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E: a nonempty finite set
A submodular function f : 2 - R
fX) 4+ f(Y) 2 J(XUY)+ f(XNY) (VXY CE)



E: a nonempty finite set
A submodular function f : 2 - R
fX) 4+ f(Y) 2 J(XUY)+ f(XNY) (VXY CE)

Lemma: D, (f): the set of all minimizers of f
X,Y e Dmin(f) = XUY, XNY € Dmin(f)

i.e., Dmin(f) is a distributive lattice.




E: a nonempty finite set
A submodular function f : 2 - R
JX)+fY) =2 f(XUY)+ f(XNnY) (VXY CE)

Lemma: D,,;,(f): the set of all minimizers of f
X,Y e Dmin(f) = XUY, XNY € Dmin(f)

i.e., Dmin(f) is a distributive lattice.

It leads us to a Characterization of Submodular Functions

Theorem: A set function f : 2¥ — R is a submodular function

0

For V modular function i : 28 — R, Dy (f — ) is a distributive lattice.




Distributive Lattices and Posets

Theorem (Birkhoft-Iri): D C 2F, (), E € D.

D is a distributive lattice with respect to U and N as lattice operations.

0

There exists a partially ordered set (poset) P = (II(E), <) on a partition
II(E) of E such that D is given by

D={XCFE|3Jideal Jof P: X = |J F}.
FeJg

(X C Eisanideal of P if e € X and ¢’ < e always imply ¢’ € X.)

{1,2,3,4,5}

/ \ {3} {4,5}
{1,2,3} {1,2,4,5} \ /
\ / {1,2}



Theorem (Birkhoff-Iri): D C 2€, (), E € D.

D is a distributive lattice with respect to U and N as lattice operations.

0

There exists a partially ordered set (poset) P = (II(£), <) on a partition
II(E) of E such that D is given by

D={XCFE|dideal Jof P: X = |J F}.
FeJg

(X C Fisanideal of Pife € X and ¢/ < e always imply ¢’ € X.)

{1,2,3,4

/ \ {3} {4,5)
{1,2,3} {1,2,4,5} \ /
\ / {1,2)

(a) D (b) P(D)

A simple distributive lattice D: every component of partition II(F) is a
singleton, i.e., D = 27 (the set of all ideals of P=(E, =<)).
—



Submodular System (D, f) on £

D C 2F: a distributive lattice (0, E € D)
X,YeD — XUY,XNY€ED

f(: D — R): a submodular function (f(0) = 0)
VXY €D: f(X)+ f(Y) > F(XUY)+ f(XNY)




Submodular System (D, f) on F

D C 2F: a distributive lattice (0, E € D)
X,YeD — XUY,XNYeED

f(: D — R): a submodular function (f(()) = 0)
VXY €D f(X)+ f(Y)> F(XUY)+ F(XNY)

P(f)={z e RF|VX € D:2(X) < f(X)}
(Submodular Polyhedron)
2(X) =2 z(e),  x(0)=0
eeX
B(f) ={z|x € P(f), x(E)= f(FE)} (Base Polyhedron)

z(3)

z(2)




D C 2F: a distributive lattice (0, E € D)
X, YeD — XUY, XNYeD

f(: D — R): a submodular function (f(0)) = 0)
VXY €D f(X)+ f(Y)> F(XUY) + F(XNY)

P(f) = {x € R | VX € D: 2(X) < f(X)}
(Submodular Polyhedron)
r(X)=> z(e), x(0)=0

ecX
B(f) ={z|x € P(f), x(E)= f(FE)} (Base Polyhedron)

z(3)

z(2)

(a)

Remark: Submodular system (D, f) <15 Base polyhedron B(f)
(Submodular polyhedronP( f))
—



Define a supermodular system (D, g) and its associated supermodular
polyhedron P(¢g) and base polyhedron B(g) in a dual manner.




