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Defining Chow groups via Chow varieties

Assume X ⊂ Pn is projective/k.

Cr,e(X) = Chow variety of effective cycles

of dimension r and degree e on X

Cr(X) =
∐
e≥0

Cr,e(X).

For example,

C0,e(X) = Symme(X) := X×e/Σe

Cn−1,e(Pn) = P(degree e part of k[x0, . . . , xn])

For most other cases, structure of Cr(X) is very complicated.
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The functor represented by Chow varieties

For a smooth T , we have

Hom(T, Cr(X)) =
{

effective cycles γ =
∑

i

niWi on T ×X :

each Wi → T is equi-dimensional

of relative dimension r
}

Hom(T, Cr(X)) is monoid under addition of cycles, and

Hom(T, Cr(X))+ := group completion of Hom(T, C(X))
= free abelian group on integral W ⊂ T ×X

such that W → T is equi-dimensional

of relative dimension r
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Chow varieties lead to rational equivalence

Cr(X)(k)+ = Hom(Spec k, Cr(X))+ = {r-cycles on X}

Hom(A1, Cr(X))+ is the free abelian group on:

Γ � � //

rel. dim. r $$II
II

II
II

II
A1 ×X

��
A1

Let iP : Spec k � A1 be inclusion at a point P ∈ A1(k). Then

i∗P : Hom(A1, Cr(X))+ → Cr(X)+

γ 7→ γ ∩ ({P} ×X)
4 / 54
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Classical Chow group via Chow varieties

We get a presentation of the classical Chow group:

Hom(A1, Cr(X))+
i∗0−i∗1 // Cr(X)+ // CHr(X) // 0

Or, in other words, CHr(X) is “πalg
0 ” of Cr(X)+.
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Definition of higher Chow groups via Chow varieties

Define the “algebraic n-simplex”

∆n = Spec k[x0, . . . , xn]/(
∑

i

xi − 1) ∼= An

Then [n] 7→ Hom(∆n, Cr(X))+ is a simplicial abelian group.

Definition

The higher Chow groups of a projective variety X are

CHr(X,n) := πn

(
Hom(∆·, Cr(X))+

)
= “πalg

n (Cr(X)+)”.

Note that CHr(X, 0) = CHr(X).
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Some properties of the higher Chow groups

Localization sequence: For Y ⊂ X closed and U := X \ Y

· · · → CHr(Y, 1)→CHr(X, 1)→ CHr(U, 1)→ CHr(Y, 0)
→ CHr(X, 0)→ CHr(U, 0)→ 0.

Homotopy invariance:

CHr(X,n) ∼= CHr+m(X × Am, n)

There is a generalized cycle class map

CHr(X,n)→ HBM
2r+n(X(C)).

Here, HBM = Borel-Moore homology. HBM = Hsing for
compact spaces.
This is a map of “Borel-Moore homology” theories.
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Motivic homology notation

Let us re-index to get the cycle map to look nicer:

motivic homology = HMn (X,Z(r)) := CHr(X,n− 2r)

With this notation, thus classical Chow groups are

CHr(X) = HM2r (X,Z(r))

and the generalized cycle map looks like

HMn (X,Z(r))→ HBM
n (X(C)).

In fact, this notation is even more pleasing if we take into
account mixed Hodge structures. We get a map of MHS:

HMn (X,Z(r))→ HBM
n (X(C),Z(r)),

where Z(r) on the right refers to shifting the MHS.
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Motivic cohomology

I won’t define it carefully here, but motivic cohomology is

Hn
M(X,Z(t)) := Hn

Zar(X,ZM(t)).

The pair
HM∗ (X,Z(∗)) and H∗M(X,Z(∗))

form a “Bloch-Ogus” duality theory. In particular, Poincaré
duality holds:

Hn
M(X,Z(t)) ∼= HM2d−n(X,Z(d− t)),

for X smooth.
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From now on, all varieties are assumed to be quasi-projective
varieties over C.
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Algebraic equivalence

Two r-cycles γ1, γ2 on X are algebraically equivalent if they
are members of a family of cycles parametrized by some
smooth curve C.

In detail, γ1 ∼alg γ2 if there is a cycle

Γ � � //

rel. dim. r $$III
III

III
I C ×X

��
C

and points c1, c2 ∈ C such that the fiber of Γ over ci is γi:

Γ ∩ ({ci} ×X) = γi, i = 1, 2.
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The Chow group modulo algebraic equivalence

Define
CHr(X)alg.∼0 ⊂ CHr(X)

to be the subgroup generated by γ1 − γ2 for γ1 ∼alg. equiv. γ2.
Let

CHr(X)/(alg. equiv.) := CHr(X)/CHr(X)alg.∼0

For codimension one cycles on a smooth, projective X:

CHdim(X)−1(X)alg.∼0 = Pic0(X) = abelian variety.

