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Abstract

We give a survey of S. Mochizuki’s ingenious inter-universal Teichmiiller theory and ex-
plain how it gives rise to Diophantine inequalities. The exposition was designed to be as
self-contained as possible.
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8§ 0. Introduction.

The author once heard the following observation, which was attributed to Grothen-
dieck: There are two ways to crack a nut — one is to crack the nut in a single stroke
by using a nutcracker; the other is to soak it in water for an extended period of time
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until its shell dissolves naturally. Grothendieck’s mathematics may be regarded as an
example of the latter approach.

In a similar vein, the author once heard a story about a mathematician who asked
an expert on étale cohomology what the main point was in the ¢-adic (not the p-adic)
proof of the rationality of the congruence zeta function. The expert was able to recall,
on the one hand, that the Lefschetz trace formula was proved by checking various
commutative diagrams and applying various base change theorems (e.g., for proper or
smooth morphisms). On the other hand, neither the commutativity of various diagrams
nor the various base change theorems could be described as the main point of the proof.
Ultimately, the expert was not able to point out precisely what the main point in the
proof was. From the point of view of the author, the main point of the proof seems to lie
in the establishment of a suitable framework (i.e., scheme theory and étale cohomology
theory) in which the Lefschetz trace formula, which was already well known in the
field of algebraic topology, could be formulated and proved even over fields of positive
characteristic.

A similar statement can be made concerning S. Mochizuki’s proof of the abc Con-
jecture. Indeed, once the reader admits the main results of the preparatory papers
(especially [AbsToplll], [EtTh]), the numerous constructions in the series of papers
[IUTchI], IUTchII], [IUTchIII], [IUTchIV] on inter-universal Teichmiiller theory are
likely to strike the reader as being somewhat trivial. On the other hand, the way in
which the main results of the preparatory papers are interpreted and combined in or-
der to perform these numerous constructions is highly nontrivial and based on very
delicate considerations (cf. Remark 9.6.2 and Remark 12.8.1) concerning, for instance,
the notions of multiradiality and uniradiality (cf. Section 11.1). Moreover, when taken
together, these numerous trivial constructions, whose exposition occupies literally hun-
dreds of pages, allow one to conclude a highly nontrivial consequence (i.e., the desired
Diophantine inequality) practically effortlessly! Again, from the point of view of the
author, the point of the proof seems to lie in the establishment of a suitable framework
in which one may deform the structure of a number field by abandoning the frame-
work of conventional scheme theory and working instead in the framework furnished by
inter-universal Teichmiiller theory (cf. also Remark 1.15.3).

In fact, the main results of the preparatory papers [AbsToplll], [EtTh], etc. are
also obtained, to a substantial degree, as consequences of numerous constructions that
are not so difficult. On the other hand, the discovery of the ideas and insights that
underlie these constructions may be regarded as highly nontrivial in content. Examples
of such ideas and insights include the “hidden endomorphisms” that play a central role
in the mono-anabelian reconstruction algorithms of Section 3.2, the notions of arith-
metically holomorphic structure and mono-analytic structure (cf. Section 3.5), and the
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distinction between étale-like and Frobenius-like objects (cf. Section 4.3). Thus, in sum-
mary, it seems to the author that, if one ignores the delicate considerations that occur
in the course of interpreting and combining the main results of the preparatory papers,
together with the ideas and insights that underlie the theory of these preparatory pa-
pers, then, in some sense, the only nontrivial mathematical ingredient in inter-universal
Teichmiiller theory is the classical result [pGC]J, which was already known in the last
century!

A more technical introduction to the mathematical content of the main ideas of
inter-universal Teichmiiller theory may be found in Appendix A and the discussion at
the beginning of Section 13.

The following results are consequences of inter-universal Teichmiiller theory (cf.
Section 1.1 for more details on the notation):

Theorem 0.1.  (Vojta’s Conjecture [Voj] for curves, proved in [[UTchIV, Corol-
lary 2.3]) Let X be a proper, smooth, geometrically connected curve over a number field;
D C X a reduced divisor; Ux := X \ D. Write wx for the canonical sheaf on X.
Suppose that Ux is a hyperbolic curve, i.e., deg(wx (D)) > 0. Then for any d € Zg
and € € Ry, we have

ht,, () < (1 + €)(log-diff x + log-condp)
on Ux (Q)=".

Corollary 0.2.  (The abc Conjecture of Masser and Oesterlé [Massl], [Oes]) For

any € € Rsg, we have
1+e€

max{lal, bl |e[} < | ] »

plabe

for all but finitely many coprime a,b,c € Z with a +b = c.

Proof. We apply Theorem 0.1 in the case where X = I% > D =1{0,1,00}, and
d = 1. Thus, we have wp1 (D) = Op1(1), log-diffp: (—a/b) = 0, log-cond g 1,00} (—a/b) =
> plabatslogp, and hto , 1)(—a/b) ~ logmax{|al,|b|} ~ logmax{|al, [b],|a + b|} for
coprime a,b € Z with b # 0, where the first “~” follows from [Silvl, Proposition 7.2],
and we apply the inequality |a + b] < 2max{|al, |b|}. Now let ¢,¢’ € R<q be such that
e > ¢’. According to Theorem 0.1, there exists C' € R such that log max{|al, |b], |c|} <
(1+¢€) 2p|abc log p+ C for any coprime a, b, ¢ € Z with a+b = ¢. Observe that there are
only finitely many triples a, b, ¢ € Z with a+b = ¢ such that log max{|al, [b], |c[} < E5C.
Thus, we have log max{|al, |b],|c|} < (1+¢€)>] logp + eljf; log max{|al, |b|,|c|} for
all but finitely many coprime triples a, b, ¢ € Z with a4+ b = ¢. This completes the proof
of Corollary 0.2. O

plabe
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§0.1. Un Fil d’Ariane.

By combining a relative anabelian result (a relative version of the Grothendieck
Conjecture over sub-p-adic fields (Theorem B.1)) and the “hidden endomorphism” dia-
gram (EllCusp) (resp. the “hidden endomorphism” diagram (BelyiCusp)), one obtains
a(n) (absolute) mono-anabelian result, i.e., the elliptic cuspidalisation (Theorem 3.7)
(resp. the Belyi cuspidalisation (Theorem 3.8)). Then, by applying Belyi cuspidali-
sations, one obtains a mono-anabelian reconstruction algorithm of the NF-portion of
the base field and function field of a hyperbolic curve of strictly Belyi type over a sub-
p-adic field (Theorem 3.17), as well as a mono-anabelian reconstruction algorithm of
the base field of a hyperbolic curve of strictly Belyi type over a mixed characteristic
local field (Corollary 3.19). This motivates the philosophy of mono-analyticity and
arithmetic holomorphicity (Section 3.5), as well as the theory of Kummer isomorphisms
from Frobenius-like objects to étale-like objects (cf. Remark 9.6.1).

The theory of Aut-holomorphic (orbi)spaces and related reconstruction algorithms
(Section 4) is an Archimedean analogue of the mono-anabelian reconstruction algorithms
discussed above and yields another application of the technique of elliptic cuspidalisa-
tion. On the other hand, the Archimedean theory does not play a very central role in
inter-universal Teichmiiller theory.

The theory of the étale theta function centers around the establishment of various
rigidity properties of mono-theta environments. One applies the technique of ellip-
tic cuspidalisation to show the constant multiple rigidity of a mono-theta environment
(Theorem 7.23 (3)). The cyclotomic rigidity of a mono-theta environment is obtained
as a consequence of the (“precisely”) quadratic structure of a Heisenberg group (Theo-
rem 7.23 (1)). Finally, by applying the “at most” quadratic structure of a Heisenberg
group (and excluding the algebraic section in the definition of a mono-theta environ-
ment), one shows the discrete rigidity of a mono-theta environment (Theorem 7.23 (2)).

By the theory of Frobenioids (Section 8), one can construct ©-links and log-links
(Definition 10.8, Corollary 11.24 (3), Definition 13.9 (2), Definition 12.1 (1), (2), and
Definition 12.3). (The main theorems of the theory of Frobenioids are category theoretic
reconstruction algorithms; however, these are not so important (cf. [[UTchl, Remark
3.2.1 (ii)]).)

By using the fact Qsq N A {1}, one can show another cyclotomic rigidity
(Definition 9.6). The cyclotomic rigidity of mono-theta environment (resp. the cyclo-
tomic rigidity via QsoNZ* = {1}) makes the Kummer theory for mono-theta environ-
ments (resp. for k-coric functions) available in a multiradial manner (Proposition 11.4,
Theorem 12.7, Corollary 12.8) (unlike the cyclotomic rigidity via the local class field
theory). By the Kummer theory for mono-theta environments (resp. for s-coric func-
tions), one performs the Hodge-Arakelov-theoretic evaluation (resp. NF-counterpart
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of the Hodge-Arakelov-theoretic evaluation) and construct Gaussian monoids in Sec-
tion 11.2. Here, one uses a result of semi-graphs of anabelioids (“profinite conjugate
vs tempered conjugate” Theorem 6.11) to perform the Hodge-Arakelov-theoretic eval-
uation at bad primes. Via mono-theta environments, one can transport the group
theoretic Hodge-Arakelov evaluations and Gaussian monoids to Frobenioid theoreteic
ones (Corollary 11.17) by using the reconstruction of mono-theta environments from
a topological group (Corollary 7.22 (2) “II — M”) and from a tempered-Frobenioid
(Theorem 8.14 “F +— M”) (together with the discrete rigidity of mono-theta environ-
ments). In the Hodge-Arakelov-theoretic evaluation (resp. the NF-counterpart of the
Hodge-Arakelov-theoretic evaluation), one uses ]Ffi—symmetry (resp. F;*-symmetry) in
Hodge theatre (Section 10.5 (resp. Section 10.4)), to synchronise the cojugate indeter-
minacies (Corollary 11.16). By the synchronisation of conjugate indeterminacies, one
can construct horizontally coric objects via “good (weighted) diagonals”.

By combining the Gaussian monoids and log-links, one obtain LGP-monoids (Propo-
sition 13.6), by using the compatibility of the cyclotomic rigidity of mono-theta en-
vironments with the profinite topology, and the isomorphism class compatibility of
mono-theta environments. By using the constant multiple rigidity of mono-theta en-
vironments, one obtains the crucial canonical splittings of theta monoids and LGP-
monoids (Proposition 11.7, Proposition 13.6). By combining the log-links, the log-shells
(Section 5), and the Kummer isomorphisms from Frobenius-like objects to étale-like
objects, one obtains the log-Kummer correspondence for theta values and NF’s (Propo-
sition 13.7 and Proposition 13.11). The canonical splittings give us the non-interference
properties of log-Kummer correspondence for the value group portion, and the fact
FX iNI1,<o Ov = p(F.4) give us the non-interference properties of log-Kummer cor-
responden(;e for the NF-portion (cf. the table before Corollary 13.13). The cyclotomic
rigidity of mono-theta environments and the cyclotomic rigidity via Qso N Z* = {1}
also give us the compatibility of log-Kummer correspondence with ©-link in the value
group portion and in the NF-portion respectively (cf. the table before Corollary 13.13).
After forgetting arithmetically holomorphic structures and going to the underlying
mono-analytic structures, and admitting three kinds of mild indeterminacies, the non-
interefence properties of log-Kummer correspondences make the final algorithm multi-
radial (Theorem 13.12). We use the unit portion of the final algorithm for the mono-
analytic containers (log-shells), the value group portion for constructing ©-pilot objects
(Definition 13.9), and the NF-portion for converting X-line bundles to H-line bundles
vice versa (cf. Section 9.3). One cannot transport the labels (which depends on arith-
metically holomorphic structure) from one side of a theta link to another side of theta
link; however, by using processions, one can reduce the indeterminacy arising from for-
getting the labels (cf. Remark 13.1.1). The multiradiality of the final algorithm with the
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compabitility with ©-link of log-Kummer correspondence (and the compatibility of the
reconstructed log-volumes (Section 5) with log-links) gives us a upper bound of height
function. The fact that the coefficient of the upper bound is given by (1+€) comes from
the calculation observed in Hodge-Arakelov theory (Remark 1.15.3).

Leitfaden

§2. Prel. Anab. —— §6. Prel. Temp.

N

§3. Mono-anab. —— §7. Et. §4. Aut-hol. —— §5. Log-vol. /-sh.

/

§10. Hodge Th. §11. H-A. Eval. ——— §12. Log-link —— §13. Mlt. Alm.
68. Fr'"ds —— §9. Prel. NF-Eval. §1. Gen. Arith. Thm. 0.1

The above dependences are rough (or conceptual) relations. For example, we use some
portions of §7 and §9 in the constructions in §10; however, conceptually, §7 and §9 are
mainly used in §11, and so on.
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§0.2. Notation.

General Notation:
For a finite set A, let # A denote the cardinality of A. For a group GG and a subgroup
H C G of finite index, we write [G : H] for #(G/H). (For a finite extension K D F' of
fields, we also write [K : F| for dimp K. There will be no confusions on the notations
[G : H] and [K : F].) For a function f on a set X and a subset Y C X, we write
fly for the restriction of f on Y. We write m for the mathematical constant pi (i.e.,
7 =23.14159 - ).

For a prime number [ > 2, we put Ff := F,*/{£1}, F,'F := F; x {£1}, where
{£1} acts on F; by the multiplication, and |F;| := F;/{£1} = F/ [[{0}. We put also
¥ o= 151 = 4FF and 1F = 1% +1 =41 = #|F|.

Categories:

For a category C and a filtered ordered set I # (), let pro-C;(= pro-C) denote the category
of the pro-objects of C indexed by I, i.e., the objects are ((4;)icr, (fij)i<jer)(= (Ai)icr),
where A; is an object in C, and f;; is a morphism A; — A; satisfying f; jfir =
fi for any ¢ < j < k € I, and the morphisms are Homp,o-c((Ai)icr, (Bj)jer) =
LiLnj hglZ Home (A;, Bj). We also consider an object in C as an object in pro-C by setting
every transition morphism to be identity (In this case, we have Homp,oc((4s)icr, B) =
limy, Home¢ (A;, B)).

For a category C, let C° denote the full subcategory of the connected objects, i.e.,
the non-initial objects which are not isomorphic to the coproduct of two non-initial
objects of C. We write C' (resp. C') for the category obtained by taking formal
(possibly empty) countable (resp. finite) coproducts of objects in C, i.e., we define
Home (resp. ¢4y (LL; 4is [ By) := 11, 11; Home (4;, Bj) (cf. [SemiAnbd, §0]).

Let C1,Cs be categories. We say that two isomorphism classes of functors f : C; —
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Ca, f' : Cf — Ch are abstractly equivalent if there are isomorphisms a; : C; — Cf,
ag : Co = Ch such that f'oa; = azo f.

Let C be a category. A poly-morphism A — B for A, B € Ob(C) is a collection
of morphisms A — B in C. If all of them are isomorphisms, then we call it a poly-
isomorphism. If A = B, then a poly-isomorphism is called a poly-automorphism.
We call the set of all isomorphisms from A to B the full poly-isomorphism. For poly-
morphisms {f; : A — B}icr and {g; : B = C}cs, the composite of them is defined as
{gjofi: A— C}ij)erxs- A poly-action is an action via poly-automorphisms.

Let C be a category. We call a finite collection {A;};c s of objects of C a capsule of
objects of C. We also call {4;};e; a #J-capsule. A morphism {4;};e; — {A}/ }jrer
of capsules of objects of C consists of an injection ¢ : J — J’ and a morphism A; —
Ai( 7) in C for each j € J (Hence, the capsules of objects of C and the morphisms among
them form a category). A capsule-full poly-morphism {A;}jc; — {4} }jes is a
poly-morphism

A S ALY = || Isom¢(A;, A, .
{{f‘] J L(J)}JEJ}(fj)jEJEHjGJISOmC(Aj»AZ(j))( E c(4; L(])))

in the category of the capsules of objects of C, associated with a fixed injection ¢ : J —
J’. If the fixed ¢ is a bijection, then we call a capsule-full poly-morphism a capsule-full
poly-isomorphism.

