in B(f_2)\}$$

$$= \min\{f_1(X) + f_2(E \setminus X) \mid X \in \mathcal{D}_1, \ E \setminus X \in \mathcal{D}_2\}$$
(+ Integrality)

$$(x \wedge y)(e) = \min\{x(e), y(e)\} \ (e \in E).$$



 $(\mathcal{D}_1,f),$ (\mathcal{D}_2,g) : a submodular system and supermodular system on E

Discrete Separation Theorem (Frank):

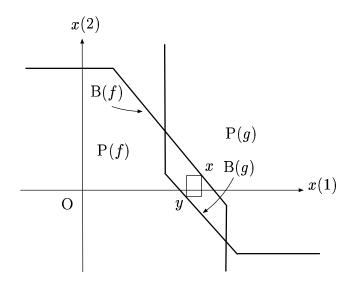
$$f \geq g \quad \Longrightarrow \quad \exists z \in \mathbf{R}^E: f \geq z \geq g \quad \text{(i.e., P}(f) \cap \mathrm{P}(g) \neq \emptyset)$$
 (+ Integrality)

Discrete Separation Theorem (Frank):

$$f \geq g \quad \Longrightarrow \quad \exists z \in \mathbf{R}^E: f \geq z \geq g \quad \text{(i.e., P}(f) \cap \mathrm{P}(g) \neq \emptyset)$$
 (+ Integrality)

Discrete Separation Theorem':

$$f \geq g \quad \Longrightarrow \quad \exists (x \in \mathcal{B}(f), \ y \in \mathcal{B}(g)) : x \geq y$$
 (+ Integrality)



 (\mathcal{D}_1, f) : a submodular system on E (\mathcal{D}_2, g) : a supermodular system on E

$$f^*(x) = \max\{x(X) - f(X) \mid X \in \mathcal{D}_1\} \quad (x \in \mathbf{R}^E)$$

 $g^*(x) = \min\{x(X) - g(X) \mid X \in \mathcal{D}_2\} \quad (x \in \mathbf{R}^E)$

Fenchel Duality Theorem (F):

$$\min\{f(X) - g(X) \mid X \in \mathcal{D}_1 \cap \mathcal{D}_2\}$$
$$= \max\{g^*(x) - f^*(x) \mid x \in \mathbf{R}^E\}$$

(+ Integrality)

 (\mathcal{D}_1,f) : a submodular system on E

 (\mathcal{D}_2, g) : a supermodular system on E

$$f^*(x) = \max\{x(X) - f(X) \mid X \in \mathcal{D}_1\} \quad (x \in \mathbf{R}^E)$$

 $g^*(x) = \min\{x(X) - g(X) \mid X \in \mathcal{D}_2\} \quad (x \in \mathbf{R}^E)$

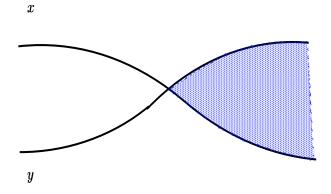
Fenchel Duality Theorem (F):

$$\min\{f(X) - g(X) \mid X \in \mathcal{D}_1 \cap \mathcal{D}_2\}$$
$$= \max\{g^*(x) - f^*(x) \mid x \in \mathbf{R}^E\}$$

(+ Integrality)

Fenchel Duality Theorem':

$$\min\{f(X) - g(X) \mid X \in \mathcal{D}_1 \cap \mathcal{D}_2\} \\ = \max\{(x - y)^-(E) \mid x \in B(f), \ y \in B(g)\} \\ \text{(+ Integrality)} \ ((x - y)^- = (\min\{0, x(e) - y(e)\} \mid e \in E))$$



Minkowski Sum Theorem:

$$P(f_1) + P(f_2) = P(f_1 + f_2),$$

 $B(f_1) + B(f_2) = B(f_1 + f_2).$

Moreover, if f_1 and f_2 are integer-valued, the collections $P_{\mathbf{Z}}(\cdot)$ and $B_{\mathbf{Z}}(\cdot)$ of integer points in $P(\cdot)$ and $B(\cdot)$ satisfy

$$P_{\mathbf{Z}}(f_1) + P_{\mathbf{Z}}(f_2) = P_{\mathbf{Z}}(f_1 + f_2),$$

 $B_{\mathbf{Z}}(f_1) + B_{\mathbf{Z}}(f_2) = B_{\mathbf{Z}}(f_1 + f_2).$

Minimum-Norm Base and SFM

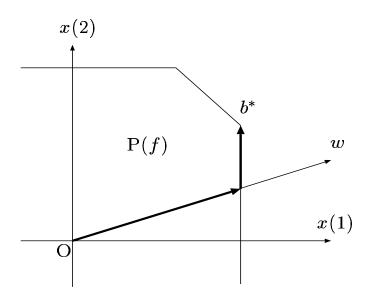
 (\mathcal{D},f) : a submodular system on E $w(:E \to \mathbf{R})$: a positive weight function, $\lambda \in \mathbf{R}$

