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Review of Lawson homology

For X quasi-projective over C:

Zr(X) = topological abelian group of r-cycles on X

LrHm(X) := πm−2rZr(X)

There are maps:

HMm (X,Z(r))→ LrHm(X)→ HBM
m (X(C),Z(r))

The left-hand map is an isomorphism with Z/n-coefficients.

The right-hand map is the topic of Suslin’s Conjecture (see
below).

Additional comment: These are maps of (non-finitely
generated) MHS’s, where HMm (X,Z(r)) has the trivial MHS.
The MHS of LrHm(X) is induced by MHS on Hsing

∗ (Cr,e(X)).
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Related theories

I mentioned (but did not define) morphic cohomology,
L∗H∗(X), yesterday.

There is also a version of K-theory that uses algebraic
equivalence, called semi-topological K-theory: Let
Grass =

∐
n Grass(Cn). For X projective,

Ksemi
q (X) := πq

(
Maps(X,Grass)h+

)
where h+ denotes “homotopy theoretic group completion” of
the homotopy-commutative H-space Maps(X,Grass).

For example, Ksemi
0 (X) = K0(X)/(alg. equiv.).

“Every formal property one might expect involving L∗H∗,
L∗H∗ and Ksemi

∗ does indeed hold.”
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Some of the properties of Ksemi
∗

There are natural maps

Kn(X)→ Ksemi
n (X)→ ku−n(X(C)).

Kn(X,Z/m)
∼=−→Ksemi

n (X,Z/m) for m > 0.

There is a Chern character isomorphism

ch : Ksemi
n (X)Q

∼=−→⊕ LqH2q−n(X,Q).

For X smooth, there is an Atiyah-Hirzebruch spectral
sequence

Ep,q
2 = L−qHp−q ⇒ Ksemi

−p−q(X),

which degenerates upon tensoring with Q.

4 / 23



Review of
Lawson
homology and
related
theories

Suslin’s
Conjecture

Correspondences

Beilinson’s
Theorem

More on
Suslin’s
(strong)
conjeture

Suslin’s Conjecture for Lawson/morphic
(co)homology

Conjecture (Suslin’s Conjecture — Lawson form)

For a smooth, quasi-projective variety X, the map

LrHm(X)→ Hsing
m (X(C),Z(r))

is an isomorphism for m ≥ d+ r and a monomorphism for
m = d+ r − 1.

“Suslin’s Conjecture = Bloch-Kato (really,
Beilinson-Lichtenbaum) with Z-coefficients (over C)”:

LtHn(X)
?∼= Hn

Zar(X, tr≤tRπ∗Z),

where π : (V ar/C)analytic → (V ar/C)Zar.
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(Thin) Evidence: Cases where Suslin’s Conjecture
is known

For codimension one cycles. Proof is by explicit
calculation of Ldim(X)−1H∗(X).

For L0H∗ (by Dold-Thom Theorem) and Ldim(X)H∗
(trivially). In particular, it’s known for all surfaces.

For special varieties, such as toric varieties, cellular
varieties, linear varieties (that are smooth).

Certain hyper-surfaces of dim. 3 [Voineagu]

With finite coefficients — i.e., Bloch-Kato is known
[Voevodsky].

The cohomological form holds for π0 [Bloch-Ogus]

Ld−tH2(d−t)(X) = LtH2t(X) ∼= H2t
Zar(X, tr≤tRπ∗Z)
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Finite generation of Lawson homology

Suslin’s Conjecture predicts, in particular, that

LrHm(X) is finitely generated for m ≥ dim(X) + r − 1.

The converse is also known: let CrH∗(X) be the “cone” of the
map from LrH∗ to HBM

∗ , so that

· · · → CrHm(X)→ LrHm(X)→ HBM
m (X)→ CrHm−1(X)→ · · · .

Voevodsky’s Bloch-Kato ⇒ CrHm(X,Z/n) = 0 for
m ≥ dim(X) + r − 1, and hence CrHm(X,Z) is a divisible
group in this range.