Define a supermodular system (D, g) and its associated supermodular
polyhedron P(¢g) and base polyhedron B(g) in a dual manner.

Duality
D={E\X|X €D}
FHE\X) = f(B)— f(X) (XeD)
(D, f#): the supermodular system dual to submodular system (D, f)




(D, f): A submodular system on F

Proposition: The base polyhedron of (D, f) has an extreme point.
<= D is simple.

z(3)

.
.
.
‘e
.
‘e
§

B(f)

z(2)
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(D, f): A submodular system on F

Proposition: The base polyhedron of (D, f) has an extreme point.
<= D issimple.

Proposition: The base polyhedron of (D, f) is bounded.
<= D=2 (aBoolean lattice)
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(D, f): A submodular system on F

Proposition: The base polyhedron of (D, f) has an extreme point.
<= D issimple.

Proposition: The base polyhedron of (D, f) is bounded.
<= D=2 (aBoolean lattice)

Proposition: Suppose D is simple. Then,
all the extreme bases are nonnegative
<= f is monotone nondecreasing.
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(D, f): A submodular system on F

Proposition: The base polyhedron of (D, f) has an extreme point.
<= D issimple.

Proposition: The base polyhedron of (D, f) is bounded.
<= D=2 (aBoolean lattice)

Proposition: Suppose D is simple. Then,
all the extreme bases are nonnegative
<= f is monotone nondecreasing.

Proposition: Suppose D is simple. Then,
all the extreme bases are integral <= f is integer-valued.

z(3)
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()

Polymatroid (Edmonds):

D = 2% and f is monotone nondecreasing
X CYCE= f(X) < f(Y).

< B(f) cRY



()

Polymatroid (Edmonds):

D = 2¥ and f is monotone nondecreasing
X CYCE= f(X) < f(Y).

< B(f) cRY

Matroid (Whitney):

Furthermore, f is integer-valued and has a unit-increase property.
VX e2P Vee E\ X : f(X) < f(XU{e}) < f(X)+1
(extreme bases «— matroid bases)



Generalized polymatroids (Frank, Hassin) and Base Polyhedra

z(3)

"~ Generalized polymatroid

z(1)



Theorem (Tomizawa): For a bounded polyhedron P C RE,
P is a base polyhedron

0

all the edge vectors of P are of form
(07"'707i1707°"707:F1707”'70)




Theorem (Tomizawa): For a bounded polyhedron P C RE,
P is a base polyhedron

0

all the edge vectors of P are of form
(07"'707i1707°"707:F1707”'70)

Corollary: For a bounded polyhedron P C RF”,
P is a generalized polymatroid

0

all the edge vectors of P are of form
(0,---,0,+1,0,---,0,F1,0,---,0) or (0,---,0,£1,0,---,0)

Remark: The above two are also valid for pointed polyhedra.



The Intersection Theorem and Its Equivalents

(D, fi) (i = 1,2): submodular systems on F

The Intersection Theorem (Edmonds):

max{z(E) |z € P(f1) NP(f2)}
= mln{fl(X) —|—f2(E\X) | X € Dy, E\X c DQ}

(+ Integrality)




The Intersection Theorem and Its Equivalents

(D, fi) (i = 1,2): submodular systems on F

The Intersection Theorem (Edmonds):

max{z(E) |z € P(f1) NP(f2)}
= mln{fl(X) —|—f2(E\X) | X € Dy, E\X c DQ}

(+ Integrality)

The Intersection Theorem’ :

max{r Ay(E) |z € B(f1), y € B(f2)}
— min{ f1(X) + H(E\ X)| X € D1, E\ X € Dy}

(+ Integrality)

(z Ay)(e) = min{z(e), y(e)} (e € E).