Minimum-Norm Base and SFM

 (\mathcal{D},f) : a submodular system on E $w(:E \to \mathbf{R})$: a positive weight function, $\lambda \in \mathbf{R}$

Parametric Vector Reduction: For any $\lambda \in \mathbf{R}$,

$$\max\{x(E) \mid x \in P(f), \ x \le \lambda w\}$$
$$= \min\{f(X) + \lambda w(E \setminus X) \mid X \subseteq E\}$$



Theorem (F): There exists a **unique base** b^* such that for all $\lambda \in \mathbf{R}$ $x = b^* \wedge \lambda w$ attains the maximum of the following

$$\max\{x(E) \mid x \in P(f), \ x \le \lambda w\}$$
$$= \min\{f(X) + \lambda w(E \setminus X) \mid X \subseteq E\}.$$

Theorem (F): There exists a **unique base** b^* such that for all $\lambda \in \mathbf{R}$ $x=b^* \wedge \lambda w$ attains the maximum of the following

$$\max\{x(E) \mid x \in P(f), \ x \le \lambda w\}$$
$$= \min\{f(X) + \lambda w(E \setminus X) \mid X \subseteq E\}.$$

A base \hat{b} is called a **lexicographically optimal base** w.r.t. weight w if it **lexicographically maximizes** the sequence

$$T(b/w) = (b(e_1)/w(e_1), \cdots, b(e_n)/w(e_n))$$

of weighted b(e)/w(e) $(e \in E)$ arranged in nondecreasing order of magnitude among all bases b.

Theorem (F): There exists a **unique base** b^* such that for all $\lambda \in \mathbf{R}$ $x = b^* \wedge \lambda w$ attains the maximum of the following

$$\max\{x(E) \mid x \in P(f), \ x \le \lambda w\}$$
$$= \min\{f(X) + \lambda w(E \setminus X) \mid X \subseteq E\}.$$

A base \hat{b} is called a **lexicographically optimal base** w.r.t. weight w if it **lexicographically maximizes** the sequence

$$T(b/w) = (b(e_1)/w(e_1), \cdots, b(e_n)/w(e_n))$$

of weighted b(e)/w(e) $(e \in E)$ arranged in nondecreasing order of magnitude among all bases b.

Theorem (F):

- (1) b^* is the **lexicographically optimal base** with respect to weight w.
- (2) b^* is the **minimizer of** $\sum_{e \in E} b^2(e)/w(e)$ **over** $\mathrm{B}(f)$.

Theorem (F): There exists a **unique base** b^* such that for all $\lambda \in \mathbf{R}$ $x = b^* \wedge \lambda w$ attains the maximum of the following

$$\max\{x(E) \mid x \in P(f), \ x \le \lambda w\}$$
$$= \min\{f(X) + \lambda w(E \setminus X) \mid X \subseteq E\}.$$

A base \hat{b} is called a **lexicographically optimal base** w.r.t. weight w if it **lexicographically maximizes** the sequence

$$T(b/w) = (b(e_1)/w(e_1), \cdots, b(e_n)/w(e_n))$$

of weighted b(e)/w(e) $(e \in E)$ arranged in nondecreasing order of magnitude among all bases b.

Theorem (F):

- (1) b^* is the **lexicographically optimal base** with respect to weight w.
- (2) b^* is the **minimizer of** $\sum_{e \in E} b^2(e)/w(e)$ **over** B(f).

(→ Resource Allocation Problems + submodular constraints)

 \rightarrow

Remarks: We have

$$\begin{split} \min\{f(X) + \lambda w(E \setminus X) \mid X \in \mathcal{D}\} \\ &= (b^* \wedge \lambda w)(E) = \max\{x(E) \mid x \leq \lambda w, \ x \in \mathrm{P}(f)\} \\ \text{Hence, for } \lambda &= 0 \\ \min\{f(X) \mid X \in \mathcal{D}\} &= \max\{x(E) \mid x \leq \mathbf{0}, \ x \in \mathrm{P}(f)\}, \end{split}$$

Remarks: We have

$$\min\{f(X) + \lambda w(E \setminus X) \mid X \in \mathcal{D}\}$$

$$= (b^* \wedge \lambda w)(E) = \max\{x(E) \mid x \leq \lambda w, \ x \in \mathrm{P}(f)\}$$
Hence, for $\lambda = 0$

$$\min\{f(X) \mid X \in \mathcal{D}\} = \max\{x(E) \mid x \leq \mathbf{0}, \ x \in \mathrm{P}(f)\},$$
which implies
$$A_0 = \{e \mid b^*(e) \leq 0\}, \qquad A_- = \{e \mid b^*(e) < 0\}$$

are the unique maximal and the unique minimal minimizer of f.

