Un fil d'Ariane pour ce workshop

(Main Tools)

- Modularity Lifting Theorems
 - MLT for residually reducible representations [SW1],
 - MLT for potentially Barsotti-Tate deformations [K1],
 - (MLT for crystalline deformations of intermediate weights [K3]),
 - MLT for unitary groups [CHT], etc.
- Potential Modularity Theorems
 - PMT by using Hilbert-Blumenthal modular varieties
 - [T2] (ordinary case), [T3] (crystalline of low weight case),
 - PMT by using a family of Calabi-Yau varieties [HSBT] (GSp case).
- existence of Strictly Compatible Systems
 - [KW1], [Kh1], and [KW3]
 - crystalline liftings of low weights,
 - weight 2 liftings etc.

(Conjectures)

- MLT for unitary groups & PMT by using Calabi-Yau family ~Sato-Tate conjecture (under mild condition),
- MLT's & the existence of several kinds of SCS's →Serre's conjecture.

(Influence, or logical dependence)

- Wiles' (3, 5)-trick $\rightsquigarrow PMT$,
- Kisin's modified TW argument in non-minimal cases →MLT for unitary groups in non-minimal cases,
- PMT & MLT ~~the existence of SCS's,
- (p-adic local Langlands
 →MLT for crystalline deformations of intermediate weights),
- (p-adic local Langlands
 →Breuil-Mézard conjecture
 →MLT for potentially semistable deformations of arbitrary weights).

¹written by Go Yamashita (gokun@kurims.kyoto-u.ac.jp)

Taylor-Wiles system ([W1], [TW], [D1])

- H¹_L(Q, ad⁰ρ̄) ≃ Hom_k(m_{R_L}/(λ, m²_{R_L}), k), its dim.= (the number of topological generators of the corresponding universal deformation ring).
- dim $H^1_{\mathcal{L}}(\mathbb{Q}, \mathrm{ad}^0 \overline{\rho}) = \dim H^1_{\mathcal{L}^*}(\mathbb{Q}, \mathrm{ad}^0 \overline{\rho}(1)) +$ (sum of local terms) by global Tate-Poitou duality, and
 - (local term at ∞)= -1,
 - (local term at p in the minimal case) ≤ 1 by Fontaine-Laffaille theory,
 - (local terms $(\neq p)$ at "minimally ramified" deformations)= 0,
 - (local terms at TW-type deformations)= 1,
 - $-\dim H^{1}_{\mathcal{L}^{*}_{\emptyset}}(\mathbb{Q}, \mathrm{ad}^{0}\overline{\rho}(1)) \dim H^{1}_{\mathcal{L}^{*}_{\mathcal{O}_{n}}}(\mathbb{Q}, \mathrm{ad}^{0}\overline{\rho}(1)) = \#Q_{n},$
 - $-H^1_{\mathcal{L}^n_{O_n}}(\mathbb{Q}, \mathrm{ad}^0\overline{\rho}(1)) = 0$ by Cebotarev arguments,

$$\sim \rightarrow$$

(the number of topological generators of n-th level TW-type universal deformation ring)

- $= \dim H^{1}_{\mathcal{L}_{Q_{n}}}(\mathbb{Q}, \mathrm{ad}^{0}\overline{\rho}) \leq \dim H^{1}_{\mathcal{L}^{*}_{Q_{n}}}(\mathbb{Q}, \mathrm{ad}^{0}\overline{\rho}(1)) + \#Q_{n}$ $= \#Q_{n} = \dim H^{1}_{\mathcal{L}^{*}_{a}}(\mathbb{Q}, \mathrm{ad}^{0}\overline{\rho}(1)) \text{ (independent of } n).$
- \mathbb{T}_{Q_n} is free over $\mathcal{O}[\Delta_{Q_n}]$ by de Shalit's argument (need of mod p multiplicity one) (resp. H_{Q_n} is free over $\mathcal{O}[\Delta_{Q_n}]$ by the argument in [D1] (no need of mod p multiplicity one)).
- TW system is *not* a compatible system with respect to *n*. We make a compatible system from TW system by using the argument of "finite isomorphism classes", and take a projective limit. In the limit level, the situation is simple. So, we get $R_{\infty} \xrightarrow{\sim} \mathbb{T}_{\infty}$ in the limit level. We deduce $R_{\emptyset} \xrightarrow{\sim} \mathbb{T}_{\emptyset}$ & l.c.i. (resp. + freeness of H_{\emptyset} over \mathbb{T}_{\emptyset} [D1]) in the finite level from the limit level.
- \mathbb{T}_{Σ} is reduced $\rightsquigarrow \#(\mathcal{O}/\eta_{\Sigma}) < \infty$. (cf. we do not know a priori $\#(\mathfrak{p}_{\Sigma}/\mathfrak{p}_{\Sigma}^2) < \infty$).
- Ihara' lemma and its generalization +Gorenstein-ness of T_{Σ'} and T_Σ (resp. no need of Gorenstein-ness [D1])
 ~calculation of #(η_Σ/η_{Σ'}) (resp. length_OΩ_{Σ'}/Ω_Σ, where Ω_Σ := H_Σ/(H_Σ[**p**_Σ] + H_Σ[I_Σ]))
 ~#(**p**_{Σ'}/**p**_{Σ'})/(**p**_Σ/**p**_Σ) ≤ #(η_Σ/η_{Σ'})
 (resp. length_O(**p**_{Σ'}/**p**_{Σ'})/(**p**_Σ/**p**_Σ) ≤ length_OΩ_{Σ'}/Ω_Σ)
 ~
 R_Σ ~ T_Σ & l.c.i. (resp. + freeness of H_Σ over T_Σ) implies
 R_{Σ'} ~ T_{Σ'} & l.c.i. (resp. + freeness of H_{Σ'} over T_{Σ'} [D1]).