Number Field and Local Field:

In this survey, we call finite extensions of Q number fields (i.e., we exclude infinite
extensions in this convention), and we call finite extensions of QQ,, for some p mixed char-
acteristic (or non-Archimedean) local fields. We use the abbreviations NF for number
field, MLF for mixed-characteristic local field, and CAF for complex Archimedean field,
i.e., a topological field isomorphic to C.

For a number field F, let V(F') denote the set of equivalence classes of valuations of
F,and V(F)? C V(F) (resp. V(F)™" C V(F)) the subset of Archimedean (resp. non-
Archimedean) ones. For number fields F' C L and v € V(F'), put V(L), := V(L) xy(p)
{v}(C V(L)), where V(L) — V(F) is the natural surjection. For v € V(F), let F,, denote
the completion of F' with respect to v. We write p,, for the characteristic of the residue
field (resp. e, that is, e = 2.71828---) for v € V(F)"" (resp. v € V(F)*°). We also
write m, for the maximal ideal, and ord, for the valuation normalised by ord,(p,) =1
for v € V(F)™°". We also normalise v € V(F)"°" by v(uniformiser) = 1 (Thus v is ord,
times the ramification index of F, over Q,). If there is no confusion on the valuation,
we write ord for ord,.

For a non-Archimedean (resp. complex Archimedean) local field &, let Oy be the
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valuation ring (resp. the subset of elements of absolute value < 1) of k, O C Oy the
subgroup of units (resp. the subgroup of units i.e., elements of absolute value equal to
1), and OF := Oy \ {0} C Oy, the multiplicative topological monoid of non-zero integral
elements. Let mj, denote the maximal ideal of O}, for a non-Archimedean local field k.

For a non-Archimedean local field K with residue field k£, and an algebraic closure
k of k, we write Frobx € Gal(k/k) or Froby € Gal(k/k) for the (arithmetic) Frobenius
element i.e., the map k > = — z#* € k (Note that “Frobenius element”, Froby, or
Frobs, do not mean the geometric Frobenius i.e., the map k > z — z/#* € & in this

survey).

Topological Groups and Topological Monoids:
For a Hausdorff topological group G, let (G —)G?" denote the abelianisation of G as
Hausdorff topological groups, i.e., G modulo the closure of the commutator subgroup
of G, and let Giors (C ) denote the subgroup of the torsion elements in G.

For a commutative topological monoid M, let (M —)M?®P denote the groupification
of M, i.e., the coequaliser of the diagonal homomorphism M — M x M and the zero-
homomorphism, let M, M*(C M) denote the subgroup of torsion elements of M,
the subgroup of invertible elements of M, respectively, and let (M —)MP! denote
the perfection of M, i.e., the inductive limit lim

_>TLEN21
equipped with the order by the divisibility, and the transition map from M at n to M

M, where the index set N> is

at m is the multiplication by m/n.
For a Hausdorff topological group G, and a closed subgroup H C G, we write

Za(H) ={9€G|gh=hg,Vhe H},
CNg(H)={9geG|gHg ' =H}, and
CCq(H):={geq| gHg™' N H has finite index in H,gHg’l},

for the centraliser, the normaliser, and the commensurator of H in G, respectively (Note
that Zg(H) and N (H) are always closed in G; however, C(H ) is not necessarily closed
in G. See [AbsAnab, Section 0], [Anbd, Section 0]). If H = Ng(H) (resp. H = Cg(H)),
we call H normally terminal (resp. commensurably terminal) in G (thus, if H is
commensurably terminal in G, then H is normally terminal in G).

For a locally compact Hausdorff topological group G, let Inn(G)(C Aut(G)) denote
the group of inner automorphisms of G, and put Out(G) := Aut(G)/Inn(G), where we
equip Aut(G) with the open compact topology, and Inn(G), Out(G) with the topology
induced from it. We call Out(G) the group of outer automorphisms of G. Let G be a
locally compact Hausdorff topological group with Zg(G) = {1}. Then G — Inn(G)(C
Aut(G)) is injective, and we have an exact sequence 1 — G — Aut(G) — Out(G) — 1.

out
For a homomorphism f : H — Out(G) of topological groups, let G x H — H denote
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the pull-back of Aut(G) — Out(G) with respect to f:

1 G Aut(G) ——> Out(G) — > 1
-]
1 G G H it 1.

t
We call G % H the outer semi-direct product of H with G with respect to f (Note
that it is not a semi-direct product).

Algebraic Geometry:
We put Upr := P!\ {0,1,00}. We call it a tripod. We write M C Mgy for the fine
moduli stack of elliptic curves and its canonical compactification.

If X is a generically scheme-like algebraic stack over a field k£ which has a finite
étale Galois covering Y — X, where Y is a hyperbolic curve over a finite extension of
k, then we call X a hyperbolic orbicurve over k ([AbsTopl, §0]).

Others:
For an object A in a category, we call an object isomorphic to A an isomorph of A.
For a field K of characteristic 0 and a separable closure K of K, we put Hz (K) =
Hom(Q/Z,FX), and ig,7(K) = pz(K) ®; Q/Z. Note that Gal(K/K) naturally acts
on both. We call us(K), ug/z(K), pz,(K) := pz(K) ®5 Z; for some prime number
l, or pz/mz(K) = pz(K) ®5 Z/nZ for some n the cyclotomes of K. We call an
isomorph of one of the above cyclotomes of K (we mainly use the case of NZ(F)) as a
topological abelian group with Gal(K /K )-action a cyclotome. We write Xcye = Xeye K
(resp. Xeye,i = Xeye,i,k) for the (full) cyclotomic character (resp. the l-adic cyclotomic
character) of Gal(K/K) (i.e., the character determined by the action of Gal(K/K) on

pz(K) (vesp. pz, (K))).

8§1. Reduction Steps via General Arithmetic Geometry.

In this section, by arguments in a general arithmetic geometry, we reduce Theo-
rem 0.1 to certain inequality —|log(q)| < —|log(©)|, which will be finally proved by
using the main theorem of multiradial algorithm in Section 13.

§1.1. Height Functions.

Take an algebraic closure Q of Q. Let X be a normal, Z-proper, and Z-flat scheme.
For d € Z>1, we write X(Q) D X(Q)=¢ := Uir.gi<a X(F). We write X* for the
complex analytic space determined by X (C). An arithmetic line bundle on X is a
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pair £ = (L, ||-||z), where L is a line bundle on X and ||-||¢ is a hermitian metric on the
line bundle £2"¢ determined by £ on X&' which is compatible with complex conjugate
on X#°. A morphism of arithmetic line bundles £; — L5 is a morphism of line bundles
Ly — Lo such that locally on X sections with || - ||z, < 1 map to sections with
|||z, < 1. We define the set of global sections I'(£) to Hom(Ox, £), where Ox is the
arithmetic line bundle on X determined by the trivial line bundle with trivial hermitian
metric. Let APic(X) denote the set of isomorphism classes of arithmetic line bundles
on X, which is endowed with a group structure by the tensor product of arithmetic line
bundles. We have a pull-back map f* : APic(Y) — APic(X) for a morphism f: X — Y
of normal Z-proper Z-flat schemes.

Let F be a number field. An arithmetic divisor (resp. Q-arithmetic divisor,
R-arithmetic divisor) on F' is a finite formal sum a = }° () cyv, where ¢, € Z (resp.
¢y € Q, ¢, € R) for v € V(F)*" and ¢, € R for v € V(F)*°. We call Supp(a) :=
{v € V(F) | ¢, # 0} the support of a, and a effective if ¢, > 0 for all v € V(F).
We write ADiv(F) (resp. ADivg(F), ADivg(F)) for the group of arithmetic divisors
(resp. Q-arithmetic divisor, R-arithmetic divisor) on F'. A principal arithmetic divisor
is an arithmetic divisor of the form »° v pyuon V(f)v = 32, cy(myare [Fo : R]1og(] f[o)v for
some f € F*. We have a natural isomorphism of groups ADiv(F')/(principal ones) =
APic(Spec OF) sending >, cy(py cov to the line bundle determined by the projective
Op-module M = (HveV( Fynon mS)~LOF of rank 1 equipped with the hermitian metric

v
on M ®zC = H,UGV(F)M F, ®r C determined by HveV(F)arc e~ TP |- |, where | - |, is
the usual metric on F), tensored by the usual metric on C. We have a (non-normalised)
degree map

degp : APic(Spec Op) = ADiv(F')/(principal divisors) — R

sending v € V(F)™" (resp. v € V(F)*°) to log(q,) (resp. 1). We also define (non-
normalised) degree maps degp : ADivg(F) — R, degp : ADivg(F) — R by the same
1

way. We have ﬁdeg (L) = o desx (L|spec 0y ) for any finite extension lf D F and

any arithmetic line bundle £ on Spec O, that is, the normalised degree mdeg s
independent of the choice of F'. For an arithmetic line bundle £ = (£, ||-||z) on Spec Op,
a section 0 # s € L gives us a non-zero morphism Opr — L, thus, an identification of
L1 with a fractional ideal as of F. Then degp(L) can be computed by the degree
degp of an arithmetic divisor }°, cy(pyuon 0(a5)0 = D= cy(pyare ([Fo  R]log|[s|[,)v for
any 0 # s € L, where v(as) := mingeq, v(a), and || - ||, is the v-component of || - ||z in
the decomposition L3 = [, cy(pyare Lo over (Spec Op)™® = [, cy(pyare £ ®r C.

For an arithmetic line bundle £ on X, we define the (logarithmic) height function

htz: X@Q) (= |J X(@F) | =R
[F:Q]<o0o
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associated to £ by htz(z) = [F—l@]degFa:}(ﬁ) for x € X(F), where zp € X(Op) is
the element corresponding to x by X(F) = X(Op) (Note that X is proper over Z),
and 273 : APic(X) — APic(SpecOp) is the pull-back map. By definition, we have
htz—o7; = htz- + htz for arithmetic line bundles L1, Lo ([GenEll, Proposition 1.4
(1)]). For an arithmetic line bundle (£, || - ||z) with ample Lg, it is well-known that
#{z € X(Q)=? | htz(z) < C} < oo for any d € Z>; and C € R (See Proposition C.1).

For functions o, 8 : X(Q) — R, we write a > 3 (resp. a < 3, a =~ ) if there exists a
constant C' € R such that a(z) > f(z) + C (resp. a(z) < B(z) + C, |a(x) — B(z)| < C)
for all x € X(Q). We call an equivalence class of functions relative to ~ bounded
discrepancy class. Note that ht7 2 0 ([GenEll, Proposition 1.4 (ii)]) for an arithmetic
line bunde £ = (£,|| - ||z) such that the n-th tensor product E%’” of the generic fiber
Ly on Xg is generated by global sections for some n > 0 (e.g.Lg is ample), since
the Archimedean contribution is bounded on the compact space X2, and the non-
Archimedean contribution is > 0 on the subsets A; = {s; # 0}(C X(Q)) for i =
1,...,m, where sq,..., s, € I'(Xg, E%’”) generate ES” (hence, A;U---UA,, = X(Q)).
We also note that the bounded discrepancy class of htz for an arithmetic line bundle
L = (L£,]] - ||z) depends only on the isomorphism class of the line bundle Lo on Xg
([GenEll, Proposition 1.4 (iii)]), since for £; and Ly with (£1)g = (L2)g we have
ht;——htz = ht?l®£'72®(71) 2 0 (by the fact that (£1)g ® (EQ)S(_U =~ Ox, is generated
by global sections), and htz — htz— 2 0 as well. When we consider the bounded
discrepancy class (and if there is no confusion), we write ht., for ht.

For z € X(F) C X(Q) where F is the minimal field of definition of x, the differ-
ent ideal of F' determines an effective arithmetic divisor 9, € ADiv(F') supported in

V(F)™". We define log-different function log-diff x on X(Q) to be

X(Q) 3 x — log-diff x (z) := m

Let D C X be an effective Cartier divisor, and put Uy := X\ D. Forz € Ux (F) C
Ux (Q) where F is the minimal field of definition of z, let zr € X(Op) be the element
in X(Op) corresponding to x € Ux(F) C X(F) via X(F) = X(Op) (Note that X

is proper over Z). We pull-back the Cartier divisor D on X to D, on SpecOp via

rp : SpecOr — X. We can consider D, to be an effective arithmetic divisor on F
supported in V(F)"°®. Then we call {2 := (D,);ea € ADiv(F) the conductor of z,

and we define log-conductor function log-condp on Ux(Q) to be

Ux(Q) > x ~ log-condp(z) := w—@deg@(ff) eR.

Note that the function log-diff x on X (Q) depends only on the scheme Xg ([GenEll,

Remark 1.5.1]). The function log-condp on Ux(Q) may depend only on the pair of
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Z-schemes (X, D); however, the bounded discrepancy class of log-condp on Ux(Q)
depends only on the pair of Q-schemes (Xg, Dg), since any isomorphism Xg — Xg in-
ducing Dg = D(’@ extends an isomorphism over an open dense subset of Spec Z ([GenEll,
Remark 1.5.1]).

§1.2. First Reduction.

In this subsection, we show that, to prove Theorem 0.1, it suffices to show it in a
special situation.

Take an algebraic closure Q of Q. We call a compact subset of a topological space
compact domain, if it is the closure of its interior. Let V C Vg := V(Q) be a finite
subset which contains V{©. For each v € V N Vy* (resp. v € V N V"), take an
isomorphism between Q, and R and we identify Q, with R, (resp. take an algebraic
closure @, of Q,), and let § # K, & X (resp. 0 # K, & X(Q,)) be a Gal(C/R)-
stable compact domain (resp. a Gal(Q, /Q,)-stable subset whose intersection with each
X(K) ¢ X(Q,) for [K : Q,] < oc is a compact domain in X (K)). Then we write
Ky € X(Q) for the subset of points z € X (F) C X(Q) where [F : Q] < oo such that
for each v € VN Vye (resp. v € V. NVg™) the set of [F : Q] points of X**¢ (resp.
X(Q,)) determined by x is contained in /IC,. We call a subset Ky C X (Q) obtained in
this way compactly bounded subset, and V its support. Note that IC,’s and V are
determined by Ky by the approximation theorem in the elementary number theory.

Lemma 1.1.  ([GenEll, Proposition 1.7 (i)]) Let f : Y — X be a generically finite
morphism of normal, Z-proper, Z-flat schemes of dimension two. Let e be a positive
integer, D C X, E C Y effective, Z-flat Cartier divisors such that the generic fibers
Dq, Eq satisfy: (a) Dg, Eg are reduced, (b) Eqg = fQTI(DQ)red, and (c) fo restricts a
finite étale morphism (Uy)g — (Ux)qg, where Ux := X \ D and Uy :=Y \ E.

1. We have log-diff x |y + log-condply < log-diffy + log-condg.

2. If, moreover, the condition (d) the ramification index of fo at each point of Eg
divides e, is satisfied, then we have

1
log-diffy < log-diff x|y + <1 — —) log-condply .
e

Proof. There is an open dense subscheme SpecZ[1/S] C SpecZ such that the
restriction of Y — X over SpecZ[1/S5] is a finite tamely ramified morphism of proper
smooth families of curves. Then the elementary property of differents gives us the primit-
to-S portion of the equality log-diff x|y + log-condp|y = log-diffy + log-condg, and
the primit-to-S portion of the inequality log-diffy < log-diff x|y + (1 - %) log-condp|y
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under the condition (d) (if the ramification index of fp at each point of Eg is equal
to e, then the above inequality is an equality). On the other hand, the S-portion of
log-cond g and log-condply is ~ 0, and the S-portion of log-diffy — log-diff x|y is > 0.
Thus, it suffices to show that the S-portion of log-diffy — log-diff x|y is bounded in
Uy (Q). Working locally, it is reduced to the following claim: Fix a prime number
p and a positive integer d. Then there exists a positive integer n such that for any
Galois extension L/K of finite extensions of Q, with [L : K] < d, the different ideal of
L/K contains p"Op,. We show this claim. By considering the maximal tamely ramified
subextension of L(u,)/K, it is reduced to the case where L/ K is totally ramified p-power
extension and K contains p,, since in the tamely ramified case we can take n = 1. It
is also redeced to the case where [L : K] = p (since p-group is solvable). Since K D p,,
we have L = K (a'/?) for some a € K by Kummer theory. Here a'/? is a p-th root of a
in L.