Remarks: We have

$$\min\{f(X) + \lambda w(E \setminus X) \mid X \in \mathcal{D}\}$$

$$= (b^* \wedge \lambda w)(E) = \max\{x(E) \mid x \le \lambda w, \ x \in P(f)\}$$
Hence, for $\lambda = 0$

$$\min\{f(X) \mid X \in \mathcal{D}\} = \max\{x(E) \mid x \le \mathbf{0}, \ x \in P(f)\},$$
which implies
$$A_0 = \{e \mid b^*(e) \le 0\}, \qquad A_- = \{e \mid b^*(e) < 0\}$$

are the unique maximal and the unique minimal minimizer of f.

 b^* is the minimizer of $\sum_{e \in E} b^2(e)/w(e)$

Minimum-norm base

⇒ Submodular Function Minimization

Applicability of P. Wolfe's minimum-norm point algorithm

(Submodular Function Minimization ← MNP algorithm of Wolfe)

$$A_0 = \{e \mid b^*(e) \le 0\}, \qquad A_- = \{e \mid b^*(e) < 0\}$$

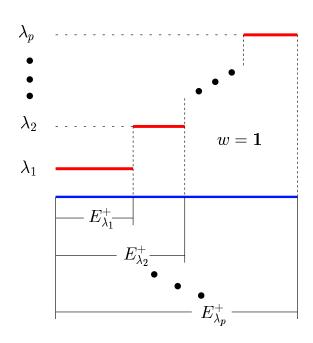
When f is integer-valued and w = 1,

$$\lambda_{i} = \frac{f(E_{\lambda_{i}}^{+}) - f(E_{\lambda_{i-1}}^{+})}{|E_{\lambda_{i}}^{+} \setminus E_{\lambda_{i-1}}^{+}|} \quad (i = 1, 2, \dots, p), \qquad E_{\lambda_{0}}^{+} = \emptyset$$

$$\lambda_{1} < \dots < \lambda_{p}$$

$$\min_{i} \{\lambda_{i} > 0\} \ge \frac{1}{|E|}, \quad \max_{i} \{\lambda_{i} < 0\} \le -\frac{1}{|E|}$$

$$A_{0} = \{e \mid b^{*}(e) \le \epsilon\}, \qquad A_{-} = \{e \mid b^{*}(e) < -\epsilon\} \quad (\epsilon = \frac{1}{2|E|})$$



```
\mathcal{D}=2^E
```

Maximum Weight Base Problem

```
\mathcal{D} = 2^E
```

Maximum Weight Base Problem

A weight function $w: E \to [0, 1]$

For a permutation $\sigma=(e_1,e_2,\cdots,e_n)$ of E, define

$$\Delta(\sigma)$$
: $1 \ge x(e_1) \ge x(e_2) \ge \cdots \ge x(e_n) \ge 0$

$$S_i = \{e_1, \dots, e_i\} \quad (i = 1, \dots, n)$$

$$S_0 = \emptyset \subset S_1 \subset \cdots \subset S_n = E$$

and

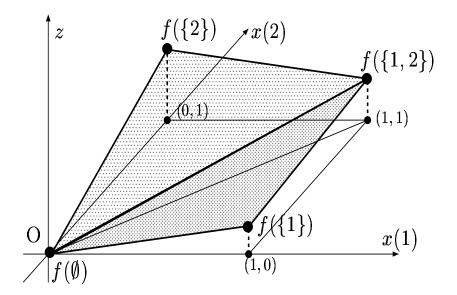
$$b^{\sigma}(e_i) = f(S_i) - f(S_{i-1}) \quad (i = 1, \dots, n)$$

Then, b^{σ} is a maximum weight base for $w \in \Delta(\sigma)$.