Thus, if LrHm(X) is finitely generated for
m ≥ dim(X) + r − 1, then CrHm(X) = 0 in this range, and
hence Suslin’s Conjecture holds.
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Behavior of correspondences on Lawson homology

A map Y → Cr(X) (for example, an inclusion) determines a
cycle

Γ � � //

p

rel. dim. r $$III
III

III
I Y ×X

��
Y

and hence a map on cycles spaces

Γ∗ : Z0(Y )→ Zr(X)

determined by

y 7→ Γy = p−1(y) ∈ Zr(X).

Applying πm−2r gives

Γ∗ : Hsing
m−2r(Y (C)) = L0Hm−2r(Y )→ LrHm(X).
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Lifting elements to singular cohomology

Given an element

α ∈ LrHm(X) = πm−2rZr(X)

it lifts to α̃ ∈ Hsing
m−2r(Cr,e(X)(C)) along the maps

Hsing
m−2r(Cr,e(X)(C))→ Hsing

m−2r(Zr(X)) � πm−2rZr(X).

Using singular Lefschetz, α̃ lifts to

˜̃α ∈ Hsing
m−2r(Y (C))→ LrHm(X)

for some Y ⊂ Cr,e(X) with dim(Y ) ≤ m− 2r.
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Lifting along correspondences

Thus we have a surjection⊕
dim(Y )≤m−2r

Hsing
m−2r(Y ) � LrHm(X)

where each map Hsing
m−2r(Y )→ LrHm(X) is the map

associated to an equi-dimensional correspondence
Γ : Y //___ X of rel. dim. r:

Hsing
m−2r(Y ) ∼= L0Hm−2r(Y ) Γ∗−→LrHm(X).

Remark: This surjection can be used to understand MHS on
LrHm(X).
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Lifting to smooth varieties, using Hodge theory

For such a correspondence Γ, the composition

Hsing
m−2r(Y ) Γ∗−→LrHm(X)→ Hsing

m (X)

coincides with the map on singular cohomology induced by Γ:

Γ∗ : Hsing
m−2r(Y )→ Hsing

m (X)

When X is smooth, letting Ỹ → Y be a resolution of
singularities, Hodge theory gives:

im
(
Hsing

m−2r(Y )→ Hsing
m (X)

)
=

im
(
Hsing

m−2r(Ỹ )→ Hsing
m−2r(Y )→ Hsing

m (X)
)
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Characterizing image in singular homology

Proposition (Friedlander-Mazur)

For X smooth and projective, the topological filtration is
contained in the “correspondence” filtration: Every element of

F top
r Hsing

m (X) := im
(
LrHm(X)→ Hsing

m (X(C))
)

is contained in the image of

Γ∗ : Hsing
m−2r(W (C))→ Hsing

m (X(C))

where W is smooth with dim(W ) ≤ m− 2r and Γ is a
correspondence.
(Since Hsing

m (X(C)) is f.g., a single pair W,Γ suffices.)
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Weak form of Suslin’s Conjecture

Recall Suslin’s conjecture predicts

LrHm(X)
∼=−→Hsing

m (X(C)), for m ≥ dim(X) + r.

Conjecture (Weak form of Suslin’s Conjecture (or
Friedlander-Mazur Conjecture))

For a smooth, projective variety X, the map

LrHm(X)→ Hsing
m (X(C))

is onto for m ≥ dim(X) + r.

In particular, the weak Suslin conjecture predicts:

Lm−dim(X)Hm(X) � Hsing
m (X)

is onto, for all m. (If m < dim(X), let Lm−dim(X) := L0.)
13 / 23
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Consequence of weak Suslin conjecture

Using the Proposition concerning the lifting of elements of
im(LrHm → Hsing

m ) along correspondences:

Proposition

Assume the weak form of Suslin’s Conjecture holds for X. Let
d = dim(X).
Then for each integer m, there is a smooth, projective variety
Y of dim 2d−m and a correspondence Γ : Y //___ X of rel.
dim. m− d such that

Γ∗ : Hsing
2d−m(Y (C)) � Hsing

m (X(C))

is onto.

The existence of such a Y,Γ turns out to be a very strong
condition on X. In fact....
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Beilinson’s Theorem

Theorem (Beilinson)

The validity of all Grothendieck’s standard conjectures over C
is equivalent to the following property: For each smooth,
projective X, there is a Y and Γ as above such that

Γ∗ : Hsing
2d−m(Y (C)) � Hsing

m (X(C))

is onto.

