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Abstract

We give a survey of S. Mochizuki’s ingenious inter-universal Teichmüller theory and ex-

plain how it gives rise to Diophantine inequalities. The exposition was designed to be as

self-contained as possible.
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§ 0. Introduction.

The author once heard the following observation, which was attributed to Grothen-

dieck: There are two ways to crack a nut — one is to crack the nut in a single stroke

by using a nutcracker; the other is to soak it in water for an extended period of time
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until its shell dissolves naturally. Grothendieck’s mathematics may be regarded as an

example of the latter approach.

In a similar vein, the author once heard a story about a mathematician who asked

an expert on étale cohomology what the main point was in the `-adic (not the p-adic)

proof of the rationality of the congruence zeta function. The expert was able to recall,

on the one hand, that the Lefschetz trace formula was proved by checking various

commutative diagrams and applying various base change theorems (e.g., for proper or

smooth morphisms). On the other hand, neither the commutativity of various diagrams

nor the various base change theorems could be described as the main point of the proof.

Ultimately, the expert was not able to point out precisely what the main point in the

proof was. From the point of view of the author, the main point of the proof seems to lie

in the establishment of a suitable framework (i.e., scheme theory and étale cohomology

theory) in which the Lefschetz trace formula, which was already well known in the

field of algebraic topology, could be formulated and proved even over fields of positive

characteristic.

A similar statement can be made concerning S. Mochizuki’s proof of the abc Con-

jecture. Indeed, once the reader admits the main results of the preparatory papers

(especially [AbsTopIII], [EtTh]), the numerous constructions in the series of papers

[IUTchI], [IUTchII], [IUTchIII], [IUTchIV] on inter-universal Teichmüller theory are

likely to strike the reader as being somewhat trivial. On the other hand, the way in

which the main results of the preparatory papers are interpreted and combined in or-

der to perform these numerous constructions is highly nontrivial and based on very

delicate considerations (cf. Remark 9.6.2 and Remark 12.8.1) concerning, for instance,

the notions of multiradiality and uniradiality (cf. Section 11.1). Moreover, when taken

together, these numerous trivial constructions, whose exposition occupies literally hun-

dreds of pages, allow one to conclude a highly nontrivial consequence (i.e., the desired

Diophantine inequality) practically effortlessly! Again, from the point of view of the

author, the point of the proof seems to lie in the establishment of a suitable framework

in which one may deform the structure of a number field by abandoning the frame-

work of conventional scheme theory and working instead in the framework furnished by

inter-universal Teichmüller theory (cf. also Remark 1.15.3).

In fact, the main results of the preparatory papers [AbsTopIII], [EtTh], etc. are

also obtained, to a substantial degree, as consequences of numerous constructions that

are not so difficult. On the other hand, the discovery of the ideas and insights that

underlie these constructions may be regarded as highly nontrivial in content. Examples

of such ideas and insights include the “hidden endomorphisms” that play a central role

in the mono-anabelian reconstruction algorithms of Section 3.2, the notions of arith-

metically holomorphic structure and mono-analytic structure (cf. Section 3.5), and the
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distinction between étale-like and Frobenius-like objects (cf. Section 4.3). Thus, in sum-

mary, it seems to the author that, if one ignores the delicate considerations that occur

in the course of interpreting and combining the main results of the preparatory papers,

together with the ideas and insights that underlie the theory of these preparatory pa-

pers, then, in some sense, the only nontrivial mathematical ingredient in inter-universal

Teichmüller theory is the classical result [pGC], which was already known in the last

century!

A more technical introduction to the mathematical content of the main ideas of

inter-universal Teichmüller theory may be found in Appendix A and the discussion at

the beginning of Section 13.

The following results are consequences of inter-universal Teichmüller theory (cf.

Section 1.1 for more details on the notation):

Theorem 0.1. (Vojta’s Conjecture [Voj] for curves, proved in [IUTchIV, Corol-

lary 2.3]) Let X be a proper, smooth, geometrically connected curve over a number field;

D ⊂ X a reduced divisor; UX := X \ D. Write ωX for the canonical sheaf on X.

Suppose that UX is a hyperbolic curve, i.e., deg(ωX(D)) > 0. Then for any d ∈ Z>0

and ε ∈ R>0, we have

htωX(D) . (1 + ε)(log-diffX + log-condD)

on UX(Q)≤d.

Corollary 0.2. (The abc Conjecture of Masser and Oesterlé [Mass1], [Oes]) For

any ε ∈ R>0, we have

max{|a|, |b|, |c|} ≤

∏
p|abc

p

1+ε

for all but finitely many coprime a, b, c ∈ Z with a+ b = c.

Proof. We apply Theorem 0.1 in the case where X = P1
Q ⊃ D = {0, 1,∞}, and

d = 1. Thus, we have ωP1(D) = OP1(1), log-diffP1(−a/b) = 0, log-cond{0,1,∞}(−a/b) =∑
p|a,b,a+b log p, and htOP1 (1)

(−a/b) ≈ logmax{|a|, |b|} ≈ logmax{|a|, |b|, |a + b|} for

coprime a, b ∈ Z with b 6= 0, where the first “≈” follows from [Silv1, Proposition 7.2],

and we apply the inequality |a + b| ≤ 2max{|a|, |b|}. Now let ε, ε′ ∈ R>0 be such that

ε > ε′. According to Theorem 0.1, there exists C ∈ R such that logmax{|a|, |b|, |c|} ≤
(1+ε′)

∑
p|abc log p+C for any coprime a, b, c ∈ Z with a+b = c. Observe that there are

only finitely many triples a, b, c ∈ Z with a+b = c such that logmax{|a|, |b|, |c|} ≤ 1+ε
ε−ε′C.

Thus, we have logmax{|a|, |b|, |c|} ≤ (1 + ε′)
∑
p|abc log p +

ε−ε′
1+ε logmax{|a|, |b|, |c|} for

all but finitely many coprime triples a, b, c ∈ Z with a+ b = c. This completes the proof

of Corollary 0.2.
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§ 0.1. Un Fil d’Ariane.

By combining a relative anabelian result (a relative version of the Grothendieck

Conjecture over sub-p-adic fields (Theorem B.1)) and the “hidden endomorphism” dia-

gram (EllCusp) (resp. the “hidden endomorphism” diagram (BelyiCusp)), one obtains

a(n) (absolute) mono-anabelian result, i.e., the elliptic cuspidalisation (Theorem 3.7)

(resp. the Belyi cuspidalisation (Theorem 3.8)). Then, by applying Belyi cuspidali-

sations, one obtains a mono-anabelian reconstruction algorithm of the NF-portion of

the base field and function field of a hyperbolic curve of strictly Belyi type over a sub-

p-adic field (Theorem 3.17), as well as a mono-anabelian reconstruction algorithm of

the base field of a hyperbolic curve of strictly Belyi type over a mixed characteristic

local field (Corollary 3.19). This motivates the philosophy of mono-analyticity and

arithmetic holomorphicity (Section 3.5), as well as the theory of Kummer isomorphisms

from Frobenius-like objects to étale-like objects (cf. Remark 9.6.1).

The theory of Aut-holomorphic (orbi)spaces and related reconstruction algorithms

(Section 4) is an Archimedean analogue of the mono-anabelian reconstruction algorithms

discussed above and yields another application of the technique of elliptic cuspidalisa-

tion. On the other hand, the Archimedean theory does not play a very central role in

inter-universal Teichmüller theory.

The theory of the étale theta function centers around the establishment of various

rigidity properties of mono-theta environments. One applies the technique of ellip-

tic cuspidalisation to show the constant multiple rigidity of a mono-theta environment

(Theorem 7.23 (3)). The cyclotomic rigidity of a mono-theta environment is obtained

as a consequence of the (“precisely”) quadratic structure of a Heisenberg group (Theo-

rem 7.23 (1)). Finally, by applying the “at most” quadratic structure of a Heisenberg

group (and excluding the algebraic section in the definition of a mono-theta environ-

ment), one shows the discrete rigidity of a mono-theta environment (Theorem 7.23 (2)).

By the theory of Frobenioids (Section 8), one can construct Θ-links and log-links

(Definition 10.8, Corollary 11.24 (3), Definition 13.9 (2), Definition 12.1 (1), (2), and

Definition 12.3). (The main theorems of the theory of Frobenioids are category theoretic

reconstruction algorithms; however, these are not so important (cf. [IUTchI, Remark

3.2.1 (ii)]).)

By using the fact Q>0 ∩ Ẑ× = {1}, one can show another cyclotomic rigidity

(Definition 9.6). The cyclotomic rigidity of mono-theta environment (resp. the cyclo-

tomic rigidity via Q>0 ∩ Ẑ× = {1}) makes the Kummer theory for mono-theta environ-

ments (resp. for κ-coric functions) available in a multiradial manner (Proposition 11.4,

Theorem 12.7, Corollary 12.8) (unlike the cyclotomic rigidity via the local class field

theory). By the Kummer theory for mono-theta environments (resp. for κ-coric func-

tions), one performs the Hodge-Arakelov-theoretic evaluation (resp. NF-counterpart
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of the Hodge-Arakelov-theoretic evaluation) and construct Gaussian monoids in Sec-

tion 11.2. Here, one uses a result of semi-graphs of anabelioids (“profinite conjugate

vs tempered conjugate” Theorem 6.11) to perform the Hodge-Arakelov-theoretic eval-

uation at bad primes. Via mono-theta environments, one can transport the group

theoretic Hodge-Arakelov evaluations and Gaussian monoids to Frobenioid theoreteic

ones (Corollary 11.17) by using the reconstruction of mono-theta environments from

a topological group (Corollary 7.22 (2) “Π 7→ M”) and from a tempered-Frobenioid

(Theorem 8.14 “F 7→ M”) (together with the discrete rigidity of mono-theta environ-

ments). In the Hodge-Arakelov-theoretic evaluation (resp. the NF-counterpart of the

Hodge-Arakelov-theoretic evaluation), one uses Fo±
i -symmetry (resp. F>

i -symmetry) in

Hodge theatre (Section 10.5 (resp. Section 10.4)), to synchronise the cojugate indeter-

minacies (Corollary 11.16). By the synchronisation of conjugate indeterminacies, one

can construct horizontally coric objects via “good (weighted) diagonals”.

By combining the Gaussian monoids and log-links, one obtain LGP-monoids (Propo-

sition 13.6), by using the compatibility of the cyclotomic rigidity of mono-theta en-

vironments with the profinite topology, and the isomorphism class compatibility of

mono-theta environments. By using the constant multiple rigidity of mono-theta en-

vironments, one obtains the crucial canonical splittings of theta monoids and LGP-

monoids (Proposition 11.7, Proposition 13.6). By combining the log-links, the log-shells

(Section 5), and the Kummer isomorphisms from Frobenius-like objects to étale-like

objects, one obtains the log-Kummer correspondence for theta values and NF’s (Propo-

sition 13.7 and Proposition 13.11). The canonical splittings give us the non-interference

properties of log-Kummer correspondence for the value group portion, and the fact

F×mod∩
∏
v≤∞Ov = µ(F×mod) give us the non-interference properties of log-Kummer cor-

respondence for the NF-portion (cf. the table before Corollary 13.13). The cyclotomic

rigidity of mono-theta environments and the cyclotomic rigidity via Q>0 ∩ Ẑ× = {1}
also give us the compatibility of log-Kummer correspondence with Θ-link in the value

group portion and in the NF-portion respectively (cf. the table before Corollary 13.13).

After forgetting arithmetically holomorphic structures and going to the underlying

mono-analytic structures, and admitting three kinds of mild indeterminacies, the non-

interefence properties of log-Kummer correspondences make the final algorithm multi-

radial (Theorem 13.12). We use the unit portion of the final algorithm for the mono-

analytic containers (log-shells), the value group portion for constructing Θ-pilot objects

(Definition 13.9), and the NF-portion for converting �-line bundles to �-line bundles

vice versa (cf. Section 9.3). One cannot transport the labels (which depends on arith-

metically holomorphic structure) from one side of a theta link to another side of theta

link; however, by using processions, one can reduce the indeterminacy arising from for-

getting the labels (cf. Remark 13.1.1). The multiradiality of the final algorithm with the



8 Go Yamashita

compabitility with Θ-link of log-Kummer correspondence (and the compatibility of the

reconstructed log-volumes (Section 5) with log-links) gives us a upper bound of height

function. The fact that the coefficient of the upper bound is given by (1+ε) comes from

the calculation observed in Hodge-Arakelov theory (Remark 1.15.3).
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§ 0.2. Notation.

General Notation:

For a finite set A, let #A denote the cardinality of A. For a group G and a subgroup

H ⊂ G of finite index, we write [G : H] for #(G/H). (For a finite extension K ⊃ F of

fields, we also write [K : F ] for dimF K. There will be no confusions on the notations

[G : H] and [K : F ].) For a function f on a set X and a subset Y ⊂ X, we write

f |Y for the restriction of f on Y . We write π for the mathematical constant pi (i.e.,

π = 3.14159 · · · ).
For a prime number l > 2, we put F>

l := F×l /{±1}, F
o±
l := Fl o {±1}, where

{±1} acts on Fl by the multiplication, and |Fl| := Fl/{±1} = F>
l

∐
{0}. We put also

l> := l−1
2 = #F>

l and l± := l> + 1 = l+1
2 = #|Fl|.

Categories:

For a category C and a filtered ordered set I 6= ∅, let pro-CI(= pro-C) denote the category
of the pro-objects of C indexed by I, i.e., the objects are ((Ai)i∈I , (fi,j)i<j∈I)(= (Ai)i∈I),

where Ai is an object in C, and fi,j is a morphism Aj → Ai satisfying fi,jfj,k =

fi,k for any i < j < k ∈ I, and the morphisms are Hompro-C((Ai)i∈I , (Bj)j∈I) :=

lim←−j lim−→i
HomC(Ai, Bj). We also consider an object in C as an object in pro-C by setting

every transition morphism to be identity (In this case, we have Hompro-C((Ai)i∈I , B) =

lim−→i
HomC(Ai, B)).

For a category C, let C0 denote the full subcategory of the connected objects, i.e.,

the non-initial objects which are not isomorphic to the coproduct of two non-initial

objects of C. We write C> (resp. C⊥) for the category obtained by taking formal

(possibly empty) countable (resp. finite) coproducts of objects in C, i.e., we define

HomC> (resp. C⊥)(
∐
iAi,

∐
j Bj) :=

∏
i

∐
j HomC(Ai, Bj) (cf. [SemiAnbd, §0]).

Let C1, C2 be categories. We say that two isomorphism classes of functors f : C1 →
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C2, f ′ : C′1 → C′2 are abstractly equivalent if there are isomorphisms α1 : C1
∼→ C′1,

α2 : C2
∼→ C′2 such that f ′ ◦ α1 = α2 ◦ f .

Let C be a category. A poly-morphism A → B for A,B ∈ Ob(C) is a collection

of morphisms A → B in C. If all of them are isomorphisms, then we call it a poly-

isomorphism. If A = B, then a poly-isomorphism is called a poly-automorphism.

We call the set of all isomorphisms from A to B the full poly-isomorphism. For poly-

morphisms {fi : A→ B}i∈I and {gj : B → C}j∈J , the composite of them is defined as

{gj ◦ fi : A→ C}(i,j)∈I×J . A poly-action is an action via poly-automorphisms.

Let C be a category. We call a finite collection {Aj}j∈J of objects of C a capsule of

objects of C. We also call {Aj}j∈J a#J-capsule. Amorphism {Aj}j∈J → {A′j′}j′∈J ′

of capsules of objects of C consists of an injection ι : J ↪→ J ′ and a morphism Aj →
A′ι(j) in C for each j ∈ J (Hence, the capsules of objects of C and the morphisms among

them form a category). A capsule-full poly-morphism {Aj}j∈J → {A′j′}j′∈J ′ is a

poly-morphism{
{fj : Aj

∼→ A′ι(j)}j∈J
}
(fj)j∈J∈

∏
j∈J IsomC(Aj ,A′

ι(j)
)
(=
∏
j∈J

IsomC(Aj , A
′
ι(j)))

in the category of the capsules of objects of C, associated with a fixed injection ι : J ↪→
J ′. If the fixed ι is a bijection, then we call a capsule-full poly-morphism a capsule-full

poly-isomorphism.

Number Field and Local Field:

In this survey, we call finite extensions of Q number fields (i.e., we exclude infinite

extensions in this convention), and we call finite extensions of Qp for some p mixed char-

acteristic (or non-Archimedean) local fields. We use the abbreviations NF for number

field, MLF for mixed-characteristic local field, and CAF for complex Archimedean field,

i.e., a topological field isomorphic to C.
For a number field F , let V(F ) denote the set of equivalence classes of valuations of

F , and V(F )arc ⊂ V(F ) (resp. V(F )non ⊂ V(F )) the subset of Archimedean (resp. non-

Archimedean) ones. For number fields F ⊂ L and v ∈ V(F ), put V(L)v := V(L)×V(F )

{v}(⊂ V(L)), where V(L)� V(F ) is the natural surjection. For v ∈ V(F ), let Fv denote
the completion of F with respect to v. We write pv for the characteristic of the residue

field (resp. e, that is, e = 2.71828 · · · ) for v ∈ V(F )non (resp. v ∈ V(F )arc). We also

write mv for the maximal ideal, and ordv for the valuation normalised by ordv(pv) = 1

for v ∈ V(F )non. We also normalise v ∈ V(F )non by v(uniformiser) = 1 (Thus v is ordv

times the ramification index of Fv over Qv). If there is no confusion on the valuation,

we write ord for ordv.

For a non-Archimedean (resp. complex Archimedean) local field k, let Ok be the
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valuation ring (resp. the subset of elements of absolute value ≤ 1) of k, O×k ⊂ Ok the

subgroup of units (resp. the subgroup of units i.e., elements of absolute value equal to

1), and O�
k := Ok \ {0} ⊂ Ok the multiplicative topological monoid of non-zero integral

elements. Let mk denote the maximal ideal of Ok for a non-Archimedean local field k.

For a non-Archimedean local field K with residue field k, and an algebraic closure

k of k, we write FrobK ∈ Gal(k/k) or Frobk ∈ Gal(k/k) for the (arithmetic) Frobenius

element i.e., the map k 3 x 7→ x#k ∈ k (Note that “Frobenius element”, FrobK , or

Frobk do not mean the geometric Frobenius i.e., the map k 3 x 7→ x1/#k ∈ k in this

survey).

Topological Groups and Topological Monoids:

For a Hausdorff topological group G, let (G �)Gab denote the abelianisation of G as

Hausdorff topological groups, i.e., G modulo the closure of the commutator subgroup

of G, and let Gtors (⊂ G) denote the subgroup of the torsion elements in G.

For a commutative topological monoidM , let (M →)Mgp denote the groupification

of M , i.e., the coequaliser of the diagonal homomorphism M → M ×M and the zero-

homomorphism, let Mtors, M
×(⊂ M) denote the subgroup of torsion elements of M ,

the subgroup of invertible elements of M , respectively, and let (M →)Mpf denote

the perfection of M , i.e., the inductive limit lim−→n∈N≥1
M , where the index set N≥1 is

equipped with the order by the divisibility, and the transition map from M at n to M

at m is the multiplication by m/n.

For a Hausdorff topological group G, and a closed subgroup H ⊂ G, we write

ZG(H) := {g ∈ G | gh = hg,∀h ∈ H} ,
⊂ NG(H) :=

{
g ∈ G | gHg−1 = H

}
, and

⊂ CG(H) :=
{
g ∈ G | gHg−1 ∩H has finite index in H, gHg−1

}
,

for the centraliser, the normaliser, and the commensurator of H in G, respectively (Note

that ZG(H) andNG(H) are always closed inG; however, CG(H) is not necessarily closed

in G. See [AbsAnab, Section 0], [Anbd, Section 0]). If H = NG(H) (resp. H = CG(H)),

we call H normally terminal (resp. commensurably terminal) in G (thus, if H is

commensurably terminal in G, then H is normally terminal in G).

For a locally compact Hausdorff topological group G, let Inn(G)(⊂ Aut(G)) denote

the group of inner automorphisms of G, and put Out(G) := Aut(G)/Inn(G), where we

equip Aut(G) with the open compact topology, and Inn(G), Out(G) with the topology

induced from it. We call Out(G) the group of outer automorphisms of G. Let G be a

locally compact Hausdorff topological group with ZG(G) = {1}. Then G → Inn(G)(⊂
Aut(G)) is injective, and we have an exact sequence 1→ G→ Aut(G)→ Out(G)→ 1.

For a homomorphism f : H → Out(G) of topological groups, let G
out
o H � H denote
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the pull-back of Aut(G)� Out(G) with respect to f :

1 // G // Aut(G) // Out(G) // 1

1 // G //

=

OO

G
out
o H //

OO

H //

f

OO

1.

We call G
out
o H the outer semi-direct product of H with G with respect to f (Note

that it is not a semi-direct product).

Algebraic Geometry:

We put UP1 := P1 \ {0, 1,∞}. We call it a tripod. We writeMell ⊂ Mell for the fine

moduli stack of elliptic curves and its canonical compactification.

If X is a generically scheme-like algebraic stack over a field k which has a finite

étale Galois covering Y → X, where Y is a hyperbolic curve over a finite extension of

k, then we call X a hyperbolic orbicurve over k ([AbsTopI, §0]).

Others:

For an object A in a category, we call an object isomorphic to A an isomorph of A.

For a field K of characteristic 0 and a separable closure K of K, we put µẐ(K) :=

Hom(Q/Z,K×), and µQ/Z(K) := µẐ(K) ⊗Ẑ Q/Z. Note that Gal(K/K) naturally acts

on both. We call µẐ(K), µQ/Z(K), µZl
(K) := µẐ(K) ⊗Ẑ Zl for some prime number

l, or µZ/nZ(K) := µẐ(K) ⊗Ẑ Z/nZ for some n the cyclotomes of K. We call an

isomorph of one of the above cyclotomes of K (we mainly use the case of µẐ(K)) as a

topological abelian group with Gal(K/K)-action a cyclotome. We write χcyc = χcyc,K

(resp. χcyc,l = χcyc,l,K) for the (full) cyclotomic character (resp. the l-adic cyclotomic

character) of Gal(K/K) (i.e., the character determined by the action of Gal(K/K) on

µẐ(K) (resp. µZl
(K))).

§ 1. Reduction Steps via General Arithmetic Geometry.

In this section, by arguments in a general arithmetic geometry, we reduce Theo-

rem 0.1 to certain inequality −| log(q)| ≤ −| log(Θ)|, which will be finally proved by

using the main theorem of multiradial algorithm in Section 13.

§ 1.1. Height Functions.

Take an algebraic closure Q of Q. Let X be a normal, Z-proper, and Z-flat scheme.

For d ∈ Z≥1, we write X(Q) ⊃ X(Q)≤d :=
∪

[F :Q]≤dX(F ). We write Xarc for the

complex analytic space determined by X(C). An arithmetic line bundle on X is a
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pair L = (L, || · ||L), where L is a line bundle on X and || · ||L is a hermitian metric on the

line bundle Larc determined by L on Xarc which is compatible with complex conjugate

on Xarc. A morphism of arithmetic line bundles L1 → L2 is a morphism of line bundles

L1 → L2 such that locally on Xarc sections with || · ||L1 ≤ 1 map to sections with

|| · ||L2 ≤ 1. We define the set of global sections Γ(L) to Hom(OX ,L), where OX is the

arithmetic line bundle on X determined by the trivial line bundle with trivial hermitian

metric. Let APic(X) denote the set of isomorphism classes of arithmetic line bundles

on X, which is endowed with a group structure by the tensor product of arithmetic line

bundles. We have a pull-back map f∗ : APic(Y )→ APic(X) for a morphism f : X → Y

of normal Z-proper Z-flat schemes.

Let F be a number field. An arithmetic divisor (resp. Q-arithmetic divisor,

R-arithmetic divisor) on F is a finite formal sum a =
∑
v∈V(F ) cvv, where cv ∈ Z (resp.

cv ∈ Q, cv ∈ R) for v ∈ V(F )non and cv ∈ R for v ∈ V(F )arc. We call Supp(a) :=

{v ∈ V(F ) | cv 6= 0} the support of a, and a effective if cv ≥ 0 for all v ∈ V(F ).
We write ADiv(F ) (resp. ADivQ(F ), ADivR(F )) for the group of arithmetic divisors

(resp. Q-arithmetic divisor, R-arithmetic divisor) on F . A principal arithmetic divisor

is an arithmetic divisor of the form
∑
v∈V(F )non v(f)v−

∑
v∈V(F )arc [Fv : R] log(|f |v)v for

some f ∈ F×. We have a natural isomorphism of groups ADiv(F )/(principal ones) ∼=
APic(SpecOF ) sending

∑
v∈V(F ) cvv to the line bundle determined by the projective

OF -module M = (
∏
v∈V(F )non m

cv
v )−1OF of rank 1 equipped with the hermitian metric

on M ⊗Z C =
∏
v∈V(F )arc Fv ⊗R C determined by

∏
v∈V(F )arc e

− cv
[Fv :R] | · |v, where | · |v is

the usual metric on Fv tensored by the usual metric on C. We have a (non-normalised)

degree map

degF : APic(SpecOF ) ∼= ADiv(F )/(principal divisors)→ R

sending v ∈ V(F )non (resp. v ∈ V(F )arc) to log(qv) (resp. 1). We also define (non-

normalised) degree maps degF : ADivQ(F ) → R, degF : ADivR(F ) → R by the same

way. We have 1
[F :Q]degF (L) =

1
[K:Q]degK(L|SpecOK

) for any finite extension K ⊃ F and

any arithmetic line bundle L on SpecOF , that is, the normalised degree 1
[F :Q]degF is

independent of the choice of F . For an arithmetic line bundle L = (L, ||·||L) on SpecOF ,

a section 0 6= s ∈ L gives us a non-zero morphism OF → L, thus, an identification of

L−1 with a fractional ideal as of F . Then degF (L) can be computed by the degree

degF of an arithmetic divisor
∑
v∈V(F )non v(as)v −

∑
v∈V(F )arc([Fv : R] log ||s||v)v for

any 0 6= s ∈ L, where v(as) := mina∈as v(a), and || · ||v is the v-component of || · ||L in

the decomposition Larc ∼=
∐
v∈V(F )arc Lv over (SpecOF )

arc ∼=
∐
v∈V(F )arc Fv ⊗R C.

For an arithmetic line bundle L on X, we define the (logarithmic) height function

htL : X(Q)

=
∪

[F :Q]<∞

X(F )

→ R
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associated to L by htL(x) := 1
[F :Q]degFx

∗
F (L) for x ∈ X(F ), where xF ∈ X(OF ) is

the element corresponding to x by X(F ) = X(OF ) (Note that X is proper over Z),
and x∗F : APic(X) → APic(SpecOF ) is the pull-back map. By definition, we have

htL1⊗L2
= htL1

+ htL2
for arithmetic line bundles L1, L2 ([GenEll, Proposition 1.4

(i)]). For an arithmetic line bundle (L, || · ||L) with ample LQ, it is well-known that

#{x ∈ X(Q)≤d | htL(x) ≤ C} <∞ for any d ∈ Z≥1 and C ∈ R (See Proposition C.1).

For functions α, β : X(Q)→ R, we write α & β (resp. α . β, α ≈ β) if there exists a
constant C ∈ R such that α(x) > β(x) +C (resp. α(x) < β(x) +C, |α(x)− β(x)| < C)

for all x ∈ X(Q). We call an equivalence class of functions relative to ≈ bounded

discrepancy class. Note that htL & 0 ([GenEll, Proposition 1.4 (ii)]) for an arithmetic

line bunde L = (L, || · ||L) such that the n-th tensor product L⊗nQ of the generic fiber

LQ on XQ is generated by global sections for some n > 0 (e.g.LQ is ample), since

the Archimedean contribution is bounded on the compact space Xarc, and the non-

Archimedean contribution is ≥ 0 on the subsets Ai := {si 6= 0}(⊂ X(Q)) for i =

1, . . . ,m, where s1, . . . , sm ∈ Γ(XQ,L⊗nQ ) generate L⊗nQ (hence, A1 ∪ · · · ∪Am = X(Q)).

We also note that the bounded discrepancy class of htL for an arithmetic line bundle

L = (L, || · ||L) depends only on the isomorphism class of the line bundle LQ on XQ

([GenEll, Proposition 1.4 (iii)]), since for L1 and L2 with (L1)Q ∼= (L2)Q we have

htL1
−htL2

= htL1⊗L2
⊗(−1) & 0 (by the fact that (L1)Q⊗ (L2)

⊗(−1)
Q

∼= OXQ is generated

by global sections), and htL2
− htL1

& 0 as well. When we consider the bounded

discrepancy class (and if there is no confusion), we write htLQ for htL.

For x ∈ X(F ) ⊂ X(Q) where F is the minimal field of definition of x, the differ-

ent ideal of F determines an effective arithmetic divisor dx ∈ ADiv(F ) supported in

V(F )non. We define log-different function log-diffX on X(Q) to be

X(Q) 3 x 7→ log-diffX(x) :=
1

[F : Q]
degF (dx) ∈ R.

Let D ⊂ X be an effective Cartier divisor, and put UX := X \D. For x ∈ UX(F ) ⊂
UX(Q) where F is the minimal field of definition of x, let xF ∈ X(OF ) be the element

in X(OF ) corresponding to x ∈ UX(F ) ⊂ X(F ) via X(F ) = X(OF ) (Note that X

is proper over Z). We pull-back the Cartier divisor D on X to Dx on SpecOF via

xF : SpecOF → X. We can consider Dx to be an effective arithmetic divisor on F

supported in V(F )non. Then we call fDx := (Dx)red ∈ ADiv(F ) the conductor of x,

and we define log-conductor function log-condD on UX(Q) to be

UX(Q) 3 x 7→ log-condD(x) :=
1

[F : Q]
degF (f

D
x ) ∈ R.

Note that the function log-diffX on X(Q) depends only on the scheme XQ ([GenEll,

Remark 1.5.1]). The function log-condD on UX(Q) may depend only on the pair of
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Z-schemes (X,D); however, the bounded discrepancy class of log-condD on UX(Q)

depends only on the pair of Q-schemes (XQ, DQ), since any isomorphism XQ
∼→ X ′Q in-

ducing DQ
∼→ D′Q extends an isomorphism over an open dense subset of SpecZ ([GenEll,

Remark 1.5.1]).

§ 1.2. First Reduction.

In this subsection, we show that, to prove Theorem 0.1, it suffices to show it in a

special situation.

Take an algebraic closure Q of Q. We call a compact subset of a topological space

compact domain, if it is the closure of its interior. Let V ⊂ VQ := V(Q) be a finite

subset which contains Varc
Q . For each v ∈ V ∩ Varc

Q (resp. v ∈ V ∩ Vnon
Q ), take an

isomorphism between Qv and R and we identify Qv with R, (resp. take an algebraic

closure Qv of Qv), and let ∅ 6= Kv $ Xarc (resp. ∅ 6= Kv $ X(Qv)) be a Gal(C/R)-
stable compact domain (resp. a Gal(Qv/Qv)-stable subset whose intersection with each

X(K) ⊂ X(Qv) for [K : Qv] < ∞ is a compact domain in X(K)). Then we write

KV ⊂ X(Q) for the subset of points x ∈ X(F ) ⊂ X(Q) where [F : Q] < ∞ such that

for each v ∈ V ∩ Varc
Q (resp. v ∈ V ∩ Vnon

Q ) the set of [F : Q] points of Xarc (resp.

X(Qv)) determined by x is contained in Kv. We call a subset KV ⊂ X(Q) obtained in

this way compactly bounded subset, and V its support. Note that Kv’s and V are

determined by KV by the approximation theorem in the elementary number theory.

Lemma 1.1. ([GenEll, Proposition 1.7 (i)]) Let f : Y → X be a generically finite

morphism of normal, Z-proper, Z-flat schemes of dimension two. Let e be a positive

integer, D ⊂ X, E ⊂ Y effective, Z-flat Cartier divisors such that the generic fibers

DQ, EQ satisfy: (a) DQ, EQ are reduced, (b) EQ = f−1Q (DQ)red, and (c) fQ restricts a

finite étale morphism (UY )Q → (UX)Q, where UX := X \D and UY := Y \ E.

1. We have log-diffX |Y + log-condD|Y . log-diffY + log-condE.

2. If, moreover, the condition (d) the ramification index of fQ at each point of EQ

divides e, is satisfied, then we have

log-diffY . log-diffX |Y +

(
1− 1

e

)
log-condD|Y .

Proof. There is an open dense subscheme SpecZ[1/S] ⊂ SpecZ such that the

restriction of Y → X over SpecZ[1/S] is a finite tamely ramified morphism of proper

smooth families of curves. Then the elementary property of differents gives us the primit-

to-S portion of the equality log-diffX |Y + log-condD|Y = log-diffY + log-condE , and

the primit-to-S portion of the inequality log-diffY ≤ log-diffX |Y +
(
1− 1

e

)
log-condD|Y
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under the condition (d) (if the ramification index of fQ at each point of EQ is equal

to e, then the above inequality is an equality). On the other hand, the S-portion of

log-condE and log-condD|Y is ≈ 0, and the S-portion of log-diffY − log-diffX |Y is ≥ 0.

Thus, it suffices to show that the S-portion of log-diffY − log-diffX |Y is bounded in

UY (Q). Working locally, it is reduced to the following claim: Fix a prime number

p and a positive integer d. Then there exists a positive integer n such that for any

Galois extension L/K of finite extensions of Qp with [L : K] ≤ d, the different ideal of

L/K contains pnOL. We show this claim. By considering the maximal tamely ramified

subextension of L(µp)/K, it is reduced to the case where L/K is totally ramified p-power

extension and K contains µp, since in the tamely ramified case we can take n = 1. It

is also redeced to the case where [L : K] = p (since p-group is solvable). Since K ⊃ µp,
we have L = K(a1/p) for some a ∈ K by Kummer theory. Here a1/p is a p-th root of a

in L.

By multiplying an element of (K×)p, we may assume that a ∈ OK and a /∈ mpK(⊃
ppOK). Hence, we have OL ⊃ a1/pOL ⊃ pOL. We also have an inclusion of OK-algebras

OK [X]/(Xp − a) ↪→ OL. Thus, the different ideal of L/K contains p(a1/p)p−1OL ⊃
p1+(p−1)OL. The claim, and hence the lemma, was proved.

Proposition 1.2. ([GenEll, Theorem 2.1]) Fix a finite set of primes Σ. To

prove Theorem 0.1, it suffices to show the following: Put UP1 := P1
Q \ {0, 1,∞}. Let

KV ⊂ UP1(Q) be a compactly bounded subset whose support contains Σ. Then for any

d ∈ Z>0 and ε ∈ R>0, we have

htωP1 ({0,1,∞}) . (1 + ε)(log-diffP1 + log-cond{0,1,∞})

on KV ∩ UP1(Q)≤d.

Proof. Take X,D, d, ε as in Theorem 0.1. For any e ∈ Z>0, there is an étale Galois

covering UY → UX such that the normalisation Y of X in UY is hyperbolic and the

ramification index of Y → X at each point in E := (D ×X Y )red is equal to e (later,

we will take e sufficiently large). First, we claim that it suffices to show that for any

ε′ ∈ R>0, we have htωY
. (1 + ε′)log-diffY on UY (Q)≤d·deg(Y/X). We show the claim.

Take ε′ ∈ R>0 such that (1 + ε′)2 < 1 + ε. Then we have

htωX(D)|Y . (1 + ε′)htωY . (1 + ε′)2log-diffY . (1 + ε′)2(log-diffX + log-condD)|Y
< (1 + ε)(log-diffX + log-condD)|Y

for e > deg(D)
deg(ωX(D))

(
1− 1

1+ε′

)−1
on UY (Q)d·deg(Y/X). Here, the first . holds since we
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have

deg(ωY ) = deg(ωY (E))− deg(E) = deg(ωY (E))

(
1− deg(E)

deg(Y/X)deg(ωX(D))

)
= deg(ωY (E))

(
1− deg(D)

e · deg(ωX(D))

)
>

1

1 + ε′
deg(ωY (E)) =

1

1 + ε′
deg(ωX(D)|Y ).

The second . is the hypothesis of the claim, the third . comes from Lemma 1.1 (2), and

the final inequality < comes from the choice of ε′ ∈ R>0. Then the claim follows since

the map UY (Q)≤d·deg(Y/X) → UX(Q)≤d is surjective. Therefore, the claim is proved.

Thus, it suffices to show Thoerem 0.1 in the case where D = ∅. We assume that

htωX
. (1 + ε)log-diffX is false on X(Q)=d. Let V ⊂ VQ be a finite subset such

that V ⊃ Σ ∪ Varc
Q . By using the compactness of X(K) where K/Qv (v ∈ V ) is a

finite extension, there exists a subset Ξ ⊂ X(Q)=d and an unordered d-tuple of points

Ξv ⊂ X(Qv) for each v ∈ V such that htωX
. (1 + ε)log-diffX is false on Ξ, and

the unordered d-tuples of Q-conjugates of points in Ξ converge to Ξv in X(Qv) for

each v ∈ V . By Theorem C.2 (the existence of non-critical Belyi map), there exists

a morphism f : X → P1 which is unramified over UP1 and f(Ξv) ⊂ UP1(Qv) for each

v ∈ V . Then after possibly eliminating finitely many elements from Ξ, there exists a

compactly bounded subset KV ⊂ UP1(Q) such that f(Ξ) ⊂ KV , by taking the unions of

Galois-conjugates of the images via f of sufficiently small compact neighbourhoods of

the points of Ξv in X(Qv) for v ∈ V . Put X ⊃ E := f−1({0, 1,∞})red Take ε′ ∈ R>0

satisfying 1 + ε′ ≤ (1 + ε)(1− 2ε′deg(E)/deg(ωX)). Then we have

htωX ≈ htωX(E) − htOX(E) ≈ htωP1 ({0,1,∞})|X − htOX(E)

. (1 + ε′)(log-diffP1 |X + log-cond{0,1,∞}|X)− htOX(E)

. (1 + ε′)(log-diffX + log-condE)− htOX(E)

. (1 + ε′)(log-diffX + htOX(E))− htOX(E) = (1 + ε′)log-diffX + ε′htOX(E)

. (1 + ε′)log-diffX + 2ε′(deg(E)/deg(ωX))htωX

on Ξ. Here, the second ≈ comes from that ωX(E) = ωP1({0, 1,∞})|X . The first .
is the hypothesis of the proposition. The second . comes from Lemma 1.1 (1). The

third . comes from log-condE . htOX(E) which can be proved by observing that the

Archimedean contributions are bounded on the compact space Xarc and that the non-

Archimedean portion holds since we take (−)red in the definition of log-condE . The

fourth . comes from that ω
⊗(2deg(E))
X ⊗OX(−E)⊗(deg(ωX)) is ample since its degree is

equal to 2deg(E)deg(ωX)− deg(E)deg(ωX) = deg(E)deg(ωX) > 0.

By the above displayed inequality, we have (1− 2ε′(deg(E)/deg(ωX)))htωX . (1 +

ε′)log-diffX on Ξ. Then we have htωX
. (1+ ε)log-diffX on Ξ by the choice of ε′ ∈ R>0.

This contradicts the hypothesis on Ξ.
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§ 1.3. Second Reduction — Log-volume Computations.

In this subsection and the next subsection, we further reduce Theorem 0.1 to the

relation “−| log(q)| ≤ −| log(Θ)|”. The reason why we should consider this kind of

objects naturally arises from the main contents of inter-universal Teichmüller theory,

which we will treat in the later sections. It might seem to readers that it is unnat-

ural and bizzard to consider abruptly “φ(p
j2

2l ord(qvj
)OKvj

⊗OKvj
(⊗0≤i≤jOKvi

)∼) for

all automorphisms φ of Q ⊗
⊗

0≤i≤j
1

2pvi
logp(O

×
Kvi

) which induces an automorphism

of
⊗

0≤i≤j
1

2pvi
logp(O

×
Kvi

)” and so on, and that the relation −| log(q)| ≤ −| log(Θ)| is
almost the same thing as the inequality which we want to show, since the reduction in

this subsection and in the next subsection is just calculations and it contains nothing

deep. However, we would like to firstly explain how the inequality will be shown – the

final step of showing the inequality by concrete calculations– in these subsections before

explaining the general theories.

Lemma 1.3. ([IUTchIV, Proposition 1.2 (i)]) For a finite extension k of Qp, let
e denote the ramification index of k over Qp. For λ ∈ 1

eZ, let p
λOk denote the fractional

ideal generated by any element x ∈ k with ord(x) = λ. Put

a :=


1
e

⌈
e
p−2

⌉
p > 2,

2 p = 2,
and b :=

 log
(
p e
p−1

)
log p

− 1

e
.

Then we have

paOk ⊂ logp(O
×
k ) ⊂ p

−bOk.

If p > 2 and e ≤ p− 2, then paOk = logp(O
×
k ) = p−bOk.

Proof. We have a > 1
p−1 since for p > 2 (resp. p = 2) we have a ≥ 1

e
e
p−2 = 1

p−2 >
1
p−1 (resp. a = 2 > 1 = 1

p−1 ). Then we have paOk ⊂ p
1

p−1+εOCp ∩ Ok ⊂ logp(O
×
k )

for some ε > 0, since the p-adic exponential map converges on p
1

p−1+εOCp and x =

logp(expp(x)) for any x ∈ p
1

p−1+εOCp for ε > 0.

On the other hand, we have pb+
1
e > e

p−1 since b+ 1
e >

log(p e
p−1 )

log p − 1 =
log e

p−1

log p . We

note that b+ 1
e ∈ Z≥0 and that b+ 1

e ≥ 1 if and only if e ≥ p−1. We have (b+ 1
e )+

1
e >

1
p−1 ,

since for e ≥ p− 1 (resp. for e < p− 1) we have (b+ 1
e ) +

1
e > b+ 1

e ≥ 1 ≥ 1
p−1 (resp.

(b + 1
e ) +

1
e = 1

e > 1
p−1 ). In short, we have min

{
(b+ 1

e ) +
1
e ,

1
ep
b+ 1

e

}
> 1

p−1 . For

b+ 1
e ∈ Z≥0, we have (1 + p

1
eOCp)

pb+
1
e $ 1 + p

1
p−1OCp , since ord((1 + p

1
ex)p

b+1
e − 1) ≥

min{(b + 1
e ) +

1
e ,

pb+
1
e

e } >
1
p−1 for x ∈ OCp . Then we obtain pb+

1
e logp(O

×
k ) ⊂ Ok ∩

logp(1 + p
1

p−1+εOCp) ⊂ Ok ∩ p
1

p−1+εOCp ⊂ p
1
eOk for some ε > 0, which gives us the

second inclusion. The last claim follows by the definition of a and b.
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For finite extensions k ⊃ k0 of Qp, let dk/k0 denote ord(x), where x is any generator

of the different ideal of k over k0. For a ∈ Q, let pa ∈ Qp denote an element of Qp with

ord(pa) = a.

Lemma 1.4. ([IUTchIV, Proposition 1.1]) Let {ki}i∈I be a finite set of finite

extensions of Qp. Put di := dki/Qp
. Fix an element ∗ ∈ I and put dI∗ :=

∑
i∈I\{∗} di.

Then we have

pdI∗ (⊗i∈IOki)∼ ⊂ ⊗i∈IOki ⊂ (⊗i∈IOki)∼,

where (⊗i∈IOki)∼ is the normalisation of ⊗i∈IOki (tensored over Zp). Note that

pdI∗ (⊗i∈IOki)∼ is well-defined.

Proof. The second inclusion is clear. It suffices to show that pdI∗ (OQp
⊗Ok∗

⊗i∈IOki)∼ ⊂ OQp
⊗Ok∗

⊗i∈IOki , since OQp
is faithfully flat over Ok∗ . It suffices to show

that pdI∗ (OQp
⊗Ok∗

⊗i∈IOki)∼ ⊂ OQp
⊗Ok∗

⊗i∈IOki . By using the induction on #I, it is

reduced to the case where #I = 2. In this case, OQp
⊗Ok1

(Ok1⊗ZpOk2)
∼= OQp

⊗ZpOk2 ,

and pd2(OQp
⊗Zp Ok2)

∼ ⊂ OQp
⊗Zp Ok2 holds by the definition of the different ideal.

Lemma 1.5. ([IUTchIV, Proposition 1.3]) Let k ⊃ k0 be finite extensions of

Qp. Let e, e0 be the ramification indices of k and k0 over Qp respectively. Let m be the

integer such that pm | [k : k0] and p
m+1 - [k : k0]. Put dk := dk/Qp

and dk0 := dk0/Qp
.

1. We have dk0 + 1/e0 ≤ dk + 1/e. If k is tamely ramified over k0, then we have

dk0 + 1/e0 = dk + 1/e.

2. If k is a finite Galois extension of a tamely ramified extension of k0, then we have

dk ≤ dk0 +m+ 1/e0.

Remark 1.5.1. Note that “log-diff +log-cond”, not “log-diff”, behaves well under

field extensions (See also the proof of Lemma 1.11 below). This is one of the reasons

that the term log-cond appears in Diophantine inequalities. cf. Lemma 1.1 for the

geometric case.

Proof. (1): We may replace k0 by the maximal unramified subextension in k ⊃ k0,
and assume that k/k0 is totally ramified. Choose uniformizers $0 ∈ Ok0 and $ ∈ Ok,
and let f(x) ∈ Ok0 [x] be the minimal monic polynomial of $0 over Ok0 . Then we

have an Ok0 -algebra isomorphism Ok0 [x]/(f(x))
∼→ Ok sending x to $. We also have

f(x) ≡ xe/e0 modulo mk0 = ($0). Then dk − dk0 ≥ min{ord($0), ord(
e
e0
$

e
e0
−1))} ≥

min
{

1
e0
, 1e

(
e
e0
− 1
)}

= 1
e

(
e
e0
− 1
)
, where the inequalities are equalities if k/k0 is

tamely ramified.

(2): We use an induction on m. For m = 0, the claim is covered by (1). We assume

m > 0. By assumuption, k is a finite Galois extension of a tamely ramified extension k1
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of k0 We may assume that [k : k1] is p-powere by replacing k1 by the maximal tamely

ramified subextension in k ⊃ k1. We have a subextension k ⊃ k2 ⊃ k1, where [k : k2] = p

and [k2 : k1] = pm−1 since p-groups are solvable. By the induction hypothesis, we have

dk2 ≤ dk0+(m−1)+1/e0. It is sufficient to show that dk ≤ dk0+m+1/e0+ε for all ε > 0.

After enlarging k2 and k1, we may assume that k1 ⊃ µp and (e2 ≥)e1 ≥ p/ε, where

e1 and e2 are the ramification index of k1 and k2 over Qp respectively. By Kummer

theory, we have an inclusion of Ok2 -algebras Ok2 [x]/(x
p − a) ↪→ Ok for some a ∈ Ok2 ,

sending x to a1/p ∈ Ok. By modifying a by (O×k2)
p, we may assume that ord(a) ≤ p−1

e2
.

Then we have dk ≤ ord(f ′(a1/p)) + dk2 ≤ ord(pa(p−1)/p) + dk0 + (m − 1) + 1/e0 ≤
p−1
p

p−1
e2

+dk0 +m+1/e0 < p/e2+dk0 +m+1/e0 ≤ dk0 +m+1/e0+ε. We are done.

For a finite extension k over Qp, let µlog
k be the (non-normalised) log-volume

function (i.e., the logarithm of the usual p-adic measure on k) defined on compact

open subsets of k valued in R such that µlog
k (Ok) = 0. Note that we have µlog(pOk) =

− log#(Ok/pOk) = −[k : Qp] log p. Let µlog
C be the (non-normalised) radial log-

volume function valued in R, such that µlog
C (Ok) = 0, defined on compact subsets of

C which project to a compact domain in R via prR : C = R×O×C → R (see Section 1.2

for the definition of compact domain) (i.e., the logarithm of the usual absolute value

log |prR(A)| on R of the projection for A ⊂ C). Note that we have µlog(eOk) = log e = 1.

The non-normalised log-volume function µlog
k is the local version of the non-normalised

degree map degF (Note that we have the summation degF =
∑
v∈V(F ) µ

log
Fv

) and the

normalised one 1
[k:Qp]

µlog
k is the local version of the normalised degree map 1

[F :Q]degF
(Note that we have the weighted average 1

[F :Q]degF = 1∑
v∈V(F )[Fv:QvQ ]

∑
v∈V(F )[Fv :

QvQ ]( 1
[Fv:QvQ ]

µlog
Fv

) with weight {[Fv : QvQ ]}v∈V(F ), where vQ ∈ VQ is the image of v ∈
V(F ) via the natural surjection V(F ) � VQ). For finite extensions {ki}i∈I over Qp,
the normalised log-volume functions { 1

[ki:Qp]
µlog
ki
}i∈I give us a normalised log-volume

function
∑
i∈I

1
[ki:Qp]

µlog
ki

on compact open subsets of ⊗i∈Iki (tensored over Qp) valued
in R (since we have 1

[ki:Qp]
µlog
ki

(pOki) = − log p for any i ∈ I by the normalisation), such

that (
∑
i∈I

1
[ki:Qp]

µlog
ki

)(⊗i∈IOki) = 0.

Lemma 1.6. ([IUTchIV, Proposition 1.2 (ii), (iv)] and [IUTchIV, “the fact...consideration”

in the part (v) and the part (vi) of the proof in Theorem 1.10]) Let {ki}i∈I be a finite set

of finite extensions of Qp. Let ei denote the ramification index of ki over Qp. We write

ai, bi for the quantity a, b defined in Lemma 1.3 for ki. Put di := dki/Qp
, aI :=

∑
i∈I ai,

bI :=
∑
i∈I bi, and dI :=

∑
i∈I di. For λ ∈

1
ei
Z, let pλOki denote the fractional ideal gen-

erated by any element x ∈ ki with ord(x) = λ. Let φ :
⊗

i∈I logp(O
×
ki
)
∼→
⊗

i∈I logp(O
×
ki
)

(tensered over Zp) be an automorphism of Zp-modules. We extend φ to an automor-

phism of the Qp-vector spaces Qp ⊗Zp

⊗
i∈I logp(O

×
ki
) by the linearity. We consider

(⊗i∈IOki)∼ as a submodule of Qp ⊗Zp

⊗
i∈I logp(O

×
ki
) via the natural isomorphisms
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Qp ⊗Zp (⊗i∈IOki)∼ ∼= Qp ⊗Zp ⊗i∈IOki ∼= Qp ⊗Zp ⊗i∈I logp(O×ki).

1. Put I ⊃ I∗ := {i ∈ I | ei > p− 2}. For any λ ∈ 1
ei0

Z, i0 ∈ I, we have

φ
(
pλ(⊗i∈IOki)∼

)
, pλ

⊗
i∈I

1

2p
logp(O

×
ki
)

⊂ pbλ−dI−aIc
⊗
i∈I

logp(O
×
ki
) ⊂ pbλ−dI−aIc−bI (⊗i∈IOki)∼, and

(
∑
i∈I

1

[ki : Qp]
µlog
ki

)(pbλ−dI−aIc−bI (⊗i∈IOki)∼) ≤ (−λ+dI+1) log(p)+
∑
i∈I∗

(3+log(ei)).

2. If p > 2 and ei = 1 for each i ∈ I, then we have

φ((⊗i∈IOki)∼),
⊗
i∈I

1

2p
logp(O

×
ki
) ⊂

⊗
i∈I

logp(O
×
ki
) ⊂ (⊗i∈IOki)∼,

and (
∑
i∈I

1
[ki:Qp]

µlog
ki

)((⊗i∈IOki)∼) = 0.

Remark 1.6.1. If ei < p − 2 for simplicity, then we have Oki ⊂ 1
2p logp(O

×
ki
) =

1
pmki , where mki denotes the maximal ideal of ki. When we consider 1

2p logp(O
×
ki
) =

1
pmki as a Zp-module (i.e., when we regard it as having no ring structure), then we cannot

distinguish 1
pπ,

1
pπ

2, . . . , 1pπ
e, where π denotes a uniformiser of ki. We can consider this

phenomenon as a kind of “differential over F1” (See also the point of view from the

Teichmüller dilation discussed in Section 3.5).

Proof. (1): We have pdI+aI (⊗i∈IOki)∼ ⊂ paI ⊗i∈I Oki ⊂
⊗

i∈I logp(O
×
ki
), where

the first (resp. second) inclusion follows from Lemma 1.4 (resp. Lemma 1.3). Then by

Lemma 1.3, we have pλ(⊗i∈IOki)∼ = pλ−dI−aIpdI+aI (⊗i∈IOki)∼ ⊂ pbλ−dI−aIcpdI+aI

(⊗i∈IOki)∼ ⊂ pbλ−dI−aIc logp(⊗i∈IO×ki) ⊂ pbλ−dI−aIc−bI (⊗i∈IOki)∼. Thus, we have

φ
(
pλ(⊗i∈IOki)∼

)
⊂ φ

(
pbλ−dI−aIc

⊗
i∈I logp(O

×
ki
)
)
= pbλ−dI−aIc

⊗
i∈I logp(O

×
ki
) ⊂

pbλ−dI−aIc−bI (⊗i∈IOki)∼, where the last inclusion follows from Lemma 1.3. If p = 2,

we have ddI + aIe ≥ dI + aI ≥ aI ≥ 2#I. If p > 2, we have ai ≥ 1
ei

and di ≥ 1 − 1
ei

by Lemma 1.5 (1), hence, we have ddI + aIe ≥ dI + aI ≥ #I. Thus, we obtain the

remaining inclusion
⊗

i∈I
1
2p logp(O

×
ki
) ⊂ p−ddIe−daIe

⊗
i∈I logp(O

×
ki
) for p ≥ 2.

We show the upper bound of the log-volume. We have ai − 1
ei

< 4
p < 2

log(p) ,

where the first inequality for p > 2 (resp. p = 2) follows from ai <
1
ei
( ei
p−2 + 1) =

1
p−2 + 1

ei
and 1

p−2 < 4
p for p > 2 (resp. ai − 1

ei
= 2 − 1

ei
< 2 = 4

p ), and the second

inequality follows from x > 2 log x for x > 0. We also have (bi+
1
ei
) log(p) ≤ log( peip−1 ) ≤

log(2ei) < 1 + log(ei), where the first inequality follows from the definion of bi, the

second inequality follows from p
p−1 ≤ 2 for p ≥ 2, and the last inequality follows from

log(2) < 1. Then by combining these, we have (ai + bi) log(p) ≤ 3 + log(ei). For
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i ∈ I \ I∗, we have ai = −bi(= 1/ei), hence, we have (ai + bi) log(p) = 0. Then we

obtain (
∑
i∈I

1
[ki:Qp]

µlog
ki

)(pbλ−dI−aIc−bI (⊗i∈IOki)∼) ≤ (−(λ−dI−aI−1)+bI) log(p) =

(−λ+ dI + aI + bI + 1) log(p) ≤ (−λ+ dI + 1) log(p) +
∑
i∈I∗(3 + log(ei)).

(2) follows from (1).

For a non-Archimedean local field k, put Ik := 1
2pvQ

logp(O
×
k ). We also put IC :=

π(unit ball). We call Ik the log-shell of k, where k is a non-Archimedean local field

or k = C. Let F be a number field. Take vQ ∈ Vnon
Q . For V(F ) 3 v1, . . . , vn | vQ, put

Iv1,··· ,vn := ⊗1≤i≤nIFvi
(Here, the tensor is over Zv). Take vQ ∈ Varc

Q . For V(F ) 3
v1, . . . , vn | vQ, let Iv1,...,vn ⊂ ⊗1≤i≤nFvi denote the image of

∏
1≤i≤n IFvi

under the

natural homomorphism
∏

1≤i≤n Fvi → ⊗1≤i≤nFvi) (Here, the tensor is over R). For a

subset A ⊂ Qp ⊗Zp Iv1,··· ,vn (resp. A ⊂ Iv1,··· ,vn), we call the holomorphic hull of

A the smallest subset, which contains A, of the form ⊕i∈IaiOLi with ai ∈ OLi in the

natural direct sum decomposition of the topological fields ⊗1≤i≤nFvi
∼= ⊕i∈ILi.

We define the subgroup of primitive automorphisms Aut(C)prim ⊂ Aut(C) to

be the subgroup generated by the complex conjugate and the multiplication by
√
−1

(thus, Aut(C)prim ∼= Z/4Z o {±1}).
In the rest of this subsection, we choose a tuple (F/F,EF ,Vbad

mod, l,V), where

1. F is a number field such that
√
−1 ∈ F , and F is an algebraic closure of F ,

2. EF is an elliptic curve over F such that AutF (EF ) = {±1}, where EF := EF ×F F ,
the 2.3(= 6)-torsion points EF [2.3] are rational over F , and F is Galois over the

field of moduli Fmod of EF i.e., the subfield of F deteremined by the image of

the natural homomorphism Aut(EF ) → Aut(F ) = Gal(F/Q)(⊃ Gal(F/F )) (thus,

we have a short exact sequence 1 → AutF (EF ) → Aut(EF ) → Gal(F/Fmod) →
1), where Aut(EF ) (resp. AutF (EF )) denotes the group of automorphisms (resp.

automorphisms over F ) of the group scheme EF ),

3. Vbad
mod is a nonempty finite subset Vbad

mod ⊂ Vnon
mod(⊂ Vmod := V(Fmod)), such that v - 2

holds for each v ∈ Vbad
mod, and EF has bad multiplicative reduction over w ∈ V(F )v,

4. l is a prime number l ≥ 5 such that l is prime to the elements of Vbad
mod as well as

prime to ordw of the q-parameters of EF at w ∈ V(F )bad := V(F )×Vmod
Vbad

mod, and

5. V is a finite subset V ⊂ V(K), where K := F (EF [l]), such that the restriction of

the natural surjection V(K)� Vmod to V induces a bijection V ∼→ Vmod.

(Note that this is not the definition of initial Θ-data, in which we will have more

objects and conditions. See Section 10.1.) Put dmod := [Fmod : Q], (Varc
mod ⊂)V

good
mod :=

Vmod \ Vbad
mod, and V(F )good := V(F ) ×Vmod

Vgood
mod . Let v ∈ V denote the element

corresponding to v ∈ Vmod via the above bijection.
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Lemma 1.7. ([IUTchIV, Lemma 1.8 (ii), (iii), (iv), (v)])

1. Ftpd = Fmod(EFmod
[2]) is independent of the choice of a model EFmod

.

2. The elliptic curve EF has at most semistable reduction for all w ∈ V(F )non.

3. Any model of EF over F such that all 3-torsion points are defined over F is iso-

morphic to EF over F . In particular, we have an isomorphism EFtpd
×Ftpd

F ∼= EF

over F for a model EFtpd
of EF over Ftpd, such that F ⊃ Ftpd(EFtpd

[3]).

4. The extension K ⊃ Fmod is Galois.

(Here, “tpd” stands for “tripod” i.e., the projective line minus three points.)

Proof. (1): In the short exact sequence 1→ AutF (EF )→ Aut(EF )→ Gal(F/Fmod)→
1, a section of the surjection Aut(EF )� Gal(F/Fmod) corresponds to a model EFmod

of

EF , and the field Fmod(EFmod
[2]) correpsonds to the kernel of the composite of the sec-

tion Gal(F/Fmod)→ Aut(EF ) and the natural homomorphism Aut(EF )→ Aut(EF [2]).

On the other hand, by the assumption AutF (EF ) = {±1}, the natural homomorphism

Aut(EF ) → Aut(EF [2]) factors through the quotient Aut(EF ) � Gal(F/Fmod), since

the action of AutF (EF ) = {±1} on EF [2] is trivial (−P = P for P ∈ EF [2]). This

implies that the kernel of the composite Gal(F/Fmod) → Aut(EF ) → Aut(EF [2]) is

independent of the section Gal(F/Fmod)→ Aut(EF ). This means that Fmod(EFmod
[2])

is independent of the choice of a model EFmod
[2]. The first claim was proved.

(2): For a prime r ≥ 3, we have a fine moduli X(r)Z[1/r] of elliptic curves with

level r structure (Note that it is a scheme since r ≥ 3). Any Fw-valued point with w - r
can be extended to OFw -valued point since X(r)Z[1/r] is proper over Z[1/r]. We apply

this to an Fw-valued point defined by EF with a level r = 3 structure (which is defined

over F by the assumption). Then EF has at most semistable reduction for w - 3. The

second claim was proved.

(3): A model of EF over F corresponds to a section of AutF (EF ) � Gal(F/F )

in a one-to-one manner. Thus, a model of EF over F whose all 3-torsion points are

rational over F corresponds to a section of AutF (EF ) � Gal(F/F ) whose image is in

ker{ρ : AutF (EF )→ Aut(EF [3])}. Such a section is unique by AutF (EF )∩ker(ρ) = {1},
since AutF (EF ) = {±1} and the image of −1 ∈ AutF (EF ) in Aut(EF [3])} is nontrivial
(if −P = P ∈ EF [3] then P ∈ EF [2] ∩ EF [3] = {O}). The third claim was proved.

(4): A model EFmod
of EF over Fmod, such that F ⊃ Ftpd(EFtpd

[3]), gives us a sec-

tion of AutF (EF ) � Gal(F/Fmod), hence homomorphisms ρEFmod
,r : Gal(F/Fmod) →

Aut(EF [r]) for r = 3, l, which may depend on a model EFmod
. Take any g ∈ Gal(F/Fmod).

By assumption that F is Galois over Fmod, we have gGal(F/F )g−1 = Gal(F/F ) in

Gal(F/Fmod). Thus, both of Gal(F/K) and gGal(F/K)g−1 are subgroups in Gal(F/F ).
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We consider the conjugate ρgEFmod
,r(·) := ρEFmod

,r(g
−1(·)g) of ρEFmod

,r by g. By defi-

nition, the subgroup Gal(F/K) (resp. gGal(F/K)g−1) is the kernel of ρEFmod
,l (resp.

ρgEFmod
,l). On the other hand, since ρgEFmod

,3(a) = ρEFmod
,3(g)

−1ρEFmod
,3(a)ρEFmod

,3(g) =

1 for any a ∈ Gal(F/F ) by the assumption, the homomorphism ρgEFmod
,3 arises from a

model E′Ftpd
of EF over Ftpd. Then by the third claim (3), the restriction ρEFmod

,l|Gal(F/F ) :

Gal(F/F )→ Aut(EF [l]) to Gal(F/F ) is unique, i.e., ρEFmod
,l|Gal(F/F ) = ρgEFmod

,l|Gal(F/F ).

Hence we have Gal(F/K) = gGal(F/K)g−1. Thus K is Galois over Fmod. The fourth

claim was proved.

We further assume that

1. EF has good reduction for all v ∈ V(F )good ∩ V(F )non with v - 2l,

2. all the points of EF [5] are defined over F , and

3. we have F = Ftpd(
√
−1, EFtpd

[3.5]), where Ftpd := Fmod(EFmod
[2]) (Here EFmod

is

any model of EF over Fmod, and EFtpd
is a model of EF over Ftpd which is defined

by the Legendre form i.e., of the form y2 = x(x− 1)(x− λ) with λ ∈ Ftpd).

For an intermediate extension Fmod ⊂ L ⊂ K which is Galois over Fmod, we write

dL ∈ ADiv(L) for the effective arithmetic divisor supported in V(L)non determined by

the different ideal of L over Q. We define log(dL) := 1
[L:Q]degL(d

L) ∈ R≥0. We can con-

sider the q-parameters of EF at bad places, since EF has everywhere at most semistable

reduction by Lemma 1.7 (2). We write qL ∈ ADivQ(L) for the effective Q-arithmetic

divisor supported in V(L)non determined by the q-parameters of EFL := EF ×F (FL) at

primes in V(FL)bad := V(FL) ×Vmod
Vbad

mod divided by the ramification index of FL/L

(Note that 2l is prime to the elements in Supp(qL) even though EF has bad reduc-

tion over a place dividing 2l). We define log(q) = log(qL) := 1
[L:Q]degL(q

L) ∈ R≥0.
Note that log(qL) does not depend on L. We write fL ∈ ADiv(L) for the effective

arithmetic divisor whose support coincides with Supp(qL); however, all of whose coeffi-

cients are equal to 1 (Note that Supp(qL) excludes the places dividing 2l). We define

log(qL) := 1
[L:Q]degL(q

L) ∈ R≥0.
For an intermediate extension Ftpd ⊂ L ⊂ K which is Galois over Fmod, we define

the set of distinguished places V(L)dist ⊂ V(L)non to be V(L)dist := {w ∈ V(L)non |
there is v ∈ V(K)nonw which is ramified over Q}. We put Vdist

Q and Vdist
mod to be the im-

ages of V(Ftpd)
dist in VQ and in Vmod respectively, via the natural surjections V(Ftpd)�

Vmod � VQ. For L = Q, Fmod, we put sL :=
∑
w∈V(L)dist eww ∈ ADiv(L), where ew is

the ramification index of Lw/Qpw . We define log(sL) := 1
[L:Q]degL(s

L) ∈ R≥0. We put

d∗mod := 2.#(Z/4Z)×#GL2(F2)#GL2(F3)#GL2(F5)dmod = 212.33.5.dmod
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(Note that #GL2(F2) = 2.3, #GL2(F3) = 24.3, and #GL2(F5) = 25.3.5). We write

s≤ :=
∑
vQ∈Vdist

Q

ιvQ
log(pvQ )

vQ ∈ ADivR(Q), where ιvQ := 1 if pvQ ≤ d∗modl and ιvQ := 0 if

pvQ > d∗modl. We define log(s≤) := degQ(s
≤) ∈ R≥0.

For number fields F ⊂ L, a Q-arithmetic divisor a =
∑
w∈V(L) cww on L, and

v ∈ V(F ), we define av :=
∑
w∈V(L)v cww.

Lemma 1.8. ([IUTchIV, Proposition 1.8 (vi), (vii)]) The extension F/Ftpd is

tamely ramified outside 2.3.5, and K/F is tamely ramified outside l. The extension

K/Ftpd is unramified outside 2.3.5.l and Supp(qFtpd).

Proof. First, we show that EFtpd
×Ftpd

F ′ has at most semistable reduction at

w - 2 for some [F ′ : Ftpd,w] ≤ 2 and we can take F ′ = Ftpd,w in the good reduction

case as follows: Now EFtpd
is defined by the Legendre form y2 = x(x − 1)(x − λ). If

λ ∈ OFtpd,w
, then it has at most semistable reduction since 0 6≡ 1 in any characteristic. If

$nλ ∈ O×Ftpd,w
for n > 0 where $ ∈ Ftpd,w is a uniformizer, then by putting x′ := $nx

and y′ := $3n/2y, we have (y′)2 = x′(x′ −$n)(x′ −$nλ) over Ftpd,w(
√
$), which has

semistable reduction.

Then the action of Gal(Ftpd,w/F
′) on E[3.5] is unipotent (cf. [SGA7t1, Exposé

IX §7] the filtration by “finite part” and “toric part”) for w - 2.3.5. Hence, F =

Ftpd(
√
−1, E[3.5]) is tamely ramified over Ftpd outside 2.3.5. By the same reason, the

action of Gal(Ftpd,w/F
′) on E[l] is unipotent for w - l, and K = F (E[l]) is tamely

ramified over F outside l.

We show the last claim. EF has good reduction outside 2l and Supp(qFtpd), since,

by the assumption, EF has good reduction for all v ∈ V(F )good ∩ V(F )non with v - 2l.
Thus, K = Ftpd(

√
−1, E[3.5.l]) is unramified outside 2.3.5.l and Supp(qFtpd).

In the main contents of inter-universal Teichmüller theory, we will use the bi-

jection V ∼→ Vmod as a kind of “analytic section” of SpecOK � SpecOFmod
, and

we will have an identification of 1
[Kv :(Fmod)v ]

µlog
Kv

with µlog
(Fmod)v

and an identification of
1

[Fmod:Q]

∑
v∈V

1
[Kv:(Fmod)v]

µlog
Kv

with 1
[Fmod:Q]

∑
v∈Vmod

µlog
(Fmod)v

(Note that the summation

is taken with respect to V, not the whole of the valuation V(K) of K). This is why we

will consider
µlog
Kv

[Kv:(Fmod)v]
or its normalised version 1

[(Fmod)v:QvQ ]

µlog
Kv

[Kv:(Fmod)v]
=

µlog
Kv

[Kv:QvQ ]

for v ∈ V (not for V(K)) with weight [(Fmod)v : QvQ ] (not [Kv : QvQ ]) in this subsection.

Lemma 1.9. ([IUTchIV, some portions of (v), (vi), (vii) of the proof of Theorem

1.10, and Propotision 1.5]) For vQ ∈ VQ, 1 ≤ j ≤ l>(= l−1
2 ), and v0, . . . , vj ∈ (Vmod)vQ

(where v0, . . . , vj are not necessarily distinct), let −| log(Θ)|{v0,...,vj} denote the nor-

malised log-volume (i.e.,
∑

0≤i≤j
1

[Kvi
:QvQ ]

µlog
Kvi

) of the following:

• For vQ ∈ Vnon
Q , the holomorphic hull of the union of
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– (vertical indeterminacy=:(Indet ↑))
q
j2/2l
vj Iv0,··· ,vj (resp. Iv0,··· ,vj ) for vj ∈ Vbad (resp. for vj ∈ Vgood), and

– (horizontal and permutative indeterminacies =:(Indet →), (Indet xy))

φ
(
q
j2/2l
vj OKvj

⊗OKvj
(⊗0≤i≤jOKvi

)∼
)

(resp. φ
(
(⊗0≤i≤jOKvi

)∼
)
) for vj ∈

Vbad (resp. for vj ∈ Vgood), where φ : QvQ ⊗ZvQ
Iv0,...,vj

∼→ QvQ ⊗ZvQ
Iv0,...,vj

runs through all of automorphisms of finite dimensional QvQ-vector spaces

which induces an automorphism of the submodule Iv0,...,vj , and ⊗0≤i≤j’s are

tensors over ZvQ (See also the “Teichmüller dilation” in Section 3.5).

• For vQ ∈ Varc
Q , the holomorphic hull of the union of

– (vertical indeterminacy=:(Indet ↑))
Iv0,...,vj (⊂ ⊗0≤i≤jKvi

), and

– (horizontal and permutative indeterminacies =:(Indet →), (Indet xy))

(⊗0≤i≤jφi)(BI), where BI := (unit ball)⊕2
j

in the natural direct sum decom-

position ⊗0≤i≤jKvi
∼= C⊕2j (tensored over R), and (φi)0≤i≤j runs through all

of elements in
∏

0≤i≤j Aut(Kvi
)prim.

Put di := dKvi
/QvQ

and dI :=
∑

0≤i≤j di for vQ ∈ Vnon
Q . Then we have the following

upper bounds of −| log(Θ)|{v0,...,vj}:

1. For vQ ∈ Vdist
Q , we have

− | log(Θ)|{v0,...,vj} ≤


(
− j

2

2l ord(qvj ) + dI + 1
)
log pvQ + 4(j + 1)ιvQ log(d

∗
modl) vj ∈ Vbad,

(dI + 1) log pvQ + 4(j + 1)ιvQ log(d
∗
modl) vj ∈ Vgood

= −j
2

2l

µlog
Kvj

(qvj )

[Kvj
: QvQ ]

+
∑

0≤i≤j

µlog
Kvj

(dKvi)

[Kvj
: QvQ ]

+ µlog
QvQ

(sQvQ) + 4(j + 1)µlog
QvQ

(s≤vQ) log(d
∗
modl).

2. For vQ ∈ Vnon
Q \ Vdist

Q , we have −| log(Θ)|{v0,...,vj} ≤ 0.

3. For vQ ∈ Varc
Q , we have −| log(Θ)|{v0,...,vj} ≤ (j + 1) log(π).

Remark 1.9.1. In Section 13, it will be clear that the vertical (resp. horizontal)

indeterminacy arises from the vertical (resp. horizontal) arrows of the log-theta-lattice

i.e., the log-links (resp. the theta-links), and the permutative indeterminacy arises from

the permutative symmetry of the étale picture.

Proof. (1): We apply Lemma 1.6 (1) to λ := j2

2l ord(qvj ) (resp. 0) for vj ∈ Vbad

(resp. for vj ∈ Vgood), I := {0, 1, . . . , j}, i0 := j, and ki := Kvi
. (Note that λ ∈ 1

evj
Z
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since q
1/2l
vj ∈ Kvj

by the assumptions that K = F (EF [l]) and that EF [2] is rational

over F , i.e., F = F (EF [2]).) Then by the first inclusion of Lemma 1.6 (1), both of

φ
(
q
j2/2l
vj OKvj

⊗OKvj
(⊗0≤i≤jOKvi

)∼
)
(resp. φ

(
(⊗0≤i≤jOKvi

)∼
)
) ((Indet →), (Indet

xy)) and q
j2/2l
vj Iv0,...,vj (resp. Iv0,...,vj ) ((Indet ↑)) are contained in p

bλc−ddIe−daIe
vQ ⊗i∈I

logpvQ
(O×Kvi

). By the second inclusion of Lemma 1.6 (1), the holomorphic hull of

p
bλc−ddIe−daIe
vQ ⊗i∈I logpvQ (O

×
Kvi

) is contained in p
bλc−ddIe−daIe−dbIe
vQ (⊗i∈IO×Kvi

)∼, and

its normalised log-volume is ≤ (−λ+dI+1) log(pvQ)+
∑
i∈I∗(3+log(ei)) by Lemma 1.6

(1). If ei > pvQ − 2, then pvQ ≤ d∗modl, since for vi - l (resp. vi | l) we have

pvQ ≤ 1 + ei ≤ 1 + d∗modl/2 ≤ d∗modl (resp. pvQ = l ≤ d∗modl). For ei > pvQ − 2, we also

have log(ei) ≤ −3+4 log(d∗modl), since ei ≤ d∗modl
4/2 and e3/2 ≤ (d∗mod)

3. Thus, we have

(−λ+dI+1) log(pvQ)+
∑
i∈I∗(3+log(ei)) ≤ (−λ+dI+1) log(pvQ)+4(j+1)ιvQ log(d

∗
modl),

since if ιvQ = 0, (i.e., pvQ > d∗modl), then ei ≤ pvQ − 2 for all i, hence I∗ = ∅. The last

equality of the claim follows from the definitions.

(2): For vQ ∈ Vnon
Q \ Vdist

Q , the prime vQ is unramified in K and vQ 6= 2, since 2

ramifies in K by K 3
√
−1. Thus, the ramification index ei of Kvi

over QvQ is 1 for

each 0 ≤ i ≤ j, and pvQ > 2. We apply Lemma 1.6 (2) to λ := 0, I := {0, 1, . . . , j},
and ki := Kvi

. Both of φ
(
(⊗0≤i≤jOKvi

)∼
)

((Indet →), (Indet xy)) and the log-

shell Iv0,...,vj (Indet ↑) are contained in ⊗i∈I logpvQ (O
×
Kvi

). By the second inclusion of

Lemma 1.6 (2), the holomorphic hull of ⊗i∈I logpvQ (O
×
Kvi

) is contained in (⊗i∈IO×Kvi
)∼,

and its log-volume is = 0.

(3): The natural direct sum decomposition ⊗0≤i≤jKvi
∼= C⊕2j (tensored over

R), where Kvi
∼= C, the hermitian metric on C⊕2j , and the integral structure BI =

(unit ball)⊕2
j ⊂ C⊕2j are preserved by the automorphisms of ⊗0≤i≤jKvi

induced by

any (φi)0≤i≤j ∈
∏

0≤i≤j Aut(Kvi
)prim ((Indet →), (Indet xy)). Note that, via the

natural direct sum decomposition ⊗0≤i≤jKvi
∼= C⊕(j+1), the direct sum metric on

C⊕(j+1) induced by the standard metric on C is 2j times the tensor product metric on

⊗0≤i≤jKvi
induced by the standard metric on Kvi

∼= C (Note that |1⊗
√
−1|2C⊗RC = 1

and |(
√
−1,−

√
−1)|2C⊕C = 2) (See also [IUTchIV, Proposition 1.5 (iii), (iv)]). The log-

shell Iv0,...,vj is contained in πj+1BI (Indet ↑). Thus, an upper bound of the log-volume

is given by (j + 1) log(π).

Lemma 1.10. ([IUTchIV, Proposition 1.7, and some portions of (v), (vi), (vii)

in the proof of Theorem 1.10]) Fix vQ ∈ VQ. For 1 ≤ j ≤ l>(= l−1
2 ), we take the

weighted average −| log(Θ)|vQ,j of −| log(Θ)|{v0,...,vj} with respect to all (j + 1)-tuples

of elements {vi}0≤i≤j in (Vmod)vQ with weight wv0,...,vj :=
∏

0≤i≤j wvi , where wv :=

[(Fmod)v : QvQ ] (not [Kv : QvQ ]), i.e.,

−| log(Θ)|vQ,j :=
1

W

∑
v0,...,vj∈(Vmod)vQ

wv0,...,vj (−| log(Θ)|{v0,...,vj}),
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where W :=
∑
v0,...,vj∈(Vmod)vQ

wv0,...,vj = (
∑
v∈(Vmod)vQ

wv)
j+1 = [Fmod : Q]j+1, and∑

v0,...,vj∈(Vmod)vQ
is the summation of all (j + 1)-tuples of (not necessarily distinct)

elements v0, . . . , vj ∈ (Vmod)vQ (we write
∑

v0,...,vj

for it from now on to lighten the

notation). Let −| log(Θ)|vQ denote the average of −| log(Θ)|vQ,j with respect to 1 ≤
j ≤ l>, (which is called procession normalised average), i.e., −| log(Θ)|vQ :=
1
l>

∑
1≤j≤l>(−| log(Θ)|vQ,j).

1. For vQ ∈ Vdist
Q , we have

−| log(Θ)|vQ ≤ −
l + 1

24
log(qvQ)+

l + 5

4
log(dKvQ)+log(sQvQ)+(l+5) log(s≤vQ) log(d

∗
modl).

2. For vQ ∈ Vnon
Q \ Vdist

Q , we have −| log(Θ)|vQ ≤ 0.

3. For vQ ∈ Varc
Q , we have −| log(Θ)|vQ ≤ l + 1.

Remark 1.10.1. In the identification of 1
[Kv :(Fmod)v ]

µlog
Kv

with µlog
(Fmod)v

and the

identification of V with Vmod, which are explained before, the weighted average

1

W

∑
v0,...,vj

wv0,...,vj
∑

0≤i≤j

µlog
Kvi

[Kvi
: QvQ ]

corresponds to 1
W

∑
0≤i≤j

∑
v0,...,vj

wv0,...,vj
µlog
(Fmod)vi

[(Fmod)vi :QvQ ]
= 1

W

∑
0≤i≤j

 ∑
v∈(Vmod)vQ

wv

j

 ∑
v∈(Vmod)vQ

wv
µlog
(Fmod)v

[(Fmod)v :QvQ ]

 = j+1
[Fmod:Q]

∑
v∈(Vmod)vQ

µlog
(Fmod)v

= j+1
[Fmod:Q]degFmod

, which is

(j + 1) times the vQ-part of the normalised degree map.

Proof. (1): The weighted average of the upper bound of Lemma 1.9 (1) gives

us −| log(Θ)|vQ,j ≤ − 1
W

j2

2l

∑
v0,...,vj

wv0,...,vj
µlog
Kvj

(qvj
)

[Kvj
:QvQ ]

+ 1
W

∑
v0,...,vj

wv0,...,vj
∑

0≤i≤j

(
µlog
Kvi

(dK
vi

)

[Kvi
:QvQ ]

+



a proof of the abc conjecture after Mochizuki 29

4
µlog
QvQ

(sQvQ
)

j+1 + 4µlog
QvQ

(s≤vQ) log(d
∗
modl)). Now, − 1

W
j2

2l

∑
v0,...,vj

wv0,...,vj
µlog
Kvj

(qvj
)

[Kvj
:QvQ ]

is equal to

− 1

W

j2

2l

 ∑
v∈(Vmod)vQ

wv

j ∑
v∈(Vmod)vQ

wv
µlog
Kv

(qv)

[Kv : QvQ ]


= − 1

[Fmod : Q]

j2

2l

∑
v∈(Vmod)vQ

µlog
Kv

(qv)

[Kv : (Fmod)v]

= − 1

[Fmod : Q]

j2

2l

∑
w∈V(K)vQ

[Kv : (Fmod)v]

[K : Fmod]

µlog
Kw

(qw)

[Kv : (Fmod)v]

= − 1

[K : Q]

j2

2l

∑
w∈V(K)vQ

µlog
Kw

(qw) = −
j2

2l
log(qvQ),

where the second equality follows from that µlog
Kw

(qw) = µlog
Kv

(qv), [Kw : (Fmod)v] = [Kv :

(Fmod)v], and #V(K)v =
[K:Fmod]

[Kv:(Fmod)v ]
for any w ∈ V(K)v with a fixed v ∈ Vmod, since K

is Galois over Fmod (Lemma 1.7 (4)). On the other hand, 1
W

∑
v0,...,vj

wv0,...,vj
∑

0≤i≤j

(
µlog
Kvi

(dK
vi

)

[Kvi
:QvQ ]

+

µlog
QvQ

(sQvQ
)

j+1 + 4µlog
QvQ

(s≤vQ) log(d
∗
modl)) is equal to

1

W

∑
0≤i≤j

 ∑
v∈(Vmod)vQ

wv

j ∑
v∈(Vmod)vQ

wv

 µlog
Kvi

(dKvi)

[Kvi
: QvQ ]

+
µlog
QvQ

(sQvQ)

j + 1
+ 4µlog

QvQ
(s≤vQ) log(d

∗
modl)


=

j + 1

[Fmod : Q]

∑
v∈(Vmod)vQ

wv

 µlog
Kv

(dKv )

[Kv : QvQ ]
+
µlog
QvQ

(sQvQ)

j + 1
+ 4µlog

QvQ
(s≤vQ) log(d

∗
modl)


=

j + 1

[Fmod : Q]

∑
v∈(Vmod)vQ

µlog
Kv

(dKv )

[Kv : (Fmod)v]
+ µlog

QvQ
(sQvQ) + 4(j + 1)µlog

QvQ
(s≤vQ) log(d

∗
modl)

=
j + 1

[Fmod : Q]

∑
w∈V(K)vQ

[Kv : (Fmod)v]

[K : Fmod]

µlog
Kw

(dKw )

[Kv : (Fmod)v]
+ µlog

QvQ
(sQvQ) + 4(j + 1)µlog

QvQ
(s≤vQ) log(d

∗
modl)

= (j + 1) log(dKvQ) + log(sQvQ) + 4(j + 1) log(s≤vQ) log(d
∗
modl),

where the second equality follows from
∑
v∈(Vmod)vQ

wv = [Fmod : Q] and the third

equality follows from that µlog
Kw

(dw) = µlog
Kv

(dv), [Kw : (Fmod)v] = [Kv : (Fmod)v], and

#V(K)v = [K:Fmod]
[Kv:(Fmod)v]

for any w ∈ V(K)v with a fixed v ∈ Vmod as before. Thus, by
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combining these, we have

−| log(Θ)|vQ,j ≤ −
j2

2l
log(qvQ) + (j + 1) log(dKvQ) + log sQvQ + 4(j + 1) log(s≤vQ) log(d

∗
modl).

Then (1) holds since we have 1
l>

∑
1≤j≤l>(j+1) = l>+1

2 +1 = l+5
4 , and 1

l>

∑
1≤j≤l> j

2 =
(l>+1)(2l>+1)

6 = (l+1)l
12 . Next, (2) trivally holds by Lemma 1.9 (2). Finally, (3) holds by

Lemma 1.9 (3) with l+5
4 log(π) < l+5

4 2 ≤ l + 1 since l ≥ 3.

Lemma 1.11. ([IUTchIV, (ii), (iii), (viii) in the proof of Theorem 1.10, and

Proposition 1.6])

1. We have the following bound of log(dK) in terms of log(dFtpd) and log(fFtpd):

log(dK) ≤ log(dFtpd) + log(fFtpd) + 2 log l + 21.

2. We have the following bound of log(sQ) in terms of log(dFtpd) and log(fFtpd):

log(sQ) ≤ 2dmod(log(d
Ftpd) + log(fFtpd)) + log l + 5.

3. We have the following bound of log(s≤) log(d∗modl): there is ηprm ∈ R>0 (which is a

constant determined by using the prime number theorem) such that

log(s≤) log(d∗modl) ≤
4

3
(d∗modl + ηprm).

Proof. Note that log(dL)+log(fL) = 1
[L:Q]

∑
w∈V(L)non ewdw log(qw)+

1
[L:Q]

∑
w∈Supp(fL)

log(qw) = 1
[L:Q]

∑
w∈V(L)non(dw + ιfL,w/ew)ew log(qw) for L = K,F, Ftpd, Fmod, where

qw is the cardinality of the residue field of Lw, ew is the ramification index of Lw over

Qpw and ιfL,w := 1 if w ∈ Supp(fL), and ιfL,w := 0 if w /∈ Supp(fL).

(1): The extension F/Ftpd is tamely ramified outside 2.3.5 (Lemma 1.8). Then

by using Lemma 1.5 (1) (dL0 + 1/e0 = dL + 1/e) for the primes outside 2.3.5 and

Lemma 1.5 (2) (dL+1/e ≤ dL0 +1/e0+m+1/e ≤ dL0 +1/e0+(m+1)) for the primes

dividing 2.3.5, we have log(dF ) + log(fF ) ≤ log(dFtpd) + log(fFtpd) + log(211.33.52) ≤
log(dFtpd) + log(fFtpd) + 21 since [F : Ftpd] = [Ftpd(

√
−1) : Ftpd][F : Ftpd(

√
−1)] ≤

2.#GL2(F3).#GL2(F5) = 2.(24.3).(25.3.5) = 210.32.5, and log 2 < 1, log 3 < 2, log 5 <

2. In a similar way, we have log(dK) + log(fK) ≤ log(dF ) + log(fF ) + 2 log l, since K/F

is tamely ramified outside l (Lemma 1.8). Then we have log(dK) ≤ log(dK)+ log(fK) ≤
log(dF ) + log(fF ) + 2 log l ≤ log(dFtpd) + log(fFtpd) + 2 log l + 21.

(2): We have log(sQvQ) ≤ dmod log(s
Fmod
vQ

) for vQ ∈ Vnon
Q . By using Lemma 1.5

(1), we have log(sFmod
vQ

) ≤ 2(log(d
Ftpd
vQ ) + log(f

Ftpd
vQ )) for Vnon

Q 3 vQ - 2.3.5.l, since 1 =

dQvQ
+ 1/eQvQ

≤ dFmod,v
+ 1/eFmod,v

≤ 2(dFmod,v
+ ιfFmod ,v/eFmod,v

), where ιfFmod ,v := 1
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for v ∈ Supp(fFmod) and ιfFmod ,v := 0 for v /∈ Supp(fFmod). Thus, we have log(sQ) ≤
2dmod(log(d

Ftpd) + log(fFtpd)) + log(2.3.5.l) ≤ 2dmod(log(d
Ftpd) + log(fFtpd)) + log l + 5,

since log 2 < 1, log 3 < 2, and log 5 < 2.

(3): We have log(s≤) log(d∗modl) ≤ log(d∗modl)
∑
p≤d∗modl

1. By the prime number

theorem limn→∞ n log(pn)/pn = 1 (where pn is the n-th prime number), there exists

ηprm ∈ R>0 such that
∑

prime p≤η 1 ≤
4η

3 log(η) for η ≥ ηprm. Then log(d∗modl)
∑
p≤d∗modl

1 ≤
4
3 log(d

∗
modl)

d∗modl
log(d∗modl)

= 4
3d
∗
modl if d

∗
modl ≥ ηprm, and log(d∗modl)

∑
p≤d∗modl

1 ≤ log(ηprm)
4
3

ηprm

log(ηprm) = 4
3ηprm if d∗modl < ηprm. Thus, we have log(s≤) log(d∗modl) ≤ 4

3 (d
∗
modl +

ηprm).

Proposition 1.12. ([IUTchIV, Theorem 1.10]) We set −| log(q)| := − 1
2l log(q).

We have the following an upper bound of −| log(Θ)| := −
∑
vQ∈VQ

| log(Θ)|vQ :

− | log(Θ)| ≤ − 1

2l
log(q)+

l + 1

4

(
−1

6

(
1− 12

l2

)
log(q) +

(
1 +

12dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 10(d∗modl + ηprm)

)
.

In particular, we have −| log(Θ)| <∞. If −| log(q)| ≤ −| log(Θ)| , then we have

1

6
log(q) ≤

(
1 +

20dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 20(d∗modl + ηprm) ,

where ηprm is the constant in Lemma 1.11.

Proof. By Lemma 1.10 (1), (2), (3) and Lemma 1.11 (1), (2), (3), we have

−| log(Θ)| ≤ − l + 1

24
log(q) +

l + 5

4

(
log(dFtpd) + log(fFtpd) + 2 log l + 21

)
+
(
2dmod(log(d

Ftpd) + log(fFtpd)) + log l + 5
)
+ (l + 5)

4

3
(d∗modl + ηprm) + l + 1.

Since l+5
4 = l2+5l

4l < l2+5l+4
4l = l+1

4 (1 + 4
l ), 4 < 4 l+1

l = l+1
4

16
l , and l + 5 ≤ 20

3
l+1
4 (for

l ≥ 5), this is bounded above by

<
l + 1

4

(
−1

6
log(q) +

(
1 +

4

l

)(
log(dFtpd) + log(fFtpd) + 2 log l + 21

)
+
4

l

(
2dmod(log(d

Ftpd) + log(fFtpd)) + log l + 5
)
+

20

3

4

3
(d∗modl + ηprm) + 4

)
=
l + 1

4

(
−1

6
log(q) +

(
1 +

4

l
+

8dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+

(
1 +

4

l

)
(2 log l + 21) +

16

l
(log l + 5) +

80

9
(d∗modl + ηprm) + 4

)
.
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Since 4 + 8dmod ≤ 12dmod, (1 +
4
l )(2 log l + 21) = 2 log l + 8 log l

l + (1 + 4
l )21 < 2 log l +

8 1
2 + (1 + 1)21 = 2 log l + 46 (for l ≥ 5), 16 log l

l < 16 1
2 = 8, and 16

l 5 ≤ 16 (for l ≥ 5),

this is bounded above by

<
l + 1

4

(
−1

6
log(q) +

(
1 +

12dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 2 log l +

80

9
(d∗modl + ηprm) + 74

)
.

Since 2 log l+74 < 2l+74 < 2.74l+2.74l = 22.74l < 22.212.3.5l < 4
9d
∗
modl <

4
9 (d
∗
modl+

ηprm), and
80
9 + 4

9 < 10, this is bounded above by

<
l + 1

4

(
−1

6
log(q) +

(
1 +

12dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 10(d∗modl + ηprm)

)
.

Since l+1
4

1
6
12
l2 = 1

2 (1 +
1
l ) >

1
2l , this is bounded above by

<
l + 1

4

(
−1

6

(
1− 12

l2

)
log(q) +

(
1 +

12dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 10(d∗modl + ηprm)

)
− 1

2l
log(q).

If −| log(q)| ≤ −| log(Θ)|, then for any −| log(Θ)| ≤ CΘ log(q), we have −| log(q)| ≤

−| log(Θ)| ≤ CΘ log(q), hence, CΘ ≥ −1 since | log(q)| = 1
2l log(q) > 0. By taking CΘ

to be

2l(l + 1)

4 log(q)

(
−1

6

(
1− 12

l2

)
log(q) +

(
1 +

12dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 10(d∗modl + ηprm)

)
−1,

we have

1

6
log(q) ≤

(
1− 12

l2

)−1((
1 +

12dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 10(d∗modl + ηprm)

)
.

Since (1− 12
l2 )
−1 ≤ 2 and (1− 12

l2 )(1+
20dmod

l ) ≥ 1+ 12dmod

l ⇔ 12 ≤ dmod(8l− 240
l ) which

holds for l ≥ 7 (by dmod(8l − 240
l ) ≥ 8l − 240

l ≥ 56− 240
7 > 12), we have

1

6
log(q) ≤

(
1 +

20dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 20(d∗modl + ηprm).

§ 1.4. Third Reduction — Choice of Initial Θ-Data.

In this subsection, we regard UP1 as the λ-line, i.e., the fine moduli scheme whose S-

valued points (where S is an arbitrary scheme) are the isomorphism classes of the triples

[E, φ2, ω], where E is an elliptic curve f : E → S equipped with an isomorphism φ2 :

(Z/2Z)⊕2 ∼→ E[2] of S-group schemes, and an S-basis ω of f∗Ω
1
E/S to which an adapted
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x ∈ f∗OE(−2(origin)) satisfies x(φ2(1, 0)) = 0, x(φ2(0, 1)) = 1. Here, a section x ∈
f∗OE(−2(origin)), for which {1, x} forms Zariski locally a basis of f∗OE(−2(origin)), is
called adapted to an S-basis ω of f∗Ω

1
E/S , if Zariski locally, there is a formal parameter

T at the origin such that ω = (1 + higher terms)dT and x = 1
T 2 (1 + higher terms)

(cf. [KM, (2.2), (4.6.2)]). Then λ ∈ UP1(S) corresponds to E : y2 = x(x − 1)(x − λ),
φ2((1, 0)) = (x = 0, y = 0), φ2((0, 1)) = (x = 1, y = 0), and ω = −dx2y . For a cyclic

subgroup scheme H ⊂ E[l] of order l > 2, a level 2 structure φ2 gives us a level 2

structure Im(φ2) of E/H. An S-basis ω also gives us an S-basis Im(ω) of f∗Ω
1
(E/H)/S .

For α = (φ2, ω), put Im(α) := (Im(φ2), Im(ω)).

Let F be a number field. For a semi-abelian variety E of relative dimension 1 over a

number SpecOF whose generic fiber EF is an elliptic curve, we define Faltings height of

E as follows: Let ωE be the module of invariant differentials on E (i.e., the pull-back of

Ω1
E/OF

via the zero section), which is finite flat of rank 1 over OF . We equip an hermi-

tian metric || · ||FaltEv
on ωEv := ωE⊗OF Fv for v ∈ V(F )arc by (||a||FaltEv

)2 :=
√
−1
2

∫
Ev
a∧a,

where Ev := E ×F Fv and a is the complex conjugate of a. We also equip an hermi-

tian metric || · ||FaltE on ωE ⊗Z C ∼= ⊕real:v∈V(F )arcωEv ⊕ ⊕complex:v∈V(F )arc(ωEv ⊕ ωEv ),

by || · ||FaltEv
(resp. || · ||FaltEv

and its complex conjugate) for real v ∈ V(F )arc (resp. for

complex v ∈ V(F )arc), where ωEv is the complex conjugate of ωEv . Then we obtain

an arithmetic line bundle ωE := (ωE , || · ||FaltE ). We define Faltings height of E by

htFalt(E) := 1
[F :Q]degF (ωE) ∈ R. Note that for any 0 6= a ∈ ωE , the non-Archimedean

(resp. Archimedean) portion htFalt(E, a)non (resp. htFalt(E, a)arc) of htFalt(E) is given

by 1
[F :Q]

∑
v∈V(F )non log v(a) log qv = 1

[F :Q] log#(ωE/aωE) (resp. − 1
[F :Q]

∑
v∈V(F )arc [Fv :

R] log
(√
−1
2

∫
Ev
a ∧ a

)1/2
= − 1

2[F :Q]

∑
v∈V(F )arc [Fv : R] log

(√
−1
2

∫
Ev
a ∧ a

)
), where htFalt(E)

= htFalt(E, a)non + htFalt(E, a)arc is independent of the choice of 0 6= a ∈ ωE (cf. Sec-

tion 1.1).

Take an algebraic closure Q of Q. For any point [E,α] ∈ UP1(Q) of the λ-line, we

define htFalt([E,α]) := htFalt(E). When [E,α] ∈ UP1(C) varies, the hermitian metric

|| · ||FaltE on ωE continuously varies, and gives a hermitian metric on the line bundle ωE

on UP1(C), where E is the universal elliptic curve of the λ-line. Note that this metric

cannot be extended to the compactification P1 of the λ-line, and the Faltings height has

logarithmic singularity at {0, 1,∞} (see also Lemma 1.13 (1) and its proof below).

We also introduce some notation. Let htnonωP1 ({0,1,∞}) denote the non-Archimedean

portion of htωP1 ({0,1,∞})([E,α]), i.e., ht
non
ωP1 ({0,1,∞})([E,α]) :=

1
[F :Q]degF (x

−1
F ({0, 1,∞}))

for xF : SpecOF → P1 representing [E,α] ∈ P1(F ) ∼= P1(OF ) (Note that x−1F ({0, 1,∞})
is supported in V(F )non and degF is the degree map on ADiv(F ), not on APic(SpecOF )).

Note that we have

htnonωP1 ({0,1,∞}) ≈ htωP1 ({0,1,∞})
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on P1(Q), since the Archimedean portion is bounded on the compact space (P1)arc.

We also note that ht∞ in [GenEll, Section 3] is a function onMell(Q), on the other

hand, our htnonωP1 ({0,1,∞}) is a function on λ-line P1(Q), and that the pull-back of ht∞ to

the λ-line is equal to 6 times our htnonωP1 ({0,1,∞}) ([IUTchIV, Corollary 2.2 (i)], See also

the proof of Lemma 1.13 (1) below).

Lemma 1.13. ([GenEll, Proposition 3.4, Lemma 3.5], [Silv2, Proposition 2.1,

Corollary 2.3]) Let l > 2 be a prime, E an elliptic curve over a number field F such that

E has everywhere at most semistable reduction, and H ⊂ E[l] a cyclic subgroup scheme

of order l. Then we have

1. (relation between htωP1 ({0,1,∞}) and htFalt)

2htFalt . htωP1 ({0,1,∞}) . 2htFalt + log(htωP1 ({0,1,∞})) . 2htFalt + εhtωP1 ({0,1,∞})

for any ε ∈ R>0 on UP1(Q),

2. (relation betwen htFalt([E,α]) and htFalt([E/H, Im(α)]))

htFalt([E,α])− 1

2
log l ≤ htFalt([E/H, Im(α)]) ≤ htFalt([E,α]) +

1

2
log l.

3. (relation between htnonωP1 ({0,1,∞})([E,α]) and htnonωP1 ({0,1,∞})([E/H, Im(α)]))

Furthermore, we assume that l is prime to v(qE,v) ∈ Z>0 for any v ∈ V(F ), where
E has bad reduction with q-parameter qE,v (e.g., l > v(qE,v) for any such v’s).

Then we have

l · htnonωP1 ({0,1,∞})([E,α]) = htnonωP1 ({0,1,∞})([E/H, Im(α)]).

Proof. (1): We have the Kodaira-Spencer isomorphism ω⊗2E
∼= ωP1({0, 1,∞}),

where E is the universal generalised elliptic curve over the compactification P1 of the

λ-line, which extends E over the λ-line UP1 . Thus we have htωP1 ({0,1,∞}) ≈ 2htωE
on

P1(Q) since the Archimedean contribution is bounded on the compact space (P1)arc.

Thus, it is reduced to compare htωE
and htFalt. Here, htωE

is defined by equipping a

hermitian metric on the line bundle ωE . On the other hand, htFalt is defined by equip-

ping a hermitian metric on the line bundle ωE , which is the restriction of ωE . Thus,

it is reduced to compare the Archimedean contributions of htωE
and htFalt. The for-

mer metric is bounded on the compact space (P1)arc. On the other hand, we show

the latter metric defined on the non-compact space (UP1)arc has logarithmic singularity

along {0, 1,∞}. Take an invariant differential 0 6= dz ∈ ωE over OF . Then dz de-

composes as ((dzv)real:v∈V(F )arc , (dzv, dzv)complex:v∈V(F )arc) on E
arc ∼=

∐
real:v∈V(F )arc Ev∐∐

complex:v∈V(F )arc(Ev
∐
Ev), where dzv, Ev are the complex conjugates of dzv, Ev
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respectively. For v ∈ V(F )arc, we have Ev ∼= Fv
×
/qZE,v

∼= Fv/(Z ⊕ τvZ) and dzv

is the descent of the usual Haar measure on Fv, where qE,v = e2πiτv and τv is in

the upper half plane. Then ||dzv||FaltEv
= (

√
−1
2

∫
Ev
dzv ∧ dzv)1/2 = (Im(τv))

1/2 =

(− 1
4π log(|qE,v|2v))1/2 and htFalt(E, dz)arc ≈ − 1

2[F :Q]

∑
v∈V(F )arc [Fv : R] log(− log |qE,v|v)

has a logarithmic singularity at |qE,v|v = 0. Thus, it is reduced to calculate the logarith-

mic singularity of htFalt(E, dz)arc in terms of htωP1 ({0,1,∞}). We have |jE |v = |jEv |v ≈
|qE,v|−1v near |qE,v|v = 0, where jE is the j-invariant of E. Then by the arithmetic-

geometric inequality, we have htFalt(E, dz)arc ≈ − 1
2[F :Q] log

∏
v∈V(F )arc(log |jE |v)[Fv :R]

≥ − 1
2 log

(
1

[F :Q]

∑
v∈V(F )arc log |jE |v

)
near

∏
v∈V(F )arc |jE |v = ∞. On the other hand,

we have |j|−1v ≈ |λ|2v, |λ−1|2v, 1/|λ|2v near |λ|v = 0, 1,∞ respectively for v ∈ V(F )arc, since
j = 28(λ2−λ+1)3/λ2(λ−1)2. Thus, we have htnonωP1 ({0,1,∞})([E,α]) =

1
[F :Q]

∑
v∈V(F )non(v(λE)+

v(λE−1)+v(1/λE)) log qv = 1
2[F :Q]

∑
v∈V(F )non v(j

−1
E ) log qv =

1
2[F :Q]

∑
v∈V(F )non log |j

−1
E |v.

By the product formula, this is equal to 1
2[F :Q]

∑
v∈V(F )arc log |jE |v. By combining these,

we obtain htFalt(E, dz)arc & −1
2 log(2ht

non
ωP1 ({0,1,∞})([E,α])) ≈ −

1
2 log(ht

non
ωP1 ({0,1,∞})([E,α]))

near
∏
v∈V(F )arc |jE |v = ∞, or equivalently, near

∏
v∈V(F )non |jE |v = 0. We also have

htnonωP1 ({0,1,∞}) ≈ htωP1 ({0,1,∞}) on P1(Q) since the Archimedean contribution is bounded

on the compact space (P1)arc. Therefore, we have htFalt . htωE
. htFalt+ 1

2 log(htωP1 ({0,1,∞})).

This implies 2htFalt . htωP1 ({0,1,∞}) . 2htFalt + log(htωP1 ({0,1,∞})). The remaining por-

tion comes from log(1 + x) . εx for any ε ∈ R>0.

(2): We have htFalt([E,α])non − log l ≤ htFalt([E/H, Im(α)])non ≤ htFalt([E,α])non

since #coker{ωE/H ↪→ ωE} is killed by l. We also have htFalt([E/H, Im(α)])arc =

htFalt([E,α])arc + 1
2 log l, since (|| · ||FaltE/H)2 = l(|| · ||FaltE )2 by the definition of || · ||Falt by

the integrations on E(C) and (E/H)(C). By combining the non-Archimedean portion

and the Archimedean portion, we have the second claim.

(3): Take v ∈ V(F )non where E has bad reduction. Then the l-cyclic subgroup

H ×F Fv is the canonical multiplicative subgroup Fl(1) in the Tate curve E ×F Fv, by
the assumption l - v(qE,v). Then the claim follows from that the Tate parameter of

E/H is equal to l-th power of the one of E.

Corollary 1.14. ([GenEll, Lemma 3.5]) In the situation of Lemma 1.13 (3), we

have
l

1 + ε
htωP1 ({0,1,∞})([E,α]) ≤ htωP1 ({0,1,∞})([E,α]) + log l + Cε

for some constant Cε ∈ R which (may depend on ε, however) is independent of E, F ,

H and l.

Remark 1.14.1. The above corollary says that if E[l] has a global multiplicative

subgroup, then the height of E is bounded. Therefore, a global multiplicative subspace

M ⊂ E[l] does not exist for general E in the moduli of elliptic curves. A “global mul-

tiplicative subgroup” is one of the main themes of inter-universal Teichmüller theory.
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In inter-universal Teichmüller theory, we construct a kind of “global multiplicative sub-

group” for sufficiently general E in the moduli of elliptic curves, by going out the scheme

theory. See also Appendix A.

Proof. For ε > 0, take ε′ > 0 such that 1
1−ε′ < 1 + ε. There is a constant A′ε ∈ R

such that htωP1 ({0,1,∞}) ≤ 2htFalt + ε′htωP1 ({0,1,∞}) + A′ε on UP1(Q) by the second and

the third inequalities of Lemma 1.13 (1). We have htωP1 ({0,1,∞}) ≤ 2(1 + ε)htFalt + Aε

on UP1(Q) by the choice of ε′ > 0, where Aε := 1
1−ε′A

′
ε. By the first inequality of

Lemma 1.13 (1), we have 2htFalt ≤ htωP1 ({0,1,∞}) + B for some constant B ∈ R. Put

Cε := Aε+B. Then we have l
1+εht

non
ωP1 ({0,1,∞})([E,α]) =

1
1+εht

non
ωP1 ({0,1,∞})([E/H, Im(α)]) ≤

2htFalt([E/H, Im(α)])+Aε ≤ 2htFalt([E,α])+log l+Aε ≤ htωP1 ({0,1,∞})([E,α])+log l+B,

where the equality follows from Lemma 1.13 (3), and the first inequality follows from

Lemma 1.13 (2). Then the corollary follows from that htnonωP1 ({0,1,∞}) ≈ htωP1 ({0,1,∞})

(See just before Lemma 1.13).

From now on, we use the assumptions and the notation in the previous subsec-

tion. We also write log(q∀) (resp. log(q-2)) for the R-valued function on the λ-line

UP1 obtained by the normaised degree 1
[L:Q]degL of the effictive (Q-)arithmetic divisor

determined by the q-parameters of an elliptic curve over a number field L at arbitrary

non-Archimedean primes. (resp. non-arcihmedean primes which do not divide 2). Note

that log(q) in the previous subsection avoids the primes dividing 2l, and that for a

compactly bounded subset K ⊂ UP1(Q) whose support contains the prime 2, we have

log(q∀) ≈ log(q-2) on K (See [IUTchIV, Corolarry 2.2 (i)]). We also note that we have

1

6
log(q∀) ≈ htnonωP1 ({0,1,∞}) ≈ htωP1 ({0,1,∞})

on P1(Q) (For the first equivalence, see the argument just before Lemma 1.13, and

the proof of Lemma 1.13 (1); For the second equivalence, see the argument just before

Lemma 1.13).

Proposition 1.15. ([IUTchIV, Corollary 2.2]) Let K ⊂ UP1(Q) be a compactly

bounded subset with support containing Varc
Q and 2 ∈ Vnon

Q , and A ⊂ UP1(Q) a finite

set containing
{
[(E,α)] | #AutQ(E) 6= {±1}

}
. Then there exists CK ∈ R>0, which

depends only on K, satisfying the following property: Let d ∈ Z>0, ε ∈ R>0, and

set d∗ := 212.33.5.d. Then there exists a finite subset ExcK,d,ε ⊂ UP1(Q)≤d such that

ExcK,d,ε ⊃ A and satisfies the following property: Let x = [(EF , α)] ∈ (UP1(F ) ∩ K) \
ExcK,d,ε with [F : Q] ≤ d. Write Fmod for the field of moduli of EF := EF ×F F ,

and Ftpd := Fmod(EFmod
[2]) ⊂ F where EFmod

is a model of EF over Fmod (Note

that Fmod(EFmod
[2]) is independent of the choice of the model EFmod

by the assumption

of AutF (EF ) 6= {±1}, and that Fmod(EFmod
[2]) ⊂ F since [(EF , α)] ∈ UP1(F ). See
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Lemma 1.7 (1)). We assume that all the points of EF [3.5] are rational over F and that

F = Ftpd(
√
−1, EFtpd

[3.5]), where EFtpd
is a model of EF over Ftpd which is defined

by the Legendre form (Note that EF ∼= EFtpd
×Ftpd

F and EF has at most semistable

reduction for all w ∈ V(F )non by Lemma 1.7 (2), (3)). Then EF and Fmod arise from

an initial Θ-data (See Definition 10.1)

(F/F,XF , l, CK ,V,Vbad
mod, ε)

(Note that it is included in the definition of initial Θ-data that the image of the outer

homomorphism Gal(Q/F )→ GL2(Fl) determined by EF [l] contains SL2(Fl)). Further-

more, we assume that −| log(q)| ≤ −| log(Θ)| for EF and Fmod, which arise from an

initial Θ-data. Then we have

htωP1 ({0,1,∞})(x) ≤ (1 + ε)(log-diffP1(x) + log-cond{0,1,∞}(x)) + CK.

Remark 1.15.1. We take A = {[(E,α)] ∈ UP1(Q) | E does not admit Q-core}.
See Definition 3.3 and Lemma C.3 for the definition of k-core, the finiteness of A, and

that A ⊃
{
[(E,α)] | #AutQ(E) 6= {±1}

}
.

Remark 1.15.2. By Proposition 1.15, Theorem 0.1 is reduced to show −| log(q)| ≤
−| log(Θ)| for EF and Fmod, which arise from an initial Θ-data. The inequality−| log(q)| ≤
−| log(Θ)| is almost a tautological translation of the inequality which we want to show

(See also Appendix A). In this sense, these reduction steps are just calculations to reduce

the main theorem to the situation where we can take an initial Θ-data, i.e., the situation

where the inter-universal Teichmüller theory works, and no deep things happen in these

reduction steps.

Proof. First we put ExcK,d := A, and we enlarge the finite set ExcK,d several times

in the rest of the proof in the manner that depends only on K and d, but not on x.

When it will depend on ε > 0, then we will change the notation ExcK,d by ExcK,d,ε. Take

x = [(EF , α)] ∈ (UP1(F ) ∩ K) \ ExcK,d.
Let ηprm ∈ R>0 be the constant in Lemma 1.11. We take another constant ξprm ∈

R>0 determined by using the prime number theorem as follows (See [GenEll, Lemma

4.1]): We define ϑ(x) :=
∑

prime: p≤x log p (Chebychev’s ϑ-function). By the prime

number theorem (and Lemma C.4), we have ϑ(x) ∼ x (x → ∞), where ∼ means that

the ration of the both side goes to 1. Hence, there exists a constant R 3 ξprim ≥ 5 such

that

(s0)
2

3
x < ϑ(x) ≤ 4

3
x

for any x ≥ ξprm.
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Let h := h(EF ) = log(q∀) = 1
[F :Q]

∑
v∈V(F )non hvfv log(pv) be the summation of the

contributions from qv for v ∈ V(F )non, where pv and fv denote the residual characteristic
at v and the degree of extension of the residue field over Fpv respectively. Note also that

hv ∈ Z≥0 and that hv = 0 if and only if EF has good reduction at v. By 1
6 log(q

∀) ≈
htωP1 ({0,1,∞}) and Proposition C.1, we there are only finiely many isomorphism classes

of EF (hence finiely many x = [EF , α]) satisfying h
1
2 < ξprm + ηprm. Therefore, by

enlarging the finite set ExcK,d, we may assume that

(s1) h
1
2 ≥ ξprm + ηprm.

Note that h
1
2 ≥ 5 since ξprm ≥ 5 and ηprm > 0. We have

2d∗h
1
2 log(2d∗h) ≥ 2[F : Q]h

1
2 log(2[F : Q]h) ≥

∑
hv 6=0

2h−
1
2 log(2hvfv log(pv))hvfv log(pv)

(s2)

≥
∑
hv 6=0

h−
1
2 log(hv)hv ≥

∑
hv≥h1/2

h−
1
2 log(hv)hv ≥

∑
hv≥h1/2

log(hv),

where the third inequality follows from 2 log(pv) ≥ 2 log 2 = log 4 > 1. By [F : Q] ≤ d∗,
we also have

d∗h
1
2 ≥ [F : Q]h

1
2 =

∑
v∈V(F )non

h−
1
2hvfv log(pv) ≥

∑
v∈V(F )non

h−
1
2hv log(pv)(s3)

≥
∑

hv≥h1/2

h−
1
2hv log(pv) ≥

∑
hv≥h1/2

log(pv).

Let A be the set of prime numbers satisfying either

(S1) p ≤ h 1
2 ,

(S2) p | hv 6= 0 for some v ∈ V(F )non, or

(S3) p = pv for some v ∈ V(F )non and hv ≥ h
1
2 .

Then we have

(S’1)
∑
p:(S1) log p = ϑ(h

1
2 ) ≤ 4

3h
1
2 by the second inequality of (s0), and h

1
2 ≥ ξprm, which

follows from (s1),

(S’2)
∑
p:(S2), not (S3) log p ≤

∑
hv>h1/2 log(hv) ≤ 2d∗h

1
2 log(2d∗h) by (s2), and

(S’3)
∑
p:(S3) log p ≤ d∗h

1
2 by (s3).
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Then we obtain

ϑA :=
∑
p∈A

log(p) ≤ 2h
1
2 + d∗h

1
2 + 2d∗h

1
2 log(2d∗h)(S’123)

≤ 4d∗h
1
2 log(2d∗h) ≤ −ξprm + 5d∗h

1
2 log(2d∗h),

where the first inequality follows from (S’1), (S’2), and (S’3), the second inequality

follows from 2h
1
2 ≤ d∗h

1
2 and log(2d∗h

1
2 ) ≥ log 4 > 1, and the last inequality follows

from (s1). Then there exists a prime number l 6∈ A such that l ≤ 2(ϑA+ ξprm), because

otherwise we have ϑA ≥ ϑ(2(ϑA + ξprm)) ≥ 2
3 (2(ϑA + ξprm)) ≥ 4

3ϑA, by the second

inequality of (s0), which is a contradiction. Since l 6∈ A, we have

(P1) (upper bound of l)

(5 ≤ )h
1
2 < l ≤ 10d∗h

1
2 log(2d∗h) (≤ 20(d∗)2h2),

where the second inequality follows from that l does not satisfy (S1), the third

inequality follows from l ≤ 2(ϑA+ξprm) and (S’123), and the last inequality follows

from log(2d∗h) ≤ 2d∗h ≤ 2d∗h
3
2 (since log x ≤ x for x ≥ 1),

(P2) (monodromy non-vanishing modulo l)

l - hv for any v ∈ V(F )non such that hv 6= 0, since l does not satisfy (S2), and

(P3) (upper bound of monodromy at l)

if l = pv for some v ∈ V(F )non, then hv < h
1
2 , since l does not satisfy (S3).

Claim 1: We claim that, by enlarging the finite set ExcK,d, we may assume that

(P4) there does not exist l-cyclic subgroup scheme in EF [l].

Proof of Claim 1: If there exists an l-cyclic subgroup scheme in EF [l], then by applying

Corollary 1.14 for ε = 1, we have l−2
2 htωP1 ({0,1,∞})(x) ≤ log l+TK ≤ l+TK (since log x ≤

x for x ≥ 1) for some TK ∈ R>0, where TK depends only on K. Thus, htωP1 ({0,1,∞})(x) is

bounded because we have htωP1 ({0,1,∞})(x) ≤
2l
l−2 + 2

l−2TK <
14
7−2 + 2

7−2TK. Therefore,

there exist only finitely many such x = [EF , α]’s by Proposition C.1. The claim is

proved.

Claim 2: Next, we claim that, by enlarging the finite set ExcK,d, we may assume that

(P5) ∅ 6= Vbad
mod := {v ∈ Vnon

mod | v - 2l, and EF has bad multiplicative reduction at v}

Proof of Claim 2: First, we note that we have

h
1
2 log l ≤ h 1

2 log(20(d∗)2h2) ≤ 2h
1
2 log(5d∗h)(p5a)

≤ 8h
1
2 log(2(d∗)

1
4h

1
4 ) ≤ 8h

1
2 2(d∗)

1
4h

1
4 = 16(d∗)

1
4h

3
4 .(p5b)
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where the first inequality follows from (P1). If Vbad
mod = ∅, then we have h ≈ log(q-2) ≤

h
1
2 log l ≤ 16(d∗)

1
4h

3
4 on K, where the first inequality follows from (P3), and the last

inequality is (p5b). Thus, h
1
4 , hence h as well, is bounded. Therefore, there exist only

finitely many such x = [EF , α]’s by Proposition C.1. The claim is proved.

Claim 3: We also claim that, by enlarging the finite set ExcK,d, we may assume that

(P6) The image of the outer homomorphism Gal(Q/F )→ GL2(Fl) determined by EF [l]

contains SL2(Fl).

Proof of Claim 3 (See [GenEll, Lemma 3.1 (i), (iii)]): By (P2) l - hv 6= 0 and (P5)

Vbad
mod 6= ∅, the image H of the outer homomorphism contains the matrix N+ :=

(
1 1

0 1

)
.

Here, N+ generates an l-Sylow subgroup S of GL2(Fl), and the number of l-Sylow

subgroups of GL2(Fl) is precisely l + 1. Note that the normaliser of S in GL2(Fl) is

the subgroup of the upper triangular matrices. By (P4) E[l] 6⊃ (l-cyclic subgroup),

the image contains a matrix which is not upper triangluar. Thus, the number nH of

l-Sylow subgroups of H is greater than 1. On the other hand, nH ≡ 1 (mod l) by the

general theory of Sylow subgroups. Then we have nH = l + 1 since 1 < nH ≤ l + 1. In

particular, we have N+ =

(
1 1

0 1

)
, N− :=

(
1 0

1 1

)
∈ H. Let G ⊂ SL2(Fl) be the subgroup

generated by N+ and N−. Then it suffices to show that G = SL2(Fl). We note that

for a, b ∈ Fl, the matrix N b
−N

a
+ (this makes sense since N l

+ = N l
− = 1) takes the vector

v :=

(
0

1

)
to

(
a

ab+ 1

)
. This implies that we have

(
F×l × Fl

)
⊂ G. This also implies

that for c ∈ F×l , there exists Ac ∈ G such that Acv =

(
c

0

)
(= cA1v). Then we have

cv = A−11 Acv ∈ Gv. Thus, we proved that (Fl × Fl) \

{(
0

0

)}
⊂ Gv. Take any matrix

M ∈ SL2(Fl). By multiplying M by an element in G, we may assume that Mv = v,

since (Fl × Fl) \

{(
0

0

)}
⊂ Gv. This means that M ⊂

{(
1 0

∗ 1

)}
. Thus, M is a power

of N−. The claim is proved.

Then we take, as parts of initial Θ-data, F to be Q so far, F , XF , l to be the

number field F , once-punctured elliptic curve associated to EF , and the prime number,

respectively, in the above discussion, and Vbad
mod to be the set Vbad

mod of (P5). By using

(P1), (P2), (P5), and (P6), there exist data CK , V, and ε, which satisfy the conditions

of initial Θ-data (See Definition 10.1. The existence of V and ε is a consequence of
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(P6)), and moreover,

(P7) the resulting initial Θ-data (F/F,XF , l, CK ,V,Vbad
mod, ε) satisfies the conditions in

Section 1.3.

Now, we have −| log(q)| ≤ −| log(Θ)| by assumption, and apply Proposition 1.12 (Note

that we are in the situation where we can apply it).

Then we obtain

1

6
log(q) ≤

(
1 +

20dmod

l

)(
log(dFtpd) + log(fFtpd)

)
+ 20(d∗modl + ηprm)

≤
(
1 + d∗h−

1
2

) (
log(dFtpd) + log(fFtpd)

)
+ 200(d∗)2h

1
2 log(2d∗h) + 20ηprm,(A)

where the second inequality follows from the second and third inequalities in (P1) and

20dmod < d∗mod(:= 212.33.5.dmod) ≤ d∗(:= 212.33.5.dmod). We also have

1

6
log(q-2)− 1

6
log(q) ≤ 1

6
h

1
2 log l ≤ 1

3
h

1
2 log(5d∗h) ≤ h 1

2 log(2d∗h),(B)

where the first inequality follows from (P3) and (P5), the second inequality follows from

(p5a), and the last inequality follows from 5 < 23. We also note that

1

6
log(q∀)− 1

6
log(q-2) ≤ BK(C)

for some constant BK ∈ R>0, which depends only on K, since log(q∀) ≈ log(q-2) on K
as remarked when we introduced log(q∀) and log(q-2) just before this proposition. By

combining (A), (B), and (C), we obtain

1

6
h =

1

6
log(q∀) ≤

(
1 + d∗h−

1
2

) (
log(dFtpd) + log(fFtpd)

)
+ (15d∗)2h

1
2 log(2d∗h) +

1

2
CK

≤
(
1 + d∗h−

1
2

) (
log(dFtpd) + log(fFtpd)

)
+

1

6
h
2

5
(60d∗)2h−

1
2 log(2d∗h) +

1

2
CK,(ABC)

where we put CK := 40ηprm+2BK, the first inequality follows from 200 < 152, the second

inequality follows from 1 < 32
30 = 1

6
2
54

2. Here, we put εE := (60d∗)2h−
1
2 log(2d∗h) (≥

5d∗h−
1
2 ). We have

εE ≤ 4(60d∗)2h−
1
2 log(2(d∗)

1
4h

1
4 ) ≤ 4(60d∗)3h−

1
2h

1
4 = 4(60d∗)3h−

1
4 .(Epsilon)

Take any ε > 0. If εE > min{1, ε}, then h 1
4 , hence h as well, is bounded by (Epsilon).

Therefore, by Proposition C.1, by replacing the finite set ExcK,d by a finite set ExcK,d,ε,

we may assume that εE ≤ min{1, ε}. Then finally we obtain

1

6
h ≤

(
1− 2

5
εE

)−1(
1 +

1

5
εE

)(
log(dFtpd) + log(fFtpd)

)
+

(
1− 2

5
εE

)−1
1

2
CK

≤ (1 + εE)
(
log(dFtpd) + log(fFtpd)

)
+ CK

≤ (1 + ε)
(
log-diffP1(xE) + log-cond{0,1,∞}(xE)

)
+ CK,
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where the first inequality follows from the definition of εE and ε ≥ 5d∗h−
1
2 , the sec-

ond inequality follows from
1+ 1

5 εE
1− 2

5 εE
≤ 1 + εE (i.e., εE(1 − εE) ≥ 0, which holds since

εE ≤ 1), and 1 − 2
5εE ≥

1
2 (i.e., εE ≤ 5

4 , which holds since εE ≤ 1), and the

third inequality follows from εE ≤ ε, log-diffP1(xE) = log(dFtpd) by definition, and

log(fFtpd) ≤ log-cond{0,1,∞}(xE) (Note that Supp(f) excludes the places dividing 2l in

the definition). Now the proposition follows from 1
6 log(q

∀) ≈ htωP1 ({0,1,∞}) on P1(Q) as

remarked just before this proposition (by the effect of this ≈, the CK in the statement

of the proposition may differ from the CK in the proof).

Remark 1.15.3. (Miracle Identity) As shown in the proof, the reason that the

main term of the inequality is 1 (i.e., ht ≤ ( 1 +ε)(log-diff+log-cond) + bounded term)

is as follows (See the calculations in the proof of Lemma 1.10): On one hand (ht-side), we

have an average 6 1
2l

1
l/2

∑l/2
j=1 j

2 ≈ 6 1
2l

1
l/2

1
3

(
l
2

)3
= l

4 . Note that we multiply 1
2l since the

theta function under consideration lives in a covering of degree 2l, and that we multiply

6 since the degree of λ-line over j-line is 6. On the other hand ((log-diff + log-cond)-

side), we have an average 1
l/2

∑l/2
j=1 j ≈

1
l/2

1
2

(
l
2

)2
= l

4 . These two values miraculously

coincide! In other words, the reason that the main term of the inequality is 1 comes

from the equality

6 (the degree of λ-line over j-line)× 1

2
(theta function involves a double covering)

× 1

22
(the exponent of theta series is quadratic)× 1

3
(the main term of

n∑
j=1

j2 ≈ n3/3)

=
1

21
(the terms of differents are linear)× 1

2
(the main term of

n∑
j=1

j ≈ n2/2).

This equality was already observed in Hodge-Arakelove theory, and motivates the def-

inition of the Θ-link (See also Appendix A). Mochizuki firstly observed this equality,

and next he established the framework (i.e. going out of the scheme theory and studying

inter-universal geometry) in which these calculations work (See also [IUTchIV, Remark

1.10.1]).

Note also that it is already known that this main term 1 cannot be improved by

Masser’s calculations in analytic number theory (See [Mass2]).

Remark 1.15.4. (ε-term) In the proof of Proposition 1.15, we also obtained an

upper bound of the second main term (i.e., the main behaviour of the term involved to

ε) of the Diophantine inequality (when restricted to K):

ht ≤ δ + ∗δ 1
2 log(δ)

on K, where ∗ is a positive real constant, ht := htωP1 ({0,1,∞}) and δ := log-diffP1 +

log-cond{0,1,∞} (See (ABC) in the proof of Proposition 1.15) It seems that the expo-
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nent 1
2 suggests a possible relation to Riemann hypothesis. For more informations,

see [IUTchIV, Remark 2.2.1] for remarks on a possible relation to inter-universal

Melline transformation, and [vFr], [Mass2] for lower bounds of the ε-term from an-

alytic number theory.

Remark 1.15.5. (Uniform ABC) So-called the uniform abc Conjecture (uni-

formity with respect to d of the bounded discrepancy in the Diophantine inequality)

is not proved yet; however, we have an estimate of the dependence on d of our upper

bound as follows (cf. [IUTchIV, Corollary 2.2 (ii), (iii)]): For any 0 < εd ≤ 1, put

ε∗d :=
1
16εd(<

1
2 ). Then we have

min{1, ε}−1εE = min{1, ε}−1(60d∗)2h− 1
2 log(2d∗h)

= (min{1, ε}ε∗d)−1(60d∗)2h−
1
2 log(2ε

∗
d(d∗)ε

∗
dhε

∗
d)

≤ (min{1, ε}ε∗d)−1(60d∗)2+ε
∗
dh−(

1
2−ε

∗
d) ≤

(
(min{1, ε}ε∗d)−3(60d∗)4+εdh−1

) 1
2−ε

∗
d ,

where the first inequality follows from h
1
2 ≥ 5, and x ≤ log x for x ≥ 1, and the second

inequality follows from −3( 12 − ε
∗
d) = −3

2 + 3
16εd ≤ −

21
16 < −1 and ( 12 − ε

∗
d)(4 + εd) =

− 1
16ε

2
d +

1
4εd + 2 ≥ 1

4εd + 2 ≥ ε∗d + 2. We recall that, at the final stage of the proof of

Proposition 1.15, we enlarged ExcK,d to ExcK,d,ε so that it includes the points satisfying

εE > min{1, ε}. Now, we enlarge ExcK,d to ExcK,d,ε,εd , which depends only on K, d, ε,
and εd, so that it includes the points satisfying εE > min{1, ε}. Therefore, we obtain

an inequality

ht :=
1

6
h ≤ Hunif min{1, ε}−3ε−3d d4+εd +HK

on ExcK,d,ε,εd , where Hunif ∈ R>0 is independent of K, d, ε, and εd, and HK ∈ R>0

depends only on K. The above inequality shows an explicit dependence on d of our

upper bound.

§ 2. Preliminaries on Anabelian Geometry.

In this section, we give some reviews on the preliminaries on anabelian geometry

which will be used in the subsequent sections.

§ 2.1. Some Basics on Galois Groups of Local Fields.

Proposition 2.1. ([AbsAnab, Proposition 1.2.1]) For i = 1, 2, let Ki be a finite

extension of Qpi with residue field ki, and Ki be an algebraic closure of Ki with residue

field ki (which is an algebraic closure of ki). Let e(Ki) denote the ramification index of

Ki over Qpi and put f(Ki) := [ki : Fpi ]. Put GKi := Gal(Ki/Ki), and let PKi ⊂ IKi(⊂
GKi) denote the wild inertia subgroup and the inertia subgroup of GKi respectively. Let

α : GK1

∼→ GK2 be an isomorphism of profinite groups. Then we have the following:
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1. p1 = p2 (=: p).

2. The abelianisation αab : Gab
K1

∼→ Gab
K2

, and the inclusions k×i ⊂ O×Ki
⊂ K×i ⊂ Gab

Ki
,

where the last inclusion is defined by the local class field theory, induce isomorphisms

(a) αab : k×1
∼→ k×2 ,

(b) αab : O×K1

∼→ O×K2
,

(c) αab : O�
K1

∼→ O�
K2

(cf. Section 0.2 for the notation O�
Ki

), and

(d) αab : K×1
∼→ K×2 .

3. (a) [K1 : Qp] = [K2 : Qp],

(b) f(K1) = f(K2), and

(c) e(K1) = e(K2).

4. The restrictions of α induce

(a) α|IK1
: IK1

∼→ IK2 , and

(b) α|PK1
: PK1

∼→ PK2 .

5. The induced map Gab
K1
/IK1

∼→ Gab
K2
/IK2 preserves the Frobenius element FrobKi

(i.e., the automorphism given by ki 3 x 7→ x#ki).

6. The collection of the isomorphisms
{
(α|U1)

ab : Uab
1
∼→ Uab

2

}
GK1

open
⊃ U1

α
∼−→U2⊂GK2

in-

duces an isomorphism µQ/Z(K1)
∼→ µQ/Z(K2), which is compatible with the actions

of GKi for i = 1, 2, via α : GK1

∼→ GK2 . In particular, α preserves the cyclotomic

characters χcyc,i for i = 1, 2.