 $(\longleftarrow Greedy Algorithm)$ (Edmonds)

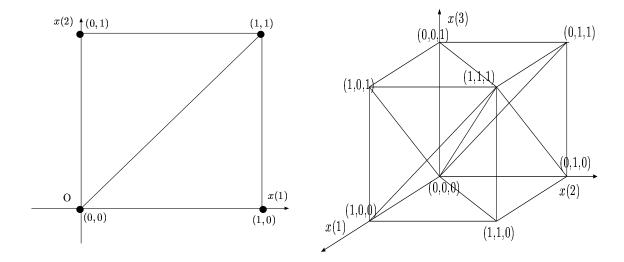
 $\hat{f}(w)=$ the value of a maximum weight base (the support function of $\mathrm{B}(f)$ restricted on $[0,1]^E$)

(*) \hat{f} is a linear function on each cell $\Delta(\sigma)$.



$$\Delta(\sigma)$$
: $1 \ge x(e_1) \ge x(e_2) \ge \cdots \ge x(e_n) \ge 0$

The set of cells for n! permutations σ defines a **simplicial division** of unit hypercube $[0,1]^E$ (**Freudenthal simplicial division**).



For any set function $f: 2^E \to \mathbf{R}$, the piecewise-linear function \hat{f} obtained by linear interpolation on every cell $\Delta(\sigma)$ is called the **Lovász extension** (or the Choquet integral) of f.

Theorem (Lovász): For any set function $f: 2^E \to \mathbf{R}$, f is a submodular function if and only if its Lovász extension \hat{f} is convex.

Theorem (Lovász): For any set function $f: 2^E \to \mathbf{R}$, f is a submodular function if and only if its Lovász extension \hat{f} is convex.

In other words,

Submodular functions

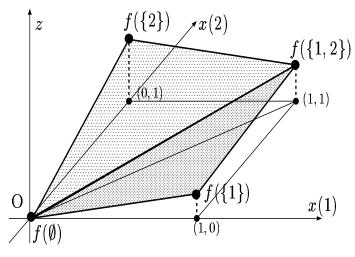
 \iff Convex extensible w.r.t. the Freudenthal simplicial division

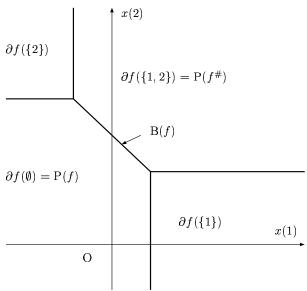
Subgradients and Subdifferentials of Submodular Functions

The **subdifferential** of f at $X \in \mathcal{D}$

$$\partial f(X) = \{ x \in \mathbf{R}^E \mid \forall Y \in \mathcal{D} : x(Y) - x(X) \le f(Y) - f(X) \}$$

Note: $\langle x, \chi_Y - \chi_X \rangle \leq f(\chi_Y) - f(\chi_X), \quad \partial f(X) = \partial \hat{f}(\chi_X)$



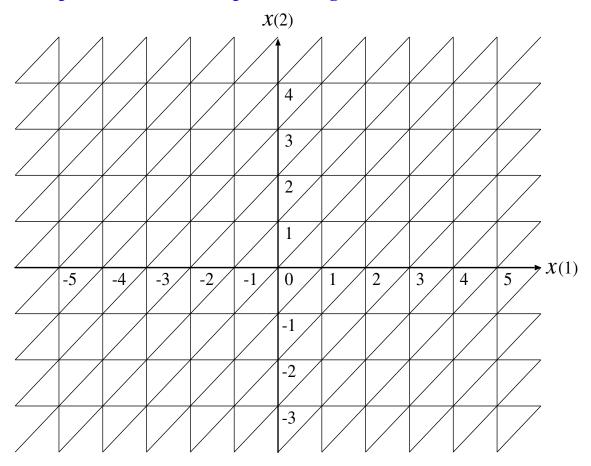


```
Submodular function f: 2^E \to \mathbf{R} \updownarrow The Lovász extension \hat{f} is convex (and linear on every cell \Delta(\sigma)) \updownarrow Base polyhedron \mathrm{B}(f) (edge vectors (0,\cdots,0,\pm 1,0,\cdots,0,\mp 1,0,\cdots,0)) \updownarrow Greedy algorithm works
```

```
Submodular function f: 2^E \to \mathbf{R}
                                                    Base polyhedron B(f)
            $
                                                            $
Lovász extension \hat{f} is convex
                                                    Greedy algorithm
Submodular integrally convex function
                                                    Valuated matroid
(Favati-Tardella (1990))
                                              (Dress-Wenzel (1990, 1992))
           \updownarrow
                           (Convex conjugate)
                                                           \downarrow \downarrow
L-/L<sup>\dagger</sup>-convex function
                                                 M-/M<sup>\dagger</sup>-convex function
                                   \longleftrightarrow
(Murota (1998), F-Murota (2000)) (Murota (1996), Murota-Shioura (1999))
```