By multiplying an element of (K *)?, we may assume that a € Og and a ¢ mh (D
pPOf ). Hence, we have Op, D a'/?Or, O pOy,. We also have an inclusion of O -algebras
Ok[X]/(XP — a) < Op. Thus, the different ideal of L/K contains p(a'/?)?~*0Op D
p!t =D O, . The claim, and hence the lemma, was proved. O

Proposition 1.2.  ([GenEll, Theorem 2.1]) Fiz a finite set of primes ¥. To
prove Theorem 0.1, it suffices to show the following: Put Upr := IP’}@ \ {0,1,00}. Let

Ky C Up1(Q) be a compactly bounded subset whose support contains . Then for any
d € Z~o and € € R~q, we have

hte ., ({0,1,00}) < (1 + ¢€)(log-diffpr + log-condyg 1,00})

on Ky N Up: (@)Sd.

Proof. Take X, D,d, € as in Theorem 0.1. For any e € Z~, there is an étale Galois
covering Uy — Ux such that the normalisation Y of X in Uy is hyperbolic and the
ramification index of Y — X at each point in F := (D Xx Y),eq is equal to e (later,
we will take e sufficiently large). First, we claim that it suffices to show that for any
€ € Ry, we have ht,,, < (1 + ¢)log-diffy on Uy (Q)=44ee(Y/X)  We show the claim.
Take € € R+ such that (1 + €')? < 1+ €. Then we have

htyy (myly S (1 + €htey, S (1+€)2log-diffy < (1+ €')*(log-diff x + log-condp)|y
< (1 + €)(log-diff x + log-condp)|y

1 .
for e > % (1 — ﬁ) on Uy (Q)4de(Y/X) " Here, the first < holds since we
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have

deg(wy) = deg(wy (E)) — deg(E) = deg(wy (E)) (1 -

deg(D)
e - deg(wx (

deg(E) )
deg(Y/X)deg(wx (D))

deg(wx (D)ly)-

1 1
= deg(wy (F)) (1 — D))) > T eldeg(wY(E)) = 1+

6/
The second < is the hypothesis of the claim, the third < comes from Lemma 1.1 (2), and
the final inequality < comes from the choice of € € R<y. Then the claim follows since
the map Uy (Q)S%des(Y/X) U (Q)=? is surjective. Therefore, the claim is proved.
Thus, it suffices to show Thoerem 0.1 in the case where D = (). We assume that
hto, < (1 + €)log-diffx is false on X (Q)=%. Let V C Vg be a finite subset such
that V' O X U Vg*. By using the compactness of X(K) where K/Q, (v € V) is a
finite extension, there exists a subset = C X (Q)~% and an unordered d-tuple of points
Z, C X(Q,) for each v € V such that ht,, < (1 + €)log-diffy is false on Z, and
the unordered d-tuples of Q-conjugates of points in = converge to Z, in X(Q,) for
each v € V. By Theorem C.2 (the existence of non-critical Belyi map), there exists
a morphism f : X — P! which is unramified over Up:1 and f(Z,) C Up (Q,) for each
v € V. Then after possibly eliminating finitely many elements from =, there exists a
compactly bounded subset Ky C Up1(Q) such that f(Z) C Ky, by taking the unions of
Galois-conjugates of the images via f of sufficiently small compact neighbourhoods of
the points of =, in X(Q,) forv € V. Put X D E := f~1({0,1,00})eq Take ¢ € Rsg

satisfying 1 4+ ¢ < (1 + €)(1 — 2€/deg(FE)/deg(wx)). Then we have

htwx & bty () — Moy (m) ® hte, (o1,00px — oy (m)

S (1 + €')(log-diffp: | x + log-cond o 1,00} x) — hto (2)

< (14 €)(log-diff x + log-condg) — hto (k)

S (14 €)(log-diff x + hto, (g)) — hto, (g) = (1 4 € )log-diff x + ¢'hto, (k)
< (14 €)log-diff x + 2¢'(deg(F)/deg(wx ) )ht,

on =. Here, the second ~ comes from that wx(E) = wp1({0,1,00})|x. The first <
is the hypothesis of the proposition. The second < comes from Lemma 1.1 (1). The
third < comes from log-condg < hto, (g) which can be proved by observing that the
Archimedean contributions are bounded on the compact space X?° and that the non-
Archimedean portion holds since we take (—)eq in the definition of log-condg. The
fourth < comes from that wg(zdegw)) ® Ox (—F)®des@x)) is ample since its degree is
equal to 2deg(F)deg(wyx) — deg(E)deg(wx) = deg(E)deg(wx) > 0.

By the above displayed inequality, we have (1 — 2¢’(deg(F)/deg(wx)))htew, < (14
€')log-diff x on E. Then we have ht,,, < (1+ ¢€)log-diff x on = by the choice of ¢ € R+y.
This contradicts the hypothesis on =. O
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8§1.3. Second Reduction — Log-volume Computations.

In this subsection and the next subsection, we further reduce Theorem 0.1 to the
relation “—|log(q)] < —|log(@)[". The reason why we should consider this kind of
objects naturally arises from the main contents of inter-universal Teichmiiller theory,
which we will treat in the later sections. It2might seem to readers that it is unnat-
ural and bizzard to consider abruptly “qﬁ(p%lord(qﬂj)OKEj R0k, (®o<i<jOk,,)”) for
all automorphisms ¢ of Q® ), <i<i Tlv» Ing(OfX@i) which indljces an automorphism
of ®0<1<J oo logP(O>< )” and so on, and that the relation —|log(q )| < —|log(©)] is
almost the same thing as the inequality which we want to show, since the reduction in
this subsection and in the next subsection is just calculations and it contains nothing
deep. However, we would like to firstly explain how the inequality will be shown — the
final step of showing the inequality by concrete calculations— in these subsections before
explaining the general theories.

Lemma 1.3.  ([IUTchIV, Proposition 1.2 (i)]) For a finite extension k of Qy, let
e denote the ramification index of k over Q,. For X € %Z, let p* Oy, denote the fractional
L;J p>2, . log (p

e
p—l) 1
an = - =

p=2, logp e

ideal generated by any element x € k with ord(x) = X. Put

N o~

Then we have
p*O Clog,(O)) C p 0.

If p>2and e < p—2, then p*Oy, = logp(Olj) =p b0y

Proof. We have a > p%l since for p > 2 (resp. p = 2) we have a > % s = —5 >

ﬁ (resp. a =2 > 1= Iﬁ) Then we have p®Oy C pﬁ“O@p N Ok C log,(OF)

for some € > 0, since the p-adic exponential map converges on pﬁ“O@p and z =
log,,(exp,(z)) for any = € pﬁJrEOC for € > 0.
_e log —&—
On the other hand, we have prr <5 since b + > loelpy=y) _ 1= 21, We

log p
note that b+g € Z>o and that b+g > 1if and only ife > p 1 We have (b~|— )+ > —

p— 1’
since for e > p — 1 (resp. for e < p — 1) we have (b+ 1) p 7 (resp.
b+H+1=1> ﬁ) In short, we have min{(lH— g) %,%p“e} > ﬁ. For

bt 1

1
,- Then we obtain pbte logp(Ok) C O N

log,, (1 +pﬁ+60@p) C Oy ﬂpﬁ“O@p C pzOy, for some e > 0, which gives us the
second inclusion. The last claim follows by the definition of a and b. O

1
b+ < € Z>o, we have (1 —|—p%O<cp)pb+€ G1 —|—pplf10<cp, since ord((1 + pea)?
1
min{(b+ 1) + 12

e’
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For finite extensions k D ko of Qp, let 9,5, denote ord(x), where z is any generator
of the different ideal of k over ky. For a € Q, let p® € @p denote an element of @p with
ord(p?®) = a.

Lemma 1.4. ([IUTchIV, Proposition 1.1)) Let {k;}icr be a finite set of finite
extensions of Qp. Put 0; := 0y, /g, Fix an element x € I and put 0y« := Ziel\{*} 0;.
Then we have

P (®ie1Ok,)~ C ®ic1Ok, C (®ic1Ok,)",

where (R;c1O0y,)~ is the normalisation of ®;crOy, (tensored over Z,). Note that
P° (Ric10y, )~ is well-defined.

Proof. The second inclusion is clear. It suffices to show that p°* (O@ Qo
®ic1O0k,)~ C O@@)ok* ®,er0y,, since O@ is faithfully flat over Oy, . It suffices to show
that p°r* (O@@@k* ®iec1Ok,)~ C O@@)Ok* ®ie1O0p,. By using the induction on #1, it is
reduced to the case where #I = 2. In this case, O@Géok1 (Or, ®z, Ok,) = O@®zp Ok,
and p°2 (O@ ®z, Ok,)~ C O@ ®z, Ok, holds by the definition of the different ideal. [

Lemma 1.5. ([ITUTchIV, Proposition 1.3]) Let k D ko be finite extensions of
Qp. Let e, ey be the ramification indices of k and ko over Q, respectively. Let m be the
integer such that p™ | [k : ko] and p™ 't [k : ko). Put 0y, := 0y /q, and g, :=py/q, -

1. We have 0y, + 1/eq < 0 + 1/e. If k is tamely ramified over ko, then we have
ako —|—1/60 :Dk—l—l/e

2. If k is a finite Galois extension of a tamely ramified extension of ko, then we have
0 < Vg, +m + 1/eg.

Remark 1.5.1.  Note that “log-diff +log-cond”, not “log-dift”, behaves well under
field extensions (See also the proof of Lemma 1.11 below). This is one of the reasons
that the term log-cond appears in Diophantine inequalities. cf. Lemma 1.1 for the

geometric case.

Proof. (1): We may replace ko by the maximal unramified subextension in k D ky,
and assume that k/kg is totally ramified. Choose uniformizers wy € Oy, and w € Oy,
and let f(z) € Op,[x] be the minimal monic polynomial of wy over Oy,. Then we
have an Oy, -algebra isomorphism Oy, [x]/(f(x)) = Oy sending x to w. We also have
f(z) = 2°/¢ modulo my, = (o). Then vy — O, > min{ord(wo),ord(%w%_l))} >

min{ei, 1 (i — 1)} = 1 (i — 1), where the inequalities are equalities if k/kg is
o’ e \ eo e \ e
tamely ramified.

(2): We use an induction on m. For m = 0, the claim is covered by (1). We assume

m > 0. By assumuption, k is a finite Galois extension of a tamely ramified extension k;
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of kg We may assume that [k : k1] is p-powere by replacing k; by the maximal tamely
ramified subextension in k D k1. We have a subextension k D ko D k1, where [k : ko] = p
and [ky : k1] = p™~! since p-groups are solvable. By the induction hypothesis, we have
0k, < 0k, +(m—1)+1/ep. It is sufficient to show that 9 < dg,+m+1/eg+e for all € > 0.
After enlarging ks and k;, we may assume that k1 D p, and (e2 >)e; > p/e, where
e; and ep are the ramification index of ky and ks over Q) respectively. By Kummer
theory, we have an inclusion of O,-algebras Oy, [z]/(zP — a) < Oy for some a € Ok,
sending x to a'/? € Oy,. By modifying a by (O ,)P; we may assume that ord(a) < pe—_zl.
Then we have 05, < ord(f'(a/?)) 4+ g, < ord(pa(p D/PY 4o, + (m — 1) +1/eg <

%p_l +m+1/eg < p/ea+0k, +m+1/eg <0k, +m+1/eg+e. We are done. O

For a finite extension k over Q,, let ,ufg be the (non-normalised) log-volume
function (i.e., the logarithm of the usual p-adic measure on k) defined on compact
open subsets of k valued in R such that 11,°%(0) = 0. Note that we have 1°%(pOy,) =
—log #(Ox/pOy) = —[k : Qp]logp. Let ugé’g be the (non-normalised) radial log-
volume function valued in R, such that u £(Or) = 0, defined on compact subsets of
C which project to a compact domain in R via prp : C =R x Of — R (see Section 1.2
for the definition of compact domain) (i.e., the logarithm of the usual absolute value
log |prg(A)| on R of the projection for A C C). Note that we have 1'°8(eOy,) = loge = 1.
The non-normalised log-volume function ,u}fg is the local version of the non-normalised
degree map degp (Note that we have the summation degp = >_, v ulﬁg) and the

log

normalised one [k TH is the local version of the normalised degree map [ Fle] degr

(Note that we have the weighted average r@degF = ZUGV(F)I[F Tog] > wev(r) o

@“Q]([FU:%QU },ullffg) with weight {[F}, : Qug]}vev(r), Where vg € Vg is the image of v €

V(F) via the natural surjection V(F') — V@) For finite extensions {k;};c; over Q,,

the normalised log-volume functions { FON] ,uk $}ier give us a normalised log-volume

function } ;¢ 1 1@ },ufg on compact open subsets of ®;erki (tensored over Q) valued
2

in R (since we have 50, 1 a M log (pOx, ) = —logp for any i € I by the normalisation), such

that (3¢, i QP]M}fog)<®i€IOki> =

Lemma 1.6.  ([IUTchlIV, Proposition 1.2 (ii), (iv)] and [IUTchIV, “the fact...consideration”
in the part (v) and the part (vi) of the proof in Theorem 1.10]) Let {k; }ics be a finite set
of finite extensions of Q,. Let e; denote the ramification index of k; over Q,. We write
a;, b for the quantity a, b defined in Lemma 1.3 for k;. Putd; := 0y, /q,, G1 := Y ;1 Qi
br == crbi, andor:= 3, ;0;. For A ¢ eiiZ, let p* Oy, denote the fractional ideal gen-
erated by any element x € k; with ord(z) = X. Let ¢ : ®,;c;10g,(05) = @, 10g,(0)
(tensered over Z,) be an automorphism of Z,-modules. We extend ¢ to an automor-
phism of the Q,-vector spaces Q, ®z, ®Z-El-logp(01fi) by the linearity. We consider
(®ierO,;)~ as a submodule of Q) ®z, @,c;l0g,(0F) via the natural isomorphisms
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Qp ®z, (®icrOk,)~ = Qp @z, RicrOr, = Q) ®z, Ricrlog,(Oy).

1. PutI>I*:={icl|e;>p—2}. Forany A€ =7, ip € I, we have
0

¢ (PN (®ie10Ok,)™) , P ® By 1ng (Or,)
el
c pP 2l Q) log,, (07) € pP 1m0 (@,e,04,)~, and
el

(Z —[ 1Qp_] /«LLOg)(pL)‘—DI—aIJ—bI (®ierO,;)™) < (_)‘+01+1)log(p)+2(3+10g(ei)).

icl iel*

2. If p>2 and e; =1 for each i € I, then we have

?((®ierOk,)™), ® 5 log,(0) € @) 10g,(0}) C (®iesOk,)™,

el el
and (Ticr gy ) (@ierO,)™) = 0.

Remark 1.6.1.  If e; < p — 2 for simplicity, then we have Oy, C ﬁ log,(OF) =
%mki, where my, denotes the maximal ideal of k£;. When we consider ﬁ logp(O,ji) =
%mki as a Z,-module (i.e., when we regard it as having no ring structure), then we cannot
, 11)7?2 . %7‘(’8 where 7 denotes a uniformiser of k£;. We can consider this
phenomenon as a kind of “differential over 1" (See also the point of view from the

distinguish 1 o
Teichmiiller dilation discussed in Section 3.5).