(Dy, f), (D9, g): a submodular system and supermodular system on £

Discrete Separation Theorem (Frank):
fz2g9 = F2eRF:f>2>g (ie,P(f)NP(g)#0)
(+ Integrality)




(Dy, f), (D9, g): a submodular system and supermodular system on £

Discrete Separation Theorem (Frank):
fz2g9 = F2eRF:f>2>g (ie,P(f)NP(g)#0)
(+ Integrality)

Discrete Separation Theorem’:
fzg = 3xeB(f),yeBly):z=y
(+ Integrality)

P(g)
P(f) x oo
AN ! z(1)




(D4, f): a submodular system on F
(Ds, g): a supermodular system on F

f*(r) = max{z(X) - f(X)| X € D;} (z€RF)
g*(z) = min{z(X) — g(X) | X € Dy} (z € RF)

Fenchel Duality Theorem (F):

min{ f(X) —g(X) | X € D1 NDy}
= max{g"(z) - f*(z) | v € R"}

(+ Integrality)




(D1, f): a submodular system on F
(Ds, g): a supermodular system on F

fr(x) =max{z(X) - f(X)| X € D1} (z€RF)
g*(z) = min{z(X) — g(X) | X € Dy} (z € RF)

Y

*

Fenchel Duality Theorem (F):

min{ f(X) — g(X) [ X € D1 N Dy}
= max{g*(z) — f*(z) | z € R"}

(+ Integrality)

Fenchel Duality Theorem’:

min{ f(X) — g(X) | X € DN Dy}
= max{(z —y) (E) |z € B(f), y € B(g)}
(+ Integrality) ((z —y)~ = (min{0,z(e) —y(e)} | e € F))




(D, f;) (i = 1,2): submodular systems on E

Minkowski Sum Theorem:
P(f1) + P(f2) = P(f1 + f2),
B(f1) + B(f2) = B(f1 + f2).
Moreover, if fi and f; are integer-valued, the collections Pyz(-) and Byz(-)

of integer points in P(-) and B(+) satisfy

Pz(f1) + Pz(f2) = Pz(fi + f2),
Bz(f1) + Bz(f2) = Bz(f1 + f2).




Minimum-Norm Base and SFM

(D, f): a submodular system on £
w(: £ — R): a positive weight function, X € R



Minimum-Norm Base and SFM

(D, f): a submodular system on £
w(: £ — R): a positive weight function, X € R

Parametric Vector Reduction: For any A € R,
max{z(E) |z € P(f), v < \w}
= min{f(X)+ \w(E\ X) | X C E}

z(2)

b*
P(f) w

(1)




Theorem (F): There exists a unique base b* such that for all A € R
x = b" A\ \w attains the maximum of the following

max{z(F) | z € P(f), x <  \w}
= min{f(X) + \w(E\ X)| X C E}.




Theorem (F): There exists a unique base b* such that for all A € R
x = b" A\ \w attains the maximum of the following

max{z(F) | z € P(f), x <  \w}
= min{f(X) + \w(E\ X)| X C E}.

A base b is called a lexicographically optimal base w.r.t. weight w if it
lexicographically maximizes the sequence

T(b/w) = (ble)/w(er), - -, blen)/w(en))

of weighted b(e)/w(e) (e € E) arranged in nondecreasing order of mag-
nitude among all bases b.



Theorem (F): There exists a unique base b* such that for all A € R
x = b" A\ \w attains the maximum of the following

max{z(F) | z € P(f), x <  \w}
= min{f(X) + \w(E\ X)| X C E}.

A base b is called a lexicographically optimal base w.r.t. weight w if it
lexicographically maximizes the sequence

T(b/w) = (b(ex)/wler), -+, blen) /w(en))
of weighted b(e)/w(e) (e € E) arranged in nondecreasing order of mag-
nitude among all bases b.

Theorem (F):
(1) b* is the lexicographically optimal base with respect to weight w.

(2) b* is the minimizer of > b%*(e)/w(e) over B(f).
eckE




Theorem (F): There exists a unique base b* such that for all A € R
x = b" A\ \w attains the maximum of the following

max{z(F) | z € P(f), x <  \w}
= min{f(X) + \w(E\ X)| X C E}.