The group CHdim(X)−1(X)/(alg. equiv.) = NS(X).

For zero cycles on a connected X:

CH0(X)/(alg. equiv.) ∼= Z via degree map.
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Inspiration of Lawson homology

Build a theory like higher Chow groups (motivic homology),
but start with CH∗(−)/(alg. equiv.) in place of CH∗(−).

Two points in Cr,e(X) lie in the same connected component iff
they are joined by a chain of “paths” of the form C → Cr,e(X)
with C a smooth curve. Each path C → Cr,e(X) gives a family
of cycles indexed by C. We get:

Proposition

For a complex, projective variety X

π0Cr(X)(C)+ ∼= CHr(X)/(alg. equiv.).

This suggests replacing “πalg
∗ ” with actual homotopy groups...
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Definition of Lawson homology

For X projective, let C(X)(C) be complex points of the Chow
variety, equipped with the analytic topology. Define

Zr(X) = Cr(X)(C)+

to be the “naive” topological group completion of Cr(X)(C):

Zr(X) = Cr(X)(C)× Cr(X)(C)/{(α, β) ∼ (α+ γ, β + γ)}

Definition

The Lawson homology groups of a complex projective variety
X are

LrHm(X) = πm−2r (Zr(X)) .

For example, by the proposition above,

LrH2r(X) := π0Zr(X) ∼= CHr(X)/(alg. equiv.).
14 / 54
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There is a map from motivic to Lawson homology

HMm (X,Z(r))→ LrHm(X)

given by “applying πalg
∗ → π∗ to Zr(X)”.

For m = 2r, this is the evident map:

HM2r (X,Z(r)) = CHr(X) � CHr(X)/(alg. equiv.) = LrH2r(X).

Remark

The map HMm (X,Z(r))→ LrHm(X) is certainly not onto in
general. In fact, for m > 2r and X smooth, projective, it’s
reasonable to conjecture the map is torsion.
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An element of LrHm(X) is a “families of cycles
parametrized by a topological sphere”

An element of LrHm(X) is given by a continuous map

Sm−2r → Zr(X)

which can be visualized as:

Γ � � //

rel. dim. r $$JJJJJJJJJJJ Sm−2r ×X

��
Sm−2r

Similarly, an element in HMm (X,Z(r)) may be visualized as a
family of r-cycles parametrized by the “algebraic sphere”

Sm−2r
alg := ∂∆m−2r+1.

The map HMm (X,Z(r))→ LrHm(X) is pull-back along
Sm−2r → Sm−2r

alg (C).
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Visualizing elements of π1Zr(X)

An element of LrH2r+1(X) is a family parametrized by S1.

In fact, we may think of classes in LrH2r+1(X) as giving “two
proofs that a pair of cycles γ1, γ2 are algebraically equivalent”:
Suppose

Γ ⊂ C ×X and Γ′ ⊂ C ′ ×X

and we have points c1, c2 ∈ C and c′1, c
′
2 ∈ C ′ such that

γ1 = Γc1 = Γc′1
and γ2 = Γc2 = Γc′2

.

Pick paths I → C, I → C ′ joining c1 to c2 and c′1 to c′2. Let Y
be the singular curve obtained by gluing these smooth curves
together:

Y = C ∪ C ′ = C q C ′/(c1 ∼ c′1, c2 ∼ c′2)

17 / 54
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Visualizing elements of π1Zr(X), cont.

This data determines a loop

S1 → Y = C ∪ C ′

and a family of r-cycles on X

Γ � � //

rel. dim. r ##FF
FF

FF
FF

FF Y ×X

��
Y

This gives a map

S1 → Y
Γ∗−→Zr(X),

where Γ∗ : y 7→ Γy ∈ Zr(X), and hence an element of

π1Zr(X) = LrH2r+1(X).

Every element of LrH2r+1(X) is constructed in this manner.
18 / 54
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Lawson homology for quasi-projective varieties

For U quasi-projective, U ⊂ X open with X projective, and
Y := X \ U .

Zr(U) := Zr(X)/Zr(Y )

We define the Lawson homology groups of U as

LrHm(U) := πm−2rZr(U).