Proof. (1): We have p®"* % (®;c1O0y, )~ C p™ ®ier Ok, C Q;c;10g,(O; ), where
the first (resp. second) inclusion follows from Lemma 1.4 (resp. Lemma 1.3). Then by
Lemma 1.3, we have p*(®;c10k,)~ = p* =4 p1Ha1(®,c 10, )~ C plA—2r—arlpdrtar
(®ie10,)~ C pr—or—ail log, (®ie10y;) C pA—r—arl=br(g,,0,.)~. Thus, we have
b (N @:c108)~) C 6 (P91 @, log, (OF ) = p =241 ®,.; log, (07 ) C
plA—er—arl=br(g, ;0. )™, where the last inclusion follows from Lemma 1.3. If p = 2,
we have [0; +as| > 07 +a; > ay > 2#I. If p > 2, we have a; > eT and 0; > 1——
by Lemma 1.5 (1), hence, we have [0; + a;| > 07 + a; > #I. Thus, we obtain the
remaining inclusion @), ; ﬁ log, (0)) c p~lPr1=Tarl &, log, (05 for p > 2.

We show the upper bound of the log-volume. We have a; — ei < % < ﬁ,
where the first inequality for p > 2 (resp. p = 2) follows from a; < %(11%2 +1) =
I)%Q—Fe%_ and pi forp> 2 (resp. az—e—i —2—6—1z < 2= 5), and the second

inequality follows from z > 2logx for z > 0. We also have (b; + .- LYlog(p) < log( =) <
log(2e;) < 1+ log(e;), where the first inequality follows from the definion of bz, the
second inequality follows from 1% < 2 for p > 2, and the last inequality follows from
log(2) < 1. Then by combining these, we have (a; + b;)log(p) < 3 + log(e;). For
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i € I\I*, we have a; = —b;(= 1/e;), hence, we have (a; + b;)log(p) = 0. Then we
obtain (3¢, mui;g>(pl_kiblianibI(®i€[0ki)N) < (=(A=0r—ar—1)+br)log(p) =
(=A+0r+ar+br +1)log(p) < (=A+ 07+ 1)log(p) + >, /- (3 4 log(ei)).

(2) follows from (1). O

For a non-Archimedean local field k, put Zj := ﬁ log,(O). We also put Z¢ :=
m(unit ball). We call Z; the log-shell of k, where k is a non-Archimedean local field
or k= C. Let F be a number field. Take vg € Vi, For V(F) 3 v1,...,v, | vg, put
Ly, on = ®1<i<nIr, (Here, the tensor is over Z,). Take vg € V§*. For V(F) >
V1,5 Un | Vg, let Ty, 4, C ®1<i<nll, denote the image of [[,.;., Zr, under the
natural homomorphism [[,.,.,, Fo, = ®1<i<nFy,) (Here, the tensor is over R). For a
subset A C Q, ®z, Zy, ... ,v; (_resp. A C1Z, .. ,), we call the holomorphic hull of
A the smallest subset, which contains A, of the form @;c;a;0r, with a; € O, in the
natural direct sum decomposition of the topological fields ®1<;<nFy, = PicrL;.

We define the subgroup of primitive automorphisms Aut(C)P"™ C Aut(C) to
be the subgroup generated by the complex conjugate and the multiplication by /—1
(thus, Aut(C)Prim = 7, /47, x {£1}).

In the rest of this subsection, we choose a tuple (F/F, Er, VP24, [ V), where

mod’ ) X

1. F is a number field such that «/—1 € F, and F is an algebraic closure of F,

2. Er is an elliptic curve over F such that Autz(Eg) = {£1}, where Bz := Ep X F,
the 2.3(= 6)-torsion points Fr[2.3] are rational over F, and F is Galois over the
field of moduli Fy,oq of Er i.e., the subfield of F' deteremined by the image of
the natural homomorphism Aut(Ez) — Aut(F) = Gal(F/Q)(D Gal(F/F)) (thus,
we have a short exact sequence 1 — Autz(Fz) — Aut(Ez) — Gal(F/Fpod) —
1), where Aut(E%) (resp. Autz(E%)) denotes the group of automorphisms (resp.
automorphisms over F') of the group scheme F),

3. VPad i a nonempty finite subset VPad,  vuon (c V.4 1= V(Fiu0a)), such that v 1 2

mod mod mod

holds for each v € VP24 "and Er has bad multiplicative reduction over w € V(F),,

mod?

4. [ is a prime number [ > 5 such that [ is prime to the elements of Vglafd as well as
prime to ord,, of the g-parameters of Er at w € V(F)P2d := V(F) xvy__, VP2 "and

mod?

5. V is a finite subset V C V(K), where K := F(EF[l]), such that the restriction of
the natural surjection V(K) — V,0q to V induces a bijection V = Vi,0q.

(Note that this is not the definition of initial ©-data, in which we will have more
objects and conditions. See Section 10.1.) Put dmoed = [Finoa : Q], (V2¢, C)VECd .=

mod

Vinoa \ VP24 “and V(F)geod .= V(F) xy_ V& TLet v € V denote the element

mod? mod *

corresponding to v € V,,,q via the above bijection.
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Lemma 1.7.  ([IUTchlV, Lemma 1.8 (ii), (iii), (iv), (v)])

1. Fipa = Finod(EF,,.412]) is independent of the choice of a model EF,

mod *

2. The elliptic curve Ep has at most semistable reduction for all w € V(F)™o".

3. Any model of Ew over F' such that all 3-torsion points are defined over I is iso-
morphic to Er over F'. In particular, we have an isomorphism Ep,_, XF, 4 'S EF
over F' for a model Ey, , of B over Fypq, such that F' D Fiyq(EF,,,[3]).

4. The extension K D Fioq 15 Galois.

(Here, “tpd” stands for “tripod” i.e., the projective line minus three points.)

Proof. (1): In the short exact sequence 1 — Autz(Ez) — Aut(Ex) — Gal(F/Fnod) —

of
E+, and the field Fiod4(EF,,,[2]) correpsonds to the kernel of the composite of the sec-
tion Gal(F/Fnoa) — Aut(E%) and the natural homomorphism Aut(Ez) — Aut(Ez[2]).
On the other hand, by the assumption Autz(E%) = {£1}, the natural homomorphism
Aut(Ew) — Aut(Ez[2]) factors through the quotient Aut(Ew) — Gal(F/Fyoa), since
the action of Autz(Ex) = {£1} on Ex[2] is trivial (—P = P for P € Ex[2]). This
implies that the kernel of the composite Gal(F/Fyoa) — Aut(Ew) — Aut(Eg[2]) is
independent of the section Gal(F/Fyoq) — Aut(E%). This means that Fiyoa(Fr,,,,[2])
is independent of the choice of a model Er__ [2]. The first claim was proved.

1, a section of the surjection Aut(Ex) — Gal(F/Fpoed) corresponds to a model Ef;

mod

(2): For a prime r > 3, we have a fine moduli X (r)z /. of elliptic curves with
level r structure (Note that it is a scheme since r > 3). Any F,-valued point with w { r
can be extended to O, -valued point since X (r)z(1 /) is proper over Z[1/r]. We apply
this to an F,,-valued point defined by Er with a level r = 3 structure (which is defined
over F' by the assumption). Then Er has at most semistable reduction for w t 3. The
second claim was proved.

(3): A model of E& over F corresponds to a section of Autp(FEz) — Gal(F/F)
in a one-to-one manner. Thus, a model of E7 over F' whose all 3-torsion points are
rational over F' corresponds to a section of Auty(Ez) — Gal(F/F) whose image is in
ker{p : Autp(E%) — Aut(E5[3])}. Such asection is unique by Auty(Ex#)Nker(p) = {1},
since Aut(F7) = {£1} and the image of —1 € Aut(E%) in Aut(£5([3])} is nontrivial
(if =P = P € Ex[3] then P € Ex[2] N Ex([3] = {O}). The third claim was proved.

(4): A model Ef,, of Ef over Fioq, such that F' D Fipa(Er,,,[3]), gives us a sec-
tion of Autp(Eg) — Gal(F/Fupoea), hence homomorphisms PEp " Gal(F/Fod) —
Aut(E%]r]) for r = 3,1, which may depend on amodel Er,_,. Take any g € Gal(F'/Fnoq).
By assumption that F is Galois over Fy.q, we have gGal(F/F)g~! = Gal(F/F) in
Gal(F/Foq). Thus, both of Gal(F/K) and gGal(F/K)g~* are subgroups in Gal(F/F).
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We consider the conjugate_p%FmOd’r(.) = pEE}Od’T(gfl(.)g) of PEr_ . by g. By defi-
nition, the subgroup Gal(F/K) (resp. gGal(F/K)g~!) is the kernel of PEr_ 1 (resp.
ngFmOd’l). On the other hand, since ngFmodﬁ(a) = 'OEFmodv?’(g)_lpEFmoda3<a)pEFmodv3(9) =
1 for any a € Gal(F/F) by the assumption, the homomorphism p, |3 arises from a
mode_lEj’k,;tpcl of Ez over Fipq. The_n by the third claim (3), the restriction pg,_ ilg.F/F)
Gal(F'/F) — Aut(Ex(l]) to Gal(F/F) is unique, i.e., ppy  ilgaF/ ry = p%FmOd,l Gal(F/F)-
Hence we have Gal(F/K) = gGal(F/K)g~'. Thus K is Galois over Fy,oq. The fourth

claim was proved. O

We further assume that

1. Er has good reduction for all v € V(F)&8°°d N V(F)"°" with v { 21,
2. all the points of Er[5] are defined over F', and

3. we have F' = Fipa(v—1, EFR,,[3.5]), where Fipq := Fiod(EF,,.q[2]) (Here Ef, , is
any model of Ez over Fyoq4, and EF, 4 is a model of B over Fypq which is defined
by the Legendre form i.e., of the form y? = z(x — 1)(x — \) with X\ € Fipq).

For an intermediate extension Fi,,q C L C K which is Galois over F},,q, we write
oL € ADiv(L) for the effective arithmetic divisor supported in V(L) determined by
the different ideal of L over Q. We define log(d%) := ﬁdegL (o) € R>g. We can con-
sider the ¢g-parameters of Er at bad places, since Er has everywhere at most semistable
reduction by Lemma 1.7 (2). We write q© € ADivg(L) for the effective Q-arithmetic
divisor supported in V(L)"°" determined by the g-parameters of Epy, := Ep xp (FL) at
primes in V(FL)** := V(FL) xy,__, V*3 divided by the ramification index of FL/L
(Note that 2[ is prime to the elements in Supp(q%) even though Er has bad reduc-
tion over a place dividing 21). We define log(q) = log(q%) := [L—@degL(qL) € R>o.
Note that log(q”) does not depend on L. We write f* € ADiv(L) for the effective
arithmetic divisor whose support coincides with Supp(q”); however, all of whose coeffi-
cients are equal to 1 (Note that Supp(q”) excludes the places dividing 21). We define
log(q") := ﬁdengL) € Rxo.

For an intermediate extension Fi,q C L C K which is Galois over Fj,oq, we define
the set of distinguished places V(L)4st ¢ V(L)"" to be V(L)¥st := {w € V(L)m" |
there is v € V(K)p*" which is ramified over Q}. We put V§** and VI to be the im-
ages of V(Fypq) 45t in Vg and in V,,0q respectively, via the natural surjections V(Fypq) —
Vimod = Vg. For L = Q, Fi,0q4, we put sl .= ZweV(L)dist epw € ADiv(L), where e, is
the ramification index of L,,/Q,,. We define log(s’) := [L—@degL (s¥) € R>g. We put

dh od i= 2.2 /A7)* #GLo(Fo) #G Lo (F3)#CLa (F5)dimoa = 2'2.3%.5.dmod
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(Note that #GLQ(F2) = 2.3, #GLa(F3) = 2.3, and #GLy(F5) = 2°.3.5). We write
§S = ZUQelest log(p )v@ € ADivg(Q), where 1y, := 1 if p,, < df 4l and ¢y, := 0 if
Pug > disoql. We deﬁne log(s=) := degg(s=) € Rxo.

For number fields FF C L, a Q-arithmetic divisor a = Zwev( L) CwW On L, and

v € V(F), we define a, := 3, cy(z), Col-

mod

Lemma 1.8.  ([IUTchIV, Proposition 1.8 (vi), (vii)]) The extension F/Fipq is
tamely ramified outside 2.3.5, and K/F is tamely ramified outside . The extension
K/Fipa is unramified outside 2.3.5.1 and Supp(gqfted).

Proof. First, we show that Ep,_, xp,_, F' has at most semistable reduction at
w 1 2 for some [F' : Fipqw] < 2 and we can take F’ = Fi,q, in the good reduction
case as follows: Now Ep, , is defined by the Legendre form y* = z(z — 1)(z — A). If
A € Of,,, ,, then it has at most semistable reduction since 0 # 1 in any characteristic. If
w"\ € O>< for n > 0 where @ € Fipq,. is a uniformizer, then by putting 2’ := w"z
3”/2y, we have (y')? = 2/(2/ — @")(2' — @"\) over Fipa.w(v/@), Wh1ch has
semistable reduction.
Then the action of Gal(Fipa,./F’) on E[3.5] is unipotent (cf. [SGATt1, Exposé
IX §7] the filtration by “finite part” and “toric part”) for w { 2.3.5. Hence, F =
Fipa(v/—1, E[3.5]) is tamely ramified over Fi,q outside 2.3.5. By the same reason, the
action of Gal(Fipd,w/F’') on E[l] is unipotent for w 1 [, and K = F(EJ[l]) is tamely
ramified over F' outside .

and ¢’ :

We show the last claim. Er has good reduction outside 2/ and Supp(q*ted), since,
by the assumption, Er has good reduction for all v € V(F)&°°d 0 V(F)"°" with v { 21.
Thus, K = Fipa(v/—1, E[3.5.1]) is unramified outside 2.3.5.1 and Supp(qfra). O

In the main contents of inter-universal Teichmiiller theory, we will use the bi-

jection V = V04 as a kind of “analytic section of Spec Ok — SpecOp and

mod ?
we will have an identification of m n K with u( F ) and an identification of

1 1 log _ - log .
Foa@l dey ey mi O with —[Fmod:@] Zvevmod H(Eoa)s (Note that the summation

is taken with respect to V, not the whole of the valuation V(K) of K). This is why we

log log log

. . Ky MK’U MK’U
will consider oy o) Qg (Ko (Famoa)s] — [KuiQug)]

for v € V (not for V(K)) with weight [(Finod)v : Qug] (10t [Ky : Q) in this subsection.

or its normalised version [

Lemma 1.9.  ([IUTchIV, some portions of (v), (vi), (vii) of the proof of Theorem
1.10, and Propotision 1.5]) For vg € Vg, 1 < j <1*(= 5 1), and vo, ...,V € (Vinod)wg
(where vy, . ..,v; are not necessarily distinct), let —[1og(@)l(v,,...n,} denote the nor-

malised log-volume (i.e., Zogigj W log ) of the following:

o Forvg € Vg™, the holomorphic hull of the union of
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— (vertical indeterminacy=:(Indet 1))
.2
qj/QlIvO,...,Uj (resp. Ly,,... w;) forv; € VP24 (resp. for v; € veood) and

j

— (horlzontal and permutative indeterminacies =:(Indet — ), (Indet +))
) (q% /2 lOng ®OKEJ- (®0§i§joKEi)N> (resp. ¢ ((@()SigjOKEi)N)) for v; €
VP (resp. for vy € VE°°U), where ¢ : Quy @z, Tug,..v; = Qug 2y Lo,
runs through all of automorphisms of finite dimensional Q,,-vector spaces
which induces an automorphism of the submodule Ly, ... ., and Qo<i<;j’s are

tensors over L, (See also the “Teichmiiller dilation” in Section 3.5).

e Forvg € V§©, the holomorphic hull of the union of

— (vertical indeterminacy=:(Indet 1))
v; (C ®o<i<jKy,), and

.....