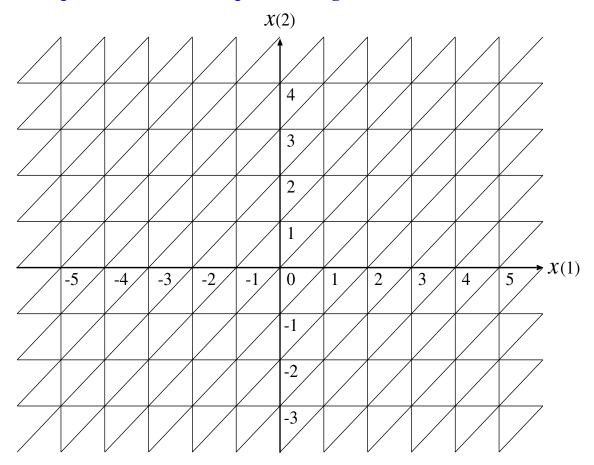
Discrete Convex Analysis (Kazuo Murota)

A simplicial division of the plane (triangulation)



The Freudenthal simplicial division

A simplicial division of the plane (triangulation)



The Freudenthal simplicial division

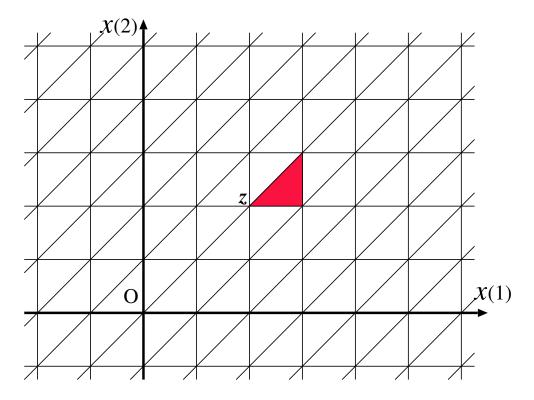
Consider a function f defined on the integer lattice \mathbb{Z}^n .

Discrete convex functions with respect to Freudenthal simplicial division = \mathbf{L}^{\natural} -convex functions defined on \mathbf{Z}^n (due to Murota)

This is equivalent to the

Submodular integrally convex function due to Favati and Tardella (1990)

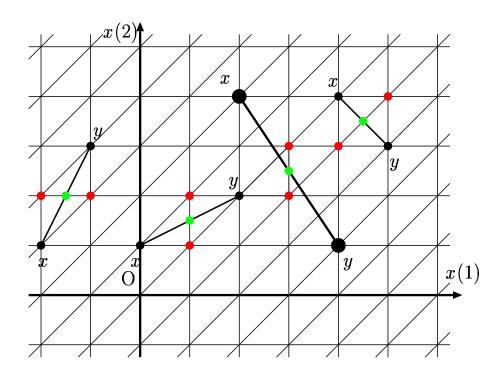
(L^{\natural} -concave functions are defined similarly.)



The Freudenthal simplicial division of \mathbb{R}^2 .

Characterization by mid-point convexity due to Favati-Tardella

$$f(x) + f(y) \ge f(\lceil \frac{1}{2}(x+y) \rceil) + f(\lfloor \frac{1}{2}(x+y) \rfloor) \qquad (\forall x, y \in \mathbf{Z}^n).$$



Remark:

$$\begin{split} x+y &= \left\lceil \frac{1}{2}(x+y) \right\rceil + \left\lfloor \frac{1}{2}(x+y) \right\rfloor, \\ \hat{f}(\frac{1}{2}(x+y)) &= \frac{1}{2} \{ f(\left\lceil \frac{1}{2}(x+y) \right\rceil) + f(\left\lfloor \frac{1}{2}(x+y) \right\rfloor) \} \\ \Longrightarrow &\quad \frac{1}{2} \{ \hat{f}(x) + \hat{f}(y) \} \geq \hat{f}(\frac{1}{2}(x+y)) \qquad (\forall x, \ y \in \mathbf{Z}^n). \end{split}$$

f: \mathbf{L}^{\natural} -convex function on integer lattice \mathbf{Z}^n

 \hat{f} : the convex extension of f on the Freudenthal simplicial division

Convex conjugate \hat{f}^{\bullet} of \hat{f} (or f) (Legendre-Fenchel transform)

$$\hat{f}^{\bullet}(p) = \sup\{\langle p, x \rangle - \hat{f}(x) \mid x \in \mathbf{R}^n\}$$
$$= \sup\{\langle p, x \rangle - f(x) \mid x \in \mathbf{Z}^n\} \qquad (p \in (\mathbf{R}^n)^*)$$

where
$$\langle p, x \rangle = \sum_{i=1}^{n} p(i)x(i)$$
.