7. The isomorphism α∗ : H2(Gal(K2/K2), µQ/Z(K2))
∼→ H2(Gal(K1/K1), µQ/Z(K1))

induced by α is compatible with the isomorphisms H2(Gal(Ki/Ki), µQ/Z(Ki))
∼→

Q/Z in the local class field theory for i = 1, 2.

Remark 2.1.1. In the proof, we can see that the objects in the above (1)–(7) are

functorially reconstructed by using only K1 (or K2), and we have no need of both of

K1 and K2, nor the isomorphism α (i.e., no need of referred models). In this sense, the

reconstruction algorithms in the proof are in the “mono-anabelian philosophy” of

Mochizuki (See also Remark 3.4.4 (2), (3)).

Proof. We can group-theoretically reconstruct the objects in (1)-(7) from GKi as

follows:

(1): pi is the unique prime number which attains the maximum of
{
rankZl

Gab
Ki

}
l: prime

,

by the local class field theory Gab
Ki

∼= (K×i )
∧.
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(2a): k×i
∼= (Gab

Ki
)prime-to-p
tors the prime-to-p part of the torsion subgroup of Gab

Ki
,

where p is group-theoretically reconstructed in (1).

(3a): [Ki : Qp] = rankZpG
ab
Ki
− 1, where p is group-theoretically reconstructed in

(1).

(3b): pf(Ki) = #(k×i ) + 1, where ki and p are group-theoretically reconstructed in

(2a) and (1) respectively.

(3c): e(Ki) = [Ki : Qp]/f(Ki), where the numerator and the denominator are

group-theoretically reconstructed in (3a) and (3b) respectively.

(4a): IKi =
∩
GKi
⊃U : open, e(U)=e(GKi

) U , where e(U) denotes the number group-

theoretically constructed from U in (3c) (i.e., e(U) := (rankZpU
ab−1)/ logp(#(Uab)prime-to-p

tors +

1), where {p} :=
{
p | rankZpG

ab
Ki

= maxl rankZl
Gab
Ki

}
and logp is the (real) logarithm

with base p).

(4b): PKi = (IKi)
pro-p the pro-p part of IKi , where IKi is group-theoretically

reconstructed in (4a).

(2b): O×Ki

∼= Im (IKi) := Im
{
IKi ↪→ GKi � Gab

Ki

}
by the local class field theory,

where IKi is group-theoretically reconstructed in (4a).

(5): The Fronbenius element FrobKi is characterised by the element in GKi/IKi(
∼=

Gab
Ki
/Im (IKi)) such that the conjugate action on IKi/PKi is a multiplication by pf(Ki)

(Here we regard the topological group IKi/PKi additively), where IKi and PKi are

group-theoretically reconstructed in (4a) and (4b) respectively.

(2c): We reconstruc O�
Ki

by the following pull-back diagram:

0 // Im (IKi) // Gab
Ki

// Gab
Ki
/Im (IKi) // 0

0 // Im (IKi
) //

=

OO

O�
Ki

//
?�

OO

Z≥0FrobKi
//?�

OO

0,

where IKi and FrobKi are group-theoretically reconstructed in (4a) and (5) respectively.

(2d): In the same way as in (2c), we reconstruc K×i by the following pull-back

diagram:

0 // Im (IKi) // Gab
Ki

// Gab
Ki
/Im (IKi) // 0

0 // Im (IKi
) //

=

OO

K×i
//

?�

OO

ZFrobKi
//?�

OO

0,

where IKi and FrobKi are group-theoretically reconstructed in (4a) and (5) respectively.

(6): Let L be a finite extension of Ki. Then we have the Verlangerung (or transfer)

Gab
Ki
→ Gab

L of GL ⊂ GKi by the norm map Gab
Ki

∼= H1(GKi ,Z)→ H1(GL,Z) ∼= Gab
L in

group homology, which is a group-theoretic construction (Or, we can explicitly construct

the Verlangerung Gab
Ki

↪→ Gab
L without group homology as follows: For x ∈ GKi , take
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a lift x̃ ∈ GKi of x. Let GKi =
∐
i giGL denote the coset decomposition, and we

write x̃gi = gj(i)xi for each i, where xi ∈ GL. Then the Verlangerung is given by

Gab
Ki
3 x 7→ (

∏
i ximod [GL, GL]) ∈ Gab

L , where [GL, GL] denotes the topological closure

of the commutator subgroup [GL, GL] of GL). Then this reconstructs the inclusion

K×i ↪→ L×, by the local class field theory and the reconstruction in (2d). The conjugate

action of GKi on GL � Gab
L preserves L× ⊂ Gab

L by the reconstruction of (2d). This

reconstructs the action of GKi on L×. By taking the limit, we reconstruct Ki
×
, hence

µQ/Z(Ki) = Q/Z⊗Ẑ Hom(Q/Z,Ki
×
) equipped with the action of GKi .

(7): The isomorphism H2(Gal(Ki/Ki), µQ/Z(Ki))
∼→ Q/Z is defined by the com-

position

H2(Gal(Ki/Ki), µQ/Z(Ki))
∼→ H2(Gal(Ki/Ki),Ki

×
)
∼←− H2(Gal(Kur

i /Ki), (K
ur
i )×)

∼→ H2(Gal(Kur
i /Ki),Z)

∼←− H1(Gal(Kur
i /Ki),Q/Z) = Hom(Gal(Kur

i /Ki),Q/Z)
∼→ Q/Z,

where the first isomorphism is induced by the canonical inclusion µQ/Z(Ki) ↪→ Ki
×
, the

multiplicative group (Kur
i )× (not the fieldKur

i ) of the maximal unramified extensionKur
i

of Ki and the Galois group Gal(Kur
i /K) are group-theoretically reconstructed in (2d)

and (4a) respectively, the third isomorphism is induced by the valuation (Kur
i )× � Z,

which is group-theoretically reconstructed in (2b) and (2d), the fourth isomorphism

is induced by the long exact sequence associated to the short exact sequence 0 →
Z→ Q→ Q/Z→ 0, and the last isomorphism is induced by the evaluation at FrobKi ,

which is group-theoretically reconstructed in (5). Thus, the above composition is group-

theoretically reconstructed.

§ 2.2. Arithmetic Quotients.

Proposition 2.2. ([AbsAnab, Lemma 1.1.4]) Let F be a field, and put G :=

Gal(F/F ) for a separable closure F of F . Let

1→ ∆→ Π→ G→ 1

be an exact sequence of profinite groups. We assume that ∆ is topologically finitely

generated.

1. Assume that F is a number field. Then ∆ is group-theoretically characterised in Π

by the maximal closed normal subgroup of Π which is topologically finitely generated.

2. (Tamagawa) Assume that F is a finite extension of Qp. For an open subgroup

Π′ ⊂ Π, we put ∆′ := Π′ ∩ ∆ and G′ := Π′/∆′, and let G′ act on (∆′)ab by the

conjugate. We also assume that

∀Π′ ⊂ Π : open, Q :=
(
(∆′)

ab
)
G′

/
(tors) is a finitely generated free Ẑ-module,

(Tam1)
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where (·)G′ denotes the G′-coinvariant quotient, and (tors) denotes the torsion part

of the numerator. Then ∆ is group-theoretically characterised in Π as the intersec-

tion of those open subgroups Π′ ⊂ Π such that, for any prime number l 6= p, we

have

dimQp (Π
′)
ab ⊗Ẑ Qp − dimQl

(Π′)
ab ⊗Ẑ Ql(Tam2)

= [Π : Π′]
(
dimQp (Π)

ab ⊗Ẑ Qp − dimQl
(Π)

ab ⊗Ẑ Ql
)
,

where p is also group-theoretically characterised as the unique prime number such

that dimQp (Π)
ab⊗ẐQp−dimQl

(Π)
ab⊗ẐQl 6= 0 for infinitely many prime numbers

l.

Proof. (1): This follows from the fact that every topologically finitely generated

closed normal subgroup of Gal(F/F ) is trivial (See [FJ, Theorem 15.10]).

(2): We have the inflation-restriction sequence associated to 1→ ∆→ Π→ G→ 1:

1→ H1(G,Q/Z)→ H1(Π,Q/Z)→ H1(∆,Q/Z)G → H2(G,Q/Z),

where (·)G denotes the G-invariant submodule. For the last term H2(G,Q/Z), we also

haveH2(G,Q/Z) = lim−→n
H2(G, 1

nZ/Z) ∼= lim−→n
Hom(H0(G,µn),Q/Z) ∼= Hom(lim←−nH

0(G,µn),

Q/Z) = 0 by the local class field theory. Thus, by taking Hom(−,Q/Z) of the above

exact sequence, we obtain an exact sequence

0→
(
∆ab

)
G
→ Πab → Gab → 0.

Take the finite extension F ′ corresponding to an open subgroup G′ ⊂ G. Then by the

assumption of (Tam1), we obtain

dimQp
(Π′)

ab ⊗Ẑ Qp − dimQl
(Π′)

ab ⊗Ẑ Ql

= dimQp (G
′)
ab ⊗Ẑ Qp − dimQl

(G′)
ab ⊗Ẑ Ql = [F ′ : Qp],

where the last equality follows from the local class field theory. The group-theoretic

characterisation of p follows from the above equalies. The above equalites also imply

that (Tam2) is equivalent to [F ′ : Qp] = [Π : Π′][F : Qp], which is equivalent to

[Π : Π′] = [G : G′], i.e., ∆ = ∆′. This proves the second claim of the proposition.

Lemma 2.3. ([AbsAnab, Lemma 1.1.5]) Let F be a non-Archimedean local field,

and A a semi-abelian variety over F . Take an algebraic closure F of F , and put G :=

Gal(F/F ). Let T (A) := Hom(Q/Z, A(F )) denote the Tate module of A. Then Q :=

T (A)G/(tors) is a finitely generated free Ẑ-module.
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Proof. We have an extension 0 → S → A → A′ → 0 of group schemes over F ,

where S is a torus and A′ is an abelian variety over F . Then T (S) ∼= Ẑ(1)⊕n for some

n after restristing on an open subgroup of G, where T (S) is the Tate module of T .

Thus, the image of T (S) in Q is trivial. Therefore, we may assume that A is an abelian

variety. By [SGA7t1, Exposé IX §2], we have extensions

0→ T (A)≤−1 → T (A)→ T (A)0 → 0,

0→ T (A)−2 → T (A)≤−1 → T (A)−1 → 0

of G-modules, where T (A)≤−1 and T (A)≤−2 are the “fixed part” and the “toric part”

of T (A) respectively in the terminology of [SGA7t1, Exposé IX §2], and we have isomor-

phisms T (A)−1 ∼= T (B) for an abelian variety B over F which has potentially good re-

duction, and T (A)0 ∼=M0⊗ZẐ, T (A)−2 ∼=M−2⊗ZẐ(1), whereM0 andM−2 are finitely

generated free Z-modules and G acts both on M0 and M−2 via finite quotients. Thus,

the images of T (A)−2 and T (A)−1 in Q are trivial (by the Weil conjecture proved by

Weil for abelian varieties in the latter case). Therefore, we obtain Q ∼= (T (A)0)G/(tors),

which is isomorphic to (M0)G/(tors)⊗Z Ẑ, since Ẑ is flat over Z. Now the lemma follows

since (M0)G/(tors) is free over Z.

Corollary 2.4. We have a group-theoretic characterisation of ∆ = π1(XF , x)

in Π = π1(X,x) as Proposition 2.2 (2) (Tam2), where X is a geometrically connected

smooth hyperbolic curve over a finite extension F of Qp, and s : SpecF → X a geometric

point lying over SpecF (which gives a geometric point s on XF := X ×F F via XF →
X).

Remark 2.4.1. Let Σ be a set of prime numbers such that p ∈ Σ and #Σ ≥ 2. In

the situation of Corollary 2.4, let ∆Σ be the maximal pro-Σ quotient, and put ΠΣ :=

Π/ker(∆� ∆Σ). Then the algorithm of Proposition 2.2 (2) works for ΠΣ as well, hence

Corollary 2.4.1 holds for ΠΣ as well.

Proof. The corollary immediately follows from Proposition 2.2 (2) and Lemma 2.3.

§ 2.3. Slimness and Commensurable Terminality.

Definition 2.5.

1. Let G be a profinite group. We say that G is slim if we have ZG(H) = {1} for any
open subgroup H ⊂ G.

2. Let f : G1 → G2 be a continuous homomorhism of profinite groups. We say that

G1 relatively slim over G2 (via f), if we have ZG2(Im{H → G2}) = {1} for any
open subgroup H ⊂ G1.
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Lemma 2.6. ([AbsAnab, Remark 0.1.1, Remark 0.1.2]) Let G be a profinite

gruop, and H ⊂ G a closed subgroup of G.

1. If H ⊂ G is relatively slim, then both of H and G are slim.

2. If H ⊂ G is commensurably terminal and H is slim, then H ⊂ G is relatively slim.

Proof. (1): For any open subgroup H ′ ⊂ H, we have ZH(H ′) ⊂ ZG(H
′) = {1}.

For any open subgroup G′ ⊂ G, we have ZG(G
′) ⊂ ZG(H ∩G′) = {1} since H ∩G′ is

open in H.

(2): Take an open subgroup H ′ ⊂ H. The natural inclusion CG(H) ⊂ CG(H
′) is

an equality since H ′ is open in H. Then we have ZG(H
′) ⊂ CG(H

′) = CG(H) = H.

This combined with ZH(H ′) = {1} implies ZG(H
′) = {1}.

Proposition 2.7. ([AbsAnab, Theorem 1.1.1, Corollary 1.3.3, Lemma 1.3.1,

Lemma 1.3.7]) Let F be a number field, and v a non-Archimedean place. Let Fv be

an algebraic closure of Fv, F the algebraic closure of F in Fv.

1. Put G := Gal(F/F ) ⊃ Gv := Gal(Fv/Fv).

(a) Gv ⊂ G is commensurably terminal,

(b) Gv ⊂ G is relatively slim,

(c) Gv is slim, and

(d) G is slim.

2. Let X be a hyperbolic curve over F . Take a geometric point s : SpecFv → XFv
:=

X ×F Fv lying over SpecFv (which gives geometric points s on XF := X ×F F ,
XFv := X ×F Fv, and X via XFv

→ XF → X, and XFv
→ XFv → X). Put

∆ := π1(XF , s)
∼= π1(XFv

, s), Π := π1(X, s), and Πv := π1(XFv , s). Let x be

any cusp of XF (i.e., a point of the unique smooth compactification of XF over F

which does not lie in XF ), and Ix ⊂ ∆ (well-defined up to conjugates) denote the

inertia subgroup at x (Note that Ix is isomorphic to Ẑ(1)). For any prime number

l, let I
(l)
x → ∆(l) denote the maximal pro-l quotient of Ix ⊂ ∆ (Note that I

(l)
x is

isomorphic to Zl(1) and that it is easy to see that I
(l)
x → ∆(l) is injective).

(a) ∆ is slim,

(b) Π and Πv are slim, and

(c) I
(l)
x ⊂ ∆(l) and Ix ⊂ ∆ are commensurably terminal.

Remark 2.7.1. Furthermore, we can show that Gal(F/F ) is slim for any Kummer-

faithful field F (See Remark 3.17.3).
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Proof. (1)(a)(See also [NSW, Corollary 12.1.3, Corollary 12.1.4]): First, we claim

that any subfield K ⊂ F with K 6= F has at most one prime ideal which is indecom-

posable in F . Proof of the claim: Let p1 6= p2 be prime ideals in K which do not split

in F . Let f1 ∈ K[X] be any irreducible polynomial of degree d > 0, and f2 ∈ K[X]

a completely split separable polynomial of the same degree d. By the approximation

theorem, for any ε > 0 there exists f ∈ K[X] a polynomial of degree d, such that

|f − f1|p1 < ε and |f − f2|p2 < ε. Then for sufficiently small ε > 0 the splitting fields

of f and fi over Kpi coincide for i = 1, 2 by Krasner’s lemma. By assumption that

p1 6= p2 do not split in F , the splitting fields of f1 and f2 over K coincide. Then we

have K = F since splitting field of f2 is K, and f1 is any irreducible polynomial. The

claim is proved. We show (1a). We specify a base point of Gv to kill the conjugacy

indeterminacy, that is, we take a place ṽ in Kv over v, and we use Gṽ instead of Gv.

Take any g ∈ CG(Gṽ). Then Gṽ ∩Ggṽ 6= {1}, since Gṽ ∩ gGṽg−1 = Gṽ ∩Ggṽ has finite

index in Gṽ. Then the above claim implies that Gṽ ∩Ggṽ = Gṽ, i.e., gṽ = ṽ. Thus, we

have g ∈ Gṽ.
(c): Let GK ⊂ Gv be an open subgroup, and g ∈ ZGv (GK). Then for any finite

Galois extension L over K, the action of g on GL, hence on G
ab
L , is trivial. By the local

class field theory, the action of g on L× is also trivial. Thus, we have g = 1 since L is

any extension over K.

(b) follows from (a), (c), and Lemma 2.6 (2).

(d) follows from (b) and Lemma 2.6 (1).

(2)(a): This is similar to the proof of (1c). Let H ⊂ ∆ be an open subgroup. Let

XH → XF denote the finite étale covering corresponding to H. We take any sufficiently

small open normal subgroup H ′ ⊂ ∆ such that H ′ ⊂ H and the corresponding finite

étale covering XH′ → XH has the canonical compactification XH′ of genus > 1. We

have an identification H ′ = π1(XH′ , y) for a basepoint y. Let JH′ := Jac(XH′) with the

origin O denote the Jacobian variety of XH′ . Take an element g ∈ ∆. Then we have

the following commutative diagram of pointed schemes:

(XH′ , y) �
� //

gX

��

(XH′ , y)
fy //

gX

��

(JH′ , O)

gJ

��
(XH′ , g(y)) �

� // (XH′ , g(y))
fg(y) // (JH′ , g(O)),

which induces

π1(XH′ , y) // //

gX∗
��

π1(JH′ , O)
∼ //

gJ∗
��

T (JH′ , O)

gJ∗
��

π1(XH′ , g(y)) // // π1(JH′ , g(O))
∼ // T (JH′ , g(O)),
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where T (JH′ , O) and T (JH′ , g(O)) denote the Tate modules of JH′ with origin O and

g(O) respectively (Note that we have the isomorphisms from π1 to the Tate modules,

since F is of characteristic 0). Here, the morphism gJ : (JH′ , O) → (JH′ , g(O)) is the

composite of an automorphism (gJ)′ : (JH′ , O) → (JH′ , O) of abelian varieties and

an addition by g(O). We also have a conjugate action conj(g) : H ′ = π1(XH′ , y) →
π1(XH′ , g∗(y)) = gH ′g−1 = H ′, which induces an action conj(g)ab : (H ′)ab → (H ′)ab.

This is also compatible with the homomorphism induced by (gJ)′:

(H ′)ab // //

conj(g)ab

��

T (JH′ , O)

(gJ )′∗
��

(H ′)ab // // T (JH′ , O).

Assume that g ∈ Z∆(H). Then the conjugate action of g on H ′, hence on (H ′)ab,

is trivial. By the surjection (H ′)ab � T (JH′ , O), the action (gJ )′∗ : T (JH′ , O) →
T (JH′ , O) is trivial. Thus, the action (gJ )′ : (JH′ , O) → (JH′ , O) is also trivial, since

the torsion points of JH′ are dense in JH′ . Therefore, the morphism gJ : (JH′ , O) →
(JH′ , g∗(O)) of pointed schemes is the addition by g(O). Then the compatibility of

gX : (XH′ , y) → (XH′ , g(y)) and gJ : (JH′ , O) → (JH′ , g(O)) with respect to fy and

fg(y) (i.e., the first commutative diagram) implies that gX : (XH′ , y) → (XH′ , g(y)),

hence gX : (XH′ , y)→ (XH′ , g(y)), is an identity morphism by (the uniqueness assertion

of) Torelli’s theorem (See [Mil, Theorem 12.1 (b)]). Then we have g = 1 since H ′ is any

sufficiently small open subgroup in H.

(b) follows from (a), (1c), and (1d).

(c): This is similar to the proof of (1a). We assume that C∆(Ix) 6= Ix (resp.

C∆(l)(I
(l)
x ) 6= I

(l)
x ). Take g ∈ C∆(Ix) (resp. C∆(l)(I

(l)
x )) which is not in Ix (resp.

I
(l)
x ). Since g 6∈ Ix (resp. g 6∈ I

(l)
x ), we have a finite Galois covering (resp. a finite

Galois covering of degree a power of l) Y → XF (which is unramified over x) and a

cusp y of Y over x such that y 6= g(y). By taking sufficiently small ∆Y ⊂ ∆ (resp.

∆Y ⊂ ∆(l)), we may assume that Y has a cusp y′ 6= y, g(y). We have Ig(y) = gIyg
−1

(resp. I
(l)
g(y) = gI

(l)
y g−1). Since Iy ∩ Ig(y) (resp. I

(l)
y ∩ I(l)g(y)) has a finite index in Iy (resp.

I
(l)
y ), we have a finite Galois covering (resp. a finite Galois covering of degree a power

of l) Z → Y such that Z has cusps z, g(z), and z′ lying over y, g(y), and y′ respectively,

and Iz = Ig(z) (resp. I
(l)
z = I

(l)
g(z)), i.e., z and g(z) have conjugate inertia subgroups in

∆Z (resp. ∆
(l)
Z ) (Note that inertia subgroups are well-defined up to inner conjugate).

On the other hand, we have abelian coverings of Z which are totally ramified over z

and not ramified over g(z), since we have a cusp z′ other than z and g(z) (Note that

the abelianisation of a surface relation γ1 · · · γn
∏g
i=1[αi, βi] = 1 is γ1 · · · γn = 1, and

that if n ≥ 3, then we can choose the ramifications at γ1 and γ2 independently). This
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contradicts that z and g(z) have conjugate inertia subgroups in ∆Z (resp. ∆
(l)
Z ).

§ 2.4. Characterisation of Cuspidal Decomposition Groups.

Let k a finite extension of Qp. For a hyperbolic curve X of type (g, r) over k, let

∆X and ΠX denote the geometric fundamental group (i.e., π1 of Xk := X ×k k) and

the arithmetic fundamental group (i.e., π1 of X) of X for some basepoint, respectively.

Note that we have a group-theoretic characterisation of the subgroup ∆X ⊂ ΠX (hence,

the quotient ΠX � Gk) by Corollary 2.4. For a cusp x, we write Ix and Dx for the

inertia subgroup and the decomposition subgroup at x in ∆X and in ΠX respectively

(they are well-defined up to inner automorphism). For a prime number l, we also write

I
(l)
x and ∆

(l)
X for the maximal pro-l quotient of Ix and ∆X , respectively. Put also Π

(l)
X :=

ΠX/ker(∆X � ∆
(l)
X ). Then we have a short exact sequence 1→ ∆

(l)
X → Π

(l)
X → Gk → 1.

Lemma 2.8. ([AbsAnab, Lemma 1.3.9], [AbsTopI, Lemma 4.5]) Let X be a

hyperbolic curve of type (g, r) over k.

1. X is not proper (i.e., r > 0) if and only if ∆X is a free profinite group (Note that

this criterion is group-theoretic ).

2. We can group-theoretically reconstruct (g, r) from ΠX as follows:

r = dimQl

(
∆ab
X ⊗Ẑ Ql

)wt=2 − dimQl

(
∆ab
X ⊗Ẑ Ql

)wt=0
+ 1 if r > 0, for l 6= p,

g =

 1
2

(
dimQl

∆ab
X ⊗Ẑ Ql − r + 1

)
if r > 0,

1
2 dimQl

∆ab
X ⊗Ẑ Ql if r = 0 for any l,

where (−)wt=w with w ∈ Z is the subspace on which the Frobenius at p acts with

eigenvalues of weight w, i.e., algebraic numbers with absolute values q
w
2 (Note that

the weight is independent of the choice of a lifting of the Frobenius element Frobk

to Gk in the extension 1 → Ik → Gk → ẐFrobk → 1, since the action of the

inertia subgroup on ∆ab
X is quasi-unipotent). Here, note also that Gk and ∆X are

group-theoretically reconstructed from ΠX by Corollary 2.4, the prime number p,

the cardinality q of the residue field, and the Frobenius element Frobk are group-

theoretically reconstructed from Gk by Proposition 2.1 (1), (1) and (3b), and (5)

respectively (See also Remark 2.1.1).

Remark 2.8.1. By the same group-theoretic algorithm as in Lemma 2.8, we can

also group-theoretically reconstruct (g, r) from the extension datum 1→ ∆
(l)
X → Π

(l)
X →

Gk → 1 for any l 6= p (i.e., in the case where the quotient Π
(l)
X � Gk is given).

Proof. (1): Trivial (Note that, in the proper case, the non-vanishing of H2 implies

the non-freeness of ∆X). (2): Let X ↪→ X be the canonical smooth compactification.
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Then we have

r − 1 = dimQl
ker
{
∆ab
X ⊗Ẑ Ql � ∆ab

X
⊗Ẑ Ql

}
= dimQl

ker
{
∆ab
X ⊗Ẑ Ql � ∆ab

X
⊗Ẑ Ql

}wt=2

= dimQl
(∆ab

X ⊗Ẑ Ql)wt=2 − dimQl
(∆ab

X
⊗Ẑ Ql)wt=2

= dimQl
(∆ab

X ⊗Ẑ Ql)wt=2 − dimQl
(∆ab

X
⊗Ẑ Ql)wt=0

= dimQl
(∆ab

X ⊗Ẑ Ql)wt=2 − dimQl
(∆ab

X ⊗Ẑ Ql)wt=0,

where the forth equality follows from the self-duality of ∆X . The rest of the lemma (the

formula for g) is trivial.

Corollary 2.9. ([NodNon, Lemma 1.6 (ii)⇒(i)]) Let X be an affine hyperbolic

curves over k, and X the canonical smooth compactification. We have the following

group-theoretic characterisations or reconstruction algorithms from ΠX :

1. The natural surjection ∆X � ∆X (resp. ∆
(l)
X � ∆

(l)

X
for any l 6= p) is group-

theoretically characterised as follows: An open subgroup H ⊂ ∆X (resp. H ⊂ ∆
(l)
X )

is contained in ker(∆X � ∆X) (resp. ker(∆
(l)
X � ∆

(l)

X
)) if and only if r(XH) =

[∆X : H]r(X) (resp. r(XH) = [∆
(l)
X : H]r(X)), where XH is the coverings corre-

sponding to H ⊂ ∆X , and r(−)’s are their number of cusps (Note that r(−)’s are

group-theoretically computed by Lemma 2.8 (2) and Remark 2.8.1.

2. The inertia subgroups of cusps in ∆
(l)
X for any l 6= p are characterised as follows:

A closed subgroup A ⊂ ∆
(l)
X which is isomorphic to Zl is contained in the inertia

subgroup of a cusp if and only if, for any open subgroup ∆
(l)
Y ⊂ ∆

(l)
X , the composite

A ∩∆
(l)
Y ⊂ ∆

(l)
Y � ∆

(l)

Y
� (∆

(l)

Y
)ab

vanishes. Here, Y denotes the canonical smooth compactification of Y (Note that

the natural surjection ∆
(l)
Y � ∆

(l)

Y
has a group-theoretic characterisation in (1)).

3. We can reconstruct the set of cusps of X as the set of ∆
(l)
X -orbits of the inertia

subgroups in ∆
(l)
X via conjugate actions by Proposition 2.7 (2c) (Note that inertia

subgroups in ∆
(l)
X have a group-theoretic characterisation in (2)).

4. By functorially reconstructing the cusps of any covering Y → X from ∆Y ⊂ ∆X ⊂
ΠX , we can reconstruct the set of cusps of the universal pro-covering X̃ → X (Note

that the set of cusps of Y is reconstructed in (3)).

5. We can reconstruct inertia subgroups in ∆X as the subgroups that fix some cusp

of the universal pro-covering X̃ → X of X determined by the basepoint under

consideration (Note that the set of cusps of X̃ is reconstructed in (4)).



54 Go Yamashita

6. We have a characterisation of decomposition groups D of cusps in ΠX (resp. in

Π
(l)
X for any l 6= p) as D = NΠX (I) (resp. D = N

Π
(l)
X

(I)) for some inertia subgroup

in ∆X (resp. in ∆
(l)
X ) by Proposition 2.7 (2c) (Note that inertia subgroups in ∆X

and ∆
(l)
X are reconstructed in (5) and in (2) respectively).

Remark 2.9.1. (See also [IUTchI, Remark 1.2.2, Remark 1.2.3]) The arguments

in [AbsAnab, Lemma 1.3.9], [AbsTopI, Lemma 4.5 (iv)], and [CombGC, Theorem 1.6

(i)] are wrong, because there is no covering of degree l of proper curves, which is ramified

at one point and unramified elsewhere (Note that the abelianisations of the geometric

fundamental group of a proper curve is equal to the one of the curve obtained by

removing one point from the curve).

Proof. The claims (1) is trivial. (2): The “only if” part is trivial since an inertia

subgroup is killed in ∆Y . We show the “if” part. Put ∆
(l)
Z := A∆

(l)
Y ⊂ ∆

(l)
X . The natural

surjection ∆
(l)
Z � ∆

(l)
Z /∆

(l)
Y
∼= A/(A ∩∆

(l)
Y ) factors as ∆

(l)
Z � (∆

(l)
Z )ab � A/(A ∩∆

(l)
Y ),

since A/(A ∩ ∆
(l)
Y ) is isomorphic to an abelian group Z/lNZ for some N . By the

assumption of the vanishing of A ∩∆
(l)
Y in (∆Y )

ab, the image Im{A ∩∆(l)
Y → (∆

(l)
Y )ab}

is contained in the subgroup generated by the image of the inertia subgroups in ∆
(l)
Y .

Hence, the image Im{A ∩ ∆
(l)
Y → (∆

(l)
Y )ab → (∆

(l)
Z )ab � A/(A ∩ ∆

(l)
Y )(∼= Z/lNZ)} is

contained in the image of the subgroup in A/(A ∩ ∆
(l)
Y )(∼= Z/lNZ) generated by the

image of the inertia subgroups in ∆
(l)
Y . Since the composite A ⊂ ∆

(l)
Z � ∆

(l)
Z /∆

(l)
Y
∼=

A/(A ∩ ∆
(l)
Y )(∼= Z/lNZ) is a surjection, and since Z/lNZ is cyclic, there exists the

image Iz ⊂ (∆
(l)
Z )ab of the inertia subgroup of a cusp z in Z, such that the composite

Iz ⊂ (∆
(l)
Z )ab � A/(A∩∆(l)

Y )(∼= Z/lNZ) is surjective (Note that if we are working in the

profinite geometric fundamental groups, instead of pro-l geometric fundamental groups,

then the cyclicity does not hold, and we cannot use the same argument). This means

that the corresponding subcovering Y → Z(→ X) is totally ramified at z. The claims

(3), (4), (5), and (6) are trivial.

Remark 2.9.2. (Generalisation to l-cyclotomically full fields, See also [AbsTopI,

Lemma 4.5 (iii)], [CombGC, Proposition 2.4 (iv), (vii), proof of Corollary 2.7 (i)]) We can

generalise the results in this subsection for an l-cyclotomically full field k for some l (See

Definition 3.1 (3) below), under the assumption that the quotient ΠX � Gk is given, as

follows: For the purpose of a characterisation of inertia subgroups of cusps, it is enough

to consider the case where X is affine. First, we obtain a group-theoretic reconstruction

of a positive power χ+
cyc,l,up to fin of the l-adic cyclotomic character up to a character of

finite order by the actions of Gk on
∧dimQl

(Hab⊗ẐQl)(Hab ⊗Ẑ Ql) for characteristic open

torsion-free subgroups H ⊂ ∆X . Next, we group-theoretically reconstruct the l-adic

cyclotomic character χcyc,l,up to fin up to a character of finite order as χcyc,l,up to fin =
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χmax, where χmax is the maximal power of χ+
cyc,up to fin by which Gk acts in some

subquotient of Hab⊗ẐQl for sufficiently small characteristic open torsion-free subgroups

H ⊂ ∆X . Once we reconstruct the l-adic cyclotomic character χcyc,l,up to fin up to a

character of finite order, then, for a finite-dimensionalQl-vector space V with continuous

Gk-action, we take any filtration V = V 0 ⊃ V 1 ⊃ . . . (resp. V (χ−1cyc,l,up to fin) = V 0 ⊃
V 1 ⊃ . . .) of Ql[Gk]-modules (Here V (χ−1) denotes the twist of V by χ−1) such that

each graded quotient either has the action of Gk factoring through a finite quotient or

has no nontrivial subquotients, and we use, instead of dimQl
V wt=0 (resp. dimQl

V wt=2)

in Lemma 2.8, the summation of dimQl
V j/V j+1, where the Gk-action on V j/V j+1

factors through a finite quotient of Gk, and the rest is the same.

§ 3. Mono-anabelian Reconstruction Algorithms.

In this section, we show mono-anabelian reconstruction algorithms, which are cru-

cial ingredients of inter-universal Teichmüller theory.

§ 3.1. Some Definitions.

Definition 3.1. ([pGC, Definition 1.5.4 (i)], [AbsTopIII, Definition 1.5], [CombGC,

Definition 2.3 (ii)]) Let k be a field.

1. We say that k is sub-p-adic, if there is a finitely generated field L over Qp for some

p such that we have an injective homomorphism k ↪→ L of fields.

2. We say that k is Kummer-faithful, if k is of characteristic 0, and if for any

finite extension k′ of k and any semi-abelian variety A over k′, the Kummer map

A(k′) → H1(k′, T (A)) is injective (which is equivalent to
∩
N≥1NA(k

′) = {0}),
where T (A) denotes the Tate module of A.

3. We say that k is l-cyclotomically full, if the l-adic cyclotomic character χcyc,l :

Gk → Z×l has an open image.

Remark 3.1.1. ([pGC, remark after Definition 15.4]) For example, the following

fields are sub-p-adic:

1. finitely generated extensions of Qp, in particular, finite extensions of Qp,

2. finite extensions of Q, and

3. the subfield of an algebraic closure Q of Q which is the composite of all number

fields of degree ≤ n over Q for some fixed integer n (Note that such a field can be

embedded into a finite extension of Qp by Krasner’s lemma).
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Lemma 3.2. ([AbsTopIII, Remark 1.5.1, Remark 1.5.4 (i), (ii)])

1. If k is sub-p-adic, then k is Kummer-faithful.

2. If k is Kummer-faithfull, then k is l-cyclotomically full for any l.

3. If k is Kummer-faithfull, then any finitely generated field over k is also Kummer-

faithful.

Proof. (3): Let L be a finitely generated extension of k. By Weil restriction, the

injectivity of the Kummer map for a finite extension L′ of L is reduced to the one for

L, i.e., we may assume that L′ = L. Let A be a semi-abelian variety over L. Let U be

an integral smooth scheme over k such that A extends to a semi-abelian scheme A over

U and the function field of U is L. By a commutative diagram

A(L) //
� _

��

H1(L, T (A))

��∏
x∈|U |Ax(Lx) // ∏

x∈|U |H
1(Lx, T (Ax)),

where |U | denotes the set of closed points, Lx is the residue field at x, and Ax is the

fiber at x (Note that a ∈ A(L) is zero on any fiber of x ∈ |U |, then a is zero since |U |
is dense in U), we may assume that L is a finite extension of k. In this case, again by

Weil restriction, the injectivity of the Kummer map for a finite extension L is reduced

to the one for k, which holds by assumption.

(1): By the same way as in (3), by Weil restriction, the injectivity of the Kummer

map for a finite extension k′ of k is reduced to the one for k, i.e., we may assume that

k′ = k. Let k embed into a finitely generated field L over Qp. By the base change from

k to L and the following commutative diagram

A(k) //
� _

��

H1(k, T (A))

��
A(L) // H1(L, T (A)),

the injectivity of the Kummer map for k is reduced to the one for L, i.e., we may

assume that k is a finitely generated extension over Qp. Then by (3), we may assume

that k = Qp. If A is a torus, then
∩
N≥1NA(Qp) = {0} is trivial. Hence, the claim is

reduced to the case where A is an abelian variety. Then A(Qp) is a compact abelian

p-adic Lie group, which contains Z⊕np for some n as an open subgroup. Hence, we have∩
N≥1NA(Qp) = 0. Thus, the Kummer map is injective. We are done.
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(2): For any finite extensin k′ over k, the Kummer map for Gm over k′ is injective

by the assumption. This implies that the image of l-adic cyclotomic character Gk → Z×l
has an open image.

Definition 3.3. ([CanLift, Section 2]) Let k be a field. Let X be a geometrically

normal, geometrically connected algebraic stack of finite type over k.

1. Let Lock(X) denote the category whose objects are generically scheme-like algebraic

stacks over k which are finite étale quotients (in the sense of stacks) of (necessarily

generically scheme-like) algebraic stacks over k that admit a finite étale morphism

to X over k, and whose morphisms are finite étale morphisms of stacks over k.

2. We say X admits k-core if there exists a terminal object in Lock(X). We call a

terminal object in Lock(X) a k-core.

For an elliptic curve E over k with the origin O, we call the hyperbolic orbicurve

(cf. Section 0.2) obtained as the quotient (E \ {O})//±1 in the sense of stacks a semi-

elliptic orbicurve over k (cf. [AbsTopII, §0]. It is also called “punctured hemi-elliptic

orbicurve” in [CanLift, Definition 2.6 (ii)]).

Definition 3.4. ([AbsTopII, Definition 3.5, Definition 3.1]) Let X be a hyper-

bolic orbicurve (See Section 0.2) over a field k of characteristic 0.

1. We say that X is of strictly Belyi type if (a) X is defined over a number field,

and if (b) there exist a hyperbolic orbicurve X ′ over a finite extension k′ of k, a

hyperbolic curve X ′′ of genus 0 over a finite extension k′′ of k, and finite étale

coverings X � X ′ � X ′′.

2. We say that X is elliptically admissible if X admits k-core X � C, where C is

a semi-elliptic orbicurve.

Remark 3.4.1. In the moduli space Mg,r of curves of genus g with r cusps, the

set of points corresponding to the curves of strictly Belyi type is not Zariski open for

2g − 2 + r ≥ 3, g ≥ 1. See [Cusp, Remark 2.13.2] and [Corr, Theorem B].

Remark 3.4.2. IfX is elliptically admissible and defined over a number field, then

X is of strictly Belyi type (See also [AbsTopIII, Remark 2.8.3]), since we have a Belyi

map from once-punctured elliptic curve over a number field to a tripod (cf. Section 0.2).

For a hyperbolic curve X over a field k of characteristic zero with the canonical

smooth compactification X. A closed point x in X is called algebraic, if there are

a finite extension K of k, a hyperbolic curve Y over a number field F ⊂ K with the
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canonical smooth compactification Y , and an isomorphism X ×k K ∼= Y ×F K over K

such that x maps to a closed point under the composition X ×k K ∼= Y ×F K → Y .

§ 3.2. Belyi and Elliptic Cuspidalisations — Hidden Endomorphisms.

Let k be a field of characteristic 0, and k an algebraic closure of k. Put Gk :=

Gal(k/k). Let X be a hyperbolic orbicurve over k (cf. Section 0.2). Let ∆X and ΠX

denote the geometric fundamental group (i.e., π1 of Xk := X ×k k) and the arithmetic

fundamental group (i.e., π1 of X) of X for some basepoint, respectively. Note that

we have an exact sequence 1 → ∆X → ΠX → Gk → 1. We consider the following

conditions on k and X:

(Delta)X : We have a “group-theoretic characterisation” (for example, like Proposition 2.2 (1),

(2)) of the subgroup ∆X ⊂ ΠX (or equivalently, the quotient ΠX � Gk).

(GC): Isom-version of the relative Grothendieck conjecture (See also Theorem B.1) for

the profinite fundamental groups of any hyperbolic (orbi)curves over k holds, i.e.,

the natural map Isomk(X,Y ) → IsomOut
Gk

(∆X ,∆Y ) := IsomGk
(∆X ,∆Y )/Inn(∆Y )

is bijective for any hyperbolic (orbi)curve X, Y over k.

(slim): Gk is slim (Definition 2.5 (1)).

(Cusp)X : We have a “group-theoretic characterisation” (for example, like Proposition 2.9 (3))

of decomposition groups in ΠX of cusps.

We also consider the following condition (of different nature):

(Delta)’X : Either

• ΠX is given and (Delta)X holds, or

• ∆X ⊂ ΠX are given.

Note that (Delta)X , (GC), and (slim) are conditions on k and X; however, as for

(Delta)’X , “the content of a theorem” depends on which case of (Delta)’X is satisfied,

i.e., in the former case, the algorithm in a theorem requires only ΠX as (a part of) an

input datum, on the other hand, in the latter case, the algorithm in a theorem requires

both of ∆X ⊂ ΠX as (a part of) input data.

Remark 3.4.3.

1. (Delta)X holds for any X in the case where k is an NF by Proposition 2.2 (1) or k

is an MLF by Corollary 2.4.
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2. (GC) holds in the case where k is sub-p-adic by Theorem B.1.

3. (slim) holds in the case where k is an NF by Proposition 2.7 (1) (d) or k is an MLF

by Proposition 2.7 (1) (c). More generally, it holds for Kummmer-faithful field k

by Remark 3.17.3, which is shown without using the results in this subsection.

4. (Cusp)X holds for any X in the case where k is an MLF by Corollary 2.9. More

generally, (Cusp)X holds for l-cyclotomically full field k for some l under the as-

sumption (Delta)’X by Remark 2.9.2.

In short, we have the following table (See also Lemma 3.2):

NF, MLF ⇒ sub-p-adic ⇒ Kummer-faithful ⇒ l-cyclotomically full

(Delta)X holds (GC) holds (slim) holds (Cusp)X holds

for any X under (Delta)’X .

Remark 3.4.4.

1. It seems difficult to rigorously formulate the meaning of “group-theoretic character-

isation”. Note that the formulation for (Delta)X like “any isomorphism ΠX1
∼= ΠX2

of topological groups induces an isomorphism ∆X1
∼= ∆X2 of topological groups” (it

is called bi-anabelian approach) is a priori weaker than the notion of “group the-

oretic characterisation” of ∆X in ΠX (this is called mono-anabelian approach),

which allows us to reconstruct the object itself (not the morphism between two

objects).

2. (Important Convention) In the same way, it also seems difficult to rigorously for-

mulate “there is a group-theoretic algorithm to reconstruct” something in the sense

of mono-anabelian approach (Note that it is easy to rigorously formulate it in the

sense of bi-anabelian approach). To rigorously settle the meaning of it, it seems

that we have to state the algorithm itself, i.e., the algorithm itself have to be a part

of the statement. However, in this case, the statement must be often rather lengthy

and complicated. In this survey, we use the phrase “group-theoretic algorithm”

loosely in some sense, for the purpose of making the input data and the output

data of the algorithms in the statement clear. However, the rigorous meaning will

be clear in the proof, since the proof shows concrete constructions, which, properly

speaking, should be included in the statement itself. We sometimes employ this con-

vention of stating propositions and theorems in this survey (If we use the language

of species and mutations (See [IUTchIV, §3]), then we can rigorously formulate

mono-anabelian statements without mentioning the contents of algorithms).

3. Mono-anabelian reconstruction algorithms have an advantage, as contrasted with

bi-anabelian approach, of avoiding “a referred model” of a mathematical object like
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“the C”, i.e., it is a “model-free” (or “model-implicit”) approach. For more in-

formations on Mochizuki’s philosophy of mono-anabelian reconstruction algorithms

versus bi-anabelian reconstruction algorithms, see [AbsTopIII, §I.3, Remark 3.7.3,

Remark 3.7.5].

In this subsection, to avoid settling the meaning of “group-theoretic characterisa-

tion” in (Delta)X and (Cusp)X (See Remark 3.4.4 (1)), we assume that k is sub-p-adic,

and we include the subgroup ∆X (⊂ ΠX) as an input datum. More generally, the re-

sults in this section hold in the case where k and X satisfy (Delta)’X , (GC), (slim),

and (Cusp)X . Note that if we assume that k is an NF or an MLF, then (Delta)X ,

(GC), (slim), and (Cusp)X hold for any X, and we do not need include the subgroup

∆X (⊂ ΠX) as an input datum.

Lemma 3.5. Let ψ : H → Π be an open homomorphism of profinite groups,

and φ1, φ2 : Π → G two open homomorphisms of profinite groups. We assume that G

is slim. If φ1 ◦ ψ = φ2 ◦ ψ, then we have φ1 = φ2.

Proof. By replacing H by the image of ψ, we may assume that H is an open

subgroup of Π. By replacing H by ∩g∈Π/HgHg−1, we may assume that H is an open

normal subgroup of Π. For any g ∈ Π and h ∈ H, we have ghg−1 ∈ H, and φ1(ghg
−1) =

φ2(ghg
−1) by assumption. This implies that φ1(g)φ1(h)φ1(g)

−1 = φ2(g)φ2(h)φ2(g)
−1 =

φ2(g)φ1(h)φ2(g)
−1. Hence we have φ1(g)φ2(g)

−1 ∈ ZIm(Π)(G). By the assumption of

the slimness of G, we have ZIm(Π)(G) = {1}, since Im(Π) is open in G. Therefore, we

obtain φ1(g) = φ2(g), as desired.

Remark 3.5.1. In the algebraic geometry, a finite étale covering Y � X is an

epimorphism. The above lemma says that the inclusion map ΠY ⊂ ΠX correspoinding

to Y � X is also an epimorphism if ΠX is slim. This enables us to make a theory for

profinite groups (without using 2-categories and so on.) which is parallel to geometry,

when all involved profinite groups are slim. This is a philosophy behind the geometry

of anabelioids ([Anbd]).

Choose a hyperbolic orbicurve X over k, and let ΠX denote the arithmetic funda-

mental group of X for some basepoint. We have the surjection ΠX � Gk determined

by (Delta)’X . Note that now we are assuming that k is sub-p-adic, hence, Gk is slim

by Lemma 3.2 (1) and Remark 3.17.3. Take an open subgroup G ⊂ Gk, and put

Π := ΠX ×Gk
G, and ∆ := ∆X ∩Π. In this survey, we do not adopt the convention that

(−)′ always denotes the commutator subgroup for a group (−).
In the elliptic and Belyi cuspidalisations, we use the following three types of oper-

ations:
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Lemma 3.6. Put Π′ := ΠX′ to be the arithmetic fundamental group of a hyper-

bolic orbicurve X ′ over a finite extension k′ of k. Put ∆′ := ker(Π′ � Gk′).

1. Let Π′′ ↪→ Π′ be an open immersion of profinite groups. Then Π′′ arises as a finite

étale covering X ′′ � X ′ of X ′, and ∆′′ := Π′′ ∩∆′ reconstructs ∆X′′ .

2. Let Π′ ↪→ Π′′ be an open immersion of profinite groups such that there exists a

surjection Π′′ � G′′ to an open subgroup of G, whose restriction to Π′ is equal to

the given homomorphism Π′ � G′ ⊂ G. Then the surjection Π′′ � G′′ is uniquely

determined (hence, we reconstruct the quotient Π′′ � G′′ as the unique quotient of

Π′′ having this property), and Π′′ arises as a finite étale quotient X ′ � X ′′ of X ′.

3. Assume that X ′ is a scheme i.e., not a (non-scheme-like) stack (We can treat or-

bicurves as well; however, we do not use this generalisation in this survey. cf.

[AbsTopI, Definition 4.2 (iii) (c)]). Let Π′ � Π′′ be a surjection of profinite groups

such that the kernel is generated by a cuspidal inertia subgroup group-theoretically

characterised by Corollary 2.9 and Remark 2.9.2 (We call it a cuspidal quotient).

Then Π′′ arises as an open immersion X ′ ↪→ X ′′, and we reconstruct ∆X′′ as

∆′/∆′ ∩ ker(Π′ � Π′′).

Proof. (1) is trivial by the definition of ΠX′ .

The first asserion of (2) comes from Lemma 3.5, since G is slim. Put (Π′)Gal :=

∩g∈Π′′/Π′gΠ′g−1 ⊂ Π′, which is normal in Π′′ by definition. Then (Π′)Gal arises from

a finite étale covering (X ′)Gal � X ′ by (1). By the conjugation, we have an action of

Π′′ on (Π′)Gal. By (GC), this action determines an action of Π′′/(Π′)Gal on (X ′)Gal.

We take the quotient X ′′ := (X ′)Gal//(Π′′/(Π′)Gal) in the sense of stacks. Then ΠX′′

is isomorphic to Π′′ by definition, and the quotinet (X ′)Gal � X ′′ factors as (X ′)Gal �
X ′ � X ′′ since the intermediate quotient (X ′)Gal//(Π′/(Π′)Gal) is isomorphic to X ′.

This proves the second assertion of (2).

(3) is also trivial.

3.2.1. Elliptic Cuspidalisation. Let X be an elliptically admissible orbicurve over

k. By definition, we have a k-core X � C = (E \ {O})//{±1} where E denotes an

elliptic curve over k with the origin O. Take a positive integer N ≥ 1. Let UC,N :=

(E \E[N ])//{±1} ⊂ C denote the open sub-orbicurve of C determined by the image of

E \ E[N ]. Put UX,N := UC,N ×C X ⊂ X, which is an open suborbicurve of X. For a

finite extension K of k, put XK := X ×k K, CK := C ×k K, and EK := E ×k K. For

a sufficiently large finite extension K of k, all points of EK [N ] are rational over K. We
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have the following key diagram for elliptic cuspidalisation:

(EllCusp) X // // C E \ {O}oooo E \ E[N ]
Noooo

� _

��

// // UC,N� _

��

UX,N� _

��

oooo

E \ {O} // // C X,oooo

where �’s are finite étale coverings, ↪→’s are open immersions, and two sqauares are

cartesian.

We will use the technique of elliptic cuspidalisation three times:

1. Firstly, in the theory of Aut-holomorphic space in Section 4, we will use it for the

reconstruction of “local linear holomorphic structure” of an Aut-holomorphic space

(See Proposition 4.5 (Step 2)).

2. (This is the most important usage) Secondly, in the theory of the étale theta function

in Section 7, we will use it for the constant multiple rigidity of the étale theta function

(See Proposition 7.9).

3. Thirdly, we will use it for the reconstruction of “pseudo-monoids” (See Section 9.2).

Theorem 3.7. (Elliptic Cuspidalisation, [AbsTopII, Corollary 3.3]) Let X be

an elliptically admissible orbicurve over a sub-p-adic field k. Take a positive integer

N ≥ 1, and let UX,N denote the open sub-orbicurve of X defined as above. Then from

the profinite groups ∆X ⊂ ΠX , we can group-theoretically reconstruct (See Remark 3.4.4

(2)) the surjection

πX : ΠUX,N
� ΠX

of profinite groups, which is induced by the open immersion UX,N ↪→ X, and the set of

the decomposition groups in ΠX at the points in X \ UX,N .

We call πX : ΠUX,N � ΠX an elliptic cuspidalisation.

Proof. (Step 1): By (Delta)’X , we have the quotient ΠX � Gk with kernel ∆X .

Let G ⊂ Gk be a sufficiently small (which will depend on N later) open subgroup, and

put Π := ΠX ×Gk
G, and ∆ := ∆X ∩Π.

(Step 2): We define a category LocG(Π) as follows: The objects are profinite groups

Π′ such that there exist open immersions Π ←↩ Π′′ ↪→ Π′ of profinite groups and
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surjections Π′ � G′, Π′′ � G′′ to open subgroups of G, and that the diagram

Π

����

Π′′

����

? _oo � � // Π′

����
G

=

��

G′′_�

��

G′_�

��
G G

= //=oo G.

is commutative. Note that, by this compatibility, the surjections Π′ � G′ and Π′′ � G′′

are uniquely determined by Lemma 3.6 (1), (2) (or Lemma 3.5). The morphisms from

Π1 to Π2 are open immersions Π1 ↪→ Π2 of profinite groups up to inner conjugates by

ker(Π2 � G2) such that the uniquely determined homomorphisms Π1 � G1 ⊂ G and

Π2 � G2 ⊂ G are compatible. The definition of the category LocG(Π) depends only

on the topological group structure of Π and the surjection Π � G of profinite groups.

By (GC), the functor X ′ 7→ ΠX′ gives us an equivalence LocK(XK)
∼→ LocG(Π) of

categories, where K is the finite extension of k corresponding to G ⊂ Gk. Then we

group-theoretically reconstruct (ΠXK ⊂)ΠCK as the terminal object (Π ⊂)Πcore of the

category LocG(Π).

(Step 3): We group-theoretically reconstruct ∆CK
(⊂ ΠCK

) as the kernel ∆core :=

ker(Πcore → G). We group-theoretically reconstruct ∆EK\{O} as an open subgroup ∆ell

of ∆core of index 2 such that ∆ell is torsion-free (i.e., the corresponding covering is a

scheme, not a (non-scheme-like) stack), since the covering is a scheme if and only if the

geometric fundamental group is torsion-free (See also [AbsTopI, Lemma 4.1 (iv)]). We

take any (not necessarily unique) extension 1 → ∆ell → Πell → G → 1 such that the

push-out of it via ∆ell ⊂ ∆core is isomorphic to the extension 1 → ∆core → Πcore →
G→ 1 (Note that Πell is isomorphic to ΠE′

K\{O}, where E
′
K \ {O} is a twist of order 1

or 2 of EK \{O}). We group-theoretically reconstruct ΠE′
K\{O} as Πell (Note that if we

replace G by a subgroup of index 2, then we may reconstruct ΠEK\{O}; however, we do

not detect group-theoretically which subgroup of index 2 is correct. However, the final

output does not depend on the choice of Πell).

(Step 4): Take

(a) an open immersion Πell,N ↪→ Πell of profinite groups with Πell/Πell,N
∼= (Z/NZ)⊕2

such that the composite Πell,N ↪→ Πell � Πcpt
ell factors through as Πell,N � Πcpt

ell,N →
Πcpt

ell , where Πell � Πcpt
ell , Πell,N � Πcpt

ell,N denote the quotients by all of the conju-

gacy classes of the cuspidal inertia subgroups in Πell, Πell,N respectively, and

(b) a composite Πell,N � Π′ of (N2 − 1) cuspidal quotients of profinite groups such

that there exists an isomorphism Π′ ∼= Πell of profinite groups.
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Note that the factorisation Πell,N � Πcpt
ell,N → Πcpt

ell means that the finite étale covering

corresponding to Πell,N ↪→ Πell extends to a finite étale covering of their compactifica-

tions i.e., the covering corresponding to Πell,N ↪→ Πell is unramified at all cusps as well.

Note that there exists such a diagram

Πell ←↩ Πell,N � Π′ ∼= Πell

by (EllCusp). Note that for any intermediate composite Πell,N � Π∗ � Π′ of cuspidal

quotients in the composite Πell,N � Π′ of cuspidal quotients, and for the uniquely

determined quotient Π∗ � G∗, we have G∗ = G for sufficiently small open subgroup

G ⊂ Gk, and we take such an open subgroup G ⊂ Gk.
We group-theoretically reconstruct the surjection πE′ : ΠE′

K\E′
K [N ] � ΠE′

K\{O}

induced by the open immersion E′K \ E′K [N ] ↪→ E′K \ {O} as the composite πE′? :

Πell,N � Π′ ∼= Πell, since we can identify πE′? with πE′ by (GC).

(Step 5): Let Πcore,1 denote Πcore for G = Gk. If necessary, by changing Πell,

we may take Πell such that there exists a unique lift of Πcore,1/Πell → Out(Πell) to

Out(Πell,N ) by (EllCusp). We form
out
o (Πcore,1/Πell) (See Section 0.2) to the surjection

Πell,N � Πell i.e., Πell,N

out
o (Πcore,1/Πell) � Πell

out
o (Πcore,1/Πell) = Πcore,1, where

Πcore,1/Πell → Out(Πell) (in the definition of
out
o (Πcore,1/Πell)) is the natural one, and

Πcore,1/Πell → Out(Πell,N ) (in the definition of
out
o (Πcore,1/Πell)) is the unique lift of

Πcore,1/Πell → Out(Πell) to Out(Πell,N ). Then we obtain a surjection πC? : Πcore,N :=

Πell,N

out
o (Πcore,1/Πell) � Πcore,1. We group-theretically reconstruct the surjection

πC : ΠUC,N
� ΠC induced by the open immersion UC,N ↪→ C as the surjection πC? :

Πcore,N � Πcore,1, since we can identify πC? with πC by (GC).

(Step 6): We form a fiber product ×Πcore,1ΠX to the surjection Πcore,N � Πcore,1

i.e., ΠX,N := Πcore,N ×Πcore,1 ΠX � Πcore,1 ×Πcore,1 ΠX = ΠX . Then we obtain a

surjection πX? : ΠX,N � ΠX . We group-theretically reconstruct the surjection πX :

ΠUX,N
� ΠX induced by the open immersion UX,N ↪→ X as the surjection πX? :

ΠX,N � ΠX , since the identification of πC? with πC induces an identification of πX?

with πX .

(Step 7): We group-theretically reconstruct the decomposition groups at the points

of X\UX,N in ΠX as the image of the cuspidal decomposition groups in ΠX,N , which are

group-theoretically characterised by Corollary 2.9, via the surjection ΠX,N � ΠX .

3.2.2. Belyi Cuspidalisation. Let X be a hyperbolic orbicurve of strictly Belyi

type over k. We have finite étale coverings X � Y � P1 \ (N points), where Y

is a hyperbolic curve over a finite extension k′ of k, and N ≥ 3. We assume that

Y � X is Galois. For any open sub-orbicurve UX ⊂ X defined over a number field,

put UY := Y ×X UX . Then by the theorem of Belyi (See also Theorem C.2 for its
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refinement), we have a finite étale covering U ′Y � UP1 from an open sub-orbicurve

U ′Y ⊂ UY to the tripod UP1 (See Section 0.2) over k′. For a sufficiently large finite

extension K of k′, all the points of Y \ U ′Y are defined over K. We have the following

key diagram for Belyi cuspidalisation:

(BelyiCusp) U ′Y

����

� � // UY

����

� � // Y

����
X Yoooo // // P1 \ (N points)

� � // UP1 UX
� � // X,

where �’s are finite étale coverings, ↪→’s are open immersions, and the square is carte-

sian.

Theorem 3.8. (Belyi Cuspidalisation, [AbsTopII, Corollary 3.7]) Let X be an

orbicurve over a sub-p-adic field k. We assume that X is of strictly Belyi type. Then

from the profinite groups ∆X ⊂ ΠX , we can group-theoretically reconstruct (See Re-

mark 3.4.4 (2)) the set

{ΠUX
� ΠX}UX

of the surjections of profinite groups, where UX runs through the open subschemes of X

defined over a number field. We can also group-theoretically reconstruct the set of the

decomposition groups in ΠX at the points in X \ UX , where UX runs through the open

subschemes of X defined over a number field.

We call ΠUX � ΠX a Belyi cuspidalisation.

Proof. (Step 1): By (Delta)’X , we have the quotient ΠX � Gk with kernel ∆X .

For sufficiently small (which will depend on U later) open subgroup G ⊂ Gk, put

Π := ΠX ×Gk
G.

(Step 2): Take

(a) an open immersion Π←↩ Π∗ of profinite grouops,

(b) an open immersion Π∗ ↪→ Πtpd,U of profinite groups, such that the group-theoretic

algorithms described in Lemma 2.8 and Remark 2.9.2 tell us that the hyperbolic

curve corresponding to Πtpd,U has genus 0,

(c) a composite Πtpd,U � Πtpd of cuspidal quotients of profinite groups, such that the

number of the conjugacy classes of cuspidal inertia subgroups of Πtpd is three,

(d) an open immersion Πtpd ←↩ Π∗,U ′
of profinite groups,

(e) a composite Π∗,U
′ � Π∗,U of cuspidal quotients of profinite groups, and
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(f) a composite Π∗,U � Π∗∗ of cuspidal quotients of profinite groups such that there

exists an isomorphism Π∗∗ ∼= Π∗ of profinite groups.

Note that there exists such a diagram

Π←↩ Π∗ ↪→ Πtpd,U � Πtpd ←↩ Π∗,U
′ � Π∗,U � Π∗∗ ∼= Π∗

by (BelyiCusp). Note also that any algebraic curve over a field of characteristic 0,

which is finite étale over a tripod, is defined over a number field (i.e., converse of Belyi’s

theorem, essentially the descent theory) and that algebraic points in a hyperbolic curve

are sent to algebraic points via any isomorphism of hyperbolic curves over the base field

(See [AbsSect, Remark 2.7.1]). Put πY ? : Π∗,U � Π∗∗ ∼= Π∗ to be the composite. Note

that for any intermediate composite Π∗,U
′ � Π# � Π∗∗ in the composite Π∗,U

′ � Π∗∗

of cuspidal quotients and for the uniquely determined quotient Π# � G#, we have

G# = G for sufficiently small open subgroup G ⊂ Gk, and we take such an open

subgroup G ⊂ Gk.
We group-theoretically reconstruct the surjection πY : ΠUY

� ΠY induced by some

open immersion UY ↪→ Y as πY ? : Π∗,U � Π∗, since we can identify πY ? with πY by

(GC) (Note that we do not prescribe the open immersion UY ↪→ Y ).

(Step 3): We choose the data (a)-(e) such that the natural homomorphism ΠX/Π
∗ →

Out(Π∗) has a unique lift ΠX/Π
∗ → Out(Π∗,U ) to Out(Π∗,U ) (Note that this cor-

responds to that UY ⊂ Y is stable under the action of Gal(Y/X), thus descends to

UX ⊂ X). We form
out
o (ΠX/Π

∗) to the surjection Π∗,U � Π∗ i.e., ΠX,U := Π∗,U
out
o

(ΠX/Π
∗) � Π∗

out
o (ΠX/Π

∗) = ΠX . Then we obtain a surjection πX? : ΠX,U � ΠX .

We group-theretically reconstruct the surjection πX : ΠUX
� ΠX induced by the open

immersion UX ↪→ X as the surjection πX? : ΠX,U � ΠX , since we can identify πX?

with πX by (GC) (Note again that we do not prescribe the open immersion UX ↪→ X.

We just group-theoretically reconstruct a surjection ΠUX
� ΠX for some UX ⊂ X such

that all of the points in X \ UX are defined over a number field).

(Step 4): We group-theretically reconstruct the decomposition groups at the points

of X \UX in ΠX as the image of the cuspidal decomposition groups in ΠX,U , which are

group-theoretically characterised by Corollary 2.9, via the surjection ΠUX
� ΠX .

Corollary 3.9. ([AbsTopII, 3.7.2]) Let X be a hyperbolic orbicurve over a non-

Archimedean local field k. We assume that X is of strictly Belyi type. Then from the

profinite group ΠX , we can reconstruct the set of the decomposition groups at all closed

points in X.

Proof. The corollary follows from Theorem 3.8 and the approximation of a de-

composition group in (the proof of) Lemma 3.10 below.
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Since the geometric fundamental group ∆X of X (for some basepoint) is topologi-

cally finitely generated, there exist characteristic open subgroups

. . . ⊂ ∆X [j + 1] ⊂ ∆X [j] ⊂ . . . ⊂ ∆X

of ∆X for j ≥ 1 such that
∩
j ∆X [j] = {1}. Take an algebraic closure k of k and put

Gk := Gal(k/k). For any section σ : Gk → ΠX , we put

ΠX[j,σ] := Im(σ)∆X [j] ⊂ ΠX ,

and we obtain a corresponding finite étale coverings

. . .→ X[j + 1, σ]→ X[j, σ]→ . . .→ X.

Lemma 3.10. ([AbsSect, Lemma 3.1]) Let X be a hyperbolic curve over a non-

Archimedean local field k. Suppose X is defined over a number field. Let σ : Gk → ΠX

be a section such that Im(σ) is not contained in any cuspidal decomposition group of

ΠX . Then the following conditions on σ is equivalent:

1. Im(σ) is a decomposition group Dx of a point x ∈ X(k).

2. For any j ≥ 1, the subgroup ΠX[j,σ] contains a decomposition group of an algebraic

closed point of X which surjects onto Gk.

Proof. (1)⇐(2): For j ≥ 1, take points xj ∈ X[j, σ](k). Since the topological

space
∏
j≥1X[j, σ](k) is compact, there exists an infinite set of positive integers J ′ such

that for any j ≥ 1, the images of xj′ in X[j, σ](k) for j′ ≥ j with j′ ∈ J ′ converges to a

point yj ∈ X[j, σ](k). By definition of yj , the point yj1 maps to yj2 in X[j2](k) for any

j1 > j2. We write y ∈ X(k) for the image of yj in X(k). Then we have Im(σ) ⊂ Dy

(up to conjugates), and y is not a cusp by the assumption that Im(σ) is not contained

in any cuspidal decomposition group of ΠX .

(1)⇒(2): By using Krasner’s lemma, we can approximate x ∈ X(k) by a point

x′ ∈ XF (F ) ⊂ X(k), where XF is a model of X ×k k over a number field F , which is

sufficiently close to x so that x′ lifts to a point x′j ∈ X[j, σ](k), which is algebraic.

§ 3.3. Uchida’s Lemma.

Let X be a hyperbolic curve over a field k. Take an algebraic closure k of k. Put

Gk := Gal(k/k), and Xk := X ×k k. Let k(X) denote the function field of X. Let ∆X

and ΠX denote the geometric fundamental group (i.e., π1 of Xk) and the arithmetic

fundamental group (i.e., π1 of X) of X for some basepoint, respectively. Note that we

have an exact sequence 1→ ∆X → ΠX → Gk → 1.

We recall that we have Γ(X,O(D)) = {f ∈ k(X)× | div(f) +D ≥ 0} ∪ {0} for a

divisor D on X.
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Lemma 3.11. ([AbsTopIII, Proposition 1.2]) Assume that k be an algebraically

closed, and X proper.

1. There are distinct points x, y1, y2 ∈ X(k) and a divisor D on X such that x, y1, y2 6∈
Supp(D) and l(D) := dimk Γ(X,O(D)) = 2, and l(D−E) = 0 for any E = e1 + e2

with e1, e2 ∈ {x, y1, y2}, e1 6= e2.

2. Let x, y1, y2, D be as in (1). For i = 1, 2, and λ ∈ k×, there exists a unique

fλ,i ∈ k(X)× such that

div(fλ,i) +D ≥ 0, fλ,i(x) = λ, fλ,i(yi) 6= 0, fλ,i(y3−i) = 0.

3. Let x, y1, y2, D be as in (1). Take λ, µ ∈ k× with λ
µ 6= −1. Let fλ,1, fµ,2 ∈ k(X)× be

as in (2). Then fλ,1+fµ,2 ∈ k(X)× is characterised as a unique element g ∈ k(X)×

such that

div(g) +D ≥ 0, g(y1) = fλ,1(y1), g(y2) = fµ,2(y2).

In particular, λ+ µ ∈ k× is characterised as g(x) ∈ k×.

Proof. (1): For any divisor D of degree ≥ 2g − 2 + 3 on X, then we have l(D) =

l(KX − D) + deg(D) + 1 − g = deg(D) + 1 − g ≥ g + 2 ≥ 2, by the theorem of

Riemann-Roch (Here, KX denotes the canonical divisor of X). For any divisor D on

X with d := l(D) ≥ 2, we write Γ(X,O(D)) = 〈f1, . . . , fd〉k, and take a point P in

the locus “f1f2 · · · fd 6= 0” in X of non-vanishing of the section f1f2 · · · fd such that

P 6∈ Supp(D) (Note that this locus is non-empty since there is a non-constant function

in Γ(X,O(D)) by l(D) ≥ 2). Then we have l(D−P ) < l(D). On the other hand, we have

l(D)−l(D−P ) = l(KX−D)−l(KX−D+P )+1 ≤ 1. Thus, we have l(D−P ) = l(D)−1.
Therefore, by substracting a suitable divisor from a divisor of degree ≥ 2g−2+3, there

is a divisor D on X with l(D) = 2. In the same way, take x ∈ X(k)\Supp(D) such that

there is f ∈ Γ(X,OX(D)) with f(x) 6= 0 (this implies that l(D − x) = l(D) − 1 = 1).

Take y1 ∈ X(k)\(Supp(D) ∪ {x}) such that there is g ∈ Γ(X,OX(D−x)) with g(y1) 6= 0

(this implies that l(D−x−y1) = l(D−x)−1 = 0), and y2 ∈ X(k)\(Supp(D) ∪ {x, y1})
such that there are h1 ∈ Γ(X,OX(D− x)) and h2 ∈ Γ(X,OX(D− y1)) with h1(y2) 6= 0

and h2(y2) 6= 0 (this implies that l(D − x− y2) = l(D − y1 − y2) = 0). The first claim

(1) is proved. The claims (2) and (3) trivially follow from (1).

Proposition 3.12. (Uchida’s Lemma, [AbsTopIII, Proposition 1.3]) Assume

that k be an algebraically closed, and X proper. There exists a functorial (with re-

spect to isomorphisms of the following triples) algorithm for constructing the additive

structure on k(X)× ∪ {0} from the following data:

(a) the (abstract) group k(X)×,
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(b) the set of surjective homomorphisms VX := {ordx : k(X)× � Z}x∈X(k) of the valu-

ation maps at x ∈ X(k), and

(c) the set of the subgroups
{
Uv :=

{
f ∈ k(X)× | f(x) = 1

}
⊂ k(X)×

}
v=ordx∈VX

of

k(X)×.

Proof. From the above data (a), (b), and (c), we reconstruct the additive structure

on k(X)× as follows:

(Step 1): We reconstruct k× ⊂ k(X)× as k× :=
∩
v∈VX ker(v). We also reconstruct

the set X(k) as VX .

(Step 2): For each v = ordx ∈ VX , we have inclusions k× ⊂ ker(v) and Uv ⊂ ker(v)

with k× ∩ Uv = {1}, thus we obtain a direct product decomposition ker(v) = Uv × k×.
Let prv denote the projection ker(v) → k× Then we reconstruct the evaluation map

ker(v) 3 f 7→ f(x) ∈ k× as f(x) := prv(f) for f ∈ ker(v).

(Step 3): We reconstruct divisors (resp. effective divisors) on X as formal finite

sums of v ∈ VX with coefficient Z (resp. Z≥0). By using ordx ∈ VX , we reconstruct the

divisor div(f) for an element f in an abstract group k(X)×.

(Step 4): We reconstruct a (multiplicative) k×-module Γ(X,O(D)) \ {0} for a

divisor D as {f ∈ k(X)× | div(f) +D ≥ 0}. We also reconstruct l(D) ≥ 0 for a divisor

D as the smallest non-negative integer d such that there is an effective divisor E of

degree d on X such that Γ(X,O(D − E)) \ {0} = ∅ (See also the proof of Lemma 3.11

(1)). Note that dimk of Γ(X,O(D)) is not available yet here, since we do not have the

additive structure on {f ∈ k(X)× | div(f) +D ≥ 0} ∪ {0} yet.
(Step 5): For λ, µ ∈ k×, λµ 6= −1 (Here, −1 is the unique element of order 2 in k×),

we take ordx, ordy1 , ordy2 ∈ VX corresponding to x, y1, y2 in Lemma 3.11 (1). Then we

obtain unique fλ,1, fµ,2, g ∈ k(X)× as in Lemma 3.11 (2), (3) from abstract data (a),

(b), and (c). Then we reconstruct the addition λ+ µ ∈ k× of λ and µ as g(x). We also

reconstruct the addition λ+µ := 0 for λ
µ = −1, and λ+0 = 0+λ := λ for λ ∈ k×∪{0}.

These reconstruct the additive structure on k× ∪ {0}.
(Step 6): We reconstruct the addition f + g of f, g ∈ k(X)× ∪ {0} as the unique

element h ∈ k(X)× ∪ {0} such that h(x) = f(x) + g(x) for any ordx ∈ VX with

f, g ∈ ker(ordx) (Here, we put f(x) := 0 for f = 0). This reconstructs the additive

structure on k(X)× ∪ {0}.

§ 3.4. Mono-anabelian Reconstruction of the Base Field and Function

Field.

We continue the notation in Section 3.3 in this subsection. Furthermore, we assume

that k is of characteristic 0.

Definition 3.13.
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1. We assume that X has genus ≥ 1. Let (X ⊂)X be the canonical smooth compact-

ification of X. We define

µẐ(ΠX) := Hom(H2(∆X , Ẑ), Ẑ).

We call µẐ(ΠX) the cyclotome of ΠX as orientation.

2. In the case where the genus of X is not necessarily greater than or equal to 2, we

take a finite étale covering Y � X such that Y has genus ≥ 2, and we define the

cyclotome of ΠX as orientation to be µẐ(ΠX) := [∆X : ∆Y ]µẐ(ΠY ). It does

not depend on the choice of Y in the functorial sense, i.e., For any such coverings

Y � X, Y ′ � X, take Y ′′ � X which factors through Y ′′ � Y � X and

Y ′′ � Y ′ � X. Then the restrictions H2(∆Y , Ẑ) → H2(∆Y ′′ , Ẑ), H2(∆Y ′ , Ẑ) →
H2(∆Y ′′ , Ẑ) (where Y , Y ′, and Y ′′ are the canonical compactifications of Y , Y ′,

and Y ′′ respectively), and taking Hom(−, Ẑ) induce natural isomorphisms [∆X :

∆Y ]µẐ(ΠY )
∼← [∆X : ∆Y ][∆Y : ∆Y ′′ ]µẐ(ΠY ′′) = [∆X : ∆Y ′′ ]µẐ(ΠY ′′) = [∆X :

∆Y ′ ][∆Y ′ : ∆Y ′′ ]µẐ(ΠY ′′)
∼→ [∆X : ∆Y ′ ]µẐ(ΠY ′) (See [AbsTopIII, Remark 1.10.1

(i), (ii)]).

3. For an open subscheme ∅ 6= U ⊂ X, let ∆U � ∆cusp-cent
U (� ∆X) be the maximal

intermediate quotient ∆U � Q � ∆X such that ker (Q� ∆X) is in the center of

Q, and ΠU � Πcusp-cent
U the push-out of ∆U � ∆cusp-cent

U with respect to ∆U ⊂
ΠU . We call them the maximal cuspidally central quotient of ∆U and ΠU

respectively.

Remark 3.13.1. In this subsection, by the functoriality of cohomology with µẐ(Π(−))-

coefficients for an open injective homomorphism of profinite groups ∆Z ⊂ ∆Y , we always

mean multiplying 1
[∆Y :∆Z ] on the homomorphism between the cyclotomes ΠY and ΠZ

(See also [AbsTopIII, Remark 1.10.1 (i), (ii)]).

Proposition 3.14. (Cyclotomic Rigidity for Inertia Subgroups, [AbsTopIII, Propo-

sition 1.4]) Assume that X has genus ≥ 2. Let (X ⊂)X be the canonical smooth com-

pactification of X. Take a non-empty open subscheme U ⊂ X. We have an exact

sequence 1 → ∆U → ΠU → Gk → 1. For x ∈ X(k) \ U(k), put Ux := X \ {x}. Let Ix

denote the inertia subgroup of x in ∆U (it is well-defined up to inner automorphism of

∆U ), which is naturally isomorphic to Ẑ(1).

1. ker (∆U � ∆Ux) and ker (ΠU � ΠUx) are topologically normally generated by the

inertia subgroups of the points of Ux \ U .

2. We have an exact sequence

1→ Ix → ∆cusp-cent
Ux

→ ∆X → 1,
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which induces the Leray spectral sequence Ep,q2 = Hp(∆X , H
q(Ix, Ix))⇒ Hp+q(∆cusp-cent

Ux
, Ix)

(Here, Ix and ∆cusp-cent
Ux

act on Ix by the conjugates). Then the composite

Ẑ = Hom(Ix, Ix) ∼= H0(∆X ,H
1(Ix, Ix)) = E0,1

2

→ E2,0
2 = H2(∆X , H

0(Ix, Ix)) ∼= Hom(µẐ(ΠX), Ix)

sends 1 ∈ Ẑ to the natural isomorphism

(Cyc.Rig. Iner.) µẐ(ΠX)
∼−→ Ix.

(this is a natural identification between “Ẑ(1)” arising from H2 and “Ẑ(1)” arising

from Ix.) Therefere, we obtain a group-theoretic reconstruction of the isomorphism

(Cyc.Rig. Iner.) from the surjection ∆Ux � ∆X (Note that the intermediate quo-

tient ∆Ux � ∆cusp-cent
Ux

� ∆X is group-theoretically characterised). We call the

isomorphism (Cyc.Rig. Iner.) the cyclotomic rigidity for inertia subgroup.

Proof. (1) is trivial. (2): By the definitions, for any intermediate quotient ∆Ux
�

Q � ∆X such that ker (Q� ∆X) is in the center of Q, the kernel ker (Q� ∆X) is

generated by the image of Ix. Thus, we have the exact sequence 1→ Ix → ∆cusp-cent
Ux

→
∆X → 1 (See also [Cusp, Proposition 1.8 (iii)]). The rest is trivial.

Remark 3.14.1. In the case where the genus of X is not necessarily greater than

or equal to 2, we take a finite étale covering Y � X such that Y has genus ≥ 2, and

a point y ∈ Y (k′) lying over x ∈ X(k) for a finite extension k′ of k. Then we have the

cyclotomic rigidity µẐ(ΠY )
∼= Iy by Proposition 3.14. This induces isomorphisms

µẐ(ΠX) = [∆X : ∆Y ]µẐ(ΠY )

1
[∆X :∆Y ]

∼−→ µẐ(ΠY )
∼= Iy = Ix.

We also call this the cyclotomic rigidity for inertia subgroup. It does not depend

on the choice of Y and y in the functorial sense of Definition 3.13 (2), i.e., For such

Y � X, Y ′ � X with y ∈ Y (kY ), y
′ ∈ Y ′(kY ′), take Y ′′ � X with y′′ ∈ Y ′′(kY ′′)

lying over Y, Y ′ and y, y′, then we have the following commutative diagram (See also

Remark 3.13.1)

Ẑ = Hom(Iy, Iy) //

=

��

Hom(µẐ(ΠY ), Iy)

1
[∆Y :∆

Y ′′ ]
∼=
��

Ẑ = Hom(Iy′′ , Iy′′) // Hom(µẐ(ΠY ′′), Iy′′)

Ẑ = Hom(Iy′ , Iy′) //

=

OO

Hom(µẐ(ΠY ′), Iy′).

1
[∆

Y ′ :∆Y ′′ ]
∼=

OO
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For a proper hyperbolic curveX over k, let Jd denote the Picard scheme parametris-

ing line bundles of degree d on X (Note that Jd is a J := J0-torsor). We have a natural

map X → J1 (P 7→ O(P )), which induces ΠX → ΠJ1 (for some basepoint). For

x ∈ X(k), let tx : Gk → ΠJ1 be the composite of the section Gk → ΠX determined

by x and the natural map ΠX → ΠJ1 . The group structure of Picard schemes also

determines a morphism ΠJ1 × · · · (d-times) · · · ×ΠJ1 → ΠJd for d ≥ 1. For any divisor

D of degree d on X such that Supp(D) ⊂ X(k), by forming a Z-linear combination of

tx’s, we have a section tD : Gk → ΠJd .

Lemma 3.15. ([AbsTopIII, Proposition 1.6]) Assume that k is Kummer-faithful,

and that X is proper. Take an open subscheme ∅ 6= U ⊂ X, and let

κU : Γ(U,O×U )→ H1(ΠU , µẐ(k(X))) = H1(ΠU , µẐ(k))
∼= H1(ΠU , µẐ(ΠX))

denote the composite of the Kummer map (for an algebraic closure k(X) of k(X))

and the natural isomorphism µẐ(k)
∼= µẐ(ΠX)(∼= Ẑ(1)) (which comes from the scheme

theory).

1. κU is injective.

2. (See also [Cusp, Proposition 2.3 (i)]) For any divisor D of degree 0 on X such

that Supp(D) ⊂ X(k), the section tD : Gk → ΠJ is equal to (up to conjugates by

∆X) the section determined by the origin O of J(k) if and only if the divisor D is

principal.

3. (See also [Cusp, Proposition 2.1 (i)]) We assume that U = X \ S, where S ⊂ X(k)

is a finite set. Then the quotient ΠU � Πcusp-cent
U induces an isomorphism

H1(Πcusp-cent
U , µẐ(ΠX))

∼→ H1(ΠU , µẐ(ΠX)).

4. (See also [Cusp, Proposition 1.4 (ii)]) We have an isomorphism

H1(ΠX , µẐ(ΠX)) ∼= (k×)∧,

where (k×)∧ denotes the profinite completion of k×.

5. (See also [Cusp, Proposition 2.1 (ii)]) We have a natural exact sequence induced by

the restrictions to Ix (x ∈ S):

0→ H1(ΠX ,H
0(
∏
x∈S

Ix, µẐ(ΠX)))→ H1(Πcusp-cent
U , µẐ(ΠX)))→

⊕
x∈S

H0(ΠX ,H
1(Ix, µẐ(ΠX))).

The cyclotomic rigidity isomorphism (Cyc.Rig. Iner.) µẐ(ΠX) ∼= Ix in Propo-

sition 3.14 induces an isomorphism

H0(ΠX ,H
1(Ix, µẐ(ΠX))) = HomΠX

(Ix, µẐ(ΠX)) ∼= Ẑ
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(Hence, note that we can use the above isomorphism for a group-theoretic recon-

struction later). Then by the isomorphisms in (3) and (4) and the above cyclotomic

rigidity isomorphism, the above exact sequence is identified with

1→ (k×)∧ → H1(ΠU , µẐ(ΠX))→
⊕
x∈S

Ẑ.

6. The image of Γ(U,O×U ) in H1(ΠU , µẐ(ΠX))/(k×)∧ via κU is equal to the inverse

image in H1(ΠU , µẐ(ΠX))/(k×)∧ of the submodule P ′U of
⊕

x∈S Z (⊂
⊕

x∈S Ẑ) de-
termined by the principal divisors with support in S.

Remark 3.15.1. (A general remark to the readers who are not familiar with the

culture of anabelian geometers) In the above lemma, note that we are currently studying

in a scheme theory here, and that the natural isomorphism µẐ(k)
∼= µẐ(ΠX) comes from

the scheme theory. A kind of “general principle” of studying anabelian geometry is like

this:

1. First, we study some objects in a scheme theory to obtain group-theoretic properties

or group-theoretic characterisations.

2. Next, by using the group-theoretic properties or group-theoretic characterisations

obtained in the first step, we formulate group-theoretic reconstruction algorithms,

and we cannot use a scheme theory in this situation.

When we consider cyclotomes as abstract abelian groups with Galois action (i.e., when

we are working in the group theory), we only know a priori that two cyclotomes are

abstractly isomorphic (this is the definition of the cyclotomes), the way to identify them

is not given, and there are Ẑ×-ways (or we have a Ẑ×-torsor) for the identification (i.e.,

we have Ẑ×-indeterminacy for the choice). It is important to note that the cylotomic

rigidity isomorphism (Cyc.Rig. Iner.) is constructed in a purely group theoretic manner,

and we can reconstruct the identification even when we are working in the group theory.

See also the (Step 3) in Theorem 3.17.

Proof. (1): By the assumption that k is Kummer-faithful, k(X) is also Kummer-

faithful by Lemma 3.2 (3).

(2): The origin O ∈ J determines a section sO : Gk → ΠJ , and, by taking (in

the additive expression) the substraction ηD := tD − sO : Gk → ∆J (⊂ ΠJ ) (i.e., the

quotient ηD := tD/sO in the multiplicative expression), which is a 1-cocycle, of two

sections tD, sO : Gk → ΠJ , we obtain a cohomology class [ηD] ∈ H1(Gk,∆J). On the

other hand, the Kummer map for J(k) induces an injection (J(k) ⊂)J(k)∧ ⊂ H1(k,∆J),

since k is Kummer-faithful (Here, J(k)∧ denotes the profinite completion of J(k)). Then
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we claim that [D] = [O(D)] ∈ J(k) is sent to ηD ∈ H1(Gk,∆J ) (See also [NTs, Lemma

4.14] and [Naka, Claim (2.2)]). Let αD : J → J denote the morphism which sends x to

x− [D], and for a positive integer N , let JD,N → J be the pull-back of αD : J → J via

the morphism [N ] : J → J of multiplication by N :

JD,N

��

// J

[N ]

��
J \ {O} �

� // J
αD // J.

The origin O ∈ J([N ]→ J) corresponds to a k-rational point 1
N [D] ∈ JD,N (k) lying over

[D] ∈ J(k). By the k-rationality of 1
N [D], we have tD(σ) ∈ ΠJD,N (⊂ ΠJ) for σ ∈ Gk.

The inertia subgroup IO (⊂ ∆J\{O}) of the origin O ∈ J(� JD,N ) determines a system

of geometric points QD,N ∈ JD,N (k) corresponding to the divisor 1
N (−[D]) for N ≥ 1

such that IO always lies over QD,N . The conjugation conj(tD(σ)) ∈ Aut(∆J\{O})

by tD(σ) coincides with the automorphism induced by σ∗N := id ×Spec k Spec (σ−1) ∈
Aut((J \ {O}) ⊗k k) (Note that a fundamental group and the corresponding cover-

ing transformation group are opposite groups to each other). Thus, tD(σ)IOtD(σ)
−1

gives an inertia subgroup over σ∗N (QD,N ) = σ(QD,N ). On the other hand, by def-

inition, we have tD(σ)zOtD(σ)
−1 = tD(σ)sO(σ)

−1sO(σ)zOsO(σ)
−1sO(σ)tD(σ)

−1 =

ηD(σ)z
χcyc(σ)
O ηD(σ)

−1 for a generator zO of IO, hence, tD(σ)IOtD(σ)
−1 is an iner-

tia subgroup over νN (ηD(σ)
−1)(QD,N ), where νN : ∆J � Aut((J \ J [N ]) ⊗k k

[N ]→
(J \ {O})⊗k k)opp (Here, (−)opp denotes the opposite group. Note that a fundamental

group and the corresponding covering transformation group are opposite groups to each

other). Therefore, we have σ(QD,N ) = νN (ηD(σ)
−1)(QD,N ). By noting the natural

isomorphism Aut

(
(J \ J [N ])⊗k k

[N ]→ (J \ {O})⊗k k
)
∼= J [N ] given by γ 7→ γ(O), we

obtain that

σ

(
1

N
(−[D])

)
= −νN (ηD(σ))(O) +

1

N
(−[D]) .

Hence we have σ
(

1
N [D]

)
− 1

N [D] = νN (ηD(σ))(O). This gives us the claim. The

assertion (2) follows from this claim.

(3): We have the following commutative diagram:

0 // H1(Gk,H
0(∆cusp-cent

U )) //

��

H1(Πcusp-cent
U ) //

��

H0(Gk,H
1(∆cusp-cent

U ))

��
0 // H1(Gk,H

0(∆U )) // H1(ΠU ) // H0(Gk, H
1(∆U )),

where the horizontal sequences are exact, and we abbreviate the coefficient µẐ(ΠU ) by
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the typological reason. Here, we have

H1(Gk,H
0(∆U , µẐ(ΠX))) = H1(Gk, µẐ(ΠX)) = H1(Gk,H

0(∆cusp-cent
U , µẐ(ΠX))),

and

H0(Gk,H
1(∆U , µẐ(ΠX))) = H0(Gk,∆

ab
U ) = H0(Gk,H

1(∆cusp-cent
U , µẐ(ΠX))).

Thus by combining these, the assertion (3) is proved.

(4): By the exact sequence

0→ H1(Gk,H
0(∆X , µẐ(ΠX)))→ H1(ΠX , µẐ(ΠX))→ H0(Gk,H

1(∆X , µẐ(ΠX))) (∼= H0(Gk,∆
ab
X )),

and H1(Gk,H
0(∆X , µẐ(ΠX))) = H1(Gk, µẐ(ΠX)) ∼= (k×)∧, it suffices to show that

H0(Gk,∆
ab
X ) = 0. This follows from (∆ab

X )Gk ∼= T (J)Gk = 0, since ∩NNJ(k) = 0 by

the assumption that k is Kummer-faithful (Here, T (J) denotes the Tate module of J ,

and J [N ] is the group of N -torsion points of J).

(5) is trivial by notingH1(ΠX ,H
0(
∏
x∈S Ix, µẐ(ΠX))) = H1(ΠX , µẐ(ΠX)) ∼= (k×)∧

by (4).

(6) is trivial.

Let kNF denote the algebraic closure of Q in k (Here, NF stands for “number field”).

If Xk is defined over kNF, we say that X is an NF-curve. For an NF-curve X, points

of X(k) (resp. rational functions on Xk, constant rational functions (i.e., k ⊂ k(X)))

which descend to kNF, we call them NF-points (resp. NF-rational functions, NF-

constants) on Xk.

Lemma 3.16. ([AbsTopIII, Proposition 1.8]) Assume that k is Kummer-faithful.

Take an open subscheme ∅ 6= U ⊂ X, and put S := X \ U . We also assume that U is

an NF-curve (hence X is also an NF-curve). Let PU ⊂ H1(ΠU , µẐ(ΠX)) denote the in-

verse image of P ′U ⊂
⊕

x∈S Z (⊂
⊕

x∈S Ẑ) via the homomorphism H1(ΠU , µẐ(ΠX)) →⊕
x∈S Ẑ constructed in Lemma 3.15.

1. an element η ∈ PU is the Kummer class of a non-constant NF-rational function

if and only if there exist a positive integer n and two NF-points x1, x2 ∈ U(k′)

with a finite extension k′ of k such that the restrictions (nη)|xi := s∗xi
(nη) ∈

H1(Gk′ , µẐ(ΠX)), where sxi : Gk′ → ΠU is the section corresponding to xi for

i = 1, 2, satisfy (in the additive expression) (nη)|x1 = 0 and (nη)|x2 6= 0 (i.e., = 1

and 6= 1 in the multiplicative expression).

2. Assume that there exist non-constant NF-rational functions in Γ(U,O×U ). Then an

element η ∈ PU ∩H1(Gk, µẐ(ΠX)) ∼= (k×)∧ is the Kummer class of an NF-constant
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in k× if and only if there exist a non-constant NF-rational function f ∈ Γ(U,O×U )
and an NF-point x ∈ U(k′) with a finite extension k′ of k such that κU (f)|x = η|x
in H1(Gk′ , µẐ(ΠX)).

Proof. Let XNF be a model of Xk over kNF. Then any non-constant rational

function on XNF determines a morphism XNF → P1
kNF

, which is non-constant i.e.,

XNF(kNF)→ P1
kNF

(kNF) is surjective. Then the lemma follows from the definitions.

Theorem 3.17. (Mono-anabelian Reconstruction of NF-Portion, [AbsTopIII,

Theorem 1.9]) Assume that k is sub-p-adic, and that X is a hyperbolic orbicurve of

strictly Belyi type. Let X be the canonical smooth compactification of X. From the

extension 1 → ∆X → ΠX → Gk → 1 of profinite groups, we can functorially group-

theoretically reconstruct the NF-rational function field kNF(X) and NF-constant field

kNF as in the following. Here, the functoriality is with respect to open injective homo-

morphisms of extension of profinite groups (See Remark 3.13.1), as well as with respect

to homomorphisms of extension of profinite groups arising from a base change of the

base field.

(Step 1) By Belyi cuspidalisation (Theorem 3.8), we group-theoretically reconstruct the set

of surjections {ΠU � ΠX}U for open sub-NF-curves ∅ 6= U ⊂ X and the decompo-

sition groups Dx in ΠX of NF-points x. We also group-theoretically reconstruct the

inertia subgroup Ix := Dx ∩∆U .

(Step 2) By cyclotomic rigidity for inertia subgroups (Proposition 3.14 and Remark 3.14.1),

we group-theoretically obtain isomorphism Ix
∼→ µẐ(ΠX) for any x ∈ X(k), where

Ix is group-theoretically reconstructed in (Step 1).

(Step 3) By the inertia subgroups Ix reconstructed in (Step 1), we group-theoretically recon-

struct the restriction homomorphism H1(ΠU , µẐ(ΠX)) → H1(Ix, µẐ(ΠX)). By the

cyclotomic rigidity isomorphisms in (Step 2), we have an isomorphism H1(Ix, µẐ(ΠX)) ∼=
Ẑ. Therefore, we group-theoretically obtain an exact sequence

1→ (k×)∧ → H1(ΠU , µẐ(ΠX))→
⊕
x∈S

Ẑ

in Lemma 3.15 (5) (Note that, without the cyclotomic rigidity Proposition 3.14, we

would have Ẑ×-indeterminacies on each direct summand of
⊕

x∈S Ẑ, and that the

reconstruction algorithm in this theorem would not work). By the characterisation

of principal cuspidal divisors (Lemma 3.15 (2), and the decomposition groups in

(Step 1)), we group-theoretically reconstruct the subgroup

PU ⊂ H1(ΠU , µẐ(ΠU ))

of principal cuspidal divisors.
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(Step 4) Note that we already group-theoretically reconstructed the restriction map η|xi in

Lemma 3.16 by the decomposition group Dxi reconstructed in (Step 1). By the char-

acterisations of non-constant NF-rational functions and NF-constants in Lemma 3.16

(1), (2) in PU reconstructed in (Step 3), we group-theoretically reconstruct the sub-

groups (via Kummer maps κU ’s in Lemma 3.15)

k
×
NF ⊂ kNF(X)× ⊂ lim−→

U

H1(ΠU , µẐ(ΠX)),

where U runs through the open sub-NF-curves of X ×k k′ for a finite extension k′

of k.

(Step 5) In (Step 4), we group-theoretically reconstructed the datum kNF(X)× in Proposi-

tion 3.12 (a). Note that we already reconstructed the data ordx’s in Proposition 3.12

(b) as the component at x of the homomorphism H1(ΠU , µẐ(ΠX)) →
⊕

x∈S Ẑ re-

constructed in (Step 3). Note also that we already group-theoretically reconstructed

the evaluation map f 7→ f(x) in Proposition 3.12 as the restriction map to the

decomposition group Dx reconstructed in (Step 1). Thus, we group-theoretically ob-

tain the data Uv’s in Proposition 3.12 (c). Therefore, we can apply Uchida’s Lemma

(Proposition 3.12), and we group-theoretically reconstruct the additive structures on

k
×
NF ∪ {0}, kNF(X)× ∪ {0}.

Proof. The theorem immediately follows from the group-theoretic algorithms re-

ferred in the statement of the theorem. The functoriality immediately follows from the

described constructions.

Remark 3.17.1. The input data of Theorem 3.17 is the extension 1 → ∆X →
ΠX → Gk → 1 of profinite groups. If k is a number field or a non-Archimedean local

field, then we need only the profinite group ΠX as an input datum by Proposition 2.2

(1), and Corollary 2.4. (Note that we have a group-theoretic characterisation of cuspidal

decomposition groups for the number field case as well by Remark 2.9.2.)

Remark 3.17.2. (Elementary Birational Analogue, [AbsTopIII, Theorem 1.11])

Let ηX denote the generic point ofX. If k is l-cyclotomically full for some l, then we have

the characterisation of the cuspidal decomposition groups in ΠηX at (not only NF-points

but also) all closed points of X (See Remark 2.9.2). Therefere, under the assumption

that k is Kummer-faithful (See also Lemma 3.2 (2)), if we start not from the extension

1 → ∆X → ΠX → Gk → 1, but from the extension 1 → ∆ηX → ΠηX → Gk → 1,

then the same group-theoretic algorithm (Step 2)-(Step 5) works without using Belyi

cuspidalisation (Theorem 3.8) or (GC) (See Theorem B.1), and we can obtain (not only
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the NF-rational function field kNF(X) but also) the rational function field k(X) and

(not only the NF-constant field kNF but also) the constant field k (Note also that we

do not use the results in Section 3.2, hence we have no circular arguments here).

Remark 3.17.3. (Slimness of Gk for Kummer-Faithful k, [AbsTopIII, a part of

Theorem 1.11]) By using the above Remark 3.17.2 (Note that we do not use the results

in Section 3.2 to show Remark 3.17.2, hence we have no circular arguments here), we

can show that Gk := Gal(k/k) is slim for any Kummer-faithful field k as follows (See

also [pGC, Lemma 15.8]): Let Gk′ ⊂ Gk be an open subgroup, and take g ∈ ZGk
(Gk′).

Assume that g 6= 1. Then we have a finite Galois extension K of k′ such that g : K
∼→ K

is not an identity on K. We have K = k′(α) for some α ∈ K. Take an elliptic E over

K with j-invariant α. Put X := E \ {O}, where O is the origin of E. Put also

Xg := X ×K,g K i.e., the base change by g : K
∼→ K. The conjugate by g defines

an isomorphism ΠX
∼→ ΠXg . This isomorphism is compatible to the quotients to GK ,

since g is in ZGk
(Gk′). Thus, by the functoriality of the algorithm in Remark 3.17.2,

this isomorphism induces an K-isomorphism K(X)
∼→ K(Xg)(= K(X) ⊗K,g K) of

function fields. Therefore, we have g(α) = α by considering the j-invariants. This is a

contradiction.

Remark 3.17.4. (See also [AbsTopIII, Remark 1.9.5 (ii)], and [IUTchI, Remark

4.3.2]) The theorem of Neukirch-Uchida (which is a bi-anabelian theorem) uses the

data of the decomposition of primes in extensions of number fields. Hence, it has no

functoriality with respect to the base change from a number field to non-Archimedean

local fields. On the other hand, (mono-anabelian) Theorem 3.17 has the functoriality

with respect to the base change of the base fields, especially from a number field to

non-Archimedean local fields. This is crucial for the applications to inter-universal

Teichmüller theory (For example, see the beginning of 10, Example 8.12 etc.). See also

[IUTchI, Remark 4.3.2 requirements (a), (b), and (c)].

In inter-universal Teichmüller theory, we will treat local objects (i.e., objects over

local fields) which a priori do not come from a global object (i.e., an object over a

number field), in fact, we completely destroy the above data of “the decomposition of

primes” (Recall also the “analytic section” of SpecOK � SpecOFmod
). Therefore, it is

crucial to have a mono-anabelian reconstruction algorithm (Theorem 3.17) in a purely

local situation for the applications to inter-universal Teichmüller theory. It also seems

worthwhile to give a remark that such a mono-anabelian reconstruction algorithm in a

purely local situation got available by the fact that the bi-anabelian theorem in [pGC]

was proved for a purely local situation, unexpectedly at that time to many people from

a point of view of analogy with Tate conjecture!
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Definition 3.18. Let k be a finite extension of Qp. We define

µQ/Z(Gk) := lim−→
H⊂Gk: open

(Hab)tors, µẐ(Gk) := Hom(Q/Z, µQ/Z(Gk)),

where the transition maps are given by Verlangerung (or transfer) maps (See also the

proof of Proposition 2.1 (6) for the definition of Verlangerung map). We call them the

cyclotomes of Gk.

Remark 3.18.1. Similarly as Remark 3.13.1, in this subsection, by the functorial-

ity of cohomology with µQ/Z(G(−))-coefficients for an open injective homomorphism of

profinite groups Gk′ ⊂ Gk, we always mean multiplying 1
[Gk:Gk′ ]

on the homomorphism

between the cyclotomes of Gk and Gk′ (See also [AbsTopIII, Remark 3.2.2]). Note that

we have a commutative diagram

H2(Gk, µQ/Z(Gk))
∼= //

∼=1
[Gk:G

k′ ]
·restriction

��

Q/Z

=

��
H2(Gk′ , µQ/Z(Gk′))

∼= // Q/Z,

where the horizontal arrows are the isomorphisms given in Proposition 2.1 (7).

Corollary 3.19. (Mono-anabelian Reconstruction over an MLF, [AbsTopIII,

Corollary 1.10, Proposition 3.2 (i), Remark 3.2.1]) Assume that k is a non-Archimedean

local field, and that X is a hyperbolic orbicurve of strictly Belyi type. From the profinite

group ΠX , we can group-theoretically reconstruct the following in a functorial manner

with respect to open injections of profinite groups:

1. the set of the decomposition groups of all closed points in X,

2. the function field k(X) and the constant field k, and

3. a natural isomorphism

(Cyc.Rig. LCFT) µẐ(Gk)
∼→ µẐ(O

�(ΠX)),

where we put µẐ(O
�(ΠX)) := Hom(Q/Z, κ(k×NF)) for κ : k

×
NF ↪→ lim−→U

H1(ΠU , µẐ(ΠX)).

We call the isomorphism (Cyc.Rig. LCFT) the cyclotomic rigidity via LCFT or

classical cyclotomic rigidity (LCFT stands for “local class field theory”).

Proof. (1) is just a restatement of Corollary 3.9.

(2): By Theorem 3.17 and Corollary 2.4, we can group-theoretically reconstruct the

fields kNF(X) and kNF. On the other hand, by the natural isomorphismH2(Gk, µẐ(Gk))
∼→
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Ẑ group-theoretically constructed in Proposition 2.1 (7) (with Hom(Q/Z,−)) and the

cup product, we group-theoretically construct isomorphisms H1(Gk, µẐ(Gk))
∼→

Hom(H1(Gk, Ẑ), Ẑ) ∼= Gab
k . We also have group-theoretic constructions of a surjec-

tion Gab
k � Gab

k /Im(Ik → Gab
k ) and an isormorphism Gab

k /Im(Ik → Gab
k ) ∼= Ẑ by

Proposition 2.1 (4a) and Proposition 2.1 (5) respectively (See also Remark 2.1.1).

Hence, we group-theoretically obtain a surjection H1(Gk, µẐ(Gk)) � Ẑ. We have

an isomorphism µẐ(Gk)
∼= µẐ(ΠX) well-defined up to multiplication by Ẑ×. Then

this induces a surjection H1(Gk, µẐ(ΠX)) � Ẑ well-defined up to multiplication by

Ẑ×. We group-theoretically reconstruct the field k as the completion of the field

(H1(Gk, µẐ(ΠX))∩k×NF)∪{0} (induced by the field structure of k
×
NF∪{0}) with respect

to the valuation determined by the subring of (H1(Gk, µẐ(ΠX))∩ k×NF)∪{0} generated
by ker

{
H1(Gk, µẐ(ΠX))� Ẑ

}
∩ k×NF. The reconstructed object is independent of the

choice of an isomorphism µẐ(Gk)
∼= µẐ(ΠX). By taking the inductive limit of this con-

struction with respect to open subgroups of Gk, we group-theoretically reconstruct k.

Finally, we group-theoretically reconstruct k(X) by k(X) := k ⊗kNF
kNF(X).

(3): We put µQ/Z(O
�(ΠX)) := µẐ(O

�(ΠX)) ⊗Ẑ Q/Z. We group-theoretically re-

construct Gur = Gal(kur/k) by Proposition 2.1 (4a). Then by the same way as Propo-

sition 2.1 (7), we have group-theoretic constructions of isomorphisms:

H2(Gk, µQ/Z(O
�(ΠX)))

∼→ H2(Gk, κ(k
×
))
∼←− H2(Gur, κ((kur)×))

∼→ H2(Gur,Z) ∼←− H1(Gur,Q/Z) = Hom(Gur,Q/Z) ∼→ Q/Z.

Thus, by taking Hom(Q/Z,−), we obtain a natural isomorphismH2(Gk, µẐ(O
�(ΠX)))

∼→
Ẑ. By imposing the compatibility of this isomorphism with the group-theoretically con-

structed isomorphism H2(Gk, µẐ(Gk))
∼→ Ẑ in (2), we obtain a natural isomorphism

µẐ(Gk)
∼→ µẐ(O

�(ΠX)).

Remark 3.19.1. ([AbsTopIII, Corollary 1.10 (c)]) Without assuming that X is

of strictly Belyi type, we can construct an isomorphism µẐ(Gk)
∼→ µẐ(ΠX) (cf. Corol-

lary 3.19 (3)). However, the construction needs technically lengthy reconstruction algo-

rithms of the graph of special fiber ([profGC, §1–5], [AbsAnab, Lemma 2.3]. See also

[SemiAnbd, Theorem 3.7, Corollary 3.9] Proposition 6.6 for the reconstruction without

Galois action in the case where a tempered structure is available) and the “rational pos-

itive structure” of H2 (See also [AbsAnab, Lemma 2.5 (i)]), where we need Raynaud’s

theory on “ordinary new part” of Jacobians (See also [AbsAnab, Lemma 2.4]), though

it has an advantage of no need of [pGC]. See also Remark 6.12.2.

Remark 3.19.2. ([AbsTopIII, Proposition 3.2, Proposition 3.3]) For a topological

monoid (resp. topological group) M with continuous Gk-action, which is isomorphic to

O�

k
(resp. k

×
) compatible with the Gk-action, we put µẐ(M) := Hom(Q/Z,M×)) and
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µQ/Z(M) := µẐ(M)⊗Ẑ Q/Z. We call them the cyclotome of a topological monoid

M . We also put Mur := Mker(G→Gur). We can canonically take the generator of

Mur/M× ∼= N (resp. the generator of Mur/M× up to {±1}) to obtain an isomorphism

(Mur)gp/(Mur)× ∼= Z (resp. an isomorphism (Mur)gp/(Mur)× ∼= Z well-defined up to

{±1}). Then by the same way as Corollary 3.19 (3), we have

H2(Gk, µQ/Z(M))
∼→ H2(Gk,M

gp)
∼←− H2(Gur, (Mur)gp)

∼→ H2(Gur, (Mur)gp/(Mur)×)
∼→
(∗)

H2(Gur,Z) ∼←− H1(Gur,Q/Z) = Hom(Gur,Q/Z) ∼→ Q/Z,

where the isomorphism H2(Gur, (Mur)gp/(Mur)×)
∼→
(∗)

H2(Gur,Z) is canonically defined

(resp. well-defined up to {±1}), as noted above. Then we have a canonical isomorphism

(resp. an isomorphism well-defined up to {±1})

(Cyc.Rig. LCFT2) µẐ(Gk)
∼→ µẐ(M),

by the same way as in Corollary 3.19 (3). We also call the isomorphism (Cyc.Rig. LCFT2)

the cyclotomic rigidity via LCFT or classical cyclotomic rigidity. We also obtain

a canonical homomorphism (resp. a homomorphism well-defined up to {±1})

M ↪→ lim−→
J⊂G: open

H1(J, µẐ(M)) ∼= lim−→
J⊂G: open

H1(J, µẐ(Gk)),

by the above isomorphism, where the first injection is the canonical injection (The nota-

tion � in O�

k
= O×

k
· (uniformiser)N indicates that the “direction” N (∼= (uniformiser)N)

of Z (∼= (uniformiser)Z) (or a generator of Z) is chosen, compared to k
×

= O×
k
·

(uniformiser)Z, which has {±1}-indeterminacy of choosing a “direction” or a generator

of Z (∼= (uniformiser)Z). In the non-resp’d case (i.e., the O�-case), the above canonical

injection induces an isomorphism

M
Kum
∼→ O�

k
(ΠX),

where O�

k
(ΠX) denotes the ind-topological monoid determined by the ind-topological

field reconstructed by Corollay 3.19. We call this isomprhism the Kummer isomor-

phism for M .

We can also consider the case where M is an topological group with Gk-action,

which is isomorphic to O×
k

compatible with the Gk-action. Then in this case, we have

an isomorphism µẐ(Gk)
∼→ µẐ(M) and an injection M ↪→ lim−→J⊂G: open

H1(J, µẐ(Gk)),

which are only well-defined up to Ẑ×-multiple (i.e., there is no rigidity).

It seems important to give a remark that we use the value group portion (i.e., we

use O�, not O×) in the construction of the cyclotomic rigidity via LCFT. In inter-

universal Teichmüller theory, not only the existence of reconstruction algorithms, but
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also the contents of reconstruction algorithms are important, and whether or not we

use the value group portion in the algorithm is crucial for the constructions in the final

multiradial algorithm in inter-universal Teichmüller theory. See also Remark 9.6.2,

Remark 11.4.1, Propositin 11.5, and Remark 11.11.1.

§ 3.5. On the Philosophy of Mono-analyticity and Arithmetic

Holomorphicity.

In this subsection, we explain Mochizuki’s philosophy of mono-analyticity and arith-

metic holomorphicity, which is closely related to inter-universality.

Let k be a finite extension of Qp, k an algebraic closure of k, and k′(⊂ k) a finite

extension of Qp. It is well-known that, at least for p 6= 2, the natural map

(nonGC for MLF)

Isomtopological fields(k/k, k/k
′) ↪→ Isomprofinite groups(Gal(k/k′),Gal(k/k))

(scheme theory) (group theory)

is not bijective (See [NSW, Chap. VII, §5, p.420–423]. See also [AbsTopI, Corollary

3.7]). This means that there exists an automorphism of Gk := Gal(k/k) which does

not come from an isomorphism of topological fields (i.e., does not come from a scheme

theory). In this sense, by treating Gk as an abstract topological group, we can go outside

of a scheme theory. (A part of) Mochizuki’s philosophy of arithmetically holomor-

phicity and mono-analyiticity is to consider the image of the map (nonGC for MLF)

as arithmetically holomorphic, and the right hand side of (nonGC for MLF) as

mono-analytic (Note that this is a bi-anabelian explanation, not a mono-anabelian

explanation (cf. Remark 3.4.4) for the purpose of the reader’s easy getting the feeling.

We will see mono-anabelian one a little bit later). The arithmetic holomorphicity versus

mono-analyticity is an arithmetic analougue of holomorphic structure of C versus the

undeyling analytic strucutre of R2(∼= C).
Note that Gk has cohomological dimension 2 like C is two-dimensional as a topo-

logical manifold. It is well-known that this two-dimensionality comes from the exact

sequence 1 → Ik → Gk → ẐFrobk → 1 and that both of Ik and ẐFrobk have cohomo-

logical dimension 1. In the abelianisation, these groups correspond to the unit group

and the value group respectively via the local class field theory. Proposition 2.1 (2d)

says that we can group-theoretically reconstruct the multiplicative group k× from the

abstract topological group Gk. This means that we can see the multiplicative struc-

ture of k in any scheme theory, in other words, the multiplicative structure of k is

inter-universally rigid. However, we cannot group-theoretically reconstruct the field k

from the abstract topological group Gk, since there exists a non-scheme theoretic au-

tomorphism of Gk as mentioned above. In other words, the additive structure of k is
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inter-universally non-rigid. Proposition 2.1 (5) also says that we can group-theoretically

reconstruct Frobenius element Frobk in ẐFrobk(� Gk) from the abstract topological

group Gk, and the unramified quotient ẐFrobk corresponds to the value group via the

local class field theory. This means that we can detect the Frobenius element in any

scheme theory. In other words, the unramified quotient ẐFrobk and the value group

Z(� k×) are inter-universally rigid. However, there exists automorphisms of the topo-

logical group Gk which do not preserve the ramification filtrations (See also [AbsTopIII,

Remark 1.9.4]), and the ramification filtration (with upper numberings) corresponds

to the filtration (1 + mnk )n of the unit group via the local class field theory, where mk

denotes the maximal ideal of Ok. In other words, the inertia subgroup Ik and the unit

group O×k are inter-universally non-rigid (We can also directly see that the unit group

O×k is non-rigid under the automorphism of topological group k× without the class field

theory). In summary, one dimension of Gk or k× (i.e., the unramified quotient and the

value group) is inter-universally rigid, and the other dimension (i.e., the inertia subgroup

and the unit group) is not. Thus, Mochizuki’s philosophy of arithmetic holomorphicity

and mono-analyticity regards a non-scheme theoretic automorphism of Gk as a kind

of an arithmetic analogue of the Teichmüller dilation of the undeyling analytic

strucutre of R2(∼= C) (See also [Pano, Fig. 2.1] instead of the poor picture below):

↑  ↑
→ −−−−−−−−−→

Note that it is a theatre of encounter of the anabelian geometry, the Te-

ichmüller point of view, the differential over F1 (See Remark 1.6.1 and Lemma 1.9)

and the Hodge-Arakelov theory (See Appendix A), which gives rise a Diophan-

tine consequence!

Note also that [QpGC, Theorem 4.2] says that if an automorphisms of Gk preserves

the ramification filtration, then the automorphism arises from an automorphism of k/k.

This means that when we rigidify the portion corresponding to the unit group (i.e.,

non-rigid dimension of Gk), then it becomes arithmetically holomorphic i.e., [QpGC,

Theorem 4.2] supports the philosophy. Note also that we have C× ∼= S1 × R>0, where

we put S1 := O×C ⊂ C× (See Section 0.2), and that the unit group S1 is rigid and the

“value group” R>0 is non-rigid under the automorphisms of the topological group C×

(Thus, the rigidity and non-rigidity for unit group and “value group” in the Archimedean

case are opposite to the non-Archimedean case).

Let X be a hyperbolic orbicurve of strictly Belyi type over a non-Archimedean

local field k. Corollary 3.19 says that we can group-theoretically reconstruct the field k

from the abstract topological group ΠX . From this mono-anabelian reconstruction the-

orem, we obtain one of the fundamental observations of Mochizuki: ΠX or equivalently

the outer action Gk → Out(∆X) (and the actions ΠX y k,Ok, O
�

k
, O×

k
) is arithmeti-
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cally holomorphic, and Gk (and the actions Gk y O�

k
, O×

k
on multiplicative monoid

and multiplicative group) is mono-analytic (thus, taking the quotient ΠX 7→ Gk is a

“mono-analyticisation”) (cf. Section 0.2 for the notation O�

k
). In other words, the outer

action of Gk on ∆X rigidifies the “non-rigid dimension” of k×. We can also regard X

as a kind of “tangent space” of k, and it rigidifies k×. Note also that, in the p-adic

Teichmüller theory (See [pOrd] and [pTeich]), a nilpotent ordinary indigenous bundle

over a hyperbolic curve in positive characteristic rigidifies the non-rigid p-adic deforma-

tions. In the next section, we study an Archimedean analogue of this rigidifying action.

In inter-universal Teichmüller theory, we study number field case by putting together

the local ones. In the analogy between p-adic Teichmüller theory and inter-universal

Teichmüller theory, a number field corresponds to a hyperbolic curve over a perfect field

of positive characteristic, and a once-punctured elliptic curve over a number field corre-

sponds to a nilpotent ordinary indigenous bundle over a hyperbolic curve over a perfect

field of positive characteristic. We will deepen this analogy later such that log-link

corresponds to a Frobenius endomorphism in positive characteristic, a vertical line of

log-theta-lattice corresponds to a scheme theory in positive characteristic, Θ-link corre-

sponds to a mixed characteristic lifting of ring of Witt vectors pn/pn+1 ; pn+1/pn+2, a

horizontal line of log-theta-lattice corresponds to a deformation to mixed characteristic,

and a log-theta-lattice corresponds to a canonical lifting of Frobenius (cf. Section 12.1).

In short, we obtain the following useful dictionaries:

rigid ẐFrobk value group multiplicative structure of k S1(⊂ C×)

non-rigid Ik unit group additive structure of k R>0(⊂ C×)

C field k ΠX ΠX y k,Ok, O
�

k
, O×

k
arith. hol.

R2(∼= C) multiplicative group k× Gk Gk y O�

k
, O×

k
mono-an.
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inter-universal Teich. p-adic Teich.

number field hyperbolic curve of pos. char.

onece-punctured ell. curve nilp. ord. indigenous bundle

log-link Frobenius in pos. char.

vertical line of log-theta-lattice scheme theory in pos. char.

Θ-link lifting pn/pn+1 ; pn+1/pn+2

horizontal line of log-theta-lattice deformation to mixed. char.

log-theta-lattice canonical lift of Frobenius

See also [AbsTopIII, §I.3] and [Pano, Fig. 2.5]. Finally, we give a remark that

separating additive and multiplicative structures is also one of the main themes of inter-

universal Teichmüller theory (cf. Section 10.4 and Section 10.5).

§ 4. The Archimedean Theory — Formulated Without Reference to a

Specific Model C.

In this section, we introduce a notion of Aut-holomorphic space to avoid a spe-

cific fixed local referred model of C (i.e., “the C”) for the formulation of holomorphic-

ity, i.e., “model-implicit” approach. Then we study an Archimedean analogue mono-

anabelian reconstruction algorithms of Section 3, including elliptic cuspidalisation, and

an Archimedean analogue of Kummer theory.

§ 4.1. Aut-Holomorphic Spaces.

Definition 4.1. ([AbsTopIII, Definition 2.1])

1. Let X,Y be Riemann surfaces.

(a) Let AX denote the assignment, which assigns to any connected open subset

U ⊂ X the group AX(U) := Authol(U) := {f : U
∼→ U holomorphic} ⊂

Aut(U top) := {f : U
∼→ U homeomorphic}.

(b) Let U be a set of connected open subset of X such that U is a basis of the

topology of X and that for any connected open subset V ⊂ X, if V ⊂ U ∈ U ,
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then V ∈ U . We call U a local structure on the underlying topological space

Xtop.

(c) We call a map f : X → Y between Riemann surfaces an RC-holomorphic

morphism if f is holormophic or anti-holomorphic at any point x ∈ X (Here,

RC stands for “real complex”).

2. Let X be a Riemann surface, and U a local structure on Xtop.

(a) TheAut-holomorphic space associated toX is a pair X = (Xtop,AX), where

Xtop := Xtop the underlying topological space of X, and AX := AX .

(b) We call AX the Aut-holomorphic structure on Xtop.

(c) We call AX|U a U-local pre-Aut-holomorphic structure on Xtop.

(d) IfX is biholomorphic to an open unit disc, then we call X anAut-holomorphic

disc.

(e) If X is a hyperbolic Riemann surface of finite type, then we call X hyperbolic

of finite type.

(f) If X is a hyperbolic Riemann surface of finite type associated to an elliptically

admissible hyperbolic curve over C, then we call X elliptically admissible.

3. Let X, Y be Aut-holomorphic spaces arising from Riemann surfaces X, Y respec-

tively. Let U , V be local structures of Xtop, Y top respectively.

(a) A (U ,V)-local morphism φ : X → Y of Aut-holomorphic spaces is a local

isomorphism φtop : Xtop → Ytop of topological spaces suth that, for any U ∈ U
with φtop : U

∼→ V ∈ V (homeomorphism), the map AX(U)→ AY(V ) obtained

by the conjugate by φtop is bijective.

(b) If U , V are the set of all connected open subset of Xtop, Y top respectively, then

we call φ a local morphism of Aut-holomorphic spaces.

(c) If φtop is a finite covering space map, then we call φ finite étale.

4. Let Z, Z ′ be orientable topological surfaces.

(a) Take p ∈ Z, and put Orn(Z, p) := lim←−p∈W⊂Z: connected, open
π1(W \ {p})ab,

which is non-canonically isomorphic to Z. Note that after taking the abelian-

isation, there is no indeterminacy of inner automorphisms arising from the

choice of a basepoint in (the usual topological) fundamental group π1(W \{p}).

(b) The assignment p 7→ Orn(Z, p) is a trivial local system, since Z is orientable.

Let Orn(Z) denote the abelian group of global sections of this trivial local

system, which is non-canonically isomorphic to Zπ0(Z).
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(c) Let α, β : Z → Z ′ be local isomorphisms. We say that α and β are co-oriented

if the induced homomorphisms α∗, β∗ : Orn(Z) → Orn(Z ′) of abelian groups

coincide.

(d) A pre-co-orientation ζ : Z → Z ′ is an equivalence class of local isomorphisms

Z → Z ′ of orientable topological surfaces with respect to being co-oriented.

(e) The assignment which assigns to the open sets U in Z the sets of pre-co-

orientations U → Z ′ is a presheaf. We call a global section ζ : Z → Z ′ of the

sheafification of this presheaf a co-orientation.

5. Let X, Y be Aut-holomorphic spaces arising from Riemann surfaces X, Y respec-

tively. Let U , V be local structures of Xtop, Y top respectively.

(a) (U ,V)-local morphisms φ1, φ2 : X → Y of Aut-holomorphic spaces is called

co-holomorphic, if φtop1 and φtop2 are co-oriented.

(b) A pre-co-holomorphicisation ζ : X → Y is an equivalence class of (U ,V)-
local morphisms X → Y of Aut-holomorphic spaces with respect to being

co-holomorphic.

(c) The assignment which assigns to the open sets U in Xtop the sets of pre-co-

holomorphicisation U → Y is a presheaf. We call a global section ζ : X → Y
of the sheafification of this presheaf a co-holomorphicisation.

By replacing “Riemann surface” by “one-dimensional complex orbifold”, we can

easily extend the notion of Aut-holomorphic space to Aut-holomorphic orbispace.

Proposition 4.2. ([AbsTopIII, Proposition 2.2]) Let X,Y be Aut-holomorphic

discs arising from Riemann surfaces X, Y respectively. We equip the group Aut(Xtop)

of homeomorphisms with the compact-open topology. Let AutRC-hol(X) (⊂ Aut(Xtop))

denote the subgroup of RC-holomorphic automorphisms of X. We regard Authol(X)

and AutRC-hol(X) as equipped with the induced topology by the inclusions

Authol(X) ⊂ AutRC-hol(X) ⊂ Aut(Xtop).

1. We have isomorphisms

Authol(X) ∼= PSL2(R), AutRC-hol(X) ∼= PGL2(R)

as topological groups, Authol(X) is a subgroup in AutRC-hol(X) of index 2, and

AutRC-hol(X) is a closed subgroup of Aut(Xtop).

2. AutRC-hol(X) is commensurably terminal (cf. Section 0.2) in Aut(Xtop).
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3. Any isomorphism X ∼→ Y of Aut-holomorphic spaces arises from an RC-holomorphic

isomorphism X
∼→ Y .

Proof. (1) is well-known (the last assertion follows from the fact of complex anal-

ysis that the limit of a sequence of holomorphic functions which uniformly converges on

compact subsets is also holomorphic).

(2) It suffices to show that CAut(Xtop)(Authol(X)) = AutRC-hol(X) (cf. Section 0.2).

Take α ∈ CAut(Xtop)(Authol(X)). Then Authol(X) ∩ αAuthol(X)α−1 is a closed sub-

group of finite index in Authol(X), hence an open subgroup in Authol(X). Since

Authol(X) is connected, we have Authol(X) ∩ αAuthol(X)α−1 = Authol(X). Thus,

α ∈ NAut(Xtop)(Authol(X)) (cf. Section 0.2). Then by the conjugation, α gives an au-

tomorphism of Authol(X). The theorem of Schreier-van der Waerden ([SvdW]) says

that Aut(PSL2(R)) ∼= PGL2(R) by the conjugation. Hence, we have α ∈ AutRC-hol(X).

(Without using the theorem of Schreier-van der Waerden, we can directly show it as fol-

lows: By Cartan’s theorem (a homomorphism as topological groups between Lie groups

is automatically a homomorphism as Lie groups, cf. [Serre1, Chapter V, §9, Theorem
2]), the automorphism of Authol(X) given by the conjugate of α is an automorphism of

Lie groups. This induces an automorphism of Lie algebra sl2(C) with sl2(R) stabilised.
Hence, α is given by an element of PGL2(R). See also [AbsTopIII, proo of Proposition

2.2 (ii)], [QuConf, the proof of Lemma1.10].)

(3) follows from (2) since (2) implies that AutRC-hol(X) is normally terminal.

The followoing corollary says that the notions of “holomorphic structure”, “Aut-

holomorphic structure”, and “pre-Aut-holomorphic structure” are equivalent.

Corollary 4.3. (a sort of Bi-Anabelian Grothendieck Conjecture in the Archimedean

Theory, [AbsTopIII, Corollary 2.3]) Let X, Y be Aut-holomorphic spaces arising from

Riemann surfaces X, Y respectively. Let U , V be local structures of Xtop, Y top respec-

tively.

1. Any (U ,V)-local isomorphism φ : X → Y of Aut-holomorphic spaces arises from a

unique étale RC-holomorphic morphism ψ : X → Y . If X and Y are connected,

then there exist precisely 2 co-holomorphicisations X → Y, corresponding to the

holomorphic and anti-holomorphic local isomorphisms.

2. Any pre-Aut-holomorphic structure on Xtop extends to a unique Aut-holomorphic

structure on Xtop.

Proof. (1) follows from Proposition 4.2 (3).

(2) follows by applying (1) to automorphisms of the Aut-holomorphic spaces deter-

mined by the connected open subsets of Xtop which determine the same co-holomorphicisation

as the identity automorphism.
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§ 4.2. Elliptic Cuspidalisation and Kummer Theory in the Archimedean

Theory.

Lemma 4.4. ([AbsTopIII, Corollary 2.4]) Let X be a hyperbolic Aut-holomorphic

orbispace of finite type, arising from a hyperbolic orbicurve X over C. Only from the

Aut-holomorphic orbispace X, we can determine whether or not X admits C-core, and
in the case where X admits C-core, we can construct the Aut-holomorphic orbispace

associated to the C-core in a functorial manner with respect to finite étale morphisms

by the following algorithms:

1. Let Utop → Xtop be any universal covering of Xtop. Then we reconstruct the

topological fundamental group π1(Xtop) as the opposite group Aut(Utop/Xtop)opp

of Aut(Utop/Xtop).

2. Take the local structure U of Utop consisting of connected open subsets of Utop

which map isomorphically onto open sub-orbispaces of Xtop. We construct a nat-

ural U-local pre-Aut-holomorphic structure on Utop by restricting Aut-holomorphic

structure of X on Xtop and by transporting it to Utop. By Corollary 4.3 (2), this

gives us a natural Aut-holomorphic structure AU on Utop. We put U := (Utop,AU).

Thus, we obtain a natural injection π1(Xtop)opp = Aut(Utop/Xtop) ↪→ Aut0(U) ⊂
Aut(U) ∼= PGL2(R), where Aut0(U) denotes the connected component of the iden-

tity of Aut(U), and the last isomorphism is an isomorphism as topological groups

(Here, we regard Aut(U) as a topological space by the compact-open topology).

3. X admits C-core if and only if Im(π1(Xtop)opp) := Im(π1(Xtop)opp ⊂ Aut0(U)) is

of finite index in Πcore := CAut0(U)(Im(π1(Xtop)opp)). If X admits C-core, then the

quotient Xtop � Xcore := Utop//Πcore in the sense of stacks is the C-core of X. The

restriction of the Aut-holomorphic structure of U to an appropriate local structure on

U and transporting it to Xcore give us a natural Aut-holomorphic structure AXcore of

Xcore, hence, the desired Aut-holomorphic orbispace (X�)Xcore := (Xcore,AXcore).

Proof. Assertions follow from the described algorithms. See also [CanLift, Remark

2.1.2].

Proposition 4.5. (Elliptic Cuspidalisation in the Archimedean Theory, [AbsTopIII,

Corollary 2.7], See also [AbsTopIII, Proposition 2.5, Proposition 2.6]) Let X be an el-

liptically admissible Aut-holomorphic orbispace arising from a Riemann orbisurface X.

By the following algorithms, only from the holomorphic space X, we can reconstruct the

system of local linear holomorphic structures on Xtop in the sense of (Step 10) below in

a functorial manner with respect to finite étale morphisms:
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(Step 1) By the definition of elliptical admissibility and Lemma 4.4 (2), we construct X →
Xcore, where Xcore arises from the C-core Xcore of X, and Xcore is semi-elliptic (cf.

Section 3.1). There is a unique double covering E → Xcore by an Aut-holomorphic

space (not orbispace), i.e., the covering corresponding to the unique torsion-free

subgroup of index 2 of the group Πcore of Lemma 4.4. Here, E is the Aut-holomorphic

space associated to a onec-punctured elliptic curve E \ {O} over C.

(Step 2) We consider elliptic cuspidalisation diagrams E� EN ↪→ E (See also the portion of

“E \ {O}� E \E[N ] ↪→ E \ {O}” in the diagram (EllCusp) of Section 3.2), where

EN � E is an abelian finite étale coveing which is also unramified at the unique

punctured point, Etop ↪→ (EN )top is an open immersion, and EN ↪→ E, EN � E are

co-holomorphic. By these diagrams, we can reconstruct the torsion points of the

elliptic curve E as the points in E \EN . We also reconstruct the group structure

on the torsion points induced by the group structure of the Galois group Gal(EN/E),
i.e., σ ∈ Gal(EN/E) corresponds to “+[P ]” for some P ∈ E[N ].

(Step 3) Since the torsion points constructed in (Step 2) are dense in Etop, we reconstruct

the group structure on Etop as the unique topological group structure extending

the group structure on the torsion points constructed in (Step 2). In the subsequent

steps, we take a simply connected open non-empty subset U in Etop.

(Step 4) Let p ∈ U . The group structure constructed in (Step 3) induces a local additive

structure of U at p, i.e., a+p b := (a− p)+ (b− p)+ p ∈ U for a, b ∈ U , whenever

it is defined.

(Step 5) We reconstruct the line segments of U by one-parameter subgroups relative to the

local additive structures constructed in (Step 4). We also reconstruct the pairs of

parallel line segments of U by translations of line segments relative to the local

additive structures constructed in (Step 4). For a line segment L, put ∂L to be

the subset of L consisting of points whose complements are connected, we call an

element of ∂L an endpoint of L.

(Step 6) We reconstruct the parallelograms of U as follows: We define a pre-∂-parallelogram

A of U to be L1 ∪L2 ∪L3 ∪L4, where Li (i ∈ Z/4Z) are line segments (constructed

in (Step 5)) such that (a) for any p1 6= p2 ∈ A, there exists a line segment L

constructed in (Step 5) with ∂L = {p1, p2}, (b) Li and Li+2 are parallel line seg-

ments constructed in (Step 5) and non-intersecting for any i ∈ Z/4Z, and (c)

Li ∩ Li+1 = (∂Li) ∩ (∂Li+1) with #(Li ∩ Li+1) = 1. We reconstruct the parallel-

ograms of U as the interiors of the unions of the line segments L of U such that

∂L ⊂ A for a pre-∂-parallelogram A. We define a side of a parallelogram in U to
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be a maximal line segment contained in P \P for a parallelogram P of U , where P

denotes the closure of P in U .