— (horizontal and permutative indeterminacies =:(Indet — ), (Indet ~))
(®o<i<;i)(Br), where Br := (unit ball)®? in the natural direct sum decom-
position Qo<i<; Ky, = Cce? (tensored over R), and (¢i)o<i<; runs through all
of elements in H0<Z<] Aut(K, )P,

Put 0; := Vg, sq,, and Or = > 0<i<; i Jor vg € V. Then we have the following
upper bounds of —\ log(© )\{Um v}

1. Foruvg € Vféi“, we have

_j_2 ] * ) bad
— [108(8) {up....0y < (—&rord(au,) + 01+ 1) 108 pug + 40 + Dtug 108(dfpoal) 2, € ¥

(07 + 1) log pug + 4(j + 1)teg log(dr,ql) v, € Y&°d
log log K
2 Mg (du,) HE, (05 )
_ ] J log Q . log ;.< *
=+ e g (80) +40 + Dug, (si;,) log(dy,
2 [Kﬂj  Qu] Ogéj L Y F Qo] e

2. Forvg € V™ \ VG, we have —|10g(O)|1v,....v,3 < 0.
8. For vg € Vi, we have —[10g(©)l{u,,...,v;} < (j + 1) log().

Remark 1.9.1.  In Section 13, it will be clear that the vertical (resp. horizontal)
indeterminacy arises from the vertical (resp. horizontal) arrows of the log-theta-lattice
i.e., the log-links (resp. the theta-links), and the permutative indeterminacy arises from
the permutative symmetry of the étale picture.

Proof. (1): We apply Lemma 1.6 (1) to A := é—jord(qgj) (resp. 0) for v; € yhad
(resp. for v; € veeody 1:={0,1,...,5}, i := j, and k; := K, . (
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since qéj/zl € K, by the assumptions that K = F(Epl[l]) and that Ep([2] is rational
over I, i.e., FF = F(FEr[2]).) Then by the first inclusion of Lemma 1.6 (1), both of
cb< d /QlOK R0k, (®ogi§j0xﬂi)w> (resp. ¢ <(®0§z’§jOKU.)N)) ((Indet —), (Indet

J /2’2 N=forl=farl o

V0 5.+, V5

) and gy (resp. Zy,,....v;) ((Indet 1)) are contained in puy

lngu@(OXEi)' By the second inclusion of Lemma 1.6 (1), the holomorphic hull of

LAJ_W”_M” Rier log,, (OXU_) is contained in pL’\J orl=farl=fbrl (g, 0%, )7, and
1ts normahsed log- volume is < ( A+074+1)10g(pug) +Dicre (3+log(ez)) by Lemma 1.6
(1). If e > pyy — 2, then p,, < df 4l, since for v; { [ (resp. wv; | I) we have
Pog S 14e; <1+df 41/2 < df 4l (vesp. po, =1 < df 4l). For e; > py, — 2, we also
have log(e;) < —3+4log(d* 40), since e; < d* 41*/2 and 3/2 < (d*_4)®. Thus, we have
(=A+07+1) log(pug )+ e - (3+log(es)) < (—A+014+1) log(pug ) +4(j+1)tug log(dr,oal),
since if 1y, = 0, (ie., poy > dfo4l), then e; < p,, — 2 for all i, hence I* = (). The last
equality of the claim follows from the definitions.

(2): For vg € Vg™ \ V', the prime vg is unramified in K and vg # 2, since 2
ramifies in K by K 3 v/—1. Thus, the ramification index e; of K, over Qy is 1 for
each 0 < i < j, and p,, > 2. We apply Lemma 1.6 (2) to A := 0, I := {0,1,...,j},
and k; := K, . Both of ¢ <(®0§iSjOKgi)N) ((Indet —), (Indet v»)) and the log-
shell Z,,,....,, (Indet 1) are contained in ®;cs logpvQ (le(ﬂi ). By the second inclusion of
Lemma 1.6 (2), the holomorphic hull of ®;¢; logpvQ (OIX(Ei) is contained in (®;¢ IOIXQZ, )™,
and its log-volume is = 0.

mod

(3): The natural direct sum decomposition ®o<;<;jK,, = co? (tensored over
R), where K, = C, the hermitian metric on C@Qj, and the integral structure By =
(unit ball)@Zj C C®2" are preserved by the automorphisms of ®o<i<;j Ky, induced by
any (¢i)o<i<i € [lo<ic; Aut(Ky v )P ((Indet —), (Indet ~)). Note that, via the
natural direct sum decomposmon Ro<i<j By, = C®U+D) | the direct sum metric on
C®U*D induced by the standard metric on C is 27 times the tensor product metric on
®o<i<j Ky, induced by the standard metric on K, = C (Note that |1 ® /=125 =1
and [(v—1, —v=1)|Zgc = 2) (See also [[UTchIV, Proposition 1.5 (iii), (iv)]). The log-
shell Z,,,,... , is contained in 771 B; (Indet 1). Thus, an upper bound of the log-volume
is given by (j + 1) log(). O

Lemma 1.10.  ([IUTchIV, Proposition 1.7, and some portions of (v), (vi), (vii)

in the proof of Theorem 1.10]) Fiz vg € Vg. For 1 < j < [*(= Z_Tl), we take the

weighted average —[10g(8)lv,.; of —|10(O){vy,...,v;,3 With respect to all (j + 1)-tuples

of elements {vi}o<i<j N (Vinod)v, with weight wy,, . o, = Hogigg‘ Wy, , where w, =
[( mod) Q'UQ] (not [K @v(@]) i.e.,
1
_| log( )|'UQ7] = W Z Wy, .. <_| log( )|{vo ,,,,, Uj})’

VO s V5 E(Vmod)v@
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where W = ZU07~-~an€(Vrnod)vQ Woyg,...,v; = (Zve(vmod)UQ wy )T = [Finoa : QP and
D o, 03 € (Vmod)ug is the summation of all (j + 1)-tuples of (not necessarily distinct)

elements vo,...,v; € (Vmod)vy (we write Z for it from now on to lighten the
V0,--+,Uj5

notation). Let —|log(©)]., denote the average of —|log(8)l|v,,; with respect to 1 <

Jj < I*, (which is called procession normalised average), i.c., —[log(@)l,, =

#Zlgjg*( [10g(9)lvg.5)-

1. For vy € V™, we have

[+ [+5 *
| 108(@)lug < — o+ log(Aug)+ - 108(0) +1og(s3, )+ (1+5) log(s5,) og(dieal)-

2. Forvg € V™ \ Vg™, we have —|10g(©)|v, < 0.

3. For vg € V§°, we have —[log(©)]v, <1+ 1.

Remark 1.10.1.  In the identification of muﬁi with ul((;fmod)v and the

identification of V with V,,,q, which are explained before, the weighted average

J
log
1 <Fmod)v~b _ 1
IT n = E E (Fooa) 0] = W E E
corresponds to 3 Woy,...,0; T Frnoa)e; Ogl 7 Wy
; <

szgj 'Ue(vrnod)UQ

log
O NI N A | log g+l Lo
Z er [(Fmod)'u:QvQ] o [Frnod:Q} Z M(Fnlod)v o [Flnod:Q] degFmOd’ Wthh 18
ve(Vmod)vQ ve(Vmod)vQ
(7 + 1) times the vg-part of the normalised degree map.

Proof. (1): The weighted average of the upper bound of Lemma 1.9 (1) gives
Ky, (n;)

.2 ,U'Kg ( K)
us —[10g(O)lvg,; < _Jz_l Z wvm oy K QUQ W Z wvo, Vj Z (m“'

0<i<j
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1
u&f@ (s5y)

1 * ;2 .
4T + 4u6§@ (5,§Q)log(dmodl)). Now, —%JQ—Z Z Wog,..os0; TRy Qg 15 equal to

J log
14 MKE(CIQ)
W2 . w > W [Ky - Qug)

VE(Vimod)vg V€ (Vinod)vg
1 42 i ()
T [Fuea: Q2 ve(%;% Ky (Fnoa)s]
— _ 1 ]_2 Z [KQ : (Fmod)v] MIIO('i (qw)
[Finod : Q] 21 e g (K : Fioal [Ky @ (Fiod)w]
1 42 2
T ‘72—1 we%:{)y@ M (Gu) = —‘;—l log (g ),

where the second equality follows from that ,ull?i (qu) = ,ullgf (90), [Kw : (Fimod)w]) = [Ky :

(Finod)w], and #V(K), = % for any w € V(K), with a fixed v € V04, since K

1 K
u}éii (0y,)

is Galois over Fyoq (Lemma 1.7 (4)). On the other hand, Z Wog, .. v, Z (W+
v; *Wog

V0,---,V5 OS'LSJ
Hg (55)
@v;@H ey 4#3&5@ (51?@) log(d?,,4l)) is equal to
J log K log (.Q
1 luKE (ayl) /’LQUQ (sv@) log < .
W Z Z w'u Z wv K R + R 1 + 4“@1)@ (5;@) log(dmodl)
i <j [ v, * Qv ] J+
OS’lSJ Ue(Vmod)vQ Ue(anod)vQ =1 Q
. log (vK log (SQ )
Jj+1 MK, (02 ) “@v@ vQ lo <
- Wy - + — +4p52 (s5) log(ds ol
[Fmod : Q] 'UE(VX:d) [KQ : QU@] j+1 Qv@( Q) ( d )
mo ’UQ
. log (~ K
.] + ]- IU’KU (Dg) log Q . lo <
B TQ T 435 + Dpug® (5= ) log(d gl
[Fmod @] E(VZ) [KU . (Fmod)v] +M@UQ (51)@) + (.7 + )MQvQ (S’UQ) Og( mod )
v mod vQ -

j+1 3 Ky (Fuoa)] i (0K)

B [Fmod : @] [}( : Fmod] [KQ : (Fmod)v]

lo . lo *
+ HQ;gQ (5(’9@) + 4(J + ]‘):u’(@f;@ (5'1%@) log(dmodl)
weV(K )

= (j+ 1) 1og(0))) + log(s,) + 4(j + 1) log(s5, ) og(dieal),

where the second equality follows from Zve(vmod)v@ Wy = [Fioa : Q] and the third

equality follows from that ul;éi (0y) = /LI;;% (0y), [Kw @ (Fimod)v] = [Ky : (Finod)s), and

#V(K), = % for any w € V(K), with a fixed v € V04 as before. Thus, by
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combining these, we have

'2
—[10g(©)vg,s < — llog(qu@) (j + 1) log(d})) + log g, + 4(j + 1) log(sy; ) log(dfoal)-

Then (1) holds since we have 7 5, .= (j+1) = il g = W5 and L i< it =
(l*+1)é2l*+1) = (l_lgl) . Next, (2) trivally holds by Lemma 1.9 (2). Finally, (3) holds by
Lemma 1.9 (3) with &2 log(m) < &22 <[ + 1 since [ > 3. O

Lemma 1.11.  ([IUTchIV, (ii), (iii), (viii) in the proof of Theorem 1.10, and
Proposition 1.6])

1. We have the following bound of log(d%) in terms of log(d¥trd) and log(fFtre):

log(d%) < log(d%*4) 4 log(fF»4) + 2log ! + 21.

2. We have the following bound of log(s®) in terms of log(dFtrd) and log(fFted):

log(s%) < 2dmoa (log(d7tr4) + log(f77¢)) + logl + 5.

3. We have the following bound of log(s<) log(d*

mod

l): there is Nprm € Rso (which is a

constant determined by using the prime number theorem) such that

log(5=) 108 (d4l) < 5 (dioal + pem)-

Proof. Note that log(d%)+log(f) = T Q} > wev(L)non €wdw log(qw)—i—[Lf{Q] > weSupp(it)
log(qw) = [L:Q] ZwEV(L)DOU (0w + LfL,w/ew)ew log(qy) for L = K, F, Fipd, Fimod, where
Gw is the cardinality of the residue field of L,,, e, is the ramification index of L,, over
Qp,, and vz, :=1ifw € Supp(f¥), and Li 4 =0 if w ¢ Supp(fF).

(1): The extension F/Fipq is tamely ramified outside 2.3.5 (Lemma 1.8). Then
by using Lemma 1.5 (1) (0r, + 1/eg = 01 + 1/e) for the primes outside 2.3.5 and
Lemma 1.5 (2) (0, +1/e <0p,+1/eg+m+1/e <0r,+1/eo+ (m+1)) for the primes
dividing 2.3.5, we have log(d%) + log(f!") < log(df®wd) 4 log(ffwa) + log(2!1.33.52) <
log(27wd) + log(f7wd) + 21 since [F @ Fipa] = [Fipa(V—1) @ Fipa][F : Fipa(v/=1)] <
2.#GLo(F3).#GLy(F5) = 2.(24.3).(2°.3.5) = 210.32.5, and log2 < 1, log3 < 2, logh <
2. In a similar way, we have log(d%) + log(f%) < log(o") + log(f¥') + 2logl, since K/F
is tamely ramified outside [ (Lemma 1.8). Then we have log(0¥) < log(d%) +1log(f¥) <
log(d%) + log(§F) + 2logl < log(ftrd) + log(ffwd) + 21log 1 + 21.

(2): We have log(sQ) < dmoa log(s mod) for vg € V™. By using Lemma 1.5
(1), we have log(s mod) < 2(10g(bvtpd) + log( tI’d)) for Vg 3 v 1 2.3.5.1, since 1 =
%q,, +1/eq,, <0 +1/€Fnoan < 2000000 T LiFmod v/ €Finoa, )s WheTe Limoq ) 1= 1

mod,v
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for v € Supp(f=°) and t;r,04,, = 0 for v ¢ Supp(f=e). Thus, we have log(s9) <
2dmod (log(dFtrd) + log(fFtrd)) 4+ log(2.3.5.1) < 2dmod (log(dfird) + log(fted)) 4+ logl + 5,
since log?2 < 1, log3 < 2, and log) < 2.

(3): We have log(s<) log(d?,

mod

1) < log(dyeal) - p<ar 1. By the prime number
theorem lim,, . nlog(py)/pn = 1 (Where Pn is the n-th prime number), there exists
Nprm € Rso such that Zprime p<n L < 31 ( ) for n > Nprm. Thenlog(dy  40) Zdej;,odl 1<
* dy gl _ * *
log(dmodl)m adt oql if d gl > e, and log(d, 40) Zp<d* 1< log(1prm)

3
%10;(‘1’;;‘:“]) = 3Mprm if dfoql < Nprm. Thus, we have log(s=)log(d 4l) < 2(dhoql +

Nprm)- U
Proposition 1.12.  ([IUTchIV, Theorem 1.10]) We set —|log(q)| := —5; log(q).
We have the following an upper bound of —[log(©)| == —3_, cv, |10g(2)|1,@ :

1
~ [10g(@)] < o log(a)+

I+1/ 1 12 12d,0 \
- ( G (1 - l—2> log(q) + (1 + d) (log(2"™¢) +log(§1)) + 10(d}, 04! +’flprm)> :

In particular, we have —|log(8)| < co. If| —|log(q )| < —|log(9Q)||, then we have

20dmod
l

1
108(0) < (14 2090 ) (0(0) +108(1)) + 20(d5al + o) |

where Nprm s the constant in Lemma 1.11.

Proof. By Lemma 1.10 (1), (2), (3) and Lemma 1.11 (1), (2), (3), we have

[+ [+5
_| log< )| < — Tl (q) + T (log(aFtpd> —|— lOg(thPd) + 210gl + 21)

4
+ (2moa (log (217 + log (7)) + logl +5) + (I + 5) 5 (dfyoal + flprm) + 1+ 1.