A base b is called a lexicographically optimal base w.r.t. weight w if it
lexicographically maximizes the sequence

T(b/w) = (b(ex)/wler), -+, blen) /w(en))
of weighted b(e)/w(e) (e € E) arranged in nondecreasing order of mag-
nitude among all bases b.

Theorem (F):
(1) b* is the lexicographically optimal base with respect to weight w.

(2) b* is the minimizer of > b*(e)/w(e) over B(f).
eckE

(— Resource Allocation Problems + submodular constraints)



Remarks: We have
min{ f(X) + Aw(E \ X) | X € D}
= (b* N dw)(F) = max{x(E) | x < \w, x € P(f)}
Hence, for A = 0
min{f(X) | X € D} = max{z(E) |z <0, z € P(f)},



Remarks: We have
min{ f(X) + Aw(E \ X) | X € D}
= (b* N dw)(F) = max{x(E) | x < \w, x € P(f)}
Hence, for A = 0
min{f(X) | X € D} = max{z(E) |z <0, z € P(f)},
which implies
Ay ={e | b*(e) <0}, A_={el|b*(e) <0}

are the unique maximal and the unique minimal minimizer of f.




Remarks: We have
min{ f(X) + Aw(E \ X) | X € D}
= (b* N dw)(F) = max{x(E) | x < \w, x € P(f)}
Hence, for A =0
min{f(X) | X € D} = max{z(E) |z <0, z € P(f)},
which implies
Ay ={e | b*(e) <0}, A_={el|b*(e) <0}

are the unique maximal and the unique minimal minimizer of f.

b* is the minimizer of 3" b*(e)/w(e)
eck

Minimum-norm base
=—> Submodular Function Minimization

Applicability of P. Wolfe’s minimum-norm point algorithm



(Submodular Function Minimization <— MNP algorithm of Wolfe)
Ay ={e | b*(e) <0}, A_={el|b*(e) <0}

When f is integer-valued and w = 1,

FIEY) — J(EX_)

)\i: (i:1727"'7p)7 E—::@
[EX N\ EX_| A
)\1 < e K& >\p
nfA >0} > <0} <——
MINAY A >, ax(A; < -
” El" ||
Ag={e|b(e)<el, A ={e|b(e)<—c} (e=q)
/\p ffffffffffffffffffff R
) |
w=1
N —
EEJ
By

+ ]
E/\p



D =2F

Maximum Weight Base Problem
A weight function w : £ — [0, 1]

Maximize > w(e)x(e)
eck

subjectto x € B(f)




D =2F

Maximum Weight Base Problem
A weight function w : £ — [0, 1]

Maximize > w(e)x(e)
eck

subjectto x € B(f)

For a permutation o = (ey, ey, - -, €,) of E, define
Alo): 1>x(er) >z(ex) > - >z(e,) >0
S;={er, - e} (i=1,---,n)
So=0cS,c---CcS,=F

and
b7(ei) = f(Si) = f(Sic1) (i=1,---,m)

Then, b7 is a maximum weight base for w € A(0).
(+— Greedy Algorithm) (Edmonds)




f(w) = the value of a maximum weight base
(the support function of B(f) restricted on [0, 1]%)

(*) f is a linear function on each cell A().

12 {2} Az(2)




Alo): 1>x(er) >z(en) >--->z(e,) >0

The set of cells for n! permutations ¢ defines a simplicial division of unit
hypercube [0, 1]” (Freudenthal simplicial division).

z(2) i(o, 1) (1,1) 00 1)I(3) 0.1,1)
(10, (LD
10)
0 (1) 0.0, z(2)
(0,0) (1,0) (10,
ol (1.10)

For any set function f : 2¥ — R, the piecewise-linear function f
obtained by linear interpolation on every cell A(o) is called the
Lovasz extension (or the Choquet integral) of f.