(Step 7) Let p ∈ U . We define a frame F = (S1, S2) to be an ordered pair of intersecting

sides S1 6= S2 of a parallelogram P of U constructed in (Step 6), such that S1∩S2 =

{p}. If a line segment L of U have an infinite intersection with P , then we call L

being framed by F . We reconstruct an orientation of U at p (of which there are

precisely 2) as an equivalence class of frames of U top at p relative to the equivalence

relation of frames F = (S1, S2), F = (S′1, S
′
2) of U at p generated by the relation

that S′1 is framed by F and S2 is framed by F ′.

(Step 8) Let V be the Aut-holomorphic space determined by a parallelogram Vtop ⊂ U con-

structed in (Step 7). Let p ∈ Vtop. Take a one-parameter subgroup S of the topo-

logical group AV(Vtop)(∼= PSL2(R)) and a line segment L in U constructed in (Step

5) such that one of the endpoints (cf. (Step 5)) of L is equal to p. Note that one-

parameter subgroups are characterised by using topological (not differentiable) group

structure as the closed connected subgroups for which the complement of some con-

nected open neighbourhood of the identity element is not connected. We say that L

is tangent to S ·p at p if any pairs of sequences of points of L\{p}, (S ·p)\{p} con-
verge to the same element of the quotient space Vtop \ {p}� P(V, p) determined by

identifying positive real multiples of points of Vtop \{p} relative to the local additive

structure constructed in (Step 4) at p (i.e., projectivification). We can reconstruct

the orthogonal frames of U as the frames consisting of pairs of line segments

L1, L2 having p ∈ U as an endpoint that are tangent to the orbits S1 · p, S2 · p of

one-parameter subgroups S1, S2 ⊂ AV(Vtop) such that S2 is obtained from S1 by

conjugating S1 by an element of order 4 (i.e., “±i”) of a compact one-parameter

subgroup of AV(Vtop).

(Step 9) For p ∈ U , let (V )p∈V⊂U be the projective system of connected open neighbourhoods

of p in U , and put

Ap :=
{
f ∈ Aut((V )p∈V⊂U )

∣∣∣ f satisfies (LAS), (Orth), and (Ori)
}
,

where

(LAS): compatibility with the local additive structures of V (⊂ U) at p constructed in

(Step 4),

(Orth): preservation of the orthogonal frames of V (⊂ U) at p constructed in (Step 8),

and

(Ori): preservation of the orientations of V (⊂ U) at p constructed in (Step 7)



92 Go Yamashita

(See also Section 0.2 for the Hom for a projective system). We equip Ap with the

topology induced by the topologies of the open neighbourhoods of p that Ap acts on.

The local additive structures of (Step 4) induce an additive structure on Ap := Ap∪
{0}. Hence, we have a natural topological field structure on Ap. Tha tautological

action of C× on C ⊃ U induces a natural isomorphism C× ∼→ Ap of topological

groups, hence a natural isomorphism C ∼→ Ap of topological fields. In this manner,

we reconstruct the local linear holomorphic structure “C× at p” of U at p as

the topological field Ap with the tautological action of Ap(⊂ Ap) on (V )p∈V⊂U .

(Step 10) For p, p′ ∈ U , we construct a natural isomorphism Ap
∼→ Ap′ of topological fields as

follows: If p′ is sufficiently close to p, then the local additive structures constructed

in (Step 4) induce homeomorphism from sufficiently small neighbourhoods of p onto

sufficiently small neighbourhoods of p′ by the translation (=the addition). These

homeomorphisms induce the desired isomorphism Ap
∼→ Ap′ . For general p, p′ ∈

U , we can obtain the desired isomorphism Ap
∼→ Ap′ by joining p′ to p via a

chain of sufficiently small open neighbourhoods and composing the isomorphisms on

local linear holomorphic structures. This isomorphism is independent of the choice

of such a chain. We call ((Ap)p, (Ap
∼→ Ap′)p,p′) the system of local linear

holomorphic structures on Etop or Xtop. We identify (Ap ⊂ Ap)’s for p’s via

the above natural isomorphisms and let AX ⊂ AX denote the identified ones.

Proof. The assertions immedeately follow from the described algorithms.

Hence, the formulation of “Aut-holomorphic structure” succeeds to avoid a specific

fixed local referred model of C (i.e., “the C”) in the above sense too, unlike the usual

notion of “holomorphic structure”. This is also a part of “mono-anabelian philoso-

phy” of Mochizuki. See also Remark 3.4.4 (3), and [AbsTopIII, Remark 2.1.2, Remark

2.7.4].

Let k be a CAF (See Section 0.2). We recall (cf. Section 0.2) that we write Ok ⊂ C
for the subset of elements with | · | ≤ 1 in k, O×k ⊂ Ok for the group of units i.e., elements

with | · | = 1, and O�
k := Ok \ {0} ⊂ Ok for the multiplicative monoid.

Definition 4.6. ([AbsTopIII, Definition 4.1])

1. Let X be an elliptically admissible Aut-holomorphic orbispace. A model Kummer

structure κk : k
∼→ AX (resp. κO×

k
: O×k ↪→ AX, resp. κk× : k× ↪→ AX, resp.

κO�
k
: O�

k ↪→ AX) on X is an isomorphism of topological fields (resp. its restriction

to O×k , resp. its restriction to k×, resp. its restriction to O�
k ). An isomorphism

κM :M
∼→ AX of topological fields (resp. an inclusion κM : O×k ↪→ AX of topological

groups, resp. an inclusion κM : k× ↪→ AX of topological groups, resp. an inclusion

κM : O�
k ↪→ AX of topological monoids) is called a Kummer structure on X,
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if there exist an automorphicm f : X ∼→ X of Auto-holomorphic spaces, and an

isomorphism g :M
∼→ k of topological fields (resp. an isomorphism g :M

∼→ O×k of

topological groups, resp. an isomorphism g : M
∼→ k× of topological groups, resp.

an isomorphism g : M
∼→ O�

k of topological monoids) such that f∗ ◦ κk = κM ◦ g
(resp. f∗ ◦ κO×

k
= κM ◦ g resp. f∗ ◦ κk× = κM ◦ g resp. f∗ ◦ κO�

k
= κM ◦ g), where

f∗ : AX ∼→ AX (resp. f∗ : AX ∼→ AX, resp. f∗ : AX ∼→ AX, resp. f∗ : AX ∼→ AX) is

the automorphism induced by f . We often abbreviate it as X κxM .

2. A morphism φ : (X1
κ1x M1) → (X2

κ2x M2) of elliptically admissible Aut-

holomorphic orbispaces with Kummer structures is a pair φ = (φX, φM ) of

a finite étale morphism φX : X1 → X2 and a homomorphism φM : M1 → M2 of

topological monoids, such that the Kummer structures κ1 and κ2 are compatible

with φM : M1 → M2 and the homomorphism (φX)∗ : AX1 → AX2 arising from the

functoriality of the algorithms in Proposition 4.5.

The reconstruction

X 7→
(
X,X x AX ⊂ AX (with field str.) tautological Kummer structure

)
described in Proposition 4.5 is an Archimedean analogue of the reconstruction

Π 7→

(
Π,Π y k (with field str.) ⊃ k×

Kummer map
↪→ lim−→

J⊂Π: open

H1(J, µẐ(Π))

)
,

described in Corollary 3.19 for non-Archimedean local field k. Namely, the reconstruc-

tion in Corollary 3.19 relates the base field k to ΠX via the Kummer theory, and the

reconstruction in Proposition 4.5 relates the base field AX (∼= C) to X, hence, it is a

kind of Archimedean Kummer theory.

Definition 4.7. (See also [AbsTopIII, Definition 5.6 (i), (iv)])

1. We say that a pair G = (C,
−→
C ) of a topological monoid C and a topological sub-

monoid
−→
C ⊂ C is a split monoid, if C is isomorphic to O�

C , and
−→
C ↪→ C deter-

mines an isomorphism C× ×
−→
C
∼→ C of topological monoids (Note that C× and

−→
C are necessarily isomorphic to S1 and (0, 1]

log∼= R≥0 respectively). A morphism

of split monoids G1 = (C1,
−→
C 1) → G2 = (C2,

−→
C 2) is an isomorphism C1

∼→ C2

of topological monoids which induce an isomorphism
−→
C 1

∼→ −→C 2 of the topological

submonoids.

Remark 4.7.1. We omit the definition of Kummer structure of split monoids

([AbsTopIII, Definition 5.6 (i), (iv)]), since we do not use them in inter-universal Te-

ichmüller theory (Instead, we consider split monoids for mono-analytic Frobenius-like
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objects). In [AbsTopIII], we consider a split monoid G = (C,
−→
C ) arising from arith-

holomorphic “O�
C ” via the mono-analyticisation, and consider a Frobenius-like object

M and k∼(G) = C∼ × C∼ (See Proposition 5.4 below) for G = (C,
−→
C ). On the other

hand, in inter-universal Teichmüller theory, we consider k∼(G) = C∼ × C∼ directly

from “O�
C ” (See Proposition 12.2 (4)). When we consider k∼(G) directly from “O�

C ”,

then the indeterminacies are only {±1}×{±1} (i.e., Archimedean (Indet→)); however,

when we consider a Frobenius-like object for G = (C,
−→
C ), then we need to consider

the synchronisation of k1 and k2 via group-germs, and need to consider
−→
C up to R>0

(i.e., we need to consider the category TB� in [AbsTopIII, Definition 5.6 (i)]). See also

[AbsTopIII, Remark 5.8.1 (i)].

Let GX = (O�
AX ,
−→
OAX) denote the split monoid associated to the topological field

AX, i.e., the topological monoid O�
AX , and the splitting O�

AX ←↩ O�
AX ∩ R>0 =:

−→
OAX of

O�
AX � O�

AX/O
×
AX and X x O�

k . For a Kummer structure X κx O�
k of an elliptically

admissible Aut-holomorphic orbispace, we pull-back
−−→
OAX via the Kummer structure

O�
k ↪→ AX, we obtain a decomposition of O�

k as O×k ×
−→
Ok, where

−→
Ok ∼= O�

k /O
×
k . We

consider this assignment

(X x O�
k ) 7→ (GX x O×k ×

−→
Ok)

as a mono-analytification.

§ 4.3. On the Philosophy of Étale- and Frobenius-like Objects.

We further consider the similarities between the reconstruction algorithms in Corol-

lary 3.19 and Proposition 4.5, and then, we explain Mochizuki’s philosophy of the

dichotomy of étale-like objects and Frobenius-like objects.

Note also that the tautological Kummer structure X x AX rigidifies the non-rigid

“R>0” (See Secton 3.5) in AX (∼= C×) in the exact sequence 0→ S1 → C× → R>0 → 0

(See also [AbsTopIII, Remark 2.7.3]). In short, we have the following dictionary:

Arith. Hol. Mono-analytic

non-Arch. k/Qp : fin. ΠX , ΠX y O�

k
rigidifies O×k Gk, Gk y O×

k
×−→Ok

0→ O×k → k× → Ẑ(rigid)→ 0 “k” can be reconstructed O×k : non-rigid

Arch. k (∼= C) X, X x O�
k rigidifies “R>0” GX, GX x O×k ×

−→
Ok

0→ S1(rigid)→ C× → R>0 → 0 “C” can be reconstructed “R>0”: non-rigid
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We consider profinite groups ΠX , Gk, categories of the finite étale coverings over

hyperbolic curves or spectra of fields, and the objects reconstructed from these as étale-

like objects, and we consider, on the other hand, abstract topological monoids (with

actions of ΠX , Gk), the categories of line bundles on finite étale coverings over hyperbolic

curves, the categories of arithmetic line bundles on finite étale coverings over spectra

of number fields, as Frobenius-like objects, i.e., when we reconstruct ΠX y O�

k
or

X x O�
k , then these are regarded as étale-like objects whenever we remember that the

relations with ΠX and X via the reconstruction algorithms; however, if we forget the

relations with ΠX and X via the reconstruction algorithms, and we consider them as an

abstract topological monoid with an action of ΠX , and an abstract topological monoid

with Kummer structure on X, then these objects are regarded as Frobenius-like objects

(See also [AbsTopIII, Remark 3.7.5 (iii), (iv), Remark 3.7.7], [FrdI, §I4], [IUTchI, §I1]).
Note that if we forget the relations with ΠX and X via the reconstruction algorithms,

then we cannot obtain the functoriality with respect to ΠX or X for the abstract objects.

We have the dichotomy of étale-like objects and Frobenius-like objects both on

arithmetically holomorphic objects and mono-analytic objects, i.e., we can consider 4

kinds of objects – arithmetically holomorphic étale-like objects (indicated by D), arith-
metically holomorphic Frobenius-like objects (indicated by F), mono-analytic étale-like

objects (indicated by D`), and mono-analytic Frobenius-like objects (indicated by F`)
(Here, as we can easily guess, the symbol ` means “mono-analytic”). The types and

structures of prime-strips (cf. Section 10.3) and Hodge theatres reflect this classification

of objects (See Section 10).

Note that the above table also exhibits these 4 kinds of objects. Here, we consider

Gk y O×
k
× (O�

k
/O×

k
) and GX x O×k × (O�

k /O
×
k ) as the mono-analyticisations of

arithmetically holomorphic objects Πk y O�

k
, and X x O�

k respectively. See the

following diagrams:

Frobenius-like
(base with line bundle)

forget // étale-like
(base)

arith. hol.

mono-anlyticisation

��

ΠX y O�

k

� //
_

��

ΠX_

��
mono-an. Gk y O×

k
×
−→
Ok

� // Gk,

Frobenius-like
(base with line bundle)

forget // étale-like
(base)

X x O�
k

� //
_

��

X_

��
GX x O×k ×

−→
Ok

� // GX.

The composite of the reconstruction algorithms Theorem 3.17 and Proposition 4.5 with

“forgetting the relations with the input data via the reconstruction algorithms” are
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the canonical “sections” of the corresponding functors Frobenius-like
forget−→ étale-like

(Note also that, by Proposition 2.1 (2c), the topological monoid O�
k can be group-

theoretically reconstructed from Gk; however, we cannot reconstruct O
�
k as a submonoid

of a topological field k, which needs an arithmetically holomorphic structure).

In inter-universal Teichmüller theory, the Frobenius-like objects are used to con-

struct links (i.e., log-links and Θ-links). On the other hand, some of étale-like objects

are used (a) to construct shared objects (i.e., vertically coric, horizontally coric, and

bi-coric objects) in both sides of the links, and (b) to exchange (!) both sides of a

Θ-link (which is called étale-transport. See also Remark 9.6.1, Remark 11.1.1, and

Theorem 13.12 (1)), after going from Frobenius-like picture to étale-like picture, which

is called Kummer-detachment (See also Section 13.2), by Kummer theory and by

admitting indeterminacies (Indet →), (Indet ↑), and (Indet xy). (More precisely, étale-

like ΠX and Gk are shared in log-links. The mono-analytic Gk is also (as an abstract

topological group) shared in Θ-links; however, arithmetically holomorphic ΠX cannot

be shared in Θ-links, and even though O×
k
/tors’s are Frobenius-like objects, O×

k
/tors’s

(not O�

k
’s because the portion of the value group is dramatically dilated) are shared

after admitting Ẑ×-indeterminacies.) See also Theorem 12.5.

étale objects reconstructed from Galois category indifferent to order

-like ΠX , Gk, X, GX coverings can be shared, can be exchanged

Frobenius abstract ΠX y O�

k
, Gk y O×

k
×
−→
Ok, Frobenioids order-conscious

-like X x O�
C , GX x O×C ×

−→
OC line bundles can make links

§ 4.4. Mono-anabelian Reconstruction Algorithms in the Archimedean

Theory.

The following theorem is an Archimedean analogue of Theorem 3.17.

Proposition 4.8. (Mono-anabelian Reconstruction, [AbsTopIII, Corollary 2.8])

Let X be a hyperbolic curve of strictly Belyi type over a number field k. Let k be

an algebraic closure of k, and ΠX the arithmetic fundamental group of X for some

basepoint. From the topological group ΠX , we group-theoretically reconstruct the field

k = kNF by the algorithm in Theorem 3.17 (cf. Remark 3.17.1). Take an Archimedean

place v of k. By the following group-theoretic algorithm, from the topological group
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ΠX and the Archimedean place v, we can reconstruct the Aut-holomorphic space Xv
associated to Xv := X ×k kv in a functorial manner with respect to open injective

homomorphisms of profinite groups which are compatible with the respective choices of

Archimedean valuations:

(Step 1) We reconstruct NF-points of Xv as conjugacy classes of decomposition groups of NF-

points in ΠX by in Theorem 3.17. We also reconstruct non-constant NF-rational

functions on Xk by Theorem 3.17 (Step 4) (or Lemma 3.16). Note that we also

group-theoretically obtain the evaluation map f 7→ f(x) at NF-point x as the re-

striction to the decomposition group of x (cf. Theorem 3.17 (Step 4), (Step 5)),

and that the order function ordx at NF-point x as the component at x of the homo-

morphism H1(ΠU , µẐ(ΠX))→ ⊕y∈SẐ in Theorem 3.17 (Step 3) (cf. Theorem 3.17

(Step 5)).

(Step 2) Define a Cauchy sequence {xj}j∈N of NF-points to be a sequence of NF-points xj

such that there exists an exceptional finite set of NF-points S satisfying the following

conditions:

• xj 6∈ S for all but finitely many j ∈ N, and

• For any non-constant NF-rational function f on Xk, whose divisor of poles

avoids S, the sequence of values {f(xj) ∈ kv}j∈N forms a Cauchy sequence (in

the usual sense) in kv.

For two Cauchy sequences {xj}j∈N, {yj}j∈N of NF-points with common exceptional

set S, we call that these are equivalent, if for any non-constant NF-rational func-

tion f on Xk, whose divisor of poles avoids S, the Cauchy sequences {f(xj) ∈
kv}j∈N, {f(yj) ∈ kv}j∈N in kv converge to the same element of kv.

(Step 3) For an open subset U ⊂ kv and a non-constant NF-rational function f on Xv, put

N(U, f) to be the set of Cauchy sequences of NF-points {xj}j∈N such that f(xj) ∈ U
for all j ∈ N. We reconstruct the topological space Xtop = Xv(kv) as the set of equiv-

alence classes of Cauchy sequences of NF-points, equipped with the topology defined

by the sets N(U, f). A non-contant NF-rational function extends to a function on

Xtop, by taking the limit of the values.

(Step 4) Let UX ⊂ Xtop, Uv ⊂ kv be connected open subsets, and f a non-constant NF-

rational function on Xk, such that the function defined by f on UX gives us a

homeomorphism fU : UX
∼→ Uv. Let Authol(Uv) denote the group of homeomor-

phisms f : Uv
∼→ Uv (⊂ kv), which can locally be expressed as a convergent power

series with coefficients in kv with respect to the topological field structure of kv.
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(Step 5) Put AX(UX) := f−1U ◦Authol(Uv) ◦ fU ⊂ Aut(UX). By Corollary 4.3, we reconstruct

the Aut-holomorphic structure AX on Xtop as the unique Aut-holomorphic structure

which extends the pre-Aut-holomorphic structure defined by the groups AX(UX) in

(Step 4).

Proof. The assertions immediately follow from the described algorithms.

We can easily generalise the above theorem to hyperbolic orbi curves of strictly

Belyi type over number fields.

Lemma 4.9. (Compatibility of Elliptic Cuspidalisation in Archimedean Place

with Galois Theoretic Belyi Cuspidalisation, [AbsTopIII, Corollary 2.9]) In the situation

of Proposition 4.8, suppose further that X is elliptically admissible. From the topolog-

ical group ΠX , we group-theoretically reconstruct the field k = kNF by Theorem 3.17

(cf. Remark 3.17.1), i.e., via Belyi cuspidalisation. Take an Archimedean place v of

k(ΠX). Let X = (Xtop,AX) be the Aut-holomorphic space constructed from the topo-

logical group ΠX and the Archimedean valuation v in Proposition 4.8, i.e., via Cauchy

sequences. Let AX be the field constructed in Proposition 4.5, i.e., via elliptic cusp-

idalisation. By the following group-theoretically algorithm, from the topological group

ΠX and the Archimedean valuation v, we can construct an isomorphism AX ∼→ kv of

topological fields in a functorial manner with respect to open injective homomorphisms

of profinite groups which are compatible with the respective choices of Archimedean val-

uations:

(Step 1) As in Proposition 4.8, we reconstruct NF-points of Xv, non-constant NF-rational

functions on Xk, the evaluation map f 7→ f(x) at NF-point x, and the order function

ordx at NF-point x. We also reconstruct Etop and the local additive structures on

it in Proposition 4.5.

(Step 2) The local additive structures of Etop determines the local additive structures of

Xtop. Let x be an NF-point of Xv(kv), ~v an element of a sufficiently small neigh-

bourhood UX ⊂ Xtop of x in Xtop which admits such a local additive structure.

For each NF-rational function f which vanishes at x, the assignment (~v, f) 7→
limn→∞ nf (n ·x ~v) ∈ kv, where “ ·x ′′ is the operation induced by the local additive

structure at x, depends only on the image df |x ∈ ωx of f in the Zariski cotangent

space ωx to Xv. It determines an embedding UX ↪→ Homkv (ωx, kv) of topological

spaces, which is compatible with the local additive structures.

(Step 3) Varying the neighbourhood UX of x, the embeddings in (Step 2) give us an isomor-

phism Ax
∼→ kv of topological fields by the compatibility with the natural actions
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of Ax, k×v respectively. As x varies, the isomorphisms in (Step 3) are compati-

ble with the isomorphisms Ax
∼→ Ay in Proposition 4.5. This gives us the desired

isomorphism AX ∼→ kv.

Remark 4.9.1. An importance of Proposition 4.5 lies in the fact that the algo-

rithm starts in a purely local situation, since we will treat local objects (i.e., objects

over local fields) which a priori do not come from a global object (i.e., an object over a

number field) in inter-universal Teichmüller theory. See also Remark 3.17.4.

Proof. The assertions immediately follow from the described algorithms.

§ 5. Log-volumes and Log-shells.

In this section, we construct a kind of “rigid containers” called log-shells both

for non-Archimedean and Archimedean local fields. We also reconstruct the local log-

volume functions. By putting them together, we reconstruct the degree functions of

arithmetic line bundles.

§ 5.1. Non-Archimedean Places.

Let k be a finite extension of Qp, and k an algebraic closure of k. Let X be

a hyperbolic orbicurve over k of strictly Belyi type. Put k∼ := (O×
k
)pf (� O×

k
) the

perfection of O×
k

(See Section 0.2). The p-adic logarithm logk induces an isomorphism

logk : k∼
∼→ k

of topological monoids, which is compatible with the actions of ΠX . We equip k∼ with

the topological field structure by transporting it from k via the above isomorphism logk.

Then we have the following diagram, which is called a log-link:

(Log-link (non-Arch)) O�

k
⊃ O×

k
� k∼ =

(
O�
k∼

)gp
:=
(
O�
k∼

)gp ∪ {0} ← O�
k∼ ,

which is compatible with the action of ΠX (this will mean that ΠX is vertically core. See

Proposition 12.2 (1), Remark 12.3.1, and Theorem 12.5 (1)). Note that we can construct

the sub-diagram O�

k
⊃ O×

k
→ k∼, which is compatible with the action of Gk, only from

the topological monoid O�

k
(i.e., only from the mono-analytic structure); however, we

need the topological field k (i.e., need the arithmetically holomorphic structure) to

equip k∼ a topological field structure and to construct the remaining diagram k∼ =

(O�
k∼)

gp ← O�
k∼ .
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Definition 5.1. We put(
OΠX

k∼ ⊂
)
Ik :=

1

2p
I∗k
(
⊂ (k∼)ΠX

)
, where I∗k := Im

{
O×k →

(
O×
k

)pf
= k∼

}
where (−)ΠX denotes the fixed part of the action of ΠX , and we call Ik a Frobenius-

like holomorphic log-shell.

On the other hand, from ΠX , we can group-theoretically reconstruct an isomorph

k(ΠX) of the ind-topological field k by Theorem 3.19, and we can construct a log-shell

I(ΠX) by using k(ΠX), instead of k. Then we call I(ΠX) the étale-like holomorphic

log-shell for ΠX . By the cyclotomic rigidity isomorphism (Cyc.Rig. LCFT2), the

Kummer homomorphism gives us a Kummer isomorphism

(ΠX y k
×
)
∼→ (ΠX y k

×
(ΠX)) (⊂ lim−→

U

H1(ΠU ), µẐ(ΠX))

for k
×
(ΠX) (See (Step 4) of Theorem 3.17, and Remark 3.19.2), hence obtain a Kum-

mer isomorphism

(Kum (non-Arch)) Ik
∼→ I(ΠX)

for Ik. In inter-universal Teichmüller theory, we will also use the Kummer isomorphism

of log-shells via the cyclotomic rigidity of mono-theta environments in Theorem 7.23

(1) See Proposition 12.2.

Note that we have important natural inclusions

(Upper Semi-Compat. (non-Arch))

O×k , logk(O
×
k ) ⊂ Ik and O×k (ΠX), logk(ΠX)(O

×
k (ΠX)) ⊂ I(ΠX),

which will be used for the upper semi-compatibility of log-Kummer correspondence

(See Proposition 13.7 (2)). Here, we put O×k (ΠX) := Ok(ΠX)×, Ok(ΠX) := Ok(Π)ΠX ,

and Ok(ΠX) is the ring of integers of the ind-topological field k(Π).

Proposition 5.2. (Mono-analytic Reconstruction of Log-shell and Local Log-

volume in non-Archimedean Places, [AbsTopIII, Proposition 5.8 (i), (ii), (iii)]) Let G

be a topological group, which is isomorphic to Gk. By the following algorithm, from G,

we can group-theoretically reconstruct the log-shell “ Ik” and the (non-normalised) local

log-volume function “µlog
k ” (cf. Section 1.3) in a functorial manner with respect to open

homomorphisms of topological groups:

(Step 1) We reconstruct p, f(k), e(k), k
×
, O�

k
, and O×

k
by Proposition 2.1 (1), (3b), (3c),

(2a), (2c), and (2b) respectively. To indicate that these are reconstructed from G,

let pG, fG, eG, k
×
(G), O�

k
(G) and O×

k
(G) denote them respectively (From now on,

we use the notation (−)(G) in this sense). Let pmG

G be the number of elements of

k
×
(G)G of pG-power orders, where (−)G denotes the fixed part of the action of G.



a proof of the abc conjecture after Mochizuki 101

(Step 2) We reconstruct the log-shell “ Ik” as I(G) := 1
2pG

Im
{
O×
k
(G)G → k∼(G) := O×

k
(G)pf

}
.

Note that, by the canonical injection Q ↪→ End(k∼(G)) (Here, End means the endo-

morphisms as (additive) topological groups), the multiplication by 1
2pG

canonically

makes sense. We call I(G) the étale-like mono-analytic log-shell.

(Step 3) Put Rnon(G) := (k
×
(G)/O×

k
(G))∧, where (−)∧ denotes the completion with respect

to the order structure determined by the image of O�

k
(G)/O×

k
(G). By the canonical

isomorphism R ∼= End(Rnon(G)), we consider Rnon(G) as an R-module. It is also

equipped with a distinguished element, i.e., the image F(G) ∈ Rnon(G) of the Frobe-

nius element (constructed in Proposition 2.1 (5)) of O�

k
(G)G/O×

k
(G)G via the com-

posite O�

k
(G)G/O×

k
(G)G ⊂ O�

k
(G)/O×

k
(G) ⊂ Rnon(G). By sending fG log pG ∈ R

to F(G) ∈ Rnon(G), we have an isomorphism R ∼→ Rnon(G) of R-modules. By

transporting the topological field structure from R to Rnon(G) via this bijection, we

consider Rnon(G) as a topological field, which is isomorphic to R.

(Step 4) Let M(k∼(G)G) denote the set of open compact subsets of the topological additive

group k∼(G)G. We can reconstruct the local log-volume function µlog(G) :

M(k∼(G)G)→ Rnon(G) by using the following characterisation properties:

(a) (additivity) For A,B ∈M(k∼(G)G) with A∩B = ∅, we have exp(µlog(G)(A∪
B)) = exp(µlog(G)(A)) + exp(µlog(G)(B)), where we use the topological field

structure of Rnon(G) to define exp(−),

(b) (+-translation invariance) For A ∈ M(k∼(G)G) and a ∈ k∼(G)G, we have

µlog(G)(A+ a) = µlog(G)(A),

(c) (normalisation)

µlog(G)(I(G)) =
(
−1− mG

fG
+ εGeGfG

)
F(G),

where we put εG to be 1 if pG 6= 2, and to be 2 if pG = 2.

Moreover, if a field structure on k := k∼(G)G is given, then we have the p-adic

logarithm logk : O×k → k on k (where we can see k both on the domain and the

codomain), and we have

(5.1) µlog(G)(A) = µlog(G)(logk(A))

for an open subset A ⊂ O×k such that logk induces a bijection A
∼→ logk(A).

Remark 5.2.1. Note that, we cannot normalise µlog(G) by “µlog(G)(OGk∼) = 0”,

since “OGk∼” needs arithmetically holomorphic structure to reconstruct (cf. [QpGC]).
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Remark 5.2.2. The formula (5.1) will be used for the compatibility of log-

links with log-volume functions (See Proposition 13.10 (4)).

Proof. To lighten the notation, put p := pG, e := eG, f := fG, m := mG, ε := εG.

Then we have µlog
k (Ik) = εef log p + µlog

k (log(O×k )) = (εef − m) log p − log(pf − 1) +

µlog
k (O×k ) = (εef−m) log p−log(pf−1)+log

(
1− 1

pf

)
+µlog

k (Ok) = (εef−m−f) log p =(
−1 + εe− m

f

)
f log p.

§ 5.2. Archimedean Places.

Let k be a CAF (See Section 0.2). Let X be an elliptically admissible Aut-

holomorphic orbispace, and κk : k
∼→ AX a Kummer structure. Note that k (resp.

k×, O×k ) and AX have natural Aut-holomorphic structures, and κk determines co-

holomorphicisations between k (resp. k×, O×k ) and AX. Let k∼ � k× be the universal

covering of k×, which is uniquely determined up to unique isomorphism, as a pointed

topological space (It is well-known that it can be explicitly constructed by the homo-

topy classes of paths on k×). The topological group structure of k× induces a natural

topological group structure of k∼. The inverse (i.e., the Archimedean logarithm) of the

exponential map k � k× induces an isomorphism

logk : k∼
∼→ k

of topological groups. We equip k∼ (resp. O�
k∼) with the topological field structure

(resp. the topological multiplicative monoid structure) by transporting it from k via

the above isomorphism logk. Then κk determines a Kummer structure κk∼ : k∼
∼→ AX

(resp. κOk∼ : Ok∼ ↪→ AX) which is uniquely characterised by the property that

the co-holomorphicisation determined by κk∼ (resp. κOk∼ ) coincides with the co-

holomorphicisation determined by the composite of k∼
∼→ k and the co-holomorphicisation

determined by κk. By definition, the co-holomorphicisations determined by κk, and κk∼

(resp. κOk∼ ) are compatible with logk (This compatibility is an Archimedean analogue

of the compatibility of the actions of ΠX in the non-Archimedean situation). We have

the following diagram, which is called a log-link:

(Log-link (Arch)) O�
k ⊂ k

× � k∼ =
(
O�
k∼

)gp
:=
(
O�
k∼

)gp ∪ {0} ← O�
k∼ ,

which is compatible with the co-holomorphicisations determined by the Kummer struc-

tures (This will mean X is vertically core. See Proposition 12.2 (1)). Note that we can

construct the sub-diagram O�
k ⊂ k× � k∼ only from the topological monoid O�

k (i.e.,

only from the mono-analytic structure); however, we need the topological field k (i.e.,

need the arithmetically holomorphic structure) to equip k∼ a topological field structure

and to construct the remaining diagram k∼ = (O�
k∼)

gp ← O�
k∼ .
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Definition 5.3. We put(
Ok∼ =

1

π
Ik ⊂

)
Ik := O×k∼ · I

∗
k (⊂ k∼) ,

where I∗k is the the uniquely determined “line segment” (i.e., closure of a connected

pre-compact open subset of a one-parameter subgroup) of k∼ which is preserved by

multiplication by ±1 and whose endpoints differ by a generator of ker(k∼ � k×) (i.e.,

I∗k is the interval between “−πi” and “πi”, and Ik is the closed disk with redius π).

Here, a pre-compact subset means a subset contained in a compact subset, and see

Section 0.2 for π. We call Ik a Frobenius-like holomorphic log-shell.

On the other hand, from X, we can group-theoretically reconstruct an isomorph

k(X) := AX of the field k by Proposition 4.5, and we can construct a log-shell I(X) by
using k(X), instead of k. Then we call I(X) the étale-like holomorphic log-shell

for X. The Kummer structure κk gives us a Kummer isomorphism

(Kum (Arch)) Ik
∼→ I(X)

for Ik.

Note that we have important natural inclusions

(Upper Semi-Compat. (Arch))

O�
k∼ ⊂ Ik, O

×
k ⊂ expk(Ik) and O�

k∼(X) ⊂ I(X), O
×
k (X) ⊂ expk(X)(I(X))

which will be used for the upper semi-compatibility of log-Kummer correspondence

(See Proposition 13.7 (2)). Here, we put O×k (X) := Ok(X)×, and Ok(X) (See also

Section 0.2) is the subset of elements of absolute value ≤ 1 for the topological field k(X)
(or, if we do not want to use absolute value, the topological closure of the subset of

elements x with limn→∞ xn = 0), and expk (resp. expk(X)) is the exponential function

for the topological field k (resp. k(Π)).

Note also that we use O×k∼ to define Ik in the above, and we need the topological

field structure of k to construct O×k∼ ; however, we can construct Ik as the closure of

the union of the images of I∗k via the finite order automorphisms of the topological

(additive) group k∼, thus, we need only the topological (multiplicative) group structure

of k
×

(not the topological field structure of k) to construct Ik.

Proposition 5.4. (Mono-analytic Reconstruction of Log-shell and Local Log-

volumes in Archimedean Places, [AbsTopIII, Proposition 5.8 (iv), (v), (vi)]) Let G =

(C,
−→
C ) be a split monoid. By the following algorithm, from G, we can group-theoretically

reconstruct the log-shell “ IC”, the (non-normalised) local radial log-volume function

“µlog
C ” and the (non-normalised) local angular log-volume function “µ̆log

C ” in a functorial

manner with respect to morphisms of split monoids (In fact, the constructions do not

depend on
−→
C , which is “non-rigid” portion. See also [AbsTopIII, Remark 5.8.1]):
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(Step 1) Let C∼ � C× be the (pointed) unversal covering of C×. The topological group

structure of C× induces a natural topological group structure on C∼. We regard

C∼ as a topological group (Note that C× and C∼ are isomorphic to S1 and the

additive group R respectively). Put

k∼(G) := C∼ × C∼, k×(G) := C× × C∼.

(Step 2) Let Seg(G) be the equivalence classes of compact line segments on C∼, i.e., com-

pact subsets which are either equal to the closure of a connected open set or are

sets of one element, relative to the equivalence relation determined by translation

on C∼. Forming the union of two compact line segments whose intersection is a

set of one element determines a monoid structure on Seg(G) with respect to which

Seg(G) ∼= R≥0 (non-canonical isomorphism). Thus, this monoid structure deter-

mines a topological monoid structure on Seg(G) (Note that the topological monoid

structure on Seg(G) is independent of the choice of an isomorphism Seg(G) ∼= R≥0).

(Step 3) We have a natural homomorphism k∼(G) = C∼×C∼ � k×(G) = C××C∼ of two

dimensional Lie groups, where we equip C∼, C× with the differentiable structure by

choosing isomorphisms C∼ ∼= R, C× ∼= R× (the differentiable structures do not

depend on the choices of isomorphisms). We reconstruct the log-shell “ IC” as

I(G) :=
{
(ax, bx) | x ∈ I∗C∼ ; a, b ∈ R; a2 + b2 = 1

}
⊂ k∼(G),

where I∗C∼ ⊂ C∼ denotes the unique compact line segment on C∼ which is invariant

with respect to the action of {±1}, and maps bijectively, except for its endpoints,

to C×. Note that, by the canonical isomorphism R ∼= End(C∼) (Here, End means

the endomorphisms as (additive) topological groups), ax for a ∈ R and x ∈ I∗C∼

canonically makes sense. We call I(G) the étale-like mono-analytic log-shell.

(Step 4) We put Rarc(G) := Seg(G)gp (Note that Rarc(G) ∼= R as (additive) topological

groups). By the canonical isomorphism R ∼= End(Rarc(G)), we consider Rarc(G) as

an R-module. It is also equipped with a distinguished element, i.e., (Archimedean)

Frobenius element F(G) ∈ Seg(G) ⊂ Rarc(G) determined by I∗C∼ . By sending 2π ∈
R to F(G) ∈ Rarc(G), we have an isomorphism R ∼→ Rarc(G) of R-modules. By

transporting the topological field structure from R to Rarc(G) via this bijection, we

consider Rarc(G) as a topological field, which is isomorphic to R.

(Step 5) By the same way as I(G), we put

O×k∼(G) :=
{
(ax, bx) | x ∈ ∂I∗C∼ ; a, b ∈ R; a2 + b2 = π−2

}
⊂ k∼(G),
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where ∂I∗C∼ is the set of endpoints of the line segment I∗C∼ (i.e., the points whose

complement are connected. cf. Proposition 4.5). Then we have a natural isomor-

phism R>0 × O×k∼(G) ∼ k∼(G) \ {(0, 0)}, where (a, x) is sent to ax (Note that

ax makes sense by the canonical isomorphism R ∼= End(C∼) as before). Let

prrad : k∼(G) \ {(0, 0)} � R>0, prang : k∼(G) \ {(0, 0)}O×k∼(G) denote the first

and second projection via the above isomorphism. We extend the map prrad :

k∼(G) \ {(0, 0)}� R>0 to a map prrad : k∼(G)→ R.

(Step 6) Let M(k∼(G)) be the set of nonempty compact subsets A ⊂ k∼(G) such that A

projects to a (compact) subset prrad(A) of R which is the closure of its interior in

R. For any A ∈ M(k∼(G)), by taking the length µ(G)(A) of prrad(A) ⊂ R with re-

spect to the usual Lebesgues measure on R. By taking the logarithm µlog(G)(A) :=

log(µ(G)(A)) ∈ R ∼= Rarc(G), where we use the canonical identification R ∼=
Rarc(G), we reconstruct the desired local radial log-volume function µlog(G) :

M(k∼(G))→ Rarc(G). This also satisfies

µlog(G)(I(G)) = log π

2π
F(G)

by definition.

(Step 7) Let M̆(k∼(G)) denote the set of non-empty compact subsets A ⊂ k∼(G) \ {(0, 0)}
such that A projects to a (compact) subset prang(A) of O

×
k∼(G) which is the closure

of its interior in O×k∼(G). We reconstruct the local angular log-volume function

µ̆log(G) : M̆(k∼(G)) → Rarc(G) by taking the integration µ̆(G)(A) of prang(A) ⊂
O×k∼(G) on O

×
k∼(G) with respect to the differentiable structure induced by the one in

(Step 1), taking the logarithm µ̆log(G)(A) := log(µ̆(G)(A)) ∈ R ∼= Rarc(G), where

we use the canonical identification R ∼= Rarc(G), and the normalisation

µ̆log(G)(O×k∼(G)) =
log 2π

2π
F(G).

Moreover, if a field structure on k := k∼(G) is given, then we have the exponential map

expk : k → k× on k (where we can see k both on the domain and the codomain), and

we have

(5.2) µlog(G)(A) = µ̆log(G)(expk(A))

for a non-empty compact subset A ⊂ k with expk(A) ⊂ O×k , such that prrad and expk
induce bijections A

∼→ prrad(A), and A
∼→ expk(A) respectively.

Remark 5.4.1. The formula (5.2) will be used for the compatibility of log-

links with log-volume functions (See Proposition 13.10 (4)).
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Proof. Proposition immediately follows from the described algorithms.

§ 6. Preliminaries on Tempered Fundamental Groups.

In this section, we collect some prelimiraries on tempered fundamental groups, and

we show a theorem on “profinite conjugate vs tempered conjugate”, which plays an

important role in inter-universal Teichmüller theory.

§ 6.1. Some Definitions.

From this section, we use André’s theory of tempered fundamental groups ([A1])

for rigid-analytic spaces (in the sense of Berkovich) over non-Archimedean fields. We

give a short review on it here. He introduced the tempered fundamental groups to

obtain a fundamental group of “reasonable size” for rigid analytic spaces: On one

hand, the topological fundamental groups πtop
1 for rigid analytic spaces are too small

(e.g., πtop
1 (P1

Cp
\ {0, 1,∞}, x) = {1}. If X is a proper curve with good reduction,

then πtop
1 (Xan, x) = {1}). On the other hand, the étale fundamental groups πét

1 for

rigid analytic spaces aree too big (e.g., By the Gross-Hopkins period mappings ([GH1],

[GH2]), we have a surjection πét
1 (P1

Cp
, x)� SL2(Qp). See also [A2, II.6.3.3, and Remark

after III Corollary 1.4.7]). André’s tempered fundamental group πtemp
1 is of reasonable

size, and it comparatively behaves well at least for curves. An étale covering Y � X

of rigid analytic spaces is called tempered covering if there exists a commutative

diagram

Z // //

����

T

����
Y // // X

of étale coverings, where T � X is a finite étale covering, and Z � T is a possibly

inifinite topological covering. When we define a class of coverings, then we can define

the fundamental group associated to the class. In this case, πtemp
1 (X,x) classifies all

tempered pointed coverings of (X,x). For example, we have πtemp
1 (P1

Cp
\ {0,∞}) = Ẑ,

and for an elliptic curve E over Cp with j-invariant jE , we have πtemp
1 (E) ∼= Ẑ × Ẑ if

|j|p ≤ 1, and πtemp
1 (E) ∼= Z × Ẑ if |j|p > 1 ([A1, §4.6]). Here, Z corresponds to the

universal covering of the graph of the special fiber. The topology of πtemp
1 is a little bit

complicated. In general, it is neither discrete, profinite, nor locally compact; however, it

is pro-discrete. For a (log-)orbicurve X over an MLF, let Btemp(X) denote the category

of the (log-)tempered coverings over the rigid analytic space associated with X. For

a (log-)orbicurve X over a field, let also B(X) denote the Galois category of the finite

(log-)étale coverings over X.
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Definition 6.1. ([SemiAnbd, Definition 3.1 (i), Definition 3.4])

1. If a topological group Π can be written as an inverse limit of an inverse system of

surjections of countable discrete topological groups, then we call Π a tempered

group (Note that any profinite group is a tempered group).

2. Let Π be a tempered group. We say that Π is temp-slim if we have ZΠ(H) = {1}
for any open subgroup H ⊂ Π.

3. Let f : Π1 → Π2 be a continuous homomorphism of tempered groups. We say Π1

is relatively temp-slim over Π2 (via f), if we have ZΠ2
(Im{H → Π2}) = {1} for

any open subgroup H ⊂ Π1.

4. ([IUTchI, §0]) For a topological group Π, let Btemp(Π) (resp. B(Π)) denote the cat-

egory whose objects are countable discrete sets (resp. finite sets) with a continuous

Π-action, and whose morphisms are morphisms of Π-sets. A category C is called

a connected temperoid, (resp. a connected anabelioid) if C is equivalent to

Btemp(Π) (resp. B(Π)) for a tempered group Π (resp. a profinite group Π). Note

that, if C is a connected temperoid (resp. a connected anabelioid), then C is natu-

rally equivalent to (C0)> (resp. (C0)⊥) (See Section 0.2 for (−)0, (−)> and (−)⊥).
If a category C is equivalent to Btemp(Π) (resp. B(Π)) for a tempered group Π

with countable basis (resp. a profinite group Π), then we can reconstruct the topo-

logical group Π, up to inner automorphism, by the same way as Galois category

(resp. by the theory of Galois category). (Note that in the anabelioid/profinite

case, we have no need of condition like “having countable basis”, since “compact

set arguments” are available in profinite topology.) We write π1(C) for it. We also

put π1(C0) := π1((C0)>) (resp. π1(C0) := π1((C0)⊥)) for C a connected temperoid

(resp. a connected anabelioid).

5. For connected temperoids (resp. anabelioids) C1, C2, a morphism C1 → C2 of

temperoids (resp. a morphism C1 → C2 of anabelioids) is an isomorphism

class of functors C2 → C1 which preserves finite limits and countable colimits (resp.

finite colimits) (This is definition in [IUTchI, §0] is slightly different from the one

in [SemiAnbd, Definition 3.1 (iii)]). We also define a morphism C01 → C02 to be a

morphism (C01)> → (C02)> (resp. (C01)⊥ → (C02)⊥).

Note that if Π1,Π2 are tempered groups with countable basis (resp. profinite

groups), then there are natural bijections among

• the set of continuous outer homomorphisms Π1 → Π2,

• the set of morphisms Btemp(Π1)→ Btemp(Π2) (resp. B(Π1)→ B(Π2)), and
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• the set of morphisms Btemp(Π1)
0 → Btemp(Π2)

0 (resp. B(Π1)
0 → B(Π2)

0).

(See also [IUTchI, Remark 2.5.3].)

Let K be a finite extension of Qp.

Lemma 6.2. Let X be a hyperbolic curve over K. Let ∆temp
X ⊂ Πtemp

X denote

the geometric tempered fundamental group πtemp
1 (X,x) and the arithmetic tempered fun-

damental group πtemp
1 (X,x) for some basepoint x, respectively. Then we have a group-

theoretic charasterisation of the closed subgroup ∆temp
X in Πtemp

X .

Remark 6.2.1. By remark 2.4.1, pro-Σ version of Lemma 6.2 holds as well.

Proof. Note that the homomorphisms ∆temp
X → ∆X := (∆temp

X )∧ and Πtemp
X →

ΠX := (Πtemp
X )∧ to the profinite completions are injective respectively, since the ho-

momorphism from a (discrete) free group to its profinite completion is injective (Free

groups and surface groups are residually finite (See also Proposition C.5)). Then by

using the group-theoretic characterisation of ∆X in ΠX (Corollary 2.4), we obtain a

group-theoretic characterisation of ∆temp
X as ∆temp

X = Πtemp
X ∩∆X .

Let K be an algebraic closure of K. Let k and k denote the residue field of K and

K respectively (k is an algebraic closure of k).

Definition 6.3.

1. Let X be a pointed stable curve over k with marked points D. Put X := X \ D.

Then we associate a dual semi-graph (resp. dual graph) GX to X as follows:

We set the set of the vertices of GX to be the set of the irreducible components

of X, the set of the closed edges of GX to be the set of the nodes of X, and the

set of the open edges of GX to be the set of the divisor of infinity of X (i.e., the

marked points D of X). To avoid confusion, we write Xv and νe for the irreducible

component of X and the node of X corresponding to a vertex v and an closed edge

e respectively. A closed edge e connects vertices v and v′ (we may allow the case of

v = v′), if and only if the node νe is the intersection of two branches corresponding

to Xv and Xv′ . An open e connects a vertex v, if and only if the marked point

corresponding to e lies in Xv.

2. (cf. [AbsAnab, Appendix]) We contitue the situation of (1). Let Σ be a set of

prime numbers. A finite étale covering of curves is called of Σ-power degree if any

prime number dividing the degree is in Σ. We also associate a (pro-Σ) semi-graph

GX(= GΣX) of anabelioids to X, such that the underlying semi-graph is GX as

follows: Put X ′ := X \ {nodes}. For each vertex v of GX , let Gv be the Galois
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category (or a connected anabelioid) of the finite étale coverings of Σ-power degree

of X ′v := Xv ×X X ′ which are tamely ramified along the nodes and the marked

points. For the branches νe(1) and νe(2) of the node νe corresponding to a closed

edge e of GX , we consider the scheme-theoretic interstion X ′νe(i) of the completion

along the branch νe(i) at the node νe of X ′ for i = 1, 2 (Note that X ′νe(i) is non-

canonically isomorphic to Spec k((t))). We fix a k-isomorphism X ′νe(1)
∼= X ′νe(2), we

identify these, and let X ′e denote the identified object. Let Ge be the Galois category

(or a connected anabelioid) of the finite étale coverings of Σ-power degree of X ′e
which are tamely ramified along the node. For each open edge ex corresponding to

a marked point x, put X ′x to be the scheme-theoretic interstion of the completion

of X at the marked point x with X ′ (Note that X ′x is non-canonically isomorphic

to Spec k((t))). Let Gex be the Galois category (or a connected anabelioid) of the

finite étale coverings of Σ-power degree of X ′x which are tamely ramified along the

marked point. For each edge e connecting vertices v1 and v2, we have natural

functors Gv1 → Ge, Gv2 → Ge by the pull-backs. For an open edge e connected to

a vertex v, we have a natural functor Gv → Ge by the pull-backs. Then the data

GX(= GΣX) := {Gv;Ge;Gv → Ge} defines a semi-graph of anabelioids.

3. (cf. [SemiAnbd, Definition 2.1]) For a (pro-Σ) semi-graph G(= GΣ) = {Gv;Ge;Gv →
Ge} of anabelioids with connected underlying semi-graph G, we define a category

B(G)(= B(GΣ)) as follows: An object of B(G)(= B(GΣ)) is data {Sv, φe}v,e, where
v (resp. e) runs over the vertices (resp. the edges) of G, such that Sv is an object

of Gv, and φe : e(1)∗Sv1
∼→ e(2)∗Sv2 is an isomorphism in Ge, where e(1) and e(2)

are the branches of e connecting v1 and v2 respectively (Here, e(i)∗ : Gvi → Ge is

a given datum of G). We define a morphism of B(G) in the evident manner. Then

B(G) itself is a Galois category (or a connected anabelioid). In the case of G = GX
in (2), the fundamental group associated to B(G)(= B(GΣ)) is called the (pro-Σ)

admissible fundamental group of X.

4. (cf. [SemiAnbd, paragraph before Definition 3.5 and Definition 3.5]) Let G(= GΣ) =
{Gv;Ge;Gv → Ge} be a (pro-Σ) semi-graph of anabelioids such that the underly-

ing semi-graph G is connected and countable. We define a category Bcov(G)(=
Bcov(GΣ)) as follows: An object of Bcov(G)(= BΣ,cov(G)) is data {Sv, φe}v,e, where
v (resp. e) runs over the vertices (resp. the edges) of G, such that Sv is an object

of (G0v)> (See Section 0.2 for (−)0 and (−)>), and φe : e(1)∗Sv1
∼→ e(2)∗Sv2 is an

isomorphism in (G0e )>, where e(1) and e(2) are the branches of e connecting v1 and

v2 respectively (Here, e(i)∗ : Gv → Ge is a given datum of G). We define a mor-

phism of Bcov(G) in the evident manner. We can extend the definition of Bcov(G)
to a semi-graph of anabelioids such that the underlying semi-graph G is countable;

however, is not connected. We have a natural full embedding B(G) ↪→ Bcov(G).
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Let (B(G) ⊂)Btemp(G)(= Btemp(GΣ)) ⊂ Bcov(G) denote the full subcategory whose

objects {Sv, φe}v,e are as follows: There exists an object {S′v, φ′e} of B(G) such that

for any vertex or edge c, the restriction of {S′v, φ′e} to Gc splits the restriction of

{Sv, φe} to Gc i.e., the fiber product of S′v (resp. φ′e) with Sv (resp. φe) over the

terminal object (resp. over the identity morphism of the terminal object) in (G0v)>

(resp. (G0e )>) is isomorphic to the coproduct of a countable number of copies of S′v
(resp. φ′e) for any vertex v and any edge e. We call Btemp(G)(= Btemp(GΣ)) (pro-Σ)
(connected) temperoid associated with G(= GΣ).

We can associate the fundamental group ∆temp
G (= ∆

(Σ),temp
G ) := π1(Btemp(G)) (=

π1(Btemp(GΣ))) of Btemp(G)(= Btemp(GΣ)) (after taking a fiber functor) by the

same way as a Galois category. Let ∆G(= ∆
(Σ)
G ) denote the profinite completion of

∆
(Σ),temp
G . (Note that ∆G(= ∆

(Σ)
G ) is not the maximal pro-Σ quotient of π1(B(GΣ))

since the profinite completion of the “graph covering portion” is not pro-Σ). By

definition, ∆temp
G (= ∆

(Σ),temp
G ) and ∆

(Σ)
G are tempered groups (Definition 6.1 (1),

See also [SemiAnbd, Proposition 3.1 (i)]).

Remark 6.3.1. (cf. [SemiAnbd, Example 3.10]) Let X be a smooth log-curve over

K. The special fiber of the stable model of X determines a semi-graph G of anabelioids.

We can relate the tempered fundamental group ∆temp
X := πtemp

1 (X) of X with a system

of admissible fundamental groups of the special fibers of the stable models of coverings

of X as follows: Take an exhausitive sequence of open characteristic subgroups · · · ⊂
Ni ⊂ · · · ⊂ ∆temp

X (i ≥ 1) of finite index of ∆temp
X . Then Ni determines a finite log-

étale covering of X whose special fiber of the stable model gives us a semi-graph Gi of
anabelioids, on which ∆temp

X /Ni acts faithfully. Then we obtain a natural sequence of

functors · · · ← Btemp(Gi) ← · · · ← Btemp(G) which are compatible with the actions of

∆temp
X /Ni. Hence, this gives us a sequence of surjections of tempered groups ∆temp

X �
· · · � π1(Btemp(Gi))

out
o (∆temp

X /Ni) � · · · � π1(Btemp(Gj))
out
o (∆temp

X /Nj) � · · · �
π1(Btemp(G)). Then by construction, we have

(6.1) ∆temp
X

∼= lim←−
i

(
∆temp
Gi

out
o (∆temp

X /Ni)

)
= lim←−

i

∆temp
X /ker(Ni � ∆temp

Gi ).

We also have

(6.2) ∆X
∼= lim←−

i

(
∆Gi

out
o (∆X/N̂i)

)
= lim←−

i

∆X/ker(N̂i � ∆Gi),

where N̂i denotes the closure of Ni in ∆X . By these expressions of ∆temp
X and ∆X in

terms of ∆temp
Gi ’s and ∆Gi ’s, we can reduce some properties of the tempered fundamental

group ∆temp
X of the generic fiber to some properties of the admissible fundamental groups

of the special fibers (See Lemma 6.4 (5), and Corollary 6.10 (1)). Let ∆
(Σ),temp
X denote
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the fundamental group associated to the category of the tempered coverings dominated

by coverings which arise as a graph covering of a finite étale Galois covering of X over K

of Σ-power degree, and ∆
(Σ)
X its profinite completion (Note that ∆

(Σ)
X is not the maximal

pro-Σ quotient of ∆temp
X or ∆X since the profinite completion of the “graph covering

portion” is not pro-Σ). If p 6∈ Σ, then we have

∆
(Σ),temp
X

∼= ∆
(Σ),temp
G and ∆

(Σ)
X
∼= ∆

(Σ)
G ,

since Galois coverings of Σ-power degree are necessarily admissible (See [Hur, §3],
[SemiAnbd, Corollary 3.11]).

§ 6.2. Profinite Conjugates vs. Tempered Conjugates.

Lemma 6.4. (special case of [SemiAnbd, Proposition 2.6, Corollary 2.7 (i), (ii),

Proposition 3.6 (iv)] and [SemiAnbd, Example 3.10]) Let X be a smooth hyperbolic log-

curve over K. Put ∆temp
X := πtemp

1 (X ×K K) and Πtemp
X := πtemp

1 (X). Let Gtemp(=

GΣ,temp) denote the temperoid determined by the special fiber of the stable model of

X ×K K and a set Σ of prime numbers, and put ∆temp
G := π1(Gtemp) (for some base

point). Take a connected sub-semi-graph H containing a vertex of the underling semi-

graph G of Gtemp. We assume that H is stabilised by the natural action of GK on G.

Let Htemp denote the temperoid over H obtained by the restriction of Gtemp to H. Put

∆temp
H := π1(Htemp)(⊂ ∆temp

G ). Let ∆G and ∆H denote the profinite completion of

∆temp
G and ∆temp

H respectively.

1. ∆H ⊂ ∆G is commensurably terminal,

2. ∆H ⊂ ∆G is relatively slim (resp. ∆temp
H ⊂ ∆temp

G is relatively temp-slim),

3. ∆H and ∆G are slim (resp. ∆temp
H and ∆temp

G are temp-slim),

4. inertia subgroups in ∆temp
G of cusps are commensurably terminal, and

5. ∆temp
X and Πtemp

X are temp-slim.

Proof. (1) can be shown by the same manner as in Proposition 2.7 (1a) (i.e.,

consider coverings which are connected over H and totally split over a vertex outside H).

(3) for ∆: We can show that ∆H and ∆G are slim in the same way as in Proposition 2.7.

(2): ∆H ⊂ ∆G is relatively slim, by (1), (3) for ∆ and Lemma 2.6 (2). Then the

injectivity (which comes from the residual finiteness of free groups and surface groups

(See also Proposition C.5)) of ∆temp
H ↪→ ∆H and ∆temp

G ↪→ ∆G implies that ∆temp
H ⊂

∆temp
G is relatively temp-slim. (3) for ∆temp: It follows from (2) for ∆temp in the

same way as in Proposition 2.6 (2). (4) can also be shown by the same manner as in
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Proposition 2.7 (2c). (5): By the isomorphism (6.1) in Remark 6.3.1 and (3) for ∆temp,

it follows that ∆temp
X is temp-slim (See [SemiAnbd, Example 3.10]). Hence, Πtemp

X is

also temp-slim by Proposition 2.7 (1c).

Definition 6.5. Let G be a semi-graph of anabelioids.

1. We call a subgroup of the form ∆v := π1(Gv) (⊂ ∆temp
G ) for a vertex v a verticial

subgroup.

2. We call a subgroup of the form ∆e := π1(Ge) (∼= ẐΣ\{p} :=
∏
l∈Σ\{p} Zl)(⊂ ∆temp

G )

for a closed edge e an edge-like subgroup.

Proposition 6.6. ([SemiAnbd, Theorem 3.7 (iv)]) Let X be a smooth hyperbolic

log-curve over K. Let Gtemp(= GΣ,temp) denote the temperoid determined by the special

fiber of the stable model of X and a set Σ of prime numbers, and put ∆temp
G := π1(Gtemp)

(for some base point). For a vertex v (resp. an edge e) of the underlying sub-semi-graph

G of Gtemp, we put ∆v := π1(Gv)(⊂ ∆temp
G ) (resp. ∆e := π1(Ge)(⊂ ∆temp

G )) to be the

profinite group corresponding to Gv (resp. Ge) (Note that we are not considering open

edges here). Then we have the followng group-theoretic characterisations of ∆v’s and

∆e’s.

1. The maximal compact subgroups of ∆temp
G are precisely the verticial subgroups of

∆temp
G .

2. The nontrivial intersection of two maximal compact subgroups of ∆temp
G are precisely

the edge-like subgroups of ∆temp
G .

Remark 6.6.1. Proposition 6.6 reconstructs the dual graph (not the dual semi-

graph) of the special fiber from the tempered fundamental group without using the

action of the Galois group of the base field. In Corollary 6.12 below, we reconstruct

the inertia subgroups, hence open edges as well, using the Galois action. However,

we can reconstruct the open edges without Galois action, by more delicate method in

[SemiAnbd, Corollary 3.11] (i.e., by constructing a covering whose fiber at a cusp under

consideration contains a node).

We can also reconstruct the dual semi-graph of the special fiber from the profi-

nite fundamental group by using the action of the Galois group of the base field (See

[profGC]).

Proof. Let ∆G denote the profinite completion of ∆temp
G . First, note that it follows

that ∆v ∩ ∆v′ has infinite index in ∆v for any vertices v 6= v′ by the commensurable

terminality of ∆temp
v (Lemma 6.4 (1)). Next, we take an exhausitive sequence of open

characteristic subgroups · · · ⊂ Ni ⊂ · · · ⊂ ∆temp
G of finite index, and let Gi(→ G) be the
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covering corresponding to Ni(⊂ ∆temp
G ). Let G∞i denote the universal graph covering

of the underlying semi-graph Gi of Gi.
Take a compact subgroup H ⊂ ∆temp

G , then H acts continuously on G∞i for each

i ∈ I, thus its action factors through a finite quotient. Hence, H fixes a vertex or an

edge of G∞i (see also [SemiAnbd, Lemma 1.8 (ii)]), since an action of a finite group on

a tree has a fixed point by [Serre2, Chapter I, §6.5, Proposition 27] (Note that a graph

in [Serre2] is an oriented graph; however, if we split each edge of G∞i into two edges,

then the argument works). Since the action of H is over G, if H fixes an edge, then

it does not change the branches of an edge. Therefore, H fixes at least one vertex. If,

for some cofinal subset J ⊂ I, H fixes more than or equal to three vertices of G∞j for

each j ∈ J , then by considering paths connecting these vertices (cf. [Serre2, Chapter I,

§2.2, Proposition 8]), it follows that there exists a vertex having (at least) two closed

edges in which H fixes the vertex and the closed edges (see also [SemiAnbd, Lemma 1.8

(ii)]). Since each Gj is finite semi-graph, we can choose a compatible system of such a

vertex having (at least) two closed edges on which H acts trivially. This implies that H

is contained in (some conjugate in ∆G of) the intersection of ∆e and ∆e′ , where e and

e′ are distinct closed edges. Hence, H should be trivial. By the above arguments also

show that any compact subgroup in ∆temp
G is contained in ∆v for precisely one vertex

v or in ∆v,∆v′ for precisely two vertices v, v′, and, in the latter case, it is contained in

∆e for precisely one closed edge e.

Proposition 6.7. ([IUTchI, Proposition 2.1]) Let X be a smooth hyperbolic log-

curve over K. Let Gtemp(= GΣ,temp) denote the temperoid determined by the special

fiber of the stable model of X and a set Σ of prime numbers. Put ∆temp
G := π1(Gtemp),

and let ∆G denote the profinite completion of ∆temp
G (Note that the “profinite portion”

remains pro-Σ, and the “combinatorial portion” changes from discrete to profinite). Let

Λ ⊂ ∆temp
G be a nontrivial compact subgroup, γ ∈ ∆G an element such that γΛγ−1 ⊂

∆temp
G . Then γ ∈ ∆temp

G .

Proof. Let Γ̂ (resp. Γtemp) be the “profinite semi-graph” (resp. “pro-semi-graph”)

associated with the universal profinite étale (resp. tempered) covering of Gtemp. Then

we have a natural inclusion Γtemp ↪→ Γ̂. We call a pro-vertex in Γ̂ in the image of this

inclusion tempered vertex. Since Λ and γΛγ−1 are compact subgroups of ∆temp
G , there

exists vertices v, v′ of G (here G denotes the underlying semi-graph of Gtemp) such that

Λ ⊂ ∆temp
v and γΛγ−1 ⊂ ∆temp

v′ by Proposition 6.6 (1) for some base points. Here,

∆temp
v and ∆temp

v′ for this base points correspond to tempered vertices ṽ, ṽ′ ∈ Γtemp.

Now, {1} 6= γΛγ−1 ⊂ γ∆temp
v γ−1 ∩∆temp

v′ , and γ∆temp
v γ−1 is also a fundamental group

of Gtemp
v with the base point obtained by conjugating the base point under consideration

above by γ. This correponding to a tempered vertex ṽγ ∈ Γtemp. Hence, for the tem-

pered vertices ṽγ and ṽ′, the associated fundamental group has nontrivial intersection.
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By replacing Πtemp
G by an open covering, we may assume that each irreducible

component has genus ≥ 2, any edge of G abuts to two distinct vertices, and that, for

any two (not necessarily distinct) vertices w,w′, the set of edges e in G such that e abuts

to a vertex w′′ if and only if w′′ ∈ {w,w′} is either empty of of cardinality ≥ 2. In the

case where Σ = {2}, then by replacing Πtemp
G by an open covering, we may assume that

the last condition “cardinality ≥ 2” is strongthen ot the condition “even cardinality”.

If ṽγ is not equal to ṽ′ nor ṽγ is adjacent to ṽ′, then we can construct the covering

over Xv (here Xv is the irreducible component corresponding to v), such that the

ramification indices at the nodes and cusps ofXv are all equal (Note that such a covering

exists by the assumed condition onG in the last paragraph), then we extend this covering

over the irreducible components which adjacent to Xv, finally we extend the covering to

a split covering over the rest of X (See also [AbsTopII, Proposition 1.3 (iv)] or [NodNon,

Proposition 3.9 (i)]). This implies that there exist open subgroups J ⊂ ∆temp
G which

contain ∆temp
v′ and determine arbitrarily small neighbourhoods γ∆temp

v γ−1 ∩ J of {1}.
This is a contradiction. Therefore, ṽγ is equal to ṽ′, or ṽγ is adjacent to ṽ′. In particular,

ṽγ is tempered since ṽ′ is tempered. Hence, both of ṽ and ṽγ are tempered. Thus, we

have γ ∈ ∆temp
G , as desired.

Corollary 6.8. ([IUTchI, Proposition 2.2]) Let ∆temp
G and ∆temp

H be as in Lemma 6.4.

1. ∆temp
G ⊂ ∆G is commensurably terminal, and

2. ∆temp
H ⊂ ∆G is commensurably terminal. In particular, ∆temp

H ⊂ ∆temp
G is also

commensurably terminal as well.

Proof. (1): Let γ ∈ ∆G be an element such that ∆temp
G ∩γ∆temp

G γ−1 is finite index

in ∆temp
G . Let ∆v ⊂ ∆temp

G be a verticial subgroup, and put Λ := ∆v ∩ γ∆temp
G γ−1 ⊂

∆v ⊂ ∆temp
G . Since [∆v : Λ] = [∆temp

G : ∆temp
G ∩ γ∆temp

G γ−1] < ∞, the subgroup Λ is

open in the compact subgroup ∆v, so, it is a nontrivial compact subgroup of ∆temp
G .

Now, γ−1Λγ = γ−1∆vγ∩∆temp
G ⊂ ∆temp

G . Since Λ, γ−1Λγ ⊂ ∆temp
G and Λ is a nontrivial

compact subgroup, we have γ−1 ∈ ∆temp
G by Proposition 6.7. Thus γ ∈ ∆temp

G , as

desired.

(2): We have ∆temp
H ⊂ C∆temp

G
(∆temp
H ) ⊂ C∆G (∆

temp
H ) ⊂ C∆G (∆H) by defini-

tion. By Lemma 6.4 (1), we have C∆G (∆H) = ∆H. Thus, we have C∆G (∆
temp
H ) =

C∆H(∆temp
H ) combining these. On the other hand, by (1) for ∆temp

H , we have C∆H(∆temp
H ) =

∆temp
H . By combining these, we have ∆temp

H ⊂ C∆G (∆
temp
H ) = C∆H(∆temp

H ) = ∆temp
H , as

desired.

Corollary 6.9. ([IUTchI, Corollary 2.3]) Let ∆X , ∆temp
G , ∆temp

H , H, ∆G, ∆H

be as in Lemma 6.4. Put ∆temp
X,H := ∆temp

X ×∆temp
G

∆temp
H (⊂ ∆temp

X ), and ∆X,H :=

∆X ×∆G ∆H(⊂ ∆X).
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1. ∆temp
X,H ⊂ ∆temp

X (resp. ∆X,H ⊂ ∆X) is commensurably terminal.

2. The closure of ∆temp
X,H in ∆X is equal to ∆X,H.

3. We have ∆X,H ∩∆temp
X = ∆temp

X,H (⊂ ∆X).

4. Let Ix ⊂ ∆temp
X (resp. Ix ⊂ ∆X) be a cusp x of X. Write x̃ for the cusp in the

stable model corresponding to x. Then Ix lies in a ∆temp
X -(resp. ∆X-)conjugate of

∆temp
X,H (resp. ∆X,H) if and only if x̃ meets an irreducible component of the special

fiber of the stable model which is contained in H.

5. Suppose that p /∈ Σ, and there is a prime number l 6∈ Σ ∪ {p}. Then ∆X,H is slim.

In particular, we can define

Πtemp
X,H := ∆temp

X,H
out
o GK , ΠX,H := ∆X,H

out
o GK

by the natural outer actions of GK on ∆temp
X,H and ∆X,H respectively.

6. Suppose that p 6∈ Σ, and there is a prime number l 6∈ Σ ∪ {p}. Πtemp
X,H ⊂ Πtemp

X and

ΠX,H ⊂ ΠX are commensurably terminal.

Proof. (1) follows from Lemma 6.4 (1) and Corollary 6.8 (2). Next, (2) and (3) are

trivial. (4) follows by noting that an inertia subgroup of a cusp is contained in precisely

one verticial subgroup. We can show this, (possibly after replacing G by a finite étale

covering) for any vertex v which is not abuted by the open edge e corresponding to the

inertia subgroup, by constructing a covering which is trivial over Gv and nontrivial over

Ge ([CombGC, Proposition 1.5 (i)]). (6) follows from (5) and (1). We show (5) (The

following proof is a variant of the proof of Proposition 2.7 (2a)). Let J ⊂ ∆X be an

open normal subgroup, and put JH := J ∩∆X,H. We write J � JΣ∪{l} for the maximal

pro-Σ ∪ {l} quotient, and J
Σ∪{l}
H := Im(JH → JΣ∪{l}). Suppose α ∈ ∆X,H commutes

with JH. Let v be a vertex of the dual graph of the geometric special fiber of a stable

model XJ of the covering XJ of XK corresponding to J . We write Jv ⊂ J for the

decomposition group of v, (which is well-defined up to conjugation in J), and we put

J
Σ∪{l}
v := Im(Jv → JΣ∪{l}). First, we show a claim that J

Σ∪{l}
v ∩ JΣ∪{l}

H is infinite and

non-abelian. Note that Jv ∩ JH, hence also J
Σ∪{l}
v ∩ JΣ∪{l}

H , surjects onto the maxmal

pro-l quotient J lv of Jv, since the image of the homomorphism Jv ⊂ J ⊂ ∆X � ∆G

is pro-Σ, and we have ker(Jv ⊂ J ⊂ ∆X � ∆G) ⊂ Jv ∩ JH, and l 6∈ Σ. Now, J lv is

the pro-l completion of the fundamental group of hyperbolic Riemann surface, hence

is infinite and non-abelian. Therefore, the claim is proved. Next, we show (5) from

the claim. We consider various ∆X -conjugates of J
Σ∪{l}
v ∩ JΣ∪{l}

H in JΣ∪{l}. Then

by Proposition 6.6, it follows that α fixes v, since α commutes with J
Σ∪{l}
v ∩ JΣ∪{l}

H .

Moreover, since the conjugation by α on J lv(� J
Σ∪{l}
v ∩ JΣ∪{l}

H ) is trivial, it follows
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that α not only fixes v, but also acts trivially on the irreducible component of the

special fiber of XJ corresponding to v (Note that any nontrivial automorphism of an

irreducible component of the special fiber induces a nontrivial outer automorphism of

the tame pro-l fundamental group of the open subscheme of this irreducible component

given by taking the complement of the nodes and cusps). Then α acts on (JΣ∪{l})ab as

a unipotent automorphism of finite order, since v is arbitrary, hence α acts trivially on

(JΣ∪{l})ab. Then we have α = 1, as desired since J is arbitrary.

Corollary 6.10. ([IUTchI, Proposition 2.4 (i), (iii)]) We continue to use the

same notation as above. We assume that p 6∈ Σ (which implies that ∆temp
X � ∆

(Σ),temp
X

∼=
∆

(Σ),temp
G = ∆temp

G and ∆X � ∆
(Σ)
X
∼= ∆

(Σ)
G = ∆G).

1. Let Λ ⊂ ∆temp
X be a nontrivial pro-Σ compact group, γ ∈ ΠX an element such that

γΛγ−1 ⊂ ∆temp
X . Then we have γ ∈ Πtemp

X .

2. ([A1, Corollary 6.2.2]) ∆temp
X ⊂ ∆X (resp. Πtemp

X ⊂ ΠX) is commensurably termi-

nal.

Remark 6.10.1. By Corollary 6.10 (2) and Theorem B.1, we can show a tempered

version of Theorem B.1:

Homdom
K (X,Y )

∼→ Homdense in an open subgp. of fin. index
GK

(Πtemp
X ,Πtemp

Y )/Inn(∆temp
Y )

(For a homomorphism, up to inner automorphisms of ∆temp
Y , in the right hand side,

consider the induced homomorphism on the profinite completions. Then it comes from

a morphism in the left hand side by Theorem B.1, and we can reduce the ambigu-

ity of inner automorphisms of the profinite completion of ∆temp
Y to the one of inner

automorphisms of ∆temp
Y by Corollary 6.10 (2)). See also [SemiAnbd, Theorem 6.4].

Proof. (1): Take a lift γ̃ ∈ Πtemp
X � GK of the image of γ ∈ ΠX � GK . By

replacing γ by γ(γ̃)−1 ∈ ∆X , we may assume that γ ∈ ∆X . For an open characteristic

sugroup N ⊂ ∆temp
X , let N̂ denote the closure of N in ∆X , and let GN denote the (pro-

Σ) semi-graph of anabelioids determined by the stable model of the covering of X×KK
corresponding to N . By the isomorphisms (6.1) and (6.2) in Remark 6.3.1, it suffices

to show that for any open characteristic subgroup N ⊂ ∆temp
X , the image of γ ∈ ∆X �

∆X/ker(N̂ � ∆GN ) comes from ∆temp
X /ker(N � ∆temp

GN ) ↪→ ∆X/ker(N̂ � ∆GN ). Take

such an N . Since N is of finite index in ∆temp
X , we have ∆temp

X /N ∼= ∆X/N̂ . We take

a lift γ̃ ∈ ∆temp
X � ∆temp

X /N ∼= ∆X/N̂ of the image γ ∈ ∆X � ∆X/N̂ . By replacing γ

by γ(γ̃)−1 ∈ N̂ , we may assume that γ ∈ N̂ . Note that ΛN := Λ ∩N(⊂ N ⊂ ∆temp
X ) is

a nontrivial open compact subgroup, since N is of finite index in ∆temp
X . Since ΛN is a

pro-Σ subgroup in ∆temp
X , it is sent isomorphically to the image by ∆temp

X � ∆
(Σ),temp
X .
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Hence, the image ΛN ⊂ ∆temp
G of ΛN by ∆temp

X � ∆
(Σ),temp
X

∼= ∆
(Σ),temp
G = ∆temp

G is

also nontrivial open compact subgroup (Here we need the assumption p 6∈ Σ. If p ∈ Σ,

then we only have a surjection ∆
(Σ),temp
X � ∆

(Σ),temp
G , and the image of ΛN might be

trivial). Note that ΛN is in ∆temp
GN = Im(N ⊂ ∆temp

X � ∆temp
G ). Consider the following

diagram, where the horizontal sequences are exact:

1 // ∆temp
GN

//
_�

��

∆temp
X /ker(N � ∆temp

GN ) //
_�

��

∆temp
X /N //

∼=
��

1

1 // ∆GN // ∆X/ker(N̂ � ∆temp
GN ) // ∆X/N̂ // 1

Since γ is in N̂ , the image γ of γ ∈ ∆X � ∆X/ker(N̂ � ∆GN ) lands in ∆GN . Since

ΛN (⊂ ∆temp
GN ) is a nontrivial open compact subgroup, and γΛNγ

−1 ⊂ ∆temp
GN by assump-

tion, we conclude γ ∈ ∆temp
GN by Proposition 6.7, as desired. (2) follows from (1) by the

same way as in Corollary 6.8 (1).

The following theorem is technically important for inter-universal Teichmüller the-

ory :

Theorem 6.11. (Profinite Conjugate VS Tempered Conjugate, [IUTchI, Corol-

lary 2.5]) We continue to use the same notation as above. We assume that p 6∈ Σ. Then

1. Any inertia subgroup in ΠX of a cusp of X is contained in Πtemp
X if and only if it

is an inertia subgroup in Πtemp
X of a cusp of X, and

2. A ΠX-conjugete of Πtemp
X contains an inertia subgroup in Πtemp

X of a cusp of X if

and only if it is equal to Πtemp
X .

Remark 6.11.1. In inter-universal Teichmüller theory,

1. we need to use tempered fundamental groups, because the theory of the étale theta

function (see Section 7) plays a crucial role, and

2. we also need to use profinite fundamental groups, because we need hyperbolic or-

bicurve over a number field for the purpose of putting “labels” for each places in

a consistent manner (See Proposition 10.19 and Proposition 10.33). Note also that

tempered fundamental groups are available only over non-Archimedean local fields,

and we need to use profinite fundamental groups for hyperbolic orbicurve over a

number field.

Then in this way, the “Profinite Conjugate VS Tempered Conjugate” situation as in

Theorem 6.11 naturally arises (See Lemma 11.9). The theorem says that the profinite

conjugacy indeterminacy is reduced to the harmless tempered conjugacy indeterminacy.
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Proof. Let Ix(∼= Ẑ) be an inertia subgroup of a cusp x. By applying Corollary 6.10

to the unique pro-Σ subgroup of Ix, it follows that a ΠX -conjugate of Ix is contained

in Πtemp
X if and only if it is a Πtemp

X -conjugate of Ix, and that a ΠX -conjugate of Πtemp
X

containes Ix if and only if it is equal to Πtemp
X

Corollary 6.12. Let X be a smooth hyperbolic log-curve over K, an algebraic

closure K of K. Then we can group-theoretically reconstruct the inertia subgroups and

the decomposition groups of cusps in Πtemp
X := πtemp

1 (X).

Remark 6.12.1. By combining Corollary 6.12 with Proposition 6.6, we can group-

theoretically reconstruct the dual semi-graph of the special fiber (See also Remark 6.6.1).

Proof. By Lemma 6.2 (with Remark 6.2.1) we have a group-theoretic reconstruc-

tion of the quotient Πtemp
X � GK from Πtemp

X . Let ∆X and ΠX denote the profinite

completions of ∆temp
X and Πtemp

X respectively. By using the injectivity of ∆temp
X ↪→ ∆X

and Πtemp
X ↪→ ΠX (i.e., residual finiteness (See also Proposition C.5)), we can reconstruct

inertia subgroups I of cusps by using Corollary 2.9, Remark 2.9.2, and Theorem 6.11

(Note that the reconstruction of the inertia subgroups in ∆X has ∆X -conjugate inde-

terminacy; however, by using Theorem 6.11, this indeterminacy is reduced to ∆temp
X -

conjugate indeterminacy, and it is harmless). Then we can group-theoretically recon-

struct the decomposition groups of cusps, by taking the normaliser NΠtemp
X

(I), since I

is normally terminal in ∆temp
X by Lemma 6.4 (4).

Remark 6.12.2. (a little bit sketchy here, cf. [AbsAnab, Lemma 2.5], [AbsTopIII,

Theorem 1.10 (c)]) By using the reconstruction of the dual semi-graph of the special

fiber (Remark 6.12.1), we can reconstruct

1. a positive rational structure onH2(∆X , µẐ(GK))∨ := Hom(H2(∆X , µẐ(GK)), Ẑ),

2. hence, a cyclotomic rigidity isomorphism:

(Cyc.Rig. via Pos. Rat. Str.) µẐ(GK)
∼→ µẐ(ΠX)

(We call this the cyclotomic rigidity isomorphism via positive rational

structure and LCFT.)

as follows (See also Remark 3.19.1):

1. By taking finite étale covering of X, it is easy to see that we may assume that

the normalisation of each irreducible component of the special fiber of the sta-

ble model X of X has genus ≥ 2, and that the dual semi-graph ΓX of the spe-

cial fiber is non-contractible (cf. [profGC, Lemma 2.9, the first two paragraphs
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of the proof o Theorem 9.2]). By Remark 6.12.1, we can group-theoretically re-

construct the quotient ∆temp
X � ∆comb

X corresponding to the coverings of graphs

(Note that, in [AbsAnab], we reconstruct the dual semi-graph of the special fiber

from profinite fundamental group, i.e., without using tempered structure, via the

reconstruction algorithms in [profGC]. See also Remark 6.6.1). Let ∆X denote tha

profinite completion of ∆temp
X , and put V := ∆ab

X . Note that the abelianisation

V comb := (∆comb
X )ab ∼= Hsing

1 (ΓX ,Z)( 6= 0) is a free Z-module. By using a theorem

of Raynaud (cf. [AbsAnab, Lemma 2.4], [Tam, Lemma 1.9], [Ray, Théorème 4.3.1]),

after replacing X by a finite étale covering (whose degree depends only on p and

the genus of X), and K by a finite unramified extension, we may assume that the

“new parts” of the Jacobians of the irreducible components of the special fiber are

all ordinary, hence we obtain a GK-equivariant quotient V � V new, such that we

have an exact sequence

0→ V mult → V new
Zp

:= V new ⊗Ẑ Zp → V ét → 0,

where V ét is an unramified GK-module, and V mult is the Cartier dual of an un-

ramified GK-module, and that V new � V comb
Ẑ

:= V comb ⊗Z Ẑ(6= 0). Let (−)− (like

V new
Zp

, V comb
Ẑ

) denote the tensor product in this proof. Then the restriction of the

non-degenerate group-theoretic cup product

V ∨ ⊗Ẑ V
∨ ⊗Ẑ µẐ(GK)→M := H2(∆, µẐ(GK)) (∼= Ẑ),

where (−)∨ := Hom(−, Ẑ), to (V new)∨

(V new)∨ ⊗Ẑ (V new)∨ ⊗Ẑ µẐ(GK)→M (∼= Ẑ)

is still non-degenerate since it arises from the restriction of the polarisation given

by the theta divisor on the Jacobian of X to the “new part” of X (i.e., it gives us

an ample divisor). Then we obtain an inclusion

(V comb
Ẑ )∨⊗ẐµẐ(GK)⊗ẐM

∨ ↪→ (V new)∨⊗ẐµẐ(GK)⊗ẐM
∨ ↪→ ker(V new � V comb

Ẑ ) ⊂ V new,

where the second last inclusion comes from µẐ(GK)GK = 0.

By the Riemann hypothesis for abelian varieties over finite fields, the (ker(V ét �
V comb
Zp

)⊗Zp Qp)GK = ((ker(V ét � V comb
Zp

)⊗Zp Qp)GK
= 0, where (−)GK

denotes the

GK-coinvariant quotient (Note that ker(V ét � V comb
Zp

) arises from the p-divisible

group of an abelian variety over the residue field). Thus, the surjection V ét �
V comb ⊗Ẑ Zp has a unique GK-splitting V comb

Zp
↪→ V ét⊗Qp . Similarly, by taking

Cartier duals, the injection (V comb
Ẑ

)∨ ⊗Ẑ µẐ(GK)⊗M∨ ⊗Ẑ Zp ↪→ V mult also has a
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unique GK-splitting V mult � (V comb
Ẑ

)∨⊗ẐµẐ(GK)⊗M∨⊗ẐQp. By these splittings,

the GK-action on V new⊗Zp gives us a p-adic extension class

ηZp ∈ ((V comb
Qp

)∨)⊗2⊗M∨⊗H1(K,µẐ(GK))/H1
f (K,µẐ(GK)) = ((V comb

Qp
)∨)⊗2⊗M∨ :

0 // V mult
Qp

//

~~~~

V new
Qp

// V ét
Qp

//

����

0

(V comb
Qp

)∨ ⊗ µẐ(GK)⊗M∨
?�

OO

V comb
Qp

.
. �

bb

Next, ker(V new
Ẑ′ � V comb

Ẑ′ ) is an unramified GK-module, since it arises from l( 6= p)-

divisible group of a semi-abelian variety over the residue field, where we put Ẑ′ :=∏
l 6=p Zl. Again by the Riemann hypothesis for abelian varieties over finite fields,

the injection (V comb
Ẑ′ )∨ ⊗ µẐ(GK)⊗M∨ ↪→ ker(V new

Ẑ′ � V comb
Ẑ′ ) of unramified GK-

modules splits uniquely over Q. Then we can construct a prime-to-p-adic extension

class

ηẐ′ ∈ ((V comb
Ẑ′ )∨)⊗2⊗M∨⊗H1(K,µẐ(GK))/H1

f (K,µẐ(GK))⊗Q = ((V comb
Ẑ′ )∨)⊗2⊗M∨⊗Q :

0 // ker(V new
Ẑ′⊗Q

� V comb
Ẑ′⊗Q

) //

~~~~

V new
Ẑ′⊗Q

// V comb
Ẑ′⊗Q

// 0

(V comb
Ẑ′⊗Q

)∨ ⊗ µẐ(GK)⊗M∨.
?�

OO

Then combining p-adic extension class and prime-to-p-adic extension class, we ob-

tain an extension class

ηẐ ∈ ((V comb
Ẑ )∨)⊗2⊗M∨⊗H1(K,µẐ(GK))/H1

f (K,µẐ(GK))⊗Q = ((V comb
Ẑ )∨)⊗2⊗M∨⊗Q.

Therefore, we obtain a bilinear form

(V comb
Ẑ )⊗2 →M∨ ⊗Ẑ Q,

and the image of (V comb)⊗2 ⊂ (V comb
Ẑ

)⊗2 gives us a positive rational structure

(i.e., Q>0-structure) on M
∨ ⊗Ẑ Q (cf. [AbsAnab, Lemma 2.5]).

2. By the group-theoretically reconstructed homomorphisms

H1(GK , µẐ(GK))
∼→ Hom(H1(GK , Ẑ), Ẑ) ∼= Gab

K � Gab
K /Im(IK → Gab

K ) ∼= Ẑ
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in the proof of Corollary 3.19 (2), we obtain a natural surjection

H1(GKµẐ(ΠX))� Hom(µẐ(GK), µẐ(ΠX)) ∼= H2(∆X , µẐ(GK))∨

(Recall the definition of µẐ(ΠX)). Then by taking the unique topological genera-

tor of Hom(µẐ(GK), µẐ(ΠX)) which is contained in the positive rational structue

of H2(∆X , µẐ(GK))∨, we obtain the cyclotomic rigidity isomorphism µẐ(GK)
∼→

µẐ(ΠX).

It seems important to give a remark that we use the value group portion (i.e., we

use O�, not O×) in the construction of the above surjection H1(GK , µẐ(GK))
∼→

Hom(H1(GK , Ẑ), Ẑ) ∼= Gab
K � Gab

K /Im(IK → Gab
K ) ∼= Ẑ, hence, in the construction

of the cyclotomic rigidity via positive rational structure and LCFT as well. In inter-

universal Teichmüller theory, not only the existence of reconstruction algorithms, but

also the contents of reconstruction algorithms are important, and whether or not we

use the value group portion in the algorithm is crucial for the constructions in the fi-

nal multiradial algorithm in inter-universal Teichmüller theory. See also Remark 9.6.2,

Remark 11.4.1, Propositin 11.5, and Remark 11.11.1.

§ 7. Étale Theta Functions — Three Fundamental Rigidities.

In this sectin, we introduce another (probably the most) important ingredient of

inter-universal Teichmüller theory, that is, the theory of the étale theta functions. In

Section 7.1, we introduce some varieties related to the étale theta function. In Sec-

tion 7.4, we introduce the notion of mono-theta environment, which plays important

roles in inter-universal Teichmüller theory.

§ 7.1. Theta-related Varieties.

We introduce some varieties and study them in this subsection. LetK be a finite ex-

tension ofQp, andK an algebraic closure ofK. PutGK := Gal(K/K). Let X→ Spf OK

be a stable curve of type (1, 1) such that the special fiber is singular and geometrically ir-

reducible, the node is rational, and the Raynaud generic fiberX (which is a rigid-analytic

space) is smooth. For the varieties and rigid-analytic spaces in this Section, we also call

marked points cusps, we always put log-structure on them, and we always consider

the fundamental groups for the log-schemes and log-rigid-analytic spaces. Let Πtemp
X ,

∆temp
X denote the tempered fundamental group of X (with log-structure on the marked

point) for some basepoint. We have an exact sequence 1 → ∆X → ΠX → GK → 1.

Put ΠX := (Πtemp
X )∧, ∆X := (∆temp

X )∧ to be the profinite completions of Πtemp
X , ∆temp

X

respectively. We have the natural surjection ∆temp
X � Z corresponding to the universal
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graph-covering of the dual-graph of the configuration of the irreducible components of

X. We write Z for this quotient for the purpose of distinguish it from other Z’s. We

also write ∆X � Ẑ for the profinite completion of ∆temp
X � Z.

Put ∆Θ
X := ∆X/[∆X , [∆X ,∆X ]], and we call it the theta quotient of ∆X . We also

put ∆Θ :=
∧2

∆ab
X (∼= Ẑ(1)), and ∆ell

X := ∆ab
X . We have the following exact sequences:

1→ ∆Θ → ∆Θ
X → ∆ell

X → 1,

1→ Ẑ(1)→ ∆ell
X → Ẑ→ 1.

Let (∆temp
X )Θ and (∆temp

X )ell denote the image of ∆temp
X via the surjections ∆X � ∆Θ

X

and ∆X � (∆Θ
X �)∆ell

X respectively:

∆X
// // ∆Θ

X
// // ∆ell

X

∆temp
X

// //
?�

OO

(∆temp
X )Θ // //
?�

OO

(∆temp
X )ell.
?�

OO

Let (Πtemp
X )Θ and (Πtemp

X )ell denote the push-out of Πtemp
X via the surjections ∆temp

X �
(∆temp

X )Θ and ∆temp
X � ((∆temp

X )Θ �)(∆temp
X )ell respectively:

Πtemp
X

// // (Πtemp
X )Θ // // (Πtemp

X )ell

∆temp
X

// //
?�

OO

(∆temp
X )Θ // //
?�

OO

(∆temp
X )ell.
?�

OO

We have the following exact sequences:

1→ ∆Θ → (∆temp
X )Θ → (∆temp

X )ell → 1,

1→ Ẑ(1)→ (∆temp
X )ell → Z→ 1.

Let Y � X (resp. Y � X) be the infinite étale covering correspoinding to the

kernel Πtemp
Y of Πtemp

X � Z. We have Gal(Y/X) = Z. Here, Y is an infinite chain of

copies of the projective line with a marked point 6= 0,∞ (which we call a cusp), joined at

0 and∞, and each of these points “0” and “∞”is a node in Y. Let (∆temp
Y )Θ, (∆temp

Y )ell

(resp. (Πtemp
Y )Θ, (Πtemp

Y )ell) denote the image of ∆temp
Y (resp. Πtemp

Y ) via the surjections

∆temp
X � (∆temp

X )Θ and ∆temp
X � ((∆temp

X )Θ �)(∆temp
X )ell (resp. Πtemp

X � (Πtemp
X )Θ

and Πtemp
X � ((Πtemp

X )Θ �)(Πtemp
X )ell) respectively:

∆temp
X

// // (∆temp
X )Θ // // (∆temp

X )ell Πtemp
X

// // (Πtemp
X )Θ // // (Πtemp

X )ell

∆temp
Y

// //
?�

OO

(∆temp
Y )Θ // //
?�

OO

(∆temp
Y )ell,
?�

OO

Πtemp
Y

// //
?�

OO

(Πtemp
Y )Θ // //
?�

OO

(Πtemp
Y )ell.
?�

OO
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We also have a natural exact sequence

1→ ∆Θ → (∆temp
Y )Θ → (∆temp

Y )ell → 1.

Note that (∆temp
Y )ell ∼= Ẑ(1) and that (∆temp

Y )Θ(∼= Ẑ(1)⊕2) is abelian.
Let qX ∈ OK be the q-parameter of X. For an integer N ≥ 1, set KN :=

K(µN , q
1/N
X ) ⊂ K. Any decomposition group of a cusp of Y gives us a section GK →

(Πtemp
Y )ell of the natural surjection (Πtemp

Y )ell � GK (Note that the inertia subgroup

of cusps are killed in the quotient (−)ell). This section is well-defined up to conju-

gate by (∆temp
Y )ell. The composite GKN ↪→ GK → (Πtemp

Y )ell � (Πtemp
Y )ell/N(∆temp

Y )ell

is injective by the definition of KN , and the image is stable under the conjugate by

Πtemp
X , since GKN

acts trivially on 1 → Z/NZ(1) → (∆temp
X )ell/N(∆temp

Y )ell → Z → 1

(whose extension class is given by q
1/N
X ), by the definition of KN . Thus, the image

GKN ↪→ (Πtemp
Y )ell/N(∆temp

Y )ell determines a Galois covering YN � Y . We have natu-

ral exact sequences:

1→ Πtemp
YN

→ Πtemp
Y → Gal(YN/Y )→ 1,

1→ (∆temp
Y )ell ⊗ Z/NZ (∼= Z/NZ(1))→ Gal(YN/Y )→ Gal(KN/K)→ 1.

Let (∆temp
YN

)Θ, (∆temp
YN

)ell (resp. (Πtemp
YN

)Θ, (Πtemp
YN

)ell) denote the image of ∆temp
YN

(resp.

Πtemp
YN

) via the surjections ∆temp
Y � (∆temp

Y )Θ and ∆temp
Y � ((∆temp

Y )Θ �)(∆temp
Y )ell

(resp. Πtemp
Y � (Πtemp

Y )Θ and Πtemp
Y � ((Πtemp

Y )Θ �)(Πtemp
Y )ell) respectively:

∆temp
Y

// // (∆temp
Y )Θ // // (∆temp

Y )ell Πtemp
Y

// // (Πtemp
Y )Θ // // (Πtemp

Y )ell

∆temp
YN

// //
?�

OO

(∆temp
YN

)Θ // //
?�

OO

(∆temp
YN

)ell,
?�

OO

Πtemp
YN

// //
?�

OO

(Πtemp
YN

)Θ // //
?�

OO

(Πtemp
YN

)ell.
?�

OO

We also have a natural exact sequence

1→ ∆Θ ⊗ Z/NZ (∼= Z/NZ(1))→ (Πtemp
YN

)Θ/N(∆temp
Y )Θ → GKN → 1.

Let YN � Y be the normalisation of Y in YN , i.e., write Y and YN as the formal

scheme and the rigid-analytic space associated to OK-algebra A and K-algebra BN

respectively, and take the normalisation AN of A in BN , then YN = Spf AN . Here, YN

is also an infinite chain of copies of the projective line with N marked points 6= 0,∞
(which we call cusps), joined at 0 and ∞, and each of these points “0” and “∞”is a

node in Y. The covering YN � Y is the covering of N -th power map on the each copy

of Gm obtained by removing the nodes, and the cusps correspond to “1”, since we take

a section GK → (Πtemp
Y )ell corresponding to a cusp in the construction of YN . Note also

that if N is divisible by p, then YN is not a stable model over Spf OKN
.
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We choose some irreducible component of Y as a “basepoint”, then by the natural

action of Z = Gal(Y/X) on Y, the projective lines in Y are labelled by elements of Z.
The isomorphism class of a line bundle on YN is completely determined by the degree

of the restriction of the line bundle to each of these copies of the projective line. Thus,

these degrees give us an isomorphism

Pic(YN )
∼→ ZZ,

i.e., the abelian group of the functions Z → Z. In the following, we consider Cartier

divisors on YN , i.e., invertible sheaves for the structure sheaf OYN of YN . Note that we

can also consider an irreducible component of YN as a Q-Cartier divisor of YN (See also

the proof of [EtTh, Proposition 3.2 (i)]) although it has codimension 0 as underlying

topological space in the formal scheme YN . Let LN denote the line bundle on YN

correspoinding to the function Z→ Z : a 7→ 1 for any a ∈ Z, i.e., it has degree 1 on any

irreducible component. Note also that we have Γ(YN ,OYN
) = OKN

. In this section,

we naturally identify a line bundle as a locally free sheaf with a geometric object (i.e.,

a (log-)(formal) scheme) defined by it.

Put JN := KN (a1/N | a ∈ KN ) ⊂ K, which is a finite Galois extension of KN ,

since K×N/(K
×
N )N is finite. Two splitting of the exact sequence

1→ ∆Θ ⊗ Z/NZ→ (Πtemp
YN

)Θ/N(∆temp
Y )Θ → GKN

→ 1

determines an element ofH1(GKN ,∆Θ⊗Z/NZ). By the definition of JN , the restriction

of this element to GJN is trivial. Thus, the splittings coincide over GJN , and the image

GJN ↪→ (Πtemp
YN

)Θ/N(∆temp
Y )Θ is stable under the conjugate by Πtemp

X . Hence, the image

GJN ↪→ (Πtemp
YN

)Θ/N(∆temp
Y )Θ determines a finite Galois covering ZN � YN . We have

the natural exact sequences

1→ Πtemp
ZN

→ Πtemp
YN

→ Gal(ZN/YN )→ 1,

1→ ∆Θ ⊗ Z/NZ→ Gal(ZN/YN )→ Gal(JN/KN )→ 1.(7.1)

Let (∆temp
ZN

)Θ, (∆temp
ZN

)ell (resp. (Πtemp
ZN

)Θ, (Πtemp
ZN

)ell) denote the image of ∆temp
ZN

(resp.

Πtemp
ZN

) via the surjections ∆temp
YN

� (∆temp
YN

)Θ and ∆temp
YN

� ((∆temp
YN

)Θ �)(∆temp
YN

)ell

(resp. Πtemp
YN

� (Πtemp
YN

)Θ and Πtemp
YN

� ((Πtemp
YN

)Θ �)(Πtemp
YN

)ell) respectively:

∆temp
YN

// // (∆temp
YN

)Θ // // (∆temp
YN

)ell Πtemp
YN

// // (Πtemp
YN

)Θ // // (Πtemp
YN

)ell

∆temp
ZN

// //
?�

OO

(∆temp
ZN

)Θ // //
?�

OO

(∆temp
ZN

)ell,
?�

OO

Πtemp
ZN

// //
?�

OO

(Πtemp
ZN

)Θ // //
?�

OO

(Πtemp
ZN

)ell.
?�

OO
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Let ZN � YN be the normalisation of Y in ZN in the same sense as in the definition of

YN . Note that the irreducible components of ZN are not isomorphic to the projective

line in general.

A section s1 ∈ Γ(Y,L1) whose zero locus is the cusps is well-defined up to an

O×K-multiple, since we have Γ(Y,OY) = OK . Fix an isomorphism L⊗NN
∼→ L1|YN

and

we identify them. A natural action of Gal(Y/X) (∼= Z) on L1 is uniquely determined

by the condition that it preserves s1. This induces a natural action of Gal(YN/X) on

L1|YN
.

Lemma 7.1. ([EtTh, Proposition 1.1])

1. The section s1|YN
∈ Γ(YN ,L1|YN

) = Γ(YN ,L
⊗N
N ) has an N -th root sN ∈ Γ(ZN ,LN |ZN

)

over ZN .

2. There is a unique action of Πtemp
X on the line bundle LN ⊗OKN

OJN over YN ×OKN

OJN which is compatible with the section sN : ZN → LN ⊗OKN
OJN . Furthermore,

this action factors through Πtemp
X � Πtemp

X /Πtemp
ZN

= Gal(ZN/X), and the action of

∆temp
X /∆temp

ZN
on LN ⊗OKN

OJN is faithful.

Proof. Put (YN )JN := YN ×KN
JN , and GN to be the group of automorphisms of

LN |(YN )JN
which is lying over the JN -automorphisms of (YN )JN induced by elements

of ∆temp
X /∆temp

YN
⊂ Gal(YN/X) and whose N -th tensor power fixes the s1|(YN )JN

. Then

by definition, we have a natural exact sequence

1→ µN (JN )→ GN → ∆temp
X /∆temp

YN
→ 1.

We claim that

HN := ker(GN � ∆temp
X /∆temp

YN
� ∆temp

X /∆temp
Y

∼= Z)

is an abelian group killed by N , where the above two surjections are natural ones, and

the kernels are µN (JN ) and (∆temp
X )ell ⊗ Z/NZ (∼= Z/NZ(1)) respectively. Proof of

the claim (This immediate follows from the structure of the theta group (=Heisenberg

group); however, we include a proof here): Note that we have a natural commutative
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diagram

1

��

1

��
1 // µN (JN ) //

=

��

HN //

��

(∆temp
Y )ell ⊗ Z/NZ (∼= Z/NZ(1)) //

��

1

1 // µN (JN ) // GN //

��

∆temp
X /∆temp

YN

//

��

1

∆temp
X /∆temp

Y
= //

��

∆temp
X /∆temp

Y (∼= Z),

��
1 1

whose rows and columns are exact. Let ζ be a primitive N -th root of unity. The function

whose restriction to every irreducible component minus nodes Ĝm = Spf OK [[U ]] of

YN is equal f(U) := U−1
U−ζ represents an element of H which maps to a generator of

∆temp
Y /∆temp

YN
, since it changes the pole divisor from 1 to ζ. Then the claim follows from

the identity
∏

0≤j≤N−1 f(ζ
−jU) = U−1

U−ζ
U−ζ
U−ζ2 · · ·

U−ζN
U−ζN−1 = 1. The claim is shown.

Let RN be the tautological Z/NZ(1)-torsor RN → YN obtained by taking an

N -th root of s1, i.e., the finite YN -formal scheme Spf
(
⊕0≤j≤N−1L

⊗(−j)
N

)
, where the

algebra structure is defined by the multiplication L
⊗(−N)
N → OYN

by s1|YN
. Then

GN naturally acts on (RN )JN := RN ×OKN
JN by the definition of GN . Since s1|YN

has zero of order 1 at each cusp, (RN )JN is connected and Galois over XJN := X ×K
JN , and GN

∼→ Gal((RN )JN /XJN ). Since (i) ∆temp
X /∆temp

YN
acts trivially on µN (JN ),

and (ii) HN is killed by N by the above claim, we have a morphism ZN ×OJN
K →

RN ×OKN
OJN over YN ×OKN

OJN by the definitions of ∆Θ
X = ∆X/[∆X , [∆X ,∆X ]]

and ZN , i.e., geometrically, ZN ×OJN
K(� YN ×OKN

K) has the universality having

properties (i) and (ii) (Note that the domain of the morphism is ZN ×OJN
K, not ZN

since we are considering ∆(−), not Π(−)). Since we used the open immersion GJN ↪→
(Πtemp

YN
)Θ/N(∆temp

Y )Θ, whose image is stable under conjugate by Πtemp
X , to define the

morphism ZN � YN , and s1|YN is defined over KN , the above morphism ZN×OJN
K →

RN×OKN
OJN factors through ZN , and induces an isomorphism ZN

∼→ RN×OKN
OJN by

considering the degrees over YN ×OKN
OJN on both sides (i.e., this isomorphism means

that the covering determined by ∆Θ⊗Z/NZ coincides with the covering determined by

an N -th root of s1|YN ). This proves the claim (1) of the lemma.

Next, we show the claim (2) of the lemma. We have a unique action of Πtemp
X on

LN ⊗OKN
OJN over YN ×OKN

OJN which is compatible with the section sN : ZN →
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LN ⊗OKN
OJN , since the action of Πtemp

X (� Gal(YN/X)) on L1|YN
∼= L⊗NN preserves

s1|YN , and the action of Πtemp
X on YN preserves the isomorphism class of LN . This

action factors through Πtemp
X /Πtemp

ZN
, since sN is defined over ZN . Finally, the action of

Πtemp
X /Πtemp

ZN
is faithful since s1 has zeroes of order 1 at the cusps of YN , and the action

of ∆temp
X /∆temp

YN
on YN is tautologically faithful.

We set

K̈N := K2N , J̈N := K̈N (a1/N | a ∈ K̈N ) ⊂ K,

ŸN := Y2N ×OK̈N
OJ̈N , ŸN := Y2N ×K̈N

J̈N , L̈N := LN |ŸN

∼= L⊗22N ×OK̈N
OJ̈N .

(The symbol ¨(−) roughly expresses “double covering”. Note that we need to consider

double coverings of the rigid analytic spaces under consideration to consider a theta

function below.) Let Z̈N be the composite of the coverings ŸN � YN and ZN � YN ,

and Z̈N the normalisation of ZN in Z̈N in the same sense as in the definition of YN .

Put also

Ÿ := Ÿ1 = Y2, Ÿ := Ÿ1 = Y2, K̈ := K̈1 = J̈1 = K2.

Since Πtemp
X acts compatibly on ŸN and YN , and on LN ⊗OKN

OJN , and the natural

commutative diagram

L̈N

��

// LN

��
ŸN

// YN

is cartesian, we have a natural action of Πtemp
X on L̈N , which factors through Πtemp

X /Πtemp

Z̈N
.

Next, we choose an orientation on the dual graph of the configuration of the irre-

ducible components of Y. Such an orientation gives us an isomorphism Z ∼→ Z. We

give a label ∈ Z for each irreducible component of Y. This choice of labels also deter-

mines a label ∈ Z for each irreducible component of YN , ŸN . Recall that we can also

consider the irreducible component (ŸN )j of ŸN labelled j as a Q-Cartier divisor of

ŸN (See also the proof of [EtTh, Proposition 3.2 (i)]) although it has codimension 0

as underlying topological space in the formal scheme ŸN (Note that (ŸN )j is Cartier,

since the completion of ŸN at each node is isomorphic to Spf OJ̈N [[u, v]]/(uv− q1/2NX )).

Put DN :=
∑
j∈Z j

2(ŸN )j (i.e., the divisor defined by the summation of “q
j2/2N
X = 0”

on the irreducible component labelled j with respect to j ∈ Z). We claim that

(7.2) OŸN
(DN ) ∼= L̈N (∼= L⊗22N ⊗OK̈N

OJ̈N ).

Proof of the claim: Since Pic(ŸN ) ∼= ZZ, it suffices to show that DN .(ŸN )i = 2

for any i ∈ Z, where DN .(ŸN )i denotes the intersection product of DN and (ŸN )i,

i.e., the degree of OŸN
(DN )|(ŸN )i

. We have 0 = ŸN .(ŸN )i =
∑
j∈Z(ŸN )j .(ŸN )i =
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2+ ((ŸN )i)
2 by the configuration of the irreducible components of ŸN (i.e., an infinite

chain of copies of the projective line joined at 0 and∞). Thus, we obtain ((ŸN )i)
2 = −2.

Then we have DN .(ŸN )j =
∑
j∈Z j

2(ŸN )j .(ŸN )i = (j − 1)2 − 2j2 + (j +1)2 = 2. This

proves the claim.

By the claim, there exists a section

τN : ŸN → L̈N ,

well-defined up to an O×
J̈N

-multiple, whose zero locus is equal to DN . We call τN a

theta trivialisation. Note that the action of Πtemp
Y on ŸN , L̈N preserves τN up to an

O×
J̈N

-multiple, since the action of Πtemp
Y on ŸN fixes DN .

Let M ≥ 1 be an integer which divides N . Then we have natural morphisms

YN � YM � Y, ŸN � ŸM � Y, ZN � ZM � Y, and natural isomorphisms

LM |YN
∼= L

⊗(N/M)
N , L̈M |YN

∼= L̈
⊗(N/M)
N . By the definition of J̈N (= K2N (a1/N | a ∈

K2N )), we also have a natural diagram

L̈N // // L̈M

ŸN
// //

τN

OO

ŸM ,

τM

OO

which is commutative up to an O×
J̈N

-multiple at L̈N , and an O×
J̈M

-multiple at L̈M ,

since τN and τM are defined over Y2N and Y2M respectively (Recall that ŸN :=

Y2N ×OK̈N
OJ̈N ). By the relation Θ̈(−Ü) = −Θ̈(Ü) given in Lemma 7.4 (2), (3) below

(Note that we have no circular argument here), we can choose τ1 so that the natural

action of Πtemp

Ÿ
on L̈1 preserves ±τ1. In summary, by the definition of J̈N , we have the

following:

• By modifying τN ’s by O×
J̈N

-multiples, we can assume that τ
N/M
N = τM for any

positive integers N and M such that M | N .

• In particular, we have a compatible system of actions of Πtemp

Ÿ
on {ŸN}N≥1,

{L̈N}N≥1 which preserve {τN}N≥1.

• Each of the above actions of Πtemp

Ÿ
on ŸN , L̈N differs from the action determined

by the action of Πtemp
X on YN , LN ⊗OKN

OJN in Lemma 7.1 (2) by an element of

µN (J̈N ).

Definition 7.2. We take τN ’s as above. By taking the difference of the compat-

ible system of the action of Πtemp

Ÿ
on {ŸN}N≥1, {L̈N}N≥1 in Lemma 7.1 determined

by {sN}N≥1 and the compatible system of the action of Πtemp

Ÿ
on {ŸN}N≥1, {L̈N}N≥1
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in the above determined by {τN}N≥1 (Note also that the former actions, i.e., the one

determined by {sN}N≥1 in Lemma 7.1 come from the actions of Πtemp
X ; however, the

latter actions, i.e., the one determined by {τN}N≥1 in the above do not come from the

actions of Πtemp
X ), we obtain a cohomology class

η̈Θ ∈ H1(Πtemp

Ÿ
,∆Θ),

via the isomorphism µN (J̈N ) ∼= Z/NZ(1) ∼= ∆Θ ⊗ Z/NZ (Note that we are currently

studying in a scheme theory here, and that the natural isomorphism µN (J̈N ) ∼= ∆Θ ⊗
Z/NZ comes from the scheme theory (See also Remark 3.15.1).

Remark 7.2.1. (See also [EtTh, Proposition 1.3])

1. Note that η̈Θ arises from a cohomology class in lim←−N≥1H
1(Πtemp

Ÿ
/Πtemp

Z̈N
,∆Θ ⊗

Z/NZ), and that the restriction

lim←−
N≥1

H1(Πtemp

Ÿ
/Πtemp

Z̈N
,∆Θ ⊗ Z/NZ)→ lim←−

N≥1
H1(∆temp

ŸN
/∆temp

Z̈N
,∆Θ ⊗ Z/NZ)

∼= lim←−
N≥1

Hom(∆temp

ŸN
/∆temp

Z̈N
,∆Θ ⊗ Z/NZ)

sends η̈Θ to the system of the natural isomorphisms {∆temp

ŸN
/∆temp

Z̈N

∼→ ∆Θ ⊗
Z/NZ}N≥1.

2. Note also that s2 : Ÿ → L̈1 is well-defined up to an O×
K̈
-multiple, s2N : Z̈N → L̈N

is an N -th root of s2, τ1 : Ÿ → L̈1 is well-defined up to an O×
K̈
-multiple, and

τN : ŸN → L̈N is an N -th root of τ1. Thus, η̈Θ ∈ H1(Πtemp

Ÿ
,∆Θ) is well-defined

up to an O×
K̈
-multiple. Hence, the set of cohomology classes

O×
K̈
· η̈Θ ⊂ H1(Πtemp

Ÿ
,∆Θ)

is independent of the choices of sN ’s and τN ’s, where O×
K̈

acts on H1(Πtemp

Ÿ
,∆Θ)

via the composite of the Kummer map O×
K̈
→ H1(GK̈ ,∆Θ) and the natural homo-

morphism H1(GK̈ ,∆Θ)→ H1(Πtemp

Ÿ
,∆Θ). We call any element in the set O×

K̈
· η̈Θ

the étale theta class.

§ 7.2. The Étale Theta Function.

Let (Ĝm ∼=)U ⊂ Y be the irreducible component labelled 0 ∈ Z minus nodes. We

take the unique cusp of U as the origin. The group structure of the underlying elliptic

curve X, determines a group structure on U. By the orientation on the dual graph of

the configuration of the irreducible components of Y, we have a unique isomorphism

U ∼= Ĝm over OK . This gives us a multiplicative coordinate U ∈ Γ(U,O×U ). This has a
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square root Ü ∈ Γ(Ü,O×
Ü
) on Ü := U ×Y Ÿ (Note that the theta function lives in the

double covering. See also Lemma 7.4 below).

We recall the section associated with a tangential basepoint. (See also [AbsSect,

Definition 4.1 (iii), and the terminology before Definition 4.1]): For a cusp y ∈ Ÿ (L)

with a finite extension L of K̈, let Dy ⊂ ΠŸ be a cuspidal decomposition group of y

(which is well-defined up to conjugates). We have an exact sequence

1→ Iy (∼= Ẑ(1))→ Dy → GL → 1,

and the set Sect(Dy � GL) of splittings of this short exact sequnece up to conjugates by

Iy is a torsor overH
1(GL, Ẑ(1)) ∼= (L×)∧ by the usual way (the difference of two sections

gives us a 1-cocycle, and the conjugates by Iy yield 1-coboundaries), where (L×)∧ is the

profinite completion of L. Let ωy denotes the cotangent space to Ÿ at y. For a non-zero

element θ ∈ ωy, take a system of N -th roots (N ≥ 1) of any local coordinate t ∈ mŸ ,y
with dt|y = θ, then, this system gives us a Ẑ(1) (∼= Iy)-torsor (Ÿ |∧y (t1/N ))N≥1 � Ÿ |∧y
over the formal completion of Ÿ at y. This Ẑ(1) (∼= Iy)-covering (Ÿ |∧y (t1/N ))N≥1 � Ÿ |∧y
corresponding to the kernel of a surjection Dy � Iy (∼= Ẑ(1)), hence it gives us a section

of the above short exact sequence. This is called the (conjugacy class of ) section

associated with the tangential basepoint θ. In this manner, the structure group

(L×)∧ of the (L×)∧-torsor Sect(Dy � GL) is canonically reduced to L×, and the L×-

torsor obtained in this way is canonically identified with the L×-torsor of the non-zero

elements of ωy. Furthermore, noting also that Ÿ comes from the stable model Ÿ, which

gives us the canonical OL-submodule ω̂y(⊂ ωy) of ωy, the structure group (L×)∧ of the

(L×)∧-torsor Sect(Dy � GL) is canonically reduced to O×L , and the O×L -torsor obtained

in this way is canonically identified with the O×L -torsor of the generators of ω̂y.

Definition 7.3. We call this canonical reduction of the (L×)∧-torsor Sect(Dy �
GL) to the canonical O×L -torsor the canonical integral structure of Dy, and we say

that a section s in Sect(Dy � GL) is compatible with the canonical integral

structure of Dy, if s comes from a section of the canonical O×L -torsor. We call the

L×-torsor obtained by the push-out of the canonical O×L -torsor via O×L → L× the

canonical discrete structure of Dy. Let Ẑ′ denote the maximal prime-to-p quotient

of Ẑ, and put (O×L )
′ := Im(O×L → (L×)⊗ Ẑ′). We call the (O×L )

′-torsor obtained by the

push-out of the canonical O×L -torsor via O×L → (O×L )
′ the canonical tame integral

structure of Dy (See [AbsSect, Definition 4.1 (ii), (iii)]). We also call a reduction of

the (L×)∧-torsor Sect(Dy � GL) to a {±1}-torsor (resp. µ2l-torsor) {±1}-structure
of Dy (resp. µ2l-structure of Dy). When a {±1}-structure (resp. µ2l-structure) of Dy

is given, we say that a section s in Sect(Dy � GL) is compatible with the {±1}-
structure of Dy, (resp. the µ2l-structure of Dy, if s comes from a section of the

{±1}-torsor (resp. the µ2l-torsor).
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Lemma 7.4. ([EtTh, Proposition 1.4]) Put

Θ̈(Ü) := q
− 1

8

X

∑
n∈Z

(−1)nq
1
2 (n+

1
2 )

2

X Ü2n+1 ∈ Γ(Ü,OÜ).

Note that Θ̈(Ü) extends uniquely to a meromorphic function on Ÿ (cf. a classical com-

plex theta function

θ1,1(τ, z) :=
∑
n∈Z

exp

(
πiτ

(
n+

1

2

)2

+ 2πi

(
z +

1

2

)(
n+

1

2

))
=

1

i

∑
n∈Z

(−1)nq
1
2 (n+

1
2 )

2

Ü2n+1,

where q := e2πiτ , and Ü := eπiz) and that q
− 1

8

X q
1
2 (n+

1
2 )

2

X = q
n(n+1)

2

X is in K.

1. Θ̈(Ü) has zeroes of order 1 at the cusps of Ÿ, and there is no other zeroes. Θ̈(Ü)

has poles of order j2 on the irreducible component labelled j, and there is no other

poles, i.e., the divisor of poles of Θ̈(Ü) is equal to D1.

2. For a ∈ Z, we have

Θ̈(Ü) = −Θ̈(Ü−1), Θ̈(−Ü) = −Θ̈(Ü),

Θ̈
(
q

a
2

X Ü
)
= (−1)aq−

a2

2

X Ü−2aΘ̈(Ü).

3. The classes O×
K̈
· η̈Θ are precisely the Kummer classes associated to an O×

K̈
-multiple

of the regular function Θ̈(Ü) on the Raynaud generic fiber Ÿ . In particular, for a

non-cuspidal point y ∈ Ÿ (L) with a finite extension L of K̈, the restriction of the

classes

O×
K̈
· η̈Θ|y ∈ H1(GL,∆Θ) ∼= H1(GL, Ẑ(1)) ∼= (L×)∧

lies in L× ⊂ (L×)∧, and are equal to O×
K̈
·Θ̈(y) (Note that we are currently studying

in a scheme theory here, and that the natural isomorphism ∆Θ
∼= Ẑ(1) comes from

the scheme theory (See also Remark 3.15.1).

4. For a cusp y ∈ Ÿ (L) with a finite extension L of K̈, we have a similar statement

as in (3) by modifying as below: Let Dy ⊂ ΠŸ be a cuspidal decomposition group of

y (which is well-defined up to conjugates). Take a section s : GL ↪→ Dy compatible

with the canonical integral structure of Dy. Let s comes from a generator θ̂ ∈ ω̂y.
Then the restriction of the classes

O×
K̈
· η̈Θ|s(GL) ∈ H1(GL,∆Θ) ∼= H1(GL, Ẑ(1)) ∼= (L×)∧,

via GL
s
↪→ Dy ⊂ Πtemp

Ÿ
, lies in L ⊂ (L×)∧, and are equal to O×

K̈
· dΘ̈
θ̂
(y), where

dΘ̈

θ̂
(y) is the value at y of the first derivative of Θ̈(Ü) at y by θ̂. In particular, the
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set of the restriction of the classes O×
K̈
· η̈Θ|s(GL) is independent of the choice of the

generator θ̂ ∈ ω̂y (hence, the choice of the section s which is compatible with the

canonical integral structure of Dy).

We also call the classes in O×
K̈
· η̈Θ the étale theta functions in light of the above

relationship of the values of the theta function and the restrictions of these classes to

GL via points.

Proof. (2):

Θ̈(Ü−1) = q
− 1

8

X

∑
n∈Z

(−1)nq
1
2 (n+

1
2 )

2

X Ü−2n−1 = q
− 1

8

X

∑
n∈Z

(−1)−n−1q
1
2 (−n−1+

1
2 )

2

X Ü2n+1

= −q−
1
8

X

∑
n∈Z

(−1)nq
1
2 (n+

1
2 )

2

X Ü2n+1 = −Θ̈(Ü),

Θ̈(−Ü) = q
− 1

8

X

∑
n∈Z

(−1)nq
1
2 (n+

1
2 )

2

X (−Ü)2n+1 = −q−
1
8

X

∑
n∈Z

(−1)nq
1
2 (n+

1
2 )

2

X Ü2n+1 = −Θ̈(Ü),

Θ̈
(
q

a
2

X Ü
)
= q
− 1

8

X

∑
n∈Z

(−1)nq
1
2 (n+

1
2 )

2

X (q
a
2

X Ü)2n+1 = q
− 1

8

X

∑
n∈Z

(−1)nq
1
2 (n+

1
2 )

2
+a(n+ 1

2 )
X Ü2n+1

= q
− 1

8

X

∑
n∈Z

(−1)nq
1
2 (n+a+

1
2 )

2− a2

2

X Ü2n+1 = (−1)aq−
a2

2

X Θ̈(Ü).

(1): Firstly, note that q
a
2

X Ü is the canonical coordinate of the irreducible component

labelled a, and that the last equality of (2) gives us the translation formula for changing

the irreducible components. The description of the divisor of poles comes from this

translation formula and Θ̈(Ü) ∈ Γ(Ü,OÜ) (i.e., Θ̈(Ü) is a regular function on Ü). Next,

by putting Ü = ±1 in the first equality of (1), we obtain Θ̈(±1) = 0. Then by the last

equality of (2) again, it suffices to show that Θ̈(Ü) has simple zeroes at Ü = ±1 on Ü.

By taking modulo the maximal ideal of OK̈ , we have Θ̈(Ü) ≡ Ü − Ü−1. This shows the
claim.

(3) is a consequence of the construction of the classes O×
K̈
· η̈Θ and (1).

(4): For a generator θ̂ ∈ ω̂y, the corresponding section s ∈ Sect(Dy � GL) de-

scribed before this lemma is as follows: Take a system of N -th roots (N ≥ 1) of any

local coordinate t ∈ mŸ,y with dt|y = θ̂, then, this system gives us a Ẑ(1) (∼= Iy)-torsor

(Ÿ|∧y (t1/N ))N≥1 � Ÿ|∧y over the formal completion of Ÿ at y. This Ẑ(1) (∼= Iy)-covering

(Ÿ|∧y (t1/N ))N≥1 � Ÿ|∧y corresponding to the kernel of a surjection Dy � Iy (∼= Ẑ(1)),
hence a section s ∈ Sect(Dy � GL). For g ∈ GL, take any lift g̃ ∈ Dy (Π

temp

Ÿ
)

of GL, then the above description says that s(g) = (g̃(t1/N )/t1/N )−1N≥1 · g̃, where
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(g̃(t1/N )/t1/N )N≥1 ∈ Ẑ(1) ∼= Iy (Note that the right hand side does not depend on

the choice of a lift g̃). The Kummer class of Θ̈ := Θ̈(Ü) is given by Πtemp

Ÿ
3 h 7→

(h(Θ̈1/N )/Θ̈1/N )N≥1 ∈ Ẑ(1). Hence, the restriction to GL via GL
s→ Dy ⊂ Πtemp

Ÿ
is

given byGL 3 g 7→ ((g̃(t1/N )/t1/N )−1g̃(Θ̈1/N )/Θ̈1/N )N≥1 = (g̃((Θ̈/t)1/N )/(Θ̈/t)1/N )N≥1 ∈
Ẑ(1). Since Θ̈(Ü) has a simple zero at y, we have (g̃((Θ̈/t)1/N )/(Θ̈/t)1/N )N≥1 =

(g((dΘ̈/θ̂)1/N )/(dΘ̈/θ̂)1/N )N≥1, where dΘ̈/θ̂ is the first derivative dΘ̈

θ̂
at y by θ̂. Then

GL 3 g 7→ (g((dΘ̈/θ̂)1/N )/(dΘ̈/θ̂)1/N )N≥1 ∈ Ẑ(1) is the Kummer class of the value
dΘ̈

θ̂
(y) at y.

If an automorphism ιY of Πtemp
Y is lying over the action of “−1” on the underlying

elliptic curve of X which fixes the irreducible component of Y labelled 0, then we call

ιY an inversion automorphism of Πtemp
Y .

Lemma 7.5. ([EtTh, Proposition 1.5])

1. Both of the Leray-Serre spectral sequences

Ea,b2 = Ha((∆temp

Ÿ
)ell, Hb(∆Θ,∆Θ)) =⇒ Ha+b((∆temp

Ÿ
)Θ,∆Θ),

E′a,b2 = Ha(GK̈ , H
b((∆temp

Ÿ
)Θ,∆Θ)) =⇒ Ha+b((Πtemp

Ÿ
)Θ,∆Θ)

associated to the filtration of closed subgroups

∆Θ ⊂ (∆temp

Ÿ
)Θ ⊂ (Πtemp

Ÿ
)Θ

degenerate at E2, and this determines a filtration 0 ⊂ Fil2 ⊂ Fil1 ⊂ Fil0 =

H1((Πtemp

Ÿ
)Θ,∆Θ) on H

1((Πtemp

Ÿ
)Θ,∆Θ) such that we have

Fil0/Fil1 = Hom(∆Θ,∆Θ) = Ẑ,

Fil1/Fil2 = Hom((∆temp

Ÿ
)Θ/∆Θ,∆Θ) = Ẑ · log(Ü),

Fil2 = H1(GK̈ ,∆Θ)
∼→ H1(GK̈ , Ẑ(1))

∼→ (K̈×)∧.

Here, the symbol log(Ü) denotes the standard isomorphism (∆temp

Ÿ
)Θ/∆Θ = (∆temp

Ÿ
)ell

∼→
Ẑ(1) ∼→ ∆Θ (given in a scheme theory).

2. Any theta class η̈Θ ∈ H1(Πtemp

Ÿ
,∆Θ) arises from a unique class η̈Θ ∈ H1((Πtemp

Ÿ
)Θ,∆Θ)

(Here, we use the same symbol η̈Θ by abuse of the notation) which maps to the

identity homomorphism in the quotient Fil0/Fil1 = Hom(∆Θ,∆Θ) (i.e., maps to

1 ∈ Ẑ = Hom(∆Θ,∆Θ)). We consider O×
K̈
· η̈Θ ⊂ H1((Πtemp

Ÿ
)Θ,∆Θ) additively, and

write η̈Θ + log(O×
K̈
) for it. Then a ∈ Z ∼= Z = Πtemp

X /Πtemp
Y acts on η̈Θ + log(O×

K̈
)

as

η̈Θ + log(O×
K̈
) 7→ η̈Θ − 2a log(Ü)− a2

2
log(qX) + log(O×

K̈
).
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In a similar way, for any inversion automorphism ιY of Πtemp
Y , we have

ιY (η̈
Θ + log(O×

K̈
)) = η̈Θ + log(O×

K̈
)

ιY (log(Ü) + log(O×
K̈
)) = − log(Ü) + log(O×

K̈
).

Proof. (1): Since ∆Θ
∼= Ẑ(1) and (∆temp

Ÿ
)ell ∼= Ẑ(1) and Ẑ(1) has cohomological

dimension 1, the first spectral sequence degenerates at E2, and this gives us a short

exact sequence

0→ H1((∆temp

Ÿ
)ell,∆Θ)→ H1((∆temp

Ÿ
)Θ,∆Θ)→ H1(∆Θ,∆Θ)→ 0.

This is equal to

0→ Ẑ · log(Ü)→ H1((∆temp

Ÿ
)Θ,∆Θ)→ Ẑ→ 0.

On the other hand, the second spectral sequence gives us an exact sequnece

0→ H1(GK̈ ,∆Θ)→ H1((Πtemp

Ÿ
)Θ,∆Θ)→ H1((∆temp

Ÿ
)Θ,∆Θ)

GK̈ → H2(GK̈ ,∆Θ)→ 0.

Then by Remark 7.2.1 (1), the composite

H1((Πtemp

Ÿ
)Θ,∆Θ)→ H1((∆temp

Ÿ
)Θ,∆Θ)

GK̈

⊂ H1((∆temp

Ÿ
)Θ,∆Θ)→ H1(∆Θ,∆Θ) = Ẑ

maps the Kummer class of Θ̈(Ü) to 1 (Recall also the definition of ZN and the short

exact sequence (7.1)). Hence, the second spectral sequence degenerates at E2, and we

have the description of the graded quotients of the filtration on H1((Πtemp

Ÿ
)Θ,∆Θ).

(2): The first assertion holds by definition. Next, note that the subgroup (∆temp

Ÿ
)ell ⊂

(∆temp
X )ell corresponds to the subgroup 2Ẑ(1) ⊂ Ẑ(1)× Z ∼= (∆temp

X )ell by the theory of

Tate curves, where Ẑ(1) ⊂ (∆temp
X )ell corresponds to the system of N(≥ 1)-th roots of

the canonical coordinate U of the Tate curve associated to X, and 2Ẑ(1) ∼= (∆temp

Ÿ
)ell

corresponds to the system of N(≥ 1)-th roots of the canonical coordinate Ü introduced

before (In this sense, the usage of the symbol log(Ü) ∈ Hom((∆temp

Ÿ
)ell,∆Θ) is justi-

fied). Then the description of the action of a ∈ Z ∼= Z follows from the last equality

of Lemma 7.4 (2), and the first description of the action of an inversion automorphism

follows from the first equality of Lemma 7.4 (2). The second description of the action

of an inversion automorphism immediately follows from the definition.

The following proposition says that the étale thete function has an anabelian rigid-

ity, i.e., it is preserved under the changes of scheme theory.
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Proposition 7.6. (Anabelian Rigidity of the Étale Theta Function, [EtTh, The-

orem 1.6]) Let X (resp. †X) be a smooth log-curve of type (1, 1) over a finite extension

K (resp. †K) of Qp such that X (resp. †X) has stable reduction over OK (resp O†K),

and that the special fiber is singular, geometrically irreducible, the node is rational. We

use similar notation for objects associated to †X to the notation which was used for

objects associated to X. Let

γ : Πtemp
X

∼→ Πtemp
†X

be any isomorphism of abstract topological groups. Then we have the following:

1. γ(Πtemp

Ÿ
) = Πtemp

†Ÿ
.

2. γ induces an isomorphism ∆Θ
∼→ †∆Θ, which is compatible with the surjections

H1(GK̈ ,∆Θ)
∼→ H1(GK̈ , Ẑ(1))

∼→ (K̈×)∧ � Ẑ

H1(G†K̈ ,
†∆Θ)

∼→ H1(G†K̈ , Ẑ(1))
∼→ (†K̈×)∧ � Ẑ

determined the valuations on K̈ and †K̈ respectively. In other words, γ induces

an isomorphism H1(GK̈ ,∆Θ)
∼→ H1(G†K̈ ,

†∆Θ) which preserves both the kernel of

these surjections and the element 1 ∈ Ẑ in the quotients.

3. The isomorphism γ∗ : H1(Πtemp

Ÿ
,∆Θ) ∼= H1(Πtemp

†Ÿ
, †∆Θ) induced by γ sends O×

K̈
·η̈Θ

to some †Z ∼= Πtemp
†X

/Πtemp
†Y

-conjugate of O×†K̈ ·
†η̈Θ (This indeterminacy of †Z-

conjugate inevitably arises from the choice of the irreducible component labelled 0).