Kisin's modification of TW argument ([K1], [K3], [K7])

- We study a global deformation ring over local deformation rings
 - we can show $R^{\text{red}} = T$ even if the local deformation rings at the places dividing p have complicated singularity, and
 - we can show $R^{\text{red}} = T$ without level raising in non-minimal cases.
- We consider framed deformations
 →we can study local framed deformation rings even if p
 _{G0} is not irreducible.
- dim. of Selmer group + local contributions \sim the number of topological generators of R over $\widehat{\otimes}_{v \in \Sigma} R_v$.
- We have to study the following things about local framed deformation rings to apply Kisin's modified TW argument:
 - (1) calculation of the dimensions of the local deformation rings,
 - (2) to show that the local deformation rings are formally smooth after inverting p, and
 - (3) to show that the local deformation rings are domains.
- The above (1), (2), and (3) are easy in the case of $v \nmid p$. In the case of $v \mid p$:
 - (1) Calculation of the dimension is easy,
 - (2) Formally smooth after inverting p: Breuil's theorem (crystalline representations of HT weights in $\{0,1\}$ come from p-divisible groups)
 - $\rightsquigarrow D^{\mathrm{fl}}_{V_{\mathbb{F}},(\xi)} \xrightarrow{\sim} D^{\mathrm{crys}}_{V_{\xi}}$
 - ~check explicitly the formally smoothness by constructing a lifting,
 - (3) Domain: Consider a moduli of finite flat models $\mathcal{GR}_{V_{\mathbb{F}}}^{\mathbf{v}}$,
 - (a) Tate's theorem $\mathcal{CP}\mathbf{Y}$ is increasing to $\mathcal{CP}\mathbf{Y}$ of the increasing $\mathcal{CP}\mathbf{Y}$
 - $\rightsquigarrow \mathcal{GR}_{V_{\mathbb{F}}}^{\mathbf{v}}$ is isomorphic to $\operatorname{Spec} R^{\mathbf{v}}$ after inverting p, comparing $\mathcal{GR}_{V_{\mathbb{F}}}^{\mathbf{v}}$ with a complete local ring of a Hilbert mod
 - (b) comparing $\mathcal{GR}^{\mathbf{v}}_{V_{\mathbb{F}}}$ with a complete local ring of a Hilbert modular variety $\sim \mathcal{GR}^{\mathbf{v}}_{V_{\mathbb{F}}} \otimes \mathbb{F}$ is normal, in particular, reduced,
 - (c) Kisin's theory of \mathfrak{S} -modules in the integral *p*-adic Hodge theory \rightsquigarrow the special fiber $\mathcal{GR}^{\mathbf{v},\text{non-ord}}_{V_{\mathbb{F}},0}$ is connected by explicit linear algebra calculations (repeat connecting a point to another point by \mathbb{P}^1),
 - culations (repeat connecting a point to another point by \mathbb{P}^1), (d) $H_0(\operatorname{Spec} R^{\mathbf{v},\operatorname{non-ord}}[\frac{1}{p}]) \cong H_0(\mathcal{GR}^{\mathbf{v},\operatorname{non-ord}}_{V_{\mathbb{F}}} \otimes \mathbb{Q}_p)$ by (a)

$$\cong H_0(\mathcal{GR}_{V_{\mathbb{F}}}^{\mathbf{v},\text{non-ord}}) \text{ by } (b) \cong H_0(\mathcal{GR}_{V_{\mathbb{F}}}^{\mathbf{v},\text{non-ord}}) \text{ by formal GAGA}$$
$$\cong H_0(\mathcal{GR}_{V_{\mathbb{F}},0}^{\mathbf{v},\text{non-ord}}) \cong \{*\} \text{ by } (c).$$