Corollary (Beilinson)

The weak form of Suslin’s Conjecture is equivalent to the
validity of all of Grothendieck’s standard conjectures over C.

Note: The ⇐ direction of the Corollary was originally shown by
Friedlander-Mazur.
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Should we believe Suslin’s Conjecture?

Beilinson’s result makes it clear Suslin’s Conjecture is a very
strong conjecture. Its weak form is equivalent to
Grothendieck’s standard conjectures.

Perhaps the strong form of Suslin’s conjecture is simply false.

The first unknown case occurs for 1-cycles on a smooth
projective 3-dimensional variety X:

Question

For a smooth, projective 3-dimensional variety X, is

πm−2Z1(X) =: L1Hm(X)→ Hsing
m (X(C))

one-to-one for m ≥ 3?

16 / 23



Review of
Lawson
homology and
related
theories

Suslin’s
Conjecture

Correspondences

Beilinson’s
Theorem

More on
Suslin’s
(strong)
conjeture

Mixed Hodge structures for Lawson homology

Assume (for simplicity) X is projective. Then we have a
surjection ⊕

Y,dim(Y )≤m−2r

Hsing
m−2r(Y (C)) � LrHm(X)

of (non f.g.) MHS’s (and where the maps are given by
correspondences).

Thus, LrHm(X) has same Hodge type as Hsing
m−2r of a union of

(highly singular) varieties of dimension m− 2r.
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MHS for L1H3(X))

For example, ⊕
Y,dim(Y )=1

Hsing
1 (Y (C)) � L1H3(X)

and so L1H3(X) has Hodge type: (0, 0), (−1, 0), (0,−1).

If we assume dim(X) = 3, then Suslin’s conjecture predicts

L1H3(X) � Hsing
3 (X(C),Z(1)) ∼= H3

sing(X,Z(2))

and the target has Hodge type (−1, 0), (0,−1).
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A Conjecture concerning Hodge type

Conjecture

For X smooth, projective of dimension 3, the Lawson group
L1H3(X) has Hodge type (−1, 0), (0,−1).

A proof (or counter-example) of just this conjecture would
represent highly significant progress.

Note that the validity of this conjecture implies:

Conjecture

For X smooth, projective of dimension 3, the map

HM3 (X,Z(1))→ L1H3(X) is a torsion map.
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dim(X) = 3, Y ⊂ X, dim(Y ) = 2, U = X \ Y

L1H4(Y )

��

∼=

dim(Y ) = 2
// Hsing

4 (Y )

��
L1H4(X)

��

GSConj⇒ onto

SuslinConj⇒∼= // Hsing
4 (X)

��
L1H4(U)

��

SuslinConj⇒∼= // Hsing
4 (U)

��
L1H3(Y )

��

∼=

dim(Y ) = 2
// Hsing

3 (Y )

��
L1H3(X)

��

SuslinConj⇒ 1-1 // Hsing
3 (X)

��
L1H3(U) // Hsing

3 (U)
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Passing to function fields

Let C(X) := lim−→U⊂X
U .

Proposition

LrHm(C(X)) = 0 if m < d+ r.

For example, L1H3(Spec C) = 0 if dim(X) = 3.

Assuming Grothendieck Standard Conjectures:

L1H4(C(X))→ Hsing
4 (C(X)) SuslinC ⇒ 0−→ L1H3(X)→ Hsing

3 (X).

Challenge

Find a good method of describing/constructing elements of

Hsing
m (C(X)) = H2d−m

sing (C(X)).
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Toy examples

With finite coefficients:

Hsing
m (C(X),Z/n) = Lm−dim(X)Hm(C(X),Z/n)

= H2d−m
M (C(X),Z/n(2d−m))

= KMilnor
2d−m (C(X))/n

For H1
sing:

lim−→
Y

H1
sing,Y (X)→H1

sing(X)→ H1
sing(C(X))

→ lim−→
Y

H2
sing,Y (X)→ H2

sing(X)

Since H1
sing,Y (X) = 0 and H2

sing,Y (X) ∼= Hsing
2 dim(Y )(Y ) =

free abelian group on integral components of Y :

0→ H1
sing(X)→ H1

sing(C(X))→ Z1(X)hom ∼ 0 → 0
22 / 23
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The End

Thanks for your attention!
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