Remark 7.6.1. ([EtTh, Remark 1.10.3 (i)]) The étale theta function lives in a

cohomology group of the theta quotient (Πtemp
X )Θ, not whole of Πtemp

X . However, when

we study anabelian properties of the étale theta function as in Proposition 7.6, the theta

quotient (Πtemp
X )Θ is insufficient, and we need whole of Πtemp

X .

Remark 7.6.2. ([IUTchIII, Remark 2.1.2]) Related with Remark 7.6.1, then, how

about considering Πpartial temp
X := ΠX ×Ẑ Z instead of Πtemp

X ? (Here, ΠX denotes the

profinite fundamental group, and ΠX � Ẑ is the profinite completion of the natural

surjection Πtemp
X � Z.) The answer is that it does not work in inter-universal Te-

ichmüller theory since we have NΠX
(Πpartial temp

X )/Πpartial temp
X

∼→ Ẑ/Z (On the other

hand, NΠX
(Πtemp

X ) = Πtemp
X by Cororally 6.10 (2)). The profinite conjugacy indetermi-

nacy on Πpartial temp
X gives rise to Ẑ-translation indeterminacies on the coordinates of the

evaluation points (See Definition 10.17). On the other hand, for Πtemp
X , we can reduce

the Ẑ-translation indeterminacies to Z-translation indeterminacies by Theorem 6.11

(See also Lemma 11.9).

Remark 7.6.3. The statements in Proposition 7.6 are bi-anabelian ones (cf. Re-

mark 3.4.4). However, we can reconstruct the †Z-conjugate class of the theta classes
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O×†K̈ ·
†η̈Θ in Proposition 7.6 (3) in a mono-anabelian manner, by considering the de-

scriptions of the zero-divisor and the pole-divisor of the theta function.

Proof. (1): Firstly, γ sends ∆temp
X to ∆temp

†X
, by Lemma 6.2. Next, note that γ

sends ∆temp
Y to ∆temp

†Y
by the discreteness (which is a group-theoretic property) of Z and

†Z. Finally, γ sends the cuspidal decomposition groups to the cuspidal decomposition

groups by Corollary 6.12. Hence, γ sends ΠŸ to Π†Ÿ , since the double coverings Ÿ � Y

and †Ÿ � †Y are the double covering characterised as the 2-power map [2] : Ĝm � Ĝm
on each irreducible component, where the origin of the target is given by the cusps.

(2): We proved that γ(∆temp
X ) = †∆temp

X . Then γ(∆Θ) = †∆Θ holds, since ∆Θ

(resp. †∆Θ) is group-theoretically defined from ∆temp
X (resp. †∆temp

X ). The rest of the

claim follows from Corollary 6.12 and Proposition 2.1 (5), (6).

(3): After taking some Πtemp
X /Πtemp

Y
∼= Z-conjugate, we may assume that γ :

Πtemp

Ÿ

∼→ Πtemp
†Ÿ

is compatible with suitable inversion automorphisms ιY and †ιY by The-

orem B.1 (cf. [SemiAnbd, Theorem 6.8 (ii)], [AbsSect, Theorem 2.3]). Next, note that γ

tautologically sends 1 ∈ Ẑ = Hom(∆Θ,∆Θ) = Fil0/Fil1 to 1 ∈ Ẑ = Hom(†∆Θ,
†∆Θ) =

†Fil0/†Fil1. On the other hand, η̈Θ (resp. †η̈Θ) is sent to 1 ∈ Ẑ = Hom(∆Θ,∆Θ) =

Fil0/Fil1 (resp. 1 ∈ Ẑ = Hom(†∆Θ,
†∆Θ) = †Fil0/†Fil1), and fixed by ιY (resp. †ιY )

up to an O×
K̈
-multiple (resp. an O×†K̈-multiple) by Lemma 7.5 (2). This determines

η̈Θ (resp. †η̈Θ) up to a (K̈×)∧-multiple (resp. a (†K̈×)∧-multiple). Hence, it is suf-

ficient to reduce this (K̈×)∧-indeterminacy (resp. (†K̈×)∧-indeterminacy) to an O×
K̈
-

indeterminacy (resp. an O×†K̈-indeterminacy). This is done by evaluating the class η̈Θ

(resp. †η̈Θ) at a cusp y of the irreducible component labelled 0 (Note that “labelled 0”

is group-theoretically characterised as “fixed by inversion isomorphism ιY (resp. †ιY )”),

if we show that γ preserves the canonical integral structure of Dy.

(See also [SemiAnbd, Corollary 6.11] and [AbsSect, Theorem 4.10, Corollary 4.11]

for the rest of the proof). To show the preservation of the canonical integral structure of

Dy by γ, we may restrict the fundamental group of the irreducible component labelled

0 by Proposition 6.6 and Corollary 6.12 (See also Remark 6.12.1). The irreducible com-

ponent minus nodes Ü is isomorphic to Ĝm with marked points (=cusps) {±1} ⊂ Ĝm.

Then the prime-to-p-quotient ∆prime-to-p
UK̈

of the geometric fudamental group of the

generic fiber is isomorphic to the prime-to-p-quotient ∆prime-to-p
Uk̈

of the one of the special

fiber, where k̈ denotes the residue field of K̈. This shows that the reduction of the struc-

ture group of (K̈×)∧-torsor Sect(Dy � GK̈) to (O×
K̈
)′ := Im(O×

K̈
→ K̈× ⊗ Ẑ′), which is

determined the canonical integral strucure (i.e., the canonical tame integral structure),

is group-theoretically preserved as follows (cf. [AbsSect, Proposition 4.4 (i)]): The outer

action GK̈ → Out(∆prime-to-p
UK̈

) canonically factors through Gk̈ → Out(∆prime-to-p
UK̈

), and

the geometrically prime-to-p-quotient Π
(prime-to-p)
Uk̈

of the arithmetic fundamental group
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of the special fiber is group-theoretically constructed as ∆prime-to-p
UK̈

out
o Gk̈ by using

Gk̈ → Out(∆prime-to-p
UK̈

). Then the decomposition group D′y in the geometrically prime-

to-p-quotient of the arithmetic fundamental group of the integral model fits in a short

exact sequence 1 → (I ′y :=)Iy ⊗ Ẑ′ → D′y → Gk̈ → 1, where Iy is an inertia sub-

group at y. The set of the splitting of this short exact sequence forms a torsor over

H1(Gk̈, I
′
y)
∼= k̈×. These splittings can be regarded as elements of H1(D′y, I

′
y) whose

restriction to I ′y is equal to the identity element in H1(I ′y, I
′
y) = Hom(I ′y, I

′
y). Thus,

the pull-back to Dy of any such element of H1(D′y, I
′
y) gives us the reduction of the

structure group to (O×
K̈
)′ determined by the canonical integral structure.

Then it suffices to show that the reduction of the structure group of (K̈×)∧-torsor

Sect(Dy � GK̈) to K̈×, which is determined the canonical integral strucure (i.e., the

canonical discrete structure), is group-theoretically preserved since the restriction of the

projection Ẑ� Ẑ′ to Z ⊂ Ẑ is injective (cf. [AbsSect, Proposition 4.4 (ii)]).

Finally, we show that the canonical discrete structure of (K̈×)∧-torsor Sect(Dy �
GK̈) is group-theoretically preserved. Let Ü be the canonical cooridnate of GmK̈ . For

y = ±1, we consider the unit Ü ∓ 1 ∈ Γ(GmK̈ \ {±1},OGmK̈\{±1}), which is invertible

at 0, fails to be invertible at y, and has a zero of order 1 at y. We consider the exact

sequence

1→ (K̈×)∧ → H1(ΠP1\{0,y}, µẐ(ΠX))→ Ẑ⊕ Ẑ

constructed in Lemma 3.15 (5). The image of the Kummer class κ(T∓1) ∈ H1(ΠP1\{0,y}, µẐ(ΠX))

in Ẑ ⊕ Ẑ (i.e., (1, 0)) determines the set (K̈×)∧ · κ(Ü ∓ 1). The restriction of (K̈×)∧ ·
κ(Ü ∓ 1) to Dy is the (K̈×)∧-torsor Sect(Dy � GK̈), since the zero of order of

κ(Ü ∓ 1) at y is 1. On the other hand, κ(Ü ∓ 1) is invertible at 0. Thus, the sub-

set K̈× · κ(Ü ∓ 1) ⊂ (K̈×)∧ · κ(Ü ∓ 1) is characterised as the set of elements of

(K̈×)∧ · κ(Ü ∓ 1) whose restriction to the decomposition group D0 at 0 (which lies

in (K̈×)∧ ∼= H1(GK̈ , µẐ(ΠX)) ⊂ H1(D0, µẐ(ΠX)) since κ(Ü ∓ 1) is invertible at 0) in

fact lies in K̈× ⊂ (K̈×)∧. Thus, we are done by Corollary 6.12 (or Corollary 2.9) (cf.

the proof of [AbsSect, the proof of Theorem 4.10 (i)]).

From now on, we assume that

1. K̈ = K,

2. the hyperbolic curve X minus the marked points admits a K-core X � C :=

X//{±1}, where the quotient is taken in the sense of stacks, by the natural action

of {±1} determined by the multiplication-by-2 map of the underlying elliptic curve

of X (Note that this excludes four exceptional j-invariants by Lemma C.3, and

3.
√
−1 ∈ K.
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Let Ẍ � X denote the Galois covering of degree 4 determined by the multiplication-

by-2 map of the underlying elliptic curve of X (i.e., Grig
m /qZX � Grig

m /qZX sending the

coordinate U of the Grig
m in the codomain to Ü2, where Ü is the coordinate of the Gmrig

in the domain). Let Ẍ � X denote its natural integral model. Note that Ẍ � C is

Galois with Gal(Ẍ/C) ∼= (Z/2Z)⊕3.
Choose a square root

√
−1 ∈ K of −1. Note that the 4-torsion points of the

underlying elliptic curve of Ẍ are Ü =
√
−1i√qX

j
4 ⊂ K for 0 ≤ i, j ≤ 3, and that,

in the irreducible components of Ẍ, the 4-torsion points avoiding nodes are ±
√
−1.

Let τ denote the 4-torsion point determined by
√
−1 ∈ K. For an étale theta class

η̈Θ ∈ H1(Πtemp

Ÿ
,∆Θ), let

η̈Θ,Z×µ2 ⊂ H1(Πtemp

Ÿ
,∆Θ)

denote the Πtemp
X /Πtemp

Ÿ
∼= Z× µ2-orbit of η̈

Θ.

Definition 7.7. (cf. [EtTh, Definition 1.9])

1. We call each of two sets of values of η̈Θ,Z×µ2

η̈Θ,Z×µ2 |τ , η̈Θ,Z×µ2 |τ−1 ⊂ K×

a standard set of values of η̈Θ,Z×µ2 .

2. There are two values in K× of maximal valuations of some standard set of values

of η̈Θ,Z×µ2 (Note that Θ̈(q
a
2

X

√
−1) = (−1)aq−

a2

2

X (
√
−1)−2aΘ̈(

√
−1) by the third

equality of Lemma 7.4 (2), and Θ̈(−q
a
2

X

√
−1) = −Θ̈(q

a
2

X

√
−1) by the second equality

of Lemma 7.4 (2)). If they are equal to ±1, then we say that η̈Θ,Z×µ2 is of standard

type.

Remark 7.7.1. Double coverings Ẋ � X and Ċ � C are introduced in [EtTh],

and they are used to formulate the definitions of a standard set of values and an étale

theta class of standard type, ([EtTh, Definition 1.9]), the definition of log-orbicurve of

type (1,Z/lZ), (1, (Z/lZ)Θ), (1,Z/lZ)±, (1, (Z/lZ)Θ)± ([EtTh, Definition 2.5]), and the

constant multiple rigidity of the étale theta function ([EtTh, Theorem 1.10]). How-

ever, we avoid them in this survey, since they are not directly used in inter-universal

Teichmüller theory, and it is enough to formulate the above things by modifying in a

suitable manner.

Lemma 7.8. (cf. [EtTh, Proposition 1.8]) Let C = X//{±1} (resp. †C =
†X//{±1}) be a smooth log-orbicurve over a finite extension K (resp. †K) of Qp such

that
√
−1 ∈ K (resp.

√
−1 ∈ †K). We use the notation †(−) for the associated objects

with †C. Let γ : Πtemp
C

∼→ Πtemp
†C

be an isomorphism of topological groups. Then γ

induces isomorphisms Πtemp
X

∼→ Πtemp
†X

, Πtemp

Ẍ

∼→ Πtemp
†Ẍ

, and Πtemp

Ÿ

∼→ Πtemp
†Ÿ

.
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Proof. (See also the proof of Proposition 7.6 (1)). By Lemma 6.2, the isomor-

phism γ induces an isomorphism γ∆C : ∆temp
C

∼→ ∆temp
†C

. Since ∆temp
X ⊂ ∆temp

C (resp.

∆temp
†X

⊂ ∆temp
†C

) is characterised as the open subgroup of index 2 whose profinite

completion is torsion-free i.e., corresponds to the geometric fundamental group of a

scheme, not a non-scheme-like stack (See also [AbsTopI, Lemma 4.1 (iv)]), γ∆C
in-

duces an isomorphism γ∆X : ∆temp
X

∼→ ∆temp
†X

. Then γ∆X induces an isomorphism

γ∆ell
X

: (∆temp
X )ell

∼→ (∆temp
†X

)ell, since (∆temp
X )ell (resp. (∆temp

†X
)ell) is group-theoretically

constructed from ∆temp
X (resp. ∆temp

†X
). By the discreteness of Gal(Y/X) ∼= Z (resp.

Gal(†Y/†X) ∼= †Z), the isomorphism γ∆ell
X

induces an isomorphism γZ : ∆temp
X /∆temp

Y (∼=
Z) ∼→ ∆temp

†X
/∆temp

†Y
(∼= †Z). Thus, by considering the kernel of the action of Πtemp

C

(resp. Πtemp
†C

) on ∆temp
X /∆temp

Y (resp. ∆temp
†X

/∆temp
†Y

), the isomorphisms γ and γZ in-

duce an isomorphism γΠX : Πtemp
X

∼→ Πtemp
†X

. Since γΠX preserves the cuspical de-

composition groups by Corollary 6.12, it induces isomorphisms Πtemp

Ẍ

∼→ Πtemp
†Ẍ

, and

Πtemp

Ÿ

∼→ Πtemp
†Ÿ

.

Proposition 7.9. (Constant Multiple Rigidity of the Étale Theta Function, cf.

[EtTh, Theorem 1.10]) Let C = X//{±1} (resp. †C = †X//{±1}) be a smooth log-

orbicurve over a finite extension K (resp. †K) of Qp such that
√
−1 ∈ K (resp.

√
−1 ∈

†K). We assume that C is a K-core. We use the notation †(−) for the associated objects

with †C. Let γ : Πtemp
C

∼→ Πtemp
†C

be an isomorphism of topological groups. Note that the

isomorphism γ induces an isomorphism Πtemp
X

∼→ Πtemp
†X

by Lemma 7.8. Assume that

γ maps the subset η̈Θ,Z×µ2 ⊂ H1(Πtemp

Ÿ
,∆Θ) to the subset †η̈Θ,Z×µ2 ⊂ H1(Πtemp

†Ÿ
, †∆Θ)

(cf. Proposition 7.6 (3)). Then we have the following:

1. The isomorphism γ preserves the property that η̈Θ,Z×µ2 is of standard type, i.e.,

η̈Θ,Z×µ2 is of standard type if and only if †η̈Θ,Z×µ2 is of standard type. This property

uniquely determines this collection of classes.

2. Note that γ induces an isomorphism K×
∼→ †K×, where K× (resp. †K×) is re-

garded a subset of (K×)∧ ∼= H1(GK ,∆Θ) ⊂ H1(Πtemp
C ,∆Θ)) (resp. (†K×)∧ ∼=

H1(G†K ,
†∆Θ) ⊂ H1(Πtemp

†C
, †∆Θ))). Then γ maps the standard sets of values of

η̈Θ,Z×µ2 to the standard sets of values of †η̈Θ,Z×µ2 .

3. Assume that η̈Θ,Z×µ2 (hence, †η̈Θ,Z×µ2 as well by the claim (1)) is of standard type,

and that the residue characteristic of K (hence, †K as well) is > 2. Then η̈Θ,Z×µ2

(resp. †η̈Θ,Z×µ2) determines a {±1}-structure (See Definition 7.3) on (K×)∧-torsor

(resp. (†K×)∧-torsor) at the unique cusp of C (resp. †C) which is compatible with

the canonical integral structure, and it is preserved by γ.

Remark 7.9.1. The statements in Proposition 7.9 are bi-anabelian ones (cf. Re-

mark 3.4.4). However, we can reconstruct the set †η̈Θ,Z×µ2 in Proposition 7.9 (2) and
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(3) in a mono-anabelian manner, by a similar way as Remark 7.6.3.

Proof. The claims (1) and (3) follows from the claim (2). We show the claim

(2). Since γ induces an isomorphism from the dual graph of Ÿ to the dual graph of
†Ÿ (Proposition 6.6), by the elliptic cuspidalisation (Theorem 3.7), the isomorphism

γ maps the decomposition group of the points of Ÿ lying over τ to the decomposition

group of the points of †Ÿ lying over τ±1. The claim (2) follows from this.

§ 7.3. l-th Root of the Étale Theta Function.

First, we introduce some log-curves, which are related with l-th root of the étale

theta function. LetX be a smooth log-curve of type (1, 1) over a fieldK of characteristic

0 (As before, we always put the log-structure associated to the cusp on X, and consider

the log-fundamental group). Note also that we are working in a field of characteristic

0, not in a finite extension of Qp as in the previous subsections.

Assumption (0): We assume that X admits K-core.

We have a short exact sequence 1 → ∆X → ΠX → GK → 1, where ΠX and ∆X

are the arithmetic fundamental group and the geometric fundamental group (with re-

spect to some basepoints) respectively, and GK = Gal(K/K). Put ∆ell
X := ∆ab

X =

∆X/[∆X ,∆X ], ∆Θ
X := ∆X/[∆X , [∆X ,∆X ]], and ∆Θ := Im{∧2∆ell

X → ∆Θ
X}. Then

we have a natural exact sequence 1 → ∆Θ → ∆Θ
X → ∆ell

X → 1. Put also ΠΘ
X :=

ΠX/ker(∆X � ∆Θ
X).

Take l > 2 be a prime number. Note that the subgroup of ∆Θ
X generated by l-th

powers of elements of ∆Θ
X is normal (Here we use l 6= 2). We write ∆Θ

X � ∆X for the

quotient of ∆Θ
X by this normal subgroup. Put ∆Θ := Im{∆Θ → ∆X}, ∆

ell

X := ∆X/∆Θ,

ΠX := ΠX/ker(∆X � ∆X), and Π
ell

X := ΠX/∆Θ. Note that ∆Θ
∼= (Z/lZ)(1) and ∆

ell

X

is a free Z/lZ-module of rank 2.

Let x be the unique cusp of X, and let Ix ⊂ Dx denote the inertia subgroup

and the decomposition subgroup at x respectively. Then we have a natural injective

homomorphism Dx ↪→ ΠΘ
X such that the restriction to Ix gives us an isomorphism

Ix
∼→ ∆Θ(⊂ ΠΘ

X). Put also Dx := Im{Dx → ΠX}. Then we have a short exact

sequence

1→ ∆Θ → Dx → GK → 1.

Assumption (1): We choose a quotient Π
ell

X � Q onto a free Z/lZ-module of rank 1 such

that the restriction ∆
ell

X → Q to ∆
ell

X remains surjective, and the restriction Dx → Q to

Dx is trivial.
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Let

X � X

denote the corresponding covering (Note that every cusp of X is K-rational, since the

restriction Dx → Q to Dx is trivial) with Gal(X/X) ∼= Q, and we write ΠX ⊂ ΠX ,

∆X ⊂ ∆X , and ∆
ell

X ⊂ ∆
ell

X for the corresponding open subgroups. Let ιX (resp. ιX)

denote the automorphism of X (resp. X) given by the multiplication by −1 on the

underlying elliptic curve, where the origin is given by the unique cusp of X (resp. a

choice of a cusp of X). Put C := X//ιX , C := X//ιX (Here, //’s mean the quotients

in the sense of stacks). We call a cusp of C, which arises from the zero (resp. a non-

zero) element of Q, the zero cusp (resp. a non-zero cusp) of C. We call ιX and ιX

inversion automorphisms. We also call the unique cusp of X over the zero cusp of

C the zero cusp of X. This X (resp. C) is the main actor for the global additive (�)
portion (resp. global multiplicative (�) portion) in inter-universal Teichmüller theory.

Definition 7.10. ([EtTh, Definition 2.1]) A smooth log-orbicurve over K is

called of type (1, l-tors) (resp. of type (1, l-tors)±) if it is isomorphic to X (resp.

C) for some choice of Π
ell

X � Q (satisfying Assumption (0), (1)).

Note that X → X is Galois with Gal(X/X) ∼= Q; however, C → C is not Galois,

since ιX acts on Q by the multiplication by −1, and any generator of Gal(X/X) does

not descend to an automorphism of C over C (Here we use l 6= 2. See [EtTh, Remark

2.1.1]). Let ∆C ⊂ ΠC (resp. ∆C ⊂ ΠC) denote the geometric fundamental group

and the arithmetic fundamental group of C (resp. C) respectively. Put also ΠC :=

ΠC/ker(ΠX � ΠX), (resp. ΠC := ΠC/ker(ΠX � ΠX),) ∆C := ∆C/ker(∆X � ∆X),

(resp. ∆C := ∆C/ker(∆X � ∆X),), and ∆
ell

C := ∆C/ker(∆X � ∆
ell

X ).

Assumption (2): We choose ειX ∈ ∆C an element which lifts the nontrivial element of

Gal(X/C) ∼= Z/2Z.

We consider the conjugate action of ειX on ∆X , which is a free Z/lZ-module of rank 2.

Then the eigenspace of ∆X with eigenvalue −1 (resp. +1) is equal to ∆
ell

X (resp. ∆Θ).

Hence, we obtain a direct product decomposition

∆X
∼= ∆

ell

X ×∆Θ

([EtTh, Proposition 2.2 (i)]) which is compatible with the conjugate action of ΠX (since

the conjugate action of ειX commutes with the conjugate action of ΠX). Let sι : ∆
ell

X ↪→
∆X denote the splitting of ∆X � ∆

ell

X given by the above direct product decomposition.
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Then the normal subgroup Im(sι) ⊂ ΠX induces an isomorphism

Dx
∼→ ΠX/Im(sι)

over GK .

Assumption (3): We choose any element sA(3) of the H1(GK ,∆Θ)(∼= K×/(K×)l)-torsor

Sect(Dx � GK), where Sect(Dx � GK) denotes the set of sections of the surjection

Dx � GK .

Then we obtain a quotient ΠX � ΠX � ΠX/Im(sι)
∼→ Dx � Dx/s

A(3)(GK) ∼= ∆Θ.

This quotient gives us a covering

X � X

with Gal(X/X) ∼= ∆Θ. Let ∆X ⊂ ∆X , ΠX ⊂ ΠX denote the open subgroups de-

termined by X. Note that the composition ∆X ↪→ ∆X � ∆
ell

X is an isomorphism,

and that ∆X = Im(sι), ∆X = ∆X · ∆Θ. Since Gal(X/X) = ∆X/∆X = ∆Θ, and

Ix ∼= ∆Θ � ∆Θ, the covering X � X is totally ramified at the cusps (Note also that

the irreducible components of the special fiber of the stable model of X are isomorprhic

to P1; however, the irreducible components of the special fiber of the stable model of X

are not isomorphic to P1). Note also that the image of ειX in ∆C/∆X is characterised

as the unique coset of ∆C/∆X which lifts the nontrivial element of ∆C/∆X and nor-

malises the subgroup ∆X ⊂ ∆C , since the eigenspace of ∆X/∆X
∼= ∆Θ with eigenvalue

1 is equal to ∆Θ ([EtTh, Proposition 2.2 (ii)]). We omit the construction of “C” (See

[EtTh, Proposition 2.2 (iii)]), since we do not use it. This X plays the central role in the

theory of mono-theta environment, and it also plays the central role in inter-universal

Teichmüller theory for places in Vbad.

Definition 7.11. ([EtTh, Definition 2.3]) A smooth log-orbicurve over K is

called of type (1, l-torsΘ) if it is isomorphic to X (which is constructed under As-

sumptions (0), (1), (2), and (3)).

The underlines in the notation of X and C indicate “extracting a copy of Z/lZ”,
and the double underlines in the notation of X and C indicate “extracting two copy of

Z/lZ” ([EtTh, Remark 2.3.1]).

Lemma 7.12. (cf. [EtTh, Proposition 2.4]) Let X (resp. †X) be a smooth log-

curve of type (1, l-torsΘ) over a finite extension K (resp. †K) of Qp. We use the

notation †(−) for the associated objects with †X. Assume that X (resp. †X) has sta-

ble reduction over OK (resp. O†K) whose special fiber is singular and geometrically

irreducible, and the node is rational. Let γ : Πtemp
X

∼→ Πtemp
†X

be an isomorphism of
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topological groups. Then γ induces isomorphisms Πtemp
C

∼→ Πtemp
†C

, Πtemp
C

∼→ Πtemp
†C

Πtemp
X

∼→ Πtemp
†X

, Πtemp
X

∼→ Πtemp
†X

, and Πtemp

Ÿ

∼→ Πtemp
†Ÿ

.

Proof. By Lemma 6.2, γ induces an isomorphism ∆temp
X

∼→ ∆temp
†X

. By the K-

coricity, the isomorphism γ induces an isomorphism Πtemp
C

∼→ Πtemp
†C

, which induces an

isomorphism ∆temp
C

∼→ ∆temp
†C

. Then by the same way as in Lemma 7.8, this induces

isomorphisms ∆temp
X

∼→ ∆temp
†X

, Πtemp
X

∼→ Πtemp
†X

, and Πtemp

Ÿ

∼→ Πtemp
†Ÿ

. Note that ∆X

(resp. ∆†X) and ∆Θ (resp. †∆Θ) are group-theoretically constructed from ∆temp
X (resp.

∆temp
†X

), and that we can group-theoretically reconstruct ∆X ⊂ ∆temp
X (resp. ∆†X ⊂

∆temp
†X

) by the image of ∆temp
X (resp. ∆temp

†X
). Hence, the above isomorphisms induce

an isomorphism ∆X
∼→ ∆†X , since ∆X = ∆X · ∆Θ (resp. ∆†X = ∆†X · †∆Θ). This

isomorphism induces an isomorphism ∆temp
X

∼→ ∆temp
†X

, since ∆temp
X (reps. ∆temp

†X
) is

the inverse image of ∆X ⊂ ∆temp
X (resp. ∆†X ⊂ ∆temp

†X
) under the natural quotient

∆temp
X � ∆X (resp. ∆temp

†X
� ∆†X). The isomorphism ∆temp

X
∼→ ∆temp

†X
induces

an isomprhism Πtemp
X

∼→ Πtemp
†X

, since Πtemp
X (resp. Πtemp

†X
) is reconstructed as the

outer semi-direct product ∆X

out
o GK (resp. ∆†X

out
o G†K), where the homomorphism

GK → Out(∆X) (resp. G†K → Out(∆†X)) is given by the above constructions induced

by the action of GK (resp. G†K).

Remark 7.12.1. ([EtTh, Remark 2.6.1]) Suppose µl ⊂ K. By Lemma 7.12, we

obtain

AutK(X) = µl × {±1}, AutK(X) = Z/lZ o {±1}, AutK(C) = {1},

where o is given by the natural multiplicative action of {±1} on Z/lZ (Note that C → C

is not Galois, as already remarked after Definition 7.10 (cf. [EtTh, Remark 2.1.1])).

Now, we return to the situation where K is a finite extension of Qp.

Definition 7.13. ([EtTh, Definition 2.5]) Assume that the residue characteris-

tic of K is odd, and that K = K̈. We also make the following two assumptions:

Assumption (4): We assume that the quotient Π
ell

X � Q factors through the natural

quotient ΠX � Ẑ determined by the quotient Πtemp
X � Z discussed when we defined Y .

Assumption (5): We assume that the choice of an element of Sect(Dx � GK) in As-

sumption (3) is compatible with the {±1}-structure (See Definition 7.3) of Proposi-

tion 7.9 (3).
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A smooth log-orbicurve overK is called of type (1,Z/lZ) (resp. of type (1, (Z/lZ)Θ),

resp. of type (1,Z/lZ)± ), if it is isomorphic to X (resp. X, resp. C) (which is con-

structed under the Assumptions (0), (1), (2), (3), (4), and (5)).

Note also that the definitions of smooth log-(orbi)curves of type (1, l-tors), of type

(1, l-tors)±, and of type (1, l-torsΘ) are made over any field of characteristic 0, and that

the definitions of smooth log-(orbi)curves of type (1,Z/lZ), of type (1,Z/lZ)± and of

type (1, (Z/lZ)Θ) are made only over finite extensions of Qp.
Let Y � X (resp. Ÿ � X) be the composite of the covering Y � X (resp.

Ÿ � X) with X � X. Note that the coverings Ÿ � Ÿ and Y � Y are of degree l.

We have the following diagram

Ÿ

µ2

ttiiii
iiii

iiii
iiii

iiii
i

∆Θ(∼=Z/lZ)

&&LL
LLL

LLL
LL

Y
∆Θ(∼=Z/lZ) //

lZ
��

Y

Z

��

Ÿ
µ2oo

2Z

��
X

∆Θ(∼=Z/lZ)// X
Q(∼=Z/lZ)//

{±1}
��

X

{±1}

��

Ẍ
ext of Z/2Z

by µ2

oo

C
non-Galois

deg=l
// C ,

and note that the irreducible components and cusps in the special fibers of X, Ẍ, X,

X, Y , Ÿ , Y , and Ÿ are described as follows (Note that X � X and Y � Y are totally

ramified at each cusp):

• X: 1 irreducible component (whose noramalisation ∼= P1) and 1 cusp on it.

• Ẍ: 2 irreducible components (∼= P1) and 2 cusps on each,

• X: l irreducible components (∼= P1) and 1 cusp on each,

• X: l irreducible components ( 6∼= P1) and 1 cusp on each,

• Y : the irreducible components (∼= P1) are parametrised by Z, and 1 cusp on each,
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• Ÿ : the irreducible components (∼= P1) are parametrised by Z, and 2 cusps on each,

• Y : the irreducible components (6∼= P1) are parametrised by lZ, and 1 cusp on each,

• Ÿ : the irreducible components ( 6∼= P1) are parametrised by lZ, and 2 cusps on each.

We have introduced the needed log-curves. Now, we consider the étale theta

functions. By Assumption (4), the covering Ÿ � X factors through X. Hence,

the class η̈Θ ∈ H1(Πtemp

Ÿ
,∆Θ), which is well-defined up to an O×K-multiple, and its

Πtemp
X /Πtemp

Ÿ
∼= Z× µ2-orbit can be regarded as objects associated to Πtemp

X .

We recall that the element η̈Θ ∈ H1(Πtemp

Ÿ
,∆Θ ⊗ Z/lZ) arises froma an element

η̈Θ ∈ H1((Πtemp

Ÿ
)Θ,∆Θ ⊗ Z/lZ) by the first claim of Lemma 7.5 (2), where we use the

same symbol η̈Θ by abuse of notation. The natural map Dx → Πtemp

Ÿ
→ (Πtemp

Ÿ
)Θ

induces a homomorphism H1((Πtemp

Ÿ
)Θ,∆Θ ⊗ Z/lZ) → H1(Dx,∆Θ ⊗ Z/lZ), and the

image of η̈Θ ∈ H1((Πtemp

Ÿ
)Θ,∆Θ⊗Z/lZ) in H1(Dx,∆Θ⊗Z/lZ) comes from an element

η̈Θ ∈ H1(Dx,∆Θ⊗Z/lZ), where we use the same symbol η̈Θ by abuse of notation again,

via the natural map H1(Dx,∆Θ⊗Z/lZ)→ H1(Dx,∆Θ⊗Z/lZ), since we have an exact

sequence

0→ H1(Dx,∆Θ ⊗ Z/lZ)→ H1(Dx,∆Θ ⊗ Z/lZ)→ H1(l∆Θ,∆Θ ⊗ Z/lZ),

and the image of η̈Θ in H1(l∆Θ,∆Θ ⊗ Z/lZ) = Hom(l∆Θ,∆Θ ⊗ Z/lZ) vanishes by

the first claim of Lemma 7.5 (2). On the other hand, for any element s ∈ Sect(Dx �
GK), the map Dx 3 g 7→ g(s(g))−1 gives us a 1-cocycle, hence a cohomology class in

H1(Dx,∆Θ⊗Z/lZ), where g denotes the image of g via the natural map Dx � GK . In

this way, we obtain a map Sect(Dx � GK)→ H1(Dx,∆Θ ⊗ Z/lZ). (See the following

diagram:

0 // H1(Dx,∆Θ ⊗ Z/lZ) // H1(Dx,∆Θ ⊗ Z/lZ) // Hom(l∆Θ,∆Θ ⊗ Z/lZ)

Sect(Dx � GK)

OO

H1((Πtemp

Ÿ
)Θ,∆Θ ⊗ Z/lZ),

OO

where the horizontal sequence is exact.) We also have a natural exact sequence

0→ H1(GK ,∆Θ ⊗ Z/lZ)→ H1(Dx,∆Θ ⊗ Z/lZ)→ H1(∆Θ ⊗ Z/lZ,∆Θ ⊗ Z/lZ).

The image of η̈Θ ∈ H1(Dx,∆Θ ⊗ Z/lZ) in H1(∆Θ ⊗ Z/lZ,∆Θ ⊗ Z/lZ) = Hom(∆Θ ⊗
Z/lZ,∆Θ ⊗ Z/lZ) is the identity homomorphism by the first claim of Lemma 7.5 (2)
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again. The image Im(s) ∈ H1(Dx,∆Θ ⊗ Z/lZ) of any element s ∈ Sect(Dx � GK) via

the above map Sect(Dx � GK)→ H1(Dx,∆Θ⊗Z/lZ) in H1(∆Θ⊗Z/lZ,∆Θ⊗Z/lZ) =
Hom(∆Θ ⊗ Z/lZ,∆Θ ⊗ Z/lZ) is also the identity homomorphism by the calculation

∆Θ ⊗ Z/lZ 3 g 7→ g(s(g))−1 = g(s(1))−1 = g · 1−1 = g. Hence, any element in

Im{Sect(Dx � GK)→ H1(Dx,∆Θ ⊗ Z/lZ)} differs from η̈Θ ∈ H1(Dx,∆Θ ⊗ Z/lZ) by
an H1(GK ,∆Θ ⊗ Z/lZ) ∼= K×/(K×)l-mutiple. Now, we consider the element sA(3) ∈
Sect(Dx � GK) which is chosen in Assumption (3), and let Im(sA(3)) ∈ H1(Dx,∆Θ ⊗
Z/lZ) denote its image in H1(Dx,∆Θ⊗Z/lZ). By the above discussions, we can modify

η̈Θ ∈ H1(Dx,∆Θ ⊗ Z/lZ) by a K×-multiple, which is well-defined up to a (K×)l-

multiple, to make it coincide with Im(sA(3)) ∈ H1(Dx,∆Θ ⊗Z/lZ). Note that stronger

claim also holds, i.e., we can modify η̈Θ by an O×K-multiple, which is well-defined up to

an (O×K)l-multiple, to make it coincide with Im(sA(3)), since sA(3) ∈ Sect(Dx � GK),

is compatible with the canonical integral structure of Dx by Assumption (5) (Note that

now we do not assume that η̈Θ,Z×µ2 is of standard type; however, the assumption that

sA(3) is compatible with the {±1}-structure in the case where η̈Θ,Z×µ2 is of standard

type implies that sA(3) is compatible with the canonical integral structure of Dx even

we do not assume that η̈Θ,Z×µ2 is of standard type). As a conclusion, by modifying

η̈Θ ∈ H1((Πtemp

Ÿ
)Θ,∆Θ ⊗ Z/lZ) by an O×K-multiple, which is well-defined up to an

(O×K)l-multiple, we can and we shall assume that η̈Θ = Im(sA(3)) ∈ H1(Dx,∆Θ⊗Z/lZ),
and we obtain an element η̈Θ ∈ H1(Πtemp

Ÿ
,∆Θ ⊗ Z/lZ), which is well-defined up to an

(O×K)l-multiple (not an O×K-multiple), i.e., by the choice of X, the indeterminacy on

the ratio of sl and τl in the definition of η̈Θ disappeared. In the above construction,

an element Sect(Dx � GK) can be considered as “modulo l tangential basepoint” at

the cusp x, the theta function Θ̈ has a simple zero at the cusps (i.e., it is a uniformiser

at the cusps), and we made choices in such a way that η̈Θ = Im(sA(3)) holds. Hence,

the covering X � X can be regarded as a covering of “taking a l-th root of the theta

function”.

Note that we have the following diagram

H1(sA(3)(GK),∆Θ ⊗ Z/lZ)

H1(Dx,∆Θ ⊗ Z/lZ)

OO

0 // H1(Dx/s
A(3)(GK),∆Θ ⊗ Z/lZ)

OO

// H1(Πtemp

Ÿ
,∆Θ ⊗ Z/lZ) // H1(Πtemp

Ÿ
,∆Θ ⊗ Z/lZ)

0,

OO
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where the horizontal sequence and the vertical sequence are exact. Now, the image of

η̈Θ = Im(sA(3)) ∈ H1(Dx,∆Θ⊗Z/lZ) in H1(sA(3)(GK),∆Θ⊗Z/lZ) vanishes by the cal-

culation sA(3)(GK) 3 sA(3)(g) 7→ sA(3)(g)(sA(3)(sA(3)(g)))−1 = sA(3)(g)(sA(3)(g))−1 = 1

and the above vertical sequence. Thus, η̈Θ = Im(sA(3)) comes from an element of

H1(Dx/s
A(3)(GK),∆Θ⊗Z/lZ). Therefore, the image of η̈Θ ∈ H1(Πtemp

Ÿ
,∆Θ⊗Z/lZ) in

H1(Πtemp

Ÿ
,∆Θ⊗Z/lZ) vanishes since it arises from the element ofH1(Dx/s

A(3)(GK),∆Θ⊗

Z/lZ) and the above horizontal sequence. As a conclusion, the image of η̈Θ ∈ H1(Πtemp

Ÿ
,∆Θ)

in H1(Πtemp

Ÿ
,∆Θ) arises from an element η̈Θ ∈ H1(Πtemp

Ÿ
, l∆Θ), which is well-defined

up to O×K . In some sense, η̈Θ can be considered as an “l-th root of the étale theta

function”. Let η̈Θ,lZ×µ2 denote the Πtemp
X /Πtemp

Ÿ
∼= (lZ× µ2)-orbits of η̈

Θ.

Definition 7.14. ([EtTh, Definition 2.7]) We call η̈Θ,lZ×µ2 of standard type,

if η̈Θ,Z×µ2 is of standard type.

By combining Proposition 7.9 Lemma 7.12, and definitions, we obtain the following:

Corollary 7.15. (Constant Multiple Rigidity of l-th Roots of the Étale Theta

Function, cf. [EtTh, Corollary 2.8]) Let X (resp. †X) be a smooth log-curve of type

(1, (Z/lZ)Θ) over a finite extension K (resp. †K) of Qp. We use the notation †(−) for
the associated objects with †X. Let γ : Πtemp

X
∼→ Πtemp

†X
be an isomorphism of topological

groups.

1. The isomorphism γ preserves the property that η̈Θ,lZ×µ2 is of standard type. More-

over, this property determines this collection of classes up to a µl-multiple.

2. Assume that the cusps of X are rational over K, the residue characteristic of K

is prime to l, and that µl ⊂ K. Then the {±1}-structure of Proposition 7.9 (3)

determinesa µ2l-structure (cf. Definition 7.3) at the decomposition groups of the

cusps of X. Moreover, this µ2l-structure is compatible with the canonical integral

structure (cf. Definition 7.3) at the decomposition groups of the cusps of X, and is

preserved by γ.

Remark 7.15.1. The statements in Corollary 7.15 are bi-anabelian ones (cf. Re-

mark 3.4.4). However, we can reconstruct the set η̈Θ,lZ×µ2 in Corollary 7.15 (1) in a

mono-anabelian manner, by a similar way as Remark 7.6.3 and Remark 7.9.1.

Lemma 7.16. ([EtTh, Corollary 2.9]) Assume that µl ⊂ K. We make a la-

belling on the cusps of X, which is induced by the labelling of the irreducible components

of Y by Z. Then this determines a bijection{
Cusps of X

}
/AutK(X) ∼= |Fl|
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(See Section 0.2 for |Fl|), and this bijection is preserved by any isomorphism γ : Πtemp
X

∼→
Πtemp
X of topological groups.

Proof. The first claim is trivial (See also Remark 7.12.1). The second claim follows

from Remark 6.12.1.

§ 7.4. Three Fundamental Rigidities of Mono-theta Environments.

In this subsection, we introduce the notion of mono-theta environment, and show

important three rigidities of mono-theta environment, that is, the constant multiple

rigidity, the cyclotomic rigidity, and the discrete rigidity.

Definition 7.17. For an integer N ≥ 1, we put

ΠµN ,K := µN oGK .

For a topological group Π with a surjective continuous homomorphism Π � GK , we

put

Π[µN ] := Π×GK ΠµN ,K , ∆[µN ] := ker (Π[µN ]� GK) = ∆× µN ,

where ∆ := ker(Π� GK), and we call Π[µN ] cyclotomic envelope of Π� GK . We

also put

µN (Π[µN ]) := ker(Π[µN ]� Π).

and we call µN (Π[µN ]) the (mod N) cyclotome of the cyclotomic envelope Π[µN ].

Note that we have a tautological section GK → ΠµN ,K of ΠµN ,K � GK , and that it

determines a section

salgΠ : Π→ Π[µN ],

and we call it a mod N tautological section. For any object with Π[µN ]-conjugate

action, we call a µN -orbit a µN -conjugacy class.

Here, the µN in Π[µN ] plays a roll of “µN” which comes from line bundles.

Lemma 7.18. ([EtTh, Proposition 2.11]) Let Π � GK (resp. †Π � G†K) be

an open subgroup of the tempered or profinite fundamental group of hyperbolic orbicurve

over a finite extension K (resp. †K) of Qp, and put ∆ := ker(Π � GK) (resp. †∆ :=

ker(†Π� G†K)).

1. The kernel of the natural surjection ∆[µN ]� ∆ (resp. †∆[µN ]� †∆) is equal to the

center of ∆[µN ] (resp. †∆[µN ]). In particular, any isomorphism ∆[µN ]
∼→ †∆[µN ]

is compatible with the surjections ∆[µN ]� ∆, †∆[µN ]� †∆.
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2. The kernel of the natural surjection Π[µN ]� Π (resp. †Π[µN ]� †Π) is equal to the

union of the center of the open subgroups of Π[µN ] (resp. †Π[µN ]). In particular,

any isomorphism Π[µN ]
∼→ †Π[µN ] is compatible with the surjections Π[µN ] � Π,

†Π[µN ]� †Π.

Proof. Lemma follows from the temp-slimness (Lemma 6.4 (5)) or the slimness

(Proposition 2.7 (2a), (2b)) of ∆, †∆, Π, †Π.

Proposition 7.19. ([EtTh, Proposition 2.12])

1. We have an inclusion

ker
(
(∆temp

X )Θ � (∆temp
X )ell

)
= l∆Θ ⊂

[
(∆temp

X )Θ, (∆temp
X )Θ

]
.

2. We have an equality[
(∆temp

X )Θ[µN ], (∆temp
X )Θ[µN ]

]∩
(l∆Θ)[µN ] = Im

(
salg
(∆temp

X )Θ

∣∣
l∆Θ

: l∆Θ → (∆temp
X )Θ[µN ]

)
(
⊂ (l∆Θ)[µN ] ⊂ (∆temp

X )Θ[µN ]
)
,

where salg
(∆temp

X )Θ

∣∣
l∆Θ

denotes the restriction of the mod N tautological section salg
(∆temp

X )Θ
:

(∆temp
X )Θ → (∆temp

X )Θ[µN ] to l∆Θ (⊂ (∆temp
X )Θ).

Proof. The inclusion of (1) follows from the structure of the theta group (=Heisen-

berg group) (∆temp
X )Θ. The equality of (2) follows from (1).

Remark 7.19.1. (cf. [EtTh, Remark2.12.1]) As a conclusion of Proposition 7.19

the subgroup Im

(
salg
(∆temp

X )Θ

∣∣
l∆Θ

)
, – i.e., the splitting l∆Θ × µN –, can be group-

theoretically reconstructed, and the cyclotomic rigidity of mono-theta environment (See

Theorem 7.23 (1)), which plays an important role in inter-universal Teichmüller theory,

comes from this fact. Note that the inclusion of Proposition 7.19 (1) does not hold if we

use X instead of X, i.e., ker
(
(∆temp

X )Θ � (∆temp
X )ell

)
= ∆Θ 6⊂

[
(∆temp

X )Θ, (∆temp
X )Θ

]
.

Let salg
Ÿ

denote the composite

salg
Ÿ

: Πtemp

Ÿ

salg
Π
temp

Ÿ

−→ Πtemp

Ÿ
[µN ] ↪→ Πtemp

Y [µN ],

and we call it a mod N algebraic section. Take the composite η : Πtemp

Ÿ
→ l∆Θ ⊗

Z/NZ ∼= µN of the reduction moduloN of any element (i.e., a 1-cocycle) of the collection
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of classes η̈Θ,lZ×µ2 ⊂ H1(Πtemp

Ÿ
, l∆Θ), and the isomorphism l∆Θ ⊗ Z/NZ ∼= µN , which

comes from a scheme theory (cf. Remark 3.15.1). We put

sΘ
Ÿ
:= η−1 · salg

Ÿ
: Πtemp

Ÿ
→ Πtemp

Y [µN ].

and call sΘ
Ÿ
a mod N theta section. Note that sΘ

Ÿ
is a homomorphism, since sΘ

Ÿ
(gh) =

η(gh)−1salg
Ÿ

(gh) = (g(η(h))η(g))−1salg
Ÿ

(g)salg
Ÿ

(h) = (salg
Ÿ

(g)η(h)salg
Ÿ

(g)−1η(g))−1salg
Ÿ

(g)salg
Ÿ

(h) =

η(g)−1salg
Ÿ

(g)η(h)−1salg
Ÿ

(h) = sΘ
Ÿ
(g)sΘ

Ÿ
(g). Note also that the natural outer action

Gal(Y /X) ∼= Πtemp
X /Πtemp

Y
∼= Πtemp

X [µN ]/Πtemp
Y [µN ] ↪→ Out(Πtemp

Y [µN ])

of Gal(Y /X) on Πtemp
Y [µN ] fixes Im(salg

Ÿ
: Πtemp

Ÿ
→ Πtemp

Y [µN ]) up to a conjugate by µN ,

since the mod N algebraic section salg
Ÿ

extends to a mod N tautological section salg
Πtemp

X

:

Πtemp
X → Πtemp

X [µN ]. Hence, sΘ
Ÿ

up to Πtemp
X [µN ]-conjugates is independent of the

choice of an element of η̈Θ,lZ×µ2 ⊂ H1(Πtemp

Ÿ
, l∆Θ) (Recall that Π

temp
X � Gal(Ÿ /X) ∼=

lZ × µ2). Note also that conjugates by µN corresponds to modifying a 1-cocycle by

1-coboundaries.

Note that we have a natural outer action

K× � K×/(K×)N
∼→ H1(GK , µN ) ↪→ H1(Πtemp

Y , µN )→ Out(Πtemp
Y [µN ]),

where the isomorphism is the Kummer map, and the last homomorphism is given by

sending a 1-cocycle s to an outer homomorphism salg
Πtemp

Y

(g)a 7→ s(g)salg
Πtemp

Y

(g)a (g ∈

Πtemp
Y , a ∈ µN ) (Note that the last homomorphism is well-defined, since salg

Πtemp
Y

(g)asalg
Πtemp

Y

(g′)a′(=

salg
Πtemp

Y

(gg′)salg
Πtemp

Y

(g′)−1(a)a′) for g, g′ ∈ Πtemp
Y , a, a′ ∈ µN is sent to

s(gg′)salg
Πtemp

Y

(gg′)salg
Πtemp

Y

(g′)−1(a)a′ = g(s(g′))s(g)salg
Πtemp

Y

(gg′)salg
Πtemp

Y

(g′)−1asalg
Πtemp

Y

(g′)a′

= s(g)g(s(g′))salg
Πtemp

Y

(g)asalg
Πtemp

Y

(g′)a′ = s(g)salg
Πtemp

Y

(g)s(g′)asalg
Πtemp

Y

(g′)a′

by s, and since for a 1-coboundary s(g) = b−1g(b) (b ∈ µN ) is sent to

salg
Πtemp

Y

(g)a 7→ s(g)salg
Πtemp

Y

(g)a = b−1g(b)salg
Πtemp

Y

(g)a = b−1salg
Πtemp

Y

(g)bsalg
Πtemp

Y

(g)−1salg
Πtemp

Y

(g)a

= b−1salg
Πtemp

Y

(g)ba = b−1salg
Πtemp

Y

(g)ab,

which is an inner automorphism). Note also any element Im(K×) := Im(K× →
Out(Πtemp

Y [µN ])) lifts to an element of Aut(Πtemp
Y [µN ]) which induces the identity au-

tomorphisms of both the quotient Πtemp
Y [µN ] � Πtemp

Y and the kernel of this quotient.
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In this natural outer action of K×, an O×K-multiple on η̈Θ,lZ×µ2 corresponds to an

O×K-conjugate of sΘ
Ÿ
.

Definition 7.20. (Mono-theta Environment, [EtTh, Definition 2.13]) Let

DY := 〈Im(K×),Gal(Y /X)〉 ⊂ Out(Πtemp
Y [µN ])

denote the subgroup of Out(Πtemp
Y [µN ]) generated by Im(K×) and Gal(Y /X) (∼= lZ).

1. We call the following collection of data a mod N model mono-theta environ-

ment:

• the topological group Πtemp
Y [µN ],

• the subgroup DY (⊂ Out(Πtemp
Y [µN ])), and

• the µN -conjugacy class of subgroups in Πtemp
Y [µN ] determined by the image of

the theta section sΘ
Ÿ
.

2. We call any collectionM = (Π,DΠ, s
Θ
Π) of the following data amod N mono-theta

environment:

• a topological group Π,

• a subgroup DΠ (⊂ Out(Π)), and

• a collection of subgroups sΘΠ of Π,

such that there exists an isomorphism Π
∼→ Πtemp

Y [µN ] of topological groups which

maps DΠ ⊂ Out(Π) to DY , and sΘΠ to the µN -conjugacy class of subgroups in

Πtemp
Y [µN ] determined by the image of the theta section sΘ

Ÿ
.

3. For two mod N mono-theta environments M = (Π,DΠ, s
Θ
Π),

†M = (†Π,D†Π, s
Θ
†Π),

we define an isomorphism of mod N mono-theta environments M ∼→ †M
to be an isomorphism of topological groups Π

∼→ †Π which maps DΠ to D†Π,

and sΘΠ to sΘ†Π. For a mod N mono-theta environment M and a mod M mono-

theta environment †M with M | N , we define a homomorphism of mono-theta

environments M→ †M to be an isomorphism MM
∼→ †M, where MM denotes the

mod M mono-theta environment induced by M.

Remark 7.20.1. We can also consider a mod N bi-theta environment B =

(Π,DΠ, s
Θ
Π, s

alg
Π ), which is a mod N mono-theta environment (Π,DΠ, s

Θ
Π) with a datum

salgΠ corresponding to the µN -conjugacy class of the image of mod N algebraic section

salg
Ÿ

(cf. [EtTh, Definition 2.13 (iii)]). As shown below in Theorem 7.23, three impor-

tant rigidities (the cyclotomic reigidity, the discrete rigidity, and the constant multiple
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rigidity) hold for mono-theta environments. On the other hand, the cyclotomic rigidity,

and the constant multiple rigidity trivially holds for bi-theta environments; however, the

discrete rigidity does not hold for them (See also Remark 7.23.1). We omit the details

of bi-theta environments, since we will not use bi-theta environments in inter-universal

Teichmüller theory.

Lemma 7.21. ([EtTh, Proposition 2.14])

1. We have the following group-theoretic chracterisation of the image of the tautological

section of (l∆Θ)[µN ]� l∆Θ as the following subgroup of (∆temp

Ÿ
)Θ[µN ]:

(l∆Θ)[µN ]
∩{

γ(a)a−1 ∈ (∆temp
Y )Θ[µN ]

∣∣ a ∈ (∆temp
Y )Θ[µN ], γ ∈ Aut(Πtemp

Y [µN ]) such that (∗)
}
,

where

(∗) : the image of γ in Out(Πtemp
Y [µN ]) belongs to DY ,

and γ induces the identity on the quotient Πtemp
Y [µN ]� Πtemp

Y � GK .

2. Let tΘ
Ÿ

: Πtemp

Ÿ
→ Πtemp

Y [µN ] be a section obtained as a conjugate of sΘ
Ÿ

relative to

the actions of K× and lZ. Put δ := (sΘ
Ÿ
)−1tΘ

Ÿ
, which is a 1-cocycle of Πtemp

Ÿ
valued

in µN . Let α̈δ ∈ Aut(Πtemp

Ÿ
[µN ]) denote the automorphism given by salg

Πtemp

Ÿ

(g)a 7→

δ(g)salg
Πtemp

Ÿ

(g)a (g ∈ Πtemp

Ÿ
, a ∈ µN ), which induces the identity homomorphisms

on both the quotient Πtemp

Ÿ
[µN ] � Πtemp

Ÿ
and the kernel of this quotient. Then

α̈δ extends to an automorphism αδ ∈ Aut(Πtemp
Y [µN ]), which induces the identity

homomorphisms on both the quotient Πtemp
Y [µN ] � Πtemp

Y and the kernel of this

quotient. The conjugate by αδ maps sΘ
Ÿ

to tΘ
Ÿ
, and preserves the subgroup DY ⊂

Out(Πtemp
Y [µN ]).

3. Let M = (Πtemp
Y [µN ],DY , sΘŸ ) be the mod N model mono-theta environment. Then

every automorphism of M induces an automorphism of Πtemp
Y by Lemma 7.18 (2),

hence an automorphism of Πtemp
X = Aut(Πtemp

Y )
out
o Im(DY → Out(Πtemp

Y )) =

Aut(Πtemp
Y ) ×Out(Πtemp

Y ) Im(DY → Out(Πtemp
Y )). It also induces an automorphism

of the set of cusps of Y . Relative to the labelling by Z on these cusps, this induces

an automorphism of Z given by (lZ)o {±1}. This assignment gives us a surjective

homomorphism

Aut(M)� (lZ)o {±1}.
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Proof. (1): Take a lift γ ∈ Aut((Πtemp
Y )[µN ]) of an element in Im(K×) ⊂ DY (⊂

Out((Πtemp
Y )[µN ])) such that γ satisfies (*). Then γ can be written as γ = γ1γ2, where

γ1 ∈ Inn(Πtemp
Y [µN ]), γ2 ∈ Aut(Πtemp

Y [µN ]), the image of γ2 in Out(Πtemp
Y [µN ]) is in

Im{K× → H1(GK , µN )→ H1(Πtemp
Y , µN )→ Out(Πtemp

Y [µN ])}, and the automorphism

induced by γ2 of the quotient Π
temp
Y [µN ]� Πtemp

Y and the automorphism of its kernel (=

µN ) are trivial. Since the composite H1(GK , µN )→ H1(Πtemp
Y , µN )→ H1(∆temp

Y , µN )

is trivial, the compositeH1(GK , µN )→ H1(Πtemp
Y , µN )→ H1(∆temp

Y , µN )→ Out(∆temp
Y [µN ])

is trivial as well. Hence, the automorphism induced by γ2 of ∆temp
Y [µN ] is an inner au-

tomorphism. On the other hand, the automorphism induced by γ1 of GK is trivial

since the automorphism induced by γ2 of GK is trivial, and the condition (*). Then

the center-freeness of GK (cf. Proposition 2.7 (1c)) implies that γ1 ∈ Inn(Πtemp
Y [µN ])

is in Inn(∆temp
Y [µN ]). Hence, the automorphism induced by γ = γ1γ2 of ∆temp

Y [µN ] is

also an inner automorphism. Since (∆temp
Y )Θ[µN ](∼= lZ × Ẑ(1) × µN ) is abelian, the

inner automorphism induced by γ of (∆temp
Y )Θ[µN ] is trivial. Then (1) follows from

Proposition 7.19 (2).

(2): By definition, the conjugate by α̈δ maps sΘ
Ÿ

to tΘ
Ÿ
. Since the outer action

of Gal(Y /X) ∼= lZ on ∆temp
Y [µN ] fixes salg

Ÿ
up to µN -conjugacy, the cohomology class

of δ in H1(Πtemp

Ÿ
, µN ) is in the submodule generated by the Kummer classes of K×

and (1/l)2l log(Ü) = 2 log(Ü) by the first displayed formula of Lemma 7.5 (2) (See

Lemma 7.5 (1) for the cohomology class log(Ü)). Here, note that the cohomology class of

δ is in Fil1 since both of (salg
Ÿ

)−1·sΘ
Ÿ
and salg

Ÿ
·tΘ
Ÿ
maps to 1 in Fil0/Fil1 = Hom(l∆Θ, l∆Θ)

by Lemma 7.5 (2). Note also that “1/l” comes from that we are working with l-th roots

of the theta functions η̈Θ,lZ×µ2 (cf. the proof of Lemma 7.5 (2)), and that “l” comes

from lZ. Thus, δ descends to a 1-cocycle of Πtemp
Y valued in µN since the coordinate

Ü2 descends to Y . Hence, α̈δ extends to an automorphism αδ ∈ Aut(Πtemp
Y [µN ]), which

induces identity automorphisms on both the quotient Πtemp
Y [µN ]→ Πtemp

Y and the kernel

of this quotient. The conjugate by αδ preserves DY ⊂ Out(Πtemp
Y [µN ]), since the action

of Gal(Y /X) maps 2 log(Ü) to a K×-multiple of 2 log(Ü).

(3) comes from (2).

Corollary 7.22. (Group-Theoretic Reconstruction of Mono-theta Environment,

[EtTh, Corollary 2.18]) Let N ≥ 1 be an integer, l a prime number and X a smooth

log-curve of type (1, (Z/lZ)Θ) over a finite extension K of Qp. We assume that l and p

are odd, and K = K̈. Let MN be the resulting mod N model mono-theta environment,

which is independent of the choice of a member of η̈Θ,lZ×µ2 , up to isomorphism over the
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identity of Πtemp
Y by Lemma 7.21 (2).

1. Let †Πtemp
X be a topological group which is isomorphic to Πtemp

X . Then there exists

a group-theoretic algorithm for constructing

• subquotients

†Πtemp
Y , †Πtemp

Ÿ
, †GK ,

†(l∆Θ),
†(∆temp

X )Θ, †(Πtemp
X )Θ, †(∆temp

Y )Θ, †(Πtemp
Y )Θ

of †Πtemp
X , and

• a collection of subgroups of †Πtemp
X for each element of (Z/lZ)/{±1},

such that any isomorphism †Πtemp
X

∼→ Πtemp
X maps

• the above subquotients to the subquotients

Πtemp
Y ,Πtemp

Ÿ
, GK , l∆Θ, (∆

temp
X )Θ, (Πtemp

X )Θ, (∆temp
Y )Θ, (Πtemp

Y )Θ

of Πtemp
X respectively, and

• the above collection of subgroups to the collection of cuspidal decomposition

groups of Πtemp
X determined by the label in (Z/lZ)/{±1},

in a functorial manner with respect to isomorphisms of topological groups (and no

need of any reference isomorphism to Πtemp
X ).

2. “(Π 7→M)”:

There exists a group-theoretic algorithm for constructing a mod N mono-theta en-

vironment †M = (†Π,D†Π, s
Θ
†Π), where

†Π := †Πtemp
Y ×†GK

(
(†(l∆Θ)⊗ Z/NZ)o †GK

)
up to isomorphism in a functorial manner with respect to isomorphisms of topolog-

ical groups (and no need of any reference isomorphism to Πtemp
X ). (See also [EtTh,

Corollary 2.18 (ii)] for a stronger form).

3. “(M 7→ Π)”:

Let †M = (†Π,D†Π, s
Θ
†Π) be a mod N mono-theta environment which is isomorphic

to MN . Then there exists a group-theoretic algorithm for constructing a quotient
†Π � †Πtemp

Y , such that any isomorphism †M ∼→ MN maps this quotient to the

quotient Πtemp
Y [µN ] � Πtemp

Y in a functorial manner with respect to isomorphisms

of mono-theta environments (and no need of any reference isomorphism to MN ).

Furthermore, any isomorphism †M ∼→MN induces an isomorphism from

†Πtemp
X := Aut(†Πtemp

Y )×Out(†Πtemp
Y ) Im(D†Π → Out(†Πtemp

Y ))
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to Πtemp
X , where we set the topology of †Πtemp

X as the topology determined by taking

†Πtemp
Y

∼→ Aut(†Πtemp
Y )×Out(†Πtemp

Y ) {1} ⊂
†Πtemp

X

to be an open subgroup. Finally, if we apply the algorithm of (2) to †Πtemp
Y , then

the resulting mono-theta environment is isomorphic to the original †M, via an iso-

morphism which induces the identity on †Πtemp
Y .

4. Let †M = (†Π,D†Π, s
Θ
†Π), and

‡M = (‡Π,D‡Π, s
Θ
‡Π) be mod N mono-theta environ-

ments. Let †Πtemp
X and ‡Πtemp

X be the topological groups constructed in (3) from
†M and ‡M respectively. Then the functoriality of the algorithm in (3) gives us a

natural map

IsomµN -conj(†M, ‡M)→ Isom(†Πtemp
X , ‡Πtemp

X ),

which is surjective with fibers of cardinality 1 (resp. 2) if N is odd (resp. even),

where IsomµN -conj denotes the set of µN -conjugacy classes of isomorphisms. In par-

ticular, for any positive integer M with M | N , we have a natural homomorphism

AutµN -conj(†M) → AutµM -conj(†MM ), where †MM denotes the mod M mono-theta

environment induced by †M such that the kernel and cokernel have the same cardi-

nality (≤ 2) as the kernel and cokernel of the homomorphism Hom(Z/2Z,Z/NZ)→
Hom(Z/2Z,Z/MZ) induced by the natural surjection Z/NZ� Z/MZ, respectively.

Proof. (1): We can group-theoretically reconstruct a quotient †Πtemp
X � †GK by

Lemma 6.2, other subquotients by Lemma 7.8, Lemma 7.12 and the definitions, and the

labels of cuspidal decomposition groups by Lemma 7.16.

(2) follows from the definitions (Note that we can reconstruct the set †η̈Θ,lZ×µ2 of

theta classes by Remark 7.15.1, thus, the theta section sΘ†Π as well (See the construction

of the theta section sΘ
Ÿ

before Definition 7.20)).

(3): We can group-theoretically reconstruct a quotient †Π� †Πtemp
Y by Lemma 7.18

(2). The reconstruction of †Πtemp
X comes from the definitions and the temp-slimness of

†Πtemp
X (Lemma 6.4 (5)). The last claim of (3) follows from the definitions and the

description of the algorithm in (2).

(4): The surjectivity of the map comes from the last claim of (3). The fiber of

this map is a ker(AutµN -conj(†M) → Aut(†Πtemp
X ))-torsor. By Theorem 7.23 (1) below

(Note that there is no circular argument), the natural isomorphism †(l∆Θ)⊗ Z/NZ ∼→
µN (†(l∆Θ[µN ])) is preserved by automorphisms of †M. Note that ker(AutµN -conj(†M)→
Aut(†Πtemp

X )) consists of automorphisms acting as the identity on †Πtemp
Y , hence, on

ker(†Π→ †Πtemp
Y ) by the above natural isomorphism. Thus, we have

ker(AutµN -conj(†M)→ Aut(†Πtemp
X )) ∼= Hom(†Πtemp

Y /†Πtemp

Ÿ
, ker(†Π→ †Πtemp

Y )),
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where †Πtemp
Y /†Πtemp

Ÿ
∼= µ2 and ker(†Π→ †Πtemp

Y )) ∼= µN . The cardinality of this group

is 1 (resp. 2) is N is odd (resp. even). The last claim follows from this description.

Theorem 7.23. (Three Rigidities of Mono-theta Environments, [EtTh, Corol-

lary 2.19]) Let N ≥ 1 be an integer, l a prime number and X a smooth log-curve of

type (1, (Z/lZ)Θ) over a finite extension K of Qp. We assume that l and p are odd,

and K = K̈. Let MN be the resulting mod N model mono-theta environment (which is

independent of the choice of a member of η̈Θ,lZ×µ2 , up to isomorphism over the identity

of Πtemp
Y by Lemma 7.21 (2)).

1. (Cyclotomic Rigidity) Let †M = (†Π,D†Π, s
Θ
†Π) be a mod N mono-theta environ-

ment which is isomorphic to MN . Let †Πtemp
X denote the topological group obtained

by applying Corollary 7.22 (3). Then there exists a group-theoretic algorithm for

constructing subquotients

†(l∆Θ[µN ]) ⊂ †((∆temp
Y )Θ[µN ]) ⊂ †((Πtemp

Y )Θ[µN ])

of †Π such that any isomorphism †M ∼→ MN maps these subquotients to the sub-

quotients

l∆Θ[µN ] ⊂ (∆temp
Y )Θ[µN ] ⊂ (Πtemp

Y )Θ[µN ]

of Πtemp
Y [µN ], in a functorial manner with respect to isomorphisms of mono-theta

environments (no need of any reference isomorphism to MN ). Moreover, there exists

a group-theoretic algorithm for constructing two splittings of the natural surjection

†(l∆Θ[µN ])� †(l∆Θ)

such that any isomorphism †M ∼→MN maps these two splittings to the two splittings

of the surjection

l∆Θ[µN ]� l∆Θ

determined by the mod N algebraic section salg
Ÿ

and the mod N theta section sΘ
Ÿ
.

in a functorial manner with respect to isomorphisms of mono-theta environments

(no need of any reference isomorphism to M). Hence, in particular, by taking

the difference of these two splittings, there exists a group-theoretic algorithm for

constructing an isomorphism of cyclotomes

†(l∆Θ)⊗ Z/NZ ∼→ µN (†(l∆Θ[µN ]))(Cyc.Rig.Mono-th.)

such that any isomorphism †M ∼→MN maps this isomorphism of the cyclotomes to

the natural isomorphism of cyclotomes

l∆Θ ⊗ Z/NZ ∼→ µN (l∆Θ[µN ])
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in a functorial manner with respect to isomorphisms of mono-theta environments

(no need of any reference isomorphism to MN ).

2. (Discrete Rigidity) Any projective system (†MN )N≥1 of mono-theta environ-

ments is isomorphic to the natural projective system of the model mono-theta envi-

ronments (MN )N≥1.

3. (Constant Multiple Rigidity) Assume that η̈Θ,lZ×µ2 is of standard type. Let

(†MN )N≥1 be a projective system of mono-theta environments. Then there exists a

group-theoretic algorithm for constructing a collection of classes of H1(†Πtemp

Ÿ
, †(l∆Θ))

such that any isomorphism (†MN )N≥1
∼→ (MN )N≥1 to the projective systems of the

model mono-theta environments maps the above collection of classes to the collec-

tion of classes of H1(Πtemp

Ÿ
, l∆Θ) given by some multiple of the collection of classes

η̈Θ,lZ×µ2 by an element of µl in a functorial manner with respect to isomorphisms

of projective systems of mono-theta environments (no need of any reference isomor-

phism to (MN )N≥1).

We call †(l∆Θ) ⊗ Z/NZ the (mod N) internal cyclotome of the mono-theta

environment †M, and µN (†(l∆Θ[µN ])) the (mod N) external cyclotome of the

mono-theta environment †M. We call the above isomorphism (Cyc.Rig.Mono-th.)

the cyclotomic rigidity of mono-theta environment.

Proof. (1): Firstly, note that the restrictions of the algebraic section salg
Ÿ

and

the theta section sΘ
Ÿ

to ker{Πtemp
Y � (Πtemp

Y )Θ} coincide by Remark 7.2.1 (1). Hence,

we can reconstruct ker{†(Πtemp
Y [µN ]) � †((Πtemp

Y )Θ[µN ])} as the subset of (any µN -

conjugacy class of) sΘ†Π whose elements project to ker{†(Πtemp
Y ) � †((Πtemp

Y )Θ)}, via
the projection †(Πtemp

Y [µN ]) � †(Πtemp
Y ), where †(Πtemp

Y [µN ]) � †(Πtemp
Y ), †(Πtemp

Y ),

and †(Πtemp
Y ) � †((Πtemp

Y )Θ are reconstructed by Lemma 7.18 (2), Corollary 7.22

(3) and Corollary 7.22 (1) respectively. We can also reconstruct the subquotients
†(l∆Θ[µN ]) ⊂ †((∆temp

Y )Θ[µN ]) ⊂ †((Πtemp
Y )Θ[µN ]) as the inverse images of †(l∆Θ) ⊂

†((∆temp
Y )Θ) ⊂ †((Πtemp

Y )Θ), which are reconstructed by Corollary 7.22 (1) (3), via

the quotient †((Πtemp
Y )Θ[µN ]) � †((Πtemp

Y )Θ). We can reconstruct the splitting of

the natural surjection †(l∆Θ[µN ]) � †(l∆Θ) given by the theta section directly as

sΘ†Π. On the other hand, we can reconstruct the splitting of the natural surjection
†(l∆Θ[µN ]) � †(l∆Θ) given by the algebraic section by the algorithm of Lemma 7.21

(1).

(2) follows from Corollary 7.22 (4), since R1 lim←−N Hom(Z/2Z,Z/NZ) = 0 and

R1 lim←−N µN = 0. See also Remark 7.23.1 (2).
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(3) follows from Lemma 7.21 (3), Corollary 7.15, the cyclotomic rigidity (1), and

the discrete rigidity (2).

Remark 7.23.1. In this remark, we compare rigidity properties of mono-theta

environments and bi-theta environments (See Remark 7.20.1 for bi-theta environments).

1. (Cyclotomic Rigidity) The proof of the cyclotimic rigidity for mono-theta environ-

ments comes from the reconstruction of the image of the algebraic section, and

this reconstruction comes from the quadratic structure of theta group (=Heisenberg

group) (See Remark 7.19.1). On the other hand, for a bi-theta environment, the

image of the algebraic section is included as a datum of a bi-theta environment,

hence, the cyclotomic rigidity trivially holds for bi-theta environment.

2. (Constant Multiple Rigidity) The proof of the constant multiple rigidity for mono-

theta environments comes from the elliptic cuspidalisation (See Proposition 7.9).

On the other hand, for a bi-theta environment, the image of the algebraic section is

included as a datum of a bi-theta environment. This means that the ratio (i.e., the

étale theta class) determined by the given data of theta section and algebraic section

is independent of the simultaneous constant multiplications on theta section and

algebraic section, hence, the constant multiple rigidity trivially holds for bi-theta

environment.

3. (Discrete Rigidity) A mono-theta environment does not include a datum of algebraic

section, it includes only a datum of theta section. By this reason, a mono-theta

environment has “shifting automorphisms” α̈δ in Lemma 7.21 (2) (which comes

from the “less-than-or-equal-to-quadratic” structure of theta group (=Heisenberg

group)). This means that there is no “basepoint” relative to the lZ action on Y ,

i.e., no distinguished irreducible component of the special fiber. If we work with a

projective system of mono-theta environments, then by the compatibility of mod

N theta sections, where N runs through the positive integers, the mod N theta

classes determine a single “discrete” lZ-torsor in the projective limit. The “shift-

ing automorphisms” gives us a lZ-indeterminacy, which is independent of N (See

Lemma 7.21 (3)), and to find a common basepoint for the lZ/NlZ-torsor in the

projective system is the same thing to trivialise a lim←−N lZ/lZ(= 0)-torsor, which

remains discrete. This is the reason that the discrete rigidity holds for mono-theta

environments. On the other hand, a bi-theta environment includes a datum of alge-

braic section as well. The basepoint indeterminacy is roughly NlZ-indeterminacy

(i.e., the surjectivity of Lemma 7.21 (3) does not hold for bi-theta environments. for

the precise statement, see [EtTh, Proposition 2.14 (iii)]), which depends on N , and
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to find a common basepoint for the lZ/NlZ-torsor in the projective system is the

same thing to trivialise a lim←−N lZ/NlZ(= lẐ)-torsor, which does not remain discrete

(it is profinite). Hence, the discrete rigidity does not hold for bi-theta environments.

Note also that a short exact sequence of the projective systems

0→ NlZ→ lZ→ lZ/NlZ→ 0 (resp. 0→ lZ→ lZ→ lZ/lZ→ 0 )

with respect to N ≥ 1, which corresponds to bi-theta environments (resp. mono-

theta environments), induces an exact sequence

0→ lim←−
N

NlZ (= 0)→ lZ→ lẐ→ R1 lim←−
N

NlZ(= lẐ/lZ)→ 0

(resp. 0→ lZ→ lZ→ 0→ R1 lim←−
N

lZ (= 0) ),

and that R1 lim←−N NlZ = lẐ/lZ (resp. R1 lim←−N lZ = 0) exactly corresponds to the

non-discreteness (resp. discreteness) phenomenon of bi-theta environment (resp.

mono-theta environment). See also [EtTh, Remark 2.16.1].

The following diagram is a summary of this remark (See also [EtTh, Introduction]):

cycl. rig. disc. rig. const. mult. rig.

mono-theta env. delicately OK OK delicately OK

(structure of theta group) (elliptic cuspidalisation)

bi-theta env. trivially OK Fails trivially OK

Remark 7.23.2. If we consider N -th power Θ̈N (N > 1) of the theta function Θ̈

instead of the first power Θ̈1 = Θ̈, then the cyclotomic rigidity of Theorem 7.23 (1) does

not hold since it comes from the quadratic structure of the theta group (=Heisenberg

group) (See Remark 7.19.1). The cyclotomic rigidity of the mono-theta environment

is one of the most important tools in inter-universal Teichmüller theory, hence, if we

use Θ̈N (N > 1) instead of Θ̈, then inter-universal Teichmüller theory does not work.

If it worked, then it would give us a sharper Diophantine inequality, which would be

a contradiction with the results in analytic number theory (cf. [Mass2]). See also Re-

mark 11.10.1 (the principle of Galois evaluation) and Remark 13.13.3 (2) (N -th power

does not work).
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Remark 7.23.3. The cyclotomic rigidity rigidifies the Ẑ× ∼= Aut(Ẑ(1))-indeterminacy

of an object which is isomorphic to “Ẑ(1)”, hence rigidifies the induced Ẑ× ∼= Aut(Ẑ(1))-
indeterminacy of H1(−, “Ẑ(1)”). As for the cohomology class log(Θ̈) of the theta func-

tion Θ̈, it ridigifies Ẑ× log(Θ̈). The constant multiple rigidity rigidifies log(Θ̈) + Ẑ.
Hence, the cyclotomic rigidity and the constant multiple rigidity rigidify the indeter-

minacy Ẑ× log(Θ̈) + Ẑ of the affine transformation type. The discrete rigidity rigidifies

Ẑ ∼= Hom(“Ẑ(1)”, “Ẑ(1)”). Here the second “Ẑ(1)” is a coefficient cyclotome, and it is

subject to Ẑ× ∼= Aut(Ẑ(1))-indeterminacy which is rigidified by the cyclotomic rigidity.

The first “Ẑ(1)” is a cyclotome which arises as a subquotient of a (tempered) funda-

mental group. Hence, three rigidities of mono-theta environments in Theorem 7.23

correspond to the structure of the theta group (=Heisenberg group) (∆temp
X )Θ:cyclotomic rigidity constant multiple rigidity

0 discrete rigidity

 .

See also the filtration of Lemma 7.5 (1).

§ 7.5. Some Analogous Objects at Good Places.

In inter-unversal Teichüller theory, X is the main actor for places in Vbad. In this

subsection, for the later use, we introduce a counterpart X−→ of X for places in Vgood and

related objects (However, the theory for the places in Vbad is more important than the

one for the places in Vgood).

Let X be a hyperbolic curve of type (1, 1) over a field K of characteristic 0, C a

hyperbolic orbicurve of type (1, l-tors)± (See Definition 7.10) whose K-core C is also

the K-core of X. Then C determines a hyperbolic orbicurve X := C ×C X of type

(1, l-tors). Let ιX be the nontrivial element in Gal(X/C)(∼= Z/2Z). Let GK denote the

absolute Galois group of K for an algebraic closure K. Let l ≥ 5 be a prime number.

Assumption We assume that GK acts trivially on ∆ab
X ⊗ (Z/lZ).

(In inter-universal Teichmüller theory, we will use for K = Fmod(EFmod
[l]) later.) We

write ε0 for the unique zero-cusp of X. We choose a non-zero cusp ε and let ε′ and

ε′′ be the cusps of X over ε, and let ∆X � ∆ab
X ⊗ (Z/lZ) � ∆ε be the quotient of

∆ab
X ⊗ (Z/lZ) by the images of the inertia subgroups of all non-zero cusps except ε′ and

ε′′ of X. Then we have the natural exact sequence

0→ Iε′ × Iε′′ → ∆ε → ∆E ⊗ (Z/lZ)→ 0,
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with the natural actions of GK and Gal(X/C)(∼= Z/2Z), where E is the genus one

compactification of X, and Iε′ , Iε′′ are the images in ∆ε of the inertia subgroups of

the cusps ε′, ε′ respectively (we have non-canonically Iε′ ∼= Iε′′ ∼= Z/lZ). Note that ιX

induces an isomorphism Iε′ ∼= Iε′′ , and that ιX acts on ∆E⊗(Z/lZ) via the multiplication

by −1. Since l is odd, the action of ιX on ∆ε induces a decomposition

∆ε
∼→ ∆+

ε ×∆−ε ,

where ιX acts on ∆+
ε and ∆−ε by +1 and −1 respectively. Note that the natural

composites Iε′ ↪→ ∆ε � ∆+
ε and Iε′′ ↪→ ∆ε � ∆+

ε are isomorphisms. We define

(ΠX �)JX by pushing the short exact sequences 1 → ∆X → ΠX → GK → 1 and by

∆X � ∆ε � ∆+
ε :

1 // ∆X
//

����

ΠX //

����

GK //

=

��

1

1 // ∆+
ε

// JX // GK // 1.

Next, we consider the cusps “2ε′” and “2ε′′” of X corresponding to the points of

E obtained by multiplying ε′ and ε′′ by 2 respectively, relative to the group law of

the elliptic curve determined by the pair (X, ε0). These cusps are not over the cusp

ε in C, since 2 6≡ ±1 (mod l) by l ≥ 5. Hence, the decomposition groups of “2ε′”

and “2ε′′” give us sections σ : GK → JX of the natural surjection JX � GK . The

element ιX ∈ Gal(X/C), which interchange Iε′ and Iε′′ , acts trivially on ∆+
ε (Note also

Iε′
∼−→ ∆ε

∼←− Iε′′), hence, these two sections to JX coincides. This section is only

determined by “2ε′” (or “2ε′′”) up to an inner automorphism of JX given by an element

∆+
ε ; however, since the natural outer action of GK on ∆+

ε is trivial by Assumption, it

follows that the section completely determined by “2ε′” (or “2ε′′”) and the image of the

section is normal in JX . By taking the quotient by this image, we obtain a surjection

(ΠX �)JX � ∆+
ε . Let

X−→→ X

be the corresponding covering with Gal(X−→/X) ∼= ∆+
ε (
∼= Z/lZ).

Definition 7.24. ([IUTchI, Definition 1.1]) An orbicurve over K is called of

type (1, l-tors−−→) if it is isomorphic to X−→ over K for some l and ε.

The arrow→ in the notation X−→ indicates a direction or an order on the {±1}-orbits
(i.e., the cusps of C) of Q (in Assumption (1) before Definition 7.10) is determined by ε

(Remark [IUTchI, Remark 1.1.1]). We omit the construction of “C−→” (See [IUTchI, §1]),
since we do not use it. This X−→ is the main actor for places in Vgood in inter-universal

Teichmüller theory :
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local Vbad local Vgood global � global �

main actor X
v

X−→v
XK CK

Lemma 7.25. ([IUTchI, Corollary 1.2]) We assume that K is an NF or an

MLF. Then from ΠX−→
, there exists a group-theoretic algorithm to reconstruct ΠX and

ΠC (as subgroups of Aut(X−→)) together with the conjugacy classes of the decomposition

group(s) determined by the set(s) of cusps {ε′, ε′′} and {ε} respectively, in a functorial

manner with respect to isomorphisms of topological groups.

See also Lemma 7.8, Lemma 7.12 ([EtTh, Proposition 1.8, Proposition 2.4]).

Proof. First, since ΠX−→
, ΠX and ΠC are slim by Proposition 2.7 (2b), these are

naturally embedded into Aut(ΠX−→
) by conjugate actions. By the K-coricity of C, we

can also group-theoretically reconstruct (ΠX−→
⊂)ΠC (⊂ Aut(ΠX−→

)). By Proposition 2.2

or Corollary 2.4, we can group-theoretically reconstruct the subgroups ∆C−→
⊂ ΠC−→

and

∆X−→
⊂ ΠX−→

(In particular, we can reconstruct l by the formula [∆C : ∆X−→
] = 2l2).

We can reconstruct ∆X as a unique torsion-free subgroup of ∆C of index 2. Then we

can reconstruct ΠX (⊂ ΠC) as ΠX = H · ΠX−→
, where H := ker(∆X � ∆ab

X ⊗ (Z/lZ)).
The conjugacy classes of the decomposition groups of ε0, ε′, and ε′′ in ΠX can be

reconstructed as the decomposition groups of cusps (Corollary 2.9 and Remark 2.9.2)

whose image in ΠX/ΠX−→
is nontrivial. Then we can reconstruct the subgroup ΠC ⊂ ΠC

by constructing a splitting of the natural surjection ΠC/ΠX � ΠC/ΠX determined by

ΠC/ΠX , where the splitting is characterised (since l - 3) as the unique splitting (whose

image ⊂ ΠC/ΠX) stabilising (via the outer action on ΠX) the collection of conjugacy

classes of the decomposition groups in ΠX of ε0, ε′, and ε′′ (Note that if an ivolution

of X fixed ε′ and interchanged ε0 and ε′′, then we would have 2 ≡ −1 (mod l), i.e.,

l | 3). Finally, the decomposition groups of ε′ and ε′′ in ΠX can be reconstructed as the

decomposition group of cusps (Corollary 2.9 and Remark 2.9.2) whose image in ΠX/ΠX−→
is nontrivial, and is not fixed, up to conjugacy, by the outer action of ΠC/ΠX (∼= Z/2Z)
on ΠX .

Remark 7.25.1. ([IUTchI, Remark 1.2.1]) By Lemma 7.25, we have

AutK(X−→) = Gal(X−→/C) (
∼= Z/2lZ)

(cf. Remark 7.12.1).
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§ 8. Frobenioids.

Roughly speaking, we have the following proportional formula:

Anabelioid (=Galois category) : Frobenioid = coverings : line bundles over coverings,

that is, the theory of Galois categories is a categorical formulation of coverings (i.e., it

is formulated in terms of category, and geometric terms never appear), and the theory

of Frobenioids is a categorical formulation of line bundles over coverings (i.e., it is for-

mulated in terms of category, and geometric terms never appear). In [FrdI] and [FrdII],

Mochizuki developed a general theory of Frobenioids; however, in this survey, we mainly

forcus on model Frobenioids, which mainly used in inter-universal Teichmüller theory.

The main theorems of the theory of Frobenioids are category-theoretic reconstruction

algorithms of related objects (e.g., the base categories, the divisor monoids, and so on)

under certain conditions; however, we avoid these theorems by including the objects,

which we want to reconstruct, as input data, as suggested in [IUTchI, Remark 3.2.1

(ii)].

§ 8.1. Elementary Frobenioids and Model Frobenioids.

For a category D, we call a contravariant functor Φ : D → Mon to the category

of commutative monoids Mon a monoid on D (In [FrdI, Definition 1.1], we put some

conditions on Φ. However, this has no problem for our objects used in inter-universal

Teichmüller theory.) If any element in Φ(A) is invertible for any A ∈ Ob(D), then we

call Φ group-like.

Definition 8.1. (Elementary Frobenioid, [FrdI, Definition 1.1 (iii)]) Let Φ be a

monoid on a category D. We consider the following category FΦ:

1. Ob(FΦ) = Ob(D).

2. For A,B ∈ Ob(D), we put

HomFΦ(A,B) := {φ = (Base(φ),Div(φ),degFr(φ)) ∈ HomD(A,B)× Φ(A)× N≥1} .

We define the composition of φ = (Base(φ),Div(φ), degFr(φ)) : A → B and ψ =

(Base(ψ),Div(ψ),degFr(n)) : B → C as

ψ◦φ := (Base(ψ)◦Base(φ),Φ(Base(φ))(Div(ψ))+degFr(ψ)Div(φ),degFr(ψ)degFr(φ)) : A→ C.
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We call FΦ an elementary Frobenioid associated to Φ. Note that we have a natural

functor FΦ → D, which sendsA ∈ Ob(FΦ) toA ∈ Ob(D), and φ = (Base(φ),Div(φ),degFr(φ))

to Base(φ). We call D the base category of FΦ.

For a category C and an elementary Frobenioid FΦ, we call a covariant functor

C → FΦ a pre-Frobenioid structure on C (In [FrdI, Definition 1.1 (iv)], we need

conditions on Φ, D, and C for the general theory of Frobenioids). We call a category

C with a pre-Frobenioid structure a pre-Frobenioid. For a pre-Frobenioid C, we have

a natural functor C → D by the composing with FΦ → D. In a similar way, we obtain

operations Base(−), Div(−), degFr(−) on C from the ones on FΦ by composing with

FΦ → D. We often use the same notation on C as well, by abuse of notation. We also

call Φ and D the divisor monoid and the base category of the pre-Frobenioid C
respectively. We put

O×(A) := {φ ∈ AutC(A) | Base(φ) = id, degFr(φ) = 1} ⊂ AutC(A),

and

O�(A) := {φ ∈ EndC(A) | Base(φ) = id, degFr(φ) = 1} ⊂ EndC(A)

for A ∈ Ob(C). We also put µN (A) := {a ∈ O×(A) | aN = 1} for N ≥ 1.

Definition 8.2. ([IUTchI, Example 3.2 (v)]) When we are given a splitting spl :

O�/O× ↪→ O� (resp. a µN -orbit of a splitting spl : O�/O× ↪→ O� for fixedN) of O� �
O�/O×, i.e., functorial splittings (resp. functorial µN -orbit of splittings) of O�(A) �
O�(A)/O×(A) with respect to A ∈ Ob(C) and morphisms with degFr = 1, then we call

the pair (C, spl) a split pre-Frobenioid (resp. a µN -split pre-Frobenioid).

If a pre-Frobenioid satisfies certain technical conditions, then we call it a Frobe-

nioid (See [FrdI, Definition 1.3]). (Elementary Frobenioids are, in fact, Frobenioids

([FrdI, Proposition 1.5]).) In this survey, we do not recall the definition nor use the

general theory of Frobenioids, and we mainly focus on model Frobenioids.

Definition 8.3. (Model Frobenioid, [FrdI, Theorem 5.2]) Let Φ : D → Mon

be a monoid on a category D. Let B : D → Mon be a group-like monoid on D, and
DivB : B→ Φgp a homomorphism. We put Φbirat := Im(DivB) ⊂ Φgp. We consider the

following category C:

1. The objects of C are pairs A = (AD, α), where AD ∈ Ob(D), and α ∈ Φ(AD)
gp. We

put Base(A) := AD, Φ(A) := Φ(AD), and B(A) := B(AD).

2. For A = (AD, α), B = (BD, β) ∈ Ob(C), we put

HomC(A,B) :=

{
φ = (Base(φ),Div(φ), degFr(φ), uφ) ∈ HomD(AD, BD)× Φ(A)× N≥1 × B(A)
such that degFr(φ)α+Div(φ) = Φ(Base(φ))(β) + DivB(uφ)

}
.
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We define the composition of φ = (Base(φ),Div(φ), degFr(φ), uφ) : A → B and

ψ = (Base(ψ),Div(ψ),degFr(ψ), uψ) : B → C as

ψ ◦ φ :=

(
Base(ψ) ◦ Base(φ),Φ(Base(φ))(Div(ψ)) + degFr(ψ)Div(φ),

degFr(ψ)degFr(φ),B(Base(φ))(uψ) + degFr(ψ)uφ

)
.

We equip C with a pre-Frobenioid structure C → FΦ by sending (AD, α) ∈ Ob(C) to

AD ∈ Ob(FΦ) and (Base(φ),Div(φ),degFr(φ), uφ) to (Base(φ),Div(φ), degFr(φ)). We

call the category C the model Frobenioid defined by the divisor monoid Φ and the

rational function monoid B (Under some conditions, the model Frobenioid is in fact

a Frobenioid).

The main theorems of the theory of Frobenioids are category-theoretic reconstruc-

tion algorithms of related objects (e.g., the base categories, the divisor monoids, and

so on), under certain conditions. However, in this survey, we consider isomorphisms

between pre-Frobenioids not to be just category equivalences, but to be category equiv-

alences including pre-Frobenioid structures, i.e., for pre-Frobenioids F ,F ′ with pre-

Frobenioid structures F → FΦ, F ′ → FΦ′ , where FΦ,FΦ′ are defined by D → Φ,

D′ → Φ′ respectively, an isomorphism of pre-Frobenioids from F to F ′ consists of
isomorphism classes (See also Definition 6.1 (5)) of equivalences F ′ ∼→ F , D′ ∼→ D of

categories, and a natural transformation Φ′ → Φ|D′ (where Φ|D′ is the restriction of Φ

via D′ ∼→ D), such that it gives rise to an equivalence FΦ′
∼→ FΦ of categories, and the

diagram

F ′ ∼ //

��

F

��
FΦ′

∼ // FΦ

is 1-commutative (i.e., one way of the composite of functors is isomorphic to the other

way of the composite of functors) (See also [IUTchI, Remark 3.2.1 (ii)]).

Definition 8.4.

1. (Trivial Line Bundle) For a model Frobenioid F with base category D, we write

OA for the trivial line bundle over A ∈ Ob(D), i.e., the object determine by

(A, 0) ∈ Ob(D) × Φ(A)gp (These objects are called “Frobenius-trivial objects” in

the terminology of [FrdI], which can category-theoretically be reconstructed only

from F under some conditions).

2. (Birationalisation, “Z≥0  Z”) Let C be a model Frebenioid. Let Cbirat be the

category whose objects are the same as in C, and whose morphisms are given by

HomCbirat(A,B) := lim−→
φ:A′→A, Base(φ) : isom, degFr(φ)=1

HomC(A
′, B).
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(For general Frobenioids, the definition of the birationalisation is a little more com-

plicated. See [FrdI, Proposition 4.4]). We call Cbirat the birationalisation of the

model Frobenioid C. We have a natural functor C → Cbirat.

3. (Realification, “Z≥0  R≥0”) Let C be a model Frobenioid whose divisor monoid is

Φ and whose rational function monoid is B. Then let CR be the model Frobenioid

obtained by replacing the divisor monoid Φ by ΦR := Φ⊗Z≥0
R≥0, and the rational

function monoid B by BR := R · Im(B→ Φgp) ⊂ (ΦR)gp (We need some conditions

on C, if we want to include more model Frobenioids which we do not treat in this

survey. See [FrdI, Definition 2.4 (i), Proposition 5.2]). We call CR the realification

of the model Frobenioid C. We have a natural functor C → CR.

Definition 8.5. (×-, ×µ-Kummer structure on pre-Frobenioid, [IUTchII, Ex-

ample 1.8 (iv), Definition 4.9 (i)])

1. Let G be a toplogical group isomorphic to the absolute Galois group of an MLF.

Then we can group-theoretically reconstruct an ind-topological monoid Gy O�(G)

with G-action, by Proposition 5.2 (Step 1). Put O×(G) := (O�(G))×, Oµ(G) :=

(O�(G))tors and O×µ(G) := O×(G)/Oµ(G) (We use the notation O×µ(−), not

O×(−)/Oµ(−), because we want to consider the object O×(−)/Oµ(−) as an ab-

stract ind-topological module, i.e., without being equipped with the quotient struc-

ture O×/Oµ). Put

Isomet(G) =
{
G-equivariant isomorphism O×µ(G)

∼→ O×µ(G) preserving

the integral str. Im(O×(G)H → O×µ(G)H) for any open H ⊂ G
}
.

We call the compact topological group Isomet(G) the group of G-isometries of

O×µ(G). If there is no confusion, we write just Isomet for Isomet(G).

2. Let C be a pre-Frobenioid with base category D. We assume that D is equivalent

to the category of connected finite étale coverings of the spectrum of an MLF or a

CAF. Let A∞ be a universal covering pro-object of D. Put G := Aut(A∞), hence,

G is isomorphic to the absolute Galois group of an MLF or a CAF. Then we have

a natural action Gy O�(A∞). For N ≥ 1, we put

µN (A∞) := {a ∈ O�(A∞) | aN = 1} ⊂ Oµ(A∞) := O�(A∞)tors ⊂ O�(A∞),

and

O×(A∞) � O×µN (A∞) := O×(A∞)/µN (A∞) � O×µ(A∞) := O×(A∞)/Oµ(A∞).
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These are equipped with natural G-actions. We assume that G is nontrivial (i.e.,

arising from an MLF). A ×-Kummer structure (resp. ×µ-Kummer struc-

ture) on C is a Ẑ×-orbit (resp. an Isomet-orbit)

κ× : O×(G)
poly
∼→ O×(A∞) (resp. κ×µ : O×µ(G)

poly
∼→ O×µ(A∞) )

of isomorphisms of ind-topological G-modules. Note that the definition of a ×-
(resp. ×µ-) Kummer structure is independent of the choice of A∞. Note also

that any ×-Kummer structure on C is unique, since ker(Aut(G y O×(G)) �
Aut(G)) = Ẑ×(= Aut(O×(G))) (cf. [IUTchII, Remark 1.11.1 (i) (b)]). We call a

pre-Frobenioid equipped with a ×-Kummer structure (resp. ×µ-Kummer structure)

a ×-Kummer pre-Frobenioid (resp. ×µ-Kummer pre-Frobenioid). We call

a split pre-Frobenioid equipped with a ×-Kummer structure (resp. ×µ-Kummer

structure) a split-×-Kummer pre-Frobenioid (resp. split-×µ-Kummer pre-

Frobenioid).

Remark 8.5.1. ([IUTchII, Remark 1.8.1]) In the situation of Definition 8.5 (1),

no automorphism of O×µ(G) induced by an element of Aut(G) is equal to an auto-

morphism of O×µ(G) induced by an element of Isomet(G) which has nontrivial im-

age in Z×p (Here p is the residual characteristic of the MLF under consideration),

since the composite with the p-adic logarithm of the cyclotomic character of G (which

can be group-theoretically reconstructed by Proposition 2.1 (6)) determines a natural

Aut(G)× Isomet(G)-equivariant surjection O×µ(G)� Qp, where Aut(G) trivially acts

on Qp and Isomet(G) acts on Qp via the natural surjection Ẑ× � Z×p .

§ 8.2. Examples.

Example 8.6. (Geometric Frobenioid, [FrdI, Example 6.1]) Let V be a proper

normal geometrically integral variety over a field k, k(V ) the function field of V , and

k(V )∼ a (possibly inifinite) Galois extension. Put G := Gal(k(V )∼/k(V )), and let

Dk(V ) be a set of Q-Cartier prime divisors on V . The connected objects Ob(B(G)0)
(See Section 0.2) of the Galois category (or connected anabelioid) B(G) can be thought

of as schemes SpecL, where L ⊂ k(V )∼ is a finite extension of k(V ). We write VL

for the normalisation of V in L, and let DL denote the set of prime divisors of VL

which maps into (possibly subvarieties of codimension≥ 1 of) prime divisors of Dk(V )

We assume that any prime divisor of DL is Q-Cartier for any SpecL ∈ Ob(B(G)0).
We write Φ(L) ⊂ Z≥0[DL] for the monoid of effective Cartier divisors D on VL such

that every prime divisor in the support of D is in DL, and B(L) ⊂ L× for the group

of rational functions f on VL such that every prime divisor, at which f has a zero or a

pole, is in DL. Note that we have a natural homomorphism B(L)→ Φ(L)gp which sends
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f to (f)0 − (f)∞ (Here, (f)0 and (f)∞ denote the zero-divisor and the pole-divisor of

f respectively). This is functrial with respect to L. The data (B(G)0,Φ(−),B(−),B→
Φgp) determines a model Frobenioid CV,k(V )∼,DK

.

An object of CV,k(V )∼,DK
, which is sent to SpecL ∈ Ob(B(G)0), can be thought of

as a line bundle L on VL, which is representable by a Cartier divisor D with support

in DL. For such line bundles L on SpecL andM on SpecM (L,M ⊂ k(V )∼ are finite

extensions of k(V )), a morphism L →M in CV,k(V )∼,DK
can be thought of as consisting

of a morphism SpecL→ SpecM over Spec k(V ), an element d ∈ N≥1, and a morphism

of line bundles L⊗d →M|VL
on VL whose zero locus is a Cartier divisor supported in

DL.

Example 8.7. (p-adic Frobenioid, [FrdII, Example 1.1], [IUTchI, Example 3.3])

Let Kv be a finite extension of Qpv (In inter-universal Teichmüller theory, we use v ∈
Vgood ∩ Vnon). Put

Dv := B(X−→v
)0, and D`v := B(Kv)

0,

where X−→v
is a hyperbolic curve of type (1, l-tors−−→) (See Definition 7.24). By pulling back

finite étale coverings via the structure morphism X−→v
→ SpecKv, we regard D`v as a

full subcategory of Dv. We also have a left-adjoint Dv → D`v to this functor, which is

obtained by sending a ΠX−→v
-set E to the GKv -set E/ker(ΠX−→v

→ GKv ) := ker(ΠX−→v
→

GKv )-orbits of E ([FrdII, Definition 1.3 (ii)]). Then

ΦCv : SpecL 7→ ord(O�
L )

pf := (OL/O
×
L )

pf

(See Section 0.2 for the perfection (−)pf) gives us a monoid on D`v . By composing the

above Dv → D`v , it gives us a monoid ΦCv on Dv. Also,

ΦC`v : SpecL 7→ ord(Z�
pv ) (⊂ ord(O�

L )
pf)

(See Section 0.2 for the perfection (−)pf) gives us a submonoid ΦC`v ⊂ ΦCv on D`v .
These monoids ΦCv on Dv and ΦC`v on D`v determine pre-Frobenioids (In fact, these are

Frobenioid)

C`v ⊂ Cv

whose base categories are D`v and Dv respectively. These are called pv-adic Frobe-

nioids. These pre-Frobenioid can be regarded as model Frobenioids whose rational

function monoids B are given by Ob(D`v ) 3 SpecL 7→ L× ∈ Mon, and L× 3 f 7→
(f)0 − (f)∞ := image of f ∈ ΦC`v (L) ⊂ ΦCv (L) ([FrdII, Example 1.1]). Note that the

element pv ∈ Z�
pv gives us a splitting spl`v : O�/O× ↪→ O�, hence a split pre-Frobenioid

F`v := (C`v , spl
`
v ).
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We also put

F
v
:= Cv

for later use.

Example 8.8. (Tempered Frobenioid, [EtTh, Definition 3.3, Example 3.9, the

beginning of §5], [IUTchI, Example 3.2]) Let X
v
:= X

Kv
→ Xv := XKv

be a hyperbolic

curve of type (1, l-torsΘ) and a hyperbolic curve of type (1,Z/lZ) respectively (Defini-

tion 7.13, Definition 7.11) over a finite extension Kv of Qpv (As before, we always put

the log-structure associated to the cusps, and consider the log-fundamental groups).

Put

Dv := Btemp(X
v
)0, D`v := B(Kv)

0,

and D0 := Btemp(Xv)
0 (See Section 0.2 for (−)0. Note also that we have π1(Dv) ∼=

Πtemp
X

v

, and π1(D`v ) ∼= GKv (See Definition 6.1 (4))). We have a natural functor Dv →
D0, which sends Y → X

v
to the composite Y → X

v
→ Xv.

For a tempered covering Z → Xv and its stable formal model Z over OL, where L

is a finite extension of Kv, let Z∞ → Z be the universal combinatorial covering (i.e., the

covering determined by the universal covering of the dual graph of the special fiber of

Z), and Z∞ the Raynaud generic fiber of Z∞.

Definition 8.9. ([EtTh, Definition 3.1], [IUTchI, Remark 3.2.4]) Let Div+(Z∞)

denote the monoid of the effective Cartier divisors whose support lie in the union of

the special fiber and the cusps of Z∞. We call such a divisor an effective Cartier

log-divisor on Z∞. Also, let Mero(Z∞) denote the group of meromorphic functions f

on Z∞ such that, for any N ≥ 1,f admits an N -th root over some tempered covering

of Z. We call such a function a log-meromorphic function on Z∞.

Definition 8.10. ([EtTh, Definition 3.3, Example 3.9, the beginning of §5],
[IUTchI, Example 3.2])

1. Let ∆ be a tempered group (Definition 6.1). We call a filtration {∆i}i∈I , (where
I is countable) of ∆ by characteristic open subgroups of finite index a tempred

filter, if the following conditions are satisfied:

(a) We have
∩
i∈I ∆i = ∆.

(b) Every ∆i admits an open characteristic subgroup ∆∞i such that ∆i/∆
∞
i is

free, and, for any open normal subgroup H ⊂ ∆i with free ∆i/H, we have

∆∞i ⊂ H.

(c) For each open subgroup H ⊂ ∆, there exists unique ∆∞iH ⊂ H, and, ∆∞i ⊂ H
implies ∆∞i ⊂ ∆∞iH for every i ∈ I.
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2. Let {∆i}i∈I be a tempered filter of ∆temp
Xv

. Assume that, for any i ∈ I, the covering
detemined by ∆i has a stable model Zi over a ring of integers of a finite extension of

Kv, and all of the nodes and the irreducible components of the special fiber of Zi are

rational (we say that Zi has split stable reduction). For any connected tempered

covering Y → Xv, which corresponds to an open subgroup H ⊂ ∆temp
Xv

, we put

Φ0(Y ) := lim−→
∆∞

i ⊂H
Div+(Z∞)Gal(Z∞/Y ), B0(Y ) := lim−→

∆∞
i ⊂H

Mero(Z∞)Gal(Z∞/Y ).

These determine functors Φ0 : D0 →Mon, B0 : D0 →Mon. We also have a natural

functor B0 → Φgp
0 , by taking f 7→ (f)0 − (f)∞. We write Bconst

0 ⊂ B0 for the

subfunctor defined by the constant log-meromorphic functions, and Φconst
0 ⊂ Φgp

0

for the image of Bconst
0 in Φgp

0 .

3. Let Dell
0 ⊂ D0 denote the full subcategory of tempered coverings which are un-

ramified over the cusps of Xv (i.e., tempered coverings of the underlying elliptic

curve Ev of Xv). We have a left adjoint D0 → Dell
0 , which is obtained by sending

a ΠXv
-set E to the ΠEv

-set E/ker(ΠXv
→ ΠEv

) := ker(ΠXv
→ ΠEv

)-orbits of E

([FrdII, Definition 1.3 (ii)]). For Y ∈ Ob(Dv), let Y ell denote the image of Y by the

composite Dv → D0 → Dell
0 . We put, for Y ∈ Ob(Dv),

Φ(Y ) :=

(
lim−→
Z∞

Div+(Z∞)Gal(Z∞/Y ell)

)pf

⊂ Φ0(the image of Y in D0)
pf ,

where Z∞ range over the connected tempered covering Z∞ → Y ell in Dell
0 such

that the composite Z∞ → Y ell → Xv arises as the generic fiber of the universal

combinatorial covering Z∞ of the stable model Z of some finite étale covering Z →
Xv in Dell

0 with split stable reduction over the ring of integers of a finite extension

of Kv (We use this Φ, not Φ0, to consider only divisors related with the theta

function). We write (−)|Dv for the restriction, via Dv → D0, of a functor whose

domain is D0. We also put ΦR
0 := Φ0 ⊗Z≥0

R≥0 and ΦR := Φ⊗Z≥0
R≥0. Put

B := B0|Dv ×(ΦR)gp Φgp, Φconst := (R · Φconst
0 )|Dv ×(ΦR)gp Φ ⊂ ΦR,

and

Bconst := Bconst
0 |Dv ×(ΦR)gp Φ

gp → (Φconst)gp = (R ·Φconst
0 )|Dv ×(ΦR)gp Φ

gp ⊂ (ΦR)gp.

The data (Dv,Φ,B,B → Φgp) and (Dv,Φconst,Bconst,Bconst → (Φconst)gp) deter-

mine model Frobenioids

F
v
, and Cv (= Fbase-field

v
)
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respectively (In fact, these are Frobenioids). We have a natural inclusion Cv ⊂ Fv.
We call F

v
a tempered Frobenioid and Cv its base-field-theoretic hull. Note

that Cv is also a pv-adic Frobenioid.

4. We write Θ
v
∈ O×(Obirat

Ÿ
v

) for the reciprocal (i.e., 1/(−)) of the l-th root of the

normalised theta function, which is well-defined up to µ2l and the action of the

group of automorphisms lZ ⊂ Aut(OŸ
v

) (Note that we use the notation Θ̈ in

Section 8.3. This is not the reciprocal (i.e., not 1/(−)) one). We also write qv for

the q-parameter of the elliptic curve Ev over Kv. We consider qv as an element

qv ∈ O�(OX
v
) (∼= O�

Kv
). We assume that any 2l-torsion point of Ev is rational over

Kv. Then qv admits a 2l-root in O�(OX
v
) (∼= O�

Kv
). Then we have

Θ
v
(
√
−qv) = q

v
:= q1/2lv ∈ O�(OX

v
),

(which is well-defined up to µ2l), since Θ̈(
√
−q) = −q−1/2

√
−1−2Θ̈(

√
−1) = q−1/2

(in the notation of Lemma 7.4) by the formula Θ̈(q1/2Ü) = −q−1/2Ü−2Θ̈(Ü) in

Lemma 7.4. The image of q
v
determines a constant section, which is denoted by

logΦ(q
v
) of the monoid ΦCv of Cv. The submonoid

ΦC`v := N logΦ(q
v
)|D`

v
⊂ ΦCv |D`

v

gives us a pv-adic Frobenioid

C`v (⊂ Cv = (F
v
)base-field ⊂ F

v
)

whose base category is D`v . The element q
v
∈ Kv determines a µ2l(−)-orbit spl`v of

the splittings of O� � O�/O× on C`v . Hence,

F`v := (C`v , spl
`
v )

is a µ2l-split pre-Frobenioid.

Remark 8.10.1. We can category-theoretically reconstruct the base-field-theoretic

hull Cv from F
v
([EtTh, Corollary 3.8]). However, in this survey, we include the

base-field-theoretic hull in the deta of the tempered Frobenioid, i.e., we call a pair

F
v
= (F

v
, Cv) a tempered Frobenioid, by abuse of language/notation, in this survey.

Example 8.11. (Archimedean Frobenioid, [FrdII, Example 3.3], [IUTchI, Ex-

ample 3.4]) This example is not a model Frobenioid (In fact, it is not of isotropic type,

which any model Frobenioids should be). Let Kv be a complex Archimedean local field

(In inter-universal Teichmüller theory, we use v ∈ Varc). We define a category

Cv
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as follows: The objects of Cv are pairs (V,A) of a one-dimensional Kv-vector space V ,

and a subset A = B × C ⊂ V ∼= O×Kv
× ord(K×v ) (Here we put ord(K×v ) := K×v /O

×
Kv

.

See Section 0.2 for OKv ), where B ⊂ O×Kv
(∼= S1) is a connected open subset, and

C ⊂ ord(K×v )
∼= R>0 is an interval of the form (0, λ] with λ ∈ R>0 (We call A an

angular region). The morphisms φ from (V,A) to (V ′,A′) in Cv consist of an element

degFr(φ) ∈ N≥1 and an isomorphism V ⊗degFr(φ)
∼→ V ′ of Kv-vector spaces which sends

A⊗degFr(φ) into A′. We put Div(φ) := log(α) ∈ R≥0 for the largest α ∈ R>0 such

that α · Im(A⊗degFr(φ)) ⊂ A′. Let {SpecKv} be the category of connected finite étale

coverings of SpecKv (Thus, there is only one object, and only one morphism), and

Φ : {SpecKv} → Mon the functor defined by sending SpecKv (the unique object)

to ord(O�
Kv

) ∼= (0, 1]
− log∼= R≥0. Put also Base(V,A) := SpecKv for (V,A) ∈ Ob(Cv).

Then the triple (Base(−),Φ(−), degFr(−)) gives us a pre-Frobenioid structure Cv → FΦ

on Cv (In fact, this is a Frobenioid). We call Cv an Archimedean Frobenioid (cf.

the Archimedean portion of arithmetic line bundles). Note also that we have a natural

isomorphism O�(Cv) ∼= O�
Kv

of topological monoids (We can regarad Cv as a Frobenioid-

theoretic representation of the topological monoid O�
Kv

).

Let X−→v
be a hyperbolic curve of type (1, l-tors−−→) (See Definition 7.24) over Kv, and

let X−→v
denote the Aut-holomorphic space (See Section 4) determined by X−→v

, and put

Dv := X−→v
.

Note also that we have a natural isomorphism

Kv
∼→ ADv

of topological fields (See (Step 9) in Proposition 4.5), which determines an inclusion

κv : O
�(Cv) ↪→ ADv

of topological monoids. This gives us a Kummer structure (See Definition 4.6) on Dv.
Put

F
v
:= (Cv,Dv, κv),

just as a triple. We define an isomorphism F
v,1

∼→ F
v,2

of triples in an obvious manner.

Next, we consider the mono-analyticisation. Put

C`v := Cv.

Note also that ADv naturally determines a split monoid (See Definition 4.7) by trans-

porting the natural splitting of Kv via the isomorphism Kv
∼→ ADv of topological fields.
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This gives us a splitting spl`v on C`v , hence, a split-Frobenioid (C`v , spl
`
v ), as well as a

split monoid

D`v := (O�(C`v ), spl
`
v ).

We put

F`v := (C`v ,D`v , spl
`
v ),

just as a triple. We define an isomorphism F`v,1
∼→ F`v,2 of triples in an obvious manner.

Example 8.12. (Global Realified Frobenioid, [FrdI, Example 6.3], [IUTchI, Ex-

ample 3.5]) Let Fmod be a number field. Let {SpecFmod} be the category of connected

finite étale coverings of SpecFmod (Thus, there is only one object, and only one mor-

phism). Put

ΦC
mod
(Fmod) :=

⊕
v∈V(Fmod)non

ord(O�
v )⊗Z≥0

R≥0 ⊕
⊕

v∈V(Fmod)arc

ord(O�
v ),

where ord(O�
v ) := O�

v /O
×
v (See Section 0.2 for Ov and O�

v , v ∈ V(Fmod)
arc). We call

an element of Φ(Fmod) (resp. Φ(Fmod)
gp) an effective arithmetic divisor (resp. an

arithmetic divisor). Note that ord(O�
v )
∼= Z≥0 for v ∈ V(Fmod)

non, and ord(O�
v )
∼=

R≥0 for v ∈ V(Fmod)
arc. We have a natural homomorphism

B(Fmod) := F×mod → Φ(Fmod)
gp.

Then the data ({SpecFmod},ΦC
mod
,B) determines a model Frobenioid

C
mod.

(In fact, it is a Frobenioid.) We call it a global realified Frobenioid.

We have a natural bijection

Prime(C
mod)
∼→ Vmod

(by abuse of notation, we put Prime(C
mod) := Prime(ΦC
mod
(SpecFmod))), where Prime(−)

is defined as follows:

Definition 8.13. Let M be a commutative monoid such that 0 is the only in-

vertible element in M , the natural homomorphism M → Mgp is injective, and any

a ∈ Mgp with na ∈ M for some n ∈ N≥1 is in the image of M ↪→ Mgp. We define the

set Prime(M) of primes of M as follows ([FrdI, §0]):

1. For a, b ∈M , we write a ≤ b, if there is c ∈M such that a+ c = b.

2. For a, b ∈M , we write a 4 b, if there is n ∈ N≥1 such that a ≤ nb.
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3. For 0 6= a ∈M , we say that a is primary, if a 4 b holds for any M 3 b 4 a, b 6= 0.

4. The relation a 4 b is an equivalence relation among the set of primary elements in

M , and we call an equivalence class a prime of M (this definition is different from

a usual definition of primes of a monoid). Let Prime(M) denote the set of primes

of M .

Note that pv determines an element

log`mod(pv) ∈ ΦC
mod,v

for v ∈ Vmod
∼= Prime(C
mod), where ΦC
mod,v

(∼= R≥0) denotes the v-portion of ΦC
mod
.

§ 8.3. From Tempered Frobenioids to Mono-theta Environments.

Let F
v
be the tempered Frobenioid constructed in Example 8.8. Recall that it has

a base category Dv with π1(Dv) ∼= Πtemp
X

v

(=: Πv). Let OŸ denote the object in F
v

corresponding to the trivial line bundle on Ÿ (i.e., OŸ = (Ÿ , 0) ∈ Ob(Dv)× Φ(Ÿ ). See

Definition 8.4 (1)). Let ŸlN , ZlN , Z̈lN , LlN , and L̈lN as in Section 7.1. We can interpret

the pull-backs to Z̈lN of

1. the algebraic section slN ∈ Γ (ZlN ,LlN |ZlN
) of Lemma 7.1, and

2. the theta trivialisation τlN ∈ Γ
(
ŸlN , L̈lN

)
after Lemma 7.1.

as morphisms

suN , s
t
N : OZ̈lN

→ L̈lN |Z̈lN

in F
v
respectively. For A ∈ Ob(F

v
), let Abirat denote the image of A in the birational-

isation F
v
→ (F

v
)birat (Definition 8.4 (2)). Then by definition, we have

suN ◦ (stN )−1 = Θ̈
1/N ∈ O×

(
Obirat

Z̈lN

)
for an N -th root of Θ̈, where Θ̈ := Θ̈1/l is a l-th root of the theta function Θ̈ ([EtTh,

Proposition 5.2 (i)]), as in Section 7.1 (See also the claim (7.2)). Let H(Z̈lN ) (⊂
AutDv (Z̈lN )) denote the image of Πtemp

Ÿ
under the surjective outer homomorphism

Πtemp
X

v

� AutDv (Z̈lN ), andH(OZ̈lN
) (⊂ AutF

v
(OZ̈lN

)/O×(OZ̈lN
)) (resp. H(L̈lN |Z̈lN

) (⊂

AutF
v
(L̈lN |Z̈lN

)/O×(L̈lN |Z̈lN
)) ) the inverse image of H(Z̈lN ) of the natural injec-

tion AutF
v
(OZ̈lN

)/O×(OZ̈lN
) ↪→ AutDv (Z̈lN ) (resp. AutF

v
(L̈lN |Z̈lN

)/O×(L̈lN |Z̈lN
) ↪→
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AutDv (Z̈lN )):

Πtemp
X

v

// // AutDv (Z̈lN ) AutF
v
(OZ̈lN

)/O×(OZ̈lN
) (resp. AutF

v
(L̈lN |Z̈lN

)/O×(L̈lN |Z̈lN
) )? _oo

Πtemp

Ÿ
// //

?�

OO

H(Z̈lN )
?�

OO

H(OZ̈lN
) (resp. H(L̈lN |Z̈lN

) ).? _=oo
?�

OO

Note that we have natural isomorphisms H(OZ̈lN
) ∼= H(Z̈lN ) ∼= H(L̈lN |Z̈lN

). Choose a

section of AutF
v
(OZ̈lN

)� AutDv (Z̈lN ), which gives us a homomorphism

strivN : H(OZ̈lN
)→ AutF

v
(OZ̈lN

).

Then by taking the group actions of H(L̈lN |Z̈lN
) on suN , and stN (cf. the actions of Πtemp

Ÿ

on sN and τN in Section 7.1), we have unique groups homomorphisms

su-gpN , st-gpN : H(L̈lN |Z̈lN
)→ AutF

v
(L̈lN |Z̈lN

),

which make diagrams

OZ̈lN

suN //

(strivN |L̈lN )(h)

��

L̈lN |Z̈lN

su-gp
N (h)

��
OZ̈lN

suN // L̈lN |Z̈lN
,

OZ̈lN

stN //

(strivN |L̈lN )(h)

��

L̈lN |Z̈lN

st-gp
N (h)

��
OZ̈lN

stN // L̈lN |Z̈lN
,

commutative for any h ∈ H(L̈lN |Z̈lN
), where strivN |L̈lN is the composite of strivN with

the natural isomorphism H(L̈lN |Z̈lN
) ∼= H(OZ̈lN

). Then the difference su-gpN ◦ (st-gpN )−1

gives us a 1-cocycle H(L̈lN |Z̈lN
)→ µN (L̈lN |Z̈lN

), whose cohomology class in

H1(H(L̈lN |Z̈lN
), µN (L̈lN |Z̈lN

)) (⊂ H1(Πtemp

Ÿ
, µN (L̈lN |Z̈lN

)))

is, by construction, equal to the (mod N) Kummer class of an l-th root Θ̈ of the

theta function, and also equal to the η̈Θ modulo N constructed before Definition 7.14

under the natural isomorphisms l∆Θ⊗(Z/NZ) ∼= lµlN (L̈lN |Z̈lN
) ∼= µN (L̈lN |Z̈lN

) ([EtTh,

Proposition 5.2 (iii)]). (See also Remark 7.2.1.)

Note that the subquotients Πtemp
X � (Πtemp

X )Θ, l∆Θ ⊂ (Πtemp
X )Θ in Section 7.1

determine subquotients AutDv (S) � AutΘDv
(S), (l∆Θ)S ⊂ AutΘDv

(S) for S ∈ Ob(Dv).
As in Remark 7.6.3, Remark 7.9.1, and Remark 7.15.1, by considering the zero-divisor

and the pole-divisor (as seen in this subsection too) of the normalised theta function

Θ̈(
√
−1)−1Θ̈, we can category-theoretically reconstruct the lZ × µ2-orbit of the theta
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classes of standard type with µN (−)-coefficient ([EtTh, Theorem 5.7]). As in the case of

the cyclotomic rigidity on mono-theta environment (Theorem 7.23 (1)), by considering

the difference of two splittings of the surjection (l∆Θ)S [µN (S)] � (l∆Θ)S , we can

category-theoretically reconstruct the cyclotomic rigidity isomorphism

(Cyc.Rig. Frd) (l∆Θ)S ⊗ Z/NZ ∼→ µN (S) (= lµlN (S))

for an object S of F
v
such that µlN (S) ∼= Z/lNZ, and (l∆Θ)S ⊗ Z/NZ ∼= Z/NZ

as abstract groups ([EtTh, Theorem 5.6]). We call this isomorphism the cyclotomic

rigidity in tempered Frobenioid.

Put (H( ¨ZlN ) ⊂) Im(Πtemp
Y ) (⊂ AutDv

(Z̈lN )) to be the image of Πtemp
Y (Note that

we used Πtemp

Ÿ
in the definition of H( ¨ZlN )) under the natural surjective outer homo-

morphism Πtemp
X

v

� AutDv (Z̈lN ), and

EN := su-gpN (Im(Πtemp
Y )) · µN (L̈lN |Z̈lN

) ⊂ AutF
v
(L̈lN |Z̈lN

).

Put also

EΠ
N := EN ×Im(Πtemp

Y ) Π
temp
Y ,

where the homomorphism Πtemp
Y � Im(Πtemp

Y ) is well-defined up to Πtemp
X -conjugate.

Then the natural inclusions µN (L̈lN |Z̈lN
) ↪→ EN and Im(Πtemp

Y ) ↪→ EN induce an

isomorphism of topological groups

EΠ
N
∼→ Πtemp

Y [µN ].

Let (K×v )
1/N ⊂ O×((L̈lN |Z̈lN

)birat) denote the subgroup of elements whose N -

th power is in the image of the natural inclusion K×v ↪→ O×((L̈lN |Z̈lN
)birat), and we

put (O×Kv
)1/N := (K×v )

1/N ∩ O×(L̈lN |Z̈lN
). Then the set of elements of O×(L̈lN |Z̈lN

)

which normalise the subgroup EN ⊂ AutF
v
(L̈lN |Z̈lN

) is equal to the set of elements on

which Πtemp
Y acts by multiplication by an element of µN (L̈lN |Z̈lN

), and it is equal to

(O×Kv
)1/N . Hence, we have a natural outer action of (O×Kv

)1/N/µN (L̈lN |Z̈lN
)
∼→ O×Kv

on

EN , and it extends to an outer action of (K×v )
1/N/µN (L̈lN |Z̈lN

)
∼→ K×v on EN ([EtTh,

Lemma 5.8]). On the other hand, by composing the natural outer homomorphism

Πtemp
X

v

� AutDv (Z̈lN ) with su-gpN , we obtain a natural outer action lZ ∼→ Πtemp
X /Πtemp

Y →

Out(EN ). Let DF := 〈Im(K×v ), lZ〉 ⊂ Out(EΠ
N ) denote the subgroup generated by these

outer actions of K×v and lZ.
We also note that st-gpN : H(L̈lN |Z̈lN

)→ AutF
v
(L̈lN |Z̈lN

) factors through EN , and

let st-ΠN : Πtemp

Ÿ
→ EΠ

N denote the homomorphism induced by by taking (−)×Im(Πtemp
Y )
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Πtemp
Y to the homomorphism H(L̈lN |Z̈lN

) → EN . Let sΘF denote the µN (L̈lN |Z̈lN
) -

conjugacy classes of the subgroup given by the image of the homomorphism st-ΠN .

Then the triple

M(F
v
) := (EΠ

N ,DF , sΘF )

reconstructs a (mod N) mono-theta environment (We omitted the details here to verify

that this is indeed a “category-theoretic” reconstruction algorithms. In fact, in inter-

universal Teichmüller theory, for holomorphic Frobenioid theoretic objects, we can use

“copies” of the model object (category), instead of categories which are equivalent to

the model object (category), and we can avoid “category-theoretic reconstruction algo-

rithms” See also [IUTchI, Remark 3.2.1 (ii)]). Hence, we obtain:

Theorem 8.14. ([EtTh, Theorem 5.10], [IUTchII, Proposition 1.2 (ii)]) We

have a category-theoretic algorithm to reconstruct a (mod N) mono-theta environment

M(F
v
) from a tempered Frobenioid F

v
.

Corollary 7.22 (2) reconstructs a mono-theta environment from a topological group

(“Π 7→M”) and Theorem 8.14 reconstructs a mono-theta environment from a tempered

Frobenioid (“F 7→ M”). We relate group-theoretic constructions (étale-like objects)

and Frobenioid-theoretic constructions (Frobenius-like objects) by transforming them

into mono-theta environments (and by using Kummer theory, which is available by the

cyclotomic rigidity of mono-theta environment), in inter-universal Teichmüller theory,

especially, in the construction of Hodge-Arakelov-theoretic evaluation maps:

†Πv 7−→ †M 7−→†F
v
.

See Section 11.2.

§ 9. Preliminaries on the NF Counterpart of Theta Evaluation.

§ 9.1. Pseudo-Monoids of κ-Coric Functions.

Definition 9.1. ([IUTchI, §0])

1. A topological space P with a continuous map P×P ⊃ S → P is called a topological

pseudo-monoid if there exists a topological abelian group M (we write its group

operation multiplicatively) and an embedding ι : P ↪→M of topological spaces such

that S = {(a, b) ∈ P × P | ι(a) · ι(b) ∈ ι(P ) ⊂ M} and the restriction of the group

operation M ×M →M to S gives us the given map S → P .

2. If M is equipped with the discrete topology, we call P simply a pseudo-monoid.
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3. A pseudo-monoid is called divisible if there exist M and ι as above such that, for

any n ≥ 1 and a ∈ M , there exists b ∈ M with bn = a, and if, for any n ≥ 1 and

a ∈M , a ∈ ι(P ) if and only if an ∈ ι(P ).

4. A pseudo-monoid is called cyclotomic if there exist M and ι as above such that,

the subgroup µM ⊂ M of torsion elements of M is isomorphic to Q/Z, and if

µM ⊂ ι(P ), µM · ι(P ) ⊂ ι(P ) hold.

5. For a cyclotomic pseudo-monoid P , put µẐ(P ) := Hom(Q/Z, P ) and call it the

cyclotome of a cycltomic pseudo-monoid P .

Definition 9.2. ([IUTchI, Remark 3.1.7]) Let Fmod be a number field, and

CFmod
= (EFmod

\ {O})//{±1} a semi-elliptic orbicurve (cf. Section 3.1) over Fmod

which is an Fmod-core (Here, the model EFmod
over Fmod is not unique in general). Let

L be Fmod or (Fmod)v for some place v of Fmod, and put CL := CFmod
×Fmod

L and let

|CL| denote the coarse scheme of the algebraic stack CL (which is isomorphic to the

affine line over L), and |CL| the canonical smooth compactification of |CL|. Let LC

denote the function field of CL and take an algebraic closure LC of LC . Let L be the

algebraic closure of L in LC . We put

L• :=

Fmod if L = Fmod or L = (Fmod)v for v : non-Archimedean,

(Fmod)v if L = (Fmod)v for v : Archimedean,

and

UL :=

L
×

if L = Fmod,

O×
L

if L = (Fmod)v.

1. A closed point of the proper smooth curve determined by some finite subextension

of LC ⊂ LC is called a critical point if it maps to a closed point of |CL| which
arises from one of the 2-torsion points of EFmod

.

2. A critical point is called a strictly critical point if it does not map to the closed

point of |CL| which arises from the unique cusp of CL.

3. A rational function f ∈ LC on LC is called κ-coric (κ stands for “Kummer”), if

the following conditions hold:

(a) If f 6∈ L, then f has precisely one pole (of any order) and at least two distinct

zeroes over L.

(b) The divisor (f)0 of zeroes and the divisor (f)∞ of poles are defined over a

finite extension of L• and avoid the critical points.

(c) The values of f at any strictly critical point of |CL| are roots of unity.
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4. A rational function f ∈ LC is called ∞κ-coric, if there is a positive integer n ≥ 1

such that fn is κ-coric.

5. A rational function f ∈ LC is called ∞κ×-coric, if there is an element c ∈ UL such

that c · f is ∞κ-coric.

Remark 9.2.1.

1. A rational function f ∈ LC is κ-coric if and only if f is ∞κ-coric

2. An ∞κ×-coric function f ∈ LC is ∞κ-coric if and only if the value at some strictly

critical point of the proper smooth curve determined by some finite subextension

of LC ⊂ LC containing f is a root of unity.

3. The set of κ-coric functions (⊂ LC) forms a pseudo-monoid. The set of ∞κ-coric

functions (⊂ LC) and the set of ∞κ×-coric functions (⊂ LC) form divisible cyclo-

tomic pseudo-monoids.

§ 9.2. Cyclotomic Rigidity via κ-Coric Functions.

Let F be a number field, l ≥ 5 a prime number, XF = EF \ {O} a once-punctured

elliptic curve, and Fmod(⊂ F ) the field of moduli of XF . Put CF := XF //{±1}, and
K := F (EF [l]). Let CK be a smooth log-orbicurve of type (1, l-tors)± (See Defini-

tion 7.10) with K-core given by CK := CF ×F K. Note that CF admits a unique (up to

unique isomorphism) model CFmod
over Fmod, by the definition of Fmod andK-coricity of

CK . Note that CK determines an orbicurve XK of type (1, l-tors) (See Definition 7.10).

Let †D} be a category, which is equivalent to D} := B(CK)0. We have an isomor-

phism †Π} := π1(
†D}) ∼= ΠCK

(See Definition 6.1 (4) for π1((−)0)), well-defined up to

inner automorphism.

Lemma 9.3. ([IUTchI, Remark 3.1.2] (i)) From †D}, we can group-theoretically

reconstruct a profinite group †Π}±(⊂ †Π}) corresponding to ΠXK
.

Proof. First, we can group-theoretically reconstruct an isomorph †∆} of ∆CK

from †Π}, by Proposition 2.2 (1). Next, we can group-theoretically reconstruct an

isomorph †∆}± of ∆XK
from †∆} as the unique torsion-free subgroup of †∆} of index 2.

Thirdly, we can group-theoretically reconstruct the decomposition subgroups of the non-

zero cusps in †∆}± by Remark 2.9.2 (Here, non-zero cusps can be group-theoretically

grasped as the cusps whose inertia subgroups are contained in †∆}±). Finally, we

can group-theoretically reconstruct an isomorph †Π}± of ΠXK
as the subgroup of †Π}

generated by any of these decomposition groups and †∆}±.
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Definition 9.4. ([IUTchI, Remark 3.1.2] (ii)) From †Π}(= π1(
†D})), instead

of reconstructing an isomorph of the function field of CK directly from †Π} by Theo-

rem 3.17, we apply Theorem 3.17 to †Π}± via Lemma 9.3 to reconstruct an isomorph

of the function field of XK with †Π}/†Π}±-action. We call this procedure the Θ-

approach. We also write µΘ
Ẑ
(†Π}) to be the cyclotome defined in Definition 3.13

which we think of as being applied via Θ-approach.