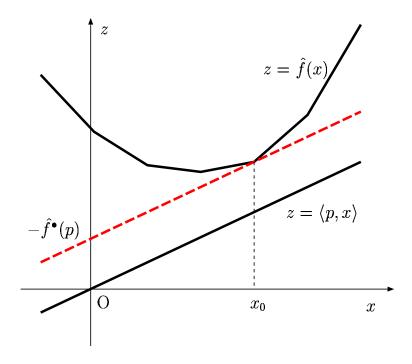
 $\hat{f}^{\bullet}(p)$ is an \mathbf{M}^{\natural} -convex function (Murota-Shioura)

 f^{\bullet} : restriction of convex conjugate \hat{f}^{\bullet} on $(\mathbf{Z}^n)^*$

f is integer-valued $\implies \hat{f}^{\bullet}$ is the convex extension of f^{\bullet}

 f^{\bullet} for integer-valued f is exactly an integer-valued M^{\natural} -convex function on $(\mathbf{Z}^n)^*$ (Murota-Shioura)

$$\hat{f}^{\bullet}(p) = \sup\{\langle p, x \rangle - \hat{f}(x) \mid x \in \mathbf{R}^n\}$$
$$= \sup\{\langle p, x \rangle - f(x) \mid x \in \mathbf{Z}^n\} \qquad (p \in (\mathbf{R}^n)^*)$$

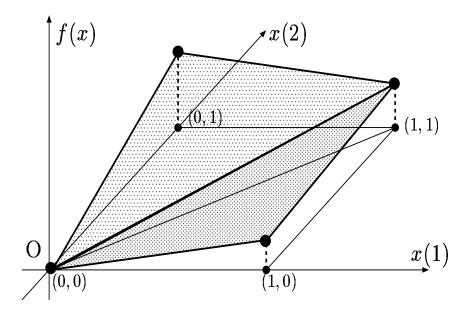


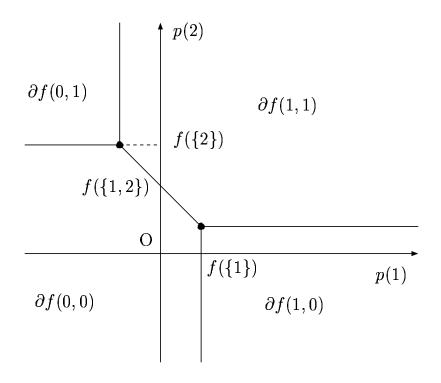
For $x_0 \in \mathbf{Z}^n$ the set of all $p \in (\mathbf{R}^n)^*$ satisfying

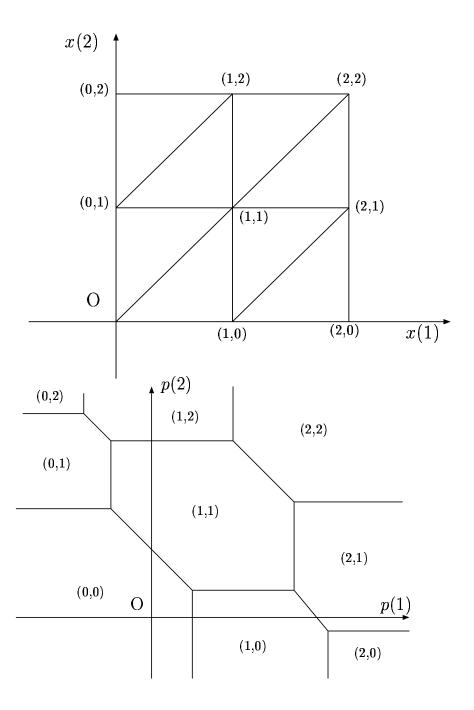
$$\hat{f}^{\bullet}(p) = \langle p, x_0 \rangle - f(x_0), \text{ i.e.}$$

$$f(x) \ge f(x_0) + \langle p, x - x_0 \rangle \quad (\forall x \in \mathbf{Z}^n)$$

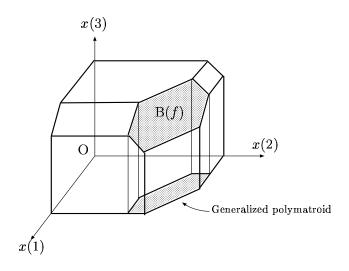
is the subdifferential $\partial \hat{f}(x_0) (= \partial f(x_0))$ at x_0 .