Zr(Y ) � Zr(X) � Zr(U) is a fibration sequence. We get a
localization long exact sequence:

· · · → LrH2r+1(Y )→ LrH2r+1(X)→ LrH2r+1(U)
→ LrH2r(Y )→ LrH2r(X)→ LrH2r(U)→ 0.
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Other Basic properties of Lawson homology

“Base” group is what we wanted:

LrH2r(U) = CHr(U)/(alg. equiv.).

there is a natural map HMm (U,Z(r))→ LrHm(U).

Homotopy invariance:

LrHn(U) ∼= Lr+mHn+2m(U × Am).

There is a companion cohomology theory, morphic
cohomology, written LtHn(−). The pair L∗H∗, L

∗H∗

form a Bloch-Ogus duality theory.

In particular, Poincaré duality holds:

LtHn(U) ∼= Ld−tH2d−t(U) for U smooth of dim. d.

20 / 54
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Zero cycles: Computing L0Hm

Recall C0(X)(C) =
∐

e≥0 Symm
e(X(C)) for X projective.

The Dold-Thom Theorem states that for a compact CW
complex T ,

πq

((∐
e

Symme(T )

)+)
∼= Hsing

q (T,Z)

Proposition

For X projective,

πnZ0(X) =: L0Hn(X) ∼= Hsing
n (X(C)).

More generally for U quasi-projective,

L0Hn(U) ∼= HBM
n (U(C)).

21 / 54



An
idiosyncratic
view of the
higher Chow
groups

Definition of
Lawson
homology, and
its basic
properties

Suslin’s
Conjecture

The s-map on cycle spaces

Define

P1(C)×Zr(X)→ Zr(P1 ×X)
by (P, γ) 7→ {P} × γ.

Compose with

Zr(P1 ×X) � Zr(A1 ×X) := Zr(P1 ×X)/Zr({∗} ×X)

to get
P1(C) ∧ Zr(X)→ Zr(A1 ×X).

By choosing an inverse of the homotopy equivalence
Zr−1(X) ∼−→Zr(A1 ×X), we get:

S2 ∧ Zr(X) = P1(C) ∧ Zr(X)→ Zr−1(X).

The adjoint of this is the s-map on cycle spaces:

s : Zr(X)→ Ω2Zr−1(X).
22 / 54
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The s-map in Lawson homology

Taking homotopy groups of

s : Zr(X)→ Ω2Zr−1(X).

gives the s-map on Lawson homology:

s : LrHn(X)→ Lr−1Hn(X).

The s-map can also be defined as multiplication by the
s-element in morphic cohomology:

s ∈ L1H0(Spec C) ∼= Z.

This is the integral analogue of multiplication by the “Bott
element” in motivic cohomology:

β ∈ H0
M(Spec k,Z/n(1)) ∼= µn(k).
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The map from Lawson to singular homology

We get a sequence of maps

LrHn(X) s−→· · · s−→L0Hn(X) ∼= Hsing
n (X(C)).

whose composition is the generalized cycle map from Lawson
homology to singular homology, for X projective:

LrHn(X)→ Hsing
n (X(C))

This generalizes to quasi-projective varieties U :

LrHn(U) s−→· · · s−→L0Hn(U) ∼= HBM
n (U(C))

LrHn(U)→ HBM
n (U(C))
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The topological filtration

F top
r Hsing

m (X) := im
(
LrHm(X)→ Hsing

m (X(C),Z)
)

F top
r Hsing

m (X) ⊂ F top
r−1H

sing
m (X) ⊂ · · · ⊂ F top

0 Hsing
m (X) = Hsing

m (X(C))

Conjecture (Friedlander-Mazur)

The topological filtration coincides (rationally) with the
filtration by dimension of support (“niveau” filtration) of Hsing

∗ :

F top
r Hsing

m (X)Q = Nm−rH
sing
m (X(C),Q).

In particular, this conjecture predicts that

LrHm(X)→ Hsing
m (X(C))

is onto for m ≥ dim(X) + r. This is also known as the “Weak
Suslin Conjecture”.25 / 54
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Natural maps between theories

The map from motivic homology to singular homology factors
through Lawson homology. For X projective:

HMm (X,Z(r))→ LrHm(X)→ Hsing
m (X(C),Z(r))

(These maps are maps of mixed Hodge structures.)

When m = 2r, the above sequence is

CHr(X) � CHr(X)/(alg. equiv.)→ Hsing
r (X(C),Z(2r)).

(Recall HMm (X,Z(r))→ LrHm(X) is usually not onto.)