Later, we may also use Θ-approach not only to ΠCK
, but also ΠCv

, ΠX
v
, and ΠX−→v

(See Section 10.1 for these objects). We will always apply Theorem 3.17 to these objects

via Θ-approach (As for ΠX
v
(resp. ΠX−→v

), see also Lemma 7.12 (resp. Lemma 7.25)).

Remark 9.4.1. ([IUTchI, Remark 3.1.2] (iii)) The extension

1→ ∆Θ → ∆Θ
X → ∆ell

X → 1

in Section 7.1 gives us an extension class in

H2(∆ell
X ,∆Θ) ∼= H2(∆ell

X , Ẑ)⊗∆Θ
∼= Hom(µẐ(ΠX),∆Θ),

which determines an tautological isomorphism

µẐ(ΠX)
∼→ ∆Θ.

This also gives us

(Cyc.Rig.Ori. &Theta) µẐ(ΠX)
∼→ l∆Θ.

As already seen in Section 7, the cyclotome l∆Θ plays a central role in the theory of the

étale theta function. In inter-universal Teichmüller theory, we need to use the above

tautological isormophism in the construction of Hodge-Arakelov-theoretic evaluation

map (See Section 11).

By applying Theorem 3.17 to †Π}(= π1(
†D})), via the Θ-approach (Definition 9.4),

we can group-theoretically reconstruct an isomorph

M~
(†D})

of the field F with †Π}-action. We also put M~(†D}) := M~
(†D})×, which is an

isomorph of F
×
. We can also group-theoretically reconstruct a profinite group †Π~(⊃

†Π}) corresponding to ΠCFmod
, by a similar way (“Loc”) as in (Step 2) of the proof of

Theorem 3.7 (We considered “Π’s over G’s” in (Step 2) of the proof of Theorem 3.7;

however, in this case, we consider “Π’s without surjections to G’s”). Hence, we obtain

a morphism
†D} → †D~ := B(†Π~)0,
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which corresponding to CK → CFmod
. Then the action of †Π} on M~

(†Π}) naturally
extends to an action of †Π~. In a similar way, by using Theorem 3.17 (especially Belyi

cuspidalisations), we can group-theoretically reconstruct from †Π} an isomorph

(†Π~)rat (� †Π~)

of the absolute Galois group of the function field of CFmod
in a functorial manner. By

using elliptic cuspidalisations as well, we can also group-theoretically reconstruct from
†Π} isomorphs

M~
κ (
†D}), M~

∞κ(
†D}), M~

∞κ×(
†D})

of the pseudo-monoids of κ-, ∞κ-, and ∞κ×- coric rational functions associated with

CFmod
with natural (†Π~)rat-actions (Note that we can group-theoretically reconstruct

evaluations at strictly critical points).

Example 9.5. (Global non-Realified Frobenioid, [IUTchI, Example 5.1 (i), (iii)])

By using the field structure on M~
(†D}), we can group-theoretically reconstruct the

set

V(†D})

of valuations on M~
(†D}) with †Π~-action, which corresponds to V(F ). Note also that

the set
†Vmod := V(†D})/†Π~, (resp. V(†D}) := V(†D})/†Π} )

of †Π~-orbits (resp. †Π}-orbits) of V(†D}) reconstructs Vmod (resp. V(K)), and that

we have a natural bijection

Prime(†F~
mod)

∼→ †Vmod

(See Definition 8.13 for Prime(−)). Thus, we can also reconstruct the monoid

Φ~(†D~)(−)

on †D~, which associates to A ∈ Ob(†D~) the monoid Φ~(†D~)(A) of stack-theoretic
arithmetic divisors on M~

(†D})A (⊂ M~
(†D})) (i.e., we are considering the coverings

over the stack-theoretic quotient (SpecOK)//Gal(K/Fmod)(∼= SpecOFmod
)) with the

natural homomorphism M~
(†D})A → Φ~(†D~)(A)gp of monoids. Then these data

(†D~,Φ~(†D~),M~
(†D})(−) → Φ~(†D~)(−)gp) determine a model Frobenioid

F~(†D})

whose base category is †D~. We call this a global non-realified Frobenioid.

Let †F~ be a pre-Frobenioid, which is isomorphic to F~(†D}). Suppose that we

are given a morphism †D} → Base(†F~) which is abstractly equivalent (See Section 0.2)
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to the natural morphism †D} → †D~. We identify Base(†F~) with †D~ (Note that this

identification is uniquely determined by the Fmod-coricity of CFmod
and Theorem 3.17).

Let
†F} := †F~|†D} (→ †F~)

denote the restriction of †F~ to †D} via the natural †D} → †D~. We also call this a

global non-realified Frobenioid. Let also

†F~
mod := †F~|terminal object in †D~ (⊂ †F~)

denote the restriction of †F~ to the full subcategory consisting of the terminal ob-

ject in †D~ (which corresponds to CFmod
). We also call this a global non-realified

Frobenioid. Note that the base category of †Fmod has only one object and only one

morphism. We can regard †F~
mod as the Frobenioid of (stack-theoretic) arithmetic line

bundles over (SpecOK)//Gal(K/Fmod) (∼= SpecFmod). In inter-universal Teichmüller

theory, we use the global non-realified Frobenioid for converting �-line bundles into

�-line bundles and vice versa (See Section 9.3 and Corollary 13.13).

Definition 9.6. (∞κ-Coric and ∞κ×-Coric Structures, and Cyclotomic Rigidity

via Q>0 ∩ Ẑ× = {1})

1. (Global case, [IUTchI, Example 5.1 (ii), (iv), (v)]) We consider O×(OA) (which

is isomorphic to the multiplicative group of non-zero elements of a finite Galois

extension of Fmod), varying Galois objects A ∈ Ob(†D~) (Here OA is a trivial line

bundle on A. See Definition 8.4 (1)). Then we obtain a pair

†Π~ y †Õ~×

well-defined up to inner automorphisms of the pair arising from conjugation by †Π~.
For each p ∈ Prime(Φ†F~(OA)), where Φ†F~ denotes the divisor monoid of †F~,
we obtain a submonoid

†O�
p ⊂ †O×(Obirat

A ),

by taking the inverse image of p∪{0} ⊂ Φ†F~(OA) via the natural homomorphism

O×(Obirat
A )→ Φ†F~(OA)gp (i.e., the submonoid of integral elements of O×(Obirat

A )

with respect to p). Note that the natural action of Aut†F~(OA) on O×(Obirat
A )

permutes the O�
p ’s. For each p0 ∈ Prime(Φ†F~(OA0)), where A0 ∈ Ob(†D~) is the

terminal object, we obtain a closed subgroup

†Πp0 ⊂ †Π~

(well-defined up to conjugation) by varying Galois objects A ∈ Ob(†D~), and by

considering the elements of Aut†F~(OA) which fix the submonoid †O�
p for system
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of p’s lying over p0 (i.e., a decomposition group for some v ∈ V(Fmod)). Note that

p0 is non-Archimedean if and only if the p-cohomological dimension of †Πp0 is equal

to 2+ 1 = 3 for inifinitely many prime numbers p (Here, 2 comes from the absolute

Galois group of a local field, and 1 comes from “∆-portion (or geometric portion)” of
†Π~). By taking the completion of †O�

p with respect to the corresponding valuation,

varying Galois objects A ∈ Ob(†D~), and considering a system of p’s lying over p0,

we also obtain a pair
†Πp0 y †Õ�

p̂0

of a toplogical group acting on an ind-topological monoid, which is well-defined up

to the inner automorphisms of the pair arising from conjugation by †Πp0 (since †Πp0

is commensurably terminal in †Π~ (Proposition 2.7)).

Let

(†Π~)rat y †M~

denote the above pair (†Π~)rat y †Õ~×. Suppose that we are given isomorphs

(†Π~)rat y †M~
∞κ, (†Π~)rat y †M~

∞κ×

(Note that these are Frobenius-like object) of

(†Π~)rat y M~
∞κ(

†D}) (†Π~)rat y M~
∞κ×(

†D})

respectively (Note that these are étale-like object) as cyclotomic pseudo-monoids

with a continuous action of (†Π~)rat. We call such a pair an ∞κ-coric structure,

and an ∞κ×-coric structure on †F~ respectively.

We recall that the étale-like objects M~
∞κ(

†D}), and M~
∞κ×(

†D}) are constructed

as subsets of ∞H
1((†Π~)rat, µΘ

Ẑ
(†Π})) := lim−→H⊂(†Π~)rat : open

H1(H,µΘ
Ẑ
(†Π})):

M~
∞κ(

†D}) (resp. M~
∞κ×(

†D}) ) ⊂ ∞H1((†Π~)rat, µΘ
Ẑ (
†Π})).

On the other hand, by taking Kummer classes, we also have natural injections

†M~
∞κ ⊂ ∞H1((†Π~)rat, µẐ(

†M~
∞κ)),

†M~
∞κ× ⊂ ∞H1((†Π~)rat, µẐ(

†M~
∞κ×)),

where ∞H
1((†Π~)rat,−) := lim−→H⊂(†Π~)rat : open

H1(H,−). (The injectivity follows

from the corresponding injectivity for M~
∞κ(

†D}) and M~
∞κ×(

†D}) respectively.)

Recall that the isomorphisms between two cyclotomes form a Ẑ×-torsor, and that

κ-coric functions distinguish zeroes and poles (since it has precisely one pole (of any

order) and at least two zeroes). Hence, by (Q ⊗ Ẑ ⊃)Q>0 ∩ Ẑ× = {1}, there exist

unique isomorphisms

(Cyc.Rig.NF1) µΘ
Ẑ (
†Π}) ∼→ µẐ(

†M~
∞κ), µΘ

Ẑ (
†Π}) ∼→ µẐ(

†M~
∞κ×)
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characterised as the ones which induce Kummer isomorphisms

†M~
∞κ

Kum
∼−→ M~

∞κ(
†D}), †M~

∞κ×

Kum
∼−→ M~

∞κ×(
†D})

respectively. In a similar manner, for the isomorph †Π} y †M~ of †Π} y Õ~×,
there exists a unique isomorphism

(Cyc.Rig.NF2) µΘ
Ẑ (
†Π}) ∼→ µẐ(

†M~)

characterised as the one which induces a Kummer isomorphism

†M~
Kum
∼−→ M~(†D})

between the direct limits of cohomology modules described in (Step 4) of Theo-

rem 3.17, in a fashion which is compatible with the integral submonoids “O�
p ”. We

call the isomorphism (Cyc.Rig.NF2) the cyclotmoic rigidity via Q>0 ∩ Ẑ× =

{1} (See [IUTchI, Example 5.1 (v)]). By the above discussions, it follows that †F~

always admits an ∞κ-coric and an ∞κ×-coric structures, which are unique up to

uniquely determined isomorphisms of pseudo-monoids with continuous actions of

(†Π~)rat respectively. Thus, we regard †F~ as being equipped with these uniquely

determined ∞κ-coric and ∞κ×-coric structures without notice. We also put

M~
mod(

†D}) := (M~(†D}))(
†Π~)rat , †M~

mod := (†M~)(
†Π~)rat ,

M~
κ (
†D}) := (M~

∞κ(
†D}))(

†Π~)rat , †M~
κ := (†M~

∞κ)
(†Π~)rat ,

where (−)(†Π~)rat denotes the (†Π~)rat-invariant part.

2. (Local non-Archimedean case, [IUTchI, Definition 5.2 (v), (vi)]) For v ∈ Vnon, let
†Dv be a category equivalent to Btemp(X

v
)0 (resp. B(X−→v

)0) over a finite extension

Kv of Qpv , where Xv
(resp. X−→v

) is a hyperbolic orbicurve of type (1, (Z/lZ)Θ)
(Definition 7.13) (resp. of type (1, l-tors−−→) (Definition 7.24)) such that the field of

moduli of the hyperbolic curve “X” of type (1, 1) in the start of the definition of

hyperbolic orbicurve of type (1, (Z/lZ)Θ) (resp. of type (1, l-tors−−→)) is a number field

Fmod. By Corollary 3.19, we can group-theoretically reconstruct an isomorph

†Πv y Mv(
†Dv)

of Πtemp
X

v

y O�

Kv
(resp. ΠX−→v

y O�

Kv
) from †Πv := π1(

†Dv).
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Let v ∈ Vmod = V(Fmod) be the valuation lying under v. From †Πv, we can

group-theoretically reconstruct a profinite group †Πv corresponding to C(Fmod)v by

a similar way (“Loc”) as in (Step 2) of the proof of Theorem 3.7. Let

†Dv

denote B(†Πv)0. We have a natural morphism †Dv → †Dv (This corresponds to

X
v
→ C(Fmod)v (resp. X−→v

→ C(Fmod)v )). In a similar way, by using Theorem 3.17

(especially Belyi cuspidalisations), we can group-theoretically reconstruct from †Πv

an isomorph

(†Πv)
rat (� †Πv)

of the absolute Galois group of the function field of C(Fmod)v in a functorial manner.

By using elliptic cuspidalisations as well, we can also group-theoretically recon-

struct, from †Πv, isomorphs

Mκv(
†Dv), M∞κv(

†Dv), M∞κ×v(
†Dv)

of the pseudo-monoids of κ-, ∞κ-, and ∞κ×- coric rational functions associated

with C(Fmod)v with natural (†Πv)
rat-actions (Note that we can group-theoretically

reconstruct evaluations at strictly critical points).

Let †Fv be a pre-Frobenioid isomorphic to the pv-adic Frobenioid Cv = (F
v
)base-field

in Example 8.8 (resp. to the pv-adic Frobenioid Cv in Example 8.7) whose base

category is equal to †Dv. Let

(†Πv)
rat y †Mv

denote an isomorph of (†Πv)
rat y Mv(

†Dv) determined by †Fv. Suppose that we

are given isomorphs

(†Πv)
rat y †M∞κv, (†Πv)

rat y †M∞κ×v

(Note that these are Frobenius-like object) of

(†Πv)
rat y M∞κv(

†Dv), (†Πv)
rat y M∞κ×v(

†Dv)

(Note that these are étale-like objects) as cyclotomic pseudo-monoids with a con-

tinuous action of (†Πv)
rat. We call such pairs an ∞κ-coric structure, and an

∞κ×-coric structure on †Fv respectively.

We recall that the étale-like objects M∞κv(
†Dv), M∞κ×v(

†Dv) is constructed as

subsets of ∞H
1((†Πv)

rat, µΘ
Ẑ
(†Πv)) := lim−→H⊂(†Πv)rat : open

H1(H,µΘ
Ẑ
(†Πv)):

M∞κv(
†Dv) (resp. M∞κ×v(

†Dv) ) ⊂ ∞H1((†Πv)
rat, µΘ

Ẑ (
†Πv)).
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On the other hand, by taking Kummer classes, we also have natural injections

†M∞κv ⊂ ∞H1((†Πv)
rat, µẐ(

†M∞κv)),
†M~

∞κ× ⊂ ∞H1((†Πv)
rat, µẐ(

†M∞κ×v)).

(The injectivity follows from the corresponding injectivity forM∞κv(
†Dv) andM∞κ×v(

†Dv)
respectively.) Recall that the isomorphisms between two cyclotomes form a Ẑ×-
torsor, and that κ-coric functions distinguish zeroes and poles (since it has precisely

one pole (of any order) and at least two zeroes). Hence, by (Q⊗Ẑ ⊃)Q>0∩Ẑ× = {1},
there exist unique isomorphisms

(Cyc.Rig.NF3) µΘ
Ẑ (
†Πv)

∼→ µẐ(
†M∞κv), µΘ

Ẑ (
†Πv)

∼→ µẐ(
†M∞κ×v)

characterised as the ones which induce Kummer isomorphisms

†M∞κv

Kum
∼−→ M∞κv(

†Dv), †M∞κ×v

Kum
∼−→ M∞κ×v(

†Dv)

respectively. In a similar manner, for the isomorph †Πv y †Mv of †Πv y Mv(
†Dv),

there exists a unique isomorphism

(Cyc.Rig.NF4) µΘ
Ẑ (
†Πv)

∼→ µẐ(
†Mv)

characterised as the one which induces a Kummer isomorphism

†Mv

Kum
∼−→ Mv(

†Dv)

between the direct limits of cohomology modules described in (Step 4) of Theo-

rem 3.17. We also call the isomorphism (Cyc.Rig.NF4) the cyclotmoic rigidity

via Q>0∩ Ẑ× = {1} (See [IUTchI, Definition 5.2 (vi)]). By the above discussions,

it follows that †Fv always admits an ∞κ-coric and ∞κ×-coric structures, which are

unique up to uniquely determined isomorphisms of pseudo-monoids with continuous

actions of (†Πv)
rat respectively. Thus, we regard †Fv as being equipped with these

uniquely determined ∞κ-coric and ∞κ×-coric structures without notice. We also

put

Mκv(
†Dv) := (M∞κv(

†Dv))(
†Πv)

rat

, †Mκv := (†M∞κv)
(†Πv)

rat

,

where (−)(†Πv)
rat

denotes the (†Πv)
rat-invariant part.

3. (Local Archimedean case, [IUTchI, Definition 5.2 (vii), (viii)]) For v ∈ Varc, let †Dv
be an Aut-holomorphic orbispace isomorphic to the Aut-holomorphic orbispace X−→v

associated to X−→v
, where X−→v

is a hyperbolic orbicurve of type (1, l-tors−−→) (Defini-

tion 7.24) such that the field of moduli of the hyperbolic curve “X” of type (1, 1)

in the start of the definition of hyperbolic orbicurve of type (1, l-tors−−→) is a number

field Fmod.
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Let v ∈ Vmod = V(Fmod) be the valuation lying under v. By Proposition 4.5, we

can algorithmically reconstruct an isomorph

†Dv

of the Aut-holomorphic orbispace Cv associated with C(Fmod)v from †Dv. We have

a natural morphism †Dv → †Dv (This corresponds to X−→v
→ C(Fmod)v . Note that

we have a natural isomorphism Aut(†Dv)
∼→ Gal(Kv/(Fmod)v) (⊂ Z/2Z), since CK

is a K-core. Put
†Drat

v := lim←−(
†Dv \ Σ) (→ †Dv),

where we choose a projective system of (†Dv \Σ)’s which arise as universal covering

spaces of †Dv with Σ ⊃ {strictly critical points}, #Σ < ∞ (See Definition 9.2 for

strictly critical points). Note that †Drat
v is well-defined up to deck transformations

over †Dv. Let
Mv(

†Dv) ⊂ A†Dv

denote the topological submonoid of non-zero elements with norm ≤ 1 (which is an

isomorph of O�
C ) in the topological field A†Dv (See Proposition 4.5 for A†Dv ). By

using elliptic cuspidalisations, we can also algorithmically reconstruct, from †Dv,
isomorphs

Mκv(
†Dv), M∞κv(

†Dv), M∞κ×v(
†Dv) (⊂ Homco-hol(

†Drat
v ,Mv(

†Dv)gp) )

of the pseudo-monoids of κ-, ∞κ-, and ∞κ×- coric rational functions associated

with C(Fmod)v as sets of morphisms of Aut-holomorphic orbispaces from †Drat
v to

Mv(
†Dv)gp(= A

†Dv ) which are compatible with the tautological co-holomorphicisation

(Recall that A†Dv has a natural Aut-holomorphic structure and a tautological co-

holomorphicisation (See Definition 4.1 (5) for co-holomorphicisation)).

Let †Fv = (†Cv, †Dv, †κv : O�(†Cv) ↪→ A
†Dv ) be a triple isomorphic to the triple

(Cv,Dv, κv) in Example 8.11, where the second data is equal to the above †Dv. Put

†Mv := O�(†Cv).

Then the Kummer structure †κv gives us an isomorphism

†κv :
†Mv

Kum
∼→ Mv(

†Dv)

of topological monoids, which we call a Kummer isomorphism. We can algorith-

mically reconstruct the pseudo-monoids

†M∞κv,
†M∞κ×v
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of ∞κ-coric and ∞κ×-coric rational functions associated to C(Fmod)v as the sets of

maps
†Drat

v −→Mv(
†Dv)gp

∐
†Mgp

v (disjoint union)

which send strictly critical points to †Mgp
v , otherwise to Mv(

†Dv)gp, such that the

composite †Drat
v →Mv(

†Dv)gp
∐ †Mgp

v

id
∐

((†κv)
gp)−1

−−−−−−−−−−−→Mv(
†Dv)gp is an element of

M∞κv(
†Dv), M∞κ×v(

†Dv) respectively. We call them an ∞κ-coric structure, and

an ∞κ×-coric structure on †Fv respectively. Note also that †Mκv(⊂ †M∞κv)

can be reconstructed as the subset of the maps which descend to some †Dv \ Σ
in the projective limit of †Drat

v , and are equivariant with the unique embedding

Aut(†Dv) ↪→ Aut(A†Dv ). Hence, the Kummer structure †κv in †Fv determines

tautologically isomorphisms

†Mκv

Kum
∼−→ Mκv(

†Dv), †M∞κv

Kum
∼−→ M∞κv(

†Dv), †M∞κ×v

Kum
∼−→ M∞κ×v(

†Dv)

of pseudo-monoids, which we also call Kummer isomorphisms.

Remark 9.6.1. (Mono-anabelian Transport) The technique of mono-anabelian

transport is one of the main tools of reconstructing an alien ring structure in a scheme

theory from another (after admitting mild indeterminacies). In this occasion, we explain

it.

Let †Π, ‡Π be profinite groups isomorphic to ΠX , where X is a hyperbolic orbicurve

of strictly Belyi type over non-Archimedean local field k (resp. isomorphic to ΠCK
as

in this section). Then by Corollary 3.19 (resp. by Theorem 3.17 as mentioned in this

subsection), we can group-theoretically construct isomorphs O�(†Π), O�(‡Π) (resp.

M~(†Π), M~(‡Π)) of O�

k
(resp. F ) with †Π-, ‡Π-action from the abstract topological

groups †Π, ‡Π respectively (These are étale-like objects). Suppose that we are given

isomorphs †O�, ‡O� (resp. †M~, ‡M~) of O�(†Π), O�(‡Π) (resp. M~(†Π), M~(‡Π))

respectively (This is a Frobenius-like object), and that an isomorphism †Π ∼= ‡Π of topo-

logical groups. The topological monoids †O� and ‡O� (resp. the multiplicative groups
†M~ and ‡M~ of fields) are a priori have no relation to each other, since an “isomorph”

only means an isomorphic object, and an isomorphism is not specified. However, we can

canonically relate them, by using the Kummer theory (cf. the Kummer isomorphism in

Remark 3.19.2), which is available by relating two kinds of cyclotomes (i.e., cyclotomes

arisen from Frobenius-like object and étale-like object) via the cyclotomic rigidity via

LCFT (resp. via Q>0 ∩ Ẑ× = {1}):

(†Π y †O�)
Kummer
∼−→ (†Π y O�(†Π))

induced by∼=
†Π∼=‡Π

(‡Π y O�(‡Π))
Kummer
∼←− (‡Π y †O�)

Frobenius-like étale-like étale-like Frobenius-like
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(resp.

(†Π y †M~)
Kummer
∼−→ (†Π y M~(†Π))

induced by∼=
†Π∼=‡Π

(‡Π y M~(‡Π))
Kummer
∼←− (‡Π y †M~)

Frobenius-like étale-like étale-like Frobenius-like).

In short,

†Π ∼= ‡Π, (†Π y †M~) no relation←→
a priori

(‡Π y ‡M~)

mono-anabelian⇒
transport

(†Π y †M~)
canonically∼= (‡Π y ‡M~),

cyclotomic rigidity
makes available⇒ Kummer theory

applied⇒ mono-anabelian transport.

This technique is called the mono-anabelian transport.

Remark 9.6.2. (differences between three cyclotomic rigidities) We already met

three kinds of cyclotomic rigidities: the cyclotomic rigidity via LCFT (Cyc.Rig. LCFT2)

in Remark 3.19.2, of mono-theta environment (Cyc.Rig.Mono-th.) in Theorem 7.23 (1),

and via Q>0 ∩ Ẑ× = {1} (Cyc.Rig.NF2) in Definition 9.6:

µẐ(Gk)
∼→ µẐ(M), †(l∆Θ)⊗ Z/NZ ∼→ µN (†(l∆Θ[µN ])), µΘ

Ẑ (
†Π}) ∼→ µẐ(

†M~).

In inter-universal Teichmüller theory, we use these three kinds of cyclotomic rigidities

to three kinds of Kummer theory respectively, and they correspond to three portions of

Θ-links, i.e.,

1. we use the cyclotomic rigidity via LCFT (Cyc.Rig. LCFT2) for the constant monoids

at local places in Vgood ∩Vnon, which is related with the unit (modulo torsion) por-

tion of the Θ-links,

2. we use the cyclotomic rigidity of mono-theta environment (Cyc.Rig.Mono-th.) for

the theta functions and their evaluations at local places in Vbad, which is related

with the value group portion of the Θ-links, and

3. we use the cyclotomic rigidity of via Q>0 ∩ Ẑ× = {1} (Cyc.Rig.NF2) for the non-

realified global Frobenioids, which is related with the global realified portion of the

Θ-links.

We explain more.
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1. In Remark 9.6.1, we used †O�(∼= O�

k
) and as examples to explain the technique

of mono-anabelian transport. However, in inter-universal Teichmüller theory, the

mono-anabelian transport using the cyclotomic rigidity via LCFT is useless in the

important situation i.e., at local places in Vbad (However, we use it in the less

important situation i.e., at local places in Vgood ∩ Vnon), because the cyclotomic

rigidity via LCFT uses essentially the value group portion in the construction, and,

at places in Vbad in inter-universal Teichmüller theory, we deform the value group

portion in Θ-links! Since the value group portion is not shared under Θ-links, if

we use the cyclotomic rigidity via LCFT for the Kummer theory for theta func-

tions/theta values at places in Vbad in a Hodge theatre, then the algorithm is only

valid with in the same Hodge theatre, and we cannot see it from another Hodge

theatre (i.e., the algorithm is uniradial. (See Remark 11.4.1, Proposition 11.15

(2), and Remark 11.17.2 (2)). Therefore, the cyclotomic rigidity via LCFT is not

suitable at local places in Vbad, which deforms the value group portion.

2. Instead, we use the cyclotomic rigidity via LCFT at local places in Vgood ∩ Vnon.

In this case too, only the unit portion is shared in Θ-links, and the value group

portion is not shared (even though the value group portion is not deformed in

the case of Vgood ∩ Vnon), thus, we ultimately admit Ẑ×-indeterminacy to make

an algorithm multiradial (See Definition 11.1 (2), Example 11.2, and §A.4. See

also Remark 11.4.1, and Proposition 11.5). Mono-analytic containers, or local log-

volumes in algorithms have no effect by this Ẑ×-indeterminacy.

3. In Vbad, we use the cyclotomic rigidity of mono-theta environment for the Kummer

theory of theta functions (See Proposition 11.14, and Theorem 12.7). The cyclo-

tomic rigidity of mono-theta environment only uses µN -portion, and does not use

the value group portion! Hence, the Kummer theory using the cyclotomic rigid-

ity of mono-theta environment in a Hodge theatre does not harm/affect the ones in

other Hodge theatres. Therefore, these things make algorithms using the cyclotomic

rigidity of mono-theta environment multiradial (See also Remark 11.4.1).

4. In Remark 9.6.1, we used †M~(∼= F
×
) and as examples to explain the technique

of mono-anabelian transport. However, in inter-universal Teichmüller theory, we

cannot transport †M~(∼= F
×
) by the technique of the mono-anabelian transport

by the following reason (See also [IUTchII, Remark 4.7.6]): In inter-universal Te-

ichmüller theory, we consider ΠCF
as an abstract topological group. This means

that the subgroups ΠCK
, ΠXK

are only well-defined up to ΠCF -conjugacy, i.e., the

subgroups ΠCK
, ΠXK

are only well-defined up to automorphisms arising from their

normalisers in ΠCF
. Therefore, we need to consider these groups ΠCK

, ΠXK
as be-

ing subject to indeterminacies of F>
l -poly-actions (See Definition 10.16). However,
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F>
l nontrivially acts on †M~(∼= F

×
). Therefore, †M~(∼= F

×
) is inevitablyy subject

to F>
l -indeterminacies. Instead of †M~(∼= F

×
), we can transport the †Π~-invariant

part †Mmod := (†M~)
†Π~

(∼= F×mod), since F>
l trivially poly-acts on it, and there is

no F>
l -indeterminacies (See also Remark 11.22.1).

5. Another important difference is as follows: The cyclotomic rigidity via LCFT and

of mono-theta environment are compatible with the profinite topology, i.e., it is the

projective limit of the “mod N” levels. On the other hand, the cyclotomic rigidity

via Q>0 ∩ Ẑ× = {1} is not compatible with the profinite topology, i.e., it has no

such “mod N” levels. In the Kummer tower (k̂× =) lim←−(k
× ← k× ← · · · ), we

have the field structures on each finite levels k×(∪{0}); however, we have no field

structure on the limit level k̂×. On the other hand, the logarithm “
∑
n
xn

n ” needs

field structure. Hence, we need to work in “mod N” levels to construct log-links,

and the Kummer theory using the cyclotomic rigidity via Q>0 ∩ Ẑ× = {1} is not

compatible with the log-links. Therefore, we cannot transport global non-realified

Frobenioids under log-links. On the realified Frobenioids, we have the compatibility

of the log-volumes with log-links (i.e., the formulae (5.1) and (5.2) in Proposition 5.2

and Proposition 5.4 respectively). (Note that N -th power maps are not compatible

with addtions, hence, we caanot work in a single scheme theoretic basepoint over

both the domain and the codomain of Kummer N -th power map. This means that

we should work with different scheme theoretic basepoints over both the domain

and the codomain of Kummer N -th power map, hence the “isomorphism class

compatibility” i.e., the compatibility with the convention that various objects of

the tempered Frobenioids are known only up to isomorphism, is crucial here (cf.

[IUTchII, Remark 3.6.4 (i)], [IUTchIII, Remark 2.1.1 (ii)]) (This is also related to

Remark 13.13.3 (2b))).

Cyclotomic rigidity via LCFT of mono-theta env. via Q>0 ∩ Ẑ× = {1}

Related Component units value group global realified

of Θ-links modulo torsion (theta values) component

Radiality uniradial or multiradial multiradial

multiradial up to Ẑ×-indet.

Compatibility with compatible compatible incompatible

profinite top.
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§ 9.3. �-Line Bundles and �-Line Bundles.

We continue to use the notation in the previous section. Moreover, we assume that

we are given a subset V ⊂ V(K) such that the natural surjection V(K) � V(Fmod)

induces a bijection V ∼→ V(Fmod) (Note that, as we will see in the following definitions,

we are regarding V as an “analytic section” of the morphism SpecOK � SpecOFmod
).

Put Vnon := V ∩ V(K)non and Varc := V ∩ V(K)arc.

Definition 9.7. ([IUTchIII, Example 3.6]) Let F~
mod (i.e., without “†”) denote

the global non-realified Frobenioid which is constructed by the model D(CK)0 (i.e.,

without “†”).

1. (�-line bundle) A �-line bundle on (SpecOK)//Gal(K/Fmod) is a data L� =

(T, {tv}v∈V), where

(a) T is an F×mod-torsor, and

(b) tv is a trivialisation of the torsor Tv := T ⊗F×
mod

(K×v /O
×
Kv

) for each v ∈ V,
where F×mod → K×v /O

×
Kv

is the natural group homomorphism,

satisfying the condition that there is an element t ∈ T such that tv is equal to the

trivialisation determined by t for all but finitely many v ∈ V. We can define a

tensor product (L�)⊗n of a �-line bundle L� for n ∈ Z in an obvious manner.

2. (morphism of �-line bundles) Let L�
1 = (T1, {t1,v}v∈V), L�

2 = (T2, {t2,v}v∈V) be

�-line bundles. An elementary morphism L�
1 → L�

2 of �-line bundles is

an isomorphism T1
∼→ T2 of F×mod-torsors which sends the trivialisation t1,v to

an element of the O�
Kv

-orbit of t2,v (i.e., the morphism is integral at v) for each

v ∈ V. A morphism of �-line bundles from L�
1 to L�

2 is a pair of a positive

integer n ∈ Z>0 and an elementary morphism (L�
1 )
⊗n → L�

2 . We can define

a composite of morphisms in an obvious manner. Then the �-line bundles on

(SpecOK)//Gal(K/Fmod) and the morphisms between them form a category (in

fact, a Frobenioid)

F~
MOD.

We have a natural isomorphism

F~
mod

∼→ F~
MOD

of (pre-)Frobenioids, which induces the identity morphism F×mod → F×mod on Φ((−)birat).
Note that the category F~

MOD is defined by using only the multiplicative (�) struc-

ture.
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3. (�-line bundle) A �-line bundle on (SpecOK)//Gal(K/Fmod) is a data L� =

{Jv}v∈V, where Jv ⊂ Kv is a fractional ideal for each v ∈ V (i.e., a finitely generated

non-zero OKv -submodule of Kv for v ∈ Vnon, and a positive real multiple of OKv

for v ∈ Varc (See Section 0.2 for OKv )) such that Jv = OKv for finitely many v ∈ V.
We can define a tensor product (L�)⊗n of a �-line bundle L� for n ∈ Z in an

obvious manner.

4. (morphism of �-line bundles) Let L�
1 = {J1,v}v∈V, L�

2 = {J2,v}v∈V be �-line bun-

dles. An elementary morphism L�
1 → L�

2 of �-line bundles is an element

f ∈ F×mod such that f · J1,v ⊂ J2,v (i.e., f is integral at v) for each v ∈ V. A mor-

phism of �-line bundles from L�
1 to L�

2 is a pair of a positive integer n ∈ Z>0 and

an elementary morphism (L�
1 )
⊗n → L�

2 . We can define a composite of morphisms

in an obvious manner. Then the �-line bundles on (SpecOK)//Gal(K/Fmod) and

the morphisms between them form a category (in fact, a Frobenioid)

F~
mod.

We have a natural isomorphism

F~
mod

∼→ F~
mod

of (pre-)Frobenioids, which induces the identity morphism F×mod → F×mod on Φ((−)birat).
Note that the category F~

mod is defined by using both of the multiplicative (�) and

the additive (�) structures.

Hence, by combining the isomorphisms, we have a natural isomorphism

(Convert) F~
mod

∼→ F~
MOD

of (pre-)Frobenioids, which induces the identity morphism F×mod → F×mod on Φ((−)birat).

§ 10. Hodge Theatres.

In this section, we construct Hodge theatres after fixing an initial Θ-data (Sec-

tion 10.1). More precisely, we construct Θ±ellNF-Hodge theatres (In this survey, we call

them ��-Hodge theatres). We can consider Z/lZ as a finite approximation of Z for

l >> 0 (Note also that we take l >> 0 approximately of order of a value of height

function. See Section ). Then we can consider F>
l and Fo±

l as a “multiplicative finite

approximation” and an “additive finite approximation” of Z respectively. Moreover, it

is important that two operations (multiplication and addition) are separated in “these

finite approximations” (See Remark 10.29.2). Like Z/lZ is a finite approximation of Z
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(Recall that Z = Gal(Y/X)), a Hodge theatre, which consists of various data involved

by X
v
, X−→v

, CK and so on, can be seen as a finite approximation of upper half plane.

Before preceeding to the detailed constructions, we briefly explain the structure

of a Θ±ellNF-Hodge theatre (or ��-Hodge theatre). A Θ±ellNF-Hodge theatre (or a

��-Hodge theatre) will be obtained by “gluing” (Section 10.6)

• a ΘNF-Hodge theatre, which has a F>
l -symmetry, is related to a number field, of

arithmetic nature, and is used to Kummer theory for NF (In this survey, we call it

a �-Hodge theatre, Section 10.4) and

• a Θ±ell-Hodge theatre, which has a Fo±
l -symmetry, is related to an elliptic curve, of

geometric nature, and is used to Kummer theory for Θ (In this survey, we call it a

�-Hodge theatre, Section 10.5).

Separating the multiplicative (�) symmetry and the additive (�) symmetry is also

important (See [IUTchII, Remark 4.7.3, Remark 4.7.6]).

ΘNF-Hodge theatre F>
l -symmetry (�) arithmetic nature Kummer theory for NF

Θ±ell-Hodge theatre Fo±
l -symmetry (�) geometric nature Kummer theory for Θ

As for the analogy with upper half plane, the multiplicative symmetry (resp. the

additive symmetry) corresponds to supersingular points of the reduction modulo p of

modular curves (resp. the cusps of the modular curves). See the following tables

([IUTchI, Fig. 6.4]):

�-symmetry Basepoint Functions

(cf. Remark 10.29.1) (cf. Corollary 11.23)

upper half plane z 7→ z cos(t)−sin(t)
z sin(t)+cos(t) , z 7→

z cos(t)+sin(t)
z sin(t)−cos(t) supersingular pts. rat. fct. w = z−i

z+i

Hodge theatre F>
l -symm. F>

l y VBor elements of Fmod
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�-symmetry Basepoint Functions

(cf. Remark 10.29.1) (cf. Corollary 11.21)

upper half plane z 7→ z + a, z 7→ −z + a cusp trans. fct. q = e2πi

Hodge theatre Fo±
l -symm. V± theta values {qj2

v
}1≤j≤l>

Coric symmetry (cf. Proposition 10.34 (3))

upper half plane z 7→ z,−z

Hodge theatre {±1}

These three kinds of Hodge theatres have base-Hodge theatres (like Frobenioids)

respectively, i.e., a Θ±ellNF-Hodge theatre (or a ��-Hodge theatre) has a base-Θ±ellNF-

Hodge theatre (or D-Θ±ellNF-Hodge theatre, or D-��-Hodge theatre), which is obtained

by “gluing”

• a base-ΘNF-Hodge theatre (or D-ΘNF-Hodge theatre, or D-�-Hodge theatre) and

• a base-Θ±ell-Hodge theatre (or D-Θ±ell-Hodge theatre, or D-�-Hodge theatre).

A D-ΘNF-Hodge theatre (or D-�-Hodge theatre) consists

• of three portions

– (local object) a holomorphic base-(or D-)prime-strip †D> = {†D>,v}v∈V, where
†D>,v is a category equivalent to B(X−→v

)0 for v ∈ Vgood ∩ Vnon, or a category

equivalent to Btemp(X
v
)0 for v ∈ Vbad, or an Aut-holomorphic orbispace iso-

morphic to X−→v
for v ∈ Varc (Section 10.3),

– (local object) a capsule †DJ = {†Dj}j∈J of D-prime-strips indexed by J (∼=
F>
l ) (See Section 0.2 for the term “capsule”), and

– (global object) a category †D} equivalent to B(CK)0,

• and of two base-bridges
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– a base-(or D-)Θ-bridge †φΘ>, which connects the capsule †DJ of D-prime-strips

to the D-prime-strip †D>, and

– a base-(or D-)NF-bridge †φNF
> , which connects the capsule †DJ of D-prime-

strips to the global object †D}.

Here, for a holomorphic base-(or D-)prime-strip †D = {†Dv}v∈V, we can associate its

mono-analyticisation (cf. Section 3.5) †D` = {†D`v }v∈V, which is a mono-analytic base-

(or D`-)prime-strip.

On the other hand, a D-Θ±ell-Hodge theatre (or D-�-Hodge theatre) similarly

consists

• of three portions

– (local object) a D-prime-strip †D� = {†D�,v}v∈V,

– (local object) a capsule †DT = {†Dt}t∈T of D-prime-strips indexed by T (∼=
Fl), and

– (global object) a category †D}± equivalent to B(XK)0,

• and of two base-bridges

– a base-(or D-)Θ±-bridge †φΘ±

± , which connects the capsule †DT of D-prime-

strips to the D-prime-strip †D�, and

– a base-(or D-)Θell-bridge †φΘ
ell

± , which connects the capsule †DT of D-prime-

strips to the global object †D}±.

Hence, the structure of a D-Θ±ellNF-Hodge theatre (or D-��-Hodge theatre) is as fol-

lows (For the torsor structures, Aut, and gluing see Proposition 10.20, Proposition 10.34,

Lemma 10.38, and Definition 10.39):

D-Θ±ellNF-HT

(Aut = {±1}) D-Θ±ell-HT †D�
gluing (>={0,�}) // †D> D-ΘNF-HT (Aut = {1})

�-Symm. (t ∈ T (∼= Fl)) †DT

gluing (J=(T\{0})/{±1}) //

D-Θ±-bridge †φΘ±
± ({±1}×{±1}V -torsor)

OO

D-Θell-bridge †φΘell

± (F±
l -torsor)

��

†DJ

†φΘ
> D-Θ-bridge(rigid)

OO

†φNF
> D-NF-bridge(F>

l -torsor)

��

(j ∈ J (∼= F>
l )) �-Symm.

Geometric (XK  ) †D}± †D} (  CK) Arithmetic
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We can also draw a picture as follows (cf. [IUTchI, Fig. 6.5]):

D� = /±
>={0,�}⇒ D> = />

{±1}y DT = /±−l> · · · /
±
−1/
±
0 /
±
1 · · · /

±
l>

φΘ±
±

OO

φΘell

±
��

J=(T\{0})/{±1}⇒ DJ = />1 /
> · · · />l>

φΘ
>

OO

φNF
>

��

Fo±
l y

±→±
↑ ↓
±←±

D}± = B(XK)0 F>
l y

>→>
↑ ↓
>←>

D} = B(CK)0,

where /’s express prime-strips.

These are base Hodge theatres, and the structure of the total space of Hodge

theatres is as follows: A ΘNF-Hodge theatre (or �-Hodge theatre) consists

• of five portions

– (local and global realified object) a Θ-Hodge theatre †HT Θ = ({†F
v
}v∈V, †F


mod),

which consists of

∗ (local object) a pre-Frobenioid †F
v
isomorphic to the pv-adic Frobenioid

F
v
(Example 8.7) for v ∈ Vgood ∩Vnon, or a pre-Frobenioid isomorphic to

the tempered Frobenioid F
v
for v ∈ Vbad (Example 8.8), or a triple †F

v
=

(†Cv, †Dv, †κv), isomorphic to the triple F
v
= (Cv,Dv, κv) (Example 8.11)

of the Archimedean Frobenioid Cv, the Aut-holomorphic orbispace Dv =

X−→v
and its Kummer structure κv : O

�(Cv) ↪→ ADv for v ∈ Varc, and

∗ (global realified object with localisations) a quadruple
†F


mod = (†C
mod, Prime(†C
mod)
∼→ V, {†F`v }v∈V, {†ρ`v}v∈V) of a pre-Frobenioid

isomorphic to the global realified Frobenioid C
mod (Example 8.12), a bijec-

tion Prime(†C
mod)
∼→ V, a mono-analytic Frobenioid-(or F`-)prime-strip

{†F`v }v∈V (See below), and global-to-local homomorphisms {†ρ`v}v∈V.

– (local object) a holomorphic Frobenioid-(or F-)prime-strip †F> = {†F>,v}v∈V,
where †F>,v is equalto the †Fv’s in the above Θ-Hodge theatre †HT Θ.

– (local object) a capsule †FJ = {†Fj}j∈J of F-prime-strips indexed by J (∼= F>
l )

(See Section 0.2 for the term “capsule”),

– (global object) a pre-Frobenioid †F} isomorphic to the global non-realified

Frobenioid F}(†D}) (Example 9.5), and
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– (global object) a pre-Frobenioid †F~ isomorphic to the global non-realified

Frobenioid F~(†D}) (Example 9.5).

• and of two bridges

– a Θ-bridge †ψΘ
>, which connects the capsule †FJ of prime-strips to the prime-

strip †F>, and to the Θ-Hodge theatre †F> 99K †HT Θ, and

– an NF-bridge †ψNF
> , which connects the capsule †FJ of prime-strips to the

global objects †F} 99K †F~.

and these objects are “lying over” the corresponding base objects.

Here, for a holomorphic Frobenioid-(or F-)prime-strip †F = {†Fv}v∈V, we can

algorithmically associate its mono-analyticisation (cf. Section 3.5) †F` = {†F`v }v∈V,
which is a mono-analytic Frobenioid-(or F`-)prime-strip.

On the other hand, a Θ±ell-Hodge theatre (or �-Hodge theatre) similarly consists

• of three portions

– (local object) an F-prime-strip †F� = {†F�,v}v∈V,

– (local object) a capsule †FT = {†Ft}t∈T of F-prime-strips indexed by T (∼= Fl),
and

– (global object) the same global object †D}± as in the D-�-Hodge theatre,

• and of two bridges

– a Θ±-bridge †ψΘ±

± , which connects the capsule †FT of prime-strips to the prime-

strip †F�, and

– a Θell-bridge †ψΘell

± is equal to the D-Θell-bridge †φΘ
ell

± ,

and these objects are “lying over” the corresponding base objects.

Hence, the structure of a Θ±ellNF-Hodge theatre (or ��-Hodge theatre) is as

follows (For the torsor structures, Aut, and gluing see Lemma 10.25, Lemma 10.37,

Lemma 10.38, and Definition 10.39):
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Θ±ellNF-HT †HT Θ

(Aut = {±1}) Θ±ell-HT †F�
gluing (>={0,�}) // †F>

F-prime-strip

OO

ΘNF-HT (Aut = {1})

�-Symm. (t ∈ T (∼= Fl)) †FT
gluing (J=(T\{0})/{±1}) //

Θ±-bridge †ψΘ±
± ({±1}×{±1}V -torsor)

OO

(†φΘell

± :†DT→†D}±) Θell-bridge †ψΘell

± (F±
l -torsor)

��

†FJ

†ψΘ
> Θ-bridge(rigid)

OO

†ψNF
> NF-bridge(F>

l -torsor)

��

(j ∈ J (∼= F>
l )) �-Symm.

Geometric †D}± †F}

†D}→†D~

��

Arithmetic

Kummer for Θ †F~ Kummer for NF

§ 10.1. Initial Θ-Data.

Definition 10.1. We call a collection of data

(F/F, XF , l, CK , V, Vbad
mod, ε)

an initial Θ-data, if it satisfies the following conditions:

1. F is a number field such that
√
−1 ∈ F , and F is an algebraic closure of F . We

write GF := Gal(F/F ).

2. XF is a once-punctured elliptic curve over F , which admits stable reduction over

all v ∈ V(F )non. We write EF (⊃ XF ) for the elliptic curve over F obtaine by

the smooth compactification of XF . We also put CF := XF //{±1}, where “//”

denotes the stack-theoretic quotient, and −1 is the F -involution determined by the

multiplication by −1 on EF . Let Fmod be the field of moduli (i.e., the field generated

by the j-invariant of EF over Q). We assume that F is Galois over Fmod of degree

prime to l, and that 2 · 3-torsion points of EF are rational over F .

3. Vbad
mod ⊂ Vmod := V(Fmod) is a non-empty subset of Vnon

mod \ {v ∈ Vnon
mod | v | 2} such

thatXF has bad (multiplicative in this case by the condition above) reduction at the

places of V(F ) lying over Vbad
mod. Put V

good
mod := Vmod\Vbad

mod (Note that XF may have

bad reduction at some places V(F ) lying over Vgood
mod ), V(F )bad := Vbad

mod×Vmod
V(F ),

and V(F )good := Vgood
mod ×Vmod

V(F ). We also put ΠXF
:= π1(XF ) ⊂ ΠCF

:= π1(CF ),

and ∆XF
:= π1(XF ×F F ) ⊂ ∆CF

:= π1(CF ×F F ).
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4. l is a prime number ≥ 5 such that the image of the outer homomorphism GF →
GL2(Fl) determined by the l-torsion points of EF contains the subgroup SL2(Fl) ⊂
GL2(Fl). Put K := F (EF [l]), which corresponds to the kernel of the above homo-

morphism (Thus, since 3-torsion points of EF are rational, K is Galois over Fmod

by Lemma 1.7 (4). We also assume that l is not divisible by any place in Vbad
mod,

and that l does not divide the order (normalised as being 1 for a uniformiser) of

the q-parameters of EF at places in V(F )bad.

5. CF is a hyperbolic orbicurve of type (1, l-tors)± (See Definition 7.10) over K with

K-core given by CK := CF ×F K (Thus, CK is determined, up to K-isomorphism,

by CF by the above (4)). Let XK be a hyperbolic curve of type (1, l-tors) (See

Definition 7.10) over K determined, up to K-isomorphism, by CK . Recall that we

have uniquely determined open subgroup ∆X ⊂ ∆C corresponding to the hyperbolic

curve X
F

of type (1, l-torsΘ) (See Definition 7.11), which is a finite étale covering

of CF := CF ×F F (See the argument after Assumption (2) in Section 7.3, where

the decomposition ∆X
∼= ∆

ell

X ×∆Θ does not depend on the choice of ειX ).

6. V ⊂ V(K) is a subset such that the composite V ⊂ V(K) � Vmod is a bijection,

i.e., V is a section of the surjection V(K) � Vmod. Put Vnon := V ∩ V(K)non,

Varc := V∩V(K)arc, Vgood := V∩V(K)good, and Vbad := V∩V(K)bad. For a place

v ∈ V, put (−)v := (−)F ×F Kv or (−)v := (−)K ×K Kv for the base change of

a hyperbolic orbicurve over F and K respectively. For v ∈ Vbad, we assume that

the hyperbolic orbicurve Cv is of type (1,Z/lZ)± (See Definition 7.13) (Note that

we have “K = K̈” since 2-torsion points of EF are rational). For a place v ∈ V,
it follows that X

F
×F F v admits a natural model X

v
over Kv, which is hyperbolic

curve of type (1, (Z/lZ)Θ) (See Definition 7.13), where v is a place of F lying over

v (Roughly speaking, X
v
is defined by taking “l-root of the theta function”). For

v ∈ Vbad, we write Πv := Πtemp
X

v

.

7. ε is a non-zero cusp of the hyperbolic orbicurve CK . For v ∈ V, we write εv for the

cusp of Cv determined by ε. If v ∈ Vbad, we assume that εv is the cusp, which arises

from the canonical generator (up to sign) of Ẑ via the surjection ΠX � Ẑ determined

by the natural surjection Πtemp
X � Z (See Section 7.1 and Definition 7.13). Thus,

the data (XK := XF ×F K,CK , ε) determines a hyperbolic curve X−→K
of type

(1, l-tors−−→) (See Definition 7.24). For v ∈ Vgood, we write Πv := ΠX−→v
.

Note that CK and ε can be regarded as “a global multiplicative subspace and a

canonical generator up to {±1}”, which was one of main interests in Hodge-Arakelov

theory (See Appendix A). At first glance, they do not seem to be a global multiplicative

subspace and a canonical generator up to {±1}; however, by going outside the scheme
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theory (Recall we cannot obtain (with finitely many exceptions) a global multiplicative

subspace within a scheme theory), and using mono-anabelian reconstruction algorithms,

they behave as though they are a global multiplicative subspace and a canonical gener-

ator up to {±1}.

From now on, we take an initial Θ-data (F/F,XF , l, CK ,V,Vbad
mod, ε), and fix it until

the end of Section 13.

§ 10.2. Model Objects.

From now on, we often use the convention (cf. [IUTchI, §0]) that, for categories C,D,
we call any isomorphism class of equivalences C → D of categories an isomorphism

C → D (Note that this termniology differs from the standard terminology of category

theory).

Definition 10.2. (Local Model Objects, [IUTchI, Example 3.2, Example 3.3,

Example 3.4]) For the fixed initial Θ-data, we define model objects (i.e., without “†”)

as follows:

1. (Dv : holomorphic, base) Let Dv denote the category Btemp(X
v
)0 of connected ob-

jects of the connected temperoid Btemp(X
v
) for v ∈ Vbad, the category B(X−→v

)0 of

connected objects of the connected anabelioid B(X−→v
) for v ∈ Vgood ∩Vnon, and the

Aut-holomorphic orbispace X−→v
associated with X−→v

for v ∈ Varc (See Section 4).

2. (D`v :mono-analytic, base) Let D`v denote the category B(Kv)
0 of connected objects

of the connected anabelioid B(Kv) for v ∈ Vnon, and the split monoid (O�(C`v ), spl
`
v )

in Example 8.11. We also put Gv := π1(D`v ) for v ∈ Vnon.

3. (Cv : holomorphic, Frobenioid-theoretic) Let Cv denote the base-field-theoretic hull

(F
v
)base-field (with base category Dv) of the tempered Frobenioid F

v
in Example 8.8

for v ∈ Vbad, the pv-adic Frobenioid Cv (with base category Dv) in Example 8.7 for

v ∈ Vgood ∩ Vnon, and the Archimedean Frobenioid Cv (whose base category has

only one object SpecKv and only one morphism) in Example 8.11 for v ∈ Varc.

4. (F
v
: holomorphic, Frobenioid-theoretic) Let F

v
denote the tempered Frobenioid

F
v
(with base category Dv) in Example 8.8 for v ∈ Vbad, the pv-adic Frobenioid

Cv (with base category Dv) in Example 8.7 for v ∈ Vgood ∩ Vnon, and the triple

(Cv,Dv, κv) of the Archimedean Frobenioid, the Aut-holomorphic orbispace, and

the Kummer structure κv : O
�(Cv) ↪→ ADv in Example 8.11 for v ∈ Varc.

5. (C`v :mono-analytic, Frobenioid-theoretic) Let C`v denote the pv-adic Frobenioid C`v
(with base category D`v ) in Example 8.8 for v ∈ Vbad, the pv-adic Frobenioid C`v
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(with base category D`v ) in Example 8.7 for v ∈ Vgood∩Vnon, and the Archimedean

Frobenioid Cv (whose base category has only one object SpecKv and only one

morphism) in Example 8.11 for v ∈ Varc.

6. (F`v :mono-analytic, Frobenioid-theoretic) Let F`v denote the µ2l-split pre-Frobenioid

(C`v , spl
`
v ) (with base category D`v ) in Example 8.8 for v ∈ Vbad, the split pre-

Frobenioid (C`v , spl
`
v ) (with base category D`v ) in Example 8.7 for v ∈ Vgood ∩Vnon,

and the triple (C`v ,D`v , spl
`
v ), where (C`v , spl

`
v ) is the split Archimedean Frobe-

nioid, and D`v = (O�(C`v ), spl
`
v ) is the split monoid (as above) in Example 8.11

for v ∈ Varc.

See the following table (We use Dv’s (resp. D`v ’s, resp. F`v ’s) with v ∈ V for

D-prime-strips (resp. D`-prime-strips, F`-prime-strips) later (See Definition 10.9 (1)

(2)). However, we use Cv (not F
v
) with v ∈ Vnon and F

v
with v ∈ Varc for F-prime-

strips (See Definition 10.9 (3)), and F
v
’s with v ∈ V for Θ-Hodge theatres later (See

Definition 10.7)):

Vbad (Example 8.8) Vgood ∩ Vnon (Example 8.7) Varc (Example 8.11)

Dv Btemp(X
v
)0 (Πv) B(X−→v

)0 (Πv) X−→v

D`v B(Kv)
0 (Gv) B(Kv)

0 (Gv) (O�(C`v ), spl
`
v )

Cv (F
v
)base-field (Πv y (O�

Fv
)pf) Πv y (O�

Fv
)pf Arch. Fr’d Cv (  ang. region)

F
v

temp. Fr’d F
v
(  Θ-fct.) equal to Cv (Cv,Dv, κv)

C`v Gv y O×
Fv
· qN
v

Gv y O×
Fv
· pNv equal to Cv

F`v (C`v , spl
`
v ) (C`v , spl

`
v ) (C`v ,D`v , spl

`
v )

We continue to define model objects.

Definition 10.3. (Model Global Objects, [IUTchI, Definition 4.1 (v), Definition

6.1 (v)]) We put

D} := B(CK)0, D}± := B(XK)0.

Isomorphs of the global objects will be used in Proposition 10.19 and Proposi-

tion 10.33 to put “labels” on each local objects in a consistent manner (See also Re-
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mark 6.11.1). We will use D} for (D-)�-Hodge theatre (Section 10.4), and D}± for

(D-)�-Hodge theatre (Section 10.5).

Definition 10.4. (Model Global Realified Frobenioid with Localisations, [IUTchI,

Example 3.5]) Let C
mod be the global realified Frobenioid in Example 8.12. Note that

we have the natural bijection Prime(C
mod)
∼→ Vmod, and an element log`mod(pv) ∈ ΦC
v ,v

for each v ∈ Vmod. For v ∈ Vmod, let v ∈ V denote the corresponding element under the

bijection V ∼→ Vmod. For each v ∈ V, we also have the (pre-)Frobenioid C`v (See Defini-

tion 10.2 (5)). Let C`Rv denote the realification of C`v (Definition 8.4 (3)) for v ∈ Vnon,

and Cv itself for v ∈ Varc. Let logΦ(pv) ∈ ΦR
C`v

denote the element determined by pv,

where ΦR
C`v

denotes the divisor monoid of C`Rv . We have the natural restriction functor

C
mod → C`Rv

for each v ∈ V. This is determined, up to isomorphism, by the isomorphism

ρv : ΦC
mod,v

gl. to loc.
∼−→ ΦR

C`v
log`mod(pv) 7→

1

[Kv : (Fmod)v]
logΦ(pv)

of topological monoids (For the assignment, consider the volume interpretations of the

arithmetic divisors, i.e., logpv #(O(Fmod)v/pv) = 1
[Kv :(Fmod)v]

logpv #(OKv/pv)). Recall

also the point of view of regarding V(⊂ V(K)) as an “analytic section” of SpecOK �
SpecOFmod

(The left hand side ΦC
mod,v
is an object on (Fmod)v, and the right hand side

ΦR
C`v

is an object on Kv). Let F


mod denote the quadruple

F

mod := (C
mod, Prime(C
mod)

∼→ V, {F`v }v∈V, {ρv}v∈V)

of the global realified Frobenioid, the bijection of primes, the model objects F`v ’s in

Definition 10.2 (6), and the localisation homomorphisms. We define an isomorphism

F

mod,1

∼→ F

mod,2 of quadruples in an obvious manner.

Isomorphs of the global realified Frobenioids are used to consider log-volume func-

tions.

Definition 10.5. (Θ-version, [IUTchI, Example 3.2 (v), Example 3.3 (ii), Ex-

ample 3.4 (iii), Example 3.5 (ii)])

1. (Vbad) Take v ∈ Vbad. Let DΘ
v (⊂ Dv) denote the category whose objects are

AΘ := A× Ÿ
v
for A ∈ Ob(D`v ), where × is the product in Dv, and morphisms are

morphisms over Ÿ
v
in Dv (Note also that Ÿ

v
∈ Ob(Dv) is defined over Kv). Taking

“(−)× Ÿ
v
” induces an equivalenc D`v

∼→ DΘ
v of categories. The assignment

Ob(DΘ
v ) 3 AΘ 7→ O×(OAΘ) · (ΘN

v
|OAΘ ) ⊂ O×(Obirat

AΘ )
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determines a monoid O�
CΘv

(−) on DΘ
v (See Example 8.8 for Θ

v
∈ O×(Obirat

Ÿ
v

), and

O(−) for Definition 8.4 (1)). Under the above equivalence D`v
∼→ DΘ

v of categories,

we have natural isomorphism O�
C`v

(−) ∼→ O�
CΘv

(−). These are compatible with the

assignment

q
v
|OA 7→ Θ

v
|OAΘ

and a natural isomorphism O×(OA)
∼→ O×(OAΘ) induced by the projection AΘ =

A × Ÿ
v
→ A (See Example 8.8 for q

v
∈ O�(OX

v
)). Hence, the monoid O�

CΘv
(−)

determines a pv-adic Frobenioid

CΘv (⊂ Fbirat

v
)

whose base category is DΘ
v . Note also Θ

v
determines a µ2l(−)-orbit of splittings

splΘv of CΘv . We have a natural equivalence C`v
∼→ CΘv of categories, which sends

spl`v to splΘv , hence, we have an isomorphism

F`v (= (C`v , spl
`
v ))

∼→ FΘ
v := (CΘv , spl

Θ
v )

of µ2l-split pre-Frobenioids.

2. (Vgood ∩ Vnon) Take v ∈ Vgood ∩ Vnon. Recall that the divisor monoid of C`v is of

the form O�
C`v

(−) = O×C`v
(−)× N log(pv), where we write log(pv) for the element pv

considered additively. We put

O�
CΘv

(−) := O×CΘv
(−)× N log(pv) log(Θ),

where log(pv) log(Θ) is just a formal symbol. We have a natural isomorphism

O�
C`v

(−) ∼→ O�
CΘv

(−). Then the monoid O�
CΘv

(−) determines a pv-adic Frobenioid

CΘv

whose base category is DΘ
v := D`v . Note also that log(pv) log(Θ) determines a

splitting splΘv of CΘv . We have a natural equivalence C`v
∼→ CΘv of categories, which

sends spl`v to splΘv , hence, we have an isomorphism

F`v (= (C`v , spl
`
v ))

∼→ FΘ
v := (CΘv , spl

Θ
v )

of split pre-Frobenioids.

3. (Varc) Take v ∈ Varc. Recall that the image ΦC`v of spl`v of the split monoid

(O�
C`v
, spl`v ) is isomorphic to R≥0. We write log(pv) ∈ ΦC`v for the element pv

considered additively (See Section 0.2 for pv with Archimedean v). We put

ΦCΘv := R≥0 log(pv) log(Θ),
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where log(pv) log(Θ) is just a formal symbol. We also put O×C`v
:= (O�

C`v
)×, and

O×CΘv
:= O×C`v

. Then we obtain a split pre-Frobenioid

(CΘv , spl
Θ
v ),

such that O�(CΘv ) = O×CΘv
× ΦCΘv . We have a natural equivalence C`v

∼→ CΘv of

categories, which sends spl`v to splΘv , hence, we have an isomorphism (C`v , spl
`
v )
∼→

(CΘv , spl
Θ
v ) of split pre-Frobenioids, and an isomorphism

F`v (= (C`v ,D`v , spl
`
v ))

∼→ FΘ
v := (CΘv ,DΘ

v , spl
Θ
v )

of triples, where we put DΘ
v := D`v .

4. (Global Realified with Localisations) Let C
mod be the global realified Frobenioid

considered in Definition 10.4. For each v ∈ Vmod, let v denote the corresponding

element under the bijection V ∼→ Vmod. Put

ΦC
theta
:= ΦC
mod

· log(Θ),

where log(Θ) is just a formal symbol. This monoid ΦC
theta
determines a global

realified Frobenioid

C
theta

with a natural equivalence C
mod
∼→ C
theta of categories and a natural bijection

Prime(C
theta)
∼→ Vmod. For each v ∈ Vmod, the element log`mod(pv) ∈ ΦC
mod,v

⊂
ΦC
mod

determines an element log`mod(pv) log(Θ) ∈ ΦC
theta,v ⊂ ΦC
theta
. As in the case

where C
mod, We have the natural restriction functor

C
theta → CΘR
v

for each v ∈ V. This is determined, up to isomorphism, by the isomorphism

ρΘv : ΦC
theta,v

gl. to loc.
∼−→ ΦR

CΘv
log`mod(pv) log(Θ) 7→


1

[Kv :(Fmod)v ]
logΦ(pv) log(Θ) v ∈ Vgood,

logΦ(pv)

[Kv :(Fmod)v ]

logΦ(Θ
v
)

logΦ(q
v
) v ∈ Vbad

of topological monoids, where logΦ(pv) log(Θ) ∈ ΦR
CΘv

denotes the element deter-

mined by logΦ(pv) for v ∈ Vgood, and logΦ(Θv), logΦ(pv), and logΦ(q
v
) denote

the element determined by Θ
v
, pv, and q

v
respectively for v ∈ Vbad (Note that

logΦ(Θv) is not a formal symbol). Note that for any v ∈ V, the localisation homo-

morphisms ρv and ρΘv are compatible with the natural equivalences C
mod
∼→ C
theta,
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and C`v
∼→ CΘv :

log`mod(pv)
� “mod→theta” //

_

ρv

��

log`mod(pv) log(Θ)
_

ρΘv

��
1

[Kv:(Fmod)v]
logΦ(pv)

�
“`→Θ”

// 1
[Kv :(Fmod)v ]

logΦ(pv) log(Θ)

for v ∈ Vgood, and

log`mod(pv)
� “mod→theta” //

_

ρv

��

log`mod(pv) log(Θ)
_

ρΘv

��
1

[Kv :(Fmod)v ]
logΦ(pv)

�
“`→Θ”

// logΦ(pv)

[Kv:(Fmod)v]

logΦ(Θ
v
)

logΦ(q
v
)

for v ∈ Vbad. Let F

theta denote the quadruple

F

theta := (C
theta, Prime(C
theta)

∼→ V, {FΘ
v }v∈V, {ρΘv }v∈V)

of the global realified Frobenioid, the bijection of primes, the Θ-version of model

objects FΘ
v ’s in (1), (2), and (3), and the localisation homomorphisms.

Note that we have group-theoretic or category-theoretic reconstruction algorithms

such as reconstructing D`v from Dv. We summarise these as follows ([IUTchI, Example

3.2 (vi), Example 3.3 (iii)]):

F
v

� //
F

up to lZ-indet.
on Θ

v
for v∈Vbad

��

Cv � except
Varc

//
>

��~~
~~
~~
~~

Dv_

��

y

��

F`v
� // C`v

� // D`v

FΘ
v

� // CΘv
� // DΘ

v .

(Note also the remark given just before Theorem 8.14.)

Definition 10.6. (D-version or “log-shell version”, [IUTchI, Example 3.5 (ii),

(iii)]) Let

D

mod

denotes a copy of C
mod. Let ΦD

mod

, Prime(D

mod)

∼→ Vmod, log
D
mod(pv) ∈ ΦD


mod,v
⊂

ΦD

mod

be the corresponding objects under the tautological equivalence C
mod
∼→ D


mod.
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For each v ∈ Vmod, let v denote the corresponding element under the bijection V ∼→
Vmod.

For v ∈ Vnon, we can group-theoretically reconstruct from D`v

(R`≥0)v := Rnon(Gv) (∼= R≥0)

and Frobenius element F(Gv) ∈ (R`≥0)v by (Step 3) in Proposition 5.2 (Recall that

Gv = π1(D`v )). Put also

logDΦ (pv) := evF(Gv) ∈ (R`≥0)v,

where ev denotes the absolute ramification index of Kv.

For v ∈ Varc, we can also group-theoretically reconstruct from the split monoid

D`v = (O�
C`v
, spl`v )

(R`≥0)v := Rarc(D`v ) (∼= R≥0)

and Frobenius element F(D`v ) ∈ (R`≥0)v by (Step 4) in Proposition 5.4. Put also

logDΦ (pv) :=
F(D`v )
2π

∈ (R`≥0)v,

where 2π ∈ R× is the length of the perimeter of the unit circle (Note that (R`≥0)v has

a natural R×-module structure).

Hence, for any v ∈ V, we obtain a uniquely determined isomorphism

ρDv : ΦD

mod,v

gl. to loc.
∼−→ (R`≥0)v logDmod(pv) 7→

1

[Kv : (Fmod)v]
logDΦ (pv)

of topological monoids.

Let F

D denote the quadruple

F

D := (D


mod, Prime(D

mod)

∼→ V, {D`v }v∈V, {ρDv }v∈V)

of the global realified Frobenioid, the bijection of primes, theD`-version of model objects

D`v ’s, and the localisation homomorphisms.

§ 10.3. Θ-Hodge Theatres and Prime-strips.

Definition 10.7. (Θ-Hodge theatre, [IUTchI, Definition 3.6]) AΘ-Hodge the-

atre is a collection
†HT Θ = ({†F

v
}v∈V, †F


mod),

where
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1. (local object) †F
v
is a pre-Frobenioid (resp. a triple (†Cv, †Dv, †κv)) isomorphic to

the model F
v
(resp. isomorphic to the model triple F

v
= (Cv,Dv, κv)) in Defini-

tion 10.2 (4) for v ∈ Vnon (resp. for v ∈ Varc). We write †Dv, †D`v , †DΘ
v ,
†F`v , †FΘ

v

(resp. †D`v , †DΘ
v ,
†F`v ,†FΘ

v ) for the objects algorithmically reconstructed from †F
v

corresponding to the model objects (i.e., the objects without †).

2. (global realified object with localisations) †F

mod is a quadruple

(†C`mod, Prime(†C
mod)
∼→ V, {†F`v }v∈V, {†ρv}v∈V),

where †C`mod is a category equivalent to the model C`mod in Definition 10.4, Prime(†C
mod)
∼→

V is a bijection of sets, †F`v is the reconstructed object from the above local data

†F
v
, and †ρv : Φ†C
v ,v

gl. to loc.
∼−→ ΦR

†C`v
is an isomorphism of topological monoids (Here

†C`v is the reconstructed object from the above local data †F
v
), such that there ex-

ists an isomorphism of quadruples †F

mod

∼→ F

mod. We write †F


theta,
†F

D for the

algorithmically reconstructed object from †F

mod corresponding to the model objects

(i.e., the objects without †).

Definition 10.8. (Θ-link, [IUTchI, Corollary 3.7 (i)]) Let †HT Θ = ({†F
v
}v∈V, †F


mod),

‡HT Θ = ({‡F
v
}v∈V, ‡F


mod) be Θ-Hodge theatres (with respect to the fixed initial Θ-

data). We call the full poly-isomorphism (See Section 0.2)

†F

theta

full poly
∼−→ ‡F


mod

the Θ-link from †HT to ‡HT (Note that the full poly-isomorphism is non-empty), and

we write it as
†HT Θ Θ−→ ‡HT Θ,

and we call this diagram the Frobenius-picture of Θ-Hodge theatres ([IUTchI,

Corollary 3.8]). Note that the essential meaning of the above link is

“ ΘN
v

∼−→ qN
v
”

for v ∈ Vbad.

Remark 10.8.1. ([IUTchI, Corollary 3.7 (ii), (iii)])

1. (Preservation of D`) For each v ∈ V, we have a natural composite full poly-

isomorphism

†D`v
∼→ †DΘ

v

full poly
∼−→ ‡D`v ,
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where the first isomorphism is the natural one (Recall that it is tautological for

v ∈ Vgood, and that it is induced by (−)×Ÿ
v
for v ∈ Vbad), and the second full poly-

isomorphism is the full poly-isomorphism of the Θ-link. Hence, the mono-analytic

base “D`v ” is preserved (or “shared”) under the Θ-link (i.e., D`v is horizontally coric).

Note that the holomorphic base “Dv” is not shared under the Θ-link (i.e., Θ-link

shares the underlying mono-analytic base structures, but not the arithmetically

holomorphic base structures).

2. (Preservation of O×) For each v ∈ V, we have a natural composite full poly-

isomorphism

O×†C`v
∼→ O×†CΘv

full poly
∼−→ O×‡C`v

,

where the first isomorphism is the natural one (Recall that it is tautological for

v ∈ Vgood, and that it is induced by (−) × Ÿ
v
for v ∈ Vbad), and the second full

poly-isomorphism is induced by the full poly-isomorphism of the Θ-link. Hence,

“O×C`v
” is preserved (or “shared”) under the Θ-link (i.e., O×C`v

is horizontally coric).

Note also that the value group portion is not shared under the Θ-link.

We can visualise the “shared” and “non-shared” relation as follows:

†Dv −− >
(
†D`v y O×†C`v

)
∼=
(
‡D`v y O×‡C`v

)
>−− ‡Dv

We call this diagram the étale-picture of Θ-Hodge theatres ([IUTchI, Corollary

3.9]). Note that, there is the notion of the order in the Frobenius-picture (i.e., †(−) is

on the left, and ‡(−) is on the right), on the other hand, there is no such an order and it

has a permutation symmetry in the étale-picture (See also the last table in Section 4.3).

This Θ-link is the primitive one. We will update the Θ-link to Θ×µ-link, Θ×µgau-link

(See Corollary 11.24), and Θ×µLGP-link (resp. Θ×µlgp-link) (See Definition 13.9 (2)) in inter-

universal Teichmüller theory :

Θ-link
“Hodge-Arakelov theoretic eval.” 

“theta fct. 7→theta values”

and O× 7→O×/µ

Θ×µgau-link
“ log -link” Θ×µLGP-link (resp. Θ×µlgp-link).

Definition 10.9. ([IUTchI, Definition 4.1 (i), (iii), (iv) Definition 5.2 (i), (ii),

(iii), (iv)])
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1. (D : holomorphic, base) A holomorphic base-prime-strip, or D-prime-strip is

a collection
†D = {†Dv}v∈V

of data such that †Dv is a category equivalent to the model Dv in Definition 10.2

(1) for v ∈ Vnon, and †Dv is an Aut-holomorphic orbispace isomorphic to the model

Dv in Definition 10.2 (1). A morphism of D-prime-strips is a collection of

morphisms indexed by V between each component.

2. (D` :mono-analytic, base) A mono-analytic base-prime-strip, or D`-prime-

strip is a collection
†D` = {†D`v }v∈V

of data such that †D`v is a category equivalent to the model D`v in Definition 10.2

(2) for v ∈ Vnon, and †D`v is a split monoid isomorphic to the model D`v in Defi-

nition 10.2 (2). A morphism of D`-prime-strips is a collection of morphisms

indexed by V between each component.

3. (F : holomorphic, Frobenioid-theoretic) A holomorphic Frobenioid-prime-strip,

or F-prime-strip is a collection

†F = {†Fv}v∈V

of data such that †Fv is a pre-Frobenioid isomorphic to the model Cv (not F
v
) in

Definition 10.2 (3) for v ∈ Vnon, and †Fv = (†Cv, †Dv, †κv) is a triple of a category,

an Aut-holomorphic orbispace, and a Kummer structure, which is isomorphic to

the model F
v
in Definition 10.2 (3). An isomorphism of F-prime-strips is a

collection of isomorphisms indexed by V between each component.

4. (F` :mono-analytic, Frobenioid-theoretic) A mono-analytic Frobenioid-prime-

strip, or F`-prime-strip is a collection

†F` = {†F`v }v∈V

of data such that †F`v is a µ2l-split pre-Frobenioid (resp. split pre-Frobenioid)

isomorphic to the model F`v in Definition 10.2 (6) for v ∈ Vbad (resp. v ∈ Vgood ∩
Vnon), and †F`v = (†C`v , †D`v , †spl

`
v ) is a triple of a category, a split monoid, and a

splitting of †Cv, which is isomorphic to the model F`v in Definition 10.2 (6). An

isomorphism of F`-prime-strips is a collection of isomorphisms indexed by V
between each component.

5. (F
 : global realified with localisations) A global realified mono-analytic Frobenioid-

prime-strip, or F
-prime-strip is a quadruple

†F
 = (†C
, Prime(†C
) ∼→ V, †F`, {†ρv}v∈V),
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where †C
 is a pre-Frobenioid isomorphic to the model C`mod in Definition 10.4,

Prime(†C
) ∼→ V is a bijection of sets, †F` is an F`-prime-strip, and †ρv : Φ†C
,v

gl. to loc.
∼−→

ΦR
†C`v

is an isomorphism of topological monoids (Here, †C`v is the object recon-

structed from †F`v ), such that the quadruple †F
 is isomorphic to the model F

mod

in Definition 10.4. An isomorphism of F
-prime-strips is an isomorphism of

quadruples.

6. Let AutD(−), IsomD(−,−) (resp. AutD`(−), IsomD`(−,−) resp. AutF (−), IsomF (−,−)
resp. AutF`(−), IsomF`(−,−) resp. AutF
(−), IsomF
(−,−)) be the group of

automorphisms of a D-(resp. D`-, resp. F-, resp. F`-, resp. F
-)prime-strip,

and the set of isomorphisms between D-(resp. D`-, resp. F-, resp. F`-, resp.

F
-)prime-strips.

Remark 10.9.1. We use global realified prime-strips with localisations for cal-

culating (group-theoretically reconstructed) local log-volumes (See Section 5) with the

global product formula. Another necessity of global realified prime-strips with locali-

sations is as follows: If we were working only with the various local Frobenioids for

v ∈ V (which are directly related to computations of the log-volumes), then we could

not distinguish, for example, pmv OKv from OKv with m ∈ Z for v ∈ Vnon, since the iso-

morphism of these Frobenioids arising from (the updated version of) Θ-link preserves

only the isomorphism classes of objects of these Frobenioids. By using global realified

prime-strips with localisations, we can distinguish them (cf. [IUTchIII, (xii) of the proof

of Corollary 3.12]).

Note that we can algorithmically associate D`-prime-strip †D` to any D-prime-

strip †D and so on. We summarise this as follows (See also [IUTchI, Remark 5.2.1 (i),

(ii)]):
†HT Θ � //

_

��

†F
� //

_

��

8

{{xx
xx
xx
xx
x

†D_

��
†F
 � // †F` � // †D`.

Lemma 10.10. ([IUTchI, Corollary 5.3, Corollary 5.6 (i)])

1. Let 1F~, 2F~ (resp. 1F}, 2F}) be pre-Frobenioids isomorphic to the global non-

realifed Frobenioid †F~ (resp. †F}) in Example 9.5 , then the natural map

Isom(1F~, 2F~)→ Isom(Base(1F~),Base(2F~))

(resp. Isom(1F}, 2F})→ Isom(Base(1F}),Base(2F})) )

is bijective.
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2. For F-prime-strips 1F, 2F, whose associated D-prime-strips are 1D, 2D respectively,

the natural map

IsomF (
1F, 2F)→ IsomD(

1D, 2D)

is bijective.

3. For F`-prime-strips 1F`, 2F`, whose associated D`-prime-strips are 1D`, 2D`

respectively, the natural map

IsomF`(1F`, 2F`)→ IsomD`(1D`, 2D`)

is bijective.

4. For v ∈ Vbad, let F
v
be the tempered Frobenioid in Example 8.8, whose base category

is Dv then the natural map

Aut(F
v
)→ Aut(Dv)

is bijective.

5. For Th-Hodge theatres 1HT Θ, 2HT Θ, whose associated D-prime-strips are 1D>,
2D> respectively, the natural map

Isom(1HT Θ, 2HT Θ)→ IsomD(
1D>,

2D>)

is bijective.

Proof. (1) follows from the category-theoretic construction of the isomorphism

M~(†D}) ∼→ †M~ in Example 9.5. (2) follows from the mono-anabelian reconstruction

algorithms via Belyi cuspidalisation (Corollary 3.19), and the Kummer isomorphism

in Remak 3.19.2) for v ∈ Vnon, and the definition of the Kummer structure for Aut-

holomorphis orbispaces (Definition 4.6) for v ∈ Varc. (3) follows from Proposition 5.2

and Proposition 5.4. We show (4). By Theorem 3.17, automorphisms of Dv arises from

automorphisms of X
v
, thus, the surjectivity of (4) holds. To show the injectivity of

(4), let α be in the kernel. Then it suffices to show that α induces the identity on the

rational functions and divisor monoids of F
v
. By the category-theoretic reconstruction

of cyclotomic rigidity (See isomorphism (Cyc.Rig. Frd)) and the naturality of Kummer

map, (which is injective), it follows that α induces the identity on the rational functions

of F
v
. Since α preserves the base-field-theoretic hull, α also preserves the non-cuspidal

portion of the divisor of the Frobenioid theoretic theta function and its conjugate (these

are preserved by α since we already show that α preserves the rational function monoid

of F
v
), hence α induces the identity on the non-cuspidal elements of the divisor monoid

of F
v
. Similary, since any divisor of degree 0 on an elliptic curve supported on the
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torsion points admits a positive multiple which is principal, it follows that α induces

the identityo on the cuspidal elements of the divisor monoid of F
v
as well. by considering

the cuspidal portions of divisor of a suitable rational functions (these are preserved by

α since we already show that α preserves the rational function monoid of F
v
). (Note

that we can simplify the proof by suitably adding F
v
more data, and considering the

isomorphisms preserving these data. See also the remark given just before Theorem 8.14

and [IUTchI, Remark 3.2.1 (ii)]). (5) follows from (4).

Remark 10.10.1. ([IUTchI, Remark 5.3.1]) Let 1F, 2F be F-prime-strips, whose

associated D-prime-strips are 1D, 2D respectively. Let

φ : 1D→ 2D

be a morphism of D-prime-strips, which is not necessarily an isomorphism, such that all

of the v(∈ Vgood)-components are isomorphisms, and the induced morphism φ` : 1D` →
2D` on the associated D`-prime-strips is also an isomorphism. Then φ uniquely lifts to

an “arrow”

ψ : 1F→ 2F,

which we say that ψ is lying over φ, as follows: By pulling-back (or making categorical

fiber products) of the (pre-)Frobenioids in 2F via the various v(∈ V)-components of φ,

we obtain the pulled-back F-prime-strip φ∗(2F) whose associated D-prime-strip is tau-

tologically equal to 1D. Then this tautological equality uniquely lifts to an isomorphism
1F
∼→ φ∗(2F) by Lemma 10.10 (2):

1F
�

""F
FF

FF
FF

FF
∼ // φ∗(2F)

pull back//
_

��

2F_

��
1D

φ // 2D.

Definition 10.11. ([IUTchI, Definition 4.1 (v), (vi), Definition 6.1 (vii)]) Let
†D} (resp. †D}±) is a category equivalent to the model global object D} (resp. D}±)
in Definition 10.3.

1. Recall that, from †D} (resp. †D}±), we can group-theoretically reconstruct a set

V(†D}) (resp. V(†D}±)) of valuations corresponding to V(K) by Example 9.5 (resp.

in a slimilar way as in Example 9.5, i.e., firstly group-theoretically reconstructing

an isomorph of the field F from π1(
†D}±) by Theorem 3.17 via the Θ-approach

(Definition 9.4), secondly group-theoretically reconstructing an isomorph V(†D}±)
of V(F ) with π1(†D}±)-action, by the valuations on the field, and finally consider

the set of π1(
†D}±)-orbits of V(†D}±)).
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For w ∈ V(†D})arc (resp. w ∈ V(†D}±)arc), by Proposition 4.8 and Lemma 4.9, we

can group-theoretically reconstruct, from †D} (resp. †D}±), an Aut-holomorphic

orbispace

C(†D}, w) (resp. X(†D}±, w) )

corresponding to Cw (resp. Xw). For an Aut-holomorphic orbispace U, a mor-

phism

U→ †D} (resp. U→ †D}± )

is a morphism of Aut-holomorphic orbispaces U→ C(†D}, w) (resp. U→ X(†D}±, w))
for some w ∈ V(†D})arc (resp. w ∈ V(†D}±)arc).

2. For a D-prime-strip †D = {†Dv}v∈V, a poly-morphism

†D
poly−→ †D} (resp. †D

poly−→ †D}± )

is a collection of poly-morphisms {†Dv
poly−→ †D}}v∈V (resp. {†Dv

poly−→ †D}±}v∈V)
indexed by v ∈ V (See Definition 6.1 (5) for v ∈ Vnon, and the above definition in

(1) for v ∈ Varc).

3. For a capsule ED = {eD}e∈E of D-prime-strips and a D-prime-strip †D, a poly-

morphism

ED
poly−→ †D} (resp. ED

poly−→ †D}±, resp. ED
poly−→ †D )

is a collection of poly-morphisms {eD poly−→ †D}}e∈E (resp. {eD poly−→ †D}±}e∈E ,
resp. {eD poly−→ †D}e∈E).

Definition 10.12. ([IUTchII, Definition 4.9 (ii), (iii), (iv), (v), (vi), (vii), (viii)])

Let ‡F` = {‡F`v }v∈V be an F`-prime-strip with associated D`-prime-strip ‡D` =

{‡D`v }v∈V.

1. Recall that ‡F`v is a µ2l-split pre-Frobenioid (resp. a split pre-Frobenioid, resp. a

triple (‡C`v , ‡D`v , ‡spl
`
v )) for v ∈ Vbad (resp. v ∈ Vgood ∩ Vnon, resp. v ∈ Varc). Let

‡A∞ be a universal covering pro-object of ‡D`v , and put ‡G := Aut(‡A∞) (hence,
‡G is a profinite group isomorphic to Gv). For v ∈ Vbad (resp. v ∈ Vgood ∩ Vnon),

let

O⊥(‡A∞) (⊂ O�(‡A∞))

denote the submonoid generated by µ2l(
‡A∞) and the image of the splittings on

‡F`v (resp. the submonoid determined by the image of the splittings on ‡F`v ), and
put

OI(‡A∞) := O⊥(‡A∞)/µ2l(
‡A∞) (resp. OI(‡A∞) := O⊥(‡A∞) ),
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and

OI×µ(‡A∞) := OI(‡A∞)×O×µ(‡A∞) (resp. OI×µ(‡A∞) := OI(‡A∞)×O×µ(‡A∞) ).

These are equipped with natural ‡G-actions.

Next, for v ∈ Vnon, we can group-theoretically reconstruct, from ‡G, ind-topological

modules ‡Gy O×(‡G), ‡Gy O×µ(‡G) with G-action, by Proposition 5.2 (Step 1)

(See Definition 8.5 (1)). Then by Definition 8.5 (2), there exists a unique Ẑ×-orbit
of isomorphisms

‡κ`×v : O×(‡G)
poly
∼→ O×(‡A∞)

of ind-topological modules with ‡G-actions. Moreover, ‡κ`×v induces an Isomet-orbit

‡κ`×µv : O×µ(‡G)
poly
∼→ O×µ(‡A∞)

of isomorphisms.

For v ∈ Vnon, the rational function monoid determined by OI×µ(‡A∞)gp with ‡G-

action and the divisor monoid of ‡F`v determine a model Frobenioid with a splitting.

The Isomet-orbit of isomorphisms ‡κ`×µv determines a ×µ-Kummer structure (Def-

inition 8.5 (2)) on this model Frobenioid. For v ∈ Vnon (resp. v ∈ Varc), let

‡F`I×µv

denote the resulting split-×µ-Kummer pre-Frobenioid (resp. the collection of data

obtained by replacing the split pre-Frobenioid ‡Cv in ‡F`v = (‡C`v , ‡D`v , ‡spl
`
v ) by the

inductive system, indexed by the multiplicative monoid N≥1, of split pre-Frobenioids
obtained from ‡C`v by taking the quotients by the N -torsions for N ∈ N≥1. Thus,

the units of the split pre-Frobenioids of this inductive system give rise to an in-

ductive system · · · � O×µN (A∞) � · · · � O×µNM (A∞) � · · · , and a system of

compatible surjections {(‡D`v )× � O×µN (A∞)}N∈N≥1
(which can be regard as a

kind of Kummer structure on ‡F`I×µv ) for the split monoid ‡D`v ), and, by abuse of

notation,
‡F`v

for the split-×-Kummer pre-Frobenioid determined by the split pre-Frobenioid ‡F`v
with the ×-Kummer structure determined by ‡κ`×v .

2. Put
‡F`I×µ := {‡F`I×µv }v∈V.

Let also
‡F`× = {‡F`×v }v∈V (resp. ‡F`×µ := {‡F`×µv }v∈V )



216 Go Yamashita

denote the collection of data obtained by replacing the various split pre-Frobenioids

of ‡F` (resp. ‡F`I×µ) by the split Frobenioid with trivial splittings obtained

by considering the subcategories determined by morphisms φ with Div(φ) = 0

(i.e., the “units” for v ∈ Vnon) in the pre-Frobenioid structure. Note that ‡F`×v
(resp. ‡F`×µv ) is a split-×-Kummer pre-Frobenioid (resp. a split-×µ-Kummer pre-

Frobenioid).

3. An F`×-prime-strip (resp. an F`×µ-prime-strip, resp. an F`I×µ-prime-

strip) is a collection

∗F`× = {∗F`×v }v∈V (resp. ∗F`×µ = {∗F`×µv }v∈V, resp. ∗F`I×µ = {∗F`I×µv }v∈V )

of data such that ∗F`×v (resp. ∗F`×µv , resp. ∗F`I×µv ) is isomorphic to ‡F`×v
(resp. ‡F`×µv , resp. ‡F`I×µv ) for each v ∈ V. An isomorphism of F`×-prime-

strips (resp. F`×-prime-strips, resp. F`×-prime-strips) is a collection of

isomorphisms indexed by V between each component.

4. An F
I×µ-prime-strip is a quadruple

∗F
I×µ = (∗C
, Prime(∗C
) ∼→ V, ∗F`I×µ, {∗ρv}v∈V)

where ∗C
 is a pre-Frobenioid isomorphic to the model C`mod in Definition 10.4,

Prime(∗C
) ∼→ V is a bijection of sets, ∗F`I×µ is an F`I×µ-prime-strip, and ∗ρv :

Φ∗C
,v

gl. to loc.
∼−→ ΦR

∗C`v
is an isomorphism of topological monoids (Here, ∗C`v is the

object reconstructed from ∗F`I×µv ), such that the quadruple ∗F
 is isomorphic to

the model F

mod in Definition 10.4. An isomorphism of F
I×µ-prime-strips is

a collection of isomorphisms indexed by V between each component.

5. Let AutF`×(−), IsomF`×(−,−) (resp. AutF`×µ(−), IsomF`×µ(−,−) resp. AutF`I×µ(−),
IsomF`I×µ(−,−) resp. AutF
I×µ(−), IsomF
I×µ(−,−)) be the group of automor-

phisms of an F`×-(resp. F`×µ-, resp. F`I×µ-, resp. F
I×µ-)prime-strip, and

the set of isomorphisms between F`×-(resp. F`×µ-, resp. F`I×µ-, resp. F
I×µ-
)prime-strips.

Remark 10.12.1. In the definition of ‡F`I×µv for v ∈ Varc in Definition 10.12, we

consider an inductive system. We use this as follows: For the crucial non-interference

property for v ∈ Vnon, we use the fact that the pv-adic logarithm kills the torsion

µ(−) ⊂ O×(−). However, for v ∈ Varc, the Archimedean logarithm does not kill the

torsion. Instead, in the notation of Section 5.2, we replace a part of log-link by k∼ �
(O�

k )
gp � (O�

k )
gp/µN (k) and consider k∼ as being reconstructed from (O�

k )
gp/µN (k),

not from (O�
k )

gp, and put weight N on the corrsponding log-volume. Then there is no
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problem. See also Definition 12.1 (2), (4), Proposition 12.2 (2) (cf. [IUTchIII, Remark

1.2.1]), Proposition 13.7, and Proposition 13.11.

Definition 10.13. ([IUTchIII, Definition 2.4])

1. Let
‡F` = {‡F`v }v∈V

be an F`-prime-strip. Then by Definition 10.12 (1), for each w ∈ Vbad, the splittings

of the µ2l-split-Frobenioid
‡F`w determine submonoids O⊥(−) ⊂ O�(−) and quo-

tient monoids O⊥(−) � OI(−) = O⊥(−)/Oµ(−). Similarly, for each w ∈ Vgood,

the splitting of the split Frobenioid ‡F`w determines a submonoid O⊥(−) ⊂ O�(−).
In this case, we put OI(−) := O⊥(−). Let

‡F`⊥ = {‡F`⊥v }v∈V, ‡F`I = {‡F`Iv }v∈V

denote the collection of data obtained by replacing the µ2l-split/split Frobenioid

portion of each ‡F`v by the pre-Frobenioids determined by the subquotient monoids

O⊥(−) ⊂ O�(−) and OI(−), respectively.

2. An F`⊥-prime-strip (resp. an F`I-prime-strip) is a collection

∗F`⊥ = {∗F`⊥v }v∈V (resp. ∗F`I = {∗F`Iv }v∈V )

of data such that ∗F`⊥v (resp. ∗F`Iv ) is isomorphic to ‡F`⊥v (resp. ‡F`Iv ) for each

v ∈ V. An isomorphism of F`⊥-prime-strips (resp. F`I-prime-strips) is a

collection of isomorphisms indexed by V between each component.

3. An F
⊥-prime-strip (resp. F
I-prime-strip) is a quadruple

∗F
⊥ = (∗C
, Prime(∗C
) ∼→ V, ∗F`⊥, {∗ρv}v∈V)

(resp. ∗F
I = (∗C
, Prime(∗C
) ∼→ V, ∗F`I, {∗ρv}v∈V) )

where ∗C
 is a pre-Frobenioid isomorphic to the model C`mod in Definition 10.4,

Prime(∗C
) ∼→ V is a bijection of sets, ∗F`⊥ (resp. ∗F`I) is an F`⊥-prime-strip

(resp. F`I-prime-strip), and ∗ρv : Φ∗C
,v

gl. to loc.
∼−→ ΦR

∗C`v
is an isomorphism of topo-

logical monoids (Here, ∗C`v is the object reconstructed from ∗F`⊥v (resp. ∗F`Iv )),

such that the quadruple ∗F
⊥ (resp. ∗F
I) is isomorphic to the model F

mod in Def-

inition 10.4. An isomorphism of F
⊥-prime-strips (resp. F
I-prime-strips)

is a collection of isomorphisms indexed by V between each component.
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§ 10.4. The Multiplicative Symmetry � : ΘNF-Hodge Theatres and NF-,

Θ-Bridges.

We begin constructing the multiplicative portion of full Hodge theatres.

Definition 10.14. ([IUTchI, Definition 4.1 (i), (ii), (v)]) Let †D = {†Dv}v∈V be

a D-prime-strip.

1. For v ∈ Vbad (resp. v ∈ Vgood ∩ Vnon), we can group-theoretically reconstruct

in a functorial manner, from π1(
†Dv), a tempered group (resp. a profinite group)

(⊃ π1(†Dv)) corresponding to Cv by Lemma 7.12 (resp. by Lemma 7.25). Let

†Dv

denote its B(−)0. We have a natural morphism †Dv → †Dv (This corresponds to

X
v
→ Cv (resp. X−→v

→ Cv)). Similarly, for v ∈ Varc, we can algorithmically

reconstruct, in a functorial manner, from †Dv, an Aut-holomorphic orbispace †Dv
corresponding to Cv by translating Lemma 7.25 into the theory of Aut-holomorphic

spaces (since X−→v
admits a Kv-core) with a natural morphism †Dv → †Dv. Put

†D := {†Dv}v∈V.

2. Recall that we can algorithmically reconstruct the set of conjugacy classes of cuspi-

dal decomposition groups of π1(
†Dv) or π1(†Dv) by Corollary 6.12 for v ∈ Vbad, by

Corollary 2.9 for v ∈ Vgood ∩Vnon, and by considering π0(−) of a cofinal collection

of the complements of compact subsets of the underlying topological space of †Dv
or †Dv for v ∈ Varc. We say them the set of cusps of †Dv or †Dv.

For v ∈ V, a label class of cusps of †Dv is the set of cusps of †Dv lying over

a single non-zero cusp of †Dv (Note that each label class of cusps consists of two

cusps). We write

LabCusp(†Dv)

for the set of label classes of cusps of †Dv. Note that LabCusp(†Dv) has a natural

F>
l -torsor structure (which comes from the action of F×l on Q in the definition of X

in Section 7.1). Note also that, for any v ∈ V, we can algorithmically reconstruct a

canonical element
†η
v
∈ LabCusp(†Dv)

corresponding to εv in the initial Θ-data, by Lemma 7.16 for v ∈ Vbad, Lemma 7.25

for v ∈ Vgood ∩ Vnon, and a translation of Lemma 7.25 into the theory of Aut-

holomorphic spaces for v ∈ Varc.
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(Note that, if we used †Dv (i.e., “Cv”) instead of †Dv (i.e., “X−→v
”) for v ∈ Vgood ∩

Vnon, then we could not reconstruct †η
v
. In fact, we could make the action of

the automorphism group of †Dv on LabCusp transitive for some v ∈ Vgood ∩ Vnon,

by using Chebotarev density theorem (i.e., by making a decomposition group in

Gal(K/F ) ↪→ GL2(Fl) to be the subgroup of diagonal matrices with determinant

1). See [IUTchI, Remark 4.2.1].)

3. Let †D} is a category equivalent to the model global object D} in Definition 10.3.

Then by Remark 2.9.2, similarly we can define the set of cusps of †D} and the

set of label classes of cusps

LabCusp(†D}),

which has a natural F>
l -torsor structure.

From the definitions, we immediately obtain the following proposition:

Proposition 10.15. ([IUTchI, Proposition 4.2]) Let †D = {†Dv}v∈V be a D-
prime-strip. Then for any v, w ∈ V, there exist unique bijections

LabCusp(†Dv)
∼→ LabCusp(†Dw)

which are compatible with the F>
l -torsor structures and send the canonical element †η

v

to the canonical element †η
w
. By these identifications, we can write

LabCusp(†D)

for them. Note that it has a canonical element which comes from †η
v
’s. The F>

l -torsor

structure and the canonical element give us a natural bijection

LabCusp(†D)
∼→ F>

l .

Definition 10.16. (Model D-NF-Bridge, [IUTchI, Example 4.3]) Let

Autε(CK) ⊂ Aut(CK) ∼= Out(ΠCK
) ∼= Aut(D})

denote the subgroup of elements which fix the cusp ε (The firs isomorphisms follows

from Theorem 3.17). By Theorem 3.7, we can group-theoretically reconstruct ∆X from

ΠCK
. We obtain a natural homomorphism

Out(ΠCK
)→ Aut(∆ab

X ⊗ Fl)/{±1},

since inner automorphisms of ΠCK
act by multiplication by ±1 on EF [l]. By choosing

a suitable basis of ∆ab
X ⊗ Fl, which induces an isomorphism Aut(∆ab

X ⊗ Fl)/{±1}
∼→
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GL2(Fl)/{±1}, the images of Autε(CK) and Aut(CK) are identified with the following

subgroups {(
∗ ∗
0±1

)}
⊂

{(
∗ ∗
0 ∗

)}
⊂ Im(GFmod

) (⊃ SL2(Fl)/{±1})

of GL2(Fl)/{±1}, where Im(GFmod
) ⊂ GL2(Fl)/{±1} is the image of the natural action

of GFmod
:= Gal(F/Fmod) on EF [l]. Put also

V±un := Autε(CK) · V ⊂ VBor := Aut(CK) · V ⊂ V(K).

Hence, we have a natural isomorphism

Aut(CK)/Autε(CK)
∼→ F>

l ,

thus, VBor is the F>
l -orbit of V±un. By the above discussions, from π1(D}), we can

group-theoretically reconstruct

Autε(D}) ⊂ Aut(D})

corresponding to Autε(CK) ⊂ Aut(CK) (See also Definition 10.11 (1), (2)).

For v ∈ Vbad (resp. v ∈ Vgood ∩ Vnon, resp. v ∈ Varc), let

φNF
•,v : Dv → D}

denote the natural morphism correponding toX
v
→ Cv → CK (resp. X−→v

→ Cv → CK ,

resp. a tautological morphism Dv = X−→v
→ Cv

∼→ C(D}, v)) (See Definition 10.11 (1)).

Put

φNF
v := Autε(D}) ◦ φNF

•,v ◦Aut(Dv) : Dv
poly−→ D}.

Let Dj = {Dvj}v∈V be a copy of the tautological D-prime-strip {Dv}v∈V for each

j ∈ F>
l (Here, vj denotes the pair (j, v)). Put

φNF
1 := {φNF

v }v∈V : D1
poly−→ D}

(See Definition 10.11 (2)). Since φNF
1 is stable under the action of Autε(D}), we obtain

a poly-morphism

φNF
j := (action of j) ◦ φNF

1 : Dj
poly−→ D},

by post-composing a lift of j ∈ F>
l
∼= Aut(D})/Autε(D}) to Aut(D}). Hence, we

obtain a poly-morphism

φNF
> := {φNF

j }j∈F>
l

: D> := {Dj}j∈F>
l

poly−→ D}
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from a capsule of D-prime-strip to the global object D} (See Definition 10.11 (3)). This

is called the model base-(or D-)NF-bridge. Note that φNF
> is equivariant with the

natural poly-action (See Section 0.2) of F>
l on D} and the natural permutation poly-

action of F>
l (via capsule-full poly-automorphisms (See Section 0.2)) on the components

of the cupsule D>. In particular, we obtain a poly-action of F>
l on (D>,D}, φNF

> ).

Definition 10.17. (Model D-Θ-Bridge, [IUTchI, Example 4.4]) Let v ∈ Vbad.

Recall that we have a natural bijection between the set of cusps of Cv and |Fl| by
Lemma 7.16. Thus, we can put labels (∈ |Fl|) on the collections of cusps of Xv, Xv

by

considering fibers over Cv. Let

µ− ∈ Xv(Kv)

denote the unique torsion point of order 2 such that the closures of the cusp labelled

0 ∈ |Fl| and µ− in the stable model of Xv over OKv intersect the same irreducible

component of the special fiber (i.e., “−1” in Grig
m /qZXv

). We call the points obtained

by translating the cusps labelled by j ∈ |Fl| by µ− with respect to the group scheme

structure of Ev(⊃ Xv) (Recall that the origin of Ev is the cusp labelled by 0 ∈ |Fl|) the
evaluation points of Xv labelled by j. Note that the value of Θ

v
in Example 8.8

at a point of Ÿ
v
lying over an evaluation point labelled by j ∈ |Fl| is in the µ2l-orbit of

{
q
j2

v

}
j∈Z such that j≡j in |Fl|

by calculation Θ̈

(√
−q

j

v

)
= (−1)jq

−j2/2
v

√
−1−2jΘ̈(

√
−1) = q

−j2/2
v in the notation

of Lemma 7.4 (See the formula Θ̈(q
j/2
Ü) = (−1)jq−1/2Ü−2Θ̈(Ü) in Lemma 7.4). In

particular, the points of X
v
lying over evaluation points of Xv are all defined over

Kv, by the definition of X
v
→ Xv (Note that the image of a point in the domain of

Ÿ
(covering map,Θ̈)

↪→ Ÿ × A1 is rational over Kv, then the point is rational over Kv. See

also Assumption (5) of Definition 7.13). We call the points in X(Kv) lying over the

evaluation points of Xv (labelled by j ∈ |Fl|) the evaluation points of X
v
(labelled

by j ∈ |Fl|). We also call the sections Gv ↪→ Πv(= ΠX
v
) given by the evaluation

points (labelled by j ∈ |Fl|) the evaluation section of Πv � Gv (labelled by j ∈ |Fl|).
Note that, by using Theorem 3.7 (elliptic cuspidalisation) and Remark 6.12.1 (together

with Lemma 7.16, Lemma 7.12), we can group-theoretically reconstruct the evaluation

sections from (an isomorph of) Πv.
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Let D> = {D>,w}w∈V be a copy of the tautological D-prime-strip {Dw}w∈V. Put

φΘvj :=Aut(D>,v) ◦ (Btemp(Πv)
0 natural−→ B(Kv)

0 eval. section−→
labelled by j

Btemp(Πv)
0) ◦Aut(Dvj )

: Dvj
poly−→ D>,v.

Note that the homomorphism π1(Dvj ) → π1(D>,v) induced by any constituent of the

poly-morphism φΘvj (which is well-defined up to inner automorphisms) is compatible

with the respective outer actions on πgeo
1 (Dvj ) and πgeo

1 (D>,v) (Here πgeo
1 denotes the

geometric portion of π1, which can be group-theoretically reconstructed by Lemma 6.2)

for some outer isomorphism πgeo
1 (Dvj )

∼→ πgeo
1 (D>,v) (which is determined up to finite

ambiguity by Remark 6.10.1). We say this fact, in short, as φΘvj is compatible with the

outer actions on the respective geometric tempered fundamental groups.

Let v ∈ Vgood. Put

φΘvj : Dvj
full poly
∼→ D>,v

to be the full poly-isomorphism for each j ∈ F>
l ,

φΘj := {φΘvj}v∈V : Dj
poly−→ D>,

and

φΘ> := {φΘj }j∈F>
l

: D>
poly−→ D>.

This is called themodel base-(or D-)Θ-bridge (Note that this is not a poly-isomorphism).

Note thatD> has a natural permutation poly-action by F>
l , and that, on the other hand,

the labels ∈ |Fl| (or ∈ LabCusp(D>)) determined by the evaluation sections correspond-

ing to a given j ∈ F>
l are fixed by any automorphisms of D>.

Definition 10.18. (D-NF-Bridge, D-Θ-Bridge, andD-�-Hodge Theatre, [IUTchI,

Definition 4.6])

1. A base-(or D-)NF-bridge is a poly-morphism

†φNF
> : †DJ

poly−→ †D},

where †D} is a category equivalent to the model global object D}, and †DJ is a cup-

sule of D-prime-strips indexed by a finite set J , such that there exist isomorphisms

D} ∼→ †D}, D>
∼→ †DJ , conjugation by which sends φNF

> 7→ †φNF
> . An isomor-

phism of D-NF-bridges
(
†φNF

> : †DJ
poly−→ †D}

)
∼→
(
‡φNF

> : ‡DJ ′
poly−→ ‡D}

)
is a

pair of a capsule-full poly-isomorphism †DJ

capsule-full poly
∼−→ ‡DJ ′ and an Autε(

†D})-

orbit (or, equivalently, an Autε(
‡D})-orbit) †D}

poly
∼→ ‡D} of isomorphisms, which
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are compatible with †φNF
> , ‡φNF

> . We define compositions of them in an obvious

manner.

2. A base-(or D-)Θ-bridge is a poly-morphism

†φΘ> : †DJ
poly−→ †D>,

where †D> is a D-prime-strip, and †DJ is a cupsule of D-prime-strips indexed

by a finite set J , such that there exist isomorphisms D>
∼→ †D>, D>

∼→ †DJ ,

conjugation by which sends φΘ> 7→ †φΘ>. An isomorphism of D-Θ-bridges(
†φΘ> : †DJ

poly−→ †D>

)
∼→
(
‡φΘ> : ‡DJ ′

poly−→ ‡D>

)
is a pair of a capsule-full poly-

isomorphism †DJ

capsule-full poly
∼−→ ‡DJ′ and the full-poly isomorphism †D>

full poly
∼→

‡D>, which are compatible with †φΘ>,
‡φΘ>. We define compositions of them in an

obvious manner.

3. A base-(or D-)ΘNF-Hodge theatre (or a D-�-Hodge theatre) is a collection

†HT D-� =

(
†D}

†φNF
>←− †DJ

†φΘ
>−→ †D>

)
,

where †φNF
> is a D-NF-bridge, and †φΘ> is a D-Θ-bridge, such that there exist iso-

morphisms D} ∼→ †D}, D>
∼→ †DJ , D>

∼→ †D>, conjugation by which sends

φNF
> 7→ †φNF

> , φΘ> 7→ †φΘ>. An isomorphism of D-�-Hodge theatres is a pair

of isomorphisms of D-NF-bridges and D-Θ-bridges such that they induce the same

bijection between the index sets of the respective capsules of D-prime-strips. We

define compositions of them in an obvious manner.

Proposition 10.19. (Transport of Label Classes of Cusps via Base-Bridges,

[IUTchI, Proposition 4.7]) Let †HT D-� = (†D}
†φNF

>←− †DJ

†φΘ
>−→ †D>) be a D-�-Hodge

theatre.

1. The structure of D-Θ-bridge †φΘ> at v ∈ Vbad involving the evaluation sections

determines a bijection
†χ : J

∼→ F>
l .

2. For j ∈ J , v ∈ Vnon (resp. v ∈ Varc), we consider the various outer homomor-

phisms π1(
†Dvj ) → π1(

†D}) induced by the (v, j)-portion †φNF
vj

: †Dvj →
†D} of

the D-NF-bridge †φNF
> . By considering cuspidal inertia subgroups of π1(

†D}) whose
unique subgroup of index l is contained in the image of this homomorphism (resp.

the closures in π1(
†D}) of the images of cuspidal inertia subgroups of π1(

†Dvj )
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(See Definition 10.14 (2) for the group-theoretic reconstruction of cuspidal inertia

subgroups for v ∈ Varc), these homomorphisms induce a natural isomorphism

LabCusp(†D}) ∼→ LabCusp(†Dvj )

of F>
l -torsors. These isomorphisms are compatible with the isomorphism LabCusp(†Dvj )

∼→
LabCusp(†Dwj

) of F>
l -torsors in Proposition 10.15 when we vary v ∈ V. Hence,

we obtaine a natural isomorphism

LabCusp(†D}) ∼→ LabCusp(†Dj)

of F>
l -torsors.

Next, for each j ∈ J , the various v(∈ V)-portions of the j-portion †φΘj : †Dj → †D>

of the D-Θ-bridge †φΘ> determine an isomorphism

LabCusp(†Dj)
∼→ LabCusp(†D>)

of F>
l -torsors. Therefore, for each j ∈ J , by composing isomorphisms of F>

l -torsors

obtained via †φNF
j , †φΘj , we get an isomorphism

†φLCj : LabCusp(†D}) ∼→ LabCusp(†D>)

of F>
l -torsors, such that †φLCj is obtained from †φLC1 by the action by †χ(j) ∈ F>

l .

3. By considering the canonical elements †η
v
∈ LabCusp(†Dv) for v’s, we obtain a

unique element

[†ε] ∈ LabCusp(†D})

such that, for each j ∈ J , the natural bijection LabCusp(†D>)
∼→ F>

l in Proposi-

tion 10.15 sends †φLCj ([†ε]) = †φLC1 (†χ(j) · [†ε]) 7→ †χ(j). In particular, the element

[†ε] determines an isomorphism

†ζ> : LabCusp(†D}) ∼→ J (
∼→ F>

l )

of F>
l -torsors.

Remark 10.19.1. (cf. [IUTchI, Remark 4.5.1]) We consider the group-theoretic

algorithm in Proposition 10.19 (2) for v ∈ V. Here, the morphism π1(
†Dvj )→ π1(

†D})
is only known up to π1(

†D})-conjugacy, and a cuspidal inertia subgroup labelled by an

element ∈ LabCusp(†D}) is also well-defined up to π1(
†D})-conjugacy. We have no

natural way to synchronise these indeterminacies. Let J be the unique open subgroup of

index l of a cuspidal inertia subgroup. A nontrivial fact is that, if we use Theorem 6.11,

then we can factorise J ↪→ π1(
†D}) up to π1(

†D})-conjugacy into J ↪→ π1(
†Dvj ) up to

π1(
†Dvj )-conjugacy and π1(

†Dvj ) ↪→ π1(
†D}) up to π1(

†D})-conjugacy (i.e., factorise

J
out
↪→ π1(

†D}) as J
out
↪→ π1(

†Dvj )
out
↪→ π1(

†D})). This can be regarded as a partial

synchronisation of the indeterminacies.
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Proof. The proposition immediately follows from the described algorithms.

The following proposition follows from the definitions:

Proposition 10.20. (Properties of D-NF-Brideges, D-Θ-Bridges, D-�-Hodge

theatres, [IUTchI, Proposition 4.8])

1. For D-NF-bridges †φNF
> , ‡φNF

> , the set Isom(†φNF
> , ‡φNF

> ) is an F>
l -torsor.

2. For D-Θ-bridges †φΘ>,
‡φΘ>, we have #Isom(†φNF

> , ‡φNF
> ) = 1.

3. For D-�-Hodge theatres †HT D-�, ‡HT D-�, we have #Isom(†HT D-�, ‡HT D-�) =
1.

4. For a D-NF-bridge †φNF
> and a D-Θ-bridge †φΘ>, the set{

capsule-full poly-isom.
capsule-full poly
†DJ

∼−→ †DJ′ by which †φNF
> , †φΘ> form a D-� -Hodge theatre

}

is an F>
l -torsor.

5. For a D-NF-bridge †φNF
> , we have a functorial algorithm to construct, up to F>

l -

indeterminacy, a D-�-Hodge theatre whose D-NF-bridge is †φNF
> .

Definition 10.21. ([IUTchI, Corollary 4.12]) Let †HT D-�, ‡HT D-� be D-�-
Hodge theatres. the base-(or D-)ΘNF-link (or D-�-link)

†HT D-� D−→ ‡HT D-�

is the full poly-isomorphism

†D`>

full poly
∼−→ ‡D`>

between the mono-analyticisations of the codomains of the D-Θ-bridges.

Remark 10.21.1. In D-�-link, the D`-prime-strips are shared, but not the arith-

metically holomorphic structures. We can visualise the “shared” and “non-shared”

relation as follows:

†HT D-� −− > †D`> ∼= ‡D`> >−− ‡HT D-�

We call this diagram the étale-picture of D-�-Hodge theatres. Note that we have

a permutation symmetry in the étale-picture.
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We constructed D-�-Hodge theatres. These are base objects. Now, we begin

constructing the total spaces, i.e., �-Hodge theatres, by putting Frobenioids on them.

We start with the following situation: Let †HT D-� = (†D}
†φNF

>←− †DJ

†φΘ
>−→ †D>)

be a D-�-Hodge theatre (with respect to the fixed initial Θ-data). Let †HT Θ =

({†F
v
}v∈V, †F


mod) be a Θ-Hodge theatre, whose associseted D-prime strip is equal to
†D> in the given D-�-Hodge theatre. Let †F> denote the F-prime-strip tautologically

associated to (the {†F
v
}v∈V -portion of) the Θ-Hodge theatre †HT Θ. Note that †D>

can ben identified with the D-prime-strip associated to †F>:

†HT Θ � // †F>_

��
†HT D-� � // †D>.

Definition 10.22. ([IUTchI, Example 5.4 (iii), (iv)]) Let †F~ be a pre-Frobenioid

isomorphic to F~(†D}) as in Example 9.5, where †D} is the data in the given D-�-
Hodge theatre †HT D-�. We put †F} := †F~|†D} , and †F~

mod := †F~|terminal object in †D~ ,

as in Example 9.5.

1. For δ ∈ LabCusp(†D}), a δ-valuation ∈ V(†D}) is a valuation which lies in

the “image” (in the obvious sense) via †φNF
> of the unique D-prime-strip †Dj of

the capsule †DJ such that the bijection LabCusp(†D}) ∼→ LabCusp(†Dj) induced

by †φNF
j sends δ to the element of LabCusp(†Dj)

∼→ F>
l (See Proposition 10.15)

labelled by 1 ∈ F>
l (Note that, if we allow ourselves to use the model object D},

then a δ-valuation ∈ V(†D}) is an element, which is sent to an elemento of V±un ⊂
V(K) under the bijection LabCusp(†D}) ∼→ LabCusp(D}) induced by a unique

Autε(
†D})-orbit of isomorphisms †D} ∼→ D} sending δ 7→ [ε] ∈ LabCusp(D})).

2. For δ ∈ LabCusp(†D}), by localising at each of the δ-valuations ∈ V(†D}), from
†F} (or, from ((†Π~)rat y †M~) = (π1(

†D}) y Õ~×) in Definition 9.6), we can

construct an F-prime-strip
†F}|δ

which is well-defined up to isomorphism (Note that the natural projection V±un �
Vmod is not injective, hence, it is necessary to think that †F|δ is well-defined only

up to isomorphism, since there is no canonical choice of an element of a fiber of the

natural projection V±un � Vmod) as follows: For a non-Archimedean δ-valuation

v, it is the pv-adic Frobenioid associated to the restrictions to “the open subgroup”

of †Πp0 ∩ π1(†D}) determined by δ ∈ LabCusp(†D}) (i.e., corresponding to “X”

or “X−→”) (See Definition 9.6 for †Πp0). Here, if v lies over an element of Vbad
mod, then
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we have to replace the above “open subgroup” by its tempered analogue, which can

be done by reconstructing, from the open subgroup of †Πp0 ∩ π1(†D}), the semi-

graph of anabelioids by Remark 6.12.1 (See also [SemiAnbd, Theorem 6.6]). For an

Archimedean δ-valuation v, this follows from Proposition 4.8, Lemma 4.9, and the

isomorphism M~(†D}) ∼→ †M~ in Example 9.5.

3. For an F-prime-strip ‡F whose associated D-prime-strip is ‡D, a poly-morphism

‡F
poly−→ †F}

is a full poly-isomorphism ‡F
full poly
∼−→ †F}|δ for some δ ∈ LabCusp(†D}) (Note that

the fact that †F}|δ is well-defined only up to isomorphism is harmless here). We

regard such a poly-morphism ‡F
poly−→ †F} is lying over an induced poly-morphism

‡D
poly−→ †D}. Note also that such a poly-morphism ‡F

poly−→ †F} is compatible

with the local and global ∞κ-coric structures (See Definition 9.6) in the following

sense: The restriction of associated Kummer classes determines a collection of poly-

morphisms of pseudo-monoids{
(†Π~)rat y †M~

∞κ
poly−→ ‡M∞κv ⊂ ‡M∞κ×v

}
v∈V

indexed by V, where the left hand side (†Π~)rat y †M~
∞κ is well-defined up to au-

tomorphisms induced by the inner automorphisms of (†Π~)rat, and the right hand

side ‡M∞κv ⊂ ‡M∞κ×v is well-defined up to automorphisms induced by the au-

tomorphisms of the F-prime strip ‡F. For v ∈ Vnon, the above poly-morphism is

equivariant with respect to the homomorphisms (‡Πv)
rat → (†Π~)rat (See Defini-

tion 9.6 (2) for (‡Πv)
rat) induced by the given poly-morphism ‡F

poly−→ †F}.

4. For a capsule EF = {eF} of F-prime-strips, whose associated capsule of D-prime-

strips is ED, and an F-prime-strip †F whose associated D-prime-strip is †D, a

poly-morphism
EF

poly−→ †F} (resp. EF
poly−→ †F )

is a collection of poly-morphisms {eF poly−→ †F}}e∈E (resp. {eF poly−→ †F}e∈E). We

consider a poly-morphism EF
poly−→ †F} (resp. EF

poly−→ †F) as lying over the induced

poly-morphism ED
poly−→ †D} (resp. ED

poly−→ †D).

We return to the situation of

†HT Θ � // †F>_

��
†HT D-� � // †D>.
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Definition 10.23. (Model Θ-Bridge, Model NF-Bridge, Diagonal F-Objects,

Localisation Functors, [IUTchI, Example 5.4 (ii), (v), (i), (vi), Example 5.1 (vii)]) For

j ∈ J , let †Fj = {†Fvj}j∈J be an F-prime-strip whose associated D-prime-strip is equal

to †Dj . We also put †FJ := {†Fj}j∈J (i.e., a capsule indexed by j ∈ J).
Let †F~ be a pre-Frobenioid isomorphic to F~(†D}) as in Example 9.5, where

†D} is the data in the given D-�-Hodge theatre †HT D-�. We put †F} := †F~|†D} ,

and †F~
mod := †F~|terminal object in †D~ , as in Example 9.5.

1. For j ∈ J , let
†ψΘ

j : †Fj
poly−→ †F>

denote the poly-morphism (See Definition 10.22 (4)) uniquely determined by †φj

by Remark 10.10.1. Put

†ψΘ
> := {†ψΘ

j }j∈F>
l

: †FJ
poly−→ †F>.

We regard †ψΘ
> as lying over †φΘ>. We call †ψΘ

> the model Θ-bridge. See also the

following diagram:

†Fj ,
†FJ_

��

†ψΘ
j ,

†ψΘ
>

&&
†HT Θ � // †F>_

��
†Dj ,

†DJ

†φΘ
j ,

†φΘ
>

88
†HT D-��oo � // †D>.

2. For j ∈ J , let
†ψNF

j : †Fj
poly−→ †F}

denote the poly-morphism (See Definition 10.22 (3)) uniquely determined by †φj

by Lemma 10.10 (2). Put

†ψNF
> := {†ψNF

j }j∈F>
l

: †FJ
poly−→ †F}.

We regard †ψNF
> as lying over †φNF

> . We call †ψNF
> the model NF-bridge. See also
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the following diagram:

†Fj ,
†FJ_

��

†ψNF
j , †ψNF

>

&&
†F}
_

��
†Dj ,

†DJ

†φNF
j , †φNF

>

99
†HT D-��oo � // †D}.

3. Take also an F-prime-strip †F〈J〉 = {†Fv〈J〉
}v〈J〉∈V〈J〉

. We write †D〈J〉 for the

associated D-prime-strip to †F〈J〉. We write Vj := {vj}v∈V. We have a natural

bijection Vj
∼→ V : vj 7→ v. These bijections determine the diagonal subset

V〈J〉 ⊂ VJ :=
∏
j∈J

Vj ,

which admits a natural bijection V〈J〉
∼→ V. Hence, we obtain a natural bijection

V〈J〉
∼→ Vj for j ∈ J .

We have the full poly-isomorphism

†F〈J〉

full poly
∼−→ †F>

and the “diagonal arrow”
†F〈J〉 −→ †FJ ,

which is the collection of the full poly-isomorphisms †F〈J〉

full poly
∼−→ †Fj indexed by

j ∈ J . We regard †Fj (resp. †F〈J〉) as a copy of †F> “situated on” the constituent

labelled by j ∈ J (resp. “situated in a diagonal fashion on” all the consitutents) of

the capsule †DJ .

We have natural bijections

V〈J〉
∼→ Vj

∼→ Prime(†F~
mod)

∼→ Vmod

for j ∈ J . Put
†F~
〈J〉 := {

†F~
mod, V〈J〉

∼→ Prime(†F~
mod)},

†F~
j := {†F~

mod, Vj
∼→ Prime(†F~

mod)}



230 Go Yamashita

for j ∈ J . We regard †F~
j (resp. †F~

〈J〉) as a copy of †F~
mod “situated on” the

constituent labelled by j ∈ J (resp. “situated in a diagonal fashion on” all the

consitutents) of the capsule †DJ . When we write †F~
〈J〉 for the underlying cate-

gory (i.e., †F~
mod) of †F~

〈J〉 by abuse of notation, we have a natural embedding of

categories
†F~
〈J〉 ↪→

†F~
J :=

∏
j∈J

†F~
j .

Note that we do not regard the category †F~
J as being a (pre-)Frobenioid. We write

†F~R
j , †F~R

〈J〉 for the realifications (Definition 8.4) of †F~
〈J〉,

†F~
〈J〉 respectively, and

put †F~R
J :=

∏
j∈J

†F~R
j .

Since †F~
mod is defined by the restriction to the terminal object of †D~, any poly-

morphism †F〈J〉
poly−→ †F} (resp. †Fj

poly−→ †F}) (See Definition 10.22 (3)) induces,

via restriction (in the obvious sense), the same isomorphism class

(†F} → †F~ ⊃ )†F~
mod

∼−→ †F~
〈J〉

gl. to loc.−→ †Fv〈J〉

(resp. (†F} → †F~ ⊃ )†F~
mod

∼−→ †F~
j

gl. to loc.−→ †Fvj )

of restriction functors, for each v〈J〉 ∈ V〈J〉 (resp. vj ∈ Vj) (Here, for v〈J〉 ∈ Varc
〈J〉

(resp. vj ∈ Varc
j ), we write †Fv〈J〉

(resp. †Fvj ) for the category component of

the triple, by abuse of notation), i.e., it is independent of the choice (among its

F>
l -conjugates) of the poly-morphism †F〈J〉 → †F} (resp. †Fj → †F}). See also

Remark 11.22.1 and Remark 9.6.2 (4) (in the second numeration). Let

(†F} → †F~ ⊃ )†F~
mod

∼−→ †F~
〈J〉

gl. to loc.−→ †F〈J〉

(resp. (†F} → †F~ ⊃ )†F~
mod

∼−→ †F~
j

gl. to loc.−→ †Fj )

denote the collection of the above isomorphism classes of restriction functors, as

v〈J〉 (resp. vj) ranges over the elements of V〈J〉 (resp. Vj). By combining j ∈ J ,
we also obtain a natural isomorphism classes

†F~
J

gl. to loc.−→ †FJ

of restriction functors. We also obtain their natural realifications

†F~R
〈J〉

gl. to loc.−→ †FR
〈J〉,

†F~R
J

gl. to loc.−→ †FR
J ,

†F~R
j

gl. to loc.−→ †FR
j .
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Definition 10.24. (NF-Bridge, Θ-Bridge, �-Hodge Theatre, [IUTchI, Defini-

tion 5.5])

1. an NF-bridge is a collection(
‡FJ

‡ψNF
>−→ ‡F} 99K ‡F~

)
as follows:

(a) ‡FJ = {‡Fj}j∈J is a capsule of F-prime-strip indexed by J . We write ‡DJ =

{‡Dj}j∈J for the associated capsule of D-prime-strips.

(b) ‡F}, ‡F~ are pre-Frobenioids isomorphic toy ‡F}, ‡F~ in the definition of

the model NF-bridge (Definition 10.23), respectively. We write ‡D}, ‡D~ for

the base categories of ‡F}, ‡F~ respectively.

(c) The arrow 99K consists of a morphism ‡D} → ‡D~, which is abstractly equiv-

alent (See Section 0.2) to the morphism †D} → †D~ definition of the model

NF-bridge (Definition 10.23), and an isomorphism ‡F} ∼→ ‡F~|‡D} .

(d) ‡ψNF
> is a poly-morphism which is a unique lift of a poly-morphism ‡φNF

> :

‡DJ
poly−→ ‡D} such that ‡φNF

> forms a D-NF-bridge.

Note that we can associate an D-NF-bridge ‡φNF
> to any NF-bridge ‡ψNF

> . An

isomorphism of NF-bridges(
1FJ1

1ψNF
>−→ 1F} 99K 1F~

)
∼→
(

2FJ2

2ψNF
>−→ 2F} 99K 2F~

)
is a triple

1FJ1

capsule-full poly
∼−→ 2FJ2 ,

1F}
poly
∼−→ 2F}, 1F~ ∼−→ 2F~

of a capsule-full poly-isomorphism 1FJ1

capsule-full poly
∼−→ 2FJ2 (We write 1DJ1

poly
∼−→

2DJ2 for the induced poly-isomorphism), a poly-isomorphism 1F}
poly
∼−→ 2F} (We

write 1D}
poly
∼−→ 2D} for the induced poly-isomorphism) such that the pair 1DJ1

poly
∼−→

2DJ2 and 1D}
poly
∼−→ 2D} forms a morphism of the associated D-NF-bridges, and

an isomoprhism 1F~ ∼−→ 2F~, such that this triple is compatible (in the obvious

sense) with 1ψNF
> , 2ψNF

> , and the respective 99K’s. Note that we can associate an

isomorphism of D-NF-bridges to any isomorphism of NF-bridges.
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2. A Θ-bridge is a collection(
‡FJ

‡ψΘ
>−→ ‡F> 99K ‡HT Θ

)
as follows:

(a) ‡FJ = {‡Fj}j∈J is a capsule of F-prime-strips indexed by J We write ‡DJ =

{‡Dj}j∈J for the associated capsule of D-prime-strips.

(b) ‡HT Θ is a Θ-Hodge theatre.

(c) ‡F> is the F-prime-strip tautologically associated to ‡HT Θ. We use the no-

tation 99K to denote this relationship between ‡F> and ‡HT Θ. We write ‡D>

for the D-prime-strip associated to ‡F>.

(d) ‡ψΘ
> = {‡ψΘ

j }j∈F>
l

is the collection of poly-morphisms ‡ψΘ
j : ‡Fj

poly−→ ‡F>

determined by a D-Θ-bridge ‡φΘ> = {‡φΘj }j∈F>
l
by Remark 10.10.1.

Note that we can associate an D-Θ-bridge ‡φΘ> to any Θ-bridge ‡ψΘ
>. An isomor-

phism of Θ-bridges(
1FJ1

1ψΘ
>−→ 1F> 99K ‡HT Θ

)
∼→
(

2FJ2

2ψΘ
>−→ 2F> 99K 2HT Θ

)
is a triple

1FJ1

capsule-full poly
∼−→ 2FJ2 ,

1F>

full poly
∼−→ 2F>,

1HT Θ ∼−→ 2HT Θ

of a capsule-full poly-isomorphism 1FJ1

capsule-full poly
∼−→ 2FJ2 the full poly-isomorphism

1F}
poly
∼−→ 2F} and an isomoprhism 1F~ ∼−→ 2F~ of HT -Hodge theatres, such that

this triple is compatible (in the obvious sense) with 1ψΘ
>,

2ψΘ
>, and the respective

99K’s. Note that we can associate an isomorphism of D-Θ-bridges to any isomor-

phism of Θ-bridges.

3. A ΘNF-Hodge theatre (or �-Hodge theatre) is a collection

‡HT � =

(
‡F~ L99 ‡F}

‡ψNF
>←− ‡FJ

‡ψΘ
>−→ ‡F> 99K ‡HT Θ

)
,

where

(
‡F~ L99 ‡F}

‡ψNF
>←− ‡FJ

)
forms an NF-bridge, and

(
‡FJ

‡ψΘ
>−→ ‡F> 99K ‡HT Θ

)
forms a Θ-bridge, such that the associated D-NF-bridge ‡φNF

> and the associated

D-Θ-bridge ‡φΘ> form a D-�-Hodge theatre. An isomorphism of �-Hodge the-

atres is a pair of a morphism of NF-bridge and a morphism of Θ-bridge, which

induce the same bijection between the index sets of the respective capsules of F-
prime-strips. We define compositions of them in an obvious manner.
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Lemma 10.25. (Properties of NF-Brideges, Θ-Bridges, �-Hodge theatres, [IUTchI,

Corollary 5.6])

1. For NF-bridges 1ψNF
> , 2ψNF

> (resp. Θ-bridges 1ψΘ
>,

2ψΘ
>, resp. �-Hodge theatres

1HT �, 2HT �) whose associated D-NF-bridges (resp. D-Θ-bridges, resp. D-�-
Hodge theatres) are 1φNF

> , 2φNF
> (resp. 1φΘ>,

2φΘ>, resp.
1HT D-�, 2HT D-�) respec-

tively, the natural map

Isom(1ψNF
> , 2ψNF

> )→ Isom(1φNF
> , 2φNF

> )

(resp. Isom(1ψΘ
>,

2ψΘ
>)→ Isom(1φΘ>,

2φΘ>),

resp. Isom(1HT �, 2HT �)→ Isom(1HT D-�, 2HT D-�) )

is bijective.

2. For an NF-bridge ‡ψNF
> and a Θ-bridge ‡ψΘ

>, the set{
capsule-full poly-isom.

capsule-full poly
‡FJ

∼−→ ‡FJ ′ by which ‡ψNF
> , ‡ψΘ

> form a �-Hodge theatre

}

is an F>
l -torsor.