Corollary: For a pointed polyhedron $P \subset \mathbf{R}^E$, P is a generalized polymatroid \mathbb{Q} all the edge vectors of P are of form $(0,\cdots,0,\pm 1,0,\cdots,0,\mp 1,0,\cdots,0)$ or $(0,\cdots,0,\pm 1,0,\cdots,0)$



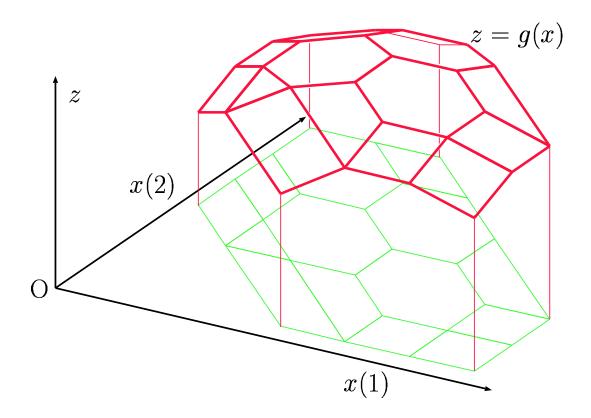
```
Corollary: For a pointed polyhedron P \subset \mathbf{R}^E, P is a generalized polymatroid \updownarrow all the edge vectors of P are of form (0,\cdots,0,\pm 1,0,\cdots,0,\mp 1,0,\cdots,0) or (0,\cdots,0,\pm 1,0,\cdots,0)
```

Hence, the subdifferential $\partial f(z)$ of an L^{\natural}-convex function f at an integral point z is a **generalized polymatroid**.

 \mathbf{M}^{\natural} -convex function \hat{f}^{\bullet} is an affine function on every such generalized polymatroid.

Remark: If f is an **integer-valued** function, $\partial f(z)$ is an **integral** generalized polymatroid.

$\mathbf{M}^{ atural}$ -concave function g



Simultaneous Exchange Axiom for M^{\(\psi\)}-convex functions

$$f: \mathbf{Z}^n \to \mathbf{R} \cup \{+\infty\}$$
 (Murota-Shioura)
$$\operatorname{dom} f = \{x \mid f(x) < +\infty\}$$

$$\operatorname{supp}^+(x) = \{i \mid x(i) > 0\}, \qquad \operatorname{supp}^-(x) = \{i \mid x(i) < 0\}$$

(M^{\natural}-EXC) For $x, y \in \text{dom } f$ and $i \in \text{supp}^+(x-y)$,

$$f(x) + f(y) \ge \min \left[f(x - \chi_i) + f(y + \chi_i),$$

$$\min_{j \in \text{supp}^-(x-y)} \left\{ f(x - \chi_i + \chi_j) + f(y + \chi_i - \chi_j) \right\} \right].$$

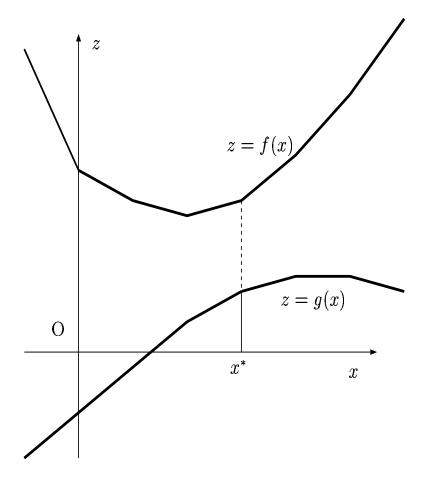
(Simultaneous Exchange Axiom for Generalized Polymatroids)

Discrete Separation Theorem (L^{\natural})

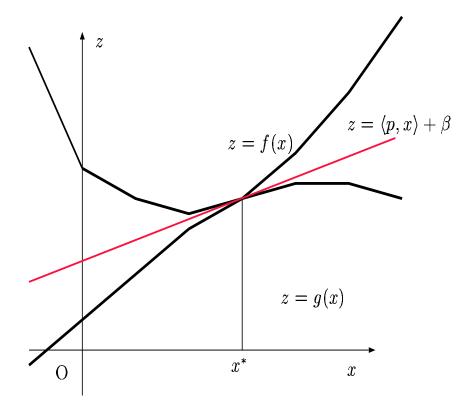
f: an integer-valued L^{\natural} -convex function on \mathbf{Z}^n

g: an integer-valued L $^{\natural}$ -concave function on \mathbf{Z}^n

Suppose $f \geq g$.