Potential Modularity Theorems ([T2], [T3], [HSBT])

 GL_2 case ([T2], [T3]):

 \bullet We want to find a Hilbert-Blumenthal abelian variety A such that

$$\overline{\rho} \cong A[\lambda] \longleftarrow T_{\lambda}A \longleftrightarrow T_{\wp}A \longrightarrow A[\wp] \cong \operatorname{Ind}\overline{\psi}.$$

- We consider Hilbert-Blumenthal modular varieties, and try to find such an abelian variety as a rational point of this modular variety.
- (We allow "potentiality") Moret-Bailly's theorem
 →it suffices to find local points (at λ, ℘, and ∞) to get such an abelian variety.
- Ordinary case ([T2]):
 - Honda-Tate theory
 - Serre-Tate theory
 - \sim find an abelian variety over a local field.
- Crystalline of low weight case ([T3]):
 - We consider a twist of the modular variety, which is isomorphic over \mathbb{Q}_{ℓ} , \mathbb{Q}_{p_1} , \mathbb{Q}_{p_2} , and \mathbb{R} ,
 - CM theory
 - \leadsto find a $\mathbb Q$ rational point on the twisted variety
 - \leadsto find local points on the original variety,
 - studying mod ℓ representations of $\operatorname{GL}_2(O_{F_{\lambda}})$ \sim change of weights.

 GSp_n case ([HSBT]):

- We use Calabi-Yau varieties instead of abelian varieties, and a Calabi-Yau family instead of Hilbert-Blumenthal modular variety.
- The condition of the relation with *p̄* →we have to consider a covering of the Calabi-Yau family.
- The Calabi-Yau family has big monodromy ~the covering is geometrically connected ~we can apply Moret-Bailly's theorem.
- trivial reason, or Fontaine-Laffaille theory, or Serre-Tate theory ~find local points.

existence of Strict Compatible Systems ([KW1], [Kh1], and [KW3])

- Savitt's study of local deformation rings
 →local deformation rings we are considering are not zero.
- (Böckle's method) For $\theta^i : H^i(G_{\mathbb{Q},S}, \mathrm{ad}^0\overline{\rho}) \to \bigoplus_{v \in \Sigma} H^i(\mathbb{Q}_v, \mathrm{ad}^0\overline{\rho}),$ - calculation of dim ker θ^1
 - \rightarrow the number of topological generators of R over $\widehat{\otimes}_{v \in \Sigma} R_v$, and
 - calculation of dim coker θ^1 + dim ker θ^2
 - \sim the number of relations of R over $\widehat{\otimes}_{v \in \Sigma} R_v$ \sim dim $R \leq 1$.
- PMT
 - \sim global deformation ring R_F of $\overline{\rho}|_{G_F}$ is flat over \mathcal{O} by MLT
 - $\rightsquigarrow R/(p)$ is finite by de Jong's argument
 - $\leadsto R$ is flat over \mathcal{O}
 - \rightarrow we get a minimally ramified lifting ρ (with some conditions) to characteristic 0.
- \bullet PMT

 $\sim \rho|_{G_F} \text{ arises from an automorphic representation } \pi \text{ of } \operatorname{GL}_2(\mathbb{A}_F)$ $\sim \text{we can make } \rho \text{ a part of SCS's by Brauer's theorem:}$ $\rho_{\lambda} := \sum_i n_i \operatorname{Ind}_{G_{F_i}}^{G_{\mathbb{Q}}} (\chi_i \otimes \rho_{\pi_{F_i},\lambda}),$

where $1 = \sum_{i} n_i \operatorname{Ind}_{G_{F_i}}^{G_{\mathbb{Q}}} \chi_i (F/F_i)$'s are elementary, in particular, solvable), and π_{F_i} is an automorphic representation of $\operatorname{GL}_2(\mathbb{A}_{F_i})$ such that $\rho_{\pi_{F_i},\wp} \cong \rho|_{G_{F_i}}$ (we can check that ρ_{λ} is a true representation).