Proof. By using Lemma 10.10 (5), the claim (1) (resp. (2)) follows from Lemma 10.10

(1) (resp. (2)).

§ 10.5. The Additive Symmetry � : Θ±ell-Hodge Theatres and Θell-,

Θ±-Bridges.

We begin constructing the additive portion of full Hodge theatres.

Definition 10.26. ([IUTchI, Definition 6.1 (i)]) We call an element of Fo±
l

positive (resp. negative) if it is sent to +1 (resp. −1) by the natural surjction

Fo±
l � {±1}.

1. An F±
l -group is a set E with a {±1}-orbit of bijections E

∼→ Fl. Hence, any

F±l -group has a natural Fl-module structure.

2. An F±
l -torsor is a set T with an Fo±

l -orbit of bijections T
∼→ Fl (Here, F±l 3 (λ,±1)

is actingg on z ∈ Fl via z 7→ ±z + λ). For an F±l -torsor T , take an bijection

f : T
∼→ Fl in the given Fo±

l -orbit, then we obtain a subgroup

Aut+(T ) (resp. Aut±(T ) )

of Aut(Sets)(T ) by transporting the subgroup Fl ∼= {z 7→ z + λ for λ ∈ Fl} ⊂
Aut(Sets)(Fl) (resp. Fo±

l
∼= {z 7→ ±z + λ for λ ∈ Fl} ⊂ Aut(Sets)(Fl)) via f . Note
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that this subgroup is independent of the choice of f in its Fo±
l -orbit. Moreover, any

element of Aut+(T ) is independent of the choice of f in its Fl-orbit, hence, if we
consider f up to Fo±

l -orbit, then it gives us a {±1}-orbit of bijections Aut+(T )
∼→

Fl, i.e., Aut+(T ) has a natural F±l -group structure. We call Aut+(T ) the F±l -group
of positive automorphisms of T . Note that we have [Aut±(T ); Aut+(T )] = 2.

The following is an additive counterpart of Definition 10.14

Definition 10.27. ([IUTchI, Definition 6.1 (ii), (iii), (vi)]) Let †D = {†Dv}v∈V
be a D-prime-strip.

1. For v ∈ Vbad (resp. v ∈ Vgood ∩ Vnon), we can group-theoretically reconstruct

in a functorial manner, from π1(
†Dv), a tempered group (resp. a profinite group)

(⊃ π1(†Dv)) corresponding to Xv by Lemma 7.12 (resp. by Lemma 7.25). Let

†D±v

denote its B(−)0. We have a natural morphism †Dv → †D±v (This corresponds

to X
v
→ Xv (resp. X−→v

→ Xv)). Similarly, for v ∈ Varc, we can algorithmically

reconstruct, in a functorial manner, from †Dv, an Aut-holomorphic orbispace †D±v
corresponding to Xv by translating Lemma 7.25 into the theory of Aut-holomorphic

spaces (since X−→v
admits a Kv-core) with a natural morphism †Dv → †D±v . Put

†D± := {†D±v }v∈V.

2. Recall that we can algorithmically reconstruct the set of conjugacy classes of cuspi-

dal decomposition groups of π1(
†Dv) or π1(†D±v ) by Corollary 6.12 for v ∈ Vbad, by

Corollary 2.9 for v ∈ Vgood ∩Vnon, and by considering π0(−) of a cofinal collection

of the complements of compact subsets of the underlying topological space of †Dv
or †D±v for v ∈ Varc. We say them the set of cusps of †Dv or †D±

v .

For v ∈ V, a ±-label class of cusps of †Dv is the set of cusps of †Dv lying over

a single (not necessarily non-zero) cusp of †D±v . We write

LabCusp±(†Dv)

for the set of ±-label classes of cusps of †Dv. Note that LabCusp(†Dv) has a natural

F×l -action. Note also that, for any v ∈ V, we can algorithmically reconstruct a zero

element
†η0
v
∈ LabCusp±(†Dv),
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and a canonical element
†η±
v
∈ LabCusp±(†Dv)

which is well-defined up to multiplication by ±1, such that we have †η±
v
7→ †η

v

under the natural bijection{
LabCusp±(†Dv) \ {†η0v}

}
/{±1} ∼→ LabCusp(†Dv).

Hence, we have a natural bijection

LabCusp±(†Dv)
∼→ Fl,

which is well-defined up to multiplication by ±1, and compatible with the bijection

LabCusp(†Dv)
∼→ F>

l in Proposition 10.15, i.e., LabCusp±(†Dv) has a natural F±l -
group structure. This structure F±l -group gives us a natural surjection

Aut(†Dv)� {±1}

by considering the induced automorphism of LabCusp±(†Dv). Let

Aut+(
†Dv) ⊂ Aut(†Dv)

denote the kernel of the above surjection, and we call it the subgroup of positive

automorphisms Put Aut−(
†Dv) := Aut(†Dv) \ Aut+(

†Dv),and we call it the set

of negative automorphisms. Similarly, for α ∈ {±1}V, let

Aut+(
†D) ⊂ Aut+(

†D) (resp. Autα(
†D) ⊂ Aut+(

†D) )

denote the subgroup of automorphisms such that any v(∈ V)-component is positive

(resp. v(∈ V)-component is positive if α(v) = +1 and negetive if α(v) = −1),
and we call it the subgroup of positive automorphisms (resp. the subgroup of

α-signed automorphisms).

3. Let †D}± is a category equivalent to the model global object D}± in Definition 10.3.

Then by Remark 2.9.2, similarly we can define the set of cusps of †D}± and the

set of ±-label classes of cusps

LabCusp±(†D}±),

which can be identified with the set of cusps of †D}±.

Definition 10.28. ([IUTchI, Definition 6.1 (iv)]) Let †D = {†Dv}v∈V, ‡D =

{‡Dv}v∈V beD-prime-strips. For any v ∈ V, a+-full poly-isomorphism †Dv
+-full poly

∼−→
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‡Dv (resp. †D
+-full poly

∼−→ ‡D) is a poly-isomorphism obtained as the Aut+(
†Dv)-orbit

(resp. Aut+(
†D)-orbit) (or equivalently, Aut+(

‡Dv)-orbit (resp. Aut+(
‡D)-orbit)) of

an isomorphism †Dv
∼→ ‡Dv (resp. †D

∼→ ‡D). If †D = ‡D, then there are precisely two

+-full poly-isomorphisms †Dv
+-full poly

∼−→ †Dv (resp. the set of +-full poly-isomorphisms
†Dv

∼→ †Dv has a natural bijection with {±1}V). We call the +-full poly-isomorphism

determined by the identity automorphism positive, and the other one negative (resp.

the +-full poly-isomorphism corresponding to α ∈ {±1}V an α-signed +-full poly-

automorphism). A capsule-+-full poly-morphism between capsules of D-prime-

strips

{†Dt}t∈T
capsule-+-full poly

∼−→ {‡Dt′}t′∈T ′

is a collection of +-full poly-isomorphisms †Dt

+-full poly
∼−→ ‡Dι(t), relative to some injection

ι : T ↪→ T ′.

Definition 10.29. ([IUTchI, Definition 6.1 (v)]) As in Definition 10.16, we can

group-theoretically construct, from the model global object D}± in Definition 10.3, the

outer homomorphism

(Aut(XK) ∼=)Aut(D}±)→ GL2(Fl)/{±1}

determined by EF [l], by considering the Galois action on ∆ab
X ⊗Fl (The first isomorphism

follows from Theorem 3.17). Note that the image of the above outer homomorphism

contains the Borel subgroup

{(
∗ ∗
0 ∗

)}
of SL2(Fl)/{±1} since the covering XK � XK

corresponds to the rank one quotient ∆ab
X ⊗Fl � Q. This rank one quotient determines

a natural surjective homomorphism

Aut(D}±)� F>
l ,

which can be reconstructed group-theoretically fromD}±. Let Aut±(D}±) ⊂ Aut(D}±) ∼→
Aut(XK) denote the kernel of the above homomorphism. Note that the subgroup

Aut±(D}±) ⊂ Aut(D}±) ∼→ Aut(XK) contains AutK(XK), and acts transitively on

the cusps of XK . Next, let Autcusp(D}±) ⊂ Aut(D}±) denote the subgroup of auto-

morphisms which fix the cusps of XK (Note that we can group-theoretically reconstruct

this subgroup by Remark 2.9.2). Then we obtain natural outer isomorphisms

AutK(XK)
∼→ Aut±(D}±)/Autcusp(D}±) ∼→ Fo±

l ,

where the second isomorphism depends on the choice of the cusp ε of CK . See also the
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following diagram:

Aut(XK)
∼ // Aut(D}±) // // F>

l

AutK(XK)
?�

OO

� � //

∼

GG
Aut±(D}±) // //

?�

F>
l  

( ∗ ∗
0 ~

)
⊂ SL2(Fl)/{±1}

OO

Fo±
l

Autcusp(D}±).
?�

Fo±
l  

(
1 ~
0 ±

)OO

If we write Aut+(D}±) ⊂ Aut±(D}±) for the unique subgroup of index 2 containing

Autcusp(D}±), then the cusp ε determines a natural F±l -group structure on the subgroup

Aut+(D}±)/Autcusp(D}±) ⊂ Aut±(D}±)/Autcusp(D}±)

(corresponding to Gal(XK/XK) ⊂ AutK(XK)), and a natural F±l -torsor structure on

LabCusp±(D}±). Put also

V± := Aut±(D}±) · V = Autcusp(D}±) · V ⊂ V(K).

Note also that the subgoup Aut±(D}±) ⊂ Aut(D}±) ∼= Aut(XK) can be identified

with the subgroup of Aut(XK) which stabilises V±, and also that we can easily show

that V± = V±un (Definition 10.16) (cf. [IUTchI, Remark 6.1.1]).

Remark 10.29.1. Note that Fo±
l -symmetry permutes the cusps of XK without

permuting V± (⊂ V(K)), and is of geometric nature, which is suited to construct Hodge-

Arakelov-theoretic evaluation map (Section 11).

On the other hand, F>
l is a subquotient of Gal(K/F ) and F>

l -symmetry permutes

various F>
l -translates of V

± = V±un ⊂ VBor (⊂ V(K)), and is of arithmetic nature (cf.

[IUTchI, Remark 6.12.6 (i)]), which is suite to the situation where we have to consider

descend from K to Fmod. Such a situation induces global Galois permutations of various

copies of Gv (v ∈ Vnon) associated to distinct labels ∈ F>
l which are only well-defined

up to conjugacy indeterminacies, hence, F>
l -symmetry is ill-suited to construct Hodge-

Arakelov-theoretic evaluation map.

Remark 10.29.2. (cf. [IUTchII, Remark 4.7.6]) One of the important differences

of F>
l -symmetry and Fo±

l -symmetry is that F>
l -symmetry does not permute the label 0

with the other labels, on the other hand, Fo±
l -symmetry does.

We need to permute the label 0 with the other labels in Fo±
l -symmetry to perform

the conjugate synchronisation (See Corollary 11.16 (1)), which is used to construct
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“diagonal objects” or “horizontally coric objects” (See Corollary 11.16, Corollary 11.17,

and Corollary 11.24) or “mono-analytic cores” (In this sense, label 0 is closely related

to the units and additive symmetry. cf. [IUTchII, Remark 4.7.3]),

On the other hand, we need to separate the label 0 from the other labels in F>
l -

symmetry, since the simultaneous excutions of the final algorithms on objects in each

non-zero labels are compatible with each other by separating from mono-analytic cores

(objects in the label 0), i.e., the algorithm is multiradial (See Section 11.1, and §A.4),

and we perform Kummer theory for NF (Corollary 11.23) with F>
l -symmetry (since

F>
l -symmetry is of arithmetic nature, and suited to the situation involved Galois group

Gal(K/Fmod)) in the NF portion of the final algorithm. Note also that the value group

portion of the final algorithm, which involves theta values arising from non-zero labels,

need to be separated from 0-labelled objects (i.e., mono-analytic cores, or units). In

this sense, the non-zero labels are closely related to the value groups and multiplicative

symmetry.

Definition 10.30. (Model D-Θ±-Bridge, [IUTchI, Example 6.2]) In this defini-

tion, we regard Fl as an F±l -group. Let D� = {D�,v}v∈V, Dt = {Dvt}v∈V be copies of

the tautological D-prime-strip {Dv}v∈V for each t ∈ Fl (Here, vt denotes the pair (t, v)).

For each t ∈ Fl, let

φΘ
±

vt
: Dvt

+-full poly
∼−→ D�,v, φΘ

±

t : Dvt
+-full poly

∼−→ D�,v

be the positive +-full poly-isomorphisms respectively, with respect to the identifications

with the tautological D-prime-strip {Dv}v∈V. Then we put

φΘ
±

± := {φΘ
±

t }t∈Fl
: D± := {Dt}t∈Fl

poly−→ D�.

We call φΘ
±

± model base-(or D-)Θ±-bridge.

We have a natural poly-automorphism −1Fl
of order 2 on the triple (D±,D�, φ

Θ±

± )

as follows: The poly-automorphism −1Fl
acts on Fl as multiplication by −1, and induces

the poly-morphisms Dt

poly
∼−→ D−t (t ∈ Fl) and D�

+-full poly
∼−→ D� determined by the +-

full poly-automorphism whose sign at every v ∈ V is negative, with respect to the

identifications with the tautological D-prime-strip {Dv}v∈V. This −1Fl
is compatible

with φΘ
±

± in the obvious sense. Similarly, each α ∈ {±1}V determines a natural poly-

automorphism αΘ±
of order 1 or 2 as follows: The poly-automorphism αΘ±

acts on Fl
as the identity and the α-signed +-full poly-automorphism on Dt (t ∈ Fl) and D�. This

αΘ±
is compatible with φΘ

±

± in the obvious sense.

Definition 10.31. (Model D-Θell-Bridge, [IUTchI, Example 6.3]) In this defi-

nition, we regard Fl as an F±l -torsor. Let Dt = {Dvt}v∈V be a copy of the tautological
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D-prime-strip {Dv}v∈V for each t ∈ Fl, and put D± := {Dt}t∈Fl
as in Definition 10.30.

Let D}± be the model global object in Definition 10.3. In the following, fix an isomor-

phism LabCusp±(D}±) ∼→ Fl of F±l -torsor (See Definition 10.29). This identification

induces an isomorphism Aut±(D}±/Autcusp(D}±) ∼→ Fo±
l of groups For v ∈ Vbad

(resp. v ∈ Vgood ∩ Vnon, resp. v ∈ Varc), let

φΘ
ell

•,v : Dv −→ D}±

denote the natural morphism correpsonding to X
v
→ Xv → XK (resp. X−→v

→ Xv →

XK , resp. a tautological morphism Dv = X−→v
→ Xv

∼→ X(D}±, v) (See also Defini-

tion 10.11 (1), (2)).

Put

φΘ
ell

v0
:= Autcusp(D}±) ◦ φΘ

ell

•,v ◦Aut+(Dv0) : Dv0
poly−→ D}±,

and

φΘ
ell

0 := {φΘ
ell

v0
}v∈V : D0

poly−→ D}±.

Since φΘ
ell

0 is stable under the action of Autcusp(D}±), we obtain a poly-morphism

φΘ
ell

t := (action of t) ◦ φΘ
ell

0 : Dt
poly−→ D}±,

by post-composing a lift of t ∈ Fl ∼= Aut+(D}±)/Autcusp(D}±) (⊂ Fo±
l
∼= Aut±(D}±)

/Autcusp(D}±)) to Aut+(D}±). Hence, we obtain a poly-morphism

φΘ
ell

± := {φΘ
ell

t }t∈Fl
: D±

poly−→ D}±

from a capsule of D-prime-strip to the global object D}± (See Definition 10.11 (3)).

This is called the model base-(or D-)Θell-bridge.

Note that each γ ∈ Fo±
l gives us a natural poly-automorphism γ± of D± as follows:

The automorphism γ± acts on Fl via the usual action of Fo±
l on Fl, and induces the

+-full poly-isomorphism Dt

+-full poly
∼−→ Dγ(t) whose sign at every v ∈ V is equal to the

sign of γ. In this way, we obtain a natural poly-action of Fo±
l on D±. On the other

hand, the isomorphism Aut±(D}±)/Autcusp(D}±) ∼→ Fo±
l determines a natural poly-

action of Fo±
l on D}±. Note that φΘ

ell

± is equivariant with respect to these natural

poly-actions of Fo±
l on D± and D}±. Hence, we obtain a natural poly-action of Fo±

l

on (D±,D}±, φΘ
ell

± ).

Definition 10.32. (D-Θ±-Bridge, D-Θell-Bridge, D-�-Hodge Theatre, [IUTchI,

Definition 6.4])

1. A base-(or D-)Θ±-bridge is a poly-morphism

†φΘ
±

± : †DT
poly−→ †D�,
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where †D� is a D-prime-strip, and †DT is a cupsule of D-prime-strips indexed

by an F±l -group T , such that there exist isomorphisms D�
∼→ †D�, D±

∼→ †DT ,

whose induced morphism Fl
∼→ T on the index sets is an isomorphism of F±l -

groups, and conjugation by which sends φΘ
±

± 7→ †φΘ
±

± . An isomorphism of D-

Θ±-bridges
(
†φΘ

±

± : †DT
poly−→ †D�

)
∼→
(
‡φΘ

±

± : ‡DT ′
poly−→ ‡D�

)
is a pair of a

capsule-+-full poly-isomorphism
capsule-+full poly
†DT

∼−→ ‡DT ′ whose induced morphism T
∼→ T ′

on the index sets is an isomorphism of F±l -groups, and a +-full-poly isomorphism

†D�

+-full poly
∼→ ‡D�, which are compatible with †φΘ

±

± , ‡φΘ
±

± . We define compositions

of them in an obvious manner.

2. A base-(or D-)Θell-bridge is a poly-morphism

†φΘ
ell

± : †DT
poly−→ †D}±,

where †D}± is a category equivalent to the model global object D}±, and †DT

is a cupsule of D-prime-strips indexed by an F±l -torsor T , such that there exist

isomorphisms D}± ∼→ †D}±, D±
∼→ †DT , whose induced morphism Fl

∼→ T on

the index sets is an isomorphism of F±l -torsors, and conjugation by which sends

φΘ
ell

± 7→ †φΘ
ell

± . An isomorphism of D-Θell-bridges
(
†φΘ

ell

± : †DT
poly−→ †D}±

)
∼→(

‡φΘ
ell

± : ‡DT ′
poly−→ ‡D}±

)
is a pair of a capsule-+-full poly-isomorphism

capsule-+-full poly
†DT

∼−→ ‡DT ′

whose induced morphism T
∼→ T ′ on the index sets is an isomorphism of F±l -

torsors, and an Autcusp(
†D}±)-orbit (or, equivalently, an Autcusp(

‡D}±)-orbit)

†D}±
poly
∼→ ‡D}± of isomorphisms, which are compatible with †φΘ

ell

± , ‡φΘ
ell

± . We

define compositions of them in an obvious manner.

3. A base-(or D-)Θ±ell-Hodge theatre (or a D-�-Hodge theatre) is a collection

†HT D-� =

(
†D�

†φΘ±
±←− †DT

†φΘell

±−→ †D}±
)
,

where T is an F±l -group, †φΘ
ell

± is a D-Θell-bridge, and †φΘ
±

± is a D-Θ±-bridge, such
that there exist isomorphisms D}± ∼→ †D}±, D±

∼→ †DT , D�
∼→ †D�, conjugation

by which sends φΘ
ell

± 7→ †φΘ
ell

± , φΘ
±

± 7→ †φΘ
±

± . An isomorphism of D-�-Hodge

theatres is a pair of isomorphisms of D-Θell-bridges and D-Θ±-bridges such that

they induce the same poly-isomorphism of the respective capsules of D-prime-strips.

We define compositions of them in an obvious manner.

The following proposition is an additive analogue of Proposition 10.33, and follows

by the same manner as Proposition 10.33:
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Proposition 10.33. (Transport of ±-Label Classes of Cusps via Base-Bridges,

[IUTchI, Proposition 6.5]) Let †HT D-� = (†D�
†φΘ±

±←− †DT

†φΘell

±−→ †D}±) be a D-�-Hodge
theatre.

1. The D-Θell-bridge †φΘ
ell

± induces an isomorphism

†ζΘ
ell

vt
: LabCusp±(†Dvt)

∼→ LabCusp±(†D}±)

of F±l -torsors of ±-label classes of cusps for each v ∈ V, t ∈ T . Moreover, the

composite

†ξΘ
ell

vt,wt
:= (†ζΘ

ell

wt
)−1 ◦ (†ζΘ

ell

vt
) : LabCusp±(†Dvt)

∼→ LabCusp±(†Dwt
)

is an isomorphism of F±l -groups for w ∈ V. By these identifications †ξΘ
ell

vt,wt
of

F±l -groups LabCusp±(†Dvt) when we vary v ∈ V, we can write

LabCusp±(†Dt)

for them, and we can write the above isomorphism as an isomorphism

†ζΘ
ell

t : LabCusp±(†Dt)
∼→ LabCusp±(†D}±)

of F±l -torsors.

2. The D-Θ±-bridge †φΘ±

± induces an isomorphism

†ζΘ
±

vt
: LabCusp±(†Dvt)

∼→ LabCusp±(†D�,v)

of F±l -groups of ±-label classes of cusps for each v ∈ V, t ∈ T . Moreover, the

composites

†ξΘ
±

�,v,w := (†ζΘ
±

w0
) ◦ †ξΘ

ell

v0,w0
◦ (†ζΘ

±

v0
)−1 : LabCusp±(†D�,v)

∼→ LabCusp±(†D�,w),

†ξΘ
±

�,vt,wt
:= (†ζΘ

±

wt
)−1 ◦ †ξΘ

±

�,v,w ◦ (†ζΘ
±

vt
) : LabCusp±(†Dvt)

∼→ LabCusp±(†Dwt
)

(Here 0 denotes the zero element of the F±l -group T ) are isomorphisms of F±l -groups
for w ∈ V, and we also have †ξΘ

±

vt,wt
= †ξΘ

ell

vt,wt
. By these identifications †ξΘ

±

�,v,w of

F±l -groups LabCusp±(†D�,v) when we vary v ∈ V, we can write

LabCusp±(†D�)

for them, and the various †ζΘ
±

vt
’s, and †ζΘ

ell

vt
’s determine a single (well-defined)

isomorphism
†ζΘ

ell

t : LabCusp±(†Dt)
∼→ LabCusp±(†D�)

of F±l -groups.
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3. We have a natural isomorphism

†ζ± : LabCusp±(†D}±) ∼→ T

of F±l -torsors, by considering the inverse of the map T 3 t 7→ †ζΘ
ell

t (0) ∈ LabCusp±(†D}±),
where 0 denotes the zero element of the F±l -group LabCusp±(†Dt). Moreover, the

composite

(†ζΘ
ell

0 )−1 ◦ (†ζΘ
ell

t ) ◦ (†ζΘ
±

t )−1 ◦ (†ζΘ
±

0 ) : LabCusp±(†D0)
∼→ LabCusp±(†D0)

is equal to the action of (†ζΘ
ell

0 )−1((†ζ±)
−1(t)).

4. For α ∈ Aut±(
†D}±)/Autcusp(

†D}±), if we replece †φΘ
ell

± by α ◦ †φΘell

± , then the

resulting “†ζΘ
ell

t ” is related to the original †ζΘ
ell

t by post-composing with the image

of α via the natural bijection

Aut±(
†D}±)/Autcusp(

†D}±) ∼→ Aut±(LabCusp
±(†D}±))(∼= Fo±

l )

(See also Definition 10.29).

The following is an additive analogue of Proposition 10.20, and it follows from the

definitions:

Proposition 10.34. (Properties of D-Θ±-Brideges, D-Θell-Bridges, D-�-Hodge

theatres, [IUTchI, Proposition 6.6])

1. For D-Θ±-bridges †φΘ±

± , ‡φΘ
±

± , the set Isom(†φΘ
±

± , ‡φΘ
±

± ) is a {±1}×{±1}V -torsor,

where the first factor {±1} (resp. the second factor {±1}V) corresponds to the poly-

automorphism −1Fl
(resp. αΘ±

) in Definition 10.30.

2. For D-Θell-bridges †φΘ
ell

± , ‡φΘ
ell

± , the set Isom(†φNF
> , ‡φNF

> ) is an Fo±
l -torsor, and

we have a natural isomorphism Isom(†φNF
> , ‡φNF

> ) ∼= IsomF±
l -torsors(T, T

′) of Fo±
l -

torsors.

3. For D-�-Hodge theatres †HT D-�, ‡HT D-�, the set Isom(†HT D-�, ‡HT D-�) is

an {±1}-torsor, and we have a natural isomorphism Isom(†HT D-�, ‡HT D-�) ∼=
IsomF±

l -groups(T, T
′) of {±1}-torsors.

4. For a D-Θ±-bridge †φΘ±

± and a D-Θell-bridge †φΘ
ell

± , the set{
capsule-+-full poly-isom.

capsule-+-full poly
†DT

∼−→ †DT ′ by which †φΘ
±

± , †φΘ
ell

± form a D-�-Hodge theatre

}
is an Fo±

l × {±1}V -torsor, where the first factor Fo±
l (resp. the subgroup {±1} ×

{±1}V) corresponds to the Fo±
l in (2) (resp. to the {±1}×{±1}V in (1)). Moreover,

the first factor can be regarded as corresponding to the structure group of the Fo±
l -

torsor IsomF±
l -torsors(T, T

′).
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5. For a D-Θell-bridge †φΘ
ell

± , we have a functorial algorithm to construct, up to Fo±
l -

indeterminacy, a D-�-Hodge theatre whose D-Θell-bridge is †φΘ
ell

± .

Definition 10.35. ([IUTchI, Corollary 6.10]) Let †HT D-�, ‡HT D-� be D-�-
Hodge theatres. the base-(or D-)Θ±ell-link (or D-�-link)

†HT D-� D−→ ‡HT D-�

is the full poly-isomorphism

†D`>

full poly
∼−→ ‡D`>

between the mono-analyticisations of the D-prime-strips constructed in Lemma 10.38

in the next subsection.

Remark 10.35.1. In D-�-link, the D`-prime-strips are shared, but not the arith-

metically holomorphic structures. We can visualise the “shared” and “non-shared”

relation as follows:

†HT D-� −− > †D`> ∼= ‡D`> >−− ‡HT D-�

We call this diagram the étale-picture of D-�-Hodge theatres. Note that we have

a permutation symmetry in the étale-picture.

Definition 10.36. (Θ±-Bridge, Θell-Bridge, �-Hodge Theatre, [IUTchI, Deifi-

nition 6.11])

1. A Θ±-bridge is a poly-morphism

†ψΘ±

± : †FT
poly−→ ‡F�,

where †F� is an F-prime-strip, and †FT is a cupsule of F-prime-strips indexed

by an F±l -group T , which lifts (See Lemma 10.10 (2)) a D-Θ±-bridge †φΘ±

± :

†DT
poly−→ †D�. An isomorphism of Θ±-bridges

(
†ψΘ±

± : †FT
poly−→ †F�

)
∼→(

‡ψΘ±

± : ‡FT ′
poly−→ ‡F�

)
is a pair of poly-isomorphisms †FT

poly
∼−→ ‡FT ′ and †F�

poly
∼−→

‡F�, which lifts a morphism between the associated D-Θ±-bridges †φΘ±

± , ‡φΘ
±

± . We

define compositions of them in an obvious manner.

2. A Θell-bridge
†ψΘell

± : †FT
poly−→ †D}±,

where †D}± is a category equivalent to the model global object D}± in Defini-

tion 10.3, and †FT is a capsule of F-prime-strips indexed by an F±l -torsor T , is a
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D-Θell-bridge †φΘ
ell

± : †DT
poly−→ †D}±, where †DT is the associated capsule of D-

prime-strips to †FT . An isomorphism of Θell-bridges
(
†ψΘell

± : †FT
poly−→ †D}±

)
∼→(

‡ψΘell

± : ‡FT ′
poly−→ ‡D}±

)
is a pair of poly-isomorphisms †FT

poly
∼−→ ‡FT ′ and †D}±

poly
∼−→

‡D}±, which determines a morphism between the associated D-Θell-bridges †φΘ
ell

± ,
‡φΘ

ell

± . We define compositions of them in an obvious manner.

3. A Θ±ell-Hodge theatre (or a �-Hodge theatre) is a collection

†HT � =

(
†F�

†ψΘ±
±←− †FT

†ψΘell

±−→ †D}±
)
,

where †ψΘ±

± is a Θ±-bridge, and †ψΘell

± is a Θell-bridge, such that the associated

D-Θ±-bridge †φΘ±

± and the associated D-Θell-bridge †φΘ
ell

± form a D-�-Hodge the-

atre. An isomorphism of �-Hodge theatres is a pair of a morphism of Θ±-

bridge and a morphism of Θell-bridge, which induce the same bijection between the

respective capsules of F-prime-strips. We define compositions of them in an obvious

manner.

The following lemma follows from the definitions:

Lemma 10.37. (Properties of Θ±-Brideges, Θell-Bridges, �-Hodge theatres,

[IUTchI, Corollary 6.12])

1. For Θ±-bridges 1ψΘ±

± , 2ψΘ±

± (resp. Θell-bridges 1ψΘell

± , 2ψΘell

± , resp. �-Hodge the-

atres 1HT �, 2HT �) whose associated D-Θ±-bridges (resp. D-Θell-bridges, resp.

D-�-Hodge theatres) are 1φΘ
±

± , 2φΘ
±

± (resp. 1φΘ
ell

± , 2φΘ
ell

± , resp. 1HT D-�, 2HT D-�)
respectively, the natural map

Isom(1ψΘ±

± , 2ψΘ±

± )→ Isom(1φΘ
±

± , 2φΘ
±

± )

(resp. Isom(1ψΘell

± , 2ψΘell

± )→ Isom(1φΘ
ell

± , 2φΘ
ell

± ),

resp. Isom(1HT �, 2HT �)→ Isom(1HT D-�, 2HT D-�) )

is bijective.

2. For a Θ±-bridge ‡ψΘ±

± and a Θell-bridge ‡ψΘell

± , the set{
capsule-+-full poly-isom.

capsule-+-full poly
‡FT

∼−→ ‡FT ′ by which ‡ψΘ±

± , ‡ψΘell

± form a �-Hodge theatre

}

is an Fo±
l ×{±1}V -torsor. Moreover, the first factor can be regarded as correspond-

ing to the structure group of the Fo±
l -torsor IsomF±

l -torsors(T, T
′).
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§ 10.6. Θ±ellNF-Hodge Theatres — An Arithmetic Analogue of the

Upper Half Plane.

In this subsection, we combine the multiplicative portion of Hodge theatre and the

additive portion of Hodge theature to obtain full Hodge theatre.

Lemma 10.38. (From (D-)Θ±-Bridge To (D-)Θ-Bridge, [IUTchI, Definition 6.4

(i), Proposition 6.7, Definition 6.11 (i), Remark 6.12 (i)]) Let †φΘ
±

± : †DT
poly−→ †D� (resp.

†ψΘ±

± : †FT
poly−→ †F�) be a D-Θ±-bridge (resp. Θ±-bridge). Let

†D|T | (resp. †F|T | )

denote the l±-capsule (See Section 0.2 for l±) of D-prime-strips (resp. F-prime-strips)

obtained from l-capsule †DT (resp. †FT ) of D-prime-strips (resp. F-prime-strips) by

forming the quotient |T | of the index set T by {±1}, and identifying the components of

the cupsule †DT (resp. †FT ) in the same fibers of T � |T | via the components of the

poly-morphism †φΘ
±

± = {†φΘ±

t }t∈T (resp. †ψΘ±

± = {†ψΘ±

t }t∈T ) (Hence, each component

of †D|T | (resp.
†F|T |) is only well-defined up to a positive automorphism). Let also

†DT> (resp. †FT> )

denote the l>-capsule determined by the subset T> := |T | \ {0} of non-zero elements of

|T |.
We identify †D0 (resp. †F0) with †D� (resp. †F�) via †φΘ

±

0 (resp. †ψΘ±

0 ), and

let †D> (resp. †F>) denote the resulting D-prime-strip (resp. F-prime-strip) (i.e.,

>= {0,�}). For v ∈ Vgood, we replace the +-full poly-morphism at v-component of
†φΘ

±

± (resp. †ψΘ±

± ) by the full poly-morphism. For v ∈ Vbad, we replace the +-full

poly-morphism at v-component of †φΘ
±

± (resp. †ψΘ±

± ) by the poly-morphism determined

by (group-theoretically reconstructed) evaluation section as in Definition 10.17 (resp. by

the poly-morphism lying over (See Definition 10.23 (1), (2), and Remark 10.10.1) the

poly-morphism determined by (group-theoretically reconstructed) evaluation section as

in Definition 10.17). Then we algorithmically obtain a D-Θ-bridge (resp. a potion of

Θ-bridge)
†φΘ> : †DT>

poly−→ †D> (resp. †ψΘ
> : †FT>

poly−→ †F> )

in a functorial manner. See also the following:

†D0,
†D� 7→ †D>,

†F0,
†F� 7→ †F>,

†Dt,
†D−t (t 6= 0) 7→ †D|t|,

†Ft,
†F−t (t 6= 0) 7→ †F|t|

†DT |T\{0} 7→ †DT> , †FT |T\{0} 7→ †FT> ,

where |t| denotes the image of t ∈ T under the surjection T � |T |.
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Definition 10.39. ([IUTchI, Remark 6.12.2]) Let †FT
poly−→ †F� be a Θ±-bridge,

whose associated D-Θ±-bridge is †DT
poly−→ †D�. Then we have a group-theoretically

functorial algorithm for constructing a D-Θ-bridge †DT>
poly−→ †D> from the D-Θ±-

bridge †DT
poly−→ †D� by Lemma 10.38. Suppose that this D-Θ-bridge †DT>

poly−→ †D>

arises as the D-Θ-bridge associated to a Θ-bridge ‡FJ
poly−→ ‡D> 99K ‡HT Θ, where

J = T>:
†FT

poly−→ †F�_

��

‡FJ
poly−→ ‡D> 99K ‡HT Θ

_

��
†DT

poly−→ †D�
� // †DT>

poly−→ †D>.

Then the poly-morphism ‡FJ
poly−→ ‡F> lying over †DT>

poly−→ †D> is completely de-

termined (See Definition 10.23 (1), (2), and Remark 10.10.1). Hence, we can regard

this portion ‡FJ
poly−→ ‡F> of the Θ-bridge as having been constructed via the func-

torial algorithm of Lemma 10.38. Moreover, by Lemma 10.25 (1), the isomorphisms

between Θ-bridges have a natural bijection with the the isomorphisms between the

“‡FJ
poly−→ ‡F>”-portion of Θ-bridges.

In this situation, we say that the Θ-bridge ‡FJ
poly−→ ‡D> 99K ‡HT Θ (resp. D-Θ-

bridge †DT>
poly−→ †D>) is glued to the Θ±-bridge †FT

poly−→ †F� (resp. D-Θ±-bridge
†DT

poly−→ †D�) via the functorial algorithm in Lemma 10.38. Note that, by Proposi-

tion 10.20 (2) and Lemma 10.25 (1), the gluing isomorphism is unique.

Definition 10.40. (D-��-Hodge Theatre, ��-Hodge Theatre, [IUTchI, Defi-

nition 6.13])

1. A base-(or D-)Θ±ellNF-Hodge theatre †HT D-�� is a tripe of a D-�-Hodge

theatre †HT D-�, a D-�-Hodge theatre †HT D-�, and the (necessarily unique) gluing

isomorphism between †HT D-� and †HT D-�. We define an isomorphism of D-�
�-Hodge theatres in an obvious manner.

2. A Θ±ellNF-Hodge theatre †HT �� is a tripe of a �-Hodge theatre †HT �, a

�-Hodge theatre †HT �, and the (necessarily unique) gluing isomorphism between
†HT � and †HT �. We define an isomorphism of ��-Hodge theatres in an

obvious manner.

§ 11. Hodge-Arakelov-theoretic Evaluation Maps.

§ 11.1. Radial Environments.

In inter-universal Teichmüller theory, not only the existence of functorial group-

theoretic algorithms, but also the contents of algorithms are important. In this subsec-
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tion, we introduce important notions of coricity, uniradiality, and multiradiality for the

contents of algorithms.

Definition 11.1. (Radial Environment, [IUTchII, Example 1.7, Example 1.9])

1. A radial environment is a triple (R, C,Φ), where R, C are groupoids (i.e., cate-

gories in which all morphisms are isomorphisms) such that all objects are isomor-

phic, and Φ : R → C is an essentially surjective functor (In fact, in our mind, we

expect that R and C are collections of certain “type of mathematical data” (i.e.,

species), and Φ is “algorithmically defined” functor (i.e., mutations). In this

survey, we avoid the rigorous formulation of the language of species and mutations

(See [IUTchIV, §3]), and we just assume that R, C to be as above, and Φ to be a

functor. See also Remark 3.4.4 (2)). We call C a coric category an object of C a

coric data, R a radial category an object of R a radial data, and Φ a radial

algorithm.

2. We call Φ multiradial, if Φ is full. We call Φ uniradial, if Φ is not full. We

call (R, C,Φ) multiradial environment (resp. uniradial environment), if Φ is

multiradial (resp. uniradial).

Note that, if Φ is uniradial, then an isomoprhism in C does not come from an

isomorphism in R, which means that an object of R loses a portion of rigidity by

Φ, i.e., might be subject to an additional indeterminacy (From another point of

view, the liftability of isomorphism, i.e., multiradiality, makes possible doing a kind

of parallel transport from another radial data via the associated coric data. See

[IUTchII, Remark 1.7.1]).

3. Let (R, C,Φ) be a radial environment. Let †R be another groupoid in which all

objects are isomorphic, †Φ : †R → C an essentially surjective functor, and ΨR :

R → †R a functor. We call ΨR multiradially defined) or multiradial (resp.

uniradially defined) or uniradial if Φ is multiradial (resp. uniradial) and if the

diagram

R ΨR //

Φ

��

†R

†Φ~~}}
}}
}}
}}

C

is 1-commutative. We call ΨR corically defined (or coric), if ΨR has a fac-

torisation ΞR ◦ Φ, where ΞR : C → †R is a functor, and if the above diagram is

1-commutative.

4. Let (R, C,Φ) be a radial environment. Let E be another groupoid in which all
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objects are isomorphic, and Ξ : R → E a functor. Let

Graph(Ξ)

denote the category whose objects are pairs (R,Ξ(R)) for R ∈ Ob(R), and whose

morphisms are the pairs of morphisms (f : R→ R′,Ξ(f) : Ξ(R)→ Ξ(R′)). We call

Graph(Ξ) the graph of Ξ. We have a commutative diagram

R

Φ

��

ΨΞ // Graph(Ξ)

ΦGraph(Ξ)zzvvv
vvv

vvv
v

C,

of natural functors, where ΨΞ : R 7→ (R,Ξ(R)) and ΦGraph(Ξ) : (R,Ξ(R)) 7→ Φ(R).

Remark 11.1.1. ([IUTchII, Example 1.7 (iii)]) A crucial fact on the consequence

of the multiradiality is the following: For a radial environment (R, C,Φ), let R ×C R
denote the category whose objects are triple (R1, R2, α), where R1, R2 ∈ Ob(R), and
α is an isomorphism Φ(R1)

∼→ Φ(R2), and whose morphisms are morphisms of triples

defined in an obvious manner. Then the switching functor

R×C R → R×C R : (R1, R2, α) 7→ (R2, R1, α
−1)

preserves the isomorphism class of objects of R ×C R, if Φ is multiradial, since any

object (R1, R2, α) in R×C R is isomorphic to the object (R1, R1, id : Φ(R1)
∼→ Φ(R1)).

This means that, if the radial algorithm is multiradial, then we can switch two radial

data up to isomorphism.

Ultimately, in the final multiradial algorithm, we can “switch”, up to isomor-

phism, the theta values (more precisely, Θ-pilot object, up to mild indeterminacies)

“{‡qj2
v
}1≤j≤l>” on the right hand side of (the final update of) Θ-link to the theta values

(more precisely, Θ-pilot object, up to mild indeterminacies) “{†qj2
v
}1≤j≤l>” on the left

hand side of (the final update of) Θ-link, which is isomorphic to ‡q
v
(more precisely,

q-pilot object, up to mild indeterminacies) by using the Θ-link compatibility of the final

multiradial algorithm (Theorem 13.12 (3)):

{‡qj
2

v
}N1≤j≤l>

!!! {†qj
2

v
}N1≤j≤l> ∼= ‡qN

v

Then we cannot distinguish {‡qj2
v
}1≤j≤l> from ‡q

v
up to mild indeterminacies (i.e.,

(Indet ↑), (Indet →), and (Indet xy)), which gives us a upper bound of height function

(See also Appendix A).
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Example 11.2.

1. A classical example is holomorphic structures on R2:

†C_
forget

��
R2 ‡C,�

forget
oo

where R is the category of 1-dimensional C-vector spaces and isomorphisms of C-
vector spaces, C is the category of 2-dimensional R-vector spaces and isomorphisms

of R-vector spaces, and Φ sends 1-dimensional C-vector spaces to the underlying

R-vector spaces. Then the radial environment (R, C,Φ) is uniradial. Note that

the underlying R2 is shared (i.e., coric), and that we cannot see one holomorphic

structure †C from another holomorphic structure ‡C.

Next, we replace R by the category of 1-dimensional C-vector spaces †C equipped

with the GL2(R)-orbit of an isomorphism †C ∼→ R2 (for a fixed R2). Then the

resulting radial environment (R, C,Φ) is tautologically multiradial:

(†C ∼→ R2 x GL2(R))_

forget

��
R2 (‡C ∼→ R2 x GL2(R)).�

forget
oo

Note that the underlying R2 is shared (i.e., coric), and that we can describe the

difference between one holomorphic structure †C and another holomorphic structure
‡C in terms of the underlying analytic structure R2.

2. An arithmetic analogue of the above example is as follows: As already explained

in Section 3.5, the absolute Galois group Gk of an MLF k has an automorphism

which does not come from any automorphism of fields (at least in the case where

the residue characteristic is 6= 2), and one “dimension” is rigid, and the other

“dimension” is not rigid, hence, we consider Gk as a mono-analytic structure. On

the other hand, from the arithmetic fundamental group ΠX of hyperbolic orbicurve

X of strictly Belyi type over k, we can reconstruct the field k (Theorem 3.17),

hence, we consider ΠX as an arithmetically holomorphic structure, and the quotient

(ΠX �)Gk (group-theoretically reconstructable by Corollary 2.4) as the underlying

mono-analytic structure. For a fixed hyperbolic orbicurve X of strictly Belyi type

over an MLF k, let R be the category of topological groups isomorphic to ΠX

and isomorphisms of topological groups, and C the category of topological groups
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isomorphic to Gk and isomorphisms of topological groups, and Φ be the functor

which sends Π to the group-theoretically reconstructed quotien (Π�)G. Then the

radial environment (R, C,Φ) is uniradial:
†Π_

��
†G

∃∼= Gk
∃∼= ‡G ‡Π.�oo

Next, we replaceR by the category of topological groups isomorphic to ΠX equipped

with the full-poly isomorphism G
∼→ Gk, where (Π �)G is the group-theoretic re-

constructed quotient. Then the resulting radial environment (R, C,Φ) is tautologi-
cally multiradial:

(†Π� †G
full poly
∼→ Gk)_

��

†G
full poly∼= Gk

full poly∼= ‡G (‡Π� †G
full poly
∼→ Gk).

�oo

See also the following table (cf. [Pano, Fig. 2.2, Fig. 2.3]):

coric underlying analytic str. R2 G

uniradial holomorphic str. C Π

multiradial holomorphic str. described C ∼→ R2 x GL2(R2) Π/∆
full poly
∼−→ G

in terms of underlying coric str.

In the final multiradial algorithm (Theorem 13.12), which admits mild indetermi-

nacies, we describe the arithmetically holomorphic structure on one side of (the final

update of) Θ-link from the one on the other side, in terms of shared mono-analytic

structure.

Definition 11.3. ([IUTchII, Definition 1.1, Proposition 1.5 (i), (ii)]) Let MΘ
∗ =

(· · · ← MΘ
M ← MΘ

M ′ ← · · · ), be a projective system of mono-theta environments de-

termined by X
v

(v ∈ Vbad), where MΘ
M = (ΠMΘ

M
,DMΘ

M
, sΘMΘ

M
). For each N , by Corol-

lary 7.22 (3) and Lemma 7.12, we can functorially group-theoretically reconstruct, from
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MΘ
N , a commutative diagram

Gv(MΘ
N )

Πtemp

MΘ
N

// // Πtemp
Y (MΘ

N ) �
� //

88 88ppppppppppp
Πtemp
X (MΘ

N ) �
� //

OOOO

Πtemp
X (MΘ

N ) �
� //

ffffNNNNNNNNNNN

Πtemp
C (MΘ

N )

kkkkVVVVVVVVVVVVVVVVVVVVVVVV

µN (MΘ
N ) �

� //
, �

;;vvvvvvvvv
∆temp

MΘ
N

// //
?�

OO

∆temp
Y (MΘ

N )
?�

OO

� � // ∆temp
X (MΘ

N ) �
� //

?�

OO

∆temp
X (MΘ

N ) �
� //

?�

OO

∆temp
C (MΘ

N )
?�

OO

of topological groups, which is an isomorph of

Gv

Πtemp
Y [µN ] // // Πtemp

Y
� � //

;; ;;wwwwwwwww
Πtemp
X

� � //

OOOO

Πtemp
X

� � //

ccccGGGGGGGGG

Πtemp
C

iiiiSSSSSSSSSSSSSSSSSSSS

µN
� � //- 


;;wwwwwwwwww
∆temp
Y [µN ] // //

?�

OO

∆temp
Y

?�

OO

� � // ∆temp
X

� � //
?�

OO

∆temp
X

� � //
?�

OO

∆temp
C .
?�

OO

For each N , by Theorem 7.23 (1), we can also functorially group-theoretically recon-

struct an isomorph (l∆Θ)(MΘ
N ) of the internal cyclotome and the cyclotomic rigidity

isomorphism

(l∆Θ)(MΘ
N )⊗ (Z/NZ) ∼→ µN (MΘ

N ).

The transition morphisms of the resulting projective system {· · · ← Πtemp
X (MΘ

M )←
Πtemp
X (MΘ

M ′)← · · · } are all isomorphism. We identify these topological groups via these

transition morphisms, and let Πtemp
X (MΘ

∗ ) denote the resulting topological group. Simi-

larly, we defineGv(MΘ
∗ ), Π

temp
Y (MΘ

∗ ), Π
temp
X (MΘ

∗ ), Π
temp
C (MΘ

∗ ), ∆
temp
Y (MΘ

∗ ), ∆
temp
X (MΘ

∗ ),

∆temp
X (MΘ

∗ ), ∆
temp
C (MΘ

∗ ), (l∆Θ)(MΘ
∗ ) fromGv(MΘ

∗ ), Π
temp
Y (MΘ

N ), ∆temp
Y (MΘ

N ), ∆temp
X (MΘ

N ),

(l∆Θ)(MΘ
N ) respectively. We put µẐ(M

Θ
∗ ) := lim←−N µN (MΘ

N ), then we obtain a cyclo-

tomic rigidity isomorphism

(l∆Θ)(MΘ
∗ )
∼→ µẐ(M

Θ
∗ ).

Proposition 11.4. (Multiradial Mono-theta Cyclotomic Rigidity, [IUTchII, Corol-

lary 1.10]) Let Πv be the tempered fundamental group of the local model objects X
v
for

v ∈ Vbad in Definition 10.2 (1), and (Πv �)Gv the quotient group-theoretically recon-

structed by Lemma 6.2.
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1. Let C` be the category whose objects are

Gy O×µ(G),

where G is a topological group isomorphic to Gv, O
×µ(G) is the group-theoretically

reconstructed monoid by Proposition 5.2 (Step 1) and Definition 8.5 (1), and whose

morphisms (G y O×µ(G))
∼→ (G′ y O×µ(G′)) are pairs of the isomorphism

G
∼→ G′ of topological groups, and an Isomet(G)-multiple of the functorially group-

theoretically reconstructed isomorphism O×µ(G)
∼→ O×µ(G′) from the isomorphism

G
∼→ G′.

2. Let RΘ be the category whose objects are triples(
Π y µẐ(M

Θ
∗ (Π))⊗Q/Z , Gy O×µ(G) , αµ,×µ : (Π y µẐ(M

Θ
∗ (Π))⊗Q/Z) poly−→ (Gy O×µ(G))|Π

)
,

where Π is a topological group isomorphic to Πv, the topological group (Π�)G is the

quotient group-theoretically reconstructed by Lemma 6.2, the notation (−)|Π denotes

the restriction via Π� G, the notation µẐ(M
Θ
∗ (Π)) denotes the external cyclotome

(See just after Theorem 7.23) of the projective system of mono-theta environment

MΘ
∗ (Π) group-theoretically reconstructed from Π by Corollary 7.22 (2) (Note that

such a projective system is uniquely determined, up to isomorphism, by the discrete

rigidity (Theorem 7.23 (2))), and αµ,×µ is the composite

µẐ(M
Θ
∗ (Π))⊗Q/Z ↪→ O×(Π)� O×µ(Π)

poly
∼→ O×µ(G)

of ind-topological modules equipped with topological group actions, where the first

arrow is given by the composite of the tautological Kummer map for MΘ
∗ (Π) and

the inverse of the isomorphism induced by the cyclotomic rigidity isomorphism of

mono-theta environment (cf. the diagrams in Proposition 11.7 (1), (4)), the second

arrow is the natural surjection and the last arrow is the poly-isomorphism induced

by the full poly-isomorphism Π/∆
full poly
∼→ G (Note that the composite of the above

diagram is equal to 0), and whose morphisms are pairs (fΠ, fG) of the isomorphism

fΠ : (Π y µẐ(M
Θ
∗ (Π))⊗Q/Z) ∼→ (Π′ y µẐ(M

Θ
∗ (Π

′))⊗Q/Z) of ind-topological mod-

ules equipped with topological group actions induced by an isomorphism Π
∼→ Π′ of

topological groups with an Isomet(G)-multiple of the functorially group-theoretically

reconstructed isomorphism µẐ(M
Θ
∗ (Π))⊗Q/Z ∼→ µẐ(M

Θ
∗ (Π

′))⊗Q/Z, and the iso-

morphism fG : (G y O×µ(G))
∼→ (G′ y O×µ(G′)) of ind-topological modules

equipped with topological group actions induced by an isomorphism G
∼→ G′ of topo-

logical groups with an Isomet(G)-multiple of the functorially group-theoretically re-

constructed isomorphism O×µ(G)
∼→ O×µ(G′) (Note that these isomorphisms are

automatically compatible αµ,×µ and α′µ,×µ in an obvious sense).
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3. Let ΦΘ : RΘ → C` be the essentially surjective functor, which sends (Π y µẐ(M
Θ
∗ (Π))⊗

Q/Z, Gy O×µ(G), αµ,×µ) to Gy O×µ(G), and (fΠ, fG) to fG.

4. Let EΘ be the category whose objects are the cyclotomic rigidity isomorphisms

of mono-theta environments

(l∆Θ)(Π)
∼→ µẐ(M

Θ
∗ (Π))

reconstructed group-theoretically by Theorem 7.23 (1), where Π is a topological

group isomorphic to Πv, the cyclomotmes (l∆Θ)(Π) and µẐ(M
Θ
∗ (Π)) are the in-

ternal and external cyclotomes respectively group-theoretically reconstructed from Π

by Corollary 7.22 (1), and whose morphisms are pair of isomorphisms (l∆Θ)(Π)
∼→

(l∆Θ)(Π
′) and µẐ(M

Θ
∗ (Π))

∼→ µẐ(M
Θ
∗ (Π

′)) which are induced functorially group-

theoretically reconstructed from an isomorphism of topological groups Π
∼→ Π′.

5. Let ΞΘ : RΘ → EΘ be the functor, which sends (Π y µẐ(M
Θ
∗ (Π)) ⊗ Q/Z, G y

O×µ(G), αµ,×µ) to the cyclotomic rigidity isomorphisms of mono-theta environ-

ments (l∆Θ)(Π)
∼→ µẐ(M

Θ
∗ (Π)) reconstructed group-theoretically by Theorem 7.23

(1), and (fΠ, fG) to the isomorphism functorially group-theoretically reconstructed

from Π
∼→ Π′.

Then the radial environment (RΘ, C`,ΦΘ) is multiradial, and ΨΞΘ is multiradially de-

fined, where ΨΞΘ the naturally defined functor

RΘ
ΨΞΘ //

ΦΘ

��

Graph(ΞΘ)

ΦGraph(ΞΘ)yysss
ss
ss
ss
s

C`

by the construction of the graph of ΞΘ.

Proof. By noting that the composition in the definition of αµ,×µ is 0, and that

we are considering the full poly-isomorphism Π/∆
full poly
∼−→ G, not the tautological single

isomorphism Π/∆
∼→ G, the proposition immediately from the definitions.

Remark 11.4.1. Let see the diagram

†Π y µẐ(M
Θ
∗ (
†Π))⊗Q/Z

_

��
(†Gy O×µ(†G)) ∼= (‡Gy O×µ(‡G)) ‡Π y µẐ(M

Θ
∗ (
‡Π))⊗Q/Z,�oo
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by dividing into two portions:

†Π_

†Π/†∆

full poly
∼−→ G

��
G ‡Π.�

‡Π/‡∆

full poly
∼−→ G

oo

†µ

0

��
O×µ ‡µ,

0
oo

On the left hand side, by “loosening” (cf. taking GL2(R)-obit in Exapmle 11.2) the

natural single isomorphisms †Π/†∆
∼→ G, ‡Π/‡∆

∼→ G by the full poly-isomorphisms

(This means that the rigidification on the underlying mono-analytic structure G by

the arithmetically holomorphic structure Π is resolved), we make the topological group

portion of the functor Φ full (i.e., multiradial).

On the right hand side, the fact that the map µ→ O×µ is equal to zero makes the

ind-topological module portion of the functor Φ full (i.e., multiradial). This means that

it makes possible to “simultaneously perform” the algorithm of the cyclotomic rigidity

isomorphism of mono-theta environment without making harmfull effects on other radial

data, since the algorithm of the cyclotomic rigidity of mono-theta environment uses

only µ-portion (unlike the one via LCFT uses the value group portion as well), and

the µ-portion is separated from the relation with the coric data, by the fact that tha

homomorphism µ→ O×µ is zero.

For the cyclotomic rigidity via LCFT, a similarly defined radial environment is

uniradial, since the cyclotomic rigidity via LCFT uses the value group portion as well,

and the value group portion is not separated from the coric data, and makes harmfull

effects on other radial data. Even in this case, we replace O�(−) by O×(−), and we

admit Ẑ×-indeterminacy on the cyclotomic rigidity, then it is tautologically multiradial

as seen in the following proposition:

Proposition 11.5. (Multiradial LCFT Cyclotomic Rigidity with Indetermina-

cies, [IUTchII, Corollary 1.11]) Let Πv be the tempered fundamental group of the local

model objects X
v
for v ∈ Vbad in Definition 10.2 (1), and (Πv �)Gv the quotient

group-theoretically reconstructed by Lemma 6.2.

1. Let C` be the same category as in Proposition 11.4.

2. Let RLCFT be the category whose objects are triples(
Π y O�(Π) , Gy Oĝp(G) , α�,×µ,

)
,

where Π is a topological group isomorphic to Πv, the topological group (Π �)G

is the quotient group-theoretically reconstructed by Lemma 6.2, O�(Π) is the ind-
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topological monoid determined by the ind-topological field group-theoretically recon-

structed from Π by Corollary 3.19 and αµ,×µ is the following diagram:

(Π y O�(Π)) ↪→ (Π y Oĝp(Π))

Ẑ×-orbit

poly
∼→ (Gy Oĝp(G))|Π ←↩ (Gy O×(G))|Π � (Gy O×µ(G))|Π

of ind-topological monoids equipped with topological group actions determined by the

Ẑ×-orbit of the poly-morphism determined by the full poly-morphism Π/∆
full poly
∼−→

G, where ∆ := ker(Π � G) and the natural homomorphisms, where Oĝp(Π) :=

lim−→J⊂Π : open
(O�(Π)gp)J (resp. Oĝp(G) := lim−→J⊂G : open

(O�(G)gp)J), and whose

morphisms are pairs (fΠ, fG) of the isomorphism fΠ : (Π y O�(Π))
∼→ (Π′ y

O�(Π′)) of ind-topological monoids equipped with topological group actions induced

by an isomorphism Π
∼→ Π′ of topological groups with an Isomet(G)-multiple of

the functorially group-theoretically reconstructed isomorphism O�(Π)
∼→ O�(Π′),

and the isomorphism fG : (G y Oĝp(G))
∼→ (G′ y Oĝp(G′)) of ind-topological

groups equipped with topological group actions induced by an isomorphism G
∼→ G′ of

topological groups with an Isomet(G)-multiple of the functorially group-theoretically

reconstructed isomorphism Oĝp(G)
∼→ Oĝp(G′) (Note that these isomorphisms are

automatically compatible α�,×µ and α′�,×µ in an obvious sense).

3. Let ΦLCFT : RLCFT → C` be the essentially surjective functor, which sends (Π y
O�(Π), G y Oĝp(G), α�,×µ) to G y O×µ(G), and (fΠ, fG) to the functorially

group-theoretically reconstructed isomorphism (Gy O×µ(G))
∼→ (G′ y O×µ(G′)).

4. Let ELCFT be the category whose objects are the pairs of the Ẑ×-orbit (= the full

poly-isomorphism, cf. Remark 3.19.2 in the case of O×)

µẐ(G)
poly
∼→ µẐ(O

×(G))

of cyclotomic rigidity isomorphisms via LCFT reconstructed group-theoretically

by Remark 3.19.2 (for M = O×(G)), and the Aut(G)-orbit (which comes from

the full poly-isomorphism Π/∆
full poly
∼−→ G)

µẐ(G)
poly
∼→ (l∆Θ)(Π)

of the isomorphism obtained as the composite of the cyclotomic rigidity isomor-

phism via positive rational structure and LCFT µẐ(G)
∼→ µẐ(Π) group-theoretically

reconstructed by Remark 6.12.2 and the cyclotomic rigidity isomorphism µẐ(Π)
∼→

(l∆Θ)(Π) group-theoretically reconstructed by Remark 9.4.1, where Π is a topolog-

ical group isomorphic to Πv, the topological group (Π �)G is the quotient group-

theoretically reconstructed by Lemma 6.2, and (l∆Θ)(Π) is the internal cyclotome
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group-theoretically reconstructed from Π by Corollary 7.22 (1), and whose mor-

phisms are triple of isomorphisms µẐ(G)
∼→ µẐ(G

′), µẐ(O
×(G))

∼→ µẐ(O
×(G′))

and (l∆Θ)(Π)
∼→ (l∆Θ)(Π

′) which are induced functorially group-theoretically re-

constructed from an isomorphism of topological groups Π
∼→ Π′.

5. Let ΞLCFT : RLCFT → ELCFT be the functor, which sends (Π y O�(Π), G y
Oĝp(G), α�,×µ) to the pair of group-theoretically reconstructed isomorphisms, and

(fΠ, fG) to the isomorphism functorially group-theoretically reconstructed from Π
∼→

Π′.

Then the radial environment (RLCFT, C`,ΦLCFT) is multiradial, and ΨΞLCFT is multi-

radially defined, where ΨΞLCFT the naturally defined functor

RLCFT
ΨΞLCFT//

ΦLCFT

��

Graph(ΞLCFT)

ΦGraph(ΞLCFT)wwooo
ooo

ooo
ooo

C`

by the construction of the graph of ΞLCFT.

Definition 11.6. ([IUTchII, Remark 1.4.1 (ii)]) Recall that we have hyperbolic

orbicurves X
v
� Xv � Cv for v ∈ Vbad, and a rational point

µ− ∈ Xv(Kv)

(i.e., “−1” in Grig
m /qZXv

. See Definition 10.17). The unique automorphism ιX of X
v

of order 2 lying over ιX (See Section 7.3 and Section 7.5) corresponds to the unique

∆temp
X

v

-outer automorphism of Πtemp
X

v

over Gv of order 2. Let also ιX denote the latter

automorphism by abuse of notation. We also have tempered coverings Ÿ
v
� Y

v
� X

v
.

Note that we can group-theoretically reconstruct Πtemp

Ÿ
v

, Πtemp
Y

v

from ΠX
v
by Corol-

lary 7.22 (1) and the description of Ÿ � Y . Let Πtemp

Ÿ
v

(Π), Πtemp
Y

v

(Π) denote the

reconstructed ones from a topological group Π isomorphic to ΠẌ
v

, respectively. Since

Kv contains µ4l, there exist rational points

(µ−)Ÿ ∈ Ÿ v(Kv), (µ−)X ∈ Xv
(Kv),

such that (µ−)Ÿ 7→ (µ−)X → µ−. Note that ιX fixes the Gal(X
v
/Xv)-orbit of (µ−)X ,

since ιX fixes µ−, hence ιX fixes (µ−)X , since Aut(X
v
) ∼= µl × {±1} by Remark 7.12.1

(Here, ιX corresponds to the second factor of µl × {±1} since l 6= 2). Then it follows

that there exists an automorphism

ιŸ
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of Ÿ of order 2 lifting ιX , which is uniquely determined up to lZ-conjugacy and composi-

tion with an element ∈ Gal(Ÿ
v
/Y

v
) ∼= µ2, by the condition that it fixes the Gal(Ÿ

v
/Y

v
)-

orbit of some element (“(µ−)Ÿ ” by abuse of nonation) of the Gal(Ÿ
v
/Xv)(

∼= lZ× µ2)-

orbit of (µ−)Ÿ . Let ιŸ also denote the corresponding ∆temp

Ÿ
v

-outer automorphism of

Πtemp

Ÿ
v

by abuse of notation. We call ιŸ an inversion automorphism as well. Let

ιŸ denote the automorphism of Ÿv induced by ιŸ .

Let

Dµ− ⊂ Πtemp

Ÿ
v

denote the decomposition group of (µ−)Ÿ , which is well-defined up to ∆temp

Ÿ
v

-conjugacy.

Hence, Dµ− is determined by ιŸ up to ∆temp
Yv

-conjugacy. We call the pairs

(
ιŸ ∈ Aut(Ÿ

v
) , (µ−)Ÿ

)
, or

(
ιŸ ∈ Aut(Πtemp

Ÿ
v

)/Inn(∆temp

Ÿ
v

) , Dµ−

)
a pointed inversion automorphism. Recall that an étale theta function of standard

type is defined by the condition on the restriction to Dµ− is in µ2l (Definition 7.7 and

Definition 7.14).

Proposition 11.7. (Multiradial Constant Multiple Rigidity, [IUTchII, Corol-

lary 1.12]) Let (RΘ, C`,ΦΘ) be the multiradial environment defined in Proposition 11.4.

1. There is a functorial group-theoretic algorithm to reconstruct, from a topological

group Π isomorphic to Πtemp
X

v

(v ∈ Vbad), the following commutative diagram:

O×(Π) ∪O×(Π) ·∞θ(Π)

∼=
��

� � // ∞H1(Πtemp

Ÿ
(Π), (l∆Θ)(Π))

∼= Cycl. Rig. Mono-Th. in Prop.11.4

��
O×(MΘ

∗ (Π)) ∪O×(MΘ
∗ (Π)) ·∞θenv(M

Θ
∗ (Π)) �

� // ∞H1(Πtemp

Ÿ
(MΘ
∗ (Π)), µẐ(M

Θ
∗ (Π))),

where we put, for a topological group Π isomorphic to Πtemp
X

v

(resp. for a projec-

tive system MΘ
∗ of mono-theta environments determined by X

v
), Πtemp

Ÿ
(Π) (resp.

Πtemp

Ÿ
(MΘ
∗ )) to be the isomorph of Πtemp

Ÿ
reconstructed from Πtemp

Ÿ
(Π) by Defini-

tion 11.6 (resp. from Πtemp

Ÿ
(MΘ
∗ ) by Definition 11.3 and the descrption of Ÿ � Y ),

and

∞H
1(Πtemp

Ÿ
(Π), (l∆Θ)(Π)) := lim−→

J⊂Π : open, of fin. index

H1(Πtemp

Ÿ
(Π)×Π J, (l∆Θ)(Π)),
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∞H
1(Πtemp

Ÿ
(MΘ
∗ ), µẐ(M

Θ
∗ )) := lim−→

J⊂Π : open, of fin. index

H1(Πtemp

Ÿ
(MΘ
∗ )×Π J, µẐ(M

Θ
∗ )),

and

∞θ(Π) (⊂ ∞H1(Πtemp

Ÿ
(Π), (l∆Θ)(Π)) (resp. ∞θenv(M

Θ
∗ ) (⊂ ∞H1(Πtemp

Ÿ
(MΘ
∗ ), µẐ(M

Θ
∗ )) )

denotes the subset of elements for which some positive integer multiple (if we con-

sider multiplicatively, some positive integer power) is, up to torsion, equal to an

element of the subset

θ(Π) (⊂ H1(Πtemp

Ÿ
(Π), (l∆Θ)(Π)) (resp. θ

env
(MΘ
∗ ) (⊂ H1(Πtemp

Ÿ
(MΘ
∗ ), µẐ(M

Θ
∗ )) )

of the µl-orbit of the reciprocal of lZ × µ2-orbit η̈
Θ,lZ×µ2 of an l-th root of the

étale theta function of standard type in Section 7.3 (resp. corresponding to the

µl-orbit of the reciprocal of (lZ × µ2)-orbit η̈
Θ,lZ×µ2 of an l-th root of the étale

theta function of standard type in Section 7.3, via the cyclotomic rigidity isomor-

phism (l∆Θ)(MΘ
∗ )

∼→ µẐ(M
Θ
∗ ) group-theoretically reconstructed by Theorem 7.23

(1), where (l∆Θ)(MΘ
∗ ) denotes the internal cyclotome of the projective system MΘ

∗
of mono-theta environments group-theoretically reconstructd by Theorem 7.23 (1))

(Note that these can functorially group-theoretically reconstructed by the constant

multiple rigidity (Proposition 11.7)), and we define

O×(MΘ
∗ (Π))

to be the submodule such that the left vertical arrow is an isomorphism. We also

put

O×∞θ(Π) := O×(Π) ·∞θ(Π), O×∞θenv(M
Θ
∗ (Π)) := O×(MΘ

∗ (Π)) ·∞θenv(M
Θ
∗ (Π)).

2. There is a functorial group-theoretic algorithm

Π 7→ {(ι,D)}(Π),

which construct, from a topological group Π isomorphic to Πtemp
X

v

, a collection

of pairs (ι,D), where ι is a ∆temp

Ÿ
(Π)(:= Πtemp

Ÿ
(Π) ∩ ∆)-outer automorphism of

Πtemp

Ÿ
(Π), and D ⊂ Πtemp

Ÿ
(Π) is a ∆temp

Ÿ
(Π)-conjgacy class of closed subgroups

corresponding to the pointed inversion automorphisms in Definition 11.6. We call

each (ι,D) a pointed inversion automorphism as well. For a pointed inver-

sion automorphism (ι,D), and a subset S of an abelian group A, if ι acts on

Im(S → A/Ators), then we put Sι := {s ∈ S | ι(smodAtors) = smodAtors}.
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3. Let (ι,D) be a pointed inversion automorphism reconstructed in (1). Then the re-

striction to the subgroup D ⊂ Πtemp

Ÿ
(Π) gives us the following commutative diagram:

{O×∞θ(Π)}ι //

��

O×(Π)

Cycl. Rig. Mono-Th. in Prop.11.4∼=
��

(
⊂ ∞H1(Π, (l∆Θ)(Π))

)

{O×∞θenv(M
Θ
∗ (Π))}ι // O×(MΘ

∗ (Π))
(
⊂ ∞H1(Π, µẐ(M

Θ
∗ (Π))

)
,

where we put

∞H
1(Π, (l∆Θ)(Π)) := lim−→

J⊂Π : open, of fin. index

H1(J, (l∆Θ)(Π)),

∞H
1(Π, µẐ(M

Θ
∗ (Π))) := lim−→

J⊂Π : open, of fin. index

H1(J, µẐ(M
Θ
∗ (Π))).

Note that the inverse image of the torsion elements via the upper (resp. lower) hori-

zontal arrow in the above commutative diagram is equal to ∞θ(Π)ι (resp. ∞θenv(M
Θ
∗ (Π))ι).

In particular, we obtain a functorial algorithm of constructing splittings

O×µ(Π)× {∞θ(Π)ι/Oµ(Π)}, O×µ(MΘ
∗ (Π))× {∞θenv(M

Θ
∗ (Π))ι/Oµ(MΘ

∗ (Π))}

of {O×∞θ(Π)}ι/Oµ(Π) (resp. {O×∞θenv(M
Θ
∗ (Π))}ι/Oµ(MΘ

∗ (Π)) ).

4. For an object (Π y µẐ(M
Θ
∗ (Π))⊗Q/Z, Gy O×µ(G), αµ,×µ) of the radial category

RΘ, we assign

• the projective system MΘ
∗ (Π) of mono-theta environments,

• the subsets O×(Π) ∪O×∞θ(Π) (⊂ ∞H1(Πtemp

Ÿ
(Π), (l∆Θ)(Π))), and

O×(MΘ
∗ (Π))∪O×∞θenv(M

Θ
∗ (Π)) (⊂ ∞H1(Πtemp

Ÿ
(MΘ
∗ (Π)), µẐ(M

Θ
∗ (Π)))) in (1),

• the splittings O×µ(Π)× {∞θ(Π)ι/Oµ(Π)}, and
O×µ(MΘ

∗ (Π))× {∞θenv(M
Θ
∗ (Π))ι/Oµ(MΘ

∗ (Π))} in (3), and

• the diagram

µẐ(M
Θ
∗ (Π))⊗Q/Z ∼→ Oµ(MΘ

∗ (Π))
∼→ Oµ(Π) ↪→ O×(Π)� O×µ(Π)

poly
∼→ O×µ(G),

where the first arrow is induced by the tautological Kummer map for MΘ
∗ (Π),

the second arrow is induced by the vertical arrow in (1), the third and the

fourth arrow are the natural injection and surjection respectively (Note that the

composite is equal to 0), and the last arrow is the poly-isomorphism induced

by the full poly-isomorphism Π/∆
full poly
∼→ G.
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Then this assignment determines a functor Ξenv : RΘ → Eenv, and the natural

functor ΨΞenv : RΘ → Graph(Ξenv) is multiradially defined.

Proof. Proposition immediately follows from the described algorithms.

Remark 11.7.1. See also the following étale-pictures of the étale theta func-

tions:

∞θ(
†Π) −− > Gy O×µ(G) x Isomet(G) >−− ∞θ(‡Π)

∞θenv(M
Θ
∗ (
†Π)) −− > Gy O×µ(G) x Isomet(G) >−− ∞θenv(M

Θ
∗ (
‡Π))

Note that the object in the center is a mono-analytic object, and the objects in the left

and in the right are holomorphic objects, and that we have a permutation symmetry

in the étale-picture, by the multiradiality of the algorithm in Proposition 11.7 (See also

Remark 11.1.1).

Remark 11.7.2. ([IUTchII, Proposition 2.2 (ii)]) The subset

θι(Π) ⊂ θ(Π) (resp. ∞θ
ι(Π) ⊂ ∞θ(Π) )

determines a specific µ2l(O(Π))-orbit (resp. Oµ(Π)-orbit) within the unique (lZ× µ2l)-

orbit (resp. each (lZ× µ)-orbit) in the set θ(Π) (resp. ∞θ(Π)).

§ 11.2. Hodge-Arakelov-theoretic Evaluation and Gaussian Monoids at

Bad Places.

In this subsection, we perform the Hodge-Arakelov-theoretic evaluation, and con-

struct Gaussian monoids for v ∈ Vbad (Note that the case for v ∈ Vbad plays a central

role). Recall that Corollary 7.22 (2) reconstructs a mono-theta environment from a

topological group (“Π 7→ M”) and Theorem 8.14 reconstructs a mono-theta environ-

ment from a tempered Frobenioid (“F 7→ M”). First, we transport theta classes θ and

the theta evaluations from a group theoretic situation to a mono-theta environment

theoretic situation via (“Π 7→M”) and the cyclotomic rigidity for mono-theta environ-

ments, then, via (“F 7→ M”), a Frobenioid theoretic situation can access to the theta

evaluation (See also [IUTchII, Fig. 3.1]):

Π � // M F�oo

θ, eval � // θ
env
, evalenv,
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F-Theoretic Theta Monoids
Kummer // M-Theoretic Theta Monoids

Galois Evaluation

��
F-Theoretic Gaussian Monoids M-Theoretic Gaussian Monoids.

(Kummer)−1, or forget

oo

Note also that, from the view point of the scheme theoretic Hodge-Arakelov theory

and p-adic Hodge theory (See Appendix A), the evaluation maps correspond, in some

sense, to the comparison map, which sends Galois representations to filtered ϕ-modules

in the p-adic Hodge theory.

Definition 11.8. ([IUTchII, Remark 2.1.1, Proposition 2.2, Definition 2.3])

1. For a hyperbolic orbicurve (−)v over Kv, let Γ(−) denote the dual graph of the

special fiber of a stable model. Note that each of maps

ΓŸ
//

��

ΓY

��

ΓX

��
ΓŸ

// ΓY , ΓX

induces a bijection on vertices, since the covering X
v
� Xv is totally ramified at

the cusps. Let

ΓI
X ⊂ ΓX

denote the unique connected subgraph of ΓX , which is a tree and is stabilised by

ιX (See Section 7.3, Section 7.5, and Definition 11.6), and contains all vertices of

ΓX . Let

Γ•X ⊂ ΓI
X

denote the unique connected subgraph of ΓX , which is stabilised by ιX and contains

precisely one vertex and no edges. Hence, if we put labels on ΓX by {−l>, . . . ,−1, 0, 1, . . . , l>},
where 0 is fixed by ιX , then ΓI

X is obtained by removing, from ΓX , the edge con-

necting the vertices labelled by ±l>, and Γ•X consists only the vertex labelled by

0. From Γ•X ⊂ ΓI
X (⊂ ΓX), by taking suitable connected components of inverse

images, we obtain finite connected subgraphs

Γ•X ⊂ ΓI
X ⊂ ΓX , Γ•

Ÿ
⊂ ΓI

Ÿ
⊂ ΓŸ , Γ•

Ÿ
⊂ ΓI

Ÿ
⊂ ΓŸ ,

which are stabilised by respective inversion automorphisms ιX , ιŸ , ιŸ (See Sec-

tion 7.3, Section 7.5, and Definition 11.6). Note that each ΓI
(−) maps isomorphically

to ΓI
X .
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2. Put

Πv• := Πtemp
X

v
,Γ•

X
⊂ ΠvI := Πtemp

X
v
,ΓI

X

⊂ Πv (= Πtemp
X

v

)

for Σ := {l} in the notation of Corollary 6.9 (i.e., H = ΓI
X), Note that we have

ΠvI ⊂ Πtemp
Yv
∩Πv = Πtemp

Y
v

. Note also that ΠvI is well-defined up to Πv-conjugacy,

and after fixing ΠvI, the subgroup Πv• ⊂ ΠvI is well-defined up to ΠvI-conjugacy.
Moreover, note that we may assume that Πv•, ΠvI and ιŸ have been chosen so that

some representative of ιŸ stabilises Πv• and ΠvI. Finally, note also that, from Πv,

we can functorially group-theoretically reconstruct the data (Πv• ⊂ ΠvI ⊂ Πv, ιŸ )

up to Πv-conjugacy, by Remark 6.12.1.

3. We put

∆v := ∆temp
X

v

, ∆±v := ∆temp
Xv

, ∆cor
v := ∆temp

Cv
, Π±v := Πtemp

Xv
, Πcor

v := Πtemp
Cv

(Note also that we can group-theoretically reconstruct these groups from Πv by

Lemma 7.12). We also use the notation (̂−) for the profinite completion in this

subsection. We also put

Π±v• := NΠ±
v
(Πv•) ⊂ Π±vI := NΠ±

v
(ΠvI) ⊂ Π±v .

Note that we have

Π±v•/Πv•
∼→ Π±vI/ΠvI

∼→ Π±v /Πv
∼→ ∆±v /∆v

∼→ Gal(X
v
/Xv)

∼= Z/lZ,

and

Π±v• ∩Πv = Πv•, Π±vI ∩Πv = ΠvI,

since Πv• and ΠvI are normally terminal in Πv, by Corollary 6.9 (6).

4. A ±-label class of cusps of Πv (resp. of Π±
v , resp. of Π̂v, resp. of Π̂±

v )

is the set of Πv-conjugacy (resp. Π±v -conjugacy, resp. Π̂v-conjugacy, resp. Π̂±v -

conjugacy) classes of cuspidal inertia subgroups of Πv (resp. of Π±v , resp. of Π̂v,

resp. of Π̂±v ) whose commensurators in Π±v (resp. in Π±v , resp. in Π̂±v , resp. in

Π̂±v ) determine a single Π±v -conjugacy (resp. Π±v -conjugacy, resp. Π̂±v -conjugacy,

resp. Π̂±v -conjugacy) class of subgroups in Π±v (resp. in Π±v , resp. in Π̂±v , resp.

in Π̂±v ). (Note that this is group-theoretic condition. Note also that such a set of

Πv-conjugacy (resp. Π±v -conjugacy, resp. Π̂v-conjugacy, resp. Π̂±v -conjugacy) class

is of cardinality 1, since the covering X
v
� Xv is totally ramified at cusps (or the

covering X
v
� X

v
is trivial).) Let

LabCusp±(Πv) (resp. LabCusp
±(Π±v ), resp. LabCusp

±(Π̂v), resp. LabCusp
±(Π̂±v ) )
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denote the set of ±-label classes of cusps of Πv (resp. of Π±v , resp. of Π̂v, resp. of

Π̂±v ). Note that LabCusp±(Πv) can be naturally identified with LabCusp±(†Dv) in
Definition 10.27 (2) for †Dv := Btemp(Πv)

0, and admits a group-theoretically recon-

structable natural action of F×l , a group-theoretically reconstructable zero element
†η0
v
∈ LabCusp±(Πv) = LabCusp±(†Dv), and a group-theoretically reconstructable

±-canonical element †η±
v
∈ LabCusp±(Πv) = LabCusp±(†Dv) well defined up to

multiplication by ±1.

5. An element t ∈ LabCusp±(Πv) determines a unique vertex of ΓI
X (cf. Corollary 6.9

(4)). Let Γ•tX ⊂ ΓI
X denote the connected subgraph with no edges whose unique

vertex is the vertex determined by t. Then by a functorial group-theoretic algorithm,

Γ•tX gives us a decomposition group

Πv•t ⊂ ΠvI ⊂ Πv

well-defined up to ΠvI-conjugacy. We also put

Π±v•t := NΠ±
v
(Πv•t).

(Note that we have a natural isomorphism Π±v•t/Πv•t
∼→ Gal(X

v
/Xv) by Corol-

lary 6.9 (6)).

6. The images in LabCusp±(Π±v ) (resp. LabCusp
±(Π̂±v )) of the F

×
l -action, the zero el-

ement †η0
v
, and ±-canonical element †η±

v
of LabCusp±(Πv) in the above (4), via the

natural outer injection Πv ↪→ Π±v (resp. Πv ↪→ Π̂±v ), determine a natural F±l -torsor
structure (See Definition 10.26 (2)) on LabCusp±(Π±v ) (resp. LabCusp±(Π̂±v )).

Moreover, the natural action of Πcor
v /Π±v (resp. Π̂cor

v /Π̂±v ) on Π±v (resp. Π̂±v )

preserves this F±l -torosr structure, thus, determines a natural outer isomorphism

Πcor
v /Π±v

∼= Fo±
l (resp. Π̂cor

v /Π̂±v
∼= Fo±

l ).

Here, note that, even though Πv (resp. Π̂v) is not normal in Πcor
v (resp. Π̂cor

v ), the

cuspidal inertia subgroups of Πv (resp. Π̂v) are permuted by the conjugate action

of Πcor
v (resp. Π̂cor

v ), since, for a cuspidal inertia subgroup I in Π±v (resp. Π̂±v ), we

have I∩Πv = I l (resp. I∩ Π̂v = I l) (Here, we write multiplicatively in the notation

I l), and Π±v (resp. Π̂±v ) is normal in Πcor
v (resp. Π̂cor

v ) ([IUTchII, Remark 2.3.1]).

Lemma 11.9. ([IUTchII, Corollary 2.4]) Take t ∈ LabCusp±(Πv). Put

∆v•t := ∆v ∩Πv•t, ∆±v•t := ∆±v ∩Π±v•t, Πv•̈t := Πv•t ∩Πtemp

Ÿ
v

, ∆v•̈t := ∆v ∩Πv•̈t,

∆vI := ∆v ∩ΠvI, ∆±vI := ∆±v ∩Π±vI, ΠvÏ := ΠvI ∩Πtemp

Ÿ
v

, ∆vÏ := ∆v ∩ΠvÏ.
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Note that we have

[Πv•t : Πv•̈t] = [ΠvI : ΠvÏ] = [∆v•t : ∆v•̈t] = [∆vI : ∆vÏ] = 2,

[Π±v•t : Πv•t] = [Π±vI : ΠvI] = [∆±v•t : ∆v•t] = [∆±vI : ∆vI] = l.

1. Let It ⊂ Πv be a cuspidal inertia subgroup which belongs to the ±-label class t such
that It ⊂ ∆v•t (resp. It ⊂ ∆vI). For γ ∈ ∆̂±v , let (−)γ denote the conjugation

γ(−)γ−1 by γ. Then for γ′ ∈ ∆̂±v , the following are equivalent:

(a) γ′ ∈ ∆±v•t (resp. γ′ ∈ ∆±vI),

(b) Iγγ
′

t ⊂ Πγv•t (resp. Iγγ
′

t ⊂ ΠγvI),

(c) Iγγ
′

t ⊂ (Π±v•t)
γ (resp. Iγγ

′

t ⊂ (Π±vI)γ).

2. In the situation of (1), put δ := γγ′ ∈ ∆̂±v , then any inclusion

Iδt = Iγγ
′

t ⊂ Πγv•t = Πδv•t (resp. I
δ
t = Iγγ

′

t ⊂ ΠγvI = ΠδvI )

as in (1) completely determines the following data:

(a) a decomposition group Dδ
t := NΠδ

v
(Iδt ) ⊂ Πδv•̈t (resp. Dδ

t := NΠδ
v
(Iδt ) ⊂ Πδ

vÏ),

(b) a decomposition group Dδ
µ−
⊂ Πδ

vÏ, well-defined up to (Π±vI)δ-conjugacy (or,

equivalently (∆±vI)δ-conjugacy), corresponding to the torsion point µ− in Def-

inition 11.6.

(c) a decomposition group Dδ
t,µ−
⊂ Πδv•̈t (resp. D

δ
t,µ−
⊂ Πδ

vÏ), well-defined up to

(Π±v•t)
δ-conjugacy (resp. (Π±vI)δ-conjugacy) (or equivalently, (∆

±
v•t)

δ-conjugacy

(resp. (∆±vI)δ-conjugacy)), that is, the image of an evaluation section corre-

sponding to µ−-translate of the cusp which gives rise to Iδt .

Moreover, the construction of the above data is compatible with conjugation by ar-

bitrary δ ∈ ∆̂±v as well as with tha natural inclusion Πv•t ⊂ ΠvI, as we vary the

non-resp’d case and resp’d case.

3. (Fo±
l -symmetry) The construction of the data (2a), (2c) is compatible with conjuga-

tion by arbitrary δ ∈ Π̂cor
v , hence we have a ∆̂cor

v /∆̂±v
∼→ Π̂cor

v /Π̂±v
∼→ Fo±

l -symmetry

on the construction.

Proof. We show (1). The implications (a) ⇒ (b) ⇒ (c) are immediately follow

from the definitions. We show the implication (c)⇒ (a). We may assume γ = 1 without

loss of generality. Then the condition Iγ
′

t ⊂ Π±v•t ⊂ Π±v (resp. Iγ
′

t ⊂ Π±vI ⊂ Π±v )

implies γ′ ∈ ∆±v by Theorem 6.11 (“profinite conjugate vs tempered conjugate”). By
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Corollary 6.9 (4), we obtain γ′ ∈ ∆̂±v•t (resp. γ
′ ∈ ∆̂±vI), where (̂−) denotes the closure

in ∆̂±v (which is equal to the profinite completion, by Corollary 6.9 (2)). Then we obtain

γ′ ∈ ∆̂±v•t ∩∆±v = ∆±v•t (resp. γ
′ ∈ ∆̂±vI ∩∆±v = ∆±vI) by Corollary 6.9 (3).

(2) follows from Theorem 3.7 (elliptic cuspidalisation) and Remark 6.12.1 (together

with Lemma 7.16, Lemma 7.12) (See also Definition 10.17). (3) follows immediately from

the described algorithms.

Let

(l∆Θ)(ΠvÏ)

denote the subquotient of ΠvÏ determined by the subquotient (l∆Θ)(Πv) of Πv (Note

that the inclusion ΠvÏ ↪→ Πv induces an isomorphism (l∆Θ)(ΠvÏ)
∼→ (l∆Θ)(Πv)). Let

Πv � Gv(Πv), ΠvÏ � Gv(ΠvÏ)

denote the quotients determined by the natural surjection Πv � Gv (Note that we can

functorially group-theoretically reconstruct these quotients by Lemma 6.2 and Defini-

tion 11.8 (2)).

Proposition 11.10. (Π-theoretic Theta Evaluation, [IUTchII, Corollary 2.5,

Corollary 2.6])

1. Let Iδt = Iγγ
′

t ⊂ Πδ
vÏ ⊂ ΠγvI = ΠδvI be as in Lemma 11.9 (2). Then the restriction

of the ιγ-invariant sets θι(Πγv), ∞θ
ι(Πγv) of Remark 11.7.2 to the subgroup Πγ

vÏ ⊂
Πtemp

Ÿ
(Πv)(⊂ Πv) gives us µ2l-, µ-orbits of elements

θι(Πγ
vÏ) ⊂ ∞θ

ι(Πγ
vÏ) ⊂ ∞H

1(Πγ
vÏ, (l∆Θ)(Π

γ
vÏ)) := lim−→

Ĵ⊂Π̂v : open

H1(Πγ
vÏ×Π̂v

Ĵ , (l∆Θ)(Π
γ
vÏ)).

The further restriction of the decomposition groups Dδ
t,µ−

in Lemma 11.9 (2) gives

us µ2l-, µ-orbits of elements

θt(Πγ
vÏ) ⊂ ∞θ

t(Πγ
vÏ) ⊂ ∞H

1(Gv(Π
γ
vÏ), (l∆Θ)(Π

γ
vÏ)) := lim−→

JG⊂Gv(Π
γ

vÏ) : open

H1(JG, (l∆Θ)(Π
γ
vÏ)),

for each t ∈ LabCusp±(Πγv)
conj. by γ
∼−→ LabCusp±(Πv). Since the sets θt(Πγ

vÏ),

∞θ
t(Πγ

vÏ) depend only on the label |t| ∈ |Fl|, we write

θ|t|(Πγ
vÏ) := θt(Πγ

vÏ), ∞θ
|t|(Πγ

vÏ) := ∞θ
t(Πγ

vÏ).
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2. If we start with an arbitrary ∆̂±v -conjugate Πγ
vÏ of ΠvÏ, and we consider the result-

ing µ2l-, µ-orbits θ
|t|(Πγ

vÏ), ∞θ
|t|(Πγ

vÏ) arising from an arbitrary ∆̂±v -conjugate I
δ
t

of It contained in Πγ
vÏ, as t runs over LabCusp

±(Πγv)
conj. by γ
∼−→ LabCusp±(Πv), then

we obtain a group-theoretic algorithm to construct the collections of µ2l-, µ-orbits{
θ|t|(Πγ

vÏ)
}
|t|∈|Fl|

,
{
∞θ
|t|(Πγ

vÏ)
}
|t|∈|Fl|

,

which is functorial with respect to the isomorphisms of topological groups Πv, and

compatible with the independent conjugacy actions of ∆̂±v on the sets {Iγ1t }γ1∈Π̂±
v
=

{Iγ1t }γ1∈∆̂±
v
and {Πγ2

vÏ}γ2∈Π̂±
v
= {Πγ2

vÏ}γ2∈∆̂±
v

3. The γ-conjugate of the quotient ΠvÏ � Gv(ΠvÏ) determines subsets

(∞H
1(Gv(Π

γ
vÏ), (l∆Θ)(Π

γ
vÏ)) ⊃) O×(Πγ

vÏ) ⊂ ∞H1(Πγ
vÏ, (l∆Θ)(Π

γ
vÏ)),

O×θι(Πγ
vÏ) := O×(Πγ

vÏ)θ
ι(Πγ

vÏ) ⊂ O×∞θ
ι(Πγ

vÏ) := O×(Πγ
vÏ)∞θ

ι(Πγ
vÏ) ⊂ ∞H

1(Πγ
vÏ, (l∆Θ)(Π

γ
vÏ)),

which are compatible with O×(−), O×∞θι(−) in Proposition 11.7, respectively, rel-

ative to the first restriction operation in (1). We put

O×µ(Πγ
vÏ) := O×(Πγ

vÏ)/O
µ(Πγ

vÏ).

4. In the situation of (1), we take t to be the zero element. Then the set θt(Πγ
vÏ) (resp.

∞θ
t(Πγ

vÏ)) is equal to µ2l (resp. µ). In particular, by taking quotietn by Oµ(Πγ
vÏ),

the restriction to the decomposition group Dδ
t,µ−

(where t is the zero element) gives

us splittings

O×µ(Πγ
vÏ)× {∞θ

ι(Πγ
vÏ)/O

µ(Πγ
vÏ)}

of O×∞θ
ι(Πγ

vÏ)/O
µ(Πγ

vÏ), which are compatible with the splittings of Proposition 11.7

(3), relative to the first restriction operation in (1):

0 // O×µ(Πγ
vÏ)

// O×∞θ
ι(Πγ

vÏ)/O
µ(Πγ

vÏ)
//

label 0

xx
∞θ

ι(Πγ
vÏ)/O

µ(Πγ
vÏ)

// 0.

Remark 11.10.1. (principle of Galois evaluation) Let us consider some “mysteri-

ous evaluation algorithm” which constructs theta values from an abstract theta function,

in general. It is natural to require that this algorithm is compatible with taking Kummer

classes of the “abstract theta function” and the “theta values”, and that this algorithm
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extend to coverings on both input and output data. Then by the natural requirement

of functoriality with respect to the Galois groups on either side, we can conclude that

the “mysterious evaluation algorithm” in fact arises from a section G → ΠŸ (Π) of the

natural surjection ΠŸ (Π)� G, as in Proposition 11.10. We call this the principle of

Galois evaluation. Moreover, from the point of view of Section Conjecture, we expect

that this sections arise from geometric points (as in Proposition 11.10).

Remark 11.10.2. ([IUTchII, Remark 2.6.1, Remark 2.6.2]) It is important that

we perform the evaluation algorithm in Proposition 11.10 (1) by using single base point,

i.e., connected subgraph ΓI
X ⊂ ΓX , and that the theta values

θ|t|(ΠvÏγ) ⊂ H1(Gv(ΠvÏγ), (l∆Θ)(ΠvÏγ))

live in the cohomology of singleGalois groupGv(ΠvÏγ) with single cyclotome (l∆Θ)(Π
γ
vÏ)

coefficient for various |t| ∈ |Fl|, since we want to consider the collection of the theta

values for |t| ∈ |Fl|, not as separated objects, but as “connected single object”, by syn-

chronising indeterminacies via Fo±
l -symmetry, when we construct Gaussian monoids

via Kummer theory (See Corollary 11.17).

Remark 11.10.3. ([IUTchII, Remark 2.5.2]) Put

Π}± := ΠXK
, ∆}± := ∆XK

.

Recall that, using the global data ∆}±(∼= ∆̂±v ), we put ±-labels on local objects in

a consistent manner (Proposition 10.33), where the labels are defined in the form of

conjugacy classes of It. Note that ∆}±(∼= ∆̂±v ) is a kind of “ambient container” of

∆̂±v -conjugates of both It and ∆vÏ. On the other hand, when we want to vary v,

the topological group ΠvÏ is purely local (unlike the label t, or conjugacy classes of

It), and cannot be globalised, hence, we have the independence of the ∆}±(∼= ∆̂±v )-

conjugacy indeterminacies which act on the conjugates of It and ∆vÏ. Moreover, since

the natural surjection ∆̂cor
v � ∆̂cor

v /∆̂±v
∼= Fo±

l deos not have a splitting, the ∆̂cor
v -outer

action of ∆̂cor
v /∆̂±v

∼= Fo±
l in Lemma 11.9 (3) induces independent ∆}± ∼= ∆̂±v -conjugacy

indeterminacies on the subgroups It for distinct t.

Remark 11.10.4. ([IUTchII, Remark 2.6.3]) We explain the choice of ΓI
Ÿ
⊂ ΓŸ .

Take a finite subgraph Γ′ ⊂ ΓŸ . Then

1. For the purpose of getting single base point as explained in Remark 11.10.2, the

subgraph Γ′ should be connected.

2. For the purpose of getting the crucial splitting in Proposition 11.10 (4), the subgraph

Γ′ should contain the vertex of label 0.
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3. For the purpose of making the final height inequality sharpest (cf. the calculations

in the proof of Lemma 1.10), we want to maximise the value

1

#Γ′

∑
j∈F>

l

minj∈Γ′, j≡j in |Fl|

{
j2
}
,

where we identified ΓŸ with Z. Then we obtain #Γ′ ≥ l>, since the above function
is non-decreasing when #Γ′ grows, and constant for #Γ′ ≥ l>.

4. For the purpose of globalising the monoids determined by theta values, via global

realified Frobenioids (See Section 11.4), such a manner that the product formula

should be satisfied, the set {j ∈ Γ′, j ≡ j in |Fl|} should consist of only one element

for each j ∈ F>
l , because the independent conjugacy indeterminacies explained in

Remark 11.10.3 are incompatible with the product formula, if the set has more than

two elements.

Then the only subgraph satisfying (1), (2), (3), (4) is ΓI
Ÿ
.

For a projective system MΘ
∗ = (· · · ← MΘ

M ← MΘ
M ′ ← · · · ) of mono-theta environ-

ments such that Πtemp
X (MΘ

∗ )
∼= Πv, where MΘ

M = (ΠMΘ
M
,DMΘ

M
, sΘMΘ

M
), put

ΠMΘ
∗
:= lim←−

M

ΠMΘ
M
.

Note that we have a natural homomorphism ΠMΘ
∗
→ Πtemp

X (MΘ
∗ ) of topological groups

whose kernel is equal to the external cyclotome µẐ(M
Θ
∗ ), and whose image correpsonds

to Πtemp
Y

v

. Let

ΠMΘ
∗Ï
⊂ ΠMΘ

∗I ⊂ ΠMΘ
∗

denote the inverse image of ΠvÏ ⊂ ΠvI ⊂ Πv ∼= Πtemp
X (MΘ

∗ ) in ΠMΘ
∗
respectively, and

µẐ(M
Θ
∗Ï), (l∆Θ)(MΘ

∗Ï), ΠvÏ(MΘ
∗Ï), Gv(MΘ

∗Ï)

denote the subquotients of ΠMΘ
∗

determined by the subquotient µẐ(M
Θ
∗ ) of ΠMΘ

∗
and

the subquotients (l∆Θ)(Π
temp
X (MΘ

∗ )), ΠvÏ, and Gv(Π
temp
X (MΘ

∗ )) of Πv ∼= Πtemp
X (MΘ

∗ ).

Note that we obtain a cyclotomic rigidity isomorphism of mono-theta environment

(l∆Θ)(MΘ
∗Ï)

∼→ µẐ(M
Θ
∗Ï)

by restricting the cyclotomic rigidity isomorphism of mono-theta environment (l∆Θ)(MΘ
∗ )
∼→

µẐ(M
Θ
∗ ) in Proposition 11.4 to ΠMΘ

∗Ï
(Definition [IUTchII, Definition 2.7]).
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Corollary 11.11. (M-theoretic Theta Evaluation, [IUTchII, Corollary 2.8]) Let

MΘ
∗ be a projective system of mono-theta environments with Πtemp

X (MΘ
∗ ) = Πv. Let

(MΘ
∗ )
γ

denote the projective system of mono-theta environments obtained via transport of struc-

ture from the isomorphism Πv
∼→ Πγv given by the conjugation by γ.

1. Let Iδt = Iγγ
′

t ⊂ Πδ
vÏ ⊂ ΠγvI = ΠδvI be as in Lemma 11.9 (2). Then by using the

cyclomotic rigidity isomorphisms of mono-theta environment

(l∆Θ)((MΘ
∗Ï)

γ)
∼→ µẐ((M

Θ
∗Ï)

γ), (l∆Θ)((MΘ
∗ )
γ)
∼→ µẐ((M

Θ
∗ )
γ)

(See just before Corollary 11.11), we replace H1(−, (l∆Θ)(−)) by H1(−, µẐ(−))
in Proposition 11.10. Then the ιγ-invariant subsets θι(Πγv) ⊂ θ(Πγv), ∞θ

ι(Πγv) ⊂
∞θ(Π

γ
v) determines ιγ-invariant subsets

θι
env

((MΘ
∗ )
γ) ⊂ θ

env
((MΘ

∗ )
γ), ∞θ

ι

env
((MΘ

∗ )
γ) ⊂ ∞θenv((M

Θ
∗ )
γ).

The restriction of these subsets to ΠvÏ((MΘ
∗Ï)

γ) gives us µ2l-, µ-orbits of elements

θι
env

((MΘ
∗Ï)

γ) ⊂ ∞θιenv((M
Θ
∗Ï)

γ) ⊂ ∞H1(ΠvÏ((MΘ
∗Ï)

γ), µẐ((M
Θ
∗Ï)

γ)),

where ∞H
1(ΠvÏ((MΘ

∗Ï)
γ),−) := lim−→Ĵ⊂Π̂v ; open

H1(ΠvÏ((MΘ
∗Ï)

γ) ×Π̂v
Ĵ ,−). The

further restriction to the decomposition groups Dδ
t,µ−

in Lemma 11.9 (2) gives us

µ2l-, µ-orbits of elements

θt
env

((MΘ
∗Ï)

γ) ⊂ ∞θtenv((M
Θ
∗Ï)

γ) ⊂ ∞H1(Gv((MΘ
∗Ï)

γ), µẐ((M
Θ
∗Ï)

γ)),

where we put ∞H
1(Gv((MΘ

∗Ï)
γ),−) := lim−→JG⊂Gv((MΘ

∗Ï)γ) : open
H1(JG,−), for each

t ∈ LabCusp±(Πγv)
conj. by γ
∼−→ LabCusp±(Πv). Since the sets θ

t

env
((MΘ

∗Ï)
γ), ∞θ

t

env
((MΘ

∗Ï)
γ)

depend only on the label |t| ∈ |Fl|, we write

θ|t|
env

((MΘ
∗Ï)

γ) := θt
env

((MΘ
∗Ï)

γ), ∞θ
|t|
env

((MΘ
∗Ï)

γ) := ∞θ
t

env
((MΘ

∗Ï)
γ).

2. If we start with an arbitrary ∆̂±v -conjugate ΠvÏ((MΘ
∗Ï)

γ) of ΠvÏ(MΘ
∗Ï), and we

consider the resulting µ2l-, µ-orbits θ|t|
env

((MΘ
∗Ï)

γ), ∞θ
|t|
env

((MΘ
∗Ï)

γ) arising from

an arbitrary ∆̂±v -conjugate Iδt of It contained in ΠvÏ((MΘ
∗Ï)

γ), as t runs over

LabCusp±(Πγv)
conj. by γ
∼−→ LabCusp±(Πv), then we obtain a group-theoretic algorithm

to construct the collections of µ2l-, µ-orbits{
θ|t|
env

((MΘ
∗Ï)

γ)
}
|t|∈|Fl|

,
{
∞θ
|t|
env

((MΘ
∗Ï)

γ)
}
|t|∈|Fl|

,
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which is functorial with respect to the projective system MΘ
∗ of mono-theta environ-

ments, and compatible with the independent conjugacy actions of ∆̂±v on the sets

{Iγ1t }γ1∈Π̂±
v
= {Iγ1t }γ1∈∆̂±

v
and {ΠvÏ((MΘ

∗Ï)
γ2)}γ2∈Π̂±

v
= {ΠvÏ((MΘ

∗Ï)
γ2)}γ2∈∆̂±

v

3. In the situation of (1), we take t to be the zero element. By using the cyclomotic

rigidity isomorphisms in (1) we replace (l∆Θ)(−) by µẐ(−) in Proposition 11.10,

then we obtain splittings

O×µ((MΘ
∗Ï)

γ)× {∞θιenv((M
Θ
∗Ï)

γ)/Oµ((MΘ
∗Ï)

γ)}

of O×∞θ
ι

env
((MΘ

∗Ï)
γ)/Oµ((MΘ

∗Ï)
γ), which are compatible with the splittings of Propo-

sition 11.7 (3) (with respect to any isomorphism MΘ
∗
∼→ MΘ

∗ (Πv)), relative to the

first restriction operation in (1):

0 // O×µ((MΘ
∗Ï)

γ) // O×∞θ
ι

env
((MΘ

∗Ï)
γ)/Oµ((MΘ

∗Ï)
γ) //

label 0

vv
∞θ

ι

env
((MΘ

∗Ï)
γ)/Oµ((MΘ

∗Ï)
γ) // 0.

Remark 11.11.1. (Theta Evaluation via Base-field-theoretic Cyclotomes, [IUTchII,

Corollary 2.9, Remark2.9.1]) If we use the cyclotomic rigidity isomorphisms

µẐ(Gv(Πv))
∼→ (l∆Θ)(Πv), µẐ(Gv(Π

γ
vÏ))

∼→ (l∆Θ)(Π
γ
vÏ)

determined by the composites of the cyclotomic rigidity isomorphism via positive

rational structure and LCFT “µẐ(G)
∼→ µẐ(Π)” group-theoretically reconstructed

by Remark 6.12.2 and the cyclotomic rigidity isomorphism “µẐ(Π)
∼→ (l∆Θ)(Π)” group-

theoretically reconstructed by Remark 9.4.1 and its restriction to Πγ
vÏ (like Propo-

sition 11.5; however, we allow indeterminacies in Proposition 11.5), instead of using

the cyclomotic rigidity isomorphisms of mono-theta environment (l∆Θ)((MΘ
∗Ï)

γ)
∼→

µẐ((M
Θ
∗Ï)

γ), (l∆Θ)((MΘ
∗ )
γ)

∼→ µẐ((M
Θ
∗ )
γ), then we functorially group-theoretically

obtain the following similar objects with similar compatibility as in Corollary 11.11:

ιγ-invariant subsets

θι
bs
(Πγv) ⊂ θbs(Π

γ
v), ∞θ

ι

bs
(Πγv) ⊂ ∞θbs(Π

γ
v).

The restriction of these subsets to Πγ
vÏ gives us µ2l-, µ-orbits of elements

θι
bs
(Πγ∗Ï) ⊂ ∞θ

ι

bs
(Πγ∗Ï) ⊂ ∞H

1(Πγ
vÏ, µẐ(Gv(Π

γ
∗Ï))),

where ∞H
1(Πγ

vÏ,−) := lim−→Ĵ⊂Π̂v : open
H1(Πγ

vÏ×Π̂v
Ĵ ,−). The further restriction to the

decomposition groups Dδ
t,µ−

in Lemma 11.9 (2) gives us µ2l-, µ-orbits of elements

θt
bs
(Πγ

vÏ) ⊂ ∞θ
t

bs
(Πγ

vÏ) ⊂ ∞H
1(Gv(Π

γ
vÏ), µẐ(Gv(Π

γ
vÏ))),
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where∞H
1(Gv(Π

γ
vÏ),−) := lim−→JG⊂Gv(Π

γ

vÏ) : open
H1(JG,−), for each t ∈ LabCusp±(Πγv)

conj. by γ
∼−→ LabCusp±(Πv). Since the sets θt

bs
(Πγ

vÏ), ∞θ
t

bs
(Πγ

vÏ) depend only on the label

|t| ∈ |Fl|, we write

θ|t|
bs
(Πγ

vÏ) := θt
bs
(Πγ

vÏ), ∞θ
|t|
bs
(Πγ

vÏ) := ∞θ
t

bs
(Πγ

vÏ).

Hence, the collections of µ2l-, µ-orbits{
θ|t|
bs
(Πγ

vÏ)
}
|t|∈|Fl|

,
{
∞θ
|t|
bs
(Πγ

vÏ)
}
|t|∈|Fl|

,

and splittings

O×µ(Πγ
vÏ)bs × {∞θ

ι

bs
(Πγ

vÏ)/O
µ(Πγ

vÏ)bs}

of O×∞θ
ι

bs
(Πγ

vÏ)/O
µ(Πγ

vÏ)bs (Here, O×µ(−)bs, O×(−)bs, Oµ(−)bs denote the objects

corresponding to O×µ(−), O×(−), Oµ(−), respectively, via the cyclotomic rigidity iso-

morphism):

0 // O×µ(Πγ
vÏ)bs

// O×∞θ
ι

bs
(Πγ

vÏ)/O
µ(Πγ

vÏ)bs
//

label 0

xx
∞θ

ι

bs
(Πγ

vÏ)/O
µ(Πγ

vÏ)bs
// 0.

Note that we use the value group portion in the construction of the cyclotomic rigidity

isomorphism via positive rational structure and LCFT (cf. the final remark in Re-

mark 6.12.2). Therefore, the algorithm in this remark (unlike Corollary 11.11) is only

uniradially defined (cf. Proposition 11.5 and Remark 11.4.1).

On the other hand, the cyclotomic rigidity isomorphism via positive rational struc-

ture and LCFT has an advantage of having the natural surjection

H1(Gv(−), µẐ(Gv(−)))� Ẑ

in (the proof of) Corollary 3.19 (cf. Remark 6.12.2), and we use this surjection to

construct some constant monoids (See Definition 11.12 (2)).

Definition 11.12. (M-theoretic Theta Monoids, [IUTchII, Proposition 3.1]) Let

MΘ
∗ be a projective system of mono-theta environments with Πtemp

X (MΘ
∗ )
∼= Πv.

1. (Split Theta Monoids) We put

Ψenv(MΘ
∗ ) :=

{
Ψιenv(MΘ

∗ ) := O×(MΘ
∗ ) · θ

ι

env
(MΘ
∗ )

N (⊂ ∞H1(Πtemp

Ÿ
(MΘ
∗ ), µẐ(M

Θ
∗ )))

}
ι

,

∞Ψenv(MΘ
∗ ) :=

{
∞Ψιenv(MΘ

∗ ) := O×(MΘ
∗ ) ·∞θ

ι

env
(MΘ
∗ )

N (⊂ ∞H1(Πtemp

Ÿ
(MΘ
∗ ), µẐ(M

Θ
∗ )))

}
ι

.
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These are functorially group-theoretically reconstructed collections of submonoids of

∞H
1(Πtemp

Ÿ
(MΘ
∗ ), µẐ(M

Θ
∗ )) equipped with natrural conjugation actions of Πtemp

X (MΘ
∗ ),

together with the splittings up to torsion determined by Corollary 11.11 (3). We

call each of Ψιenv(MΘ
∗ ), ∞Ψιenv(MΘ

∗ ) a mono-theta-theoretic theta monoid.

2. (Constant Monoids) By using the cyclotomic rigidity isomorphism via positive ra-

tional structure and LCFT, and taking the inverse image of Z ⊂ Ẑ via the surjection

H1(Gv(−), µẐ(Gv(−)))� Ẑ (See Remark 11.11.1) for Gv(MΘ
∗ ) := Gv(Π

temp
X (MΘ

∗ )),

we obtain a functorial group-theoretic reconstruction

Ψcns(MΘ
∗ ) ⊂ ∞H1(Πtemp

Ÿ
(MΘ
∗ ), µẐ(M

Θ
∗ ))

of an isomorph of O�

Fv
, equipped with a natural conjugate action by Πtemp

X (MΘ
∗ ).

We call Ψcns(MΘ
∗ ) a mono-theta-theoretic constant monoid.

Definition 11.13. ([IUTchII, Example 3.2])

1. (Split Theta Monoids) Recall that, for the tempered Frobenioid F
v
(See Exam-

ple 8.8), the choice of a Frobenioid-theoretic theta function Θ
v
∈ O×(Obirat

Ÿ
v

) (See

Example 8.8) among the µ2l(Obirat
Ÿ

v

)-multiples of the AutDv (Ÿ v)-conjugates of Θ
v

determines a monoid O�
CΘv

(−) on DΘ
v (See Definition 10.5 (1)) Suppose, for sim-

plicity, the topological group Πv arises from a universal covering pro-object A∞ of

Dv. Then for AΘ
∞ := A∞ × Ÿ v ∈ pro-Ob(DΘ

v ) (See Definition 10.5 (1)), we obtain

submonoids

ΨFΘ
v ,id

:= O�
CΘv

(AΘ
∞) = O×CΘv

(AΘ
∞)·ΘN

v
|AΘ

∞
⊂ ∞ΨFΘ

v ,id
:= O×CΘv

(AΘ
∞)·ΘQ≥0

v
|AΘ

∞
⊂ O×(Obirat

AΘ
∞

).

For the various conjugates Θα
v
of Θ

v
for α ∈ AutDv

(Ÿ
v
), we also similarly obtain

submonoids

ΨFΘ
v ,α
⊂ ∞ΨFΘ

v ,α
⊂ O×(Obirat

AΘ
∞

).

Put

ΨFΘ
v
:=
{
ΨFΘ

v ,α

}
α∈Πv

, ∞ΨFΘ
v ,α

:=
{
∞ΨFΘ

v ,α

}
α∈Πv

,

where we use the same notation α, by abuse of notation, for the image of α via the

surjection Πv � AutDv (Ÿ v). Note that we have a natural conjugation action of Πv

on the above collections of submonoids. Note also that ΘQ≥0

v
|AΘ

∞
gives us splittings

up to torsion of the monoids ΨFΘ
v ,α

, ∞ΨFΘ
v ,α

(cf. splΘv in Definition 10.5 (1)), which

are compatible with the Πv-action. Note that, from F
v
, we can reconstruct these

collections of submonoids with Πv-actions together with the splittings up to torsion
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up to an indeterminacy arising from the inner automorphismsof Πv (cf. Section 8.3.

See also the remark given just before Theorem 8.14). We call each of ΨFΘ
v ,α

,

∞ΨFΘ
v ,α

a Frobenioid-theoretic theta monoid.

2. (Constant Monoids) Similarly, the pre-Frobenioid structure on Cv = (F
v
)base-field ⊂

F
v
gives us a monoid O�

Cv (−) on Dv. We put

ΨCv := O�
Cv (A

Θ
∞),

which is equipped with a natural Πv-action. Note that, from Fv, we can reconstruct

Πv y ΨCv , up to an indeterminacy arising from the inner automorphisms of Πv.

We call ΨCv a Frobenioid-theoretic constant monoid.

Proposition 11.14. (F-theoretic Theta Monoids, [IUTchII, Proposition 3.3])

Let MΘ
∗ be a projective system of mono-theta environments with Πtemp

X (MΘ
∗ )
∼= Πv.

Suppose that MΘ
∗ arises from a tempered Frobenioid †F

v
in a Θ-Hodge theatre †HT Θ =

({†F
w
}w∈V, †F


mod) by Theorem 8.14 (“F 7→M”):

MΘ
∗ = MΘ

∗ (
†F

v
).

1. (Split Theta Monoids) Note that, for an object S of F
v
such that µlN (S) ∼=

Z/lNZ, and (l∆Θ)S ⊗ Z/NZ ∼= Z/NZ as abstract groups, the exterior cyclotome

µẐ(M
Θ
∗ (
†F

v
)) corresponds to the cyclotome µẐ(S) = lim←−N µN (S), where µN (S) ⊂

O×(S) ⊂ Aut†F
v
(S) (cf. [IUTchII, Proposition 1.3 (i)]). Then by the Kummer

maps, we obtain collections of Kummer isomorphisms

Ψ†FΘ
v ,α

Kum
∼→ Ψιenv(MΘ

∗ ), ∞Ψ†FΘ
v ,α

Kum
∼→ ∞Ψιenv(MΘ

∗ ),

of monoids, which is well-defined up to an inner automorphism and compatible

with both the respective conjugation action of Πtemp
X (MΘ

∗ ), and the splittings up

to torsion on the monoids, under a suitable bijection of lZ-torsors between “ι” in

Definition 11.8, and the images of “α” via the natural surjection Πv � lZ:

“ ι”s
∼←→ “ Im(α)”s.

2. (Constant Monoids) Similary, using the correspondence between the exterior cy-

clotome µẐ(M
Θ
∗ (
†F

v
)) and the cyclotome µẐ(S) = lim←−N µN (S), we obtain Kum-

mer isomorphisms

Ψ†Cv

Kum
∼→ Ψcns(MΘ

∗ )

for constant monoids, where †Cv := (†F
v
)base-field, which is well-defined up to

an inner automorphism, and compatible with the respective conjugation actions of

Πtemp
X (MΘ

∗ ).
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Proof. Proposition follows from the definitions.

In the following, we often use the abbreviation (∞)(−) for a description like both of

(−) and ∞(−).

Proposition 11.15. (Π-theoretic Theta Monoids, [IUTchII, Proposition 3.4])

Let MΘ
∗ be a projective system of mono-theta environments with Πtemp

X (MΘ
∗ )
∼= Πv.

Suppose that MΘ
∗ arises from a tempered Frobenioid †F

v
in a Θ-Hodge theatre †HT Θ =

({†F
w
}w∈V, †F


mod) by Theorem 8.14 (“F 7→M”):

MΘ
∗ = MΘ

∗ (
†F

v
).

We consider the full poly-isomorphism

MΘ
∗ (Πv)

full poly
∼→ MΘ

∗ (
†F

v
)

of projective systems of mono-theta environments.

1. (Multiradiality of Split Theta Monoids) Each isomorphism β : MΘ
∗ (Πv)

∼→
MΘ
∗ (
†F

v
) of projective system of mono-theta environmens induces compatible col-

lections of isomorphisms

Πv
∼→ Πtemp

X (MΘ
∗ (Πv))

β
∼→ Πtemp

X (MΘ
∗ (
†F

v
)) = Πtemp

X (MΘ
∗ (
†F

v
))

y y y

(∞)Ψenv(MΘ
∗ (Πv))

β
∼→ (∞)Ψenv(MΘ

∗ (
†F

v
))

Kum−1

∼→ (∞)Ψ†FΘ
v
,

which are compatible with the respective splittings up to torsion, and

Gv
∼→ Gv(MΘ

∗ (Πv))
β
∼→ Gv(MΘ

∗ (
†F

v
)) = Gv(MΘ

∗ (
†F

v
))

y y y

Ψenv(MΘ
∗ (Πv))

×
β
∼→Ψenv(MΘ

∗ (
†F

v
))×

Kum−1

∼→ Ψ×†FΘ
v
.

Moreover, the functorial algorithm

Πv 7→ (Πv y (∞)Ψenv(MΘ
∗ (Πv)) with splittings up to torsion),

which is compatible with arbitrary automorphisms of the pair

Gv(MΘ
∗ (
†F

v
)) y (Ψ†FΘ

v
)×µ := (Ψ†FΘ

v
)×/torsions

arisen as Isomet-multiples of automorphisms induced by automorphisms of the pair

Gv(MΘ
∗ (
†F

v
)) y (Ψ†FΘ

v
)×, relative to the above displayed diagrams, is multira-

dially defined in the sense of the natural functor “ΨGraph(Ξ)” of Proposition 11.7.
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2. (Uniradiality of Constant Monoids) Each isomorphism β : MΘ
∗ (Πv)

∼→MΘ
∗ (
†F

v
)

of projective system of mono-theta environmens induces compatible collections of

isomorphisms

Πv
∼→ Πtemp

X (MΘ
∗ (Πv))

β
∼→Πtemp

X (MΘ
∗ (
†F

v
)) = Πtemp

X (MΘ
∗ (
†F

v
))

y y y

Ψcns(MΘ
∗ (Πv))

β
∼→ Ψcns(MΘ

∗ (
†F

v
))

Kum−1

∼→ Ψ†Cv ,

and

Gv
∼→ Gv(MΘ

∗ (Πv))
β
∼→ Gv(MΘ

∗ (
†F

v
)) = Gv(MΘ

∗ (
†F

v
))

y y y

Ψcns(MΘ
∗ (Πv))

×
β
∼→Ψcns(MΘ

∗ (
†F

v
))×

Kum−1

∼→ Ψ×†Cv .

Moreover, the functorial algorithm

Πv 7→ (Πv y Ψcns(MΘ
∗ (Πv))),

which fails to be compatible (Note that we use the cyltomic rigidity isomorphism via

rational positive structure and LCFT and the surjection H1(Gv(−), µẐ(Gv(−)))�
Ẑ to construct the constant monoid, which use the value group portion as well) with

automorphisms of the pair

Gv(MΘ
∗ (
†F

v
)) y (Ψ†Cv )

×µ := (Ψ†Cv )
×/torsions

induced by automorphisms of the pair Gv(MΘ
∗ (
†F

v
)) y (Ψ†Cv )

×, relative to the

above displayed diagrams, is uniradially defined.

Proof. Proposition follows from the definitions.

Corollary 11.16. (M-theoretic Gaussian Monoids, [IUTchII, Corollary 3.5])

Let MΘ
∗ be a projective system of mono-theta environments with Πtemp

X (MΘ
∗ )
∼= Πv.

For t ∈ LabCusp±(Πtemp
X (MΘ

∗ )), let (−)t denote copies labelled by t of various objects

functorially constructed from MΘ
∗ (We use this convention after this corollary as well).

1. (Conjugate Synchronisation) If we regard the cuspidal inertia subgroups ⊂
Πtemp
X (MΘ

∗ ) corresponding to t as subgroups of cuspidal inertia subgroups of Πtemp
X (MΘ

∗ ),

then the ∆temp
X (MΘ

∗ )-outer action of Fo±
l
∼= ∆temp

C (MΘ
∗ )/∆

temp
X (MΘ

∗ ) on Πtemp
X (MΘ

∗ )

induces isomorphisms between the pairs

Gv(MΘ
∗ )t y Ψcns(MΘ

∗ )t
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of a labelled ind-topological monoid equipped with the action of a labelled topological

group for distinct t ∈ LabCusp±(Πtemp
X (MΘ

∗ )). We call these isomorphisms Fo±
l -

symmetrising isomorphisms.When we identify these objects labelled by t and

−t via a suitable Fo±
l -symmetrising isomorphism, we write (−)|t| for the resulting

object labelled by |t| ∈ |Fl|. Let

(−)〈|Fl|〉

denote the object determined by the diagonal embedding in
∏
|t|∈Fl

(−)|t| via suitable

Fo±
l -symmetrising isomorphisms (Note that, thanks to the Fo±

l -symmetrising iso-

morphisms, we can construct the diagonal objects). Then by Corollary 11.11, we

obtain a collection of compatible morphisms

(Πtemp
X (MΘ

∗ )←↩) ΠvÏ(MΘ
∗Ï) � Gv(MΘ

∗Ï)〈|Fl|〉

y y

Ψcns(MΘ
∗ )

diag
∼→ Ψcns(MΘ

∗ )〈|Fl|〉,

which are compatible with Fo±
l -symmetrising isomorphisms and well-defined up to

an inner automorphism of Πtemp
X (MΘ

∗ ) (i.e., this inner automorphism indetermi-

nacy, which a priori depends on |t| ∈ |Fl|, is independent of |t| ∈ |Fl|).

2. (Gaussian Monoids) We call an element of the set

θF
>
l

env
:=

∏
|t|∈F>

l

θ|t|
env
⊂

∏
|t|∈F>

l

Ψcns(MΘ
∗ )|t|

a value-profile (Note that this set has of cardinality (2l)l
>
). Then by using Fo±

l -

symmetrising isomorphisms and Corollary 11.11, we obtain a functorial algorithm

to construct, from MΘ
∗ , two collections of submonoids

Ψgau(MΘ
∗ ) :=

Ψξ(MΘ
∗ ) := Ψcns(MΘ

∗ )
×
〈F>

l 〉
· ξN ⊂

∏
|t|∈F>

l

Ψcns(MΘ
∗ )|t|


ξ : value profile

,

∞Ψgau(MΘ
∗ ) :=

∞Ψξ(MΘ
∗ ) := Ψcns(MΘ

∗ )
×
〈F>

l 〉
· ξQ≥0 ⊂

∏
|t|∈F>

l

Ψcns(MΘ
∗ )|t|


ξ : value profile

,

where each Πξ(MΘ
∗ ) is equipped with a natural Gv(MΘ

∗Ï)〈F>
l 〉
-action. We call each of

Ψξ(MΘ
∗ ), ∞Ψξ(MΘ

∗ ) a mono-theta-theoretic Gaussian monoid. The restric-

tion operations in Corollary 11.11 give us a collection of compatible evaluation
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isomorphisms

(Πtemp
X (MΘ

∗ )←↩) ΠvÏ(MΘ
∗Ï)

Dδ
t,µ−

’s

L99 {Gv(MΘ
∗Ï)|t|}|t|∈F>

l

y y

(∞)Ψ
ι
env(MΘ

∗ )
eval
∼→ (∞)Ψξ(MΘ

∗ ),

which is well-defined up to an inner automorphism of Πtemp
X (MΘ

∗ ) (Note that up to

single inner automorphism by Fo±
l -symmetrising isomorphisms), where L99 denotes

the compatibility of the action of Gv(MΘ
∗Ï)|t| on the factor labelled by |t| of the

∞Ψξ(MΘ
∗ ). Let

(∞)Ψenv(MΘ
∗ )

eval
∼→ (∞)Ψgau(MΘ

∗ )

denote these collections of compatible evaluation morphisms induced by restriction.

3. (Constant Monoids and Splittings) The diagonal-in-|Fl| submonoid Ψcns(MΘ
∗ )〈|Fl|〉

can be seen as a grpah between the constant monoid Ψcns(MΘ
∗ )0 labelled by the zero

element 0 ∈ |Fl| and the diagonal-in-F>
l submonoid Ψcns(MΘ

∗ )〈F>
l 〉
, hence determines

an isomorphism

Ψcns(MΘ
∗ )0

diag
∼→ Ψcns(MΘ

∗ )〈F>
l 〉

of monoids, which is compatible with respective labelled Gv(MΘ
∗Ï)-actions. More-

over, the restriction operations to zero-labelled evaluation points (See Corollary 11.11)

give us a splitting up to torsion

Ψξ(MΘ
∗ ) = Ψ×cns(MΘ

∗ )〈F>
l 〉
· ξN, ∞Ψξ(MΘ

∗ ) = Ψ×cns(MΘ
∗ )〈F>

l 〉
· ξQ≥0

of each of the Gaussian monoids, which is compatible with the splitting up to torsion

of Definition 11.12 (1), with respect to the restriction isomorphisms in the third

display of (2).

Proof. Corollary follows from the definitions.

Corollary 11.17. (F-theoretic Gaussian Monoids, [IUTchII, Corollary 3.6]) Let

MΘ
∗ be a projective system of mono-theta environments with Πtemp

X (MΘ
∗ )
∼= Πv. Sup-

pose that MΘ
∗ arises from a tempered Frobenioid †F

v
in a Θ-Hodge theatre †HT Θ =

({†F
w
}w∈V, †F


mod) by Theorem 8.14 (“F 7→M”):

MΘ
∗ = MΘ

∗ (
†F

v
).
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1. (Conjugate Synchronisation) For each t ∈ LabCusp±(Πtemp
X (MΘ

∗ )) the Kum-

mer isomorphism in Proposition 11.14 (2) determines a collection of compatible

morphisms

(Πtemp
X (MΘ

∗ )�)Gv(MΘ
∗ )t � Gv(MΘ

∗Ï)t

y y

(Ψ†Cv )t

Kum
∼→ Ψcns(MΘ

∗ )t,

which are well-defined up to an inner automorphism (which is independent of t ∈
LabCusp±(Πtemp

X (MΘ
∗ ))) of Πtemp

X (MΘ
∗ ), and Fo±

l -symmetrising isomorphisms be-

tween distinct t ∈ LabCusp±(Πtemp
X (MΘ

∗ )) induced by the ∆X(MΘ
∗ )-outer action of

Fo±
l
∼= ∆C(MΘ

∗ )/∆X(MΘ
∗ ) on ΠX(MΘ

∗ ).

2. (Gaussian Monoids) For each value-profile ξ, let

ΨFξ
(†F

v
) ⊂ ∞ΨFξ

(†F
v
) ⊂

∏
|t|∈F>

l

(Ψ†Cv )|t|

denote the submonoid determined by the monoids Ψξ(MΘ
∗ ), ∞Ψξ(MΘ

∗ ) in Corol-

lary 11.16 (2), respectively, via the Kummer isomorphism (Ψ†Cv )|t|

Kum
∼→ Ψcns(MΘ

∗ )|t|
in (1). Put

ΨFgau(
†F

v
) :=

{
ΨFξ

(†F
v
)
}
ξ : value profile

, ∞ΨFgau(
†F

v
) :=

{
∞ΨFξ

(†F
v
)
}
ξ : value profile

,

where each ΠFξ
(†F

v
) is equipped with a natural Gv(MΘ

∗ )〈F>
l 〉
-action. We call each

of ΠFξ
(†F

v
), ∞ΠFξ

(†F
v
) a Frobenioid-theoretic Gaussian monoid. Then by

composing the Kummer isomorphism in (1) and Proposition 11.14 (1), (2) with the

restriction isomorphism of Corollary 11.16 (2), we obtain a diagram of compatible

evaluation ismorphisms

ΠvÏ(MΘ
∗Ï) = ΠvÏ(MΘ

∗Ï)
Dδ

t,µ−
’s

L99 {Gv(MΘ
∗Ï)|t|}|t|∈F>

l

∼→ {Gv(MΘ
∗ )|t|}|t|∈F>

l

y y y y

(∞)Ψ†FΘ
v,α

Kum
∼→ (∞)Ψ

ι
env(MΘ

∗ )
eval
∼→ (∞)Ψξ(MΘ

∗ )
Kum−1

∼→ (∞)ΨFξ
(†F

v
),

which is well-defined up to an inner automorphism of Πtemp
X (MΘ

∗ ) (Note that up to

single inner automorphism by Fo±
l -symmetrising isomorphisms), where L99 is the

same meaning as in Corollary 11.16 (2). Let

(∞)Ψ†FΘ
v

Kum
∼→ (∞)Ψenv(MΘ

∗ )
eval
∼→ (∞)Ψgau(MΘ

∗ )
Kum−1

∼→ (∞)ΨFgau(
†F

v
)

denote these collections of compatible evaluation morphisms.
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3. (Constant Monoids and Splittings) By the same manner as in Corollary 11.16

(3), the diagonal submonoid (Ψ†Cv )〈|Fl|〉 determines an isomorphism

(Ψ†Cv )0

diag
∼→ (Ψ†Cv )〈F>

l 〉

of monoids, which is compatible with respective labelled Gv(MΘ
∗ )-actions. Moreover,

the splittings in Corollary 11.16 (3) give us splittings up to torsion

ΨFξ
(†F

v
) = (Ψ×†Cv )〈F>

l 〉
· Im(ξ)N, ∞ΨFξ

(†F
v
) = (Ψ×†Cv )〈F>

l 〉
· Im(ξ)Q≥0

(Here Im(−) denotes the image of Kum−1◦eval◦Kum in (2)) of each of the Gaussian

monoids, which is compatible with the splitting up to torsion of Definition 11.12 (1),

with respect to the restriction isomorphisms in the third display of (2).

Proof. Corollary follows from the definitions.

Remark 11.17.1. ([IUTchIII, Remark 2.3.3 (iv)]) It seems interesting to note that

the cyclotomic rigidity of mono-theta environments admits Fo±
l -symmetry, contrary

to the fact that the theta functions, or the theta values qj
2

v
’s do not admit Fo±

l -

symmetry. This is because the construction of the cyclotomic rigidity of mono-theta

environments only uses the commutator structure [ , ] (in other words, “curvature”) of

the theta group (i.e., Heisenberg group), not the theta function itself.

Remark 11.17.2. (Π-theoretic Gaussian Monoids, [IUTchII, Corollary 3.7, Re-

mark 3.7.1]) If we formulate a “Gaussian analogue” of Proposition 11.15, then the re-

sulting algorithm is only uniradially defined, since we use the cyclotomic rigidity isomor-

phism via rational positive structure and LCFT (cf. Remark 11.11.1 Proposition 11.15

(2)) to construct constant monoids. In the theta functions level (i.e., “env”-labelled

objects), it admits multiradially defined algorithms; however, in the theta values level

(i.e., “gau”-labelled objects), it only admits uniradially defined algorithms, since we

need constant monoids as containers of theta values (Note also that this container is

holomorphic container, since we need the holomorphic structures for the labels and Fo±
l -

synchronising isomorphisms). Later, by using the theory of log-shells, we will modify

such a “Gaussian analogue” algorithm (See below) of Proposition 11.15 into a multi-

radially defined algorithm after admitting mild indeterminacies (i.e., (Indet ↑), (Indet
→), and (Indet xy)) (See Theorem 13.12 (1), (2)).