: 45 _ 2451 _ 145144 _ 141 4 I+1 _ 14116 < 20141
Since “° = > < == = (14 7),4 <45 = 77, and [ + 5 < S (for

[ > 5), this is bounded above by

[+1 1 4
<% (_6 log(q) + (1 + 7) (log(2**) + log(F"*»*) + 2log I + 21)

4
+ (2dimoa (log(07%) + log () + log 1 + 5) +

4 *
; 3 (@hoal + 7lprm) + 4)

33

I+1( 1 4 8o
:% (_élog(Q) + (1 T d) (log(d"e) + log(§+4))

4 16
+ <1+ 7) (2logl +21) + T(logl—H')) + 9

80
80 (@8l + mpem) + 4) .
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Since 4 + 8dmod < 12dmoa, (1 + 2)(2logl + 21) = 2logl + 8% 4 (1 + 4)21 < 2logi +
81 + (1 +1)21 = 2logl + 46 (for I > 5), 161! < 161 = 8, and 15 < 16 (for [ > 5),
this is bounded above by

[+1 1 12d,6 "
<T<‘alog<q>+<” zd)<1og<aFwd>+1og(thPd>>+2logZ+ (d5, dz+nprm>+74)'

Since 210gl + 74 < 20+ 74 < 2.741 4 2.741 = 22741 < 22212351 < 2df, 4l < 5(dhoql +
Nprm ), and 80 + < 10, this is bounded above by

I+1/ 1 12d,me )
< (—glog(q) + (1 + d) (log(2") + log(§7»1)) + 10(d} ! +77prm)> :

Since #1112 = 1(1+4 1) > 4, this is bounded above by

[+1 1 12 12d 0 *
< (g (1= 42 )o@+ (1 ) log(o) s+ og7) + 10l + )

4 12
1
Y] log(q)
If—]log( )| < —]1og(@)], then for any —|log(©)| < Ce log( ) we have —|log(q)| <
—|log(©)| < Ce log( ), hence, | Co > —1 | since |log(q )| = o log(q) > 0. By taking Ce
to be

%ji(l)g—l—(ql)) (_é (1 ;22) log(q) + (1 n 12dlm0d) (10g(‘OFtpd) + log(thpd)> +10(dr o4l + nprm)) 1,

we have

1 12\ ! 12d,,.0
6 log(q) < (1 - T?) <(1 + l d) (log(d") + log(F*»)) 4+ 10(doql + nprm)) )

Since (1—13)"' <2and (1—3)(1+ 2Od"Od) > 14+ 12d"°d & 12 < dioa (81— 21%) which
holds for I > 7 (by dmoa (8] — 240) >8] — 2% > 56 — @ > 12), we have

20dmod

1 .
g1060) < (14 2% ) (log(@0) 4 10g() + 20(dal + ).

§1.4. Third Reduction — Choice of Initial ®-Data.

In this subsection, we regard Up: as the A-line, i.e., the fine moduli scheme whose S-
valued points (where S is an arbitrary scheme) are the isomorphism classes of the triples
[E, ¢2,w], where E is an elliptic curve f : E — S equipped with an isomorphism ¢, :
(Z/27,)%? = E[2] of S-group schemes, and an S-basis w of f*Q}E/S to which an adapted
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x € f.Op(—2(origin)) satisfies z(¢2(1,0)) = 0, z(¢p2(0,1)) = 1. Here, a section x €
f+«Og(—2(origin)), for which {1, z} forms Zariski locally a basis of f.Og(—2(origin)), is
called adapted to an S-basis w of f*QJlE /s> if Zariski locally, there is a formal parameter
T at the origin such that w = (1 + higher terms)dT and z = - (1 + higher terms)
(cf. [KM, (2.2), (4.6.2)]). Then A € Upi(S) corresponds to E : y?> = z(z — 1)(x — \),
?2((1,0)) = (x = 0,y = 0), ¢2((0,1)) = (z = 1,y = 0), and w = —g—;’. For a cyclic
subgroup scheme H C FEJl] of order [ > 2, a level 2 structure ¢ gives us a level 2
structure Im(¢p2) of E/H. An S-basis w also gives us an S-basis Im(w) of f*Q%E/H)/S.
For a = (¢2,w), put Im(a) := (Im(¢2), Im(w)).

Let F' be a number field. For a semi-abelian variety F of relative dimension 1 over a
number Spec O whose generic fiber Er is an elliptic curve, we define Faltings height of
E as follows: Let wg be the module of invariant differentials on E (i.e., the pull-back of
Q}E /On via the zero section), which is finite flat of rank 1 over Or. We equip an hermi-
tian metric || |[5 on wp, = wg ®o, F, for v € V(F)* by (||a||31*)? := @ [, ana,

where E, := E xp F, and @ is the complex conjugate of a. We also equip an hermi-

tian metric H : H%alt on wg @z C = 69real:vEV(F)a““CWEU D GBcomplexzvGV(F’)H‘rC (WEU D wEU)v
by || - ||E" (resp. || - ||Z" and its complex conjugate) for real v € V(F)* (resp. for

complex v € V(F)*°), where wg, is the complex conjugate of wg,. Then we obtain
an arithmetic line bundle Wg = (wg, || - ||5'*). We define Faltings height of E by

P2 (B = [Fle] degp(wg) € R. Note that for any 0 # a € wg, the non-Archimedean

(resp. Archimedean) portion ht™(E, a)" (resp. ht™"(E,a)?*) of ht"™*(E) is given
by —[Fl:(@} Zvev(p)non logv(a)logq, = —[Flz(@] log #(wg/awg) (resp. ——[Fle] ZueV(F)arc [F, :

R] log (g S, an 6) v —m > wev (e [Fo : R]log (@ J, an 6)), where ht™!*(E)
= W™ (E, a)"" + W™ (E, a) is independent of the choice of 0 # a € wg (cf. Sec-
tion 1.1).

Take an algebraic closure Q of Q. For any point [E,a] € Up1 (Q) of the A-line, we

define ht™*([E, a]) := Wt"™(E). When [E,a] € Upi (C) varies, the hermitian metric

- 11

on Upi(C), where £ is the universal elliptic curve of the A-line. Note that this metric

on wg continuously varies, and gives a hermitian metric on the line bundle we

cannot be extended to the compactification P! of the A-line, and the Faltings height has
logarithmic singularity at {0, 1,00} (see also Lemma 1.13 (1) and its proof below).

We also introduce some notation. Let ht;" 19,1 0}) denote the non-Archimedean

portion of hty,, ({0,1,00}) ([E, @), i.e., ht(2 101,00 ([E, &) := ﬁdeg}p(m?({o, 1,00}))
for 2 : Spec Op — P! representing [E,a] € P1(F) = P1(Or) (Note that ' ({0, 1, 00})
is supported in V(F)"°" and deg is the degree map on ADiv(F), not on APic(Spec Of)).
Note that we have

Bt ({0.1.003) A B ({0,1,000)
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on P*(Q), since the Archimedean portion is bounded on the compact space (IP*)2*,

We also note that ht,, in [GenEll, Section 3] is a function on Mcy;(Q), on the other
hand, our ht;,”"((0,1,00}) 18 @ function on A-line P!(Q), and that the pull-back of ht., to
the A-line is equal to 6 times our ht, /(10,1 60}y ([[UTchIV, Corollary 2.2 ()], See also
the proof of Lemma 1.13 (1) below).

Lemma 1.13.  ([GenEll, Proposition 3.4, Lemma 3.5|, [Silv2, Proposition 2.1,
Corollary 2.3]) Let I > 2 be a prime, E an elliptic curve over a number field F' such that
E has everywhere at most semistable reduction, and H C E|[l] a cyclic subgroup scheme
of order l. Then we have

1. (relation between ht,, ({0,1,00}) and htFalt)

2htFalt S htwpl ({0,1,00}) S thFalt + log(htw]?l ({0,1,00})) S thFalt + Ehtwpl ({0,1,00})

for any e € R on Up1 (Q),

2. (relation betwen ht*™*([E,a]) and ht™*([E/H,Im()]))

) 1
htFalt([E7a]) -5 logl < htFalt([E/H, Im(a)]) < htFalt([E', al) + 3 log 1.

3. (relation between ht;,”"(0.1,00)) ([E, @]) and ht(} 101,00y ([E/H, Im(c)]))
Furthermore, we assume that | is prime to v(qg,v) € Zso for any v € V(F'), where
E has bad reduction with q-parameter qg ., (e.g., | > v(qg.) for any such v’s).

Then we have
L- htzgl({o,l,oo})([Ea Oé]) = htz;?({o,l,oo})([E/Hv Im(a)])

Proof. (1): We have the Kodaira-Spencer isomorphism w%@Q >~ wp1 ({0, 1, 00}),
where £ is the universal generalised elliptic curve over the compactification P! of the
A-line, which extends £ over the A-line Upi. Thus we have ht,, , ({0,1,00}) & 2ht,~ on
P!(Q) since the Archimedean contribution is bounded on the compact space (P!)at.

Thus, it is reduced to compare ht,_ and htlalt

. Here, ht,,_ is defined by equipping a
hermitian metric on the line bundle wg. On the other hand, ht¥! is defined by equip-
ping a hermitian metric on the line bundle wg, which is the restriction of wg. Thus,
it is reduced to compare the Archimedean contributions of ht,_ and ht¥!*. The for-
mer metric is bounded on the compact space (P1)*©. On the other hand, we show
the latter metric defined on the non-compact space (Up:)®*® has logarithmic singularity
along {0,1,00}. Take an invariant differential 0 # dz € wg over Op. Then dz de-
composes as ((d2y)real:vev(F)are, (dzv,@omplex:vev(l:‘)arc) on F3r¢ =~ Hreal:veV(F)m E,
1T Hcomplexzvew Fyare (Ey ] Ey), where dz,, E, are the complex conjugates of dz,, F,
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respectively. For v € V(F)™°, we have B, = F, /4., = F/(Z ® 1,Z) and dz,
is the descent of the usual Haar measure on F,, where QEv = e?™™ and 7, is in
the upper half plane. Then [|dz,|[5¢ = (Y52 [, dz, A dz)Y/? = (Im(r,))Y/? =
(=2 log(lgm,0[3))"/? and ht™ (B, d2)*° ~ — 57001 3 ey(myare [Fo : R] log(—10g |gm,0]0)
has a logarithmic singularity at |¢g |, = 0. Thus, it is reduced to calculate the logarith-
mic singularity of ht™*(E, dz) in terms of hty,, ({0,1,00})- We have |jg|, = |jg,|o =
\qE |, ' near |qg |y = 0, where jg is the j-invariant of E. Then by the arithmetic-

arc ~o

geometric inequality, we have htFalt(E,dz) ~ —m log HUEV(F)MC(log |J'E|U)[Fv:R]

> —% log (ﬁ ZygV(F)arc log |jE|v> near HUGV(F)MC JjEly = 00. On the other hand,

we have [7];1 ~ |A2, |A=1|2,1/|A\|2 near |\|, = 0, 1, oo respectively for v € V(F)*, since

J = 28(A\2=X+1)3/A%2(A—1)2. Thus, we have ht Y (0,1,001) ([E, 0]) = ﬁ > vey(Fynon (V(AE)+
VAE—D+0(1/A8)) 108 40 = 51y Doy (51 ) 108 00 = 571 Doy ey 108 175 o
By the product formula, this is equal to m Y cv(Fyere 108 |7E|». By combining these,

we obtain ht™"* (B, dz)™ 2 — 1 10g(2ht{ (0,1.00p) ([E, @]) & =5 log(hti (0.1,001 ([E, @)
near HveV(F)arc JjEly = 00, or equivalently, near HUGV(F)DOD l7Els = 0. We also have
bt (f0,1,00}) & Dby, ({0,1,00}) OD P!(Q) since the Archimedean contribution is bounded

on the compact space (P1)2*¢. Therefore, we have htFelt < ht, S htFalt+% log(hte,; ({0,1,00}))-

This implies 2ht™!* < ht,, ., ({0,1,00}) S 2htFalt 4 log(hte,., ({0,1,001))- The remaining por-

tion comes from log(1 + x) < ex for any € € Ryg.

(2): We have ht™*([E, a])™™ — logl < ht™*([E/H, Im(a)])™" < ht"™*([E, a])"o"
since #coker{wg/g — wg} is killed by I. We also have Wt ([E/H, Im(a)]))? =
Wt"([E, of)are + 1 log!, since (|| - ||Ea/1§q)2 =1(|| - ||E21*)2 by the definition of || - [|*2!* by
the integrations on F(C) and (E/H)(C). By combining the non-Archimedean portion
and the Archimedean portion, we have the second claim.

(3): Take v € V(F)"™ where E has bad reduction. Then the [-cyclic subgroup
H xp F, is the canonical multiplicative subgroup F;(1) in the Tate curve E x g F,, by
the assumption ! { v(gg,,). Then the claim follows from that the Tate parameter of
E/H is equal to [-th power of the one of E. O

Corollary 1.14.  ([GenEll, Lemma 3.5]) In the situation of Lemma 1.13 (3), we

have

l
1+e€
for some constant Ce € R which (may depend on €, however) is independent of E, F,
H and .

htwﬂ,,l({o,l,oo})([Ea Oé]) < htw]p1({0,1,oo})([E7 a]) + logl + Ce

Remark 1.14.1.  The above corollary says that if E[l] has a global multiplicative
subgroup, then the height of E is bounded. Therefore, a global multiplicative subspace
M C EJl] does not exist for general E in the moduli of elliptic curves. A “global mul-
tiplicative subgroup” is one of the main themes of inter-universal Teichmiiller theory.
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In inter-universal Teichmiiller theory, we construct a kind of “global multiplicative sub-
group” for sufficiently general F in the moduli of elliptic curves, by going out the scheme
theory. See also Appendix A.

Proof. For € > 0, take ¢ > 0 such that 1~ < 1+ €. There is a constant A. € R
such that ht,, , ({0,1,00}) < ohtFalt 4 €'hty,, ({0,1,00)) + A¢ on Upr (Q) by the second and
the third inequalities of Lemma 1.13 (1). We have ht,, , ({0,1,00}) < 2(1 + e)ht™ ! 4+ A,
on Up1(Q) by the choice of ¢ > 0, where A, := ﬁA’e By the first inequality of
Lemma 1.13 (1), we have 2htFalt < ht,, ({0,1,00}) + B for some constant B € R. Put
Ce = Ae—f—B Then we have ﬁhtfji?({o,l,oo})([E7 Oé]) = %_"_ehtg?p?({o’l,oo})([E/H, Im(a)]) S
20" ([E/H, Im(a)])+Ac < 20" ([E, a])+log I+ Ac < hty,, (01,00} ([E; a])+log I+B,
where the equality follows from Lemma 1.13 (3), and the first inequality follows from
Lemma 1.13 (2). Then the corollary follows from that ht;)”’.1,001) & htw,, ({0,1,00})

(See just before Lemma 1.13). O

From now on, we use the assumptions and the notation in the previous subsec-
tion. We also write log(q”) (resp. log(q?)) for the R-valued function on the A-line
Up: obtained by the normaised degree @deg ;, of the effictive (Q-)arithmetic divisor
determined by the g-parameters of an elliptic curve over a number field L at arbitrary
non-Archimedean primes. (resp. non-arcihmedean primes which do not divide 2). Note
that log(q) in the previous subsection avoids the primes dividing 2, and that for a
compactly bounded subset X C Up1(Q) whose support contains the prime 2, we have

log(q¥) = log(q?) on K (See [TUTchIV, Corolarry 2.2 (i)]). We also note that we have

]‘ non
6 10g(qv> ~ htwﬂyl({o,l,oo}) ~ htw]pl({ovlroo})

on PY(Q) (For the first equivalence, see the argument just before Lemma 1.13, and
the proof of Lemma 1.13 (1); For the second equivalence, see the argument just before
Lemma 1.13).