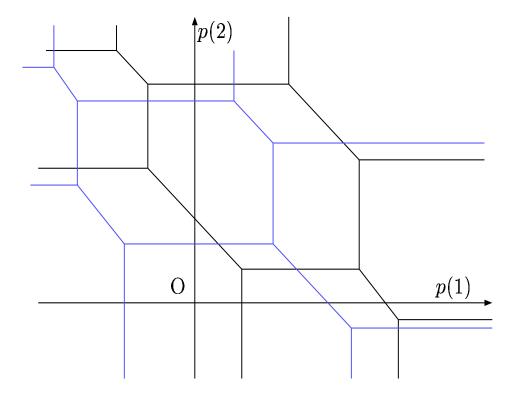


Suppose x^* minimizes f(x) - g(x) over \mathbf{Z}^n .



Common sub- and supergradient $p \in \partial f(x^*) \cap \partial g(x^*)$

Intersections of subdifferentials and superdifferentials (integral generalized polymatroids)



There exists a common integral sub- and supergradient

$$p \in \partial f(x^*) \cap \partial g(x^*)$$

due to the following integrality:

Intersection Theorem for Generalized Polymatroids (Edmonds, Frank): The **intersection of any two integral generalized polymatroids is integral** if it is nonempty.

There exists a common integral sub- and supergradient

$$p \in \partial f(x^*) \cap \partial g(x^*)$$

due to the following integrality:

Intersection Theorem for Generalized Polymatroids (Edmonds, Frank): The **intersection of any two integral generalized polymatroids is integral** if it is nonempty.

Hence,

$$g(x^*) - \langle p, x^* \rangle \le \beta \le f(x^*) - \langle p, x^* \rangle$$

 $(p, x^*: integral\ vectors \Longrightarrow There\ exists\ an\ integer\ \beta.$

There exists a common integral sub- and supergradient

$$p \in \partial f(x^*) \cap \partial g(x^*)$$

due to the following integrality:

Intersection Theorem for Generalized Polymatroids (Edmonds, Frank): The intersection of any two integral generalized polymatroids is integral if it is nonempty.

Hence,

$$g(x^*) - \langle p, x^* \rangle \le \beta \le f(x^*) - \langle p, x^* \rangle$$

 $(p, x^*:$ integral vectors \Longrightarrow There exists an integer β .

Discrete Separation Theorem (Murota):

$$\forall z \in \mathbf{Z}^n : f(z) \ge g(z)$$

$$\implies \exists (p \in (\mathbf{Z}^n)^*, \ \beta \in \mathbf{Z}) : f(z) \ge \langle p, z \rangle + \beta \ge g(z) \ (\forall z \in \mathbf{Z}^n)$$

Discrete Fenchel Duality Theorem (Murota):

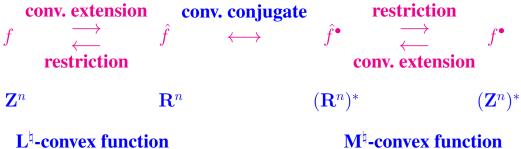
For any integer-valued L^{\dagger}-convex function $f: \mathbf{Z}^n \to \mathbf{Z}$ and L^{\dagger}-concave function $g: \mathbf{Z}^n \to \mathbf{Z}$,

$$\inf\{f(x) - g(x) \mid x \in \mathbf{Z}^n\} = \sup\{g^{\circ}(p) - f^{\bullet}(p) \mid p \in (\mathbf{Z}^n)^*\}.$$

Discrete Fenchel Duality Theorem (Murota):

For any integer-valued L $^{\natural}$ -convex function $f: \mathbf{Z}^n \to \mathbf{Z}$ and L $^{\natural}$ -concave function $g: \mathbf{Z}^n \to \mathbf{Z}$,

$$\inf\{f(x) - g(x) \mid x \in \mathbf{Z}^n\} = \sup\{g^{\circ}(p) - f^{\bullet}(p) \mid p \in (\mathbf{Z}^n)^*\}.$$



For more information see the following monographs.

S. Fujishige: *Submodular Functions and Optimization*, Second Edition, Elsevier, 2005.

K. Murota: Discrete Convex Analysis, SIAM, 2003.