A precise formulation of a “Gaussian analogue” of Proposition 11.15 is as follows:

Let MΘ
∗ be a projective system of mono-theta environments with Πtemp

X (MΘ
∗ )
∼= Πv.

Suppose that MΘ
∗ arises from a tempered Frobenioid †F

v
in a Θ-Hodge theatre †HT Θ =

({†F
w
}w∈V, †F


mod) by Theorem 8.14 (“F 7→M”):

MΘ
∗ = MΘ

∗ (
†F

v
).
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We consider the full poly-isomorphism

MΘ
∗ (Πv)

full poly
∼→ MΘ

∗ (
†F

v
)

of projective systems of mono-theta environments. Let MΘ
∗Ï(
†F

v
) denote MΘ

∗Ï for

MΘ
∗ = MΘ

∗ (
†F

v
). For MΘ

∗ = MΘ
∗ (Πv), we identify ΠvÏ(MΘ

∗Ï) and Gv(MΘ
∗Ï) with

ΠvÏ and Gv(ΠvÏ) respectively, via the tautological isomorphisms ΠvÏ(MΘ
∗Ï)

∼→ ΠvÏ,
Gv(MΘ

∗Ï)
∼→ Gv(ΠvÏ).

1. Each isomorphism β : MΘ
∗ (Πv)

∼→ MΘ
∗ (
†F

v
) of projective system of mono-theta

environments induces compatible collections of evaluation isomorphisms

Π
vÏ

Dδ
t,µ−

’s

L99 {Gv(Π
vÏ)|t|}|t|∈F>

l

β
∼→ {Gv(MΘ

∗Ï(†F
v
))|t|}|t|∈F>

l

∼→ {Gv(MΘ
∗ (†F

v
))|t|}|t|∈F>

l
y y y y

(∞)Ψ
ι
env(MΘ

∗ (Πv))

eval
∼→ (∞)Ψξ(MΘ

∗ (Πv))

β
∼→ (∞)Ψξ(MΘ

∗ (†F
v
))

Kum−1
∼→ (∞)ΨFξ

(†F
v
),

and

Gv(ΠvÏ)
diag
∼→ Gv(ΠvÏ)〈F>

l 〉

β
∼→Gv(MΘ

∗Ï(
†F

v
))〈F>

l 〉
∼→ Gv(MΘ

∗ (
†F

v
))〈F>

l 〉

y y y y

Ψιenv(MΘ
∗ (Πv))

×
eval
∼→ Ψξ(MΘ

∗ (Πv))
×

β
∼→ Ψξ(MΘ

∗ (
†F

v
))×

Kum−1

∼→ ΨFξ
(†F

v
)×,

where L99 is the same meaning as in Corollary 11.16 (2).

2. (Uniradiality of Gaussian Monoids) The functorial algorithms

Πv 7→ (Gv(ΠvÏ) y Ψgau(MΘ
∗ (Πv)) with splittings up to torsion),

Πv 7→ (∞Ψgau(MΘ
∗ (Πv)) with splittings up to torsion),

which fails to be compatible (Note that we use the cyltomic rigidity isomorphism via

rational positive structure and LCFT and the surjection H1(Gv(−), µẐ(Gv(−)))�
Ẑ to construct the constant monoid, which use the value group portion as well) with

automorphisms of the pair

Gv(MΘ
∗ (
†F

v
))〈F>

l 〉
y ΨFξ

(†F
v
)×µ := ΨFξ

(†F
v
)×/torsions

induced by automorphisms of the pair Gv(MΘ
∗ (
†F

v
)) y ΨFξ

(†F
v
)×, relative to

the above displayed diagrams in (1), is uniradially defined.
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§ 11.3. Hodge-Arakelov-theoretic Evaluation and Gaussian Monoids at

Good Places.

In this subsection, we perform analogues of the Hodge-Arakelov-theoretic evalua-

tion, and construction of Gaussian monoids for v ∈ Vgood.

Let v ∈ Vgood. For v ∈ Vgood ∩ Vnon (resp. v ∈ Varc), put

Πv := ΠX−→v
⊂ Π±v := ΠXv

⊂ Πcor
v := ΠCv

(resp. Uv := X−→v
⊂ U±v := Xv ⊂ Ucor

v := Cv ),

where X−→v
, Xv, and Cv are Aut-holomorphic orbispaces (See Section 4) associated to X−→v

,

Xv, and Cv, respectively. Note that we have Πcor
v /Π±v

∼= Fo±
l (resp. Gal(U±v /Ucor

v ) ∼=
Fo±
l ). We also write

∆v ⊂ Πv � Gv(Πv), ∆
±
v ⊂ Π±v � Gv(Π

±
v ), ∆

cor
v ⊂ Πcor

v � Gv(Π
cor
v )

(resp. D`v (Uv) )

the natural quotients and their kernels (resp. the split monod), which can be group-

theoretically reconstructed by Corollary 2.4 (resp. which can be algorithmically re-

constructed by Proposition 4.5). Note that we have natural isomorphisms Gv(Πv)
∼→

Gv(Π
±
v )
∼→ Gv(Π

cor
v )

∼→ Gv.

Proposition 11.18. (Π-theoretic (resp. Aut-hol.-theoretic) Gaussian Monoids

at v ∈ Vgood ∩ Vnon (resp. at v ∈ Varc), [IUTchII, Proposition 4.1, Proposition 4.3])

1. (Constant Monoids) By Corollary 3.19 (resp. by definitions), we have a func-

torial group-theoretic algorithm to construct, from the topological group Gv (resp.

from the split monoid D`v ), the ind-topological submonoid equipped with Gv-action

(resp. the topological monoid)

Gv y Ψcns(Gv) ⊂ ∞H
1(Gv, µẐ(Gv)) := lim−→

J⊂Gv : open

H1(J, µẐ(Gv))

(resp. Ψcns(D`v ) := O�(C`v ) ),

which is an isomorph of (Gv y O�

Fv
), (resp. an isomorph of O�

Fv
). Thus, we obtain

a functroial group-theoretic algorithm to construct, from the topological group Πv

(resp. from the Aut-holomorphic space Uv), the ind-topological submonoid equipped

with Gv(Πv)-action (resp. the topological monoid)

Gv(Πv) y Ψcns(Πv) := Ψcns(Gv(Πv)) ⊂ ∞H
1(Gv(Πv), µẐ(Gv(Πv)))

⊂ ∞H1(Π±v , µẐ(Gv(Πv))) ⊂ ∞H
1(Πv, µẐ(Gv(Πv)))
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(resp. Ψcns(Uv) := Ψcns(D`v (Uv)) ),

where ∞H
1(Gv(Πv),−) := lim−→J⊂Gv(Πv) : open

H1(J,−), ∞H1(Π±v ,−) := lim−→J⊂Gv(Πv) : open

H1(Π±v ×Gv(Πv) J,−), and ∞H1(Πv,−) := lim−→J⊂Gv(Πv) : open
H1(Πv ×Gv(Πv) J,−).

2. (Mono-analytic Semi-simplifications) By Definition 10.6, we have the func-

torial algorithm to construct, from the topological group Gv (resp. from the split

monoid D`v ), the topological monoid equipped with the distinguished element

logGv (pv) ∈ R≥0(Gv) := (R`≥0)v, (resp. logD
`
(pv) ∈ R≥0(D`v ) := (R`≥0)v, )

(See “logDΦ (pv)” in Definition 10.6) and a natural isomorphism

ΨR
cns(Gv) := (Ψcns(Gv)/Ψcns(Gv)

×)R
∼→ (R`≥0)v

(resp. ΨR
cns(D`v ) := (Ψcns(D`v )/Ψcns(D`v )×)R

∼→ (R`≥0)v )

of the monoids (See Proposition 5.2 (resp. Proposition 5.4)). Put

Ψss
cns(Gv) := Ψcns(Gv)

× × (R`≥0)v (resp. Ψss
cns(D`v ) := Ψcns(D`v )× × (R`≥0)v ),

which we consider as semisimplified version of Ψcns(Gv) (resp. Ψcns(D`v )). We also

put

Ψss
cns(Πv) := Ψss

cns(Gv(Πv)), Ψcns(Πv)
× := Ψcns(Gv(Πv))

×, R≥0(Πv) := R≥0(Gv(Πv))

(resp. Ψss
cns(Uv) := Ψss

cns(D`v (Uv)), Ψcns(Uv)× := Ψcns(D`v (Uv))×, R≥0(Uv) := R≥0(D`v (Uv)) ),

just as in (1).

3. (Conjugate Synchronisation) If we regard the cuspidal inertia subgroups ⊂ Πv

corresponding to t as subgroups of cuspidal inertia subgroups of Π±v , then the ∆±v -

outer action of Fo±
l
∼= ∆cor

v /∆±v on Π±v (resp. the action of Fo±
l
∼= Gal(U±v /Ucor

v )

on the various Gal(Uv/U±v )-orbits of cusps of Uv) induces isomorphisms between

the pairs (resp. between the labelled topological monoids)

Gv(Πv)t y Ψcns(Πv)t (resp. Ψcns(Uv)t )

of the labelled ind-topological monoid equipped with the action of the labelled topo-

logical group for distinct t ∈ LabCusp±(Πv) := LabCusp±(B(Πv)0) (resp. t ∈
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LabCusp±(Uv)) (See Definition 10.27 (1) (resp. Definition 10.27 (2)) for the def-

inition of LabCusp±(−)). We call these isomorphisms Fo±
l -symmetrising iso-

morphisms. These symmetrising isomorphisms determine diagonal submonoids

Ψcns(Πv)〈|Fl|〉 ⊂
∏
|t|∈|Fl|

Ψcns(Πv)|t|, Ψcns(Πv)〈F>
l 〉
⊂

∏
|t|∈F>

l

Ψcns(Πv)|t|,

which are compatible with the respective labelled Gv(Πv)-actions

(resp. Ψcns(Uv)〈|Fl|〉 ⊂
∏
|t|∈|Fl|

Ψcns(Uv)|t|, Ψcns(Uv)〈F>
l 〉
⊂

∏
|t|∈F>

l

Ψcns(Uv)|t| ),

and an isomorphism

Ψcns(Πv)0

diag
∼→ Ψcns(Πv)〈F>

l 〉
(resp. Ψcns(Uv)0

diag
∼→ Ψcns(Uv)〈F>

l 〉
)

of ind-topological monoids, which is compatible with the respective labelled Gv(Πv)-

actions (resp. of topological monoids).

4. (Theta and Gaussian Monoids) Put

Ψenv(Πv) := Ψcns(Πv)
× ×

{
R≥0 · logΠv (pv) · logΠv (Θ)

}

(resp. Ψenv(Uv) := Ψcns(Uv)× ×
{
R≥0 · logUv (pv) · logUv (Θ)

}
),

where logΠv (pv) · logΠv (Θ) (resp. logUv (pv) · logUv (Θ)) is just a formal symbol, and

Ψgau(Πv) := Ψcns(Πv)
×
〈F>

l 〉
×
{
R≥0 ·

(
j2 · logΠv (pv)

)
j

}
⊂
∏
j∈F>

l

Ψss
cns(Πv)j =

∏
j∈F>

l

Ψcns(Πv)
×
j × R≥0(Πv)j

(resp. Ψgau(Uv) := Ψcns(Uv)×〈F>
l 〉
×
{
R≥0 ·

(
j2 · logUv (pv)

)
j

}
⊂
∏
j∈F>

l

Ψss
cns(Uv)j =

∏
j∈F>

l

Ψcns(Uv)×j × R≥0(Uv)j )

where logΠv (pv) (resp. logUv (pv)) is just a formal symbol, and R≥0 · (−) is de-

fined by the R≥0-module structures of R≥0(Πv)j’s (resp. R≥0(Uv)j’s). Note that

we need the holomorphic structures for the labels and Fo±
l -synchronising isomor-

phisms. In particular, we obtain a functorial group-theoretically algorithm to con-

struct, from the topological group Πv (from the Aut-holomorphic space Uv), the
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theta monoid Ψenv(Πv) (resp. Ψenv(Uv)), the Gaussian monoid Ψgau(Πv) (resp.

Ψgau(Uv)) equipped with natural Gv(Πv)-actions and splittings (resp. equipped with

natural splittings), and the formal evaluation isomorphism

Ψenv(Πv)
eval
∼→ Ψgau(Πv) : logΠv (pv) · logΠv (Θ) 7→ (j2 · logΠv (pv))j

(resp. Ψenv(Uv)
eval
∼→ Ψgau(Uv) : logUv (pv) · logUv (Θ) 7→ (j2 · logUv (pv))j ),

which restricts to the identity on the respective copies of Ψcns(Πv)
× (resp. Ψcns(Uv)×),

and is compatible with the respective Gv(Πv)-actions and the natural splittings (resp.

compatible with the natural splittings).

Remark 11.18.1. ([IUTchII, Remark 4.1.1 (iii)]) Similarly as in Proposition 11.15

and Remark 11.17.2, the construction of the monoids Ψcns(Πv) (resp. Ψcns(Uv)) is

uniradial, and the constructions of the monoids Ψss
cns(Πv), Ψenv(Πv), and Ψgau(Πv)

(resp. Ψss
cns(Uv), Ψenv(Uv), and Ψgau(Uv)), and the formal evaluation isomorphism

Ψenv(Πv)
eval
∼→ Ψgau(Πv) (resp. Ψenv(Uv)

eval
∼→ Ψgau(Uv)) are multiradial. Note that,

the latter ones are constructed by using holomorphic structures; however, these can be

described via the underlying mono-analytic structures (See also the table after Exam-

ple 11.2).

Proof. Proposition follows from the definitions and described algorithms.

Proposition 11.19. (F-theoretic Gaussian Monoids at v ∈ Vgood ∩Vnon (resp.

at v ∈ Varc), [IUTchII, Proposition 4.2, Proposition 4.4]) For v ∈ Vgood ∩ Vnon (resp.

v ∈ Varc), let †F
v
= †Cv (resp. †F

v
= (†Cv, †Dv = †Uv, †κv)) be a pv-adic Frobenioid

(resp. a triple) in a Θ-Hodge theatre †HT Θ = ({†F
w
}w∈V, †F


mod). We assume (for

simplicity) that the base category of †F
v
is equal to Btemp(†Πv)

0). Let

Gv(
†Πv) y Ψ†F

v
(resp. Ψ†F

v
:= O�(†Cv) )

denote the ind-topological monoid equipped with Gv(
†Πv)-action (resp. the topological

monoid) determined, up to inner automorphism arising from an element of †Πv by †F
v
,

and
†Gv y Ψ†F`

v
(resp. Ψ†F`

v
:= O�(†C`v ) )

denote the ind-topological monoid equipped with †Gv-action (resp. the topological monoid)

determined, up to inner automorphism arising from an element of †Gv by the v-component
†F`v of F`-prime-strip {†F`w}w∈V determined by the Θ-Hodge theatre †HT Θ.
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1. (Constant Monoids) By Remark 3.19.2 (resp. by the Kummer structure †κv),

we have a unique Kummer isomorphism

Ψ†F
v

Kum
∼→ Ψcns(

†Πv) (resp. Ψ†F
v

Kum
∼→ Ψcns(

†Uv) )

of ind-topological monoids with Gv(
†Πv)-action (resp. of topological monoids).

2. (Mono-analytic Semi-simplifications) We have a unique Ẑ×-orbit (resp. a

unique {±1}-orbit)

Ψ×†F`
v

“Kum”

Ẑ×-orbit, poly
∼→ Ψcns(

†Gv)
× (resp. Ψ†F`

v

“Kum”
{±1}-orbit, poly

∼→ Ψcns(
†D`v )× )

of isomorphisms of ind-topological groups with †Gv-action (resp. of topological

groups), and a unique isomorphism

ΨR
†F`

v
:= (Ψ†F`

v
/Ψ×†F`

v
)R

“Kum”
∼→ ΨR

cns(
†Gv) (resp. ΨR

†F`
v
:= (Ψ†F`

v
/Ψ×†F`

v
)R

“Kum”
∼→ ΨR

cns(
†D`v ) )

of monoids, which sends the distinguished element of ΨR
†F`

v
determined by the unique

generator (resp. by pv = e = 2.71828 · · · , i.e., the element of the complex Archimedean

field which gives rise to Ψ†F
v
whose natural logarithm is equal to 1) of Ψ†F`

v
/Ψ×†F`

v
to

the distinguished element of ΨR
cns(
†Gv) (resp. Ψ

R
cns(
†D`v )) determined by logGv (pv) ∈

R≥0(†Gv) (resp. logD
`
v (pv) ∈ R≥0(†D`v )). In particular, we have a natural poly-

isomorphism

Ψss
†F`

v
:= Ψ×†F`

v
×ΨR

†F`
v

“Kum”
poly
∼→ Ψss

cns(
†Gv) (resp. Ψss

†F`
v
:= Ψ×†F`

v
×ΨR

†F`
v

“Kum”
poly
∼→ Ψss

cns(
†D`v ) )

of ind-topological monoids (resp. topological monoids) which is compatible with the

natural splittings (We can regard these poly-isomorphisms as analogues of Kummer

isomorphism). We put Ψss
†F

v

:= Ψss
†F`

v
(resp. Ψss

†F
v

:= Ψss
†F`

v
), hence we have a

tautological isomorphism

Ψss
†F

v

tauto
∼→ Ψss

†F`
v

(resp. Ψss
†F

v

tauto
∼→ Ψss

†F`
v

).

3. (Conjugate Synchronisation) The Kummer isomorphism in (1) determines a

collection of compatible Kummer isomorphisms

(Ψ†F
v
)t

Kum
∼→ Ψcns(

†Πv)t (resp. (Ψ†F
v
)t

Kum
∼→ Ψcns(

†Uv)t ),
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which are well-defined up to an inner automorphism of †Πv (which is independent

of t ∈ LabCusp±(†Πv)) for t ∈ LabCusp±(†Πv) (resp. t ∈ LabCusp±(†Uv)), and
Fo±
l -symmetrising isomorphisms between distinct t ∈ LabCusp±(†Πv) (resp. t ∈

LabCusp±(†Uv)) induced by the †∆±v -outer action of Fo±
l
∼= †∆cor

v /†∆±v on †Π±v
(resp. the action of Fo±

l
∼= Gal(†U±v /†Ucor

v ) on the various Gal(†Uv/†U±v )-orbits of

cusps of †Uv). These symmetrising isomorphisms determine an isomorphism

(Ψ†F
v
)0

diag
∼→ (Ψ†F

v
)〈F>

l 〉
(resp. (Ψ†F

v
)0

diag
∼→ (Ψ†F

v
)〈F>

l 〉
)

of ind-topological monoids (resp. topological monoids), which are compatible with

the respective labelled Gv(
†Πv)-actions.

4. (Theta and Gaussian Monoids) Let

Ψ†FΘ
v
, ΨFgau(

†F
v
) (resp. Ψ†FΘ

v
, ΨFgau(

†F
v
) )

denote the monoids with Gv(
†Πv)-actions and natural splittings, determined by

Ψenv(
†Πv), Ψgau(

†Πv) in Proposition 11.18 (4) respectviely, via the isomorphisms

in (1), (2), and (3). Then the formal evaluation isomorphism of Proposition 11.18

(4) gives us a collection of evaluation isomorphisms

Ψ†FΘ
v

Kum
∼→ Ψenv(

†Πv)
eval
∼→ Ψgau(

†Πv)
Kum−1

∼→ ΨFgau(
†F

v
)

(resp. Ψ†FΘ
v

Kum
∼→ Ψenv(

†Πv)
eval
∼→ Ψgau(

†Πv)
Kum−1

∼→ ΨFgau(
†F

v
) ),

which restrict to the identity or the isomorphism of (1) or the inverse of the iso-

morphism of (1) on the various copies of Ψ×†F
v

, Ψcns(
†Πv)

×, and are compatible

with the various natural actions of Gv(
†Πv) and natural splittings.

§ 11.4. Hodge-Arakelov-theoretic Evaluation and Gaussian Monoids in

the Global Case.

In this subsection, we globalise the constructions in Section 11.2 (v ∈ Vbad) and

in Section 11.3 (v ∈ Vgood) via global realified Frobenioids (See also Remark 10.9.1).

We can globalise the local Fo±
l -symmetries to a global Fo±

l -symmetry, thanks to the

global{±1}-synchronisation in Proposition 10.33 (See also Proposition 10.34 (3)).

This is a �-portion of constructions in ��-Hodge theatres. In the final multiradial

algorithm, we use this �-portion to construct Θ-pilot object (See Proposition 13.7 and

Definition 13.9 (1)), which gives us a �-line bundle (See Definition 9.7) (of negative

large degree) through an action on mono-analytic log-shells (See Corollary 13.13).
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Next, we also perform NF-counterpart (cf. Section 9) of Hodge-Arakelov-theoretic

evaluation. This is a �-portion of constructions in ��-Hodge theatres. In the final

multiradial algorithm, we use this �-portion to construct actions of copies of “F×mod” on

mono-analytic log-shells (See Proposition 13.11 (2)), through which we convert �-line
bundles into �-line bundles (See the category equivalence (Convert) just after Defini-

tion 9.7) and vice versa (See Corollary 13.13).

Corollary 11.20. (Π-theoretic Monoids associated toD-�-Hodge Theatres, [IUTchII,

Corollary 4.5]) Let

†HT D-� = (†D�
†φΘ±

±←− †DT

†φΘell

±−→ †D}±)

be a D-�-Hodge theatre, and
‡D = {‡Dv}v∈V

a D-prime-strip. We assume, for simplicity, that ‡Dv = Btemp(‡Πv)
0 for v ∈ Vnon. Let

‡D` = {‡D`v }v∈V denote the associated D`-prime-strip to ‡D, and ssume that ‡D`v =

Btemp(‡Gv)
0 for v ∈ Vnon.

1. (Constant Monoids) By Definition 11.12 (2) for v ∈ Vbad and Proposition 11.18

(1) for v ∈ Vgood, we obtain a functorial algorithm, with respect to the D-prime-strip
‡D, to construct the assignment

Ψcns(
‡D) : V 3 v 7→ Ψcns(

‡D)v :=


{
Gv(MΘ

∗ (
‡Πv)) y Ψcns(MΘ

∗ (
‡Πv))

}
v ∈ Vbad,{

Gv(
‡Πv) y Ψcns(

‡Πv)
}

v ∈ Vgood ∩ Vnon,

Ψcns(
‡Dv) v ∈ Varc,

where Ψcns(
‡D)v is well-defined only up to a ‡Πv-conjugacy indeterminacy for v ∈

Vnon.

2. (Mono-analytic Semi-simplifications) By Proposition 11.18 (2) for v ∈ Vgood

and the same group-theoretic algorithm for v ∈ Vbad (Here, we put Ψcns(Πv) :=

Ψcns(MΘ
∗ (Πv))), we obtain a functorial algorithm, with respect to the D`-prime-

strip ‡D`, to construct the assignment

Ψss
cns(
‡D`) : V 3 v 7→ Ψss

cns(
‡D`)v :=


{‡Gv y Ψss

cns(
‡Gv)

}
v ∈ Vnon,

Ψss
cns(
‡D`v ) v ∈ Varc,

where Ψss
cns(
‡D`)v is well-defined only up to a ‡Gv-conjugacy indeterminacy for

v ∈ Vnon. Each Ψss
cns(
‡D`)v is equipped with a splitting

Ψss
cns(
‡D`)v = Ψss

cns(
‡D`)×v × R≥0(‡D`)v
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and each R≥0(‡D`)v is equipped with a distinguished element

log
‡D`

(pv) ∈ R≥0(‡D`)v.

If we regard ‡D` as constructed from ‡D, then we have a functorial algorithm, with

respect to the D-prime-strip ‡D, to construct isomorphisms

Ψcns(
‡D)×v

∼→ Ψss
cns(
‡D`)×v

for each v ∈ V, which are compatible with Gv(
‡Πv)

∼→ ‡Gv-actions for v ∈ Vnon.

By Definition 10.6 (“D-version”), we also obtain a functorial algorithm, with respect

to D`-prime-strip ‡D`, to construct a (pre-)Frobenioid

D
(‡D`)

isomorphism to the model object C
mod in Definition 10.4, equipped with a bijection

Prime(D
(‡D`)) ∼→ V,

and localisation isomorphisms

‡ρD
,v : ΦD
(‡D`),v

gl. to loc.
∼−→ R≥0(‡D`)v

of topological monoids.

3. (Conjugate Synchronisation) We put

†ζ� := †ζ± ◦ †ζΘ
ell

0 ◦ (ζΘ
±

0 )−1 : LabCusp±(†D�)
∼→ T

(See Proposition 10.33). The various local Fo±
l -actions in Corollary 11.16 (1) and

Proposition 11.18 (3) induce isomorphisms between the labelled data

Ψcns(
†D�)t

for distinct t ∈ LabCusp±(†D�). We call these isomorphisms Fo±
l -symmetrising

isomorphisms (Note that the global {±1}-synchronisation established by Propo-

sition 10.33 is crucial here). These Fo±
l -symmetrising isomorphisms are compatible

with the (doubly transitive) Fo±
l -action on the index set T of the D-Θell-bridge †φΘ

ell

±
with respect to †ζ, hence, determine diagonal submonoids

Ψcns(
†D�)〈|Fl|〉 ⊂

∏
|t|∈|Fl|

Ψcns(
†D�)|t|, Ψcns(

†D�)〈F>
l 〉
⊂

∏
|t|∈F>

l

Ψcns(
†D�)|t|,

and an isomorphism

Ψcns(
†D�)0

diag
∼→ Ψcns(

†D�)〈F>
l 〉

consisting of the local isomorphisms in Corollary 11.16 (3) and Proposition 11.18

(3).
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4. (Local Theta and Gaussian Monoids) By Corollary 11.16 (2), (3) and Propo-

sition 11.18 (4), we obtain a functorial algorithm, with respect to the D-prime-strip
†D�, to construct the assignments

(∞)Ψenv(
†D�) : V 3 v 7→

(∞)Ψenv(
†D�)v :=


{Gv(MΘ

∗ (
†Πv))}j∈F>

l
y (∞)Ψenv(MΘ

∗ (
†Πv)) v ∈ Vbad ∩ Vnon,

{Gv(†Πv)}j∈F>
l
y (∞)Ψenv(

†Πv) v ∈ Vgood ∩ Vnon,

(∞)Ψenv(
‡Uv) v ∈ Varc,

and

(∞)Ψgau(
†D�) : V 3 v 7→

(∞)Ψgau(
†D�)v :=


{Gv(MΘ

∗ (
†Πv))}j∈F>

l
y (∞)Ψgau(MΘ

∗ (
†Πv)) v ∈ Vbad ∩ Vnon,

{Gv(†Πv)}j∈F>
l
y (∞)Ψgau(

†Πv) v ∈ Vgood ∩ Vnon,

(∞)Ψgau(
‡Uv) v ∈ Varc,

where we put ∞Ψenv(
†Πv) := Ψenv(

†Πv) (resp. ∞Ψenv(
†Uv) := Ψenv(

†Uv)) and

∞Ψgau(
†Πv) := Ψgau(

†Πv) (resp. ∞Ψgau(
†Uv) := Ψgau(

†Uv)) for v ∈ Vgood ∩ Vnon

(resp. v ∈ Varc) and (∞)Ψenv(
†D�)v’s, (∞)Ψgau(

†D�)v’s are equipped with natural

splittings, and compatible evaluation isomorphisms

(∞)Ψenv(
†D�)

eval
∼→ (∞)Ψgau(

†D�)

constructed by Corollary 11.16 (2) and Proposition 11.18 (4).

5. (Global Realified Theta and Gaussian Monoids) We have a functorial algo-

rithm, with respect to the D`-prime-strip †D`�, to construct a (pre-)Frobenioid

D

env(

†D`�)

as a coply of the Frobenioid D
(†D`�) of (2) above, multiplied a formal symbol

log
†D`

�(Θ), equipped with a bijection

Prime(D

env(

†D`�))
∼→ V,

and localisation isomorphisms

ΦD

env(

†D`
�),v

gl. to loc.
∼−→ Ψenv(

†D`�)
R
v

of topological monoids. We have a functorial algorithm, with respect to the D`-
prime-strip †D`� to construct a (pre-)Frobenioid

D

gau(

†D`�) ⊂
∏
j∈F>

l

D
(†D`�)j
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whose divisor and rational function monoids are determined by the weighted diagonal

( j2 )j∈F>
l
, equipped with a bijection

Prime(D

gau(

†D`�))
∼→ V,

and localisation isomorphisms

ΦD

gau(

†D`
�),v

gl. to loc.
∼−→ Ψgau(

†D`�)
R
v

of topological monoids for each v ∈ V. We also have a functorial algorithm, with

respect to the D`-prime-strip †D`� to construct a global formal evaluation iso-

morphism

D

env(

†D`�)
eval
∼→ D


gau(
†D`�)

of (pre-)Frobenioids, which is compatible with local evaluation isomorphisms of (4),

with respect to the localisation isomorphisms for each v ∈ V and the bijections

Prime(−) ∼→ V.

Proof. Corollary follows from the definitions.

Corollary 11.21. (F-theoretic Monoids associated to�-Hodge Theatres, [IUTchII,

Corollary 4.6]) Let

†HT � =

(
†F�

†ψΘ±
±←− †FT

†ψΘell

±−→ †D}±
)

be a �-Hodge theatre, and
‡F = {‡Fv}v∈V

an F-prime-strip. We assume, for simplicity, that the D-�-Hodge theatre associated to
†HT � is equal to †HT D-� in Corollary 11.20, and that the D-prime-strip associated

to ‡F is equal to ‡D in Corollary 11.20. Let ‡F` = {‡F`v }v∈V denote the associated

F`-prime-strip to ‡F.

1. (Constant Monoids) By Proposition 11.19 (1) for Vgood, and the same group-

theoretic algorithm for v ∈ Vbad, we have a functorial algorithm, with respect to the

F-prime-strip ‡F, to construct the assignment

Ψcns(
‡F) : V 3 v 7→ Ψcns(

‡F)v :=


{
Gv(

‡Πv) y Ψ‡Fv

}
v ∈ Vnon,

Ψ‡Fv
v ∈ Varc,

where Ψcns(
‡F)v is well-defined only up to a ‡Πv-conjugacy indeterminacy for v ∈

Vnon. By Proposition 11.14 (2) for v ∈ Vbad (where we take “†Cv” to be ‡Fv) and
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Proposition 11.19 (1) for v ∈ Vgood, we obtain a collection of Kummer isomor-

phism

Ψcns(
‡F)

Kum
∼→ Ψcns(

‡D).

2. (Mono-analytic Semi-simplifications) By Proposition 11.19 (2) for Vgood, and

the same group-theoretic algorithm for v ∈ Vbad, we have a functorial algorithm,

with respect to the F`-prime-strip ‡F`, to construct the assignment

Ψss
cns(
‡F`) : V 3 v 7→ Ψss

cns(
‡F`)v := Ψss

‡F`
v

where Ψss
cns(
‡F`)v is well-defined only up to a ‡Gv-conjugacy indeterminacy for v ∈

Vnon. Each Ψss
cns(
‡F`)v is equipped with its natural splitting, and for v ∈ Vnon, with

a distinguished element (Note that the distinguished element in Ψss
†F`

v
for v ∈ Varc

is not preserved by automorphism of †F`v . See also the first table in Section 4.3 cf.

[IUTchII, Remark 4.6.1]). By Proposition 11.19 (2) for v ∈ Vgood and the same

group-theoretic algorithm for v ∈ Vbad, we have a functorial algorithm, with respect

to F`-prime-strip ‡F`, to construct the collection of poly-isomorphisms (analogues

of Kummer isomorphism)

Ψss
cns(
‡F`)

“Kum”
poly
∼−→ Ψss

cns(
‡D`).

Let
‡F
 = (‡C
, Prime(‡C
) ∼→ V, ‡F`, {‡ρv}v∈V)

be the F
-prime-strip associated to ‡F. We also have a functorial algorithm, with

respect to F
-prime-strip ‡F
, to construct an isomorphism

‡C

“Kum”
∼−→ D
(‡D`)

(We can regard this isomorphism as an analogue of Kummer isomorphism), where

D
(‡D`) is constructed in Corollary 11.20 (2), which is uniquely determined by

the condition that it is compatible with the respective bijections Prime(−) ∼→ V and

the localisation isomorphisms of topological monoids for each v ∈ V, with respect to

the above collection of poly-isomorphisms Ψss
cns(
‡F`)

“Kum”
poly
∼→ Ψss

cns(
‡D`) (Note that,

if we reconstruct both Ψss
cns(
‡F`)

“Kum”
poly
∼→ Ψss

cns(
‡D`) and ‡C


“Kum”
∼→ D
(‡D`) in a

compatible manner, then the distinguished elements in Ψss
†F`

v
at v ∈ Varc can be

computed from the distinguished elements at v ∈ Vnon and the structure (e.g.. using

rational function monoids) of the global realified Frobenioids ‡C
, D
(‡D`). cf.

[IUTchII, Remark 4.6.1]).
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3. (Conjugate Synchronisation) For each t ∈ LabCusp±(†D�), the collection of

isomorphisms in (1) determine a collection of compatible Kummer isomorphisms

Ψcns(
†F�)t

Kum
∼→ Ψcns(

†D�)t,

where Ψcns(
†D�)t is the labelled data constructed in Corollary 11.20 (3), and the

†Πv-conjugacy indeterminacy at each v ∈ V is independent of t ∈ LabCusp±(†D�),

and Fo±
l -symmerising isomorphisms induced by the various local Fo±

l -actions in

Corollary 11.17 (1) and Proposition 11.19 (3) between the data labelled by distinct

t ∈ LabCusp±(†D�). These Fo±
l -symmetrising isomorphisms are compatible with

the (doubly transitive) Fo±
l -action on the index set T of the D-Θell-bridge †φΘ

ell

±
with respect to †ζ in Corollary 11.20 (3), hence, determine (diagonal submonoids

and) an isomorphism

Ψcns(
†F�)0

diag
∼→ Ψcns(

†F�)〈F>
l 〉

consisting of the local isomorphisms in Corollary 11.17 (3) and Proposition 11.19

(3).

4. (Local Theta and Gaussian Monoids) Let

†FJ
†ψΘ

>−→ †D> 99K †HT Θ

be a Θ-bridge which is glued to the Θ±-bridge associate to the �-Hodge theatre
†HT � via the algorithm in Lemma 10.38 (Hence, J = T>). By Corollary 11.17

(2), (3) and Proposition 11.19 (4), we have a functorial algorithm, with respect to

the above Θ-bridge with its gluing to the Θ±-bridge associated to †HT �, to construct

assignments

(∞)ΨFenv(
†HT Θ) : V 3 v 7→

(∞)ΨFenv(
†HT Θ)v :=

{Gv(†Πv)}j∈F>
l
y (∞)Ψ†FΘ

v
v ∈ Vnon,

(∞)Ψ†FΘ
v

v ∈ Varc,

and

(∞)ΨFgau(
†HT Θ) : V 3 v 7→

(∞)ΨFgau(
†HT Θ)v :=

{Gv(
†Πv)}j∈F>

l
y (∞)ΨFgau(

†F
v
) v ∈ Vnon

(∞)ΨFgau(
†F

v
) v ∈ Varc

(Here the notation (−)(†HT Θ) is slightly abuse of notation), where we put ∞ΨFenv(
†HT Θ)v

:= ΨFenv(
†HT Θ)v, and ∞ΨFgau(

†HT Θ)v := ΨFgau(
†HT Θ)v for v ∈ Vgood, and



a proof of the abc conjecture after Mochizuki 293

(∞)ΨFenv(
†HT Θ)v’s, (∞)ΨFgau(

†HT Θ)v’s are equipped with natural splittings, and

compatible evaluation isomorphisms

(∞)ΨFenv(
†HT Θ)

Kum
∼→ (∞)Ψenv(

†D�)
eval
∼→ (∞)Ψgau(

†D�)
Kum−1

∼→ (∞)ΨFgau(
†HT Θ)

constructed by Corollary 11.17 (2) and Proposition 11.19 (4).

5. (Global Realified Theta and Gaussian Monoids) By Proposition 11.19 (4)

for labelled and non-labelled versions of the isomorphism ‡C

“Kum”
∼→ D
(‡D`) of

(2) to the global realified Frobenioids D

env(

†D`�), D

gau(

†D`�) constructed in Corol-

lary 11.20 (5), we obtain a functorial algorithm, with respect to the above Θ-bridge,

to construct (pre-)Frobenioids

C
env(†HT
Θ), C
gau(†HT

Θ)

(Here the notation (−)(†HT Θ) is slightly abuse of notation. Note also that the

construction of C
env(†HT
Θ) is similar to the one of C
theta in Definition 10.5 (4))

with equipped with bijections

Prime(C
env(†HT
Θ))

∼→ V, Prime(C
gau(†HT
Θ))

∼→ V,

localisation isomorphisms

ΦC
env(†HT Θ),v

gl. to loc.
∼−→ ΨFenv(

†HT Θ)Rv , ΦC
gau(†HT Θ),v

gl. to loc.
∼−→ ΨFgau(

†HT Θ)Rv

of topological monoids for each v ∈ V, and evaluation isomrphisms

C
env(†HT
Θ)

“Kum”
∼→ D


env(
†D`�)

eval
∼→ D


gau(
†D`�)

“Kum−1”
∼→ C
gau(†HT

Θ)

of (pre-)Frobenioids constructed by Proposition 11.19 (4) and Corollary 11.20 (5),

which are compatible with local evaluation isomorphisms of (4), with respect to the

localisation isomorphisms for each v ∈ V and the bijections Prime(−) ∼→ V.

Proof. Corollary follows from the definitions.

Next, we consider �-portion.

Corollary 11.22. (Π-theoretic Monoids associated toD-�-Hodge Theatres, [IUTchII,

Corollary 4.7]) Let

†HT D-� = (†D}
†φNF

>←− †DJ

†φΘ
>−→ †D>)

be a D-�-Hodge theatre, which is glued to the D-�-Hodge theatre †HT D-� of Corol-

lary 11.20 via the algorithm in Lemma 10.38 (Hence, J = T>).
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1. (Global Non-realified Structures) By Example 9.5, we have a functorial algo-

rithm, with respect to the category †D}, to construct the morphism

†D} → †D~,

the monoid/field/pseudo-monoid

π1(
†D~) y M~(†D}), π1(†D~) y M~

(†D}), πrat
1 (†D~) y M~

∞κ(
†D})

with π1(
†D~)-/πrat

1 (†D~)-actions (Here, we use the notation π1(†D}), π1(†D~) and
πrat
1 (†D~), not †Π}, †Π~, (†Π~)rat in Example 9.5, respectively, for making clear

the dependence of objects), which is well-defined up to π1(
†D~)-/πrat

1 (†D~)-conjugay
indeterminacies, the submooid/subfield/subset

M~
mod(

†D}) ⊂M~(†D}), M~
mod(

†D}) ⊂M~
(†D}), M~

κ (
†D}) ⊂M~

∞κ(
†D}),

of π1(
†D~)-/πrat

1 (†D~)-invariant parts, the Frobeniods

F~
mod(

†D}) ⊂ F~(†D}) ⊃ F}(†D})

(Here, we write F~
mod(

†D}), F}(†D}) for †F~
mod,

†F} in Example 9.5, respectively)

with a natural bijection (by abuse of notation)

Prime(F~
mod(

†D})) ∼→ V,

and the natural realification functor

F~
mod(

†D})→ F~R
mod(

†D}).

2. (F>
l -symmetry) By Definition 10.22, for j ∈ LabCusp(†D}), we have a functorial

algorithm, with respect to the category †D}, to construct an F-prime-strip

F}(†D})|j ,

which is only well-defined up to isomorphism, Moreover, the natural poly-

action of F>
l on †D} induces isomorphisms between the labelled data

F}(†D})|j , M~
mod(

†D})j , M~
mod(

†D})j ,

{πrat
1 (†D~) y M~

∞κ(
†D})}j , F~

mod(
†D})j → F~R

mod(
†D})j

for distinct j ∈ LabCusp(†D}). We call these isomorphisms F>
l -symmetrising

isomorphisms. These F>
l -symmetrising isomorphisms are compatbile with the
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(simply transitive) F>
l -action on the index set J of the D-NF-bridge †φNF

> with re-

spect to †ζ> : LabCusp(†D}) ∼→ J(
∼→ F>

l ) in Proposition 10.19 (3), and determine

diagonal objects

M~
mod(

†D})〈F>
l 〉
⊂
∏
j∈F>

l

M~
mod(

†D})j , M~
mod(

†D})〈F>
l 〉
⊂
∏
j∈F>

l

M~
mod(

†D})j .

Let also

F}(†D})|〈F>
l 〉
, {πrat

1 (†D~) y M~
∞κ(

†D})}〈F>
l 〉
, F~

mod(
†D})〈F>

l 〉
→ F~R

mod(
†D})〈F>

l 〉

denote a purely formal notational shorthand for the above F>
l -symmetrising isomor-

phisms for the respective objects (See also Remark 11.22.1 below).

3. (Localisations and Global Realified Structures) For simplicity, we write
†Dj = {†Dvj}v∈V (resp. †D`j = {†D`vj}v∈V) for the D-(resp. D`-)prime-strip

associated to the F-prime-strip F}(†D})|j (See Definition 10.22 (2)). By Defini-

tion 10.22 (2), Definition 9.6 (2), (3), and Definition 10.23 (3), we have a functorial

algorithm, with respect to the category †D}, to construct (1-)compatible collections

of “localisation” functors/poly-morphisms

F~
mod(

†D})j
gl. to loc.−→ F}(†D})|j , F~R

mod(
†D})j

gl. to loc.−→ (F}(†D})|j)R,{
{πrat

1 (†D~) y M~
∞κ(

†D})}j
gl. to loc.−→ M~

∞κv(
†Dvj ) ⊂M~

∞κ×v(
†Dvj )

}
v∈V

up to isomorphism, together with a natural isomorphism

D
(†D`j )
gl. real’d to gl. non-real’d⊗R

∼−→ F~R
mod(

†D})j

of global realified Frobenioids (global side), and a natural isomorphism

R≥0(†D`j )v
localised (gl. real’d to gl. non-real’d⊗R)

∼−→ Ψ(F}(†D})|j)R,v

of topological monoids for each v ∈ V (local side), which are compatible with the re-

spective bijections Prime(−) ∼→ V and the localisation isomorphisms {ΦD
(†D`
j ),v

gl. to loc.
∼−→

R≥0(†D`j )v}v∈V constructed by Corollary 11.20 (2) and the above F~R
mod(

†D})j
gl. to loc.−→

(F}(†D})|j)R. Finally, all of these structures are compatible with the respective

F>
l -symmetrising isomorphisms of (2).

Remark 11.22.1. ([IUTchII, Remark 4.7.2]) Recall that F>
l , in the context of

F>
l -symmetry, is a subquotient of Gal(K/F ) (See Definition 10.29), hence we cannot

perform the kind of conjugate synchronisations in Corollary 11.20 (3) for F>
l -symmetry

(for example, it nontrivially acts on the number field M~
(†D})). Therefore, we have to

work with
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1. F-prime-strips, instead of the corresponding ind-topological monoids with Galois

actions as in Corollary 11.20 (3),

2. the objects labelled by (−)mod (Note that the natural action of Galois group Gal(K/F )

on them is trival, since they are in the Galois invariant parts), and

3. the objects labelled by (−)∞κ,

because we can ignore the conjugacy indeterminacies for them (In the case of (2), there

is no conjugacy indeterminacy). See also Remark 9.6.2 (4) (in the second numeration).

Proof. Corollary follows from the definitions.

Corollary 11.23. (F-theoretic Monoids associated to�-Hodge Theatres, [IUTchII,

Corollary 4.8]) Let

†HT � =

(
†F~ L99 †F}

†ψNF
>←− †FJ

†ψΘ
>−→ †F> 99K †HT Θ

)
be a �-Hodge theatre, which lifts the D-�-Hodge theatre †HT D-� of Corollary 11.22,

and is glued to the �-Hodge theatre †HT � of Corollary 11.21 via the algorithm in

Lemma 10.38 (Hence, J = T>).

1. (Global Non-realified Structures) By Definition 9.6 (1) (the Kummer isomor-

phism by the cyclotomic rigidity isomorphism via Q>0∩Ẑ× = {1} (Cyc.Rig.NF1)),

we have a functorial algorithm, with respect to the pre-Frobenioid †F}, to construct

Kummer isomorphism

{
πrat
1 (†D~) y †M~

∞κ

} Kum
∼−→
{
πrat
1 (†D~) y M~

∞κ(
†D})

}
, †M~

κ

Kum
∼−→ M~

κ (
†D})

of pseudo-monoids with group actions, which is well-defined up to conjugacy in-

determinacies, and by restricting Kummer classes (cf. Definition 9.6 (1)), natural

Kummer isomorphisms

{
πrat
1 (†D~) y †M~} Kum

∼−→
{
πrat
1 (†D~) y M~(†D})

}
, †M~

mod

Kum
∼−→ M~

mod(
†D}),

{
πrat
1 (†D~) y †M~} Kum

∼−→
{
πrat
1 (†D~) y M~

(†D})
}
, †M~

mod

Kum
∼−→ M~

mod(
†D}).

These isomorphisms can be interpreted as a compatible collection of isomorphisms

†F}
Kum
∼−→ F}(†D}), †F~

Kum
∼−→ F~(†D}), †F~

mod

Kum
∼−→ F~

mod(
†D}), †F~R

mod

Kum
∼−→ F~R

mod(
†D})

of (pre-)Frobenioids (cf. Definition 9.6 (1), and Example 9.5).



a proof of the abc conjecture after Mochizuki 297

2. (F>
l -symmetry) The collection of isomorphisms of Corollary 11.21 (1) for the

capsule †FJ of the F-prime-strips and the isomorphism in (1) give us, for each

j ∈ LabCusp(†D})( ∼→ J), a collection of Kummer isomorphisms

†Fj
∼→ †F}|j

Kum
∼→ F}(†D})|j ,

{
πrat
1 (†D~) y †M~

∞κ

}
j

Kum
∼→
{
πrat
1 (†D~) y M~

∞κ(
†D})

}
j
,

(†M~
mod)j

Kum
∼→ M~

mod(
†D})j , (†M~

mod)j

Kum
∼→ M~

mod(
†D})j ,

(†F~
mod)j

Kum
∼→ F~

mod(
†D})j , (†F~R

mod)j

Kum
∼→ F~R

mod(
†D})j ,

and F>
l -symmetrising isomorphisms between the data indexed by distinct j ∈ LabCusp(†D}),

induced by the natural poly-action of F>
l on †F}. These F>

l -symmetrising isomor-

phisms are compatbile with the (simply transitive) F>
l -action on the index set J of

the D-NF-bridge †φNF
> with respect to †ζ> : LabCusp(†D}) ∼→ J(

∼→ F>
l ) in Propo-

sition 10.19 (3), and determine various diagonal objects

(†M~
mod)〈F>

l 〉
⊂
∏
j∈F>

l

(†M~
mod)j , (†M~

mod)〈F>
l 〉
⊂
∏
j∈F>

l

(†M~
mod)j ,

and formal notational “diagonal objects” (See Corollary 11.22 (2))

†F}|〈F>
l 〉
, {πrat

1 (†D~) y †M~
∞κ}〈F>

l 〉
, (†F~

mod)〈F>
l 〉
, (†F~R

mod)〈F>
l 〉
.

3. (Localisations and Global Realified Structures) By Definition 10.22 (2) and

Definition 10.23 (3), we have a functorial algorithm, with respect to the NF-bridge

†FJ
†ψNF

>→ †F} 99K †F~, to construct mutually (1-)compatible collections of localisa-

tion functors/poly-morphisms,

(†F~
mod)j

gl. to loc.−→ †Fj , (†F~R
mod)j

gl. to loc.−→ †FR
j ,{{

πrat
1 (†D~) y †M~

∞κ

}
j

gl. to loc.−→ †M∞κvj ⊂ †M∞κ×vj

}
v∈V

,

up to isomorphism, which is compatible with the collections of functors/poly-morphisms

of Corollary 11.22 (3), with respect to the various Kummer isomorphisms of (1),

(2), together with a natural isomorphism

†C
j
gl. real’d to gl. non-real’d⊗R

∼−→ (†F~R
mod)j



298 Go Yamashita

of global realified Frobenioids (global side), which is compatible with respective bijec-

tions Prime(−) ∼→ V, and a natural isomorphism

Ψ†F`
j ,v

localised (gl. real’d to gl. non-real’d⊗R)
∼−→ Ψ†FR

j ,v

of topological monoids for each v ∈ V (local side), which are compatible with the

respective bijections Prime(−) ∼→ V, the localisation isomorphisms {Φ†C
j ,v

gl. to loc.
∼−→

ΨR
†F`

j ,v
}v∈V constructed by Corollary 11.20 (2) and the above (†F~R

mod)j
gl. to loc.−→

†FR
j , the isomorphisms of Corollary 11.22 (3), and various (Kummer) isomorphisms

of (1), (2). Finally, all of these structures are compatible with the respective F>
l -

symmetrising isomorphisms of (2).

Proof. Corollary follows from the definitions.

Put the results of this Chapter together, we obtain the following:

Corollary 11.24. (Frobenius-picture of ��-Hodge Theatres, [IUTchII, Corol-

lary 4.10]) Let †HT ��, ‡HT �� be ��-Hodge theatres with respect to the fixed initial

Θ-data. Let †HT D-��, ‡HT D-�� denote the assosiated D-��-Hodge theatres respec-

tively.

1. (Constant Prime-strips) Apply the constructions of Corollary 11.21 (1), (3)

for the underlying �-Hodge theatre of †HT ��. Then the collection Ψcns(
†F�)t of

data determines an F-prime-strip for each t ∈ LabCusp±(†D�). We identify the

collections

Ψcns(
†F�)0, Ψcns(

†F�)〈F>
l 〉

of data, via the isomorphisms
diag
∼→ in Corollary 11.21 (3), and let

†F

∆ = (†C
∆, Prime(†D


∆)
∼→ V, †F`∆, {†ρ∆,v}v∈V) (i.e., “∆ = { 0 , 〈F>

l 〉 }”)

denote the resulting F
-prime-strip determined by the algorithm “F 7→ F
”. Note

that we have a natural isomorphism †F

∆
∼→ †F


mod of F
-prime-strips, where †F

mod

is the data contained in the Θ-Hodge theatre of †HT ��.

2. (Theta and Gaussian Prime-strips) Apply Corollary 11.21 (4), (5) to the un-

derlying Θ-bridge and �-Hodge theatre of †HT ��. Then the collection ΨFenv(
†HT Θ)

of data, the global realified Frobenioid †Cenv := Cenv(†HT Θ), localisation isomor-

phisms Φ†Cenv,v

gl. to loc.
∼−→ ΨFenv(

†HT Θ)Rv for v ∈ V give rise to an F
-prime-strip

†F

env = (†C
env, Prime(†D


env)
∼→ V, †F`env, {†ρenv,v}v∈V)
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(Note that †F`env is the F`-prime-strip determined by ΨFenv(
†HT Θ)). Thus, there

is a natural identification isomorphism †F

env

∼→ †F

theta, where

†F

env is associated

to data in †HT Θ (See Definition 10.5 (4) for †F

env).

Similarly, the collection ΨFgau(
†HT Θ) of data, the global realified Frobenioid †Cgau :=

Cgau(†HT Θ), localisation isomorphisms Φ†Cgau,v

gl. to loc.
∼−→ ΨFgau(

†HT Θ)Rv for v ∈ V
give rise to an F
-prime-strip

†F

gau = (†C
env, Prime(†D


gau)
∼→ V, †F`gau, {†ρgau,v}v∈V)

(Note that †F`gau is the F`-prime-strip determined by ΨFgau(
†HT Θ)). Finally, the

evaluation isomorphisms of Corollary 11.21 (4), (5) determine an evaluation iso-

morphism

†F

env

eval
∼−→ †F


gau

of F
-prime-strips.

3. (Θ×µ- and Θ×µ
gau-Links) Let

‡F
I×µ
∆ (resp. †F
I×µ

env , resp. †F
I×µ
gau )

donote F
I×µ-prime-strip associated to the F
-prime-strip ‡F

∆ (resp. †F


env, resp.
†F


gau) (See Definition 10.12 (3) for F
I×µ-prime-strips). Then the functriality of

this algorithm induces maps

IsomF
(†F

env,

‡F

∆) → IsomF
I×µ(†F
I×µ

env , ‡F
I×µ
∆ ),

IsomF
(†F

gau,

‡F

∆) → IsomF
I×µ(†F
I×µ

gau , ‡F
I×µ
∆ ).

Note that the second map is equal to the composition of the first map with the

evaluation isomorphism †F

env

eval→ †F

gau and the functorially obtained isomorphism

†F
I×µ
env

eval→ †F
I×µ
gau from this isomorphism. We call the full poly-isomorphism

†F
I×µ
env

full poly
∼−→ ‡F
I×µ

∆ (resp. †F
I×µ
gau

full poly
∼−→ ‡F
I×µ

∆ )

the Θ×µ-link (resp. Θ×µ
gau-link) from †HT �� to ‡HT �� (cf. Definition 10.8),

and we write it as

†HT �� Θ×µ

−→ ‡HT �� (resp. †HT �� Θ×µ
gau−→ ‡HT �� )

and we call this diagram the Frobenius-picture of ��-Hodge theatres (This

is an enhanced version of Definition 10.8). Note that the essential meaning of the

above link is

“ ΘN
v

∼−→ qN
v
” (resp. “ {qj

2

v
}N1≤j≤l>

∼−→ qN
v
” )
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for v ∈ Vbad.

4. (Horizontally Coric F`×µ-Prime-strips) By the definition of the unit portion

of the theta monoids and the Gaussian monoids, we have natural isomorphisms

†F`×µ∆
∼→ †F`×µenv

∼→ †F`×µgau ,

where †F`×µ∆ , †F`×µenv , †F`×µgau are the F`×µ-prime-strips associated to the F`-prime-

strips †F`∆,
†F`env,

†F`gau, respectively. Then the composite

†F`×µ∆
∼→ †F`×µenv

poly
∼→ †F`×µ∆ (resp. †F`×µ∆

∼→ †F`×µgau

poly
∼→ †F`×µ∆ )

with the poly-isomorphism induced by the full poly-isomorphism †F
I×µ
env

full poly
∼−→

‡F
I×µ
∆ (resp. †F
I×µ

gau

full poly
∼−→ ‡F
I×µ

∆ ) in the definition of Θ×µ-link (resp. Θ×µgau-

link) is equal to the full poly-isomorphism of F`×µ-prime-strips. This means that
(−)F`×µ∆ is preserved (or “shared”) under both the Θ×µ-link and Θ×µgau-link (This is

an enhanced version of Remark 10.8.1 (2)). Note that the value group portion is not

shared under the Θ×µ-link and the Θ×µgau-link. Finally, this full poly-isomorphism

induces the full poly-isomorphism

†D`∆

full poly
∼−→ ‡D`∆

of the associated D`-prime-strips. We call this the D-��-link from †HT D-�� to
‡HT D-��, and we write it as

†HT D-�� D−→ ‡HT D-��.

This means that (−)D`∆ is preserved (or “shared”) under both the Θ×µ-link and

Θ×µgau-link (This is an enhanced version of Remark 10.8.1 (1), Definition 10.21 and

Definition 10.35). Note that the holomorphic base “HT D-��” is not shared under

the Θ×µ-link and the Θ×µgau-link (i.e., Θ×µ-link and Θ×µgau-link share the underlying

mono-analytic base structures, but not the arithmetically holomorphic base struc-

tures).

5. (Horizontally Coric Global Realified Frobenioids) The full poly-isomorphism

†D`∆

full poly
∼−→ ‡D`∆ in (4) induces an isomorphism

(D
(†D`∆), Prime(D
(†D`∆))
∼→ V, {†ρD
,v}v∈V)

∼→ (D
(‡D`∆), Prime(D
(‡D`∆))
∼→ V, {‡ρD
,v}v∈V)

of triples. This isomorphism is compatible with the R>0-orbits

(†C
∆, Prime(†C
∆)
∼→ V, {†ρ∆,v}v∈V)

“Kum”
poly
∼→ (D
(†D`∆), Prime(D
(†D`∆))

∼→ V, {†ρD
,v}v∈V)
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and

(‡C
∆, Prime(‡C
∆)
∼→ V, {‡ρ∆,v}v∈V)

“Kum”
poly
∼→ (D
(‡D`∆), Prime(D
(‡D`∆))

∼→ V, {‡ρD
,v}v∈V)

of isomorphisms of triples obtained by the functorial algorithm in Corollary 11.21

(2), with respect to the Θ×µ-link and the Θ×µgau-link. Here, the R>0-orbits are natu-

rally defined by the diagonal (with respect to Prime(−)) R>0-action on the divisor

monoids.

Proof. Corollary follows from the definitions.

Remark 11.24.1. (Étale picture of D- � �-Hodge Theatres, [IUTchII, Corollary

4.11]) We can visualise the “shared” and “non-shared” relation in Corollary 11.24 as

follows:

†HT D-�� −− > †D`∆
∼= ‡D`∆ >−− ‡HT D-��

We call this diagram the étale-picture of ��-Hodge theatres (This is an enhanced

version of Remark 10.8.1, Remark 10.21.1 and Remark 10.35.1). Note that, there is the

notion of the order in the Frobenius-picture (i.e., †(−) is on the left, and ‡(−) is on the

right), on the other hand, there is no such an order and it has a permutation symmetry

in the étale-picture (See also the last table in Section 4.3). Note that these constructions

are compatible, in an obvious sense, with Definition 10.21 and Definition 10.35, with

respect to the natural identification (−)D`∆
∼→ (−)D`>.

§ 12. Log-links — An Arithmetic Analogue of Analytic Continuation.

§ 12.1. Log-links and Log-theta-lattices.

Definition 12.1. ([IUTchIII, Definition 1.1]) Let †F = {†Fv}v∈V be an F-
prime-strip with the associated F`-prime-strip (resp. F`×µ-prime-strip, resp. D-prime-

strip) †F` = {†F`v }v∈V (resp. †F`×µ = {†F`×µv }v∈V, resp. †D = {†Dv}v∈V).

1. Let v ∈ Vnon. Let

(Ψ†Fv
⊃ Ψ×†Fv

� ) Ψ∼†Fv
:= (Ψ×†Fv

)pf

denote the perfection of Ψ×†Fv
(cf. Section 5.1). By the Kummer isomorphism of

Remark 3.19.2, we can construct an ind-topological field structure on Ψ
gp
†Fv

, which is
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an isomorph of Kv (See Section 5.1 for the notation (−)gp). Then we can define the

pv-adic logarithm on Ψ∼†Fv
, and this gives us an isomorphism logv : Ψ∼†Fv

∼→ Ψ
gp
†Fv

of ind-topological groups. Thus, we can transport the ind-topological field structure

of Ψ
gp
†Fv

into Ψ∼†Fv
. Hence, we can consider the multiplicative monoid “O�” of non-

zero integers of Ψ∼†Fv
, and let Ψlog(†Fv) denote it. Note that Ψ

gp

log(†Fv)
= Ψ∼†Fv

. The

pair †Πv y Ψlog(†Fv) determines a pre-Frobenioid

log(†Fv).

The resulting †Πv-equivariant diagram

(Log-link v ∈ Vnon) Ψ†Fv
⊃ Ψ×†Fv

� Ψ∼†Fv
= Ψ

gp

log(†Fv)

is called the tautological log-link associated to †Fv (This is a review, in our

setting, of constructions of the diagram (Log-link (non-Arch)) in Section 5.1), and

we write it as
†Fv

log−→ log(†Fv).

For any (poly-)isomorphism (resp. the full poly-isomorphism) log(†Fv)
(poly)
∼→ ‡Fv

(resp. log(†Fv)
full poly
∼→ ‡Fv) of pre-Frobenioids, we call the composite †Fv

log−→

log(†Fv)
(poly)
∼→ ‡Fv a log-link (resp. the full log-link) from †Fv to ‡Fv and we

write it as
†Fv

log−→ ‡Fv (resp. †Fv
full log−→ ‡Fv ).

Finally, put

I†Fv
:=

1

2pv
Im
(
(Ψ×†Fv

)Gv(
†Πv) → Ψ†F∼

v

)
⊂ Ψ†F∼

v
= Ψ

gp

log(†Fv)
,

and we call this the Frobenius-like holomorphic log-shell associated to †Fv

(This is a review of Definition 5.1 in our setting). By the reconstructible ind-

topological field structure on Ψ†F∼
v

= Ψ
gp

log(†Fv)
, we can regard I†Fv

as an object

associated to the codomain of any log-link †Fv
log−→ ‡Fv.

2. Let v ∈ Varc. Recall that †Fv = (†Cv, †Dv, †κv) is a triple of a pre-Frobenioid †Cv,
an Aut-holomorphic space †Uv := †Dv, and a Kummer structure †κv : Ψ†Fv

:=

O�(†Cv) ↪→ A†Dv , which is isomorphic to the model triple (Cv,Dv, κv) of Defi-

nition 10.2 (3). For N ≥ 1, let ΨµN
†Fv
⊂ Ψ×†Fv

⊂ Ψgp
†Fv

denote the subgroup of

N -th roots of unity, and Ψ∼†Fv
� Ψgp

†Fv
for the universal covering of the topological
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group Ψgp
†Fv

(Recall that Ψ∼†Fv
� Ψgp

†Fv
is an isomorph of “C exp−→ C×”). Then the

composite

Ψ∼†Fv
� Ψgp

†Fv
� Ψgp

†Fv
/ΨµN

†Fv

is also a universal covering of Ψgp
†Fv

/ΨµN
†Fv

. We can regard Ψ∼†Fv
as constructed

from Ψgp
†Fv

/ΨµN
†Fv

(See also Remark 10.12.1, Proposition 12.2, (4) in this definition,

Proposition 13.7, and Proposition 13.11). By the Kummer structure †κv, we can

construct a topological field structure on Ψ
gp
†Fv

. Then we can define the Archimedean

logarithm on Ψ∼†Fv
, and this gives us an isomorphism logv : Ψ∼†Fv

∼→ Ψ
gp
†Fv

of

topological groups. Thus, we can transport the topological field structure of Ψ
gp
†Fv

into Ψ∼†Fv
, and the Kummer structure Ψ†Fv

↪→ A†Dv into a Kummer structure

†κ∼v : Ψ∼†Fv
↪→ A†Dv . Hence, we can consider the multiplicative monoid “O�”

of non-zero elements of absolute values ≤ 1 of Ψ∼†Fv
, and let Ψlog(†Fv) denote it.

Note that Ψ
gp

log(†Fv)
= Ψ∼†Fv

. The triple of topological monoid Ψlog(†Fv), the Aut-

holomorphic space †Uv, and the Kummer structure †κ∼v determines a triple

log(†Fv).

The resulting co-holomorphicisation-compatible-diagram

(Log-link v ∈ Varc) Ψ†Fv
⊂ Ψgp

†Fv
� Ψ∼†Fv

= Ψ
gp

log(†Fv)

is called the tautological log-link associated to †Fv (This is a review, in our

setting, of constructions of the diagram (Log-link (Arch)) in Section 5.2), and we

write it as
†Fv

log−→ log(†Fv).

For any (poly-)isomorphism (resp. the full poly-isomorphism) log(†Fv)
(poly)
∼→ ‡Fv

(resp. log(†Fv)
full poly
∼→ ‡Fv) of triples, we call the composite †Fv

log−→ log(†Fv)
(poly)
∼→

‡Fv a log-link (resp. the full log-link) from †Fv to ‡Fv and we write it as

†Fv
log−→ ‡Fv (resp. †Fv

full log−→ ‡Fv ).

Finally, let

I†Fv

denote the Ψ×
log(†Fv)

-orbit of the uniquely determined closed line segment of Ψ∼†Fv

which is preserved by multiplication by ±1 and whose endpoints differ by a gen-

erator of the kernel of the natural surjection Ψ∼†Fv
� Ψgp

†Fv
(i.e., “the line seg-

ment [−π,+π]”), or (when we regard Ψ∼†Fv
as constructed from Ψgp

†Fv
/ΨµN

†Fv
) equiv-

alently, the Ψ×
log(†Fv)

-orbit of the result of multiplication by N of the uniquely
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determined closed line segment of Ψ∼†Fv
which is preserved by multiplication by ±1

and whose endpoints differ by a generator of the kernel of the natural surjection

Ψ∼†Fv
� Ψgp

†Fv
/ΨµN

†Fv
(i.e., “the line segment N [− π

N ,+
π
N ] = [−π,+π]”), and we call

this the Frobenius-like holomorphic log-shell associated to †Fv (This is a

review of Definition 5.3 in our setting). By the reconstructible topological field

structure on Ψ†F∼
v

= Ψ
gp

log(†Fv)
, we can regard I†Fv

as an object associated to the

codomain of any log-link †Fv
log−→ ‡Fv.

3. We put

log(†F) :=
{
log(†Fv) := Ψ∼†Fv

}
v∈V

for the collection of ind-topological modules (i.e., we forget the field structure on

Ψ∼†Fv
), where the group structure arises from the additive portion of the field struc-

tures on Ψ∼†Fv
. For v ∈ Vnon, we regard Ψ∼†Fv

as equipped with natural Gv(
†Πv)-

action. Put also

log(†F) := {log(†Fv)}v∈V

for the Fv-prime-strip determined by log(†Fv)’s, and let

†F
log−→ log(†F)

denote the collection {†Fv
log−→ log(†Fv)}v∈V of diagrams, and we call this the

tautological log-link associated to †F. For any (poly-)isomorphism (resp. the full

poly-isomorphism) log(†F)
(poly)
∼→ ‡F (resp. log(†F)

full poly
∼→ ‡F) of F-prime-strips, we

call the composite †F
log−→ log(†F)

(poly)
∼→ ‡F a log-link (resp. the full log-link) from

†F to ‡F and we write it as

†F
log−→ ‡F (resp. †F

full log−→ ‡F ).

Finally, we put

I†F := {I†Fv
}v∈V,

and we call this the Frobenius-like holomorphic log-shell associated to †F.

We also write

I†F ⊂ log(†F)

for {I†Fv
⊂ log(†Fv)}v∈V. We can regard I†F as an object associated to the

codomain of any log-link †F
log−→ ‡F.

4. For v ∈ Vnon (resp. v ∈ Varc), the ind-topological modules with Gv(
†Π)-action

(resp. the topological module and the closed subspace) I†Fv
⊂ log(†Fv) can be
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constructed only from the v-component †F`×µv of the associated F`×µ-prime-strip,

by the ×µ-Kummer structure, since these constructions only use the perfection

(−)pf of the units and are unaffected by taking the quotient by Oµ(−) (cf. (Step

2) of Proposition 5.2) (resp. only from the v-component †F`v of the associated

F`-prime-strip, by (Step 3) of Proposition 5.4, hence, only from the v-component
†F`×µv of the associated F`×µ-prime-strip, by regarding this functorial algorithm

as an algorithm which only makes us of the quotien of this unit portion by µN for

N ≥ 1 with a universal covering of this quotient). Let

I†F`×µ
v

⊂ log(†F`×µv )

denote the resulting ind-topological modules with Gv(
†Πv)-action (resp. the result-

ing topological module and a closed subspace). We call this the Frobenius-like

mono-analytic log-shell associated to †F`×µ
v . Finally, we put

I†F`×µ := {I†F`×µ
v
}v∈V ⊂ log(†F`×µ) := {log(†F`×µv )}v∈V

for the collections constructed from the F`×µ-prime-strip †F`×µ (not from †F). We

call this the Frobenius-like mono-analytic log-shell associated to †F`×µ.

Proposition 12.2. (log-Links Between F-Prime-strips, [IUTchIII, Proposition

1.2]) Let †F = {†Fv}v∈V, ‡F = {‡Fv}v∈V be F-prime-strips with associated F`×µ-prime-

strips (resp. D-prime-strips, resp. D`-prime-strips) †F`×µ = {†F`×µv }v∈V, †F`×µ =

{‡F`×µv }v∈V (resp. †D = {†Dv}v∈V, ‡D = {‡Dv}v∈V, resp. †D` = {†D`v }v∈V, ‡D` =

{‡D`v }v∈V), respectively, and †F
log−→ ‡F a log-link from †F to ‡F. We recall the log-link

diagrams

(lognon) Ψ†Fv
⊃ Ψ×†Fv

� log(†Fv) = Ψ
gp

log(†Fv)

(poly)
∼→ Ψ

gp
‡Fv

,

(logarc) Ψ†Fv
⊂ Ψgp

†Fv
� log(†Fv) = Ψ

gp

log(†Fv)

(poly)
∼→ Ψ

gp
‡Fv

.

for v ∈ Vnon and v ∈ Varc, respectively.

1. (Vertically Coric D-Prime-strips) The log-link †F
log−→ ‡F induces (poly-)isomorphisms

†D
(poly)
∼→ ‡D, †D`

(poly)
∼→ ‡D`

of D-prime-strips and D`-prime-strips, respectively. In particular, the (poly-)isomorphism

†D
(poly)
∼→ ‡D induces a (poly-)isomorphism

Ψcns(
†D)

(poly)
∼→ Ψcns(

‡D).
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2. (Compatibility with Log-volumes) For v ∈ Vnon (resp. v ∈ Varc), the dia-

gram lognon (resp. the diagram logarc) is compatible with the natural pv-adic log-

volumes on (Ψ
gp
†Fv

)
†Πv , and (Ψ

gp

log(†Fv)
)
†Πv (resp. the natural angular log-volume on

Ψ×†Fv
and the natural radial log-volume on Ψ

gp

log(†Fv)
) in the sense of the formula

(5.1) of Proposition 5.2 (resp. in the sense of the formula (5.2) of Proposition 5.4).

When we regard Ψ∼†Fv
as constructed from Ψgp

†Fv
/ΨµN

†Fv
(See Definition 12.1 (2)),

then we equip Ψgp
†Fv

/ΨµN
†Fv

the metric obtained by descending the metric of Ψgp
†Fv

;

however, we regard the object Ψgp
†Fv

/ΨµN
†Fv

(or Ψ×†Fv
/ΨµN

†Fv
) as being equipped with

a “weight N”, that is, the log-volume of Ψ×†Fv
/ΨµN

†Fv
is equal to the log-volume of

Ψgp
†Fv

([IUTchIII, Remark1.2.1 (i)]) (See also Remark 10.12.1, Definition 12.1 (2),

(4), Proposition 13.7, and Proposition 13.11).

3. ((Frobenius-like) Holomorphic Log-shells) For v ∈ Vnon (resp. v ∈ Varc), we

have

Ψ
†Πv

log(†Fv)
, Im

(
(Ψ×†Fv

)
†Πv → log(†Fv)

)
⊂ I†Fv

(
⊂ log(†Fv)

)
(See the inclusions (Upper Semi-Compat. (non-Arch)) O×k , log(O×k ) ⊂ Ik in Sec-

tion 5.1) (resp.

Ψlog(†Fv) ⊂ I†Fv

(
⊂ log(†Fv)

)
, Ψ×†Fv

⊂ Im
(
I†Fv

→ Ψgp
†Fv

)
(See the inclusions (Upper Semi-Compat. (Arch)) O�

k∼ ⊂ Ik, O
×
k ⊂ expk(Ik) in

Section 5.2) ).

4. ((Frobenius-like and Étale-like) Mono-analytic Log-shells) For v ∈ Vnon

(resp. v ∈ Varc), by Proposition 5.2 (resp. Proposition 5.4), we have a functorial

algorithm, with respect to the category †D`v (= B(†Gv)0) (resp. the split monoid
†D`v ), to construct an ind-topological module equipped with a continuous †Gv-action

(resp. a topological module)

log(†D`v ) :=
{†Gv y k∼(†Gv)

}
(resp. log(†D`v ) := k∼(†Gv) )

and a topological submodule (resp. a topological subspace)

I†D`
v
:= I(†Gv) ⊂ k∼(†Gv)

(which is called the étale-like mono-analytic log-shell associated to †D`v )
equipped with a pv-adic log-volume (resp. an angular log-volume and a radial log-

volume). Moreover, we have a natural functorial algorithm, with respect to the

split-×µ-Kummer pre-Frobenioid †F`×µv (resp. the triple †F`×µv ), to construct an
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Isomet-orbit (resp. {±1} × {±1}-orbit arising from the independent {±1}-
actions on each of the direct factors “k∼(G) = C∼×C∼” in the notation of Propo-

sition 5.4)

log(†F`×µv )

“Kum”
poly
∼→ log(†D`v )

of isomorphisms of ind-topological modules (resp. topological modules) (cf. the poly-

isomorphism Ψss
cns(
‡F`)

“Kum”
poly
∼−→ Ψss

cns(
‡D`) of Corollary 11.21 (2)). We also have

a natural functorial algorithm, with respect to the pv-adic Frobenioid †Fv (resp.

the triple †Fv), to construct isomorphisms (resp. poly-isomorphisms of the {±1}×
{±1}-orbit arising from the independent {±1}-actions on each of the direct factors

“k∼(G) = C∼ × C∼” in the notation of Proposition 5.4)

(Ψ
gp
‡Fv

(poly)∼= ) log(†Fv)
tauto
∼→ log(†F`×µv )

induced by Kum
∼−→ log(†D`v )

(resp. (Ψ
gp
‡Fv

(poly)∼= ) log(†Fv)
tauto
∼→ log(†F`×µv )

induced by Kum
poly, {±1}×{±1}

∼−→ log(†D`v ) )

of isomorphisms of ind-topological modules (resp. topological modules) (cf. the iso-

morphism Ψcns(
‡D)×v

∼→ Ψss
cns(
‡D`)×v of Corollary 11.20 (2) and the Kummer iso-

morphism Ψcns(
‡F)

Kum
∼→ Ψcns(

‡D) of Corollary 11.21), which is compatible with the

respective †Gv and Gv(
†Πv)-actions, the respective log-shells, and the respective log-

volumes on these log-shells (resp. compatible with the respective log-shells, and the

respective angular and radial log-volumes on these log-shells).

The above (poly-)isomorphisms induce collections of (poly-)isomorphisms

log(†F`×µ) := {log(†F`×µv )}v∈V

“Kum”
poly
∼→ log(†D`) := {log(†D`v )}v∈V,

I†F`×µ := {I†F`×µ
v
}v∈V

“Kum”
poly
∼→ I†D` := {I†D`

v
}v∈V,

(Ψ
gp
cns(
‡F) := {Ψgp

‡Fv
}v∈V

(poly)∼= ) log(†F) := {log(†Fv)}v∈V
tauto
∼→ log(†F`×µ)

induced by Kum
poly
∼→ log(†D`),

I†F := {I†Fv
}v∈V

tauto
∼→ I†F`×µ

induced by Kum
poly
∼→ I†D`



308 Go Yamashita

(Here, we regard each Ψ
gp
‡Fv

as equipped with Gv(
‡Πv)-action in the definition of

Ψ
gp
cns(‡F)).

5. ((Étale-like) Holomorphic Vertically Coric Log-shells) Let ∗D be a D-prime-

strip with associated D`-prime-strip ∗D`. Let

F(∗D)

denote the F-prime-strip determined by Ψcns(
∗D). Assume that †F = ‡F = F(∗D),

and that the given log-link is the full log-link †F
full log−→ ‡F = F(∗D). We have a

functorial algorithm, with respect to the D-prime-strip ∗D, to construct a collection

of topological subspaces

I∗D := I†F

(which is called a collection of vertically coric étale-like holomorphic log-

shell associated to ∗D) of the collection Ψ
gp
cns(∗D) = Ψ

gp
cns(∗F),and a collection of

isomorphisms

I∗D
∼→ I∗D`

(cf. the isomorphism Ψcns(
‡D)×v

∼→ Ψss
cns(
‡D`)×v of Corollary 11.20 (2)).

Remark 12.2.1. (Kummer Theory, [IUTchIII, Proposition 1.2 (iv)]) Note that

the Kummer isomorphisms

Ψcns(
†F)

Kum
∼→ Ψcns(

†D), Ψcns(
‡F)

Kum
∼→ Ψcns(

‡D)

of Corollary 11.21 (1) are not compatible with the (poly-)isomorphism Ψcns(
†D)

(poly)
∼→

Ψcns(
‡D) of (1), with respect to the diagrams (lognon) and (logarc).

Remark 12.2.2. (Frobenius-picture, [IUTchIII, Proposition 1.2 (x)]) Let {nF}n∈Z
be a collection of F-prime-strips indexed by Z with associated collection of D-prime-

strips (resp. D`-prime-strips) {nD}n∈Z (resp. {nD`}n∈Z). Then the chain of full

log-links

· · · full log−→ (n−1)F
full log−→ nF

full log−→ (n+1)F
full log−→ · · ·

of F-prime-strips (which is called the Frobenius-picture of log-links for F-prime-

strips) induces chains of full poly-isomorphisms

· · ·
full poly
∼→ (n−1)D

full poly
∼→ nD

full poly
∼→ (n+1)D

full poly
∼→ · · · ,

· · ·
full poly
∼→ (n−1)D`

full poly
∼→ nD`

full poly
∼→ (n+1)D`

full poly
∼→ · · ·
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of D-prime-strips and D`-prime-strips respectively. We identify (−)D’s by these full

poly-isomorphisms, then we obtain a diagram

· · ·

Kum
**VVVV

VVVV
VVVV

VVVV
VVVV

VVV
full log// Ψcns(

(n−1)F)

Kum

''OO
OOO

OOO
OOO

full log // Ψcns(
nF)

Kum

��

full log // Ψcns(
(n+1)F)

Kum

wwooo
ooo

ooo
oo

full log// · · ·

Kum
tthhhhh

hhhh
hhhh

hhhh
hhhh

hh

Ψcns(
(−)D).

This diagram expresses the vertical coricity of Ψcns(
(−)D). Note that Remark 12.2.1

says that this diagram is not commutative.

Proof. Proposition follows from the definitions.

Definition 12.3. (log-Links Between ��-Hodge Theatres, [IUTchIII, Proposi-

tion 1.3 (i)]) Let
†HT ��, ‡HT ��

be ��-Hodge theatres with associated D- � �-Hodge theatres †HT D-��, ‡HT D-��

respectively. Let †F>,
†F�,

†Fj (in †FJ ),
†Ft (in

†FT ) (resp. ‡F>,
‡F�,

‡Fj (in ‡FJ),
‡Ft (in

‡FT )) denote F-prime-strips in the ��-Hodge theatre †HT �� (resp. ‡HT ��).
For an isomorphism

Ξ : †HT D-�� ∼→ ‡HT D-��

of D- � �-Hodge theatres, the poly-isomorphisms determined by Ξ between the D-
prime-strips associated to †F>,

‡F> (resp. †F�,
‡F�, resp.

†Fj ,
‡Fj , resp.

†Ft,
‡Ft)

uniquely determines a poly-isomorphism log(†F>)
poly
∼→ ‡F> (resp. log(†F�)

poly
∼→ ‡F�,

resp. log(†Fj)
poly
∼→ ‡Fj , resp. log(†Ft)

poly
∼→ ‡Ft), hence, a log-link †F>

log
∼→ ‡F> (resp.

†F�

log
∼→ ‡F�, resp.

†Fj

log
∼→ ‡Fj , resp.

†Ft

log
∼→ ‡Ft), by Lemma 10.10 (2). We write

†HT �� log−→ ‡HT ��

for the collection of data Ξ : †HT D-�� ∼→ ‡HT D-��, †F>
log→ ‡F>,

†F�
log→ ‡F�, {†Fj

log→
‡Fj}j∈J , and {†Ft

log→ ‡Ft}t∈T , and we call it a log-link from †HT �� to ‡HT ��.

When Ξ is replaced by a poly-isomorphism †HT D-��
poly
∼→ ‡HT D-�� (resp. the full

poly-isomorphism †HT D-��
full poly
∼→ ‡HT D-��), then we call the resulting collection of

log-links constructed from each constituent isomorphism of the poly-isomorphism (resp.

full poly-isomorphism) a log-link (resp. the full log-link from †HT �� to ‡HT ��,
and we also write it

†HT �� log−→ ‡HT �� (resp. †HT �� full log−→ ‡HT �� ).
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Note that we have to carry out the construction of the log-link first for single Ξ for the

purpose of maintaining the compatibility with the crucial global {±1}-synchronisation
in the �-Hodge theatre ([IUTchIII, Remark 1.3.1]) (cf. Proposition 10.33 and Corol-

lary 11.20 (3)) (For a given poly-isomorphism of ��-Hodge theatres, if we consid-

ered the uniquely determined poly-isomorphisms on F-prime-strips induced by the

poly-isomorphisms on D-prime-strips by the given poly-isomorphism of ��-Hodge the-

atres, not the “constituent-isomorphism-wise” manner, then the crucial global {±1}-
synchronisation would collapse (cf. [IUTchI, Remark 6.12.4 (iii)], [IUTchII, Remark

4.5.3 (iii)])).

Remark 12.3.1. (Frobenius-picture and Vertical Coricity of D- � �-Hodge the-

atres, [IUTchIII, Proposition 1.3 (ii), (iv)]) Let {nHT ��}n∈Z be a collection of ��-
Hodge theatres indexed by Z with associated collection of D- � �-Hodge theatres

{nHT D-��}n∈Z. Then the chain of full log-links

· · · full log−→ (n−1)HT �� full log−→ nHT �� full log−→ (n+1)HT �� full log−→ · · ·

of ��-Hodge theatres (which is called the Frobenius-picture of log-links for ��-
Hodge theatres) induces chains of full poly-isomorphisms

· · ·
full poly
∼→ (n−1)HT D-��

full poly
∼→ nHT D-��

full poly
∼→ (n+1)HT D-��

full poly
∼→ · · · ,

of D- � �-Hodge theatres. We identify (−)HT D-��’s by these full poly-isomorphisms,

then we obtain a diagram

· · ·

Kum
++VVVV

VVVV
VVVV

VVVV
VVVV

VV
full log// (n−1)HT ��

Kum

''OO
OOO

OOO
OOO

O
full log // nHT ��

Kum

��

full log // (n+1)HT ��

Kum

wwooo
ooo

ooo
ooo

full log// · · ·

Kum
sshhhhh

hhhh
hhhh

hhhh
hhhh

h

(−)HT D-��,

where Kum expresses the Kummer isomorphisms in Remark 12.2.1. This diagram ex-

presses the vertical coricity of (−)HT D-��. Note that Remark 12.2.1 says that this

diagram is not commutative.

Definition 12.4. ([IUTchIII, Definition 1.4]) Let {n,mHT ��}n,m∈Z be a collec-
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tion of ��-Hodge theatres indexed by pairs of integers. We call either of the diagrams

...
...

· · · Θ×µ
// n,m+1HT �� Θ×µ

//

full log

OO

n+1,m+1HT �� Θ×µ
//

full log

OO

· · ·

· · · Θ×µ
// n,mHT �� Θ×µ

//

full log

OO

n+1,mHT �� Θ×µ
//

full log

OO

· · · ,

...

full log

OO

...

full log

OO

...
...

· · ·
Θ×µ

gau // n,m+1HT �� Θ×µ
gau //

full log

OO

n+1,m+1HT �� Θ×µ
gau //

full log

OO

· · ·

· · ·
Θ×µ

gau // n,mHT �� Θ×µ
gau //

full log

OO

n+1,mHT �� Θ×µ
gau //

full log

OO

· · ·

...

full log

OO

...

full log

OO

the log-theta-lattice. We call the former diagram (resp. the latter diagram) non-

Gaussian (resp. Gaussian).

Remark 12.4.1. For the proof of the main Theorem 0.1, we need only two adjacent

columns in the (final update version of) log-theta-lattice. In the analogy with p-adic

Teichmüller theory, this means that we need only “lifting to modulo p2” (See the last

table in Section 3.5).

Theorem 12.5. (Bi-Cores of the Log-Theta-Lattice, [IUTchIII, Theorem 1.5])

Fix an initial Th-data

(F/F, XF , l, CK , V, Vbad
mod, ε).

For any Gaussian log-theta-lattice corresponding to this initial Θ-data, we write n,mD�

(resp. n,mD>) for the D-prime-strip labelled “�” (resp. “>”) of the ��-Hodge theatre.
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1. (Vertical Coricity) The vertical arrows of the Gaussian log-theta-lattice induce

the full poly-isomorphisms between the associated D-��-Hodge theatres

· · ·
full poly
∼→ n,mHT D-��

full poly
∼→ n,m+1HT D-��

full poly
∼→ · · · ,

where n is fixed (See Remark 12.3.1).

2. (Horizontal Coricity) The horizontal arrows of the Gaussian log-theta-lattice in-

duce the full poly-isomorphisms between the associated F`×µ-prime-strips

· · ·
full poly
∼→ n,mF`×µ∆

full poly
∼→ n+1,mF`×µ∆

full poly
∼→ · · ·

where m is fixed (See Corollary 11.24 (4)).

3. (Bi-coric F`×µ-Prime-strips) Let n,mD`∆ for the D`-prime-strip associated to

the F`-prime-strip n,mF`∆ of Corollary 11.24 (1) for the ��-Hodge theatre n,mHT ��.
We idenfity the collections Ψcns(

n,mD�)0, Ψcns(
n,mD�)〈F>

l 〉
of data via the isomor-

phism Ψcns(
n,mD�)0

diag
∼→ Ψcns(

n,mD�)〈F>
l 〉

constructed in Corollary 11.20 (3), and

let

F`∆(
n,mD�)

denote the resulting F`-prime-strip (Recall that “∆ = {0, 〈F>
l 〉}”) Note also we

have a natural identification isomorphism F`∆(
n,mD�)

∼→ F`>(
n,mD>), where F

`
>(

n,mD>)

denotes the F`-prime-strip determined by Ψcns(
n,mD>) (Recall that “>= {0, �}”.

See Lemma 10.38). Let

F`×∆ (n,mD�), F`×µ∆ (n,mD�)

denote the associated F`×-prime-strip and F`×µ-prime-strip to F`∆(
n,mD�), re-

spectively. By the isomorphism “Ψcns(‡D)×v
∼→ Ψss

cns(
‡D`)×v ” of Corollary 11.20

(2), we have a functorial algorithm, with respect to the D`-prime-strip n,mD`∆, to

construct an F`×-prime-strip F`×∆ (n,mD`∆). We also have a functorial algorithm,

with respect to the D-prime-strip n,mD�, to construct an isomorphism

F`×∆ (n,mD�)
tauto
∼→ F`×∆ (n,mD`∆),

by definitions. Then the poly-isomorphisms of (1) and (2) induce poly-isomorphisms

· · ·
poly
∼→ F`×µ∆ (n,mD�)

poly
∼→ F`×µ∆ (n,m+1D�)

poly
∼→ · · · ,

· · ·
poly
∼→ F`×µ∆ (n,mD`∆)

poly
∼→ F`×µ∆ (n+1,mD`∆)

poly
∼→ · · ·



a proof of the abc conjecture after Mochizuki 313

of F`×µ-prime-strips, respectively. Note that the poly-isomorphisms (as sets of iso-

morphisms) of F`×µ-prime-strips in the first line is strictly smaller than the poly-

isomorphisms (as sets of isomorphisms) of F`×µ-prime-strips in the second line

in general, with respect to the above isomorphism F`×∆ (n,mD�)
tauto
∼→ F`×∆ (n,mD`∆),

by the existence of non-scheme theoretic automorphisms of absolute Galois groups

of MLF’s (See the inclusion (nonGC for MLF) in Section 3.5), and that the poly-

morphisms in the second line are not full by Remark 8.5.1. In particular, by com-

posing these isomorphisms, we obtain poly-isomorphisms

F`×µ∆ (n,mD`∆)
poly
∼→ F`×µ∆ (n

′,m′
D`∆)

of F`×µ-prime-strips for any n′,m′ ∈ Z. This means that the F`×µ-prime-strip

F`×µ∆ (n,mD`∆) is coric both horizontally and vertically, i.e., it is bi-coric. Finally,

the Kummer isomorphism “Ψcns(
‡F)

Kum
∼→ Ψcns(

‡D)” of Corollary 11.21 (1) deter-

mines Kummer isomorphism

n,mF`×µ∆

induced by Kum
∼−→ F`×µ∆ (n,mD`∆)

which is compatible with the poly-isomorphisms of (2), and the ×µ-Kummer struc-

tures at v ∈ Vnon and a similar compatibility for v ∈ Varc (See Definition10.12

(1)).

4. (Bi-coric Mono-analytic Log-shells) The poly-isomorphisms in the bi-coricity

in (3) induce poly-isomorphisms

{
In,mD`

∆
⊂ log(n,mD`∆)

} poly
∼→

{
In′,m′D`

∆
⊂ log(n

′,m′
D`∆)

}
,

{
IF`×µ

∆ (n,mD`
∆) ⊂ log(F`×µ∆ (n,mD`∆))

} poly
∼→

{
IF`×µ

∆ (n′,m′D`
∆) ⊂ log(F`×µ∆ (n

′,m′
D`∆))

}
for any n,m, n′,m,∈ Z, which are compatible with the natural poly-isomorphisms

{
IF`×µ

∆ (n,mD`
∆) ⊂ log(F`×µ∆ (n,mD`∆))

} “Kum”
poly
∼−→

{
In,mD`

∆
⊂ log(n,mD`∆)

}
of Proposition 12.2 (4). On the other hand, by Definition 12.1 (1) for “Ψcns(

†F�)0”

and “Ψcns(
†F�)〈F>

l 〉
” in Corollary 11.24 (1) (which construct n,mF`∆), we obtain

In,mF∆ ⊂ log(n,mF∆)
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(This is a slight abuse of notation since no F-prime-strip “n,mF∆” has been defined).

Then we have natural poly-isomorphisms

{
In,mF∆ ⊂ log(n,mF∆)

} tauto
∼→
{
In,mF`×µ

∆
⊂ log(n,mF`×µ∆ )

}induced by Kum
poly
∼→
{
In,mD`

∆
⊂ log(n,mD`∆)

}
(See Proposition 12.2 (4)), where the last poly-isomorphism is compatible with the

poly-isomorphisms induced by the poly-isomorphisms of (2).

5. (Bi-coric Mono-analytic Global Realified Frobenioids) The poly-isomorphisms

n,mD`∆

poly
∼→ n′,m′

D`∆ of D`-prime-strips induced by the full poly-isomorphisms of (1)

and (2) for n,m, n′,m′ induce an isomorphism

(D
(n,m(D`∆), Prime(D
(n,m(D`∆))
∼→ V, {n,mρD
,v}v∈V)

∼→ (D
(n
′,m′

(D`∆), Prime(D
(n
′,m′

(D`∆))
∼→ V, {n

′,m′
ρD
,v}v∈V)

of triples (See Corollary 11.20 (2), and Corollary 11.24 (5)). Moreover, this isomor-

phism of triples is compatible, with respect to the horizontal arrows of the Gaussian

log-theta-lattice, with the R>0-orbits of the isomorphisms

(n,mC
∆, Prime(n,mC
∆)
∼→ V, {n,mρ∆,v}v∈V)

“Kum”
∼→ (D
(n,mD`∆), Prime(D
(n,mD`∆))

∼→ V, {n,mρD
,v}v∈V)

of triples, obtained by the functorial algorithm in Corollary 11.21 (2) (See also

Corollary 11.24 (1), (5)).

Proof. Theorem follows from the definitions.

§ 12.2. Kummer Compatible Multiradial Theta Monoids.

In this subsection, we globalise the multiradiality of local theta monoids (Propo-

sition 11.7, and Proposition 11.15) to cover the theta monoids and the global realified

theta monoids in Corollary 11.20 (4), (5) Corollary 11.21 (4), (5), in the setting of

log-theta-lattice.

In this subsection, let †HT �� be a ��-Hodge theatre with respect to the fixed

initial Θ-data, and n,mHT �� a collection of ��-Hodge theatres arising from a Gaussian

log-theta-lattice.

Proposition 12.6. (Vertical Coricity and Kummer Theory of Theta Monoids,

[IUTchIII, Proposition 2.1]) We summarise the theta monoids and their Kummer theory

as follows:
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1. (Vertically Coric Theta Monoids) By Corollary 11.20 (4) (resp. Corollary 11.20

(5)), each isomorphism of the full poly-isomorphism induced by a vertical arrow of

the Gaussian log-theta-lattice induces a compatible collection

(∞)Ψenv(
n,mD>)

∼→ (∞)Ψenv(
n,m+1D>) (resp. D


env(
n,mD`>)

∼→ D

env(

n,m+1D`>) )

of isomorphisms, where the last isomorphism is compatible with the respective bijec-

tion Prime(−) ∼→ V, and localisation isomorphisms.

2. (Kummer Isomorphisms) By Corollary 11.21 (4) (resp. Corollary 11.21 (5)),

we have a functorial algorithm, with respect to the ��-Hodge theatre †HT ��, to
construct the Kummer isomorphism

(∞)ΨFenv(
†HT Θ)

Kum
∼→ (∞)Ψenv(

†D>) (resp. C
env(†HT
Θ)

“Kum”
∼→ D


env(
†D`>) ).

Here, the resp’d isomorphism is compatible with the respective Prime(−) ∼→ V and

the respective localisation isomorphisms. Note that the collection Ψenv(
†D>) of

data gives us an F`-prime-strip F`env(
†D>), and an F
-prime-strip F


env(
†D>) =

(D

env(

†D`>), Prime(D

env(

†D`>))
∼→ V, F`env(†D>), {ρD


env,v
}v∈V) and that the non-

resp’d (resp. the resp’d) Kummer isomorphism in the above can be interpreted as

an isomorphism

†F`env

induced by Kum
∼→ F`env(

†D>) (resp. †F

env

“Kum”
∼→ F


env(
†D>) )

of F`-prime-strips (resp. F
-prime-strips).

3. (Compatibility with Constant Monoids) By the definition of the unit portion

of the theta monoids (See Corollary 11.24 (4)), we have natural isomorphisms

†F`×∆
∼→ †F`×env, F`×∆ (†D`∆)

∼→ F`×env(
†D>),

which are compatible with the Kummer isomorphisms †F`env

induced by Kum
∼→ F`env(

†D>),

†F`×µ∆

induced by Kum
∼→ F`×µ∆ (†D`∆) of (2) and Theorem 12.5 (3).

Proof. Proposition follows from the definitions.

Theorem 12.7. (Kummer-Compatible Multiradiality of Theta Monoids, [IUTchIII,

Theorem 2.2]) Fix an initial Th-data

(F/F, XF , l, CK , V, Vbad
mod, ε).

Let †HT �� be a ��-Hodge theatre with respect to the fixed initial Θ-data.
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1. The natural functors which send an F
-prime-strip to the associated F
I×µ- and
F`×µ-prime-strips and composing with the natural isomorphisms of Proposition 12.6

(3) give us natural homomorphisms

AutF
(F

env(

†D>))→ AutF
I×µ(F
I×µ
env (†D>))� AutF`×µ(F`×µ∆ (†D`∆)),

AutF
(†F

env)→ AutF
I×µ(†F
I×µ

env )� AutF`×µ(†F`×µ∆ )

(Note that the second homomorphisms in each line are surjective), which are compat-

ible with the Kummer isomorphisms †F

env

“Kum”
∼→ F


env(
†D>),

†F`×µ∆

induced by Kum
∼→

F`×µ∆ (†D`∆) of Proposition 12.6 (2), and Theorem 12.5 (3)

2. (Kummer Aspects of Multiradiality at Bad Primes) For v ∈ Vbad, let

∞Ψ⊥env(
†D>)v ⊂ ∞Ψenv(

†D>)v, ∞Ψ⊥Fenv
(†HT Θ)v ⊂ ∞ΨFenv(

†HT Θ)v,

denote the submonoids corresponding to the respective splittings (i.e., the submonoids
generated by “∞θι

env
(MΘ
∗ )” and the respective torsion subgroups). We have a com-

mutative diagram

∞Ψ⊥
Fenv

(†HT Θ)v ⊃ ∞ΨFenv
(†HT Θ)

µ
v ⊂ ∞ΨFenv

(†HT Θ)×v � ∞ΨFenv
(†HT Θ)

×µ
v

poly
∼→ Ψss

cns(
†F`

∆)
×µ
v

Kum ↓∼= Kum ↓∼= Kum ↓∼= Kum ↓∼= “Kum” ↓
poly
∼=

∞Ψ⊥
env(†D>)v ⊃ ∞Ψenv(†D>)

µ
v ⊂ ∞Ψenv(†D>)×v � ∞Ψenv(†D>)

×µ
v

poly
∼→ Ψss

cns(
†D`

∆)
×µ
v ,

where †D`∆ and †F`∆ are as in Theorem 12.5 (3), and Corollary 11.24 (1), respec-
tively, the most right vertical arrow is the poly-isomorphism of Corollary 11.21 (2),
the most right lower horizontal arrow is the poly-isomorphism obtained by composing
the inverse of the isomorphism F`×env(

†D>)
∼←− F`×∆ (†D`∆) of Proposition 12.6 (3)

and the poly-automorphism of Ψss
cns(
†D`∆)

×µ
v induced by the full poly-automorphism

of the D`-prime-strip †D`∆, and the most right upper horizontal arrow is the poly-
isomorphism defined such a manner that the diagram is commutative. This com-
mutative diagram is compatible with the various group actions with respect to the
diagram

Π
temp
X

(MΘ
∗ (

†D>,v)) � Gv(MΘ
∗ (

†D>,v)) = Gv(MΘ
∗ (

†D>,v)) = Gv(MΘ
∗ (

†D>,v))

full poly
∼→ Gv(MΘ

∗ (
†D>,v)).

Finally, each of the various composite ∞Ψenv(
†D>)

µ
v → Ψss

cns(
†F`∆)

×µ
v is equal to the

zero map, hence the identity automorphism on the following objects is compatible

(with respect to the various natural morphisms) with the collection of automorphisms

of Ψss
cns(
†F`∆)

×µ
v induced by any automorphism in AutF`×µ(†F`×µ∆ ):

(⊥, µ)étv the submonoid and the subgroup ∞Ψ⊥env(
†D>)v ⊃ ∞Ψenv(

†D>)
µ
v ,

(µẐ)
ét
v the cyclotome µẐ(M

Θ
∗ (
†D>,v))⊗Q/Z with respect to the natural isomorphism

µẐ(M
Θ
∗ (
†D>,v))⊗Q/Z ∼→ ∞Ψenv(

†D>)
µ
v
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(M)étv the projective system MΘ
∗ (
†D>,v) of mono-theta environments

(spl)étv the splittings ∞Ψ⊥env(
†D>)v � ∞Ψenv(

†D>)
µ
v by the restriction to the zero-

labelled evaluation points (See Corollary 11.11 (3) and Definition 11.12 (1)).

Proof. Theorem follows from the definitions.

Corollary 12.8. ([IUTchIII, Étale Picture of Multiradial Theta Monoids, Corol-

lary 2.3]) Let {n,mHT ��}n,m∈Z be a collection of ��-Hodge theatres arising from a

Gaussian log-theta-lattice, with associated D-��-Hodge theares n,mHT D-��. We con-

sider the following radial environment. We define a radial datum

†R = (†HT D-��, F

env(

†D>),
†Rbad, F`×µ∆ (†D`∆), F`×µenv (†D>)

full poly
∼→ F`×µ∆ (†D`∆))

to be a quintuple of

(HT D)étR a D-��-Hodge theatre †HT D-��,

(F
)étR the F
-prime-strip F

env(

†D>) associated to †HT D-��,

(bad)étR the quadruple †Rbad = ((⊥, µ)étv , (µẐ)
ét
v , (M)étv , (spl)

ét
v ) of Theorem 12.7 (2) for

v ∈ Vbad,

(F`×µ)étR the F`×µ-prime-strip F`×µ∆ (†D`∆) associated to †HT D-��, and

(env∆)étR the full poly-isomorphim F`×µenv (†D>)
full poly
∼→ F`×µ∆ (†D`∆).

We define a morphism from a radial datum †R to another radial datum ‡R to be a

quintuple of

(HT D)étMorR
an isomorphism †HT D-�� ∼→ ‡HT D-�� of D-��-Hodge theatres,

(F
)étMorR
the isomorphism F


env(
†D>)

∼→ F

env(

‡D>) of F
-prime-strips induced by the iso-

morphism (HT D)étMor,

(bad)étMorR
the isomorphism †Rbad ∼→ ‡Rbad of quadruples induced by the isomorphism

(HT D)étMor, and

(F`×µ)étMorR
an isomorphism F`×µ∆ (†D`∆)

∼→ F`×µ∆ (‡D`∆) of F`×µ-prime-strips
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(Note that the isomorphisms of (F
)étMor and (F`×µ)étMor are automatically compatible

with (env∆)ét).

We define a coric datum

†C = (†D`, F`×µ(†D`))

to be a pair of

(D`)`étC a D`-prime-strip †D`, and

(F`×µ)`étC the F`×µ-prime-strip F`×µ(†D`) associated to †D`.

We define a morphism from a coric datum †C to another coric datum ‡C to be a pair

of

(D`)`étMorC
an isomorphism †D`

∼→ ‡D` of D`-prime-strips, and

(F`×µ)`étMorC
an isomorphism F`×µ(†D`)

∼→ F`×µ(‡D`) of F`×µ-prime-strips which induces

the isomorphism (D`)`étMorC
on the associated D`-prime-strips.

We define the radial algorithm to be the assignment

†R = (†HT D-��, F

env(

†D>),
†Rbad, F`×µ∆ (†D`∆), F`×µenv (†D>)

full poly
∼→ F`×µ∆ (†D`∆))

7→ †C = (†D`∆, F`×µ∆ (†D`∆))

and the assignment on morphisms determined by the data (F`×µ)étMorR
.

1. (Multiradiality) The functor defined by the above radial algorithm is full and

essentially surjective, hence the above radial environment is multiradial.

2. (Étale Picture) For each D- � �-Hodge theatre n,mHT D-�� with n,m ∈ Z, we
can associate a radial datum n,mR. The poly-isomorphisms induced by the vertical

arrows of the Gaussian log-theta-lattice induce poly-isomorphisms · · ·
poly
∼→ n,mR

poly
∼→

n,m+1R
poly
∼→ · · · of radial data by Theorem 12.5 (1). Let

n,◦R
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denote the radial datum obtained by idenfitying n,mR for m ∈ Z via these poly-

isomorphisms, and
n,◦C

denote the coric datum obtained by applying the radial algorithm to n,◦R. Similarly,

the poly-isomorphisms induced by the horizontal arrows of the Gaussian log-theta-

lattice induce full poly-isomorphisms · · ·
full poly
∼→ n,mD`∆

full poly
∼→ n+1,mD`∆

full poly
∼→ · · ·

of D`-prime-strips Theorem 12.5 (2). Let

◦,◦C

denote the coric datum obtained by idenfitying n,◦C for n ∈ Z via these full poly-

isomorphisms. We can visualise the “shared” and “non-shared” relation in Corol-

lary 12.8 (2) as follows:

F

env(

n,◦D>) +
n,◦Rbad + · · · −− > F`×µ∆ (◦,◦D`∆) >−− F


env(
n′,◦D>) +

n′,◦Rbad + · · ·

We call this diagram the étale-picture of multiradial theta monoids. Note

that it has a permutation symmetry in the étale-picture (See also the last table in

Section 4.3). Note also that these constructions are compatible, in an obvious sense,

with Definition 11.24.1.

3. (Kummer Compatibility of Θ×µ
gau-Link, env → ∆) The (poly-)isomorphisms

of F`×µ-prime-strips of/induced by (env∆)étR, (F
)étMorR
, and (F`×µ)étMorR

are com-

patible with the poly-isomorphisms n,mF`×µ∆

full poly
∼→ n+1,mF`×µ∆ of Theorem 12.5 (2)

arising from the horizontal arrows of Gaussian log-theta-lattice, with respect to the

Kummer isomorphisms n,mF`×µ∆

induced by Kum
∼→ F`×µ∆ (n,mD`∆),

n,mF`env

induced by Kum
∼→

F`env(
n,mD>) of Theorem 12.5 (3) and Proposition 12.6 (2). In particular, we have

a commutative diagram

n,mF`×µ∆

full poly∼ //

induced by Kum & “∆7→env” ∼=
��

n+1,mF`×µ∆

∼= induced by Kum & “∆ 7→env”

��
F`×µenv (n,◦D`>)

full poly∼ // F`×µenv (n+1,◦D`>).

4. (Kummer Compatibility of Θ×µ
gau-Link, ⊥ & 
) The isomorphisms F


env(
n,mD>)

∼→
F

env(

n+1,mD>),
n,mRbad ∼→ n+1,m Rbad of (F
)étMorR

, (bad)étMorR
are compatible
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with the poly-isomorphisms n,mF`×µ∆

full poly
∼→ n+1,mF`×µ∆ of Theorem 12.5 (2) arising

from the horizontal arrows of Gaussian log-theta-lattice, with respect to the Kummer

isomorphisms n,mF

env

“Kum”
∼→ F


env(
n,mD>),

n,mF`×µ∆

induced by Kum
∼→ F`×µ∆ (n,mD`∆),

and (n,mC
∆, Prime(n,mC
∆)
∼→ V, {n,mρ∆,v}v∈V)

“Kum”
∼→ (D
(n,mD`∆), Prime (D
(n,mD`∆))

∼→ V, {n,mρD
,v}v∈V) of Proposition 12.6 (2), Theorem 12.5 (3), (5) and their
n+1,m(−)-labelled versions, and the full poly-isomorphism of projective system of

mono-theta environments “MΘ
∗ (
†D>,v)

full poly
∼→ MΘ

∗ (
†F

v
)” of Proposition 11.15.

Proof. Corollary follows from the definitions.

Remark 12.8.1. ([IUTchIII, Remark 2.3.3]) In this remark, we explain similari-

ties and differences between theta evaluations and NF evaluations. Similarities are as

follows: For the theta case, the theta functions are multiradial in two-dimensional ge-

ometric containers, where we use the cyclotomic rigidity of mono-theta environments

in the Kummer theory, which uses only µ-portion (unlike the cyclotomic rigidity via

LCFT), and the evaluated theta values (in the evaluation, which depends on a holo-

morphic structure, the elliptic cuspidalisation is used), in log-Kummer correspondence

later (See Proposition 13.7 (2)), has a crucial non-interference property by the constant

multiple rigidity (See Proposition 13.7 (2)). For the NF case, the κ-coric functions are

multiradial in two-dimensional geometric containers, where we use the cyclotomic rigid-

ity of via Q>0 ∩ Ẑ× = {1} in the Kummer theory, which uses only {1}-portion (unlike

the cyclotomic rigidity via LCFT), and the evaluated number fields (in the evaluation,

which depends on a holomorphic structure, the Beyli cuspidalisation is used), in log-

Kummer correspondence later (See Proposition 13.11 (2)), has a crucial non-interference

property by F×mod ∩
∏
v≤∞Ov = µ(F×mod) (See Proposition 13.7 (2)). See also the fol-

lowing table:

mulirad. geom. container in mono-an. container cycl. rig. log-Kummer

theta theta fct.
eval theta values qj

2

(ell. cusp’n) mono-theta no interf. by

(depends on labels&hol. str.) const. mul. rig.

NF ∞κ-coric fct.
eval NF F×mod (up to {±1})(Belyi cusp’n) via Q>0 ∩ Ẑ× no interf. by

(indep. of labels, dep. on hol. str.) = {1} F×mod ∩
∏
v≤∞Ov = µ
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The differences are as follows: The output theta values qj
2

depend on the labels j ∈ F>
l

(Recall that the labels depend on a holomorphic structure), and the evaluation is com-

patible with the labels, on the other hand, the output number field F×mod (up to {±1})
does not depend on the labels j ∈ F>

l (Note also that, in the final multiradial algorithm,

we also use global realified monoids, and these are of mono-analytic nature (since units

are killed) and do not depend of holomorphic structure). We continue to explain the

differences of the theta case and the NF case. The theta function is transcendental

and of local nature, and the cyclotomic rigidity of mono-theta environments, which is

compatible with profinite topology (See Remark 9.6.2), comes from the fact that the

order of zero at each cusp is equal to one (Such “only one valuation” phenomenon cor-

responds precisely to the notion of “local”). Note that such a function only exists as

a transcendental function. (Note also that the theta functions and theta values do not

have Fo±
l -symmetry; however, the cyclotomic rigidity of mono-theta enrionments have

Fo±
l -symmetry. See Remark 11.17.1). On the other hand, the rational functions used in

Belyi cuspidalisation are algebraic and of global nature, and the cyclotomic rigidity via

Q>0 ∩ Ẑ× = {1}, which is obtained by sacrificing the compatibility with profinite topol-

ogy (See Remark 9.6.2). Algebraic rational function never satisfy the property like “the

order of zero at each cusp is equal to one” (Such “many valuations” phenomenon corre-

sponds precisely to the notion of “global”). See also the following table (cf. [IUTchIII,

Fig. 2.7]):

theta � (0 is permuted) transcendental local compat. w/prof. top. “one valuation”

NF � (0 is isolated) algebraic global incompat. w/prof. top. “many valuations”

We also explain the “vicious circles” in Kummer theory. In the mono-anabelian

reconstruction algorithm, we use various cyclotomes µ∗ét arising from cuspidal inertia

subgroups (See Theorem 3.17), these are naturally identified by the cyclotomic rigidity

isomorphism for inertia subgroups (See Proposition 3.14 and Remark 3.14.1). We write

µ∀ét for the cyclotome resulting from the natural identifications. In the context of log-

Kummer correspondence, the Frobenius-like cyclotomes µFr’s are related to µ∀ét, via
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cyclotomic rigidity isomorphisms:

• †µFr

Kum

##F
FF

FF
FF

F

• ‡µFr
Kum //

log

OO

◦µ∀ét

log

OO

Kum

::uuuuuuuuuu

If we consider these various Frobenius-like µFr’s and the vertically coric étale-like µ∀ét
as distinct labelled objects, then the diagram does not result in any “vicious circles” or

“loops”. On the other hand, ultimately in Theorem 13.12, we will construct algorithms

to describe objects of one holomorphic structure on one side of Θ-link, in terms of

another alien arithmetic holomorphic structure on another side of Θ-link by means of

multiradial containers. These multiradial containers arise from étale-like versions of

objects, but are ultimately applied as containers for Frobenius-like versions of objects.

Hence, we need to contend with the consequences of identifying the Frobenius-like µFr’s

and the étale-like µ∀ét, which gives us possible “vicious circles” or “loops”. We consider

the indeterminacies arising from possible “vicious circles”. The cyclotome µ∀ét is subject

to indeterminacies with respect to multiplication by elements of the submonoid

Iord ⊂ N≥1 × {±1}

generated by the orders of the zeroes of poles of the rational functions appearing the cy-

clotomic rigidity isomorphism under consideration (Recall that constructing cyclotomic

rigidity isomorphisms associated to rational functions via the Kummer-theoretic ap-

proach of Definition 9.6 amounts to identifying various µ∗ét’s with various sub-cyclotomes

of µFr’s via morphisms which differ from the usual natural identification precisely by

multiplication by the order ∈ Z at a cusp “∗” of the zeroes/poles of the rational func-

tion). In the theta case, we have

Iord = {1}

as a consequence of the fact that the order of the zeros/poles of the theta function at

any cusp is equal to 1. On the other hand, for the NF case, such a phenomenon never

happens for algebraic rational functions, and we have

Im(Iord → N≥1) = {1}

by the fact Q>0 ∩ Ẑ× = {1}. Note also that the indeterminacy arising from Im(Iord →
{±1}) (⊂ {±1}) is avoided in Definition 9.6, by the fact that the inverse of a non-

constand κ-coric rational function is never κ-coric, and that this thechnique is incompat-

ible with the identification of µFr and µ
∀
ét discussed above. Hence, in the final multiradial
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algorithm, a possible Im(Iord → {±1}) (⊂ {±1})-indeterminacy arises. However, the to-

tality F×mod of the non-zero elements is invariant under {±1}, and this indeterminacy is

harmless (Note that, in the theta case, the theta values qj
2

have no {±1}-invariance).

§ 13. Multiradial Representation Algorithms.

In this section, we construct the main multiradial algorithm to describe objects of

one holomorphic structure on one side of Θ-link, in terms of another alien arithmetic

holomorphic structure on another side of Θ-link by means of multiradial containers. We

briefly explain the ideas. We want to “see” the alien ring structure on the left hand

side of Θ-link (more precisely, Θ×µLGP-link) from the right hand side of Θ-link:

• Θ-link // •

(̂eye)

��

As explained in Section 4.3, after constructing link (or wall) by using Frobenius-like ob-

jects, we relate Frobenius-like objects to étale-like objects via Kummer theory (Kum-

mer detachment). Then étale-like objects can penetrate the wall (étale transport)

(cf. Remark 9.6.1). We also have another step to go from holomorphic structure to the

underlying mono-analytic structure for the purpose of using the horizontally coric (i.e.,

shared) objects in the final multiradial algorithm. This is a fundamental strategy:

arith.-holomorphic Frobenius-like obj’s data assoc. to F-prime-strips

↓ Kummer theory

arith.-holomorphic étale-like obj’s data assoc. to D-prime-strips

↓ forget arith.-hol. str.

mono-analytic étale-like obj’s data assoc. to D`-prime-strips.

We look more. The Θ-link only concerns the multiplicative structure (�), hence, it
seems difficult to see the additive structure (�) on the left hand side, from the right

hand side. First, we try to overcome this difficulty by using a log-link (Note that Fo±
l -

symmetrising isomorphisms are compatible with log-links, hence, we can pull-back Ψgau

via log-link to construct ΨLGP):

� log(O×µ) • Θ-link // •

(̂eye)

��

�

OO

O×µ

OO

•

log-link

OO
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However, the square

� log(O×µ) • Θ-link // •

(̂eye)

��

�

OO

O×µ

OO

•

log

OO

Θ
// •

log

OO

is non-commutative (cf. log(aN ) 6= (log a)N ), hence we cannot describe the left vertical

arrow in terms of the right vertical arrow. We overcome this difficulty by considering

the infinite chain of log-links:

...

• Θ //

log

OO

•

(̂eye)

��

•

log

OO

...

log

OO

Then the infinite chain of log-links is invariant under the vertical shift, and we can

describe the infinite chain of log-links on the left hand side, in terms of the infinite

chain of log-links on the right hand side. This is a rough explanation of the idea.

§ 13.1. Local and Global Packets.

Here, we introduce a notion of processions.

Definition 13.1. ([IUTchI, Definition 4.10]) Let C be a category. A n-procession
of C is a diagram of the form

P1
all capsule-full poly

↪→ P2
all capsule-full poly

↪→ · · ·
all capsule-full poly

↪→ Pn,

where Pj is a j-capsule of Ob(C) for 1 ≤ j ≤ n, and each ↪→ is the set of all capsule-full

poly-morphisms. A morphism from an n-procession of C to an m-procession of C(
P1

all capsule-full poly
↪→ · · ·

all capsule-full poly
↪→ Pn

)
→
(
Q1

all capsule-full poly
↪→ · · ·

all capsule-full poly
↪→ Qm

)
consists of an order-preserving injection ι : {1, . . . , n} ↪→ {1, . . . ,m} together with a

capsule-full poly-morphism Pj
capsule-full poly

↪→ Qι(j) for 1 ≤ j ≤ n.
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Ultimately, l>-processions of D`-prime-strips corresponding to the subsets {1} ⊂
{1, 2} ⊂ · · · ⊂ F>

l will be important.

Remark 13.1.1. As already seen, the labels (LabCusp(−)) depend on the arith-

metically holomorphic structures (See also Section 3.5), i.e., ∆(−)’s or Π(−)’s (Recall

that Π(−) for hyperbolic curves of strictly Belyi type over an MLF has the information of

the field structure of the base field, and can be considered as arithmetically holomorphic,

on the other hand, the Galois group of the base field (Π(−) �)G(−) has no information

of the field structure of the base field, and can be considered as mono-analytic). In

inter-universal Teichmüller theory, we will reconstruct an alien ring structure on one

side of (the updated version of) Θ-link from the other side of (the updated version of)

Θ-link (See also the primitive form of Θ-link shares the mono-analytic structure †D`v ,
but not the arithmetically holomorphic structures †Dv, ‡Dv (Remark 10.8.1)), and we

cannot send arithmetically holomorphic structures from one side to the other side of

(the updated version of) Θ-link. In particular, we cannot send the labels (LabCusp(−))
from one side to the other side of (the updated version of) Θ-link, i.e., we cannot see

the labels on one side from the other side:

1, 2, . . . , l> 7−→ ?, ?, . . . , ?.

Then we have (l>)l
>
-indeterminacies in total. However, we can send processions:

{1} ↪→ {1, 2} ↪→ {1, 2, 3} ↪→ · · · ↪→ {1, 2, . . . , l>} 7−→ {?} ↪→ {?, ?} ↪→ · · · ↪→ {?, ?, . . . , ?}.

In this case, we can reduce the indeterminacies from (l>)l
>

to (l>)!. If we did not

use this reduction of indeterminacies, then the final inequality of height function would

be weaker (More precisely, it would be ht . (2 + ε)(log-diff + log-cond), not ht .
(1 + ε)(log-diff + log-cond)). More concretely, in the calculations of Lemma 1.10, if we

did not use the processions, then the calculation 1
l>

∑
1≤j≤l>(j + 1) = l>+1

2 + 1 would

be changed into 1
l>

∑
1≤j≤l>(l

> + 1) = l> + 1, whose coefficient of l would be twice.

For j = 1, . . . , l± (Recall that l± = l> + 1 = l+1
2 (See Section 0.2)), we put

S>j := {1, . . . , j}, S±j := {0, . . . , j − 1}.

Note that we have

S>1 ⊂ S>2 ⊂ · · · ⊂ S>l> = F>
l , S±1 ⊂ S±2 ⊂ · · · ⊂ S±l± = |Fl|.

We also consider S>j as a subset of S±j+1.

Definition 13.2. ([IUTchI, Proposition 4.11, Proposition 6.9]) For aD-Θ-bridge

†DJ

†φΘ
>−→ †D> (resp. D-Θ±-bridge †DT

†φΘ±
±−→ †D�), let

Proc(†DJ ) (resp. Proc(†DT ) )
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denote the l>-processin (resp. l±-procession) of D-prime-strips determined by the sub-

capsules of †DJ (resp. †DT ) corresponding to the subsets S>1 ⊂ S>2 ⊂ . . . ⊂ S>l> = F>
l

(resp. S±1 ⊂ S±2 ⊂ . . . ⊂ S±l± = |Fl|), with respect to the bijection †χ : J
∼→ F>

l

of Proposition 10.19 (1) (resp. the bijection |T | ∼→ |Fl| determined by the F±l -group
structure of T ). For the capsule †D`J (resp. †D`T ) of D`-prime-strips associated to †DJ

(resp. †DT ), we similarly define the l>-processin (resp. l±-procession)

Proc(†D`J ) (resp. Proc(†D`T ) )

of D`-prime-strips. If the D-Θ-bridge †φΘ> (resp. the D-Θ±-bridge †φΘ±

± ) arises from

a capsule Θ-bridge (resp. Θ±-bridge), we similarly define the l>-processin (resp. l±-

procession)

Proc(†FJ ) (resp. Proc(†FT ) )

of F-prime-strips.

Proposition 13.3. (Local Holomorphic Tensor Packets, [IUTchIII, Proposition

3.1]) Let

{αF}α∈S±j =
{
{αFv}v∈V

}
α∈S±j

be a j-capsule of F-prime-strips with index set S±j . For V 3 v( | vQ ∈ VQ := V(Q)),

we regard log(αFv) as an inductive limit of finite dimensional topological modules over

QvQ , by log(αFv) = lim−→J⊂αΠv : open
(log(αFv))J . We call the assignment

VQ 3 vQ 7→ log(αFvQ) :=
⊕

V3v|vQ

log(αFv)

the 1-tensor packet associated to the F-prime-strip αF, and the assignment

VQ 3 vQ 7→ log(S
±
j FvQ) :=

⊗
α∈S±j

log(αFvQ)

the j-tensor packet associated to the collection {αF}α∈S±j of F-prime-strips,

where the tensor product is taken as a tensor product of ind-topological modules.

1. (Ring Structures) The ind-topological field structures on log(αFv) for α ∈ S±j
determine an ind-topological ring structure on log(S

±
j FvQ) as an inductive limit of

direct sums of ind-topological fields. Such decompositions are compatible with the

natural action of the topological group αΠv on the direct summand with subscript v

of the factor labelled α.

2. (Integral Structures) Fix α ∈ S±j+1, v ∈ V, vQ ∈ VQ with v | vQ. Put

log(S
±
j+1,αFv) := log(αFv)⊗


⊗

β∈S±j+1\{α}

log(βFvQ)

 ⊂ log(S
±
j+1FvQ).
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Then the ind-topological submodule log(S
±
j+1,αFv) forms a direct summand of the

ind-topological ring log(S
±
j+1FvQ). Note that log(S

±
j+1,αFv) is also an inductive limit

of direct sums of ind-topological fields. Moreover, by forming the tensor product

with 1’s in the factors labelled by β ∈ S±j+1 \ {α}, we obtain a natural injective

homomorphism

log(αFv) ↪→ log(S
±
j+1,αFv)

of ind-topological rings, which, for suitable (cofinal) choices of objects in the induc-

tive limit descriptions for the domain and codomain, induces an isomorphism of

such an object in the domain onto each of the direct summand ind-topological fields

of the object in the codomain. In particular, the integral structure

Ψlog(αFv) := Ψlog(αFv) ∪ {0} ⊂ log(αFv)

determines integral structures on each of the direct summand ind-topological fields

appearing in the inductive limit descriptions of log(S
±
j+1,αFv), log(S

±
j+1FvQ).

Note that log(αFv) is an isomorph of log(Kv
×
) ∼= Kv, the integral structure Ψlog(αFv)

is an isomorph of OKv
, and log(S

±
j+1,αFv) is an isomorph of

⊗
Kv

∼→ lim−→
⊕
Kv.

Proof. Proposition follows from the definitions.

Remark 13.3.1. ([IUTchIII, Remark 3.1.1 (ii)]) From the point of view of “an-

alytic section” Vmod
∼→ V(⊂ V(K)) of SpecK � SpecFmod, we need to consider the

log-volumes on the portion of log(αFv) corresponding to Kv relative to the weight

1

[Kv : (Fmod)v]
,

where v ∈ Vmod denotes the valuation corresponding to v via the bijection Vmod
∼→ V

(See also Definition 10.4). When we consider
⊕

V3v|vQ as in case of log(αFvQ), we use

the normalised weight

1

[Kv : (Fmod)v] ·
(∑

Vmod3w|vQ [(Fmod)w : QvQ ]
)

so that the multiplication by pvQ affects log-volumes as + log(pvQ) (resp. by − log(pvQ))

for vQ ∈ Varc
Q (resp. vQ ∈ Vnon

Q ) (See also Section 1.2). Similarly, when we consider

log-volumes on the portion of log(S
±
j+1FvQ) corresponding to the tensor product of Kvi

with V 3 vi | vQ for 0 ≤ i ≤ j, we have to consider these log-volumes relative to the

weight
1∏

0≤i≤j [Kvi
: (Fmod)vi ]

,
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where vi ∈ Vmod corresponds to vi. Moreover, when we consider direct sums over all

possible choices for the data {vi}i∈S±j+1
, we use the normalised weight

1(∏
0≤i≤j [Kvi

: (Fmod)vi ]
)
·
{∑

{wi}0≤i≤j∈((Vmod)vQ )
j+1

(∏
0≤i≤j [(Fmod)wi

: QvQ ]
)}

(See also Section 1.2) so that the multiplication by pvQ affects log-volumes as + log(pvQ)

(resp. by − log(pvQ)) for vQ ∈ Varc
Q (resp. vQ ∈ Vnon

Q ) (See Section 0.2 for the notation

(Vmod)vQ).

Proposition 13.4. (Local Mono-analytic Tensor Packets, [IUTchIII, Proposi-

tion 3.2]) Let

{αD`}α∈S±j =
{
{αD`v }v∈V

}
α∈S±j

be a j-capsule of D`-prime-strips with index set S±j . We call the assignment

VQ 3 vQ 7→ log(αD`vQ) :=
⊕

V3v|vQ

log(αD`v )

the 1-tensor packet associated to the D`-prime-strip αD, and the assignment

VQ 3 vQ 7→ log(S
±
j D`vQ) :=

⊗
α∈S±j

log(αD`vQ)

the j-tensor packet associated to the collection {αD`}α∈S±j of D`-prime-strips,

where the tensor product is taken as a tensor product of ind-topological modules. For

α ∈ S±j+1, v ∈ V, vQ ∈ VQ with v | vQ, put

log(S
±
j+1,αD`v ) := log(αD`v )⊗


⊗

β∈S±j+1\{α}

log(βD`vQ)

 ⊂ log(S
±
j+1D`vQ).

If {αD`}α∈S±j arises from a j-capsule

{αF`×µ}α∈S±j =
{
{αF`×µv }v∈V

}
α∈S±j

of F`×µ-prime-strips, then we put

log(αF`×µvQ
) := log(αD`vQ), log(S

±
j F`×µvQ

) := log(S
±
j D`vQ), log(S

±
j+1,αF`×µv ) := log(S

±
j+1,αD`v ),

and we call the first two of them the 1-tensor packetassociated to the F`×µ-prime-

strip αF`×µ, and the j-tensor packet associated to the collection {αF`×µ}α∈S±j
of F`×µ-prime-strips, respectively.



a proof of the abc conjecture after Mochizuki 329

1. (Mono-analytic/Holomorphic Compatibility) Assume that {αD`}α∈S±j arises

from a j-capsule

{αF}α∈S±j =
{
{αFv}v∈V

}
α∈S±j

of F-prime-strips. We write {αF`×µ}α∈S±j for the j-capsule of F`×µ-prime-strips

associated to {αF}α∈S±j . Then the (poly-)isomorphisms log(†Fv)
tauto
∼→ log(†F`×µv )

“Kum”
poly
∼→

log(†D`v ) of Proposition 12.2 (4) induce natural poly-isomorphisms

log(αFvQ)
tauto
∼→ log(αF`×µvQ

)

“Kum”
poly
∼→ log(αD`vQ), log(S

±
j FvQ)

tauto
∼→ log(S

±
j F`×µvQ

)

“Kum”
poly
∼→ log(S

±
j D`vQ),

log(S
±
j+1,αFv)

tauto
∼→ log(S

±
j+1,αF`×µv )

“Kum”
poly
∼→ log(S

±
j+1,αD`v )

of ind-topological modules.

2. (Integral Structures) For V 3 v | vQ ∈ Vnon
Q the étale-like mono-analytic log-

shells “I†D`
v
” of Proposition 12.2 (4) determine topological submodules

I(αD`vQ) ⊂ log(αD`vQ), I(
S±j D`vQ) ⊂ log(S

±
j D`vQ), I(

S±j+1,αD`v ) ⊂ log(S
±
j+1,αD`v ),

which can be regarded as integral structures on the Q-spans of these submodules.

For V 3 v | vQ ∈ Varc
Q by regarding the étale-like mono-analytic log-shells “I†D`

v
” of

Proposition 12.2 (4) as the “closed unit ball” of a Hermitian metric on “log(†D`v )”,
and putting the induced direct sum Hermitian metric on log(αD`vQ), and the induced

tensor product Hermitian metric on log(S
±
j D`vQ), we obtain Hemitian metrics on

log(αD`vQ), log(
S±j D`vQ), and log(S

±
j+1,αD`vQ), whose associated closed unit balls

I(αD`vQ) ⊂ log(αD`vQ), I(
S±j D`vQ) ⊂ log(S

±
j D`vQ), I(

S±j+1,αD`v ) ⊂ log(S
±
j+1,αD`v ),

can be regarded as integral structures on log(αD`vQ), log(
S±j D`vQ), and log(S

±
j+1,αD`vQ),

respectively. For any V 3 v | vQ ∈ VQ, we put

IQ(αD`vQ) := Q-span of I(αD`vQ) ⊂ log(αD`vQ), I
Q(S

±
j D`vQ) := Q-span of I(S

±
j D`vQ) ⊂ log(S

±
j D`vQ),

IQ(S
±
j+1,αD`v ) := Q-span of I(S

±
j+1,αD`v ) ⊂ log(S

±
j+1,αD`v ).

If {αD`}α∈S±j arises from a j-capsule {αF}α∈S±j of F-prime-strips then, the objects

I(αD`vQ), I
Q(αD`vQ), I(

S±j D`vQ), I
Q(S

±
j D`vQ), I(

S±j+1,αD`v ), IQ(S
±
j+1,αD`v ) determine

I(αFvQ), IQ(αFvQ), I(
S±j FvQ), IQ(

S±j FvQ), I(
S±j+1,αFv), IQ(S

±
j+1,αFv),
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and

I(αF`×µvQ
), IQ(αF`×µvQ

), I(S
±
j F`×µvQ

), IQ(S
±
j F`×µvQ

), I(S
±
j+1,αF`×µv ), IQ(S

±
j+1,αF`×µv )

via the above natural poly-isomorphisms log(αFvQ)
tauto
∼→ log(αF`×µvQ

)

“Kum”
poly
∼→ log(αD`vQ),

log(S
±
j FvQ)

tauto
∼→ log(S

±
j F`×µvQ

)

“Kum”
poly
∼→ log(S

±
j D`vQ), log(

S±j+1,αFv)
tauto
∼→ log(S

±
j+1,αF`×µv )

“Kum”
poly
∼→

log(S
±
j+1,αD`v ) of ind-topological modules.

Proof. Proposition follows from the definitions.