Theorem (Lovész): For any set function f : 2 — R, f is a submodular
function if and only if its Lovasz extension f is convex.




Theorem (Lovdsz): For any set function f : 2 — R, f is a submodular
function if and only if its Lovasz extension f is convex.

In other words,

Submodular functions
<= Convex extensible w.r.t. the Freudenthal simplicial division



Subgradients and Subdifferentials of Submodular Functions
The subdifferential of f at X € D

Of(X)={r e RF|VY €D:z(Y)—z(X) < f(Y) - f(X)}
Note:  (z,xy —xx) < flxy) = f(xx), Of(X) =0f(xx)

f({1,2})

o (171)

af({2})

af({1,2}) = P(f#)

B(f)

af({1})




Submodular function f : 2¥ — R

0

The Lovasz extension f is convex (and linear on every cell A(c))
0

Base polyhedron B(f) (edge vectors (0,---,0,4+1,0,---,0,F1,0,---,0))

0

Greedy algorithm works



Submodular function f : 2¥ — R Base polyhedron B(f)

I 0

Lovasz extension f 1S convex Greedy algorithm
Y Y
Submodular integrally convex function Valuated matroid
(Favati-Tardella (1990)) (Dress-Wenzel (1990, 1992))
0 (Convex conjugate) (3
L-/Lf-convex function — M-/M"-convex function

(Murota (1998), F-Murota(2000)) (Murota(1996), Murota-Shioura (1999))

Discrete Convex Analysis (Kazuo Murota)



A simplicial division of the plane (triangulation)
X(2)

A

» X(1)

The Freudenthal simplicial division



A simplicial division of the plane (triangulation)
X(2)

A

» X(1)

The Freudenthal simplicial division

Consider a function f defined on the integer lattice Z".



Discrete convex functions with respect to Freudenthal sim-
plicial division = L’-convex functions defined on Z" (due to
Murota)

This is equivalent to the
Submodular integrally convex function
due to Favati and Tardella (1990)

(L’-concave functions are defined similarly.)

>

X(2)4

O (1)

The Freudenthal simplicial division of R?.



Characterization by mid-point convexity due to Favati-Tardella

f@)+ f) = f([3@+ D)+ f(3@+y)]) (Yo, yeZ).

z(24
y
y
’ 0 ’ w‘(l)
Remark

z+y=[az+yl+[iz+y)]
£( ) =3 {f([5+ )]+ F(5@+v)])}
= Hf@)+ )} = f( ) (Yo, yeZ").



f: L*-convex function on integer lattice Z"

f : the convex extension of f on the Freudenthal simplicial division

Convex conjugate f *of f (or f) (Legendre-Fenchel transform)

f*(p) = sup{(p,z) — f(z) |z € R"}
= sup{(p,2) — f(z) |z €Z"}  (pe (R"))

where (p, ) = zz;l (D)2 (d).

f*(p) is an M*-convex function (Murota-Shioura)

f*: restriction of convex conjugate /* on (Z")*
f is integer-valued — f ® is the convex extension of f*

f* for integer-valued f is exactly an integer-valued M-convex function
on (Z")* (Murota-Shioura)




f*) = sup{(p,z) — f(z) |z € R"}
= sup{(p,z) — f(z) |z €Z"}  (pe (R"))

For zp € Z" the set of all p € (R"™)* satisfying
f* () = {p,z0) — f(xo), ie.
f(x) > f(zo) + (p,x —x0) (Vz €Z")
is the subdifferential 9 f(x()(= 0 f(x)) at .



daf(0,1)

,0
0f(0,0) 8f(1,0)




27(2) A
02) (1,2) (2,2)
(0,1) o (2,1)
o)
(1,0) @0 z(1)
y 2(2)
0.2
7 w2)
2:2)
(0,1)
(L,1)
(2,1)
(0.0
¢ p(1)
(1,0) (2,0)