Proposition 1.15.  ([IUTchIV, Corollary 2.2]) Let K C Upi(Q) be a compactly

bounded subset with support containing Vi® and 2 € Vg™, and A C Up (Q) a finite

set containing {[(E,a)] | #Autg(E) # {:I:l}}. Then there exists Cx € Rsq, which
depends only on IC, satisfying the following property: Let d € Zso, € € Rsg, and
set d* := 2'2.3%5.d. Then there exists a finite subset €xcx 4. C Up1(Q)=? such that
Crcxe g O A and satisfies the following property: Let v = [(Er,a)] € (Upt (F) NK) \
Crexe g with [F: Q] < d. Write Fioa for the field of moduli of Ep := Ep xp F,
and Fipa = Fmoa(Er,4[2])) C F where Er,, is a model of Ew over Fyoa (Note
that Fiod(EF,, ,[2]) is independent of the choice of the model Ep,__, by the assumption

of Autiz(E%) # {£1}, and that Fioa(EF,,,[2]) C F since [(Ep,a)] € Upr(F). See
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Lemma 1.7 (1)). We assume that all the points of Er[3.5] are rational over F' and that
F = Fipa(V—1,ER,,[3.5]), where Ep,,, is a model of Ex over Fypq which is defined
by the Legendre form (Note that Er = Ef, , XF,,, F' and Er has at most semistable
reduction for all w € V(F)™™ by Lemma 1.7 (2), (3)). Then Ep and Fyoq arise from
an initial ©-data (See Definition 10.1)

(F/F,Xp,l,Cx,V, V22 €)

mod>

(Note that it is included in the definition of initial ©-data that the image of the outer
homomorphism Gal(Q/F) — GLo(F;) determined by Er[l] contains SLy(F;)). Further-
more, we assume that | —|log(q)| < —|log(©)|| for Er and Fyoa, which arise from an

initial ©-data. Then we have
hty,, ({0,1,00) (%) < (14 €)(log-diffp: () + log-cond g 1,00} (2)) + Ckc.

Remark 1.15.1.  We take A = {[(E,a)] € Up(Q) | E does not admit Q-core}.
See Definition 3.3 and Lemma C.3 for the definition of k-core, the finiteness of A, and

that A > {[(E,a)] | #Autg(E) # {il}}.

Remark 1.15.2. By Proposition 1.15, Theorem 0.1 is reduced to show —|log(q)| <

—[log(©)| for Er and Fy,04, which arise from an initial ©-data. The inequality —| loé(g)| <
—|log(©)] is almost a tautological translation of the inequality which we want to show
(See also Appendix A). In this sense, these reduction steps are just calculations to reduce
the main theorem to the situation where we can take an initial ©-data, i.e., the situation
where the inter-universal Teichmiiller theory works, and no deep things happen in these

reduction steps.

Proof.  First we put €rex 4 := A, and we enlarge the finite set €rey ; several times
in the rest of the proof in the manner that depends only on K and d, but not on x.
When it will depend on € > 0, then we will change the notation €rcy ; by Erex 4 .. Take
2 = [(Bp,0)] € (Us (F) 1K) \ Exeye .

Let nprm € R be the constant in Lemma 1.11. We take another constant {prm €
R<o determined by using the prime number theorem as follows (See [GenEll, Lemma
4.1]): We define d(z) = > ;0. p<,logp (Chebychev’s J-function). By the prime
number theorem (and Lemma C.4), we have ¥(x) ~ z (r — o0), where ~ means that
the ration of the both side goes to 1. Hence, there exists a constant R > &4 > 5 such

that
2 4
(s0) 3% <(x) < 3%

for any = > &prm-
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Let h:= h(Er) = log(q") = ﬁ 2 vev(Fymon It fo10g(py) be the summation of the
contributions from q,, for v € V(F)"°"  where p, and f, denote the residual characteristic
at v and the degree of extension of the residue field over [F), respectively. Note also that
hy € Z>o and that h, = 0 if and only if Er has good reduction at v. By %log(qv) =~
hty, , ({0,1,00}) and Proposition C.1, we there are only finiely many isomorphism classes
of Ep (hence finiely many x = [Ep,al) satisfying h < Eprm + Mprm- Therefore, by
enlarging the finite set €rcx 4, we may assume that

t\’)\»—t

(s1)

Z fprm + Tlprm -
Note that hz > 5 since {prm > 5 and Nppm > 0. We have

(s2)

2d"h* log(2d"h) > 2[F : QJh* log(2[F : Qlh) > Y 2k~ % log(2h, f, log(pu))hu fo log(py)
hy£0

> Zh‘%log Yo > Y hT 2 log(hy)hy > > log(hy),

hy 70 hy>h1/2 hy>h1/2

where the third inequality follows from 2log(p,) > 2log2 = log4 > 1. By [F : Q] < d*,
we also have

(3)  d*hF>[F:Qhi= > hTEhfilog(p) > Y. hTih,log(p,)

veV(F‘)non ’UEV(F)“OD

Z h™2hylog(p,) > Y log(py).

hy>h1/2
Let A be the set of prime numbers satisfying either
(S1) p<hz,
(S2) p| hy # 0 for some v € V(F)"°" or
(S3) p = p, for some v € V(F)™°" and h, > hz.
Then we have

(S'1) >-,.s1)logp = d(hz) < %h% by the second inequality of (s0), and hz > &prm, Which
follows from (s1),

(S°2) X ,.(52), not (53) 108D < 32p, s pas2 log(hy) < 2d*hz log(2d*h) by (s2), and

(S73) (s logp < d*h? by (s3).
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Then we obtain

(S'123) Vai= log(p) < 2h* +d*h? +2d"h? log(2d"h)
peA

< Ad*h? log(2d*h) < —&pm + 5d*h? log(2d* h),

where the first inequality follows from (S’1), (S’2), and (S’3), the second inequality
follows from 2hz < d*hZ and log(2d*h%) > log4 > 1, and the last inequality follows
from (s1). Then there exists a prime number [ ¢ A such that | < 2(94 + &m), because
otherwise we have 94 > 9(2(94 4 &pm)) = 2(2(04 + &prm)) = 394, by the second
inequality of (s0), which is a contradiction. Since [ ¢ A, we have

(P1) (upper bound of [)
(5<)hz <1< 10d*hz log(2d*h) (< 20(d*)2h2),
where the second inequality follows from that [ does not satisfy (S1), the third
inequality follows from [ < 2(¥ 4 +&prm) and (S’123), and the last inequality follows
from log(2d*h) < 2d*h < 2d*h3 (since logz < x for x > 1),

(P2) (monodromy non-vanishing modulo [)
[t hy for any v € V(F)™" such that h, # 0, since [ does not satisfy (S2), and

(P3) (upper bound of monodromy at [)
if | = p, for some v € V(F)™°", then h, < hz, since | does not satisfy (S3).

Claim 1: We claim that, by enlarging the finite set €rcx 4, we may assume that
(P4) there does not exist [-cyclic subgroup scheme in Ep[l].

Proof of Claim 1: If there exists an I-cyclic subgroup scheme in Er[l], then by applying
Corollary 1.14 for € = 1, we have l_72htw]p1 ({0,1,00}) (#) < logl+Ty < I+Tx (since logx <
z for z > 1) for some Tic € R~o, where Tic depends only on K. Thus, ht,, , ({0,1,00}) (%) is
bounded because we have ht,, , ({0,1,00})(%) < li—lz + l—%T’C < 71742 + %TK;. Therefore,
there exist only finitely many such x = [EF,a]’s by Proposition C.1. The claim is

proved.

Claim 2: Next, we claim that, by enlarging the finite set €rcy ;, we may assume that

(P5) 0 # Vbad .= Loy e Vo | 421, and Er has bad multiplicative reduction at v}

mod * mod
Proof of Claim 2: First, we note that we have

(p5a) h logl < h? log(20(d*)2h?) < 2h= log(5d*h)

1

(p5b) < 8hz log(2(d*)Th7) < 8h22(d*)Thi = 16(d*)ih1.
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where the first inequality follows from (P1). If Vbad = ) then we have h ~ log(g?) <
hzlogl < 16(d*)hi on K, where the first inequality follows from (P3), and the last
inequality is (p5b). Thus, hi, hence h as well, is bounded. Therefore, there exist only
finitely many such x = [Fr, a|’s by Proposition C.1. The claim is proved.

Claim 3: We also claim that, by enlarging the finite set €rey 4, we may assume that

(P6) The image of the outer homomorphism Gal(Q/F) — GLy(F;) determined by Er|l]
contains SLo(IF;).

Proof of Claim 3 (See [GenEll, Lemma 3.1 (i), (iii)]): By (P2) [ { h, # 0 and (P5)
11

01)
Here, N, generates an [-Sylow subgroup S of GLy(F;), and the number of [-Sylow
subgroups of GLo(IF;) is precisely [ + 1. Note that the normaliser of S in GLg(F;) is
the subgroup of the upper triangular matrices. By (P4) E[l] 5 (I-cyclic subgroup),

meafd # (), the image H of the outer homomorphism contains the matrix N, :=

the image contains a matrix which is not upper triangluar. Thus, the number ny of
[-Sylow subgroups of H is greater than 1. On the other hand, ny = 1 (mod!) by the
general theory of Sylow subgroups. Then we have ny =1+ 1 since 1 <ng <[+ 1. In

01 11
generated by N and N_. Then it suffices to show that G = SLy(FF;). We note that
for a,b € I}, the matrix N? N¢ (this makes sense since N} = N’ = 1) takes the vector

11 10
particular, we have N, = ) ,N_ = ( € H. Let G C SLo(IF;) be the subgroup

v i= <(1J) to ( bi— 1). This implies that we have (FZX X Fl) C G. This also implies
a

that for ¢ € F°, there exists A, € G such that A.v = g (= cAjv). Then we have

cv = A7t Aov € Gu. Thus, we proved that (F; x F;) \ { (8) } C Gw. Take any matrix

M € SLy(F;). By multiplying M by an element in GG, we may assume that Mv = v,

0 10
since (F; x Fy) \ { (()) } C Gw. This means that M C { ( 1) } Thus, M is a power
*

of N_. The claim is proved.

Then we take, as parts of initial ©-data, F to be Q so far, F, X, | to be the
number field F', once-punctured elliptic curve associated to Fr, and the prime number,
respectively, in the above discussion, and V?nafd to be the set Vglafd of (P5). By using
(P1), (P2), (P5), and (P6), there exist data C'j, V, and €, which satisfy the conditions
of initial ©-data (See Definition 10.1. The existence of V and € is a consequence of
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(P6)), and moreover,

(P7) the resulting initial ©-data (F/F, Xp,l,C,V,Vbad "¢} satisfies the conditions in
Section 1.3.

Now, we have | —|log(q)| < —|log(@)] | by assumption, and apply Proposition 1.12 (Note

that we are in the situation where we can apply it).

Then we obtain

1
G log(q) < (1 +

(A) < (1 + d*h—%) (log(@74) + log(f7»)) + 200(d*)2h> log(2d*h) + 207pem,

2Odmod

) (og(274) + Log(f704)) + 20(donl + fprm)

where the second inequality follows from the second and third inequalities in (P1) and
20dmod < dF  4(:= 212.33.5.dmod) < d*(:= 2'2.3%.5.d10q). We also have

mod

1 1 1 1
(B) ¢ log(a®®) — ¢ log(a) < £t logl < Sh# log(5d”h) < h¥ log(2d"h).
where the first inequality follows from (P3) and (P5), the second inequality follows from

(p5a), and the last inequality follows from 5 < 23. We also note that
1

(© < log(a") — 7 log(a®) < B

for some constant Bx € Rsg, which depends only on K, since log(q") ~ log(q/?) on K
as remarked when we introduced log(q¥) and log(qf?) just before this proposition. By
combining (A), (B), and (C), we obtain

11 1 , 1
h= 2 log(q") < (1 + d*h_§> (log(2"») + log(f"v*)) + (15d")?h# log(2d"h) + 5 Cic

1. 2 1
(ABC) < (1 + d*h—%) (log(d"w) + log(f"*»)) + ghg(ﬁod*)%—% log(2d"h) + 5 Ck,
where we put Cc := 40mp,m+2B, the first inequality follows from 200 < 152, the second
inequa}ity follows from 1 < 32 = 1242, Here, we put ep := (60d*)2h 2 log(2d*h) (>
5d*h~2). We have
(Epsilon)  ep < 4(60d*)2h™ % log(2(d*)Th1) < 4(60d*)*h ™2 hi = 4(60d*)>h 7.

Take any € > 0. If ez > min{1, ¢}, then h, hence h as well, is bounded by (Epsilon).
Therefore, by Proposition C.1, by replacing the finite set €rcy ; by a finite set €ree 4,
we may assume that ep < min{1, e}. Then finally we obtain

1 9 \! 1 2 \ "1
éh < (1 — gEE) (1 + 5€E) (log(DFth) + log(thpd)) + (1 — 56]3) §CKL
<(1+e€gp) (log(DFth) + log(thPd)) + Cx

< (1 + 6) (log—diff]pl (:EE) + 10g-C0nd{0’1,oo}(l'E)) + Cx,
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where the first inequality follows from the definition of e and € > 5d*h~2, the sec-
1+ 32 <1+ eE (i.e., eg(1 — eg) > 0, which holds since

ep < 1), and 1 — %EE > % (1e ep < , which holds since eg < 1), and the
third inequality follows from ep < €, log- dlffpl (zg) = log(dfwd) by definition, and

ond inequality follows from

log(fftea) < log-condyg 1,00} (zE) (Note that Supp(f) excludes the places dividing 2/ in
the definition). Now the proposition follows from £ log(q") ~ hte, , (f0,1,00}) On P! (Q) as
remarked just before this proposition (by the effect of this =, the Cx in the statement
of the proposition may differ from the Cix in the proof). O

Remark 1.15.3.  (Miracle Identity) As shown in the proof, the reason that the
main term of the inequality is 1 (i.e., ht < (+ €)(log-diff 4+log-cond) + bounded term)
is as follows (See the calculations in the proof of Lemma 1.10): On one hand (ht-side), we
have an average 621l 1/12 Zé/ 21 §2 ~ 21l l/%% (%)3 = i. Note that we multiply % since the
theta function under consideration lives in a covering of degree 2[, and that we multiply
6 since the degree of A-line over j-line is 6. On the other hand ((log-diff + log-cond)-
side), we have an average Z/Lz Zé/Qlj %% (1)2 =1

coincide! In other words, the reason that the main term of the inequality is 1 comes

These two values miraculously

from the equality

1
6 (the degree of A-line over j-line) x 2 (theta function involves a double covering)

n
X 2—12 (the exponent of theta series is quadratic) x % (the main term of Z j% ~n?/3)
j=1

1 . . 1 . —~ .

= o1 (the terms of differents are linear) x B (the main term of Z Jj~n“/2).
j=1

This equality was already observed in Hodge-Arakelove theory, and motivates the def-
inition of the ©-link (See also Appendix A). Mochizuki firstly observed this equality,
and next he established the framework (i.e. going out of the scheme theory and studying
inter-universal geometry) in which these calculations work (See also [IUTchIV, Remark
1.10.1)).

Note also that it is already known that this main term 1 cannot be improved by
Masser’s calculations in analytic number theory (See [Mass2]).

Remark 1.15.4.  (e-term) In the proof of Proposition 1.15, we also obtained an
upper bound of the second main term (i.e., the main behaviour of the term involved to
€) of the Diophantine inequality (when restricted to K):

ht < &+ #67 log(0)

on K, where x is a positive real constant, ht := ht,, ({0,1,00}) and 0 := log-diffp: +
log-condg, 1,00} (See (ABC) in the proof of Proposition 1.15) It seems that the expo-
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nent % suggests a possible relation to Riemann hypothesis. For more informations,
see [IUTchlV, Remark 2.2.1] for remarks on a possible relation to inter-universal
Melline transformation, and [vFr], [Mass2] for lower bounds of the e-term from an-
alytic number theory.

Remark 1.15.5.  (Uniform ABC) So-called the uniform abc Conjecture (uni-
formity with respect to d of the bounded discrepancy in the Diophantine inequality)
is not proved yet; however, we have an estimate of the dependence on d of our upper
bound as follows (cf. [IUTchIV, Corollary 2.2 (ii), (iii)]): For any 0 < ¢4 < 1, put
€ := 15€4(< 3). Then we have

min{1, e} 'er = min{1, e}_1(60d*)2h_% log(2d*h)
= (min{1, e}¢) 1 (60d*)2h ™7 log(24 (d*) ahe)
< (min{1, e}e) "1 (60d*)>Tap~ (3D < ((min{1,e}e;>—3(60d*)4+6dh—1)%‘53,

where the first inequality follows from h3 > 5, and x < logx for x > 1, and the second
inequality follows from —3(3 —€) = -2 4+ 2¢; < -2 < —land (5 —€)(4 + €q) =
—%63 + ied +2> ied + 2 > €; + 2. We recall that, at the final stage of the proof of
Proposition 1.15, we enlarged €rey ;4 to €rey 4 so that it includes the points satisfying
eg > min{l,e}. Now, we enlarge €re 4 to €re 4 ,, Which depends only on K, d, e,
and €4, so that it includes the points satisfying eg > min{1, e}. Therefore, we obtain
an inequality
ht = éh < Hypis min{1, 6}_3€;3d4+6d + Hy

on €rcie 4., Where Hynip € Ry is independent of K, d, €, and ¢4, and Hx € Ry
depends only on K. The above inequality shows an explicit dependence on d of our
upper bound.