Proposition 13.5. (Global Tensor Packets, [IUTchIII, Proposition 3.3]) Let

†HT ��

be a ��-Hodge theatre with associated �- and �-Hodge theatres †HT �, †HT � respec-

tively. Let {αF}α∈S>j be a j-capsule of F-prime-strips. We consider S>j as a subset of

the index set J appearing the �-Hodge theatre †HT � via the isomorphism †χ : J
∼→ F>

l

of Proposition 10.19 (1). We assume that for each α ∈ S>j , a log-link

αF
log−→ †Fα

(i.e., a poly-morphism log(αF)
poly
∼→ †Fα of F-prime-strips) is given. Recall that we have

a labelled version (†M~
mod)j of the field †M~

mod (See Corollary 11.23 (1), (2)). We call

(†M~
mod)S>j

:=
⊗
α∈S>j

(†M~
mod)α

the global j-tensor packet associated to S>j and the ��-Hodge theatre †HT ��.

1. (Ring Structures) The field structures on (†M~
mod)α for α ∈ S>j determine a

ring structure on (†M~
mod)S>j

, which decomposes uniquely as a direct sum of num-

ber fields. Moreover, by composing with the given log-links, the various localisation

functors “(†F~
mod)j → †Fj” of Corollary 11.23 (3) give us a natural injective local-

isation ring homomorphism

(†M~
mod)S>j

gl. to loc.
↪→ log(S

±
j+1FVQ) :=

∏
vQ∈VQ

log(S
±
j+1FvQ)

to the product of the local holomorphic tensor packets of Proposition 13.3, where we

consider S>j as a subset of S±j+1, and the component labelled by 0 in log(S
±
j+1FvQ) of

the localisation homomorphism is defined to be 1.
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2. (Integral Structures) For α ∈ S>j , by taking the tensor product with 1’s in the

factors labelled by β ∈ S>j \ {α}, we obtain a natural injective ring homomorphism

(†M~
mod)α ↪→ (†M~

mod)S>j

which induces an isomorphism of the domain onto a subfield of each of the di-

rect summand number fields of the codomain. For each vQ ∈ VQ, this homomor-

phism is compatible, in the obvious sense, with the natural injective homomorphism

log(αFv) ↪→ log(S
±
j+1,αFv) of ind-topological rings of Proposition 13.3 (2), with re-

spect to the localisation homomorphisms of (1). Moreover, for each vQ ∈ Vnon
Q (resp.

vQ ∈ Varc
Q ), the composite

(†M~
mod)α ↪→ (†M~

mod)S>t
gl. to loc.
↪→ log(S

±
j+1FVQ)� log(S

±
j+1FvQ)

of the above displayed homomorphism with the vQ-component of the localisation ho-

momorphism of (1) sends the ring of integers (resp. the set of elements of absolute

value ≤ 1 for all Archimedean primes) of the number field (†M~
mod)α into the sub-

module (resp. the direct product of subsets) constituted by the integral structures on

log(S
±
j+1FvQ) (resp. on various direct summand ind-topological fields of log(S

±
j+1FvQ))

of Proposition 13.3 (2).

Proof. Proposition follows from the definitions.

§ 13.2. Log-Kummer Correspondences and Multiradial Representation

Algorithms.

Proposition 13.6. (Local Packet-Theoretic Frobenioids, [IUTchIII, Proposi-

tion 3.4])

1. (Single Packet Monoids) In the situation of Proposition 13.3, for α ∈ S±j+1, v ∈
V, vQ ∈ VQ with v | vQ, the image of the monoid Ψlog(αFv), its submonoid Ψ×log(αFv)

of units, and realification ΨR
log(αFv)

, via the natural homomorphism log(αFv) ↪→

log(S
±
j+1,αFv) of Proposition 13.3 (2), determines monoids

Ψlog(
S±
j+1

,α
Fv), Ψ×log(

S±
j+1

,α
Fv), ΨR

log(
S±
j+1

,α
Fv)

which are equipped with Gv(
αΠv)-actions when v ∈ Vnon, and for the first monoid,

with a pair of an Aut-holomorphic orbispace and a Kummer structure when v ∈ Varc.

We regard these monoids as (possibly realified) subquotients of log(S
±
j+1,αFv) which

act on appropriate (possibly realified) subquotients of log(S
±
j+1,αFv). (For the purpose

of equipping Ψlog(αFv) etc. with the action on subquotients of log(S
±
j+1,αFv), in the
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algorithmical outputs, we define Ψ
log(

S±
j+1

,αFv)
etc. by using the image of the natural

homomorphism log(αFv) ↪→ log(S
±
j+1,αFv)).

2. (Local Logarithmic Gaussian Procession Monoids) Let

‡HT �� log−→ †HT ��

be a log-link of ��-Hodge theatres. Consider the F-prime-strip processions Proc(†FT ).

Recall that the Frobenius-like Gaussian monoid (∞)ΨFgau(
†HT Θ)v of Corollary 11.21

(4) is defined by the submonoids in the product
∏
j∈F>

l
(Ψ†F

v
)j (See Corollary 11.17

(2), Proposition 11.19 (4)). Consider the following diagram:∏
j∈F>

l
log(j;‡Fv) ⊂

∏
j∈F>

l
log(S

±
j+1j;‡Fv)

∪ ∪∏
j∈F>

l
(Ψ†F

v
)j

poly
∼←−
∏
j∈F>

l
Ψlog(j;‡Fv)

by (1)
∼→

∏
j∈F>

l
Ψlog(

S±
j+1

,j;‡
Fv),

∪
ΨFgau(

†F
v
)

where ΨFgau(
†F

v
) in the last line denotes, by abuse of notation, ΨFξ

(†F
v
) for a

value profie ξ in the case of v ∈ Vbad. We take the pull-backs of ΨFgau(
†F

v
)

via the poly-isomorphism given by log-link ‡HT �� log−→ †HT ��, and send them

to the isomorphism
∏
j∈F>

l
Ψlog(j;‡Fv)

∼→
∏
j∈F>

l
Ψlog(

S±
j+1

,j;‡
Fv) constructed in (1).

By this construction, we obtain a functorial algorithm, with respect to the log-link
‡HT �� log−→ †HT �� of ��-Hodge theatres, to construct collections of monoids

V 3 v 7→ ΨFLGP(
(‡ log−→)†HT ��)v, ∞ΨFLGP(

(‡ log−→)†HT ��)v,

equipped with splittings up to torsion when v ∈ Vbad (resp. splittings when v ∈
Vgood). We call them Frobenius-like local LGP-monoids or Frobenius-like

local logarithmic Gaussian procession monoids. Note that we are able to

perform this construction, thanks to the compatibility of log-link with the Fo±
l -

symmetrising isomorphisms.

Note that, for v ∈ Vbad, we have(
j-labelled component of ΨFLGP(

(‡ log−→)†HT ��)Gv(
‡Πv)

v

)
⊂ IQ(S

±
j+1,j;‡Fv)

(i.e., “(K̃v ⊃)O×Kv
· qj2
v
⊂ Q log(O×Kv

)”), where (−)Gv(
‡Πv) denotes the invariant

part, and the above j-labelled component of Galois invariant part acts multiplica-

tively on IQ(S
±
j+1,j;‡Fv). For any v ∈ V, we also have(

j-labelled component of (ΨFLGP(
(‡ log−→)†HT ��)×v )

Gv(
‡Πv)

)
⊂ IQ(S

±
j+1,j;‡Fv)
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(i.e., “(K̃v ⊃)O×Kv
⊂ Q log(O×Kv

)” for v ∈ Vgood), where ‡Πv = {1} for v ∈ Varc,

and the above j-labelled component of Galois invariant part of the unit portion acts

multiplicatively on IQ(S
±
j+1,j;‡Fv).

Proof. Proposition follows from the definitions.

Proposition 13.7. (Kummer Theory and Upper Semi-Compatibility for Verti-

cally Coric Local LGP-Monoids, [IUTchIII, Proposition 3.5]) Let {n,mHT �p}n,m∈Z be

a collection of ��-Hodge theatres arising from a Gaussian log-theta-lattice. For each n

inZ, let
n,◦HT D-��

denote the D-��-Hodge theatre determined, up to isomorphism, by n,mHT �p for m ∈
Z, via the vertical coricity of Theorem 12.5 (1).

1. (Vertically Coric Local LGP-Monoids and Associated Kummer Theory)

Let

F(n,◦D�)t

denote the F-prime-strip associated to the labelled collection of monoids “Ψcns(
n,◦D�)t”

of Corollary 11.20 (3). Then by applying the constructions of Proposition 13.6 (2) to

the full log-links associated these (étale-like) F-prime-strips (See Proposition 12.2

(5)), we obtain a functorial algorithm, with respect to the D- � �-Hodge theatre
n,◦HT D-��, to construct collections of monoids

V ∈ v 7→ ΨLGP(
n,◦HT D-��)v, ∞ΨLGP(

n,◦HT D-��)v

equipped with splittings up to torsion when v ∈ Vbad (resp. splittings when v ∈
Vgood). We call them vertically coric étale-like local LGP-monoids or verti-

cally coric étale-like local logarithmic Gaussian procession monoids. Note

again that we are able to perform this construction, thanks to the compatibility

of log-link with the Fo±
l -symmetrising isomorphisms. For each n,m ∈ Z,

this functorial algorithm is compatible, in the obvious sende, with the functorial

alogrithm of Proposition 13.6 (2) for †(−) = n,m(−), and ‡(−) = n,m−1(−), with
respect to the Kummer isomorphism

Ψcns(
n,m′

F�)t

Kum
∼→ Ψcns(

n,◦D�)t

of labelled data of Corollary 11.21 (3) and the identification of n,m
′
Ft with the F-

prime-strip associated to Ψcns(
n,m′

F�)t for m
′ = m− 1,m. In particular, for each

n,m ∈ Z, we obtain Kummer isomorphisms

(∞)ΨFLGP(
n,m−1 log−→n,mHT ��)v

Kum
∼→ (∞)ΨFLGP(

n,◦HT D-��)v
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for local LGP-monoids for v ∈ V.

2. (Upper Semi-Compatibility) The Kummer isomorphisms of the above (1) are

upper semi-compatible with the log-links n,m−1HT �� log−→ n,mHT �� of ��-
Hodge theatres in the Gaussian log-theta-lattice in the following sense:

(a) (non-Archimedean Primes) For vQ ∈ Vnon
Q , (and n ∈ Z) by Proposition 13.6

(2), we obtain a vertically coric topological module

I(S
±
j+1F(n,◦D�)vQ).

Then for any j = 0, . . . , l>, m ∈ Z, v | vQ, and m′ ≥ 0, we have⊗
|t|∈S±j+1

Kum ◦ logm
′
((

Ψcns(
n,mF�)

×
|t|

)n,mΠv
)
⊂ I(S

±
j+1F(n,◦D�)vQ),

where Kum denotes the Kummer isomorphism of (1), and logm
′
denotes the

m′-th iteration of pv-adic logarithm part of the log-link (Here we consider the

m′-th iteration only for the elements whose (m′ − 1)-iteration lies in the unit

group). See also the inclusion (Upper Semi-Compat. (non-Arch)) in Sec-

tion 5.1.

(b) (Archimedean Primes) For vQ ∈ Varc
Q , (and n ∈ Z) by Proposition 13.6 (2),

we obtain a vertically coric closed unit ball

I(S
±
j+1F(n,◦D�)vQ).

Then for any j = 0, . . . , l>, m ∈ Z, v | vQ, we have⊗
|t|∈S±j+1

Kum
(
Ψcns(

n,mF�)
×
|t|

)
⊂ I(S

±
j+1F(n,◦D�)vQ),

⊗
|t|∈S±j+1

Kum
(
closed ball of radius π inside Ψcns(

n,mF�)
gp

|t|

)
⊂ I(S

±
j+1F(n,◦D�)vQ),

and, for m′ ≥ 1,(
closed ball of radius π inside Ψcns(

n,mF�)
gp

|t|

)
⊃ (a subset)

logm′

� Ψcns(
n,m−m′

F�)
×
|t|,

where Kum denotes the Kummer isomorphism of (1), and logm
′
denotes the

m′-th iteration of the Archimedean exponential part of the log-link (Here we

consider the m′-th iteration only for the elements whose (m′− 1)-iteration lies

in the unit group). See also the inclusion (Upper Semi-Compat. (Arch)) in

Section 5.2.



a proof of the abc conjecture after Mochizuki 335

(c) (Bad Primes) Let v ∈ Vbad, and j 6= 0. Recall that the monoids (∞)ΨFLGP(
(‡ log−→)†HT ��)v,

and (∞)ΨLGP(
n,◦HT D-��)v are equipped with natural splitting up to torsion

in the case of ∞Ψ(−), and up to 2l-torsion in the case of Ψ(−). Let

(∞)Ψ
⊥
FLGP

((n,m−1
log−→)n,mHT ��)v ⊂ (∞)ΨFLGP(

(n,m−1 log−→)n,mHT ��)v,

(∞)Ψ
⊥
LGP(

n,◦HT D-��)v ⊂ (∞)ΨLGP(
n,◦HT D-��)v

denote the submonoids defined by these splittings. Then the actions of the

monoids

Ψ⊥FLGP
((n,m−1

log−→)n,mHT ��)v (m ∈ Z)

on the ind-topological modules

IQ(S
±
j+1,jF(n,◦D�)v) ⊂ log(S

±
j+1,jF(n,◦D�)v) (j = 1, . . . , l>),

via the Kummer isomorphisms of (1) is mutually compatible, with respect to

the log-links of the n-th column of the Gaussian log-theta-lattice, in the follow-

ing sense: The only portions of these actions which are possibly related to each

other via these log-links are the indeterminacies with respect to multiplication

by roots of unity in the domains of the log-links (since Ψ⊥(−)∩Ψ×(−) = µ2l).

Then the pv-adic logarithm portion of the log-link sends the indeterminacies at

m (i.e., multiplication by µ2l) to addition by zero, i.e., no indeterminacy! at

m+1 (See also Remark 10.12.1, Definition 12.1 (2), (4), and Proposition 12.2

(2) for the discussion on quotients by ΨµN
†Fv

for v ∈ Varc).

Now, we consider the groups

((Ψcns(
n,mF�)|t|)

×
v )

Gv(
n,mΠv), ΨFLGP(

(n,m−1 log−→)n,mHT ��)Gv(
n,m−1Πv)

v

of units for v ∈ V, and the splitting monoids

Ψ⊥FLGP
((n,m−1

log−→)n,mHT ��)v

for v ∈ Vbad as acting on the modules

IQ(S
±
j+1F(n,◦D�)vQ)

not via a single Kummer isomorphism of (1), which fails to be compatible with the log-

links, but rather via the totality of the pre-composites of Kummer isomorphisms with

iterates of the pv-adic logarithmic part/Archimedean exponential part of log-links as in

the above (2). In this way, we obtain a local log-Kummer correspondence between
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the totality of the various groups of units and splitting monoids for m ∈ Z, and their

actions on the “IQ(−)” labelled by “n, ◦”

{ Kum ◦ logm
′
(groups of units, splitting monoids at (n,m)) y IQ(n,◦(−)) }m∈Z,m′≥0,

which is invariant with respect to the translation symmetries m 7→ m + 1 of the n-th

column of the Gaussian log-theta-latice.

Proof. Proposition follows from the definitions.

Proposition 13.8. (Global Packet-Theoretic Frobenioids, [IUTchIII, Proposi-

tion 3.7])

1. (Single Packet Global non-Realified Frobenioid, �-Line Bundle Version)

In the situation of Proposition 13.5, for each α ∈ S>j , by the construction of Defi-

nition 9.7 (1), we have a functorial algorithm, from the image

(†M~
MOD)α := Im

(
(†M~

mod)α ↪→ (†M~
mod)S>j

↪→ log(S
±
j+1FVQ)

)
of the number field, via the homomorphisms of Proposition 13.5 (1), (2) to construct

a (pre-)Frobenioid

(†F~
MOD)α

with a natural isomorphism

(†F~
mod)α

∼→ (†F~
MOD)α

of (pre-)Frobenioids (See Corollary 11.23 (2) for (†F~
mod)α), which induces the tau-

tological isomorphism (†M~
mod)α

∼→ (†M~
MOD)α on the associated rational function

monoids. We ofthen identify (†F~
mod)α with (†F~

MOD)α, via the above isomorphism.

We write (†F~R
MOD)α for the realification of (†F~

MOD)α.

2. (Single Packet Global non-Realified Frobenioid, �-Line Bundle Version)

For each α ∈ S>j , by the construction of Definition 9.7 (2), we have a functorial

algorithm, from the number field (†M~
mod)α := (†M~

MOD)α and the Galois invariant

local monoids

(Ψlog(
S±
j+1

,α
Fv))

Gv(
αΠv)

of Proposition 13.6 (1) for v ∈ V, to construct a (pre-)Frobenioid

(†F~
mod)α

(Note that, for v ∈ Vnon (resp. v ∈ Varc), the corresponding local fractional ideal Jv

of Definition 9.7 (2) is a submodule (resp. subset) of IQ(S
±
j+1,αFv) whose Q-span is

equal to IQ(S
±
j+1,αFv)) with natural isomorphisms

(†F~
mod)α

∼→ (†F~
mod)α, (†F~

mod)α
∼→ (†F~

MOD)α
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of (pre-)Frobenioids, which induces the tautological isomorphisms (†M~
mod)α

∼→ (†M~
mod)α,

(†M~
mod)α

∼→ (†M~
MOD)α on the associated rational function monoids, respectively.

We write (†F~R
mod)α for the realification of (†F~

mod)α.

3. (Global Realified Logarithmic Gaussian Procession Frobenioids, �-Line
Bundle Version) Let ‡HT �� log−→ †HT �� a log-link. In this case, in the construc-

tion of the above (1), (2), the target log(S
±
j+1FVQ) of the injection is ‡-labbeled ob-

ject log(S
±
j+1,j;‡FVQ), thus, we write ((‡→)†M~

MOD)α, (
(‡→)†M~

mod)α, (
(‡→)†F~

MOD)α,

((‡→)†F~
mod)α for (†M~

MOD)α, (
†M~

mod)α, (
†F~

MOD)α, (
†F~

mod)α, respectively, in order

to specify the dependence. Consider the diagram

∏
j∈F>

l

†C
j
gl. real’d to gl. non-real’d⊗R

∼−→
∏
j∈F>

l
(†F~R

mod)j
∼→
∏
j∈F>

l
((‡→)†F~R

MOD)j ,

∪
†C
gau

where the isomorphisms in the upper line are Corollary 11.23 (3) and the reali-

fication of the isomorphism in (1). Then by sending the global realified portion
†C
gau of the F
-prime-strip †F


gau of Corolllary 11.24 (2) via the isomorphisms

of the upper line, we obtain a functorial algorithm, with respect to the log-link
‡HT �� log−→ †HT �� of Proposition 13.6 (2), to construct a (pre-)Frobenioid

C
LGP(
(‡

log−→)†HT ��).

We call (‡→)†C
LGP := C
LGP(
(‡

log−→)†HT ��) a Frobenius-like global realified

LGP-monoid or Frobenius-like global realified �-logarithmic Gaussian

procession monoids. The combination of it with the collection ΨFLGP
((

‡ log−→)†HT ��)
of data constructed by Proposition 13.6 (2) gives rise to an F
-prime-strip

(‡→)†F

LGP = ((‡→)†C
LGP, Prime((‡→)†C
LGP)

∼→ V, (‡→)†F`LGP, {(‡→)†ρLGP,v}v∈V)

with a natural isomorphism

†F

gau

∼→ (‡→)†F

LGP

of F
-prime-strips.

4. (Global Realified Logarithmic Gaussian Procession Frobenioids, �-Line
Bundle Version) Put

ΨFlgp
((

‡ log−→)†HT ��) := ΨFLGP(
(‡

log−→)†HT ��), (‡→)†F`lgp := (‡→)†F`LGP.
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In the construction of (3), by replacing (†F~R
mod)j

∼→ (†F~R
MOD)j by (†F~R

mod)j
∼→

(†F~R
mod)j, we obtain a functorial algorithm, with respect to the log-link ‡HT �� log−→

†HT �� of Proposition 13.6 (2), to construct a (pre-)Frobenioid

(‡→)†C
lgp := C
lgp((
‡ log−→)†HT ��).

and an F
-prime-strip

(‡→)†F

lgp = ((‡→)†C
lgp, Prime((‡→)†C
lgp)

∼→ V, (‡→)†F`lgp, {(‡→)†ρlgp,v}v∈V)

with tautological isomorphisms

†F

gau

∼→ (‡→)†F

LGP

∼→ (‡→)†F

lgp

of F
-prime-strips. We call (‡→)†C
lgp := C
lgp((
‡ log−→)†HT ��) a Frobenius-like

global realified lgp-monoid or Frobenius-like global realified �-logarithmic

Gaussian procession monoids.

5. (Global Realified to Global non-Realified⊗R) By the constructions of global

realified Frobenioids C
LGP(
(‡

log−→)†HT ��) and C
lgp((
‡ log−→)†HT ��) of (3), (4), we

have a commutative diagram

C
LGP(
(‡

log−→)†HT ��) �
� //

∼=
��

∏
j∈F>

l
(†F~R

MOD)j

∼=
��

C
lgp((
‡ log−→)†HT ��) �

� // ∏
j∈F>

l
(†F~R

mod)j .

In particular, by the definition of (†F~
mod)j in terms of local fractional ideals, and

the product of the realification functors
∏
j∈F>

l
(†F~

mod)j →
∏
j∈F>

l
(†F~R

mod)j, we ob-

tain an algorithm, which is compatible, in the obvious sense, with the localisation

isomorphisms {†ρlgp,v}v∈V and {†ρLGP,v}v∈V, to construct objects of the (global)

categories C
lgp((‡
log−→)†HT ��), C
LGP(

(‡ log−→)†HT ��), from the local fractional ideals

generated by elements of the monoid ΨFlgp
((‡

log−→)†HT ��)v for v ∈ Vbad.

Proof. Proposition follows from the definitions.

Definition 13.9. ([IUTchIII, Definition 3.8])

1. Put Ψ⊥Flgp
((‡

log−→)†HT ��)v := ΨFlgp
((‡

log−→)†HT ��)v for v ∈ Vbad. When we regard

the object of ∏
j∈F>

l

(†F~
mod)j
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and its realification determined by any collection, indexed by v ∈ Vbad, of generators

up to µ2l of the monoids Ψ⊥Flgp
((‡

log−→)†HT ��)v, as an object of the global realified

Frobenioid (‡→)†C
LGP = C
LGP(
(‡

log−→)†HT ��) or (‡→)†C
lgp = C
lgp((
‡ log−→)†HT ��),

then we call it a Θ-pilot object.

We call the object of the global realified Frobenioid †C
∆ of Corollary 11.24 (1)

determined by any collection, indexed by v ∈ Vbad, of generators up to torsion of

the splitting monoid associated to the split Frobenioid †F`∆,v in the v-component

of the F`-prime-strip †F`∆ of Corollary 11.24 (1), a q-pilot object.

2. Let ‡HT �� log−→ †HT �� be a log-link of ��-Hodge theatres, and

∗HT ��

a ��-Hodge theatre. Let

∗F
I×µ
∆ (resp. (‡→)†F
I×µ

LGP , resp. (‡→)†F
I×µ
lgp )

be the F
I×µ-prime-strip associated to the F
-prime strip ∗F

∆ of Corollary 11.24

(1) (resp. (‡→)†F

LGP, resp.

(‡→)†F

LGP). We call the full poly-isomorphism

(‡→)†F
I×µ
LGP

full poly
∼−→ ∗F
I×µ

∆ (resp. (‡→)†F
I×µ
lgp

full poly
∼−→ ∗F
I×µ

∆ )

the Θ×µ
LGP-link (resp. Θ×µlgp-link) from

†HT �� to ∗HT ��, relative to the log-link

‡HT �� log−→ †HT ��, and we write it as

†HT �� Θ×µ
LGP−→ ∗HT �� (resp. †HT �� Θ×µ

lgp−→ ∗HT �� ).

3. Let {n,mHT ��}n,m∈Z be a collection of ��-Hodge theatres indexed by pairs of

integers. We call the diagram

...
...

· · ·
Θ×µ

LGP // n,m+1HT �� Θ×µ
LGP //

full log

OO

n+1,m+1HT �� Θ×µ
LGP //

full log

OO

· · ·

· · ·
Θ×µ

LGP // n,mHT �� Θ×µ
LGP //

full log

OO

n+1,mHT �� Θ×µ
LGP //

full log

OO

· · · ,

...

full log

OO

...

full log

OO
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(resp.

...
...

· · ·
Θ×µ

lgp // n,m+1HT �� Θ×µ
lgp //

full log

OO

n+1,m+1HT �� Θ×µ
lgp //

full log

OO

· · ·

· · ·
Θ×µ

lgp // n,mHT �� Θ×µ
lgp //

full log

OO

n+1,mHT �� Θ×µ
lgp //

full log

OO

· · ·

...

full log

OO

...

full log

OO

) the LGP-Gaussian log-theta-lattice (resp. lgp-Gaussian log-theta-lattice),

where the Θ×µLGP-link (resp. Θ×µlgp-link) from n,mHT �� to n+1,mHT �� is taken

relative to the full log-link n,m−1HT �� full log−→ n,mHT ��. Note that both of Θ×µLGP-

link and Θ×µlgp-link send Θ-pilot objects to q-pilot objects.

Proposition 13.10. (Log-volume for Packets and Processions, [IUTchIII, Propo-

sition 3.9])

1. (Local Holomorphic Packets) In the situation of Proposition 13.4 (1), (2), for

V 3 v | vQ ∈ Vnon
Q (resp. V 3 v | vQ ∈ Varc

Q ), α ∈ S±j+1, the pvQ-adic log-volume

(resp. the radial log-volume) on each of the direct summand pvQ-adic fields (resp.

complex Archimedean fields) of IQ(αFvQ), IQ(
S±j+1FvQ), and IQ(

S±j+1,jFvQ) with the

normalised weights of Remark 13.3.1 determines log-volumes

µlog
α,vQ

: M(IQ(αFvQ))→ R, µlog

S±j+1,vQ
: M(IQ(S

±
j+1FvQ))→ R,

µlog

S±j+1,α,v
: M(IQ(S

±
j+1,αFv))→ R,

where M(−) denotes the set of compact open subsets of (−) (resp. the set of com-

pact closures of open subsets of (−)), such that the log-volume of each of the local

holomorphic integral structures

OαFvQ
⊂ IQ(αFvQ), OS±

j+1FvQ

⊂ IQ(S
±
j+1FvQ), OS±

j+1
,αFv

⊂ IQ(S
±
j+1,αFv),

given by the integral structures of Proposition 13.3 (2) on each of the direct sum-

mand, is equal to zero. Here, we assume that these log-volumes are normalised in

such a manner that multiplication by pv corresponds to − log(pv) (resp. + log(pv))

on the log-volume (cf. Remark 13.3.1) (See Section 0.2 for pv with Archimedean v).
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We call this normalisation the packet-normalisation. Note that “µlog

S±j+1,vQ
” is in-

vaariant by permutations of S±j+1. When we are working with collections of capsules

in a procession, we normalise log-volumes on the products of “M(−)” associated to

the various capsules by taking the average over the various capsules. We call this

normalisation the procession-normalisation.

2. (Mono-analytic Compatibility) In the situation of Proposition 13.4 (1), (2),

for V 3 v | vQ ∈ Vnon
Q (resp. V 3 v | vQ ∈ Varc

Q ), α ∈ S±j+1, by applying the pvQ-adic

log-volume (resp. the radial log-volume) on the mono-analytic log-shells “I†D`
v
”

of Proposition 12.2 (4), and adjusting appropriately the discrepancy between the

local holomorphic integral structures of Proposition 13.3 (2) and the mono-analytic

integral structures of Proposition 13.4 (2), we obtain log-volumes

µlog
α,vQ

: M(IQ(αD`vQ))→ R, µlog

S±j+1,vQ
: M(IQ(S

±
j+1D`vQ))→ R,

µlog

S±j+1,α,v
: M(IQ(S

±
j+1,αD`v ))→ R,

where M(−) denotes the set of compact open subsets of (−) (resp. the set of com-

pact closures of open subsets of (−)), which are compatible with the log-volumes

of (1), with respect to the natural poly-isomorphisms of Proposition 13.4 (1). In

particular, these log-volumes can be constructed via a functorial alogrithm from the

D`-prime-strips. If we consider the mono-analyticisation of an F-prime-strip pro-

cession as in Proposition 13.6 (2), then taking the average of the packet-normalised

log-volumes gives rise to procession-normalised log-volumes, which are compatible

with the procession-normalised log-volumes of (1), with respect to the natural poly-

isomorphisms of Proposition 13.4 (1). By replacing “D`” by F`×µ, we obtain a

similar theory of log-volumes for the various objects associated to the mono-analytic

log-shells “I†F`×µ
v

”

µlog
α,vQ

: M(IQ(αF`×µvQ
))→ R, µlog

S±j+1,vQ
: M(IQ(S

±
j+1F`×µvQ

))→ R,

µlog

S±j+1,α,v
: M(IQ(S

±
j+1,αF`×µv ))→ R,

which is compatible with the “D`”-version, with respect to the natural poly-isomorphisms

of Proposition 13.4 (1).

3. (Global Compatibility) In the situation of Proposition 13.8 (1), (2), put

IQ(S
±
j+1FVQ) :=

∏
vQ∈VQ

IQ(S
±
j+1FvQ) ⊂ log(S

±
j+1FVQ) =

∏
vQ∈VQ

log(S
±
j+1FvQ)
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and let

M(IQ(S
±
j+1FVQ)) ⊂

∏
vQ∈VQ

M(IQ(S
±
j+1FvQ))

denote the subset of elements whose components have zero log-volume for all but

finitely many vQ ∈ VQ. Then by adding the log-volumes of (1) for vQ ∈ VQ, we

obtain a global log-volume

µlog

S±j+1,VQ
: M(IQ(S

±
j+1FVQ)) → R

which is invariant by multiplication by elements of

(†M~
mod)α = (†M~

MOD)α ⊂ I
Q(S

±
j+1FVQ)

(product formula), and permutations of S±j+1. The global log-volume µlog

S±j+1,VQ
({Jv}v∈V)

of an object {Jv}v∈V of (†F~
mod)α (See Definition 9.7 (2)) is equal to the degree

of the arithmetic line bundle determined by {Jv}v∈V (cf. the natural isomorphism

(†F~
mod)α

∼→ (†F~
mod)α of Proposition 13.8 (2)), with respect to a suitable normali-

sation.

4. (log-Link Compatibility) Let {n,mHT ��}n,m∈Z be a collection of ��-Hodge the-
atres arising from an LGP-Gaussian log-theta-lattice.

(a) For n,m ∈ Z, the log-volumes of the above (1), (2), (3) determine log-volumes

on the various “IQ(−)” appearing in the construction of the local/global LGP-

/lgp-monoids/Frobenioids in the F
-prime-strips n,mF

LGP,

n,mF

lgp of Propo-

sition 13.8 (3), (4), relative to the log-link n,m−1HT �� full log−→ n,mHT ��.

(b) At the level of the Q-spans of log-shells “IQ(−)” arising from the various F-
prime-strips involved, the log-volumes of (a) indexed by (n,m) are compatible,

in the sense of Proposition 12.2 (2) (i.e., in the sense of the formula (5.1) of

Proposition 5.2 and the formula (5.2) of Proposition 5.4), with the log-volumes

indexed by (n,m−1) with respect to the log-link n,m−1HT �� full log−→ n,mHT ��

(This means that we do not need to be worried about how many times log-

links are applied in the log-Kummer correspondence, when we take values

of the log-volumes).

Proof. Proposition follows from the definitions.

Proposition 13.11. (Global Kummer Theory and Non-Interference with Local

Integers, [IUTchIII, Proposition 3.10]) Let {n,mHT �p}n,m∈Z be a collection of ��-
Hodge theatres arising from an LGP-Gaussian log-theta-lattice. For each n

inZ, let
n,◦HT D-��
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denote the D-��-Hodge theatre determined, up to isomorphism, by n,mHT �p for m ∈
Z, via the vertical coricity of Theorem 12.5 (1).

1. (Vertically Coric Global LGP- lgp-Frobenioids and Assosiated Kummer

Theory) By applying the construcions of Proposition 13.8 to the (étale-like) F-
prime-strips “F(n,◦D�)t” and to the full log-links associated to these (étale-like)

F-prime-strips (See Proposition 12.2 (5)), we obtain functorial algorithms, with

respect to the D- � �-Hodge theatre n,◦HT D-��, to construct vertically coric

étale-like number fields, monoids, and (pre-)Frobenioids equipped with

natural isomorphisms

M~
mod(

n,◦HT D-��)α = M~
MOD(

n,◦HT D-��)α ⊃M~
mod(

n,◦HT D-��)α = M~
MOD(

n,◦HT D-��)α,

M~
mod(

n,◦HT D-��)α ⊃M~
mod(

n,◦HT D-��)α,

F~
mod(

n,◦HT D-��)α
∼→ F~

mod(
n,◦HT D-��)α

∼→ F~
MOD(

n,◦HT D-��)α

for α ∈ S>j
via †χ
⊂ J , and vertically coric étale-like F
-prime-strips equipped

with natural isomorphisms

F
(n,◦HT D-��)gau
∼→ F
(n,◦HT D-��)LGP

∼→ F
(n,◦HT D-��)lgp.

Note again that we are able to perform this construction, thanks to the com-

patibility of log-link with the Fo±
l -symmetrising isomorphisms. For each

n,m ∈ Z, these functorial algorithms are compatible, in the obvious sense, with

the (non-vertically coric Frobenius-like) functorial algorithms of Proposition 13.8

for †(−) = n,m(−), and ‡(−) = n,m−1(−), with respect to the Kummer isomor-

phisms

Ψcns(
n,m′

F�)t

Kum
∼→ Ψcns(

n,m′
D�)t,

(n,m
′
M~

mod)j

Kum
∼→ M~

mod(
n,m′
D})j , (n,m

′
M~

mod)j

Kum
∼→ M~

mod(
n,m′
D})j

of labelled data (See Corollary 11.21 (3), and Corollary 11.23 (2)), and the evident

identification of n,m
′
Ft with the F-primes-strip associated to Ψcns(

n,m′
F�)t form

′ =

m− 1,m. In particular, for each n,m ∈ Z, we obtain Kummer isomorphisms

(n,mM~
mod)α

Kum
∼→ M~

mod(
n,◦HT D-��)α, ((n,m−1→)n,mM~

MOD/mod)α

Kum
∼→ M~

MOD/mod(
n,◦HT D-��)α,

(n,mM~
mod)α

Kum
∼→ M~

mod(
n,◦HT D-��)α, ((n,m−1→)n,mM~

MOD/mod)α

Kum
∼→ M~

MOD/mod(
n,◦HT D-��)α,
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(n,mF~
mod)α

Kum
∼→ F~

mod(
n,◦HT D-��)α, ((n,m−1→)n,mF~

MOD/mod)α

Kum
∼→ F~

MOD/mod(
n,◦HT D-��)α,

n,mF

gau

Kum
∼→ F
(n,◦HT D-��)gau, ((n,m−1→)n,mF


LGP/lgp)
Kum
∼→ F
(n,◦HT D-��)LGP/lgp,

(Here (−)MOD/mod is the shorthand for “(−)MOD (resp. (−)mod)”, and (−)LGP/lgp

is the shorthand for “(−)LGP (resp. (−)lgp)”) of fields, monoids, Frobenioids, and

F
-prime-strips, which are compatible with the above various equalities, natural

inclusions, and natural isomorphisms.

2. (Non-Interference with Local Integers) In the notation of Proposition 13.4

(2), Proposition 13.6 (1), Proposition 13.8 (1), (2), and Proposition 13.10 (3), we

have

(†M~
MOD)α∩

∏
v∈V

Ψlog(
S±
j+1

,α
Fv) = µ((†M~

MOD)α)

⊂∏
v∈V
IQ(S

±
j+1,αFv) =

∏
vQ∈VQ

IQ(S
±
j+1FvQ) = IQ(

S±j+1FVQ)


(i.e., “F×mod∩

∏
v≤∞O

�
(Fmod)v

= µ(F×mod)”) (Here, we identify
∏

V3v|vQ I
Q(S

±
j+1,αFv)

with IQ(S
±
j+1FvQ)). Now, we consider the multiplicative groups

((n,m−1→)n,mM~
MOD)j

of non-zero elements of number fields as acting on the modules

IQ(S
±
j+1F(n,◦D�)VQ)

not via a single Kummer isomorphism of (1), which fails to be compatible with

the log-links, but rather via the totality of the pre-composites of Kummer isomor-

phisms with iterates of the pv-adic logarithmic part/Archimedean exponential part

of log-links, where we observe that these actions are mutually compatible, with

respect to the log-links of the n-th column of the LGP-Gaussian log-theta-lattice, in

the following sense: The only portions of these actions which are possibly related to

each other via these log-links are the indeterminacies with respect to multiplication

by roots of unity in the domains of the log-links (by the above displayed equal-

ity). Then the pv-adic logarithm portion of the log-link sends the indeterminacies

at m (i.e., multiplication by µ((n,m−1→)n,mM~
MOD)j) to addition by zero, i.e., no

indeterminacy! at m + 1 (See also Remark 10.12.1, Definition 12.1 (2), (4), and

Proposition 12.2 (2) for the discussion on quotients by ΨµN
†Fv

for v ∈ Varc). In this

way, we obtain a global log-Kummer correspondence between the totality of

the various multiplicative groups of non-zero elements of number fields for m ∈ Z,
and their actions on the “IQ(−)” labelled by “n, ◦”

{ Kum ◦ logm
′
(((n,m−1→)n,mM~

MOD)j) y I
Q(n,◦(−)) }m∈Z,m′≥0,
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which is invariant with respect to the translation symmetries m 7→ m+1 of the n-th

column of the LGP-Gaussian log-theta-latice.

3. (Frobenioid-theoretic log-Kummer Correspondences) The Kummer isomor-

phisms of (1) induce, via the log-Kummer correspondence of (2), isomorphisms of

(pre-)Frobenioids

((n,m−1→)n,mF~
MOD)α

Kum
∼→ F~

MOD(
n,◦HT D-��)α, ((n,m−1→)n,mF~R

MOD)α

Kum
∼→ F~R

MOD(
n,◦HT D-��)α

which are mutually compatible with the log-links of the LGP-Gaussian log-theta-

lattice, as m rus over the elements of Z. These compatible isomorphisms of (pre-

)Frobenioids with the Kummer isomorphisms of (1) induce, via the global log-

Kummer correspondence of (2) and the splitting monoid portion of the the local

log-Kummer correspondence of Proposition 13.7 (2), a Kummer isomorphism

(n,m−1→)n,mF
⊥
LGP

Kum
∼→ F
⊥(n,◦HT D-��)LGP

of associated F
⊥-prime-strips, which are mutually compatible with the log-links

of the LGP-Gaussian log-theta-lattice, as m rus over the elements of Z.

Note that we use only MOD-/LGP-labelled objects in (2) and (3), since these are defined

only in terms of multiplicative operations (�), and that the compatibility of Kummer

isomorphisms with log-links does not hold for mod-/lgp-labelled objects, since these are

defined in terms of both multiplicative and additive operaions (� and �), where we only

expect only a upper semi-compatibility (cf. Definition 9.7, and Proposition 13.7 (2)).

Proof. Proposition follows from the definitions.

The following the Main Theorem of inter-universal Teichmüller theory:

Theorem 13.12. (Multiradial Algorithms via LGP-Monoids/Frobenioids, [IUTchIII,

Theorem 3.11]) Fix an initial Θ-data

(F/F, XF , l, CK , V, Vbad
mod, ε).

Let

{n,mHT ��}n,m∈Z
be a collection of ��-Hodge theatres, with respect to the fixed initial Θ-date, arising

from an LGP-Gaussian log-theta-lattice. For each n ∈ Z, let

n,◦HT D-��

denote the D- � �-Hodge theatre determined, up to isomorphism, by n,mHT �� for

m ∈ Z, via the vertical coricity of Theorem 12.5 (1).



346 Go Yamashita

1. (Multiradial Representation) Consider the procession of D`-prime-strips Proc(n,◦D`T )

{n,◦D`0} ↪→ {n,◦D`0 , n,◦D`1} ↪→ . . . ↪→ {n,◦D`0 , n,◦D`1 , . . . , n,◦D`l>}.

Consider also the following data:

(Shells) (Unit portion — Mono-anaytic Containers) For V 3 v | vQ, j ∈ |Fl|, the

topological modules and mono-analytic integral structures

I(S
±
j+1;n,◦D`vQ) ⊂ I

Q(S
±
j+1;n,◦D`vQ), I(

S±j+1,j;n,◦D`v ) ⊂ IQ(S
±
j+1,j;n,◦D`v ),

which we regard as equipped with the procession-normalised mono-analytic log-

volumes of Proposition 13.10 (2),

(ThVals) (Value Group Portion — Theta Values) For v ∈ Vbad, the splitting monoid

Ψ⊥LGP(
n,◦HT D-��)v

of Proposition 13.7 (2c), which we regard as a subset of∏
j∈F>

l

IQ(S
±
j+1,j;n,◦D`v ),

equipped with a multiplicative action on
∏
j∈F>

l
IQ(S

±
j+1,j;n,◦D`v ), via the natural

poly-isomorphisms

IQ(S
±
j+1,j;n,◦D`v )

“Kum”−1

poly
∼→ IQ(S

±
j+1,j;n,◦F`×µ(D�)v)

tauto−1

∼→ IQ(S
±
j+1,j;n,◦F(D`�)v)

of Proposition 13.4 (2), and

(NFs) (Global Portion — Number Fields) For j ∈ F>
l , the number field

M~
MOD(

n,◦HT D-��)j = M~
mod(

n,◦HT D-��)j ⊂ IQ(S
±
j+1;n,◦D`VQ

) :=
∏
vQ∈VQ

IQ(S
±
j+1;n,◦D`vQ)

with natural isomorphisms

F~
MOD(

n,◦HT D-��)j
∼→ F~

mod(
n,◦HT D-��)j , F~R

MOD(
n,◦HT D-��)j

∼→ F~R
mod(

n,◦HT D-��)j

(See Proposition 13.11 (1)) between the associated global non-realified/realified

Frobenioids, whose associated global degrees can be computed by means of the

log-volumes of (a).

Let
n,◦RLGP

denote the collection of data (a), (b), (c) regarded up to indeterminacies of the

following two types:
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(Indet xy) the indeterminacies induced by the automorphisms of the procession of D`-
prime-strip Proc(n,◦D`T ), and

(Indet →) for each vQ ∈ Vnon
Q (resp. vQ ∈ Varc

Q ), the indeterminacies induced by the action

of independent copies of Isomet (resp. copies of {±1}×{±1}-orbit arising from
the independent {±1}-actions on each of the direct factors “k∼(G) = C∼×C∼”
of Proposition 12.2 (4)) on each of the direct summands of the j + 1 factors

appearing in the tensor product used to define IQ(S
±
j+1;n,◦D`vQ)

Then we have a functorial algorithm, with respect to Proc(n,◦D`T ), to construct
n,◦RLGP (from the given initial Θ-data). For n, n′ ∈ Z, the permutation symmetries

of the étale picture of Corollary 12.8 (2) induce compatible poly-isomorphisms

Proc(n,◦D`T )
poly
∼→ Proc(n

′,◦D`T ),
n,◦RLGP

poly
∼→ n′,◦RLGP

which are, moreover, compatible with the poly-isomorphisms n,◦D`0

poly
∼→ n′,◦D`0 in-

duced by the bi-coricity of the poly-isomorphisms of Theorem 12.5 (3). We call

the switching poly-isomorphism n,◦RLGP
poly
∼→ n′,◦RLGP an étale-transport poly-

isomorphism (See also Remark 11.1.1), and we also call (Indet xy) the étale-

transport indeterminacies.

2. (log-Kummer Correspondence) For n,m ∈ Z, the Kummer isomorphisms

Ψcns(
n,mF�)t

Kum
∼→ Ψcns(

n,◦D�)t, (n,mM~
mod)j

Kum
∼→ M~

mod(
n,◦D})j ,

{πrat
1 (n,mD~) y n,mM~

∞κ}j
Kum
∼→ {πrat

1 (n,◦D~) y M~
∞κ(

n,◦D})}j

(where t ∈ LabCusp±(n,◦D�)) of labelled data of Corollary 11.21 (3), Corollary 11.23

(1), (2) (cf. Proposition 13.7 (1), Proposition 13.11 (1)) induce isomorphisms be-

tween the vertically coric étale-like data (Shells), (ThVals), and (NFs) of (1), and

the corresponding Frobenius-like data arising from each ��-Hodge theatre n,mHT ��:

(a) for V 3 v | vQ, j ∈ |Fl|, isomorphisms

I(Q)(S
±
j+1;n,mFvQ)

tauto
∼→ I(Q)(S

±
j+1;n,mF`×µvQ

)

“Kum”
poly
∼→ I(Q)(S

±
j+1;n,◦DvQ),

I(Q)(S
±
j+1,j;n,mFv)

tauto
∼→ I(Q)(S

±
j+1,j;n,mF`×µv )

“Kum”
poly
∼→ I(Q)(S

±
j+1,j;n,◦Dv)
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of local mono-analytic tensor packets and their Q-spans (See Proposition 13.4

(2)), all of which are compatible with the respective log-volumes by

Proposition 13.10 (2) (Here, I(Q)(−) is a shorthand for “I(−) (resp. IQ(−))”),

(b) for Vbad 3 v, isomorphisms

Ψ⊥FLGP
((n,m−1→)n,mHT ��)v

Kum
∼→ Ψ⊥LGP(

n,◦HT D-��)v

of splitting monoids (See Proposition 13.7 (1)),

(c) for j ∈ F>
l , isomorphisms

((n,m−1→)n,mM~
MOD/mod)j

Kum
∼→ M~

MOD/mod(
n,◦HT D-��)j ,

((n,m−1→)n,mF~
MOD/mod)j

Kum
∼→ F~

MOD/mod(
n,◦HT D-��)j ,

((n,m−1→)n,mF~R
MOD/mod)j

Kum
∼→ F~R

MOD/mod(
n,◦HT D-��)j ,

of number fields and global non-realified/realified Frobenioids (See Proposi-

tion 13.11 (1)), which are compatible with the respective natural isomorphisms

between “(−)MOD” and “(−)mod” (Here, (−)MOD/mod is a shorthand for “(−)MOD

(resp. (−)mod)”), here, the last isomorphisms induce isomorphisms

(n,m−1→)n,mC
LGP/lgp

Kum
∼→ C
LGP/lgp(

n,◦HT D-��)

(Here, (−)LGP/lgp is a shorthand for “(−)LGP (resp. (−)lgp)”) of the global re-

alified Frobenioid portions of the F
-prime-strips (n,m−1→)n,mF

LGP, F


(n,◦HT D-��)LGP,
(n,m−1→)n,mF


lgp, and F
(n,◦HT D-��)lgp (See Proposition 13.11 (1)).

Moreover, the various isomorphisms Ψ⊥FLGP
((n,m−1→)n,mHT ��)v

Kum
∼→ Ψ⊥LGP(

n,◦HT D-��)v’s,

and ((n,m−1→)n,mM~
MOD/mod)j

Kum
∼→ M~

MOD/mod(
n,◦HT D-��)j’s in (b), (c) are mu-

tually compatible with each other, as m runs over Z, with respect to the log-links

of the n-th column of the LGP-Gaussian log-theta-lattice, in the sense that the

only portions of the domains of these isomorphisms which are possibly related to

each other via the log-links consist of µ in the domains of the log-links at (n,m),

and these indeterminacies at (n,m) (i.e., multiplication by µ) are sent to addi-

tion by zero, i.e., no indeterminacy! at (n,m + 1) (See Proposition 13.7 (2c),

Proposition 13.11 (2)). This mutual compatibility of ((n,m−1→)n,mM~
MOD/mod)j

Kum
∼→

M~
MOD/mod(

n,◦HT D-��)j’s implies mutual compatibilities of ((n,m−1→)n,mF~
MOD)j

Kum
∼→
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F~
MOD(

n,◦HT D-��)j’s, and ((n,m−1→)n,mF~
MOD)j

Kum
∼→ F~

MOD(
n,◦HT D-��)j’s (Note

that the mutual compatibility does not hold for (−)mod-labelled objects, since these

are defined in terms of both multiplicative and additive operaions (� and �), where
we only expect only a upper semi-compatibility (cf. Definition 9.7, Proposition 13.7

(2), and Proposition 13.11 (3)). On the other hand, the isomorphisms of (a) are

subject to the following indeterminacy:

(Indet ↑) the isomorphisms of (a) are upper semi-compatible, with respect to the log-

links of the n-th column of the LGP-Gaussian log-theta-lattice, as m runs over

Z, in a sense of Proposition 13.7 (2a), (2b).

(We call (Indet →) and (Indet ↑) the Kummer detachment indetermina-

cies.) Finally, the isomorphisms of (a) are compatible with the respective

log-volumes, with respect to the log-links of the n-th column of the LGP-Gaussian

log-theta-lattice, as m runs over Z (This means that we do not need to be worried

about how many times log-links are applied in the log-Kummer correspondence,

when we take values of the log-volumes).

3. (Θ×µLGP-Link Compatibility) The various Kummer isomorphisms of (2) are com-

patible with the Θ×µLGP-links in the following sense:

(a) (Kummer on ∆) By applying the Fo±
l -symmetry of the ��-Hodge theatre

n,mHT ��, the Kummer isomorphism Ψcns(
n,mF�)t

Kum
∼→ Ψcns(

n,◦D�)t induces

a Kummer isomorphism n,mF`×µ∆

induced by Kum
∼→ F`×µ∆ (n,◦D`∆) (See Theo-

rem 12.5 (3)). Then we have a commutative diagram

n,mF`×µ∆

full poly∼ //

induced by Kum ∼=
��

n+1,mF`×µ∆

∼= induced by Kum

��
F`×µ∆ (n,◦D`∆)

full poly∼ // F`×µ∆ (n+1,◦D`∆),

where the upper horizontal arrow is induced (See Theorem 12.5 (2)) by the

Θ×µLGP-link between (n,m) and (n+ 1,m) by Theorem 12.5 (3).

(b) (∆→ env) The F
-prime-strips n,mF

env, F



env(

n,◦D>) appearing implicitly in

the construction of the F
-prime-strips (n,m−1→)n,mF

LGP, F


(n,◦HT D-��)LGP,
(n,m−1→)n,mF


lgp, F

(n,◦HT D-��)lgp, admit natural isomorphisms n,mF`×µ∆

∼→
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n,mF`×µenv , F`×µ∆ (n,◦D`∆)
∼→ F`×µenv (n,◦D`>) of associated F`×µ-prime-strips (See

Proposition 12.6 (3)). Then we have a commutative diagram

n,mF`×µ∆

full poly∼ //

induced by Kum & “∆7→env” ∼=
��

n+1,mF`×µ∆

∼= induced by Kum & “∆7→env”

��
F`×µenv (n,◦D`>)

full poly∼ // F`×µenv (n+1,◦D`>),

where the upper horizontal arrow is induced (See Theorem 12.5 (2)) by the

Θ×µLGP-link between (n,m) and (n+ 1,m) by Corollary 12.8 (3).

(c) (env→ gau) Recall that the (vertically coric étale-like) data “n,◦R” i.e.,(
n,◦HT D-��, F


env(
n,◦D>),

[
∞Ψ⊥env(

n,◦D>)v ⊃ ∞Ψenv(
n,◦D>)

µ
v , µẐ(M

Θ
∗ (
n,◦D>,v))⊗Q/Z, MΘ

∗ (
n,◦D>,v),

∞Ψ⊥env(
n,◦D>)v � ∞Ψenv(

n,◦D>)
µ
v

]
v∈Vbad

, F`×µ∆ (n,◦D`∆), F`×µenv (n,◦D>)
full poly
∼→ F`×µ∆ (n,◦D`∆)

)
of Corollary 12.8 (2) implicitly appears in the construction of the F
-prime-

strips (n,m−1→)n,mF

LGP, F


(n,◦HT D-��)LGP,
(n,m−1→)n,mF


lgp, F

(n,◦HT D-��)lgp.

This (vertically coric étale-like) data arising from n,◦HT D-�� is related to

corresponding (Frobenius-like) data arising from the projective system of the

mono-theta environments associated to the tempered Frobenioids of the ��-
Hodge theatre n,mHT �� at v ∈ Vbad via the Kummer isomorphisms and

poly-isomorphisms of projective systems of mono-theta environments of Propo-

sition 12.6 (2), (3) and Theorem 12.5 (3). With respect to these Kummer

isomorphisms and poly-isomorphisms of projective systems of mono-theta en-

vironments, the poly-isomorphism

n,◦R
poly
∼→ n+1,◦R

induced by the permutation symmetry of the étale picture n,◦HT D-��
full poly
∼→

n+1,◦HT D-�� is compatible with the full poly-isomorphism

n,mF`×µ∆

full poly
∼→ n+1,mF`×µ∆

of F`×µ-prime-strips induced by Θ×µLGP-link between (n,m) and (n+1,m) and

so on. Finally, the above two displayed poly-isomorphisms and the various

related Kummer isomorphisms are compatible with the various evaluation

map implicit in the portion of the log-Kummer correspondence of (2b), up to

indeterminacies (Indet xy), (Indet→), (Indet ↑) of (1), (2).
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(d) (κ-coric → NF) With respect to the Kummer isomorphisms of (2) and the

gluing of Corollary 11.21, the poly-isomorphism[{
πrat
1 (n,◦D~) y M~

∞κ(
n,◦D})

}
j

gl. to loc.→ M∞κv(
n,◦Dvj ) ⊂M∞κ×v(

n,◦Dvj )
]
v∈V

poly
∼→
[{
πrat
1 (n+1,◦D~) y M~

∞κ(
n+1,◦D})

}
j

gl. to loc.→ M∞κv(
n+1,◦Dvj ) ⊂M∞κ×v(

n+1,◦Dvj )
]
v∈V

(See Corollary 11.22 (3)) induced by the permutation symmetry of the étale

picture n,◦HT D-��
full poly
∼→ n+1,◦HT D-�� is compatible with the full poly-

isomorphism

n,mF`×µ∆

full poly
∼→ n+1,mF`×µ∆

of F`×µ-prime-strips induced by Θ×µLGP-link between (n,m) and (n+1,m). Fi-

nally, the above two displayed poly-isomorphisms and the various related Kum-

mer isomorphisms are compatible with the various evaluation map implicit in

the portion of the log-Kummer correspondence of (2b), up to indeterminacies

(Indet xy), (Indet→), (Indet ↑) of (1), (2).

Proof. Theorem follows from the definitions.

A rough picture of the final multiradial representation is as follows:

(F×mod)1
y

· · · (F×mod)l>
y

{IQ0 } ⊂ {I
Q
0 , IQ1 } ⊂ · · · ⊂ {IQ0 , . . . , IQl>}

Ψ⊥LGP,
?�

q1
2

OO

1�

q2
2

acts

BB��������������� ( �

q(l
>)2

55kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

where the multiplicative group (F×mod)j of non-zero elements of a j-labelled number field

acts on IQj , and Ψ⊥LGP acts on IQj in the (j + 1)-capsule by multiplication by qj
2

. Note

that Ψ⊥LGP does not act on other components IQ0 , . . . , I
Q
j−1 of the (j + 1)-capsule. Note

also that the 0-labelled objects (together with the diagonal labelled objects) are used to

form horizontally coric objects (Recall that “∆ = {0, 〈F>
l 〉}”), and (F×mod)j ’s or Ψ

⊥
LGP

do not act on 0-labelled (Q-span of) log-shell IQ0 .
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The following table is a summary of Theorem 13.12 and related topics:

(temp. conj. vs. prof. conj. → Fo±
l -conj. synchro.→ diag.→hor. core→ Θ×µLGP-link↓)

(1) (Objects) (2) (log-Kummer) (3) (Comat’ty with Θ×µLGP-link)

Fo±
l -sym. I (  units) inv. after admitting inv. after admitting

� (Indet ↑) (indet →) ( Ẑ×-indet.)

Fo±
l -sym. Ψ⊥LGP val. gp. no interf. by const. mult. rig. protected from Ẑ×-indet.

� (←compat. of log-link (ell. cusp’n←pro-p anab. by mono-theta cycl. rig.

w/ Fo±
l -sym.) +hidden. endom.) (←quad. str. of Heis. gp.)

F>
l -sym. Mmod NF no interf. protected from Ẑ×-indet.

� Belyi cusp’n(←pro-p anab. by F×mod ∩
∏
v≤∞Ov = µ by Q>0 ∩ Ẑ× = {1}

+hidden endom.)

others: (compat. of log.-vol. w/ log-links), (Arch. theory:Aut-hol. space (ell. cusp’n is used))

(disc. rig. of mono-theta), (étale pic.: permutable after admitting (indet xy) (autom. of proc. incl.))

Corollary 13.13. (Log-volume Estimates for Θ-Pilot Objects, [IUTchIII, Corol-

lary 3.12]) Let

−| log(Θ)| ∈ R ∪ {+∞}

denote the procession-normalised mono-analytic log-volume (where the average is taken

over j ∈ F>
l ) of the holomorphic hull (See the definiton after Lemma 1.6) of the

union of the possible image of a Θ-pilog object, with respect to the relevant

Kummer isomorphisms in the multiradial representation of Theorem 13.13 (1), which

we regard as subject to the indeterminacies (Indet ↑), (Indet →), and (Indet xy) of

Theorem 13.13 (1), (2). Let

−| log(q)| ∈ R
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denote the procession-normalised mono-analytic log-volume of the image of a q-pilot

object, with respect to the relevant Kummer isomorphisms in the multiradial represen-

tation of Theorem 13.13 (1), which we do not regard as subject to the indeterminacies

(Indet ↑), (Indet →), and (Indet xy) of Theorem 13.13 (1), (2) (Note that we have

| log(q)| > 0). Then we obtain

−| log(q)| ≤ −| log(Θ)|

(i.e., “0 . −(large number) + (mild indeterminacies)”. See also §A.4). Note also that

the explicit computations of the indeterminacies in Proposition 1.12, in fact, shows that

−| log(Θ)| <∞.

Proof. The Θ×µLGP-link
0,0HT �� Θ×µ

LGP−→ 1,0HT �� induces the full poly-isomorphism

0,0F
I×µ
LGP

full poly
∼→ 1,0F
I×µ

∆ of F
I×µ-prime-strips, which sends Θ-pilot objects to a

q-pilot objects. By the Kummer isomorphisms, the 0,0-labelled Frobenius-like objects

corresponding to the objects in the multiradial representaion of Theorem 13.12 (1) are

isomorphically related to the 0,◦-labelled vertically coric étale-like objects (i.e., mono-

analytic containers with actions by theta values, and nubmer fields) in the multira-

dial representaion of Theorem 13.12 (1). After admitting the indeterminacies (indet

xy), (indet →), and (indet ↑), these (0, ◦)-labelled vertically coric étale-like objects

are isomorphic (See Remark 11.1.1) to the (1, ◦)-labelled vertically coric étale-like ob-

jects. Then Corollary follows by comparing the log-volumes (Note that log-volumes are

invariant under (Indet xy), (Indet →), and also compatible with log-Kummer corre-

spondence of Theorem 13.12 (2)) of (1, 0)-labelled q-pilot objects (by the compatibility

with Θ×µLGP-link of Theorem 13.12 (3)) and (1, ◦)-labelled Θ-pilot objects, since, in the

mono-analytic containers (i.e., Q-spans of log-shells), the holomorphic hull of the union

of possible images of Θ-pilot objects subject to indeterminacies (Indet xy), (Indet →),

(Indet ↑) contains a region which is isomorphic (not equal) to the region determined by

the q-pilot objects (This means that “very small region with indeterminacies” contains

“almost unit region”).

Then Theorem 0.1 (hence, Corollary 0.2 as well) is proved, by combining Proposi-

tion 1.2, Proposition 1.15, and Corollary 13.13.

Remark 13.13.1. By admitting (Indet xy), (Indet →), and (Indet ↑), we obtain

objects which are ivariant under the Θ×µLGP-link. On the other hand, the Θ×µLGP-link can

be considered as “absolute Frobenius” over Z, since it relates (non-ring theoretically)
q
v
to {qj2

v
}1≤j≤l> . Therefore, we can consider

(Indet xy) the permutative indeterminay in the étale transport:
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• //�� ��
◦ •oo “†Gv ∼= ‡Gv” (and autom’s of processions)

(Indet →) the horizontal indeterminacy in the Kummer detachment:

• Θ−→ • †O×µ ∼= ‡O×µ with integral structures,

and

(Indet ↑) the vertical indeterminacy in the Kummer detachment:

• log(O×) �
� // 1

2p log(O
×)

•

log

OO

O×

log

OO

+ �

88qqqqqqqqqq

as “descent data from Z to F1”.

Remark 13.13.2. The following diagram (cf. [IUTchIII, Fig. 3.8]) expresses the

tautological two ways of computations of log-volumes of q-pilot objects in the

proof of Corollary 13.13:(
�-line bdls.1≤j≤l> assoc. to

{0,◦qj2
v
}v∈V up to Indet.’s

)
étale transport∼=

suited to Fmod

(
�-line bdls.1≤j≤l> assoc. to

{1,◦qj2
v
}v∈V up to Indet.’s

)

(
�-line bdl. assoc. to

{0,0qj2
v
}v∈V

) Θ
×µ
LGP

-link
∼=

suited to FMOD

_

Kummer detach.
via log-Kummer corr.

OO

(
�-line bdl. assoc. to

{1,0q
v
}v∈V

)
∼=
(

�-line bdl. assoc. to
{1,0q

v
}v∈V

)
.

��

compare log-vol.’s

OO

compatibility with Θ×µ
LGP-link

hhRRRRRRRRRRRRRRRRRRRRRRRRRRRR

These tautological two ways of computations of log-volumes of q-pilot objects can be

considered as computations of self-intersection numbers “∆.∆” of the diagonal “∆ ⊂
Z ⊗F1 Z” from point view of Remark 13.13.1. This observation is compatible with

the analogy with p-adic Teichmúller theory (See last table in Section 3.5), where the

computation of the global degree of line bundles arising from the derivative of the

canonical Frobenius lifting (↔ Θ-link) gives us an inequality (1−p)(2g−2) ≤ 0 (Recall

that self-intersection numbers give us Euler numbers). This inequality (1−p)(2g−2) ≤ 0

essentially means the hyperbolicity of hyperbolic curves. Analogously, the inequality

| log(Θ)| ≤ | log(q)| ; 0

means the hyperbolicity of number fields.
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See also the following table (cf. [IUTchIII, Fig. 3.2]):

�-line bundles, MOD/LGP-labelled objects �-line bundles, mod/lgp-labelled objects

defined only in terms of � defined in terms of both � and �

value group/non-coric portion unit group/coric portion

“(−)
I” of Θ×µLGP-link “(−)`×µ” of Θ×µLGP/Θ
×µ
lgp-link

precise log-Kummer corr. only upper semi-compatible log-Kummer corr.

ill-suited to log-vol. computation suited to log-vol. computation

subject to mild indeterminacies

Remark 13.13.3. In this remark, we consider the following natural questions:

How about the following variants of Θ-links?

1.

{qj
2

v
}1≤j≤l> 7→ qλ

v
(λ ∈ R>0),

2.

{(qj
2

v
)N}1≤j≤l> 7→ q

v
(N > 1), and

3.

q
v
7→ qλ

v
(λ ∈ R>0).

From conclusions, (1) works, and either of (2) or (3) does not work.

1. ([IUTchIII, Remark 3.12.1 (ii)]) We explain the variant (1). Recall that we have

l ≈ ht >> |deg(q
v
)| ; 0. Then the resulting inequalty from “the generalised Θ×µLGP-

link” is

λ · 0 . −(ht) + (indet.)

for λ << l, which gives us the almost same inequality of Corollary 13.13, and weaker

inequality for λ > l than the inequality of Corollary 13.13 (since deg(q
v
) < 0).
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2. ([EtTh, Introduction, Remark 2.19.2, Remark 5.12.5], [IUTchII, Remark 1.12.4,

Remark 3.6.4], [IUTchIII, Remark 2.1.1]) We explain the variant (2). There are

several reasons that the variant (2) does not work (See also the principle of Galois

evaluation of Remark 11.10.1):

(a) If we replace Θ by ΘN (N > 1), then the crucial cyclotomic rigidity of mono-

theta environments (Theorem 7.23 (1)) does not hold, since the construction

of the cyclotomic rigidity of mono-theta environments uses the quadraticity of

the commutator [ , ] structure of the theta group (i.e., Heisenberg group) (See

also Remark 7.23.2). If we do not have the cyclotomic rigidity of mono-theta

environments, then we have no Kummer compatibility of theta monoids (cf.

Theorem 12.7).

(b) If we replace Θ by ΘN (N > 1), then the crucial constant multiple rigidity

of mono-theta environments (Theorem 7.23 (3)) does not hold either, since, if

we consider N -th power version of mono-theta environments by relating the

1-st power version of mono-theta environments (for the purpose of maintain-

ing the cyclotomic rigidity of mono-theta environments) via N -th power map,

then such N -th power map gives rise to mutually non-isomorphic line bundles,

hence, a constant multiple indeterminacy under inner automorphisms arising

from automorphisms of corresponding tempered Frobenioid (cf. [IUTchIII, Re-

mark 2.1.1 (ii)], [EtTh, Corollary 5.12 (iii)]).

(c) If we replace Θ by ΘN (N > 1), then, the order of zero of ΘN at cusps is equal

to N > 1, hence, in the log-Kummer correspondence, one loop among the

various Kummer isomorphisms between Frobenius-like cyclotomes in a column

of log-theta-lattice and the vertically coric étale-like cyclotome gives us the N -

power map before the loop, therefore, the log-Kummer correspondence totally

collapes. See also Remark 12.8.1 (“vicious circles”).

If it worked, then we would have

0 . −N(ht) + (indet.),

which gives us an inequality

ht . 1

N
(1 + ε)(log-diff + log-cond)

for N > 1. This contradicts Masser’s lower bound in analytic number theory

([Mass2]).

3. ([IUTchIII, Remark 2.2.2]) We explain the variant (3). In the theta function case,

we have Kummer compatible splittings arisen from zero-labelled evaluation points
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(See Theorem 12.7):

id y
(
O× ·∞θ x Π

0-labelled ev. pt.
←↩ Π/∆

) −→
...
−→

Aut(G), Isomet y (Gy O×µ)

∞θ 7→ 1 ∈ O×µ.

Here, the crucial Kummer compatibility comes from the fact that the evaluation

map relates the Kummer theory of O×-portion of O×·∞θ on the left to the coric O×µ

on the right, via the evaluation ∞θ 7→ 1 ∈ O×µ. On the other hand, in the case of

the variants (3) under consideration, the corresponding arrow maps qλ 7→ 1 ∈ O×µ,
hence, this is incompatible with passage to Kummer classes, since the Kummer class

of qλ in a suitable cohomology group of Π/∆ is never sent to the trivial element of

the relavant cohomology group of G, via the full poly-isomorphism Π/∆
full poly
∼→ G.

Appendix A. Motivation of the Definition of the Θ-Link.

In this section, we explain a motivation of Θ-link from a historical point of view,

i.e., in the order of classical de Rham’s comparison theorem, p-adic Hodge comparison

theorem, Hodge-Arakelov comparison theorem, and a motivation of Θ-link. This section

is an explanatory section, and we do not give proofs, or sometimes rigorous statements.

See also [Pano, §1].

§A.1. The Classical de Rham Comparison Theorem.

The classical de Rham’s comparison theorem in the special case for Gm(C) = C×

says that the pairing

H1(Gm(C),Z)⊗Z H
1
dR(Gm(C)/C)→ C,

which sends [γ]⊗[ω] to
∫
γ
ω, induces a comparison isomorphismH1

dR(Gm(C)/C) ∼→ C⊗Z

(H1(Gm(C),Z))∗ (Here, (·)∗ denotes the Z-dual). Note that H1(Gm(C),Z) = Z [γ0],

H1
dR(Gm(C)/C) = C

[
dT
T

]
, and

∫
γ0

dT
T = 2πi, where γ0 denotes a counterclockwise loop

around the origin, and T denotes a standard coordinate of Gm.

§A.2. p-adic Hodge-theoretic Comparison Theorem.

A p-adic analogue of the above comparison paring (in the special case for Gm over

Qp) in the p-adic Hodge theory is the pairing

TpGm ⊗Zp H
1
dR(Gm/Qp)→ Bcrys,
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which sends ε ⊗
[
dT
T

]
to (“

∫
ε
dT
T = ”) log [ε] = t(= tε), where Tp denotes the p-adic

Tate module, ε = (εn)n is a system of p-power roots of unity (i.e., ε0 = 1, ε1 6= 1, and

εpn+1 = εn), Bcrys is Fontaine’s p-adic period ring (See also [Fo3]), and t = log [ε] is an

element in Bcrys defined by ε (See also [Fo3]). The above pairing induces a comparison

isomorphism Bcrys ⊗Qp H
1
dR(Gm/Qp)

∼→ Bcrys ⊗Zp (TpGm)∗ (Here, (·)∗ denotes the

Zp-dual). Note that ε = (εn)n is consdered as a kind of analytic path around the origin.

We consider the pairing in the special case for an elliptic curve E over Zp. We

have the universal extension 0 → (LieE∨Qp
)∗ → E†Qp

→ EQp → 0 (See [Mess] for

the universal extension) of EQp := E ⊗Zp Qp (Here, (·)∗ denotes the Qp-dual, and

E∨Qp
(∼= EQp) is the dual abelian variety of EQp). By taking the tangent space at

the origin, we obtain an extension 0 → (LieE∨Qp
)∗ → LieE†Qp

→ LieEQp → 0 whose

Qp-dual is canonically identified with the Hodge filtration of the de Rham cohomol-

ogy 0 → (LieEQp)
∗ → H1

dR(EQp/Qp) → LieE∨Qp
→ 0 under a canonical isomorphism

H1
dR(EQp/Qp) ∼= (LieE†Qp

)∗ (See also [MM] for the relation between the universal ex-

tension and the first crystalline cohomology; [BO1] and [BO2] for the isomorphism

between the crystalline cohomology and the de Rham cohomology). For an element

ωE† of (LieE†Qp
)∗, we have a natural homomorphism logω

E†
: Ê†Qp

→ Ĝa/Qp
such that

the pull-back (logω
E†

)∗dT is equal to ωE† , where Ê†Qp
is the formal completion of E†Qp

at the origin, and Ĝa/Qp
is the formal additive group over Qp.

Now, the pairing in the p-adic Hodge theory is

TpE ⊗ (LieE†Qp
)∗ → Bcrys,

which sends P ⊗ ωE† to (“
∫
P
ωE† = ”) logω

E†
[P ], where P = (Pn)n satisfies that

Pn ∈ E(Qp), P0 = 0, and pPn+1 = Pn. The above pairing induces a comparison

isomorphism Bcrys ⊗Qp H
1
dR(Gm/Qp)

∼→ Bcrys ⊗Zp (TpGm)∗ (Here, (·)∗ denotes the Zp-
dual). Note again that P = (Pn)n is consdered as a kind of analytic path in E. See

also [BO1] and [BO2] for the isomorphism between the de Rham cohomology and the

crystalline cohomology; [MM] for the relation between the first crystalline cohomology

and the universal extension; [Mess] for the relation between the universal extension

and the Dieudonné module; [Fo2, Proposition 6.4] and [Fo1, Chapitre V, Proposition

1.5] for the relation between the Dieudonné module and the Tate module (the above

isomorphism is a combination of these relations).

§A.3. Hodge-Arakelov-theoretic Comparison Theorem.

Mochizuki studied a global and “discretised” analogue of the above p-adic Hodge

comparison map (See [HASurI], [HASurII]). Let E be an elliptic curve over a number

field F , l > 2 a prime number. Assume that we have a nontrivial 2-torsion point
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P ∈ E(F )[2] (we can treat the case where P ∈ E(F ) is order d > 0 and d is prime to

l; however, we treat the case where d = 2 for the simplicity). Put L = O(l [P ]). Then

roughly speaking, the main theorem of Hodge-Arakelov theory says that the evaluation

map on E†[l](= E[l])

Γ(E†,L|E†)deg<l
∼−→ L|E†[l](= L|E[l] = ⊕E[l]F )

is an isomorphism of F -vector spaces, and preserves specified integral structures (we

omit the details) at non-Archimedean and Archimedean places. Here, Γ(E†,L|E†)deg<l

denotes the part of Γ(E†,L|E†) whose relative degree is less than l (Note that Zariski

locally E† is isomorphic to E×A1 = SpecOE [T ]). Note that dimF Γ(E†,L|E†)deg<l =

l2, since dimF Γ(E,L) = l, and that dimF L|E[l] = l2 since #E[l] = l2. The left hand

side is the de Rham side, and the right hand side is the étale side. The discretasation

means that we consider l-torsion points E[l], not the Tate module, and in philosophy,

we consider E[l] as a kind of approximation of “underling analytic manifold” of E (like

ε = (εn)n and P = (Pn)n were considered as a kind of analytic paths in Gm and E

respectively). We also note that in the étale side we consider the space of functions

on E[l], not E[l] itself, which is a common method of quantisations (like considering

universal enveloping algebra of Lie algebra, not Lie algebra itself, or like considering

group algebra, not group itself).

(For the purpose of the reader’s easy getting the feeling of the above map, we also

note that the Gm-case (i.e., degenerated case) of the above map is the evaluation map

F [T ]deg<l
∼−→ ⊕ζ∈µl

F

sending f(T ) to (f(ζ))ζ∈µl
, which is an isomorphism since the Vandermonde determi-

nant is non-vanishing.)

For j ≥ 0, the graded quotient Fil−j/Fil−j+1 (in which the derivations of theta

function live) with respect to the Hodge filtration given by the relative degree on the

de Rham side (=theta function side) is isomorphic to ω
⊗(−j)
E , where ωE is the pull-back

of the cotangent bundle of E to the origin of E. On the other hand, in the étale side

(=theta value side), we have a Gaussian pole qj
2/8lOF in the specified integral structure

near the infinity (i.e., q = 0) ofMell. This Gaussian pole comes from the values of theta

functions at torsion points. We consider the degrees of the corresponding vector bundles

on the moduli of elliptic curves to the both sides of the Hodge-Arakelov comparison map.

The left hand side is

−
l−1∑
j=0

j[ωE ] ≈ −
l2

2
[ωE ] = −

l2

24
[log q],

since [ω⊗2E ] = [ΩMell
] = 1

6 [log q], where ΩMell
is the cotangent bundle ofMell and 6 is
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the degree of the λ-line over the j-line. The right hand side is

− 1

8l

l−1∑
j=0

j2[log q] ≈ − l
2

24
[log q].

Note that these can be considered as a discrete analogue of the calculation of Gaussian

integral ∫ ∞
−∞

e−x
2

dx =
√
π

from the point of view that − 1
8l

∑l−1
j=0 j

2[log q] is a Gaussian distribution (i.e., j 7→ j2)

in the cartesian coordinate, and −
∑l−1
j=0 j[ωE ] ≈ −

l2

2 [ωE ] is a calculation in the polar

coordinate and [ωE ] is an analogue of
√
π, since we have ω⊗2E

∼= ΩMell
and the integration

of ΩMell
around the infinity (i.e., q = 0) is 2πi. See also Remark 1.15.1

§A.4. Motivation of the Definition of the Θ-Link.

In the situation as in the Hodge-Arakelov setting, we assume that E has everywhere

stable reduction. In general, E[l] does not have a global multiplicative subspace, i.e., a

submoduleM ⊂ E[l] of rank 1 such that it coincides with the multiplicative subspace µl

for each non-Archimedean bad places. However, let us assume such a global multiplica-

tive subspace M ⊂ E[l] exists in sufficiently general E in the moduli of elliptic curves.

Take an isomorphism M ×N ∼= E[l] as finite flat group schemes over F (not as Galois

modules). Then by applying the Hodge-Arakelov comparison theorem to E′ := E/N

over K := F (E[l]), we obtain an isomorphism

Γ((E′)†,L|(E′)†)
deg<l ∼−→

⊕
(− l−1

2 =)−l>≤j≤l>(= l−1
2 )

(q
j2

2l OK)⊗OK K,

where q = (qv)v:bad is the q-parameters of the non-Archimedean bad places. Then by

the incompatibility of the Hodge filtration on the left hand side with the direct sum

decomposition in the right hand side, the projection to the j-th factor is nontrivial for

most j:

Fil0 = qOK ↪→ qj
2

OK ,

where we put q := q
1
2l . This morphism of arithmetic line bundles is considered as

an arithmetic analogue of Kodaira-Spencer morphism. In the context of (Diophantine

applications of) inter-universal Teichmüller theory, we take l to be a prime number in

the order of the height of the elliptic curve, thus, l is very large (See Section 10). Hence,

the degree of the right hand side in the above inclusion of the arithmetic line bundles

is negative number of a very large absolute value, and the degree of the left hand side

is almost zero comparatively to the order of l. Therefore, the above inclusion implies

0 . −(large number) (≈ −ht),
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which gives us a upper bound of the height ht . 0 in sufficiently general E in the moduli

of elliptic curves.

However, there never exists such a global multiplicative in sufficiently general E in

the moduli of elliptic curves (If it existed, then the above argument showed that the

height is bounded from the above, which implies the number of isomorphism class of E

is finite (See also Proposition C.1)). If we respect the scheme theory, then we cannot

obtain the inclusion qOK ↪→ qj
2

OK . Mochizuki’s ingenious idea is: Instead, we respect

the inclusion qOK ↪→ qj
2

OK , and we say a good-bye to the scheme theory. The Θ-link

in inter-universal Teichmüller theory is a kind of identification

(Θ-link) : {qj
2

}1≤j≤l>(= l−1
2 ) 7→ q

in the outside of the scheme theory (In inter-universal Teichmüller theory, we also con-

struct a kind of “global multiplicative subspace” in the outside of the scheme theory).

So, it identifies an arithmetic line bundle of negative degree of a very large absolute

value with an arithmetic line bundle of almost degree zero (in the outside of the scheme

theory). This does not mean a contradiction, because both sides of the arithmetic

line bundles belong to the different scheme theories, and we cannot compare their de-

grees. The main theorem of the multiradial algorithm in inter-universal Teichmüller

theory implies that we can compare their degrees after admitting mild indeterminacies

by using mono-anabelian reconstruction algorithms (and other techniques). We can cal-

culate that the indeterminacies are (roughly) log-diff+log-cond by concrete calculations.

Hence, we obtain

0 . −ht + log-diff + log-cond,

i.e., ht . log-diff +log-cond. We have the following remark: We need not only to recon-

struct (up to some indeterminacies) mathematical objects in the scheme theory of one

side of a Θ-link from the ones in the scheme theory of the other side, but also to reduce

the indeterminacies to mild ones. In order to do so, we need to control them, to reduce

them by some rigidities, to kill them by some operations like taking p-adic logarithms

for the roots of unity (See Proposition 13.7 (2c), Proposition 13.11 (2)), to estimate

them by considering that some images are contained in some containers even though

they are not precisely determinable (See Proposition 13.7 (2), Corollary 13.13), and to

synchronise some indeterminacies to others (See Lemma 11.9, and Corollary 11.16 (1))

　 and so on. This is a new kind of geometry – a geometry of controlling indeterminacies

which arise from changing scheme theories i.e., changing unverses. This is Mochizuki’s

inter-universal geometry.

Finally, we give some explanations on “multiradial algorithm” a little bit. In

the classical terminology, we can consider different holomorphic structures on R2, i.e.,

C ∼= R2 ∼= C, where one C is an analytic (not holomorphic) dilation of another C,
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and the underlying analytic structure R2 is shared. We can calculate the amount of

the non-holomorphic dilation C ∼= R2 ∼= C based on the shared underlying analytic

structure R2 (If we consider only holomorphic structres and we do not consider the

underlying analytic structure R2, then we cannot compare the holomorphic structures

nor calculate the non-holomorphic dilation). This is a prototype of the multiradial

algorithm. In philosophy, scheme theories are “arithmetically holomorphic structures”

of a number field, and by going out the scheme theory, we can consider “underlying

analytic structure” of the number field. The Θ-link is a kind of Teichmüller dilation

of “arithmetically holomorphic structures” of the number field sharing the “underlying

analytic structure”. The shared “underlying analytic structure” is called core, and each

“arithmetically holomorphic structure” is called radial data. The multiradial algorithm

means that we can compare “arithmetically holomorphic structures” (of the both sides

of Θ-link) based on the shared “underlying analytic structure” of the number field after

admitting mild indeterminacies (In some sense, this is a partial (meaningful) realisation

of the philosophy of “the field of one element” F1). Mochizuki’s ideas of “underlying

analytic structure” and the multiradial algorithm are really amazing discoveries.

Appendix B. Anabelian Geometry.

For a (pro-)veriety X over a field K, let ΠX (resp. ∆X) be the arithmetic funda-

mental group of X (resp. the geometric fundamental group of X) for some basepoint.

Let ∆
(p)
X be the maximal pro-p quotient of ∆X , and put Π

(p)
X := ΠX/ker(∆X → ∆

(p)
X ).

For (pro-)varieties X, Y over a field K, let Homdom
K (X,Y ) (resp. IsomK(X,Y )) de-

note the set of dominant K-morphisms (resp. K-isomorphisms) from X to Y . For

an algebraic closure K over K, put GK := Gal(K/K). Let Homopen
GK

(ΠX ,ΠY ) (resp.

Homopen
GK

(Π
(p)
X ,Π

(p)
Y ), resp. IsomOut

GK
(∆X ,∆Y ), resp. Isom

Out
GK

(∆
(p)
X ,∆

(p)
Y )) denote the set

of open continuous GK-equivariant homomorphisms from ΠX to ΠY (resp. from Π
(p)
X to

Π
(p)
Y , resp. from ∆X to ∆Y up to composition with an inner automorphism arising from

∆Y , resp. from ∆
(p)
X to ∆

(p)
Y up to composition with an inner automorphism arising

from ∆
(p)
Y ).

Theorem B.1. (Relative Version of the Grothendieck Conjecture over Sub-p-

adic Fields [pGC, Theorem A]) Let K be a sub-p-adic field (Definition 3.1 (1)). Let

X be a smooth pro-variety over K. Let Y be a hyperbolic pro-curve over K. Then the

natural maps

Homdom
K (X,Y )→ Homopen

GK
(ΠX ,ΠY )/Inn(∆Y )→ Homopen

GK
(Π

(p)
X ,Π

(p)
Y )/Inn(∆

(p)
Y )

are bijective. In particular, the natural maps

IsomK(X,Y )→ IsomOut
GK

(∆X ,∆Y )→ IsomOut
GK

(∆
(p)
X ,∆

(p)
Y )
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are also bijective.

Remark B.1.1. The Isom-part of Theorem B.1 holds for a larger class of field

which is called generalised sub-p-adic field ([TopAnb, Theorem 4.12]). Here, a field K

is called generalised sub-p-adic if there is a finitely generated extension L of the

fractional field of W (Fp) such that we have an injective homomorphism K ↪→ L of

fields. ([TopAnb, Definition 4.11]), where W (Fp) denotes the ring of Witt vectors with

coefficients in Fp.

Appendix C. Miscellany.

§C.1. On the Height Function.

Proposition C.1. ([GenEll, Proposition 1.4 (iv)]) Let L = (L, || · ||L) be an

arithmetic line bundle such that LQ is ample. Then we have #{x ∈ X(Q)≤d | htL(x) ≤
C} <∞ for any d ∈ Z≥1 and C ∈ R.

Proof. By using L⊗nQ for n >> 0, we have an embedding XQ ↪→ PNQ for some N .

By taking a suitable blowing-up f : X̃ → X, this embedding extends to g : X̃ ↪→ PNZ
over SpecZ, where X̃ is normal, Z-proper, Z-flat, and fQ : X̃Q

∼→ XQ. Then the propo-

sition for (X,L) is reduced to the one for (X̃, f∗L). As is shown in Section 1.1, the

bounded discrepancy class of htf∗L depends only on (f∗L)Q. Thus, the proposition

for (X̃, f∗L) is equivalent to the one for (X̃, g∗OPN
Z
(1)), where OPN

Z
(1) is the line bun-

dle OPN
Z
(1) equipped with the standard Fubini-Study metric || · ||FS. Then it suffices

to show the proposition for (PNZ ,OPN
Z
(1)). For 1 ≤ e ≤ d, we put Q := (PNZ ×SpecZ

· · · (e-times) · · · ×SpecZ PNZ )/(e-th symmetric group), which is normal Z-proper, Z-flat.
The arithmetic line bundle ⊗1≤i≤epr

∗
iOPN

Z
(1) on PN ×SpecZ · · · (e-times) · · · ×SpecZ PN

descends to LQ = (LQ, || · ||LQ) on Q with (LQ)Q ample, where pri is the i-th projection.

For any x ∈ PN (F ) where [F : Q] = e, the conjugates of x over Q determine a point

xQ ∈ Q(Q), and, in turn, a point y ∈ Q(Q) determines a point x ∈ PN (F ) up to a finite

number of possibilities. Hence, it suffices to show that #{y ∈ Q(Q) | htLQ
(y) ≤ C} <∞

for any C ∈ R. We embed Q ↪→ PMZ for some M by (LQ)⊗mQ for m >> 0. Then by the

same argument as above, it suffices to show that #{x ∈ PM (Q) | htOPM (1)
(x) ≤ C} <∞

for any C ∈ R. For x ∈ PM (Z)(= PM (Q)), we have htOPM (1)
(x) = degQx

∗OPM (1) by

definition. We have degQ : APic(SpecZ) ∼→ R since any projective Z-module is free (Q
has class number 1), where an arithmetic line bundle LZ,C on SpecZ in the isomorphism

class corresponding to C ∈ R via this isomorphism is (OSpecZ, e
−C | · |) (Here | · | is the

usual absolute value). The set of global sections Γ(LZ,C) is {a ∈ Z | |a| ≤ eC} which

is a finite set (see Section 1.1 for the definition of Γ(L)). We also have LZ,C1 ↪→ LZ,C2

for C1 ≤ C2. Take the standard generating sections x0, . . . , xM ∈ Γ(PMZ ,OPM
Z
(1)) (“the
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coordinate (x0 : . . . : xM ) ∈ PMZ ”) with ||xi||FS ≤ 1 for 0 ≤ i ≤ M i.e., x0, . . . , xM ∈
Γ(OPM

Z
(1)). Then for x ∈ PM (Z)(= PM (Q)) with htOPM (1)

(x) ≤ C, we have a map

x∗OPM (1) ↪→ LZ,C , which sends x0, . . . , xM ∈ Γ(OPM
Z
(1)) to x∗(x0), . . . , x

∗(xM ) ∈
Γ(LZ,C). This map {x ∈ PM (Z) | htOPM (1)

(x) ≤ C} → Γ(LZ,C)
⊕(M+1), which sends x

to (x∗(x0), . . . , x
∗(xM )), is injective since x0, . . . , xM ∈ Γ(PMZ ,OPM

Z
(1)) are generating

sections. In short, we have {x ∈ PM (Q) | htOPM (1)
(x) ≤ C} ⊂ {(x0 : . . . : xM ) ∈

PM (Q) | xi ∈ Z, |xi| ≤ eC (0 ≤ i ≤ M)}. Now, the proposition follows from the

finiteness of Γ(LZ,C)
⊕(M+1).

§C.2. Non-critical Belyi Maps.

The following theorem, which is a refinement of a classical theorem of Belyi, is used

in Proposition 1.2.

Theorem C.2. ([Belyi, Theorem 2.5], non-critical Belyi map) Let X be a proper

smooth connected curve over Q, and S, T ⊂ X(Q) finite sets such that S ∩T = ∅. Then

there exists a morphism φ : X → P1
Q such that (a) φ is unramified over P1

Q \ {0, 1,∞},
(b) φ(S) ⊂ {0, 1,∞}, and (c) φ(T ) ⊂ P1(Q) \ {0, 1,∞}.

Proof. (Step 1): By adjoining points of X(Q) to T , we may assume that #T ≥
2gX + 1, where gX is the genus of X. We consider T as a reduced effective divisor

on X by abuse of notation. Take s0 ∈ Γ(X,OX(T )) such that (s0)0 = T , where (s0)0

denotes the zero divisor of s0. We have H1(X,OX(T − x)) = H0(X,ωX(x − T ))∗ = 0

for any x ∈ X(Q) since deg(ωX(x − T )) ≤ 2gX − 2 − (2gX + 1) + 1 = −2. Thus,

the homomorphism Γ(X,OX(T ))→ OX(T )⊗ k(x) induced by the short exact sequnce

0 → OX(T − x) → OX(T ) → OX(T ) ⊗ k(x) → 0 is surjective. Hence, there exists

an s1 ∈ Γ(X,OX(T )) such that s1(t) 6= 0 for all t ∈ T since Q is infinite. Then

(s0 : s1) has no basepoints, and gives us a finite morphism ψ : X → P1
Q such that

ψ∗OP1(1) = OX(T ), and ψ(t) = 0 for all t ∈ T since (s0)0 = T . Here, ψ is unramified

over 0 ∈ P1
Q, since ψ∗OP1(1) = OX(T ) and T is reduced. We also have 0 /∈ ψ(S)

since (s0)0 = T and S ∩ T = ∅. Then by replacing X, T , and S by P1
Q, 0, and

ψ(S) ∩ {x ∈ P1
Q | ψ ramifies over x} respectively, the theorem is reduced to the case

where X = P1
Q, T = {t} for some t ∈ P1(Q) \ {∞}

(Step 2): Next, we reduce the theorem to the case where X = P1
Q, S ⊂ P1(Q),

T = {t} for some t ∈ P1(Q) \ {∞} as follows: We will construct a non-zero rational

function f(x) ∈ Q(x) which defines a morphism φ : P1
Q → P1

Q such that φ(S) ⊂ P1(Q),

φ(t) /∈ φ(S), and φ is unramified over φ(t). By replacing S by the union of all Gal(Q/Q)-

conjugates of S, we may assume that S is Gal(Q/Q)-stable (Note that t /∈ (new S) since

t ∈ P1(Q) and t /∈ (old S)). Put m(S) := maxF ([F : Q] − 1), where F runs through
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the fields of definition of the points in S, and d(S) :=
∑
F ([F : Q] − 1), where F

runs thrhough the fields of definition of the points in S with [F : Q] − 1 = m(S).

Thus, S ⊂ P1(Q) is equivalent to d(S) = 0, which holds if and only if m(S) = 0. We

use an induction on m(S), and for each fixed m(S), we use an induction on d(S). If

m(S), d(S) 6= 0, take α ∈ S \ P1(Q) such that d := [Q(α) : Q] is equal to m(S) + 1.

We choose a1 ∈ Q such that 0 < |t − a1| < (mins∈S\{∞} |s − a1|)/d(1 + d.d!). Then

by applying an automorphism f1(x) := (mins∈S\{∞} |s − a1|)/(x − a1) of P1
Q (and

replacing t and S by f1(t) and f1(S) respectively), we may assume that |s| ≤ 1 for all

s ∈ S(= S\{∞}) and |t| > d(1+d.d!) (Note that the property (new t) ∈ P1(Q)\{∞} still
holds since |(old t)−a1| > 0 and f1(x) ∈ Q(x)). Let g(x) = xd+c1x

d−1+ · · ·+cd ∈ Q[x]

be the monic minimal polynomial of α over Q. Then |ci| ≤ d! for 1 ≤ i ≤ d since ci is a

summation of
(
d
i

)
(≤ d!) products of i conjugates of α. Thus, |g(s)| ≤ 1+|c1|+· · ·+|cd| ≤

1 + d.d! and |g′(s)| ≤ d+ d|c1|+ · · ·+ d|cd| ≤ d(1 + d.d!) for all s ∈ S(= S \ {∞}) since
|s| ≤ 1 (Here g′(x) is the derivative of g(x)). Hence, t /∈ g(S) ∪ g(Sα) =: S′, where

Sα := {β ∈ Q | g′(β) = 0}. We also have [Q(α′) : Q] < d for any α′ ∈ g(Sα) since

g(x), g′(x) ∈ Q[x] and deg(g′(x)) < d. Therefore, S′ is Gal(Q/Q)-stable and we have

m(S′) < m(S) or (m(S′) = m(S) and d(S′) < d(S)). This completes the induction,

and we get a desired morphism φ by composing the constructed maps as above.

(Step 3): Now, we reduced the theorem to the case where X = P1
Q, S ⊂ P1(Q),

and T = {t} for some t ∈ P1(Q) \ {∞} with S ∩ T = ∅. We choose a2 ∈ Q such

that 0 < |t − a2| < (mins∈S\{∞} |s − a2|)/4. Then by applying an automorphism

f2(x) := 1/(x − a2) of P1
Q (and replacing t and S by f2(t) and f2(S) respectively),

we may assume that |t| ≥ 4|s| for all s ∈ S(= S \ {∞}). (Note that the property

(new t) ∈ P1(Q) \ {∞} still holds since |(old t) − a2| > 0 and f2(x) ∈ Q(x)). New

t is not equal to 0 since old t is not equal to ∞. By applying the automorphism

x 7→ −x of P1
Q, we may assume that t > 0 (still t ∈ P1(Q) \ {0,∞}). By applying an

automorphism f3(x) := x + a3 of P1
Q, where a3 := maxS\{∞}3s′<0 |s′| (a3 := 0 when

{s′ ∈ S \ {∞} | s′ < 0} = ∅) and replacing t and S by f3(t) and f3(S) respectively, we

may assume that s ≥ 0 for all s ∈ S(= S \ {∞}) and t ≥ 2s for all s ∈ S(= S \ {∞}),
since (t+ a3)/(s+ a3) ≥ t/(s+ a3) ≥ t/2a3 ≥ 2 where t, s are old ones (still (new t) ∈
P1(Q)\{0,∞}). By adjoing {0,∞} (if necessary for 0), we may assume that S ⊃ {0,∞}
since t /∈ {0,∞}.

(Step 4): Thus, now we reduced the theorem to the case where X = P1
Q, {0,∞} ⊂

S ⊂ P1(Q), T = {t} for some t ∈ P1(Q) \ {∞} with S ∩ T = ∅, and s > 1 , t ≥ 2s

for every s ∈ S \ {0,∞}. We show the theorem in this case (hence the theorem in

the general case) by the induction on #S. If #S ≤ 3 then we are done. We assume

that #S > 3. Let a4 ∈ Q be the second smallest s ∈ S \ {0,∞}. By applying

an automorphism f4(x) := x/a4 of P1
Q (and replacing t and S by f4(t) and f4(S)
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respectively), we may assume moreover that 0 < r < 1 for some r ∈ S and s > 1 for

every s ∈ S\{0, r, 1,∞} Put r = m/(m+n) wherem,n ∈ Z>0. We consider the function

h(x) := xm(x− 1)n and the morphisms ψ,ψ′ : P1
Q → P1

Q defined by h(x) and h(x) + a5

respectively, where a5 := −mins∈S\{∞} h(s). We have h({0, 1, r,∞}) ⊂ {0, h(r),∞}.
Thus #ψ(S) < #S and hence #ψ′(S) < #S. Any root of the derivative h′(x) =

xm−1(x− 1)n−1((m+n)x−m) = 0 is in {0, r, 1,∞} ⊂ S. Thus ψ is unramified outside

ψ(S), and hence ψ′ is unramified outside ψ′(S). Now h(x) is monotone increasing for

x > 1 since h′(x) > 0 for x > 1. Thus we have h(t) > h(s) for s ∈ S \ {∞} with s > 1

since t ≥ 2s > s. We also have h(t) > h(2) > 1 since t ≥ 2 (which comes from t ≥ 2s

for s = 1 ∈ S). Thus, ψ(t) /∈ ψ(S) since |h(x)| ≤ 1 for 0 ≤ x ≤ 1. Hence we also

have ψ′(t) /∈ ψ′(S). Now we claim that (h(t) + a5)/(h(s) + a5) ≥ 2 for all s ∈ S \ {∞}
such that h(s) + a5 6= 0. If this claim is proved, then by replacing S, t by ψ′(S), ψ′(t)

respectively, we are in the situation with smaller #S where we can use the induction

hypothesis, and we are done. We show the claim. First we observe that we have

h(t)/h(s) = (t/s)m((t−1)/(s−1))n ≥ (t/s)m+n ≥ (t/s)2 (*) for s ∈ S\{∞}, since t ≥ s
implies (t− 1)/(s− 1) ≥ t/s. In the case where n is even, we have a5 = 0 since h(s) ≥ 0

for all s ∈ S \ {∞} and h(0) = 0. Thus, we have (h(t) + a5)/(h(s) + a5) = h(t)/h(s) ≥
(t/s)2 ≥ t/s ≥ 2 for 1 < s ∈ S \ {∞} by (*). On the other hand, h(s) + a5 = h(s) = 0

for s = 0, 1 and (h(t) + a5)/(h(r) + a5) = h(t)/h(r) ≥ h(t) = tm(t − 1)n ≥ t ≥ 2

by 0 < h(r) < 1 and t ≥ 2. Hence the claim holds for even n. In the case where n

is odd, we have a5 = |h(r)| = ( m
m+n )

m( n
m+n )

n, since h(x) ≤ 0 for 0 ≤ x ≤ 1 and,

x = r ⇔ h′(x) = 0 for 0 < x < 1. We also have 0 < a5 = ( m
m+n )

m( n
m+n )

n ≤
m

m+n
n

m+n = mn
(m−n)2+4mn ≤

mn
4mn = 1

4 . Then for 1 < s ∈ S \ {∞} with h(s) ≥ a5, we

have (h(t) + a5)/(h(s) + a5) ≥ h(t)/2h(s) ≥ (t/s)2/2 ≥ 2 by (*). For 1 < s ∈ S \ {∞}
with h(s) ≤ a5, we have (h(t)+a5)/(h(s)+a5) ≥ h(t)/2a5 ≥ 2h(t) = 2tm(t−1)n ≥ t ≥ 2

by 0 < a5 ≤ 1/4 and t ≥ 2. For s = r ∈ S, we have h(r) + a5 = −a5 + a5 = 0. For

s = 0, 1 ∈ S, we have (h(t)+a5)/(h(s)+a5) = (h(t)+a5)/a5 ≥ h(t) = tm(t−1)n ≥ t ≥ 2

by 0 < a5 ≤ 1/4 and t ≥ 2. Thus, we show the claim, and hence, the theorem.

§C.3. k-Cores.

Lemma C.3. ([CanLift, Proposition 2.7]) Let k be an algebraically closed field

of characteristic 0.

1. If a semi-elliptic (cf. Section 3.1) orbicurve X has a nontrivial automorphism, then

it does not admit k-core.

2. There exist precisely 4 isomorphism classes of semi-elliptic orbicurves over k which

do not admit k-core.

Proof. (Sketch) For algebraically closed fields k ⊂ k′, the natural functor from
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the category Ét(X) of finite étale coverings over X to the category Ét(X ×k k′) of

finite étale coverings over X ×k k′ is an equivalence of categories, and the natural map

Isomk(Y1, Y2) → Isomk′(Y1 ×k k′, Y2 ×k k′) is a bijection for Y1, Y2 ∈ Ob(Ét(X)) by

the standard arguments of algebraic geometry, i.e., For some k-variety V such that the

function field k(V ) of V is a sub-field of k′, the diagrams of finite log-étale morphisms

over (X ×k k′, D×k k′) (Here, X is a compactification and D is the complement) under

consideration is the base-change of the diagrams of finite étale morphisms over V with

respect to Spec k′ → Spec k(V ) → V , we specialise them to a closed point v of V , we

deform them to a formal completion V̂v at v, and we algebrise them (See also [CanLift,

Proposition 2.3], [SGA1, Exposé X, Corollaire 1.8]), and the above bijection is also

shown in a similar way by noting H0(Y , ω∨
X/k

(−D)|Y ) = 0 for any finite morphism

Y → X in the argments of deforming the diagrams under consideration to V̂v. Thus,

the natural functor Lock(X)→ Lock′(X ×k k′) is an equivalence categories. Hence, the

lemma is reduced to the case where k = C.
We assume that k = C. Note also that the following four statements are equivalent:

(i) X does not admit k-core,

(ii) π1(X) is of inifinite index in the commensurator CPSL2(R)0(π1(X)) in PSL2(R)0(∼=
Aut(H)) (Here, PSL2(R)0 denotes the connected component of the identity of

PSL2(R), and H denotes the upper half plane),

(iii) X is Margulis-arithmetic (See [Corr, Definition 2.2]), and

(iv) X is Shimura-arithmetic (See [Corr, Definition 2.3]).

The equivalence of (i) and (ii) comes from that if X admits k-core, then the morphism

to k-core X � Xcore is isomorphic to H/π1(X) � H/CPSL2(R)0(π1(X)), and that if

π1(X) is of finite index in CPSL2(R)0(π1(X)), then H/π1(X) � H/CPSL2(R)0(π1(X)) is

k-core (See also [CanLift, Remark 2.1.2, Remark 2.5.1]). The equivalence of (ii) and

(iii) is due to Margulis ([Marg, Theorem 27 in p.337, Lemma 3.1.1 (v) in p.60], [Corr,

Theorem 2.5]). The equivalence of (iii) and (iv) is [Corr, Proposition 2.4].

(1): We assume that X admits a k-core Xcore. Let Y → X be the unique double

covering such that Y is a once-punctured elliptic curve. Let Y , Xcore denote the smooth

compactifications of Y,Xcore respectively. Here, we have Y \ Y = {y}, and a point of Y

is equal to y if and only if its image is in Xcore\Xcore. Thus, we have Xcore\Xcore = {x}.
The coarsification (or “coarse moduli space”) of Xcore is the projective line P1

k over k.

By taking the coarification of a unique morphism Y � Xcore, we obtain a finite ramified

covering Y � P1
k. Since this finite ramified covering Y � P1

k comes from a finite étale

covering Y → Xcore, the ramification index of Y � P1
k is the same as all points of

Y lying over a given point of P1
k. Thus, by the Riemann-Hurwitz formula, we obtain
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−2d+
∑
i
d
ei
(ei− 1), where ei’s are the ramification indices over the ramification points

of P1
k, and d is the degree of the morphism Y � P1

k. Hence, by
∑
i

1
ei
(ei − 1) = 2, the

possibility of ei’s are (2, 2, 2, 2), (2, 3, 6), (2, 4, 4), and (3, 3, 3). Since y is the unique point

over x, the largest ei is equal to d. In the case of (2, 2, 2, 2), we have X = Xcore, and X

has no nontrivial automorphism. In other three cases, Y is a finte étale covering of the

orbicurve determind by a triangle group (See [Take1]) of type (2, 3,∞), (2, 4,∞), and

(3, 3,∞). By [Take1, Theorem 3 (ii)], this implies that Y is Shimura-arithmetic, hence

X is Shimura-arithmetic as well. This is a contradiction (See also [CanLift, Remark

2.1.2, Remark 2.5.1]) by the above equivalence of (i) and (iv).

(2): If X does not admit k-core, then X is Shimura-arithmetic by the above equiv-

alence of (i) and (iv). Then by [Take2, Theorem 4.1 (i)], this implies that, in the

notation of [Take2], the arithmetic Fuchsian group π1(X) has signature (1;∞) such

that (tr(α), tr(β), tr(αβ)) is equal to (
√
5, 2
√
5, 5), (

√
6, 2
√
3, 3
√
2), (2

√
2, 2
√
2, 4), and

(3, 3, 3). This gives us precisely 4 isomorphism classes.

§C.4. On the Prime Number Theorem.

For x > 0, put π(x) := #{p | p : prime ≤ x} and ϑ(x) :=
∑

prime: p≤x log p

(Chebychev’s ϑ-function). The prime number theorem says that

π(x) ∼ x

log x
(x→∞),

where, ∼ means that the ratio of the both side goes to 1. In this subsection, we show

the following proposition, which is used in Proposition 1.15.

Lemma C.4. π(x) ∼ x
log x (x→∞) if and only if ϑ(x) ∼ x (x→∞).

This is well-known for analytic number theorists. However, we include a proof here

for the convenience for arithmetic geometers.

Proof. We show the “only if” part: Note that ϑ(x) =
∫ x
1
log t·d(π(t)) = π(x) log x−

π(1) log 1 −
∫ x
1
π(t)
t dt = π(x) log x −

∫ x
2
π(t)
t dt (since π(t) = 0 for t < 2). Then it suf-

fices to show that limx→∞
1
x

∫ x
2
π(t)
t dt = 0. By assumption π(t)

t = O
(

1
log t

)
, we have

1
x

∫ x
2
π(t)
t dt = O

(
1
x

∫ x
2

dt
log t

)
. By

∫ x
2

dt
log t =

∫√x
2

dt
log t+

∫ x√
x

dt
log t ≤

√
x

log 2+
x−
√
x

log
√
x
, we obtain

limx→∞
1
x

∫ x
2
π(t)
t dt = 0. We show the “if” part: Note that π(x) =

∫ x
3/2

1
log td(ϑ(t)) =

ϑ(x)
log x −

ϑ(3/2)
log(3/2) +

∫ x
3/2

π(t)
t(log t)2 dt =

ϑ(x)
log x +

∫ x
2

π(t)
t(log t)2 dt (since ϑ(t) = 0 for t < 2). Then it

suffices to show that limx→∞
log x
x

∫ x
2

ϑ(t)
t(log t)2 dt = 0. By assumption ϑ(t) = O(t), we have

log x
x

∫ x
2

ϑ(t)
t(log t)2 dt = O

(
log x
x

∫ x
2

dt
(log t)2

)
. By

∫ x
2

1
(log t)2 dt =

∫√x
2

dt
(log t)2 +

∫ x√
x

dt
(log t)2 ≤√

x
(log 2)2 + x−

√
x

(log
√
x)2

, we obtain limx→∞
log x
x

∫ x
2

ϑ(t)
t(log t)2 dt = 0.
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§C.5. On the Residual Finiteness of Free Groups.

Proposition C.5. (Residual Finiteness of Free Groups) Let F be a free group.

Then the natural homomorphism F → F̂ to its profinite completion F̂ is injective.

Proof. Let a ∈ F \ {1}. It suffices to show that there exists a normal subgroup

H ⊂ F of finite index such that a 6∈ H. Let Gen (⊂ F ) be a set of free generators of F .

Write Gen−1 := {a−1 | a ∈ Gen} ⊂ F . Thus, any element of F may be written as a finite

product of elements of Gen ∪Gen−1. Let a = aNaN−1 · · · a1, where ai ∈ Gen ∪Gen−1,

be such a representation of a (i.e., as a finite product of elements of Gen ∪ Gen−1) of

minimal length. Let φ : Gen → SN+1 be a map such that, for x ∈ Gen, φ(x) ∈ SN+1

sends i 7→ i + 1 if x = ai and j 7→ j − 1 if x = a−1j−1. (To see that such a φ exists,

it suffices to observe that since the representation a = aNaN−1 · · · a1 is of minimal

length, the equations ai = x, ai−1 = x−1 cannot hold simultaneously.) Since Gen is

a set of free generators of F , the map φ : Gen → SN+1 extends to a homomorphism

φF : F → SN+1 such that, for i = 1, . . . , N , the permutation φF (ai) sends i 7→ i + 1.

Write H for the kernel of φF . Since φF induces an injection of F/H into the finite

group SN+1, it follows that H is a normal subgroup of finite index in F . Then φF (a)

sends 1 7→ N + 1, hence, in particular, is nontrivial, i.e., a 6∈ H, as desired.

§C.6. Some Lists on Inter-universal Teichmüller Theory.

Model Objects

Local:

Vbad (Example 8.8) Vgood ∩ Vnon (Example 8.7) Varc (Example 8.11)

Dv Btemp(X
v
)0 (Πv) B(X−→v

)0 (Πv) X−→v

D`v B(Kv)
0 (Gv) B(Kv)

0 (Gv) (O�(C`v ), spl
`
v )

Cv (F
v
)base-field (Πv y (O�

Fv
)pf) Πv y (O�

Fv
)pf Arch. Fr’d Cv (  ang. region)

F
v

temp. Fr’d F
v
(  Θ-fct.) equal to Cv (Cv,Dv, κv)

C`v Gv y O×
Fv
· qN
v

Gv y O×
Fv
· pNv equal to Cv

F`v (C`v , spl
`
v ) (C`v , spl

`
v ) (C`v ,D`v , spl

`
v )

We use Cv (not F
v
) with v ∈ Vnon and F

v
with v ∈ Varc for F-prime-strips (See
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Definition 10.9 (3)), and F
v
’s with v ∈ V for Θ-Hodge theatres.

Global :

D} := B(CK)0, D}± := B(XK)0,

F

mod := (C
mod, Prime(C
mod)

∼→ V, {F`v }v∈V, {ρv : ΦC
mod,v

gl. to loc.
∼−→ ΦR

C`v
}v∈V )

( ρv : log
`
mod(pv) 7→ 1

[Kv:(Fmod)v]
logΦ(pv) ).

Some Model Bridges, and Bridges

• (model D-NF-bridge, Def. 10.16) φNF
v := Autε(D}) ◦ φNF

•,v ◦Aut(Dv) : Dv
poly−→ D},

φNF
1 := {φNF

v }v∈V : D1
poly−→ D}, φNF

j := (action of j) ◦ φNF
1 : Dj

poly−→ D},

φNF
> := {φNF

j }j∈F>
l

: D> := {Dj}j∈F>
l

poly−→ D}.

• (model D-Θ-bridge, Def. 10.17)

φΘvj := Aut(D>,v)◦


Btemp(Πv)

0 eval. section−→
labelled by j

Btemp(Πv)
0 (v ∈ Vbad)

Btemp(Πv)
0

full poly
∼→ Btemp(Πv)

0 (v ∈ Vgood)

◦Aut(Dvj )

: Dvj
poly−→ D>,v, φΘj := {φΘvj}v∈V : Dj

poly−→ D>, φΘ> := {φΘj }j∈F>
l

: D>
poly−→ D>.

• (model Θell-bridge, Def. 10.31) φΘ
ell

v0
:= Autcusp(D}±)◦φΘell

•,v ◦Aut+(Dv0) : Dv0
poly−→

D}±,
φΘ

ell

0 := {φΘell

v0
}v∈V : D0

poly−→ D}±, φΘ
ell

t := (action of t) ◦ φΘell

0 : Dt
poly−→ D}±,

φΘ
ell

± := {φΘell

t }t∈Fl
: D±

poly−→ D}±.

• (model Θ±-bridge, Def. 10.30) φΘ
±

vt
: Dvt

+-full poly
∼−→ D�,v, φΘ

±

t : Dvt
+-full poly

∼−→

D�,v, φΘ
±

± := {φΘ±

t }t∈Fl
: D± := {Dt}t∈Fl

poly−→ D�.

• (NF-,Θ-bridge, Def. 10.24) (‡FJ
‡ψNF

>−→ ‡F} 99K ‡F~), (‡FJ
‡ψΘ

>−→ ‡F> 99K
‡HT Θ).

• (Θell-,Θ±-bridge, Def. 10.36) †ψΘell

± : †FT
poly−→ †D}±, †ψΘ±

± : †FT
poly−→ ‡F�.

Theatres

• (Θ-Hodge theatre, Def. 10.7) †HT Θ = ({†F
v
}v∈V, †F


mod).

• (D-�-Hodge theatre, Def. 10.18 (3)) †HT D-� = (†D}
†φNF

>←− †DJ

†φΘ
>−→ †D>).
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• (�-Hodge theatre, Def. 10.24 (3)) ‡HT � = (‡F~ L99 ‡F}
‡ψNF

>←− ‡FJ
‡ψΘ

>−→ ‡F> 99K
‡HT Θ).

• (D-�-Hodge theatre, Def. 10.32 (3)) †HT D-� = (†D�
†φΘ±

±←− †DT

†φΘell

±−→ †D}±).

• (�-Hodge theatre, Def. 10.24 (3)) †HT � = (†F�
†ψΘ±

±←− †FT
†ψΘell

±−→ †D}±).

• (D-��-Hodge theatre, Def. 10.40 (1)) †HT D-�� = (†HT D-� gluing99K †HT D-�).

• (��-Hodge theatre, Def. 10.40 (2)) †HT �� = (†HT � gluing99K †HT �).

Properties(Proposition 10.20, Lemma 10.25, Proposition 10.34, Lemma 10.37)

• Isom(†φNF
> , ‡φNF

> ) : an F>
l -torsor.

• #Isom(†φNF
> , ‡φNF

> ) = 1.

• #Isom(†HT D-�, ‡HT D-�) = 1.

• Isomcapsule-full poly(
†DJ ,

†DJ′)
†φNF

> ,†φΘ
> form a D-�-Hodge theatre : an F>

l -torsor.

• †φNF
>  †HT D-�, up to F>

l -indeterminacy.

• Isom(1ψNF
> , 2ψNF

> )
∼→ Isom(1φNF

> , 2φNF
> ).

• Isom(1ψΘ
>,

2ψΘ
>)
∼→ Isom(1φΘ>,

2φΘ>).

• Isom(1HT Θ, 2HT Θ)
∼→ Isom(1D>,

2D>).

• Isom(1HT �, 2HT �) ∼→ Isom(1HT D-�, 2HT D-�).

• Isomcapsule-full poly(
‡FJ ,

‡FJ′)
‡ψNF

> ,‡ψΘ
> form a �-Hodge theatre : an F>

l -torsor.

• Isom(†φΘ
±

± , ‡φΘ
±

± ) : a {±1} × {±1}V -torsor.

• Isom(†φNF
> , ‡φNF

> ) : an Fo±
l -torsor. we have a natural isomorphism

• Isom(†HT D-�, ‡HT D-�) : an {±1}-torsor.

• Isomcapsule-+-full poly(
†DT ,

†DT ′)
†φΘ±

± ,†φΘell

± form a D-�-Hodge theatre : an Fo±
l ×{±1}V -

torsor.

• †φΘell

±  †HT D-�, up to Fo±
l -indeterminacy.

• Isom(1ψΘ±

± , 2ψΘ±

± )
∼→ Isom(1φΘ

±

± , 2φΘ
±

± ).

• Isom(1ψΘell

± , 2ψΘell

± )
∼→ Isom(1φΘ

ell

± , 2φΘ
ell

± ).
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• Isom(1HT �, 2HT �) ∼→ Isom(1HT D-�, 2HT D-�).

• Isomcapsule-+-full poly(
‡FT ,

‡FT ′)
‡ψΘ±

± ,‡ψΘell

± form a �-Hodge theatre : an Fo±
l × {±1}V -

torsor.

Links

• (D-�-link, Def. 10.21) †HT D-� D−→ ‡HT D-� (†D`>

full poly
∼−→ ‡D`>).

• (D-�-link, Def. 10.35) †HT D-� D−→ ‡HT D-� (†D`>

full poly
∼−→ ‡D`>).

• (D-��-link, Cor. 11.24 (4)) †HT D-�� D−→ ‡HT D-�� (†D`∆

full poly
∼−→ ‡D`∆).

• (Θ-link, Def. 10.8) †HT Θ Θ−→ ‡HT Θ (†F

theta

full poly
∼−→ ‡F


mod).

• (Θ×µ-link, Cor. 11.24 (3)) †HT �� Θ×µ

−→ ‡HT �� (†F
I×µ
env

full poly
∼−→ ‡F
I×µ

∆ ).

• (Θ×µgau-link, Cor. 11.24 (3)) †HT �� Θ×µ
gau−→ ‡HT �� (†F
I×µ

gau

full poly
∼−→ ‡F
I×µ

∆ ).

• (Θ×µLGP-link, Def. 13.9 (2)) †HT �� Θ×µ
LGP−→ ∗HT �� ((‡→)†F
I×µ

LGP

full poly
∼−→ ∗F
I×µ

∆ ).

• (Θ×µlgp-link, Def. 13.9 (2)) †HT �� Θ×µ
lgp−→ ∗HT �� ((‡→)†F
I×µ

lgp

full poly
∼−→ ∗F
I×µ

∆ ).

• (log-link, Def. 12.3) †HT �� log−→ ‡HT ��

(†HT D-�� ∼→ ‡HT D-��, †F>
log→ ‡F>,

†F�
log→ ‡F�, {†Fj

log→ ‡Fj}j∈J , {†Ft
log→

‡Ft}t∈T ).



Index of Terminologies

abc Conjecture, 5

uniform -, 42

abstractly equivalent, 9

algorithm

multiradial, 190, 238, 361

uniradial, 190

α-signed automorphism

- of †D, 235

anabelioid

connected -, 107
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model D-Θ- -, 222
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model Θ- -, 228

model base-NF- -, 221

model base-Θ- -, 222

model base-Θell- -, 239

model base-Θ±- -, 238
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CAF, 10

capsule, 10

#J- -, 10

- -full poly-isomorphism, 10

- -full poly-morphism, 10

morphism of -, 10

Cauchy sequence, 97

equivalent -, 97

closed point

algebraic -, 57

co-holomorphicisation, 87

pre- -, 87

commensurably terminal, 11

commensurator, 11

compactly bounded subset, 15

support of -, 15

condition

-(Cusp)X , 58

-(Delta)X , 58

-(Delta)’X , 58

-(GC), 58

-(slim), 58

co-orientation, 87

pre- -, 87

co-oriented, 87

coric, 247

∞κ- -, 179

∞κ- - structure, 183, 185, 188

∞κ×- -, 179
∞κ×- - structure, 183, 185, 188
κ- -, 178

- category, 247

- data, 247

-ally defined, 247

bi- -, 96

horizontally -, 96, 209, 238

vertically -, 96

critical point, 178

strictly -, 178

cusp

±-label class of -s of Πv, 262
±-label class of -s of Π±v , 262
±-label class of -s of †D}, 235
±-label class of -s of †Dv, 234
±-label class of -s of Π̂v, 262
±-label class of -s of Π̂±v , 262
label class of -s of †D}, 219
label class of -s of †Dv, 218
non-zero -, 141

set of -s of †D}, 219
set of -s of †D}±, 235
set of -s of †Dv, 218, 234
set of -s of †D±v , 234
set of -s of †Dv, 218
zero -, 141

cuspidalisation

Belyi -, 65

elliptic -, 62

cuspidal quotient, 61

cyclotome, 12

- of Gk, 79

- of M , 81

- of P , 178

- of ΠX as orientation, 70

- of K, 12

- of Π[µN ], 148

external - of †M, 157

internal - of †M, 157

cyclotomic envelope, 148

cyclotomic rigidity

- for inertia subgroup, 71

- in tempered Frobenioid, 176

- of mono-theta environment, 157

- via Q>0 ∩ Ẑ× = {1}, 184, 186
- via LCFT, 80, 81

- via positive rational structure and
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LCFT, 119

classical -, 80, 81

decent data from Z to F1, 354

edge-like subgroup, 112

element

negative - of Fo±
l , 233

positive - of Fo±
l , 233

étale-like object, 94

étale theta class, 129

- of standard type, 138, 147

standard set of values of -, 138

étale theta function, 132

étale-transport, 96, 323, 347

indeterminacies, 347

evaluation isomorphism, 277, 278, 280,

286, 289, 293

formal -, 284

global formal -, 290

of F
-prime-strips, 299

evaluation points

- of Xv, 221

- of X
v
, 221

Faltings height, 33

F±l -group, 233
F±l -torsor, 233
positive automorphism of, 234

frame, 91

-d, 91

orthogonal -, 91

Frobenioid, 164

µN -split pre- -, 164

×-Kummer pre- -, 167

×µ-Kummer pre- -, 167

p-adic -, 168

Archimedean -, 172

base category of elementary -, 164

base category of pre- -, 164

base-field-theoretic hull of tempered

-, 171

birationalisation of model -, 166

divisor monoid of model -, 165

divisor monoid of pre- -, 164

elementary -, 164

global non-realified -, 181, 182

global realified -, 173

isomorphism of pre- -s, 165

model -, 165

pre- -, 164

pre- - structure, 164

rational function monoid of model -,

165

realification of model -, 166

split pre- -, 164

split-×-Kummer pre- -, 167

split-×µ-Kummer pre- -, 167

tempered -, 171

vertically coric étale-like pre- -, 343

Frobenius

absolute -, 353

Frobenius-like object, 94

fundamental group

admissible - , 109

Galois evaluation

principle of -, 267, 356

graph

dual - , 108

dual semi- - , 108

semi- - of anabelioids, 109

graph of Ξ, 248

height function, 13

Hodge theatre

D-ΘNF- -, 223

D-Θ±ell- -, 240
D-Θ±ellNF- -, 246
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D-��- -, 246
D-�- -, 240
D-�- -, 223
Θ- -, 207

ΘNF- -, 232

Θ±ell- -, 244

Θ±ellNF- -, 246

�- -, 244
�- -, 232
��- -, 246
base-ΘNF- -, 223

base-Θ±ell- -, 240

base-Θ±ellNF- -, 246

isomorphism of �- -, 244
isomorphism of �- -, 232
isomorphism of ��- -s, 246
isomorphism of D-�- -s, 240
isomorphism of D-�- -s, 223
isomorphism of D-��- -s, 246

holomorphic hull, 22

indeterminacy

horizontal -, 25, 26

permutative -, 25, 26

vertical -, 25, 26

initial Θ-data, 36, 199

inter-universal Melline transformation,

42

inversion automorphism, 133, 141, 257

pointed -, 257, 258

isometry of O×µ(G), 166

isomorph, 12

isomorphism

of categories, 201

k-core, 57

admit -, 57

Kummer-detachment, 96, 323

indeterminacy, 349

Kummer-faithful, 55

Kummer isomorphism

- by Kummer structure, 187, 188

- for M , 81

- for F-prime-strips, 297

- for Ik, 100, 103
- for k

×
(ΠX), 100

- for algebraic closure of number

fields, 184, 296

- for constant monoids, 273, 285, 291

- for labelled Frobenioids, 297

- for labelled constant monoids, 285,

292

- for labelled number fields, 297

- for labelled pseudo-monoids, 297

- for local LGP-monoids, 333

- for monoids, 186

- for number fields, 296

- for pseudo-monoids, 184, 186, 296

- for theta monoids, 273

- of F
⊥-prime-strip, 345

Kummer structure

×- -, 167
×µ- -, 167
- of an Aut-holomorphic space, 93

model - of an Aut-holomorphic

space, 92

morphism of elliptically admissible

Aut-holomorphic orbispaces

with -s, 93

l-cyclotomically full, 54, 55

line bundle

�- -, 193
�- -, 192
elementary morphism of �- -s, 193
elementary morphism of �- -s, 192
morphism of �- -s, 193
morphism of �- -s, 192
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tensor product of �- -, 193
tensor product of �- -, 192

line segment, 90

- tangent to S · p, 91
endpoint of -, 90

parallel -s, 90

link

D-ΘNF- -, 225

D-Θ±ell- -, 243
D-�- -, 243
D-�- -, 225
D-��- -, 300
Θ- -, 208

Θ×µ- -, 299

Θ×µLGP- -, 339

Θ×µgau- -, 299

Θ×µlgp- -, 339

log- - from †Fv to ‡Fv, 302, 303
log- - from †F to ‡F, 304

log- - from †HT �� to ‡HT ��, 309
base-ΘNF- -, 225

base-Θ±ell- -, 243

full log- - from †Fv to ‡Fv, 302, 303
full log- - from †F to ‡F, 304

full log- - from †HT �� to ‡HT ��,
309

generalised Θ×µLGP- -, 355

log- -, 99, 103

tautological log- - associated to †Fv,
302, 303

tautological log- - associated to †F,

304

local additive structure, 90

local field, 10

local linear holomorphic structure, 92

system of -s, 92

local structure, 86

log-conductor function, 14

log-different function, 14

log-divisor

effective Cartier, 169

log-Kummer correspondence

global -, 344

local -, 335

log-meromorphic function, 169

log-orbicurve

of type (1, (Z/lZ)Θ), 144
of type (1,Z/lZ), 144
of type (1,Z/lZ)±, 144
of type (1, l-tors−−→), 161

of type (1, l-tors), 141

of type (1, l-tors)±, 141

of type (1, l-torsΘ), 142

log-shell, 21, 103

étale-like holomorphic -, 100, 103

étale-like mono-analytic -, 101, 104

étale-like mono-analytic - associated

to †D`v , 306
Frobenius-like holomorphic -, 100

Frobenius-like holomorphic -

associated to †Fv, 302, 304
Frobenius-like holomorphic -

associated to †F, 304

Frobenius-like mono-analytic -

associated to †F`×µv , 305

Frobenius-like mono-analytic -

associated to †F`×µ, 305

vertically coric étale-like

holomorphic - associated to ∗D,

308

log-theta-lattice, 311

LGP-Gaussian -, 340

lgp-Gaussian -, 340

Gaussian -, 311

non-Gaussian -, 311

log-volume function, 20, 101
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global -, 342

radial -, 20, 104

maximal cuspidally central quotient, 70

miracle identity, 41

MLF, 10

mono-analytic, 82

mono-anabelian, 44, 59, 92

mono-anabelian transport, 188

monoid

- on D, 163
Frobenioid-theoretic constant -, 273

Frobenioid-theoretic Gaussian -, 278

Frobenioid-theoretic theta -, 273

Frobenius-like global realified

�-logarithmic Gaussian

procession -, 338

Frobenius-like global realified

�-logarithmic Gaussian

procession -, 337

Frobenius-like global realified LGP-

-, 337

Frobenius-like global realified lgp- -,

338

Frobenius-like local LGP- -, 332

Frobenius-like local logarithmic

Gaussian procession -, 332

group-like - on D, 163
mono-theta-theoretic constant -, 272

mono-theta-theoretic Gaussian -, 276

mono-theta-theoretic theta -, 272

morphism of split -s, 93

primary element of -, 174

prime of -, 174

split -, 93

vertically coric étale-like -, 343

vertically coric étale-like local LGP-

-, 333

vertically coric étale-like local

logarithmic Gaussian procession

-, 333

multiradial, 247

- environment, 247

-ly defined, 247

µN -conjugacy class, 148

mutations, 59, 247

negative automorphism

- of †Dv, 235
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∆vÏ, 264
∆vI, 264
∆v•̈t, 263

∆v•t, 263

∆CF
, 199

∆}±, 267
∆cor
v , 262, 281

∆temp
C (MΘ

∗ ), 251

∆temp
C (MΘ

N ), 251

∆ε, 160

∆−ε , 161

∆+
ε , 161

∆G , 110

∆
(Σ)
G , 110

∆
(Σ),temp
G , 110

∆temp
G , 110

∆[µN ], 148

∆C , 141

∆
ell

C , 141

∆C , 141

∆Θ, 140

∆X , 140

∆
ell

X , 140

∆±vI, 264
∆±v•t, 263

∆±v , 262, 281

∆MΘ
N
, 251

∆Θ, 122, 140

∆cusp-cent
U , 70

∆v, 112

∆v, 262, 281

∆ell
X , 122, 140

∆XF
, 199

∆X,H, 115

∆temp
X,H , 115

∆Σ
X , 111

∆
(Σ),temp
X , 111

∆temp
X , 122

(∆temp
X )ell, 122

(∆temp
X )Θ, 122

∆Θ
X , 122, 140

∆temp
X (MΘ

∗ ), 251

∆temp
X (MΘ

N ), 251

∆X , 200

∆temp
X (MΘ

∗ ), 251

∆temp
X (MΘ

N ), 251

(∆temp
YN

)ell, 123

(∆temp
YN

)Θ, 123

∆temp
Y , 122

(∆temp
Y )ell, 123

(∆temp
Y )Θ, 123

∆temp
Y (MΘ

∗ ), 251



386 Go Yamashita

∆temp
Y (MΘ

N ), 251

(∆temp
ZN

)ell, 125

(∆temp
ZN

)Θ, 125

expk, 103

expk(X), 103

EF , 199

E, 161

Ev, 170

Eenv, 260
ELCFT, 255

EΘ, 253
EN , 176

EΠ
N , 176

ExcK,d,ε, 36

ειX , 141

ε, 160

ε′, 160

ε′′, 160

ε0, 160

ε, 200

[†ε], 224

εv, 200

η̈Θ, 129

η̈Θ, 147

η̈Θ,lZ×µ2 , 147

η̈Θ,Z×µ2 , 138
†η0
v
, 235

†η±
v
, 235

†η
v
, 218
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∗Ï), 268

Gv(MΘ
∗Ï(
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∗Ï)

γ), 269

θι
env

((MΘ
∗ )
γ), 269

θ(MΘ
∗ ), 258

θt
env

((MΘ
∗Ï)
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ŸN , 127

Y , 144
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Ẑ′, 120
Z, 122
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[A2] Y. André, Period mappings and differential equations: From C to Cp. MSJ Mem-

oirs 12, Math. Soc. Japan (2003).

[BO1] P. Berthelot, A. Ogus, Notes on crystalline cohomology. Princeton University

Press (1978), Princeton, New Jersey.

[BO2] P. Berthelot, A. Ogus, F-Isocrystals and De Rham Cohomology I. Invent. Math.

72 (1983), 159–199.

[Fo1] J.-M. Fontaine, Groupes p-divisibles sur les corps locaux. Astérisque 47-48 (1977).
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Yvette, 1988). Astérisque 223 (1994), 59–111.

[FJ] M. Fried, M. Jarden, Field Arithmetic. Springer (1986).

[GH1] B. Gross, M. Hopkins, Equivariant vector bundles on the Lubin-Tate moduli space.

Topology and representation theory, Contemp. Math. 158, Amer. Math. Soc.

(1994), 23–88.

[GH2] B. Gross, M. Hopkins, The rigid analytic period mapping, Lubin-Tate space, and

stable homotopy theory. Bull. Amer. Math. Soc. (N.S.) 30 (1994), 76–86.

[SGA1] A. Grothendieck, M. Raynaud, Séminaire de Géometrie Algébrique du Bois-Marie
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