(Recall)

Corollary: For a pointed polyhedron P C R”,
P is a generalized polymatroid

0

all the edge vectors of P are of form

(0,---,0,41,0,---,0,F1,0,---,0) or (0,---,0,£1,0,---

z(3)

™~ Generalized polymatroid




(Recall)

Corollary: For a pointed polyhedron P C R”,
P is a generalized polymatroid
0
all the edge vectors of P are of form
(07"'707i1707°"707:F1707"'70) or (07“'707:‘:1707'”70)

Hence, the subdifferential O f () of an L*-convex function f at an integral
point z is a generalized polymatroid.

M®-convex function f * is an affine function on every such generalized
polymatroid.

Remark: If f is an integer-valued function, 0f(z) is an integral general-
ized polymatroid.
—



M®-concave function g




Simultaneous Exchange Axiom for M°-convex functions
f:Z"— RU{+o0} (Murota-Shioura)

dom f = {x | f(z) < 400}
supp” () = {i | x(i) > 0}, supp(z) = {i [ x(i) <0}

(M?-EXC) For 2,y € dom f and i € supp™(z — y),
f(x)+ fly) = min | f(z —xi) + f(y+ xi),

~omin - {fle—xi +x5) + fly+xi —x5)}H -
Jjesupp~ (z—y)

(— Simultaneous Exchange Axiom for Generalized Polymatroids)
—



Discrete Separation Theorem (L")

f: an integer-valued L*-convex function on Z"

g: an integer-valued L-concave function on Z"

Suppose f > g.



/

Suppose x* minimizes f(x) — g(z) over Z".



\/

Common sub- and supergradient p € 0f(z*) N dg(z*)



Intersections of subdifferentials and superdifferentials
(integral generalized polymatroids)

D(2)




There exists a common integral sub- and supergradient
p e df(zr)Naog(z”)

due to the following integrality:

Intersection Theorem for Generalized Polymatroids (Edmonds, Frank):
The intersection of any two integral generalized polymatroids is inte-
gral if it is nonempty.




There exists a common integral sub- and supergradient
p e df(zr)Naog(z”)

due to the following integrality:

Intersection Theorem for Generalized Polymatroids (Edmonds, Frank):
The intersection of any two integral generalized polymatroids is inte-
gral if it is nonempty.

Hence,
g(x*) — (p,2*) < B < f(2") — (p,27)

(p, =*: integral vectors —> There exists an integer (.



There exists a common integral sub- and supergradient
p e df(zr)Naog(z”)

due to the following integrality:

Intersection Theorem for Generalized Polymatroids (Edmonds, Frank):
The intersection of any two integral generalized polymatroids is inte-
gral if it is nonempty.

Hence,
g(x*) — (p,2*) < B < f(2") — (p,27)

(p, z*: integral vectors —> There exists an integer [.

Discrete Separation Theorem (Murota):
VzeZ": f(z) > g(z)
— Ape(@"),P€Z):f(z) 2 (p,2)+8=9(z) Vz€Z")




Discrete Fenchel Duality Theorem (Murota):

For any integer-valued L-convex function f : Z" — Z and Lf-concave
function g : Z" — Z,

inf{ f(z) — g(z) | z € Z"} = sup{g°(p) — f*(p) | p € (Z")"}.




Discrete Fenchel Duality Theorem (Murota):

For any integer-valued Li-convex function f : Z" — Z and L*-concave
function g : Z" — Z,

inf{ f(z) — g(z) | z € Z"} = sup{g°(p) — f*(p) | p € (Z")"}.

conv. extension  conv. conjugate restriction
— p ‘e — .
f P f e f —
restriction cony. extension

L -convex function M’-convex function




For more information see the following monographs.

S. Fujishige: Submodular Functions and Optimization, Second Edition,
Elsevier, 2005.

K. Murota: Discrete Convex Analysis, SIAM, 2003.