26 / 54
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Natural maps for quasi-projective varieties

This factorization extends to quasi-projective varieties U , and
has the form

HMm (U,Z(r))→ LrHm(U)→ HBM
m (U(C),Z(r)).

(Recall HBM denotes Borel-Moore singular homology and
HBM = Hsing for compact spaces.)

There are also maps on the corresponding cohomology theories:

Hn
M(U,Z(t))→ LtHn(U)→ Hn

sing(U(C),Z(t))

and, together with the maps above, they give maps of
Bloch-Ogus duality theories.

27 / 54
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Known calculations: Codimension one cycles

For X connected, smooth, projective of dimension d we have a
fibration sequence

P∞(C) � Zd−1(X) � Pic(X)(C).

Moreover,

Pic(X)(C) = NS(X)× Pic0(X)(C)

and Pic0(X)(C) (a torus) is the classifying space of the free
abelian group H1

sing(X(C),Z). Also, P∞(C) = K(Z, 2).

π1Zd−1(X) ∼= π1 Pic0(X)(C)
∼= H1

sing(X(C))
∼= Hsing

2d−1(X(C)).

28 / 54
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Known calculations: Codimension one cycles

P∞(C) � Zd−1(X) � Pic(X)(C)

also implies:

π0Zd−1(X) = NS(X) ⊂ H2
sing(X(C)) ∼= Hsing

2d−2(X(C)).

and
π2Zd−1(X) = Z = Hsing

2d (X(C)).

For all smooth, quasi-projective varieties U :

Ld−1Hm(U) =


Hsing

m (U(C),Z) m ≥ 2d− 1
NS(U) ⊂ HBM

m (U(C),Z) n = 2d− 2
0 n < 2d− 2

29 / 54
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Known calculations: Special varieties

There is a class S of especially “simple” varieties for which

LrHm(X)
∼=−→W−2rH

BM
m (X) ⊂ HBM

m (X).

W∗ refers to the (integrally defined) weight filtration on
(Borel-Moore) homology. The class S includes:

curves

toric varieties

cellular varieties

smooth, projective surfaces S s.t. CH2(S) � Hsing(S)

30 / 54



An
idiosyncratic
view of the
higher Chow
groups

Definition of
Lawson
homology, and
its basic
properties

Suslin’s
Conjecture

Finite coefficients

There are variants of motivic homology ( = higher Chow
groups) and Lawson homology with coefficients in any abelian
group A:

HMm (X,A(r)) and LrHm(X,A).

To define them, take homotopy groups with coefficients in A.

Theorem (Suslin-Voevodsky)

For any quasi-projective variety U ,

HMm (U,Z/n(r))
∼=−→LrHm(U,Z/n)

for all n > 0.

“motivic homology and Lawson homology with finite
coefficients coincide”
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Illustration of Suslin-Voevodsky theorem for π0

For example,

HM2r (X,Z/n(r)) = CHr(X; Z/n) = CHr(X)⊗ Z/n

and

LrH2r(X,Z/n) = (CHr(X)/(alg. equiv.))⊗ Z/n

are isomorphic.

This holds because the kernel CHr(X)alg.∼0 of
HM2r (X,Z(r)) � LrH2r(X) is divisible.

For example, for codim. one cycles on a smooth, projective X:

CHdim(X)−1(X)alg.∼0 = Pic0(X)(C), a torus.
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Bloch-Kato Theorem in terms of Lawson homology

Theorem (Voevodsky)

For X smooth and n > 0, the map

LrHm(X,Z/n)
∼=−→HBM

m (X(C),Z/n)

is an isomorphism provided m ≥ d+ r.
If m = d+ r − 1, this map is injective.

In terms of morphic cohomology:

LtHp(X,Z/n) ∼= Hp
sing(X(C),Z/n) if p ≤ t.

Stronger form: Define a : (V ar/C)analytic → (V ar/C)Zar.
Then

LtHp(X,Z/n)
∼=−→Hp

Zar(X, tr≤tRa∗Z/n)
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Suslin’s Conjecture for Lawson/morphic
(co)homology

Conjecture (Suslin’s Conjecture — Lawson form)

For a smooth, quasi-projective variety X, the map

LrHm(X)→ Hsing
m (X(C))

is an isomorphism for m ≥ d+ r and a monomorphism for
m = d+ r − 1.

The cohomological version of Suslin’s Conjecture is:

LtHn(X)
?∼= Hn

Zar(X, tr≤tRπ∗Z),

where π : (V ar/C)analytic → (V ar/C)Zar. Thus,

“Suslin’s Conjecture = Bloch-Kato with Z-coefficients (over C)”.
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