§2. Preliminaries on Anabelian Geometry.

In this section, we give some reviews on the preliminaries on anabelian geometry

which will be used in the subsequent sections.

§2.1. Some Basics on Galois Groups of Local Fields.

Proposition 2.1.  ([AbsAnab, Proposition 1.2.1]) Fori = 1,2, let K; be a finite
extension of Q,, with residue field k;, and K; be an algebraic closure of K; with residue
field k; (which is an algebraic closure of k;). Let e(K;) denote the ramification index of
K; over Q,, and put f(K;) := [k; : Fp,]. Put Gk, == Gal(K,/K;), and let Pk, C Ik, (C
Gk,) denote the wild inertia subgroup and the inertia subgroup of Gk, respectively. Let
a:Gg, = Gg, be an isomorphism of profinite groups. Then we have the following:
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1. p1 =p2(=:p).

2. The abelianisation o™ : G52 = G52, and the inclusions k} C Og. C K C G,

where the last inclusion is defined by the local class field theory, induce isomorphisms
(a) a® : k5 kX,

(b) o : Of = Of,,

(¢) o : OF = O%  (cf. Section 0.2 for the notation OF. ), and

(d) a®®: K = K.

3. (a) [K1:Qp) = [Ka:Qpl,
(b) f(K;y) = f(K2), and
(c) e(K1) = e(K2).

4. The restrictions of a induce

(a) alrg, : Ik, = Ik, and

(b) Oz|pK1 ZPKl :)PK2.

5. The induced map G /I, — Gj}l/IK2 preserves the Frobenius element Frobg,
(i.e., the automorphism given by k; > x v x#%i).
m-

open

6. The collection of the isomorphisms {(Oz\Ul)ab R U;b} o

Gk, D U1—U2CGk,
duces an isomorphism pig,7(K1) = pgsz(Kz), which is compatible with the actions
of G, fori=1,2, via a: Gy, — Gk,. In particular, o preserves the cyclotomic
characters Xcyc,i fori=1,2.

7. The isomorphism o : H*(Gal(K2/K2), pgz(K2)) = H?*(Gal(K1 /K1), poyz(K1))
induced by a is compatible with the isomorphisms H?*(Gal(K;/K;), poz(K;)) =
Q/Z in the local class field theory for i =1,2.

Remark 2.1.1.  In the proof, we can see that the objects in the above (1)—(7) are
functorially reconstructed by using only K; (or K3), and we have no need of both of
K; and K, nor the isomorphism « (i.e., no need of referred models). In this sense, the
reconstruction algorithms in the proof are in the “mono-anabelian philosophy” of
Mochizuki (See also Remark 3.4.4 (2), (3)).

Proof. 'We can group-theoretically reconstruct the objects in (1)-(7) from G, as
follows:
(1): p; is the unique prime number which attains the maximum of {rankzl G?g } J: prime’

by the local class field theory G52 = (K;)".

1
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(2a): k) = (G2 )Prmetop the prime-to-p part of the torsion subgroup of G52,
where p is group-theoretically reconstructed in (1).

(3a): [K; : Qp] = ranky, G532 — 1, where p is group-theoretically reconstructed in
(1).

(3b): pf(Ke) = (k) + 1, where k; and p are group-theoretically reconstructed in
(2a) and (1) respectively.

(3¢c): e(K;) = [K; : Qp]/f(K;), where the numerator and the denominator are
group-theoretically reconstructed in (3a) and (3b) respectively.

(4a): Ik, = ﬂGKiDU:Open’e(U):e(GKi) U, where e(U) denotes the number group-
theoretically constructed from U in (3c) (i.e., e(U) := (rankz U*"—1)/ logp(#(Uab)ngsne'to'p—k
1), where {p} := {p|rankz, G5’ = max;rankz, G%" } and log, is the (real) logarithm
with base p).

(4b): Pk, = (Ik,)P™P the pro-p part of Ig,, where Ig, is group-theoretically
reconstructed in (4a).

(2b): Ok, = Im (Ig,) := Im {Ik, = Gk, - G52 } by the local class field theory,
where I, is group-theoretically reconstructed in (4a).

(5): The Fronbenius element Frobg, is characterised by the element in G, /I, (=
G42 /Im (I,)) such that the conjugate action on I, /Pk, is a multiplication by p/ (K:)
(Here we regard the topological group Ik, /Pk, additively), where Ik, and Pk, are
group-theoretically reconstructed in (4a) and (4b) respectively.

(2¢): We reconstruc O% by the following pull-back diagram:

0 —Im (Ig,) Ga> Ga2 /Im (I,) —0
0——=1Im (IKI) O?{Z ZzoFl"ObKi E— 0,

where Ik, and Frobg, are group-theoretically reconstructed in (4a) and (5) respectively.
(2d): In the same way as in (2c), we reconstruc K by the following pull-back

diagram:
0 —Im (Ig,) Ga> G32 /Im (Ig,) —=0
0 ——Im (IKQ) K,L-X ZFI‘ObKi 0,

where I, and Frobg, are group-theoretically reconstructed in (4a) and (5) respectively.

(6): Let L be a finite extension of K;. Then we have the Verlangerung (or transfer)
G5 — G7 of G C G, by the norm map G5 = Hy(Gk,,Z) — H1(GL,Z) = G5 in
group homology, which is a group-theoretic construction (Or, we can explicitly construct
the Verlangerung G‘}g — G4 without group homology as follows: For x € Gk, take
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a lift + € Gg, of . Let Gk, = [][, 9:Gr denote the coset decomposition, and we
write Tg; = gj;y2; for each i, where z; € Gr. Then the Verlangerung is given by
G5 3z ([, #imod [Gr,GL]) € G3*, where [G, G| denotes the topological closure
of the commutator subgroup [Gr,GL] of G1). Then this reconstructs the inclusion
K < L*, by the local class field theory and the reconstruction in (2d). The conjugate
action of Gk, on G — G3° preserves L* C G2P by the reconstruction of (2d). This
reconstructs the action of Gk, on L*. By taking the limit, we reconstruct EX, hence
poz(Ki) = Q/Z @5 Hom(Q/Z,EX) equipped with the action of Gk,.

(7): The isomorphism H?(Gal(K;/K;), pg/z(K;)) = Q/Z is defined by the com-
position

H?(Gal(K;/ K:), poyz(Ky)) = H (Gal(KG/K), Ky ) «— H(Gal(K"/K;), (KJ"))
= H(Gal(K["/K;), Z) «— H'(Gal(K}"/K;),Q/Z) = Hom(Gal(K;" /K;), Q/Z) = Q/Z,

where the first isomorphism is induced by the canonical inclusion g,z (K;) — EX, the
multiplicative group (K)* (not the field K') of the maximal unramified extension K"
of K; and the Galois group Gal(K}"/K) are group-theoretically reconstructed in (2d)
and (4a) respectively, the third isomorphism is induced by the valuation (K}")* — Z,
which is group-theoretically reconstructed in (2b) and (2d), the fourth isomorphism
is induced by the long exact sequence associated to the short exact sequence 0 —
7 — Q — Q/Z — 0, and the last isomorphism is induced by the evaluation at Frobg,,
which is group-theoretically reconstructed in (5). Thus, the above composition is group-
theoretically reconstructed. U

§2.2. Arithmetic Quotients.

Proposition 2.2.  ([AbsAnab, Lemma 1.1.4]) Let F' be a field, and put G :=
Gal(F/F) for a separable closure F' of F. Let

1A= II—=-G—=1

be an exact sequence of profinite groups. We assume that A is topologically finitely
generated.

1. Assume that F is a number field. Then A is group-theoretically characterised in 11
by the mazimal closed normal subgroup of I which is topologically finitely generated.

2. (Tamagawa) Assume that F' is a finite extension of Q,. For an open subgroup
' C 11, we put A’ := ' N A and G’ :=II'/A’, and let G' act on (A")* by the
conjugate. We also assume that
(Tam1)

VII' C I : open, Q := ((A’)ab> o /(tors) is a finitely generated free z—module,



A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 47

where ()g denotes the G'-coinvariant quotient, and (tors) denotes the torsion part
of the numerator. Then A s group-theoretically characterised in Il as the intersec-
tion of those open subgroups II' C II such that, for any prime number | # p, we
have

(Tam?2) dimg, (Ir')* ®z Qp — dimg, (Ir')*" ®7 Q
= [I1: 1] (dimg, ()™ 3 @, — dimg, ()™ 25 Q).

where p is also group-theoretically characterised as the unique prime number such
that dimg, (H)ab ®5 Qp — dimg, (H)ab ®5 Qi # 0 for infinitely many prime numbers
l.

Proof. (1): This follows from the fact that every topologically finitely generated
closed normal subgroup of Gal(F/F) is trivial (See [FJ, Theorem 15.10]).
(2): We have the inflation-restriction sequence associated tol - A - 1I - G — 1:

1— H'(G,Q/Z) - H'(I,Q/Z) - H'(A,Q/Z)° — H*(G,Q/Z),

where ()¢ denotes the G-invariant submodule. For the last term H?(G,Q/Z), we also
have H?(G,Q/Z) = lim | H*(G,17/7) = lim Hom(HY(G, i), Q/Z) = Hom(l'&nn HY(G, pn),
Q/Z) = 0 by the local class field theory. Thus, by taking Hom(—,Q/Z) of the above

exact sequence, we obtain an exact sequence
0— (A*), = I* - G* — 0.

Take the finite extension F’ corresponding to an open subgroup G’ C G. Then by the
assumption of (Taml), we obtain

dimg, (I1)™ ®; @, — dimg, (I1)™ @5 Q,
— dimg, (G')*” ©5 Q, — dimg, (G)*” @5 Q, = [F" : Q,),

where the last equality follows from the local class field theory. The group-theoretic
characterisation of p follows from the above equalies. The above equalites also imply
that (Tam2) is equivalent to [F’ : Q,] = [II : II'|[F : Q,], which is equivalent to
[II:1I')] = [G : G'], i.e., A = A’. This proves the second claim of the proposition. [

Lemma 2.3.  ([AbsAnab, Lemma 1.1.5]) Let F' be a non-Archimedean local field,
and A a semi-abelian variety over F. Take an algebraic closure F of F, and put G :=
Gal(F/F). Let T(A) := Hom(Q/Z, A(F)) denote the Tate module of A. Then Q :=
T(A)g/(tors) is a finitely generated free Z-module.
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Proof. We have an extension 0 -+ S — A — A’ — 0 of group schemes over F,
where S is a torus and A’ is an abelian variety over F. Then T(S) = Z(1)®" for some
n after restristing on an open subgroup of G, where T'(S) is the Tate module of T
Thus, the image of T'(S) in @ is trivial. Therefore, we may assume that A is an abelian

variety. By [SGATt1l, Exposé IX §2], we have extensions

0— T(A)St = T(A) = T(A)° -0,
0=T(A) 2 TA)STSTA) =0

of G-modules, where T(A)<~! and T(A)<~2 are the “fixed part” and the “toric part”
of T'(A) respectively in the terminology of [SGATt1, Exposé IX §2], and we have isomor-
phisms T'(A)~! = T(B) for an abelian variety B over F' which has potentially good re-
duction, and T(A)° = M°®,Z, T(A)~2 = M~2®;7Z(1), where M° and M2 are finitely
generated free Z-modules and G acts both on M? and M ~2 via finite quotients. Thus,
the images of T(A)™2 and T(A)~! in Q are trivial (by the Weil conjecture proved by
Weil for abelian varieties in the latter case). Therefore, we obtain Q = (T'(A)Y)g/(tors),
which is isomorphic to (M%)¢/(tors) ®zZ, since Z is flat over Z. Now the lemma follows
since (M°)g/(tors) is free over Z. O

Corollary 2.4. We have a group-theoretic characterisation of A = m (X%, T)
in II = m(X,T) as Proposition 2.2 (2) (Tam2), where X is a geometrically connected
smooth hyperbolic curve over a finite extension F of Q,, ands : Spec F — X a geometric
point lying over Spec F (which gives a geometric point s on X7z =X Xxp F via X7z —
X).

Remark 2.4.1.  Let X be a set of prime numbers such that p € ¥ and #X > 2. In
the situation of Corollary 2.4, let A* be the maximal pro-¥ quotient, and put II* :=
I1/ker(A — A¥). Then the algorithm of Proposition 2.2 (2) works for IT* as well, hence
Corollary 2.4.1 holds for IT* as well.

Proof. The corollary immediately follows from Proposition 2.2 (2) and Lemma 2.3.
O

§2.3. Slimness and Commensurable Terminality.

Definition 2.5.

1. Let G be a profinite group. We say that G is slim if we have Zg(H) = {1} for any
open subgroup H C G.

2. Let f : G; — G5 be a continuous homomorhism of profinite groups. We say that
G relatively slim over Gy (via f), if we have Zg,(Im{H — G2}) = {1} for any
open subgroup H C G.
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Lemma 2.6.  ([AbsAnab, Remark 0.1.1, Remark 0.1.2]) Let G be a profinite
gruop, and H C G a closed subgroup of G.

1. If H C G is relatively slim, then both of H and G are slim.

2. If H C G is commensurably terminal and H is slim, then H C G 1is relatively slim.

Proof. (1): For any open subgroup H' C H, we have Zy(H') C Zg(H') = {1}.
For any open subgroup G’ C G, we have Z5(G') C Zg(HNG') = {1} since H NG’ is
open in H.

(2): Take an open subgroup H' C H. The natural inclusion Cq(H) C Cg(H') is
an equality since H' is open in H. Then we have Zg(H') C Cq(H') = Cq(H) = H.
This combined with Zy(H') = {1} implies Zg(H') = {1}. O

Proposition 2.7.  ([AbsAnab, Theorem 1.1.1, Corollary 1.3.3, Lemma 1.3.1,
Lemma 1.3.7]) Let F be a number field, and v a non-Archimedean place. Let F, be
an algebraic closure of F,,, F the algebraic closure of F in F,,.

1. Put G := Gal(F/F) > G, := Gal(F,/F,).

(a) G, C G is commensurably terminal,
(b) G, C G is relatively slim,

(c) Gy is slim, and

(d) G is slim.

2. Let X be a hyperbolic curve over F. Take a geometric point s : Spec F,, — Xp =
X xp F, lying over SpecF, (which gives geometric points 3 on X7 =X xp F,
Xr, = X xXp Fy, and X via Xz — Xz — X, and Xz — Xp, — X ). Put
A = m(X%,5) 2 m(Xg,5), = m(X,5), and 1L, := m(XF,,5). Let z be
any cusp of X% (i-e., a point of the unique smooth compactification of X over F
which does not lie in X3 ), and I, C A (well-defined up to conjugates) denote the
inertia subgroup at x (Note that I, is isomorphic to Z(l)) For any prime number
[, let Ig(f) — AW denote the mazimal pro-l quotient of I, C A (Note that Ig(cl) 18
isomorphic to Z;(1) and that it is easy to see that I - AO s injective).

(a) A is slim,
(b) 11 and 11, are slim, and

(c) I c AO and I, ¢ A are commensurably terminal.

Remark 2.7.1.  Furthermore, we can show that Gal(F/F) is slim for any Kummer-
faithful field F' (See Remark 3.17.3).
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Proof. (1)(a)(See also [NSW, Corollary 12.1.3, Corollary 12.1.4]): First, we claim
that any subfield K C F with K # F has at most one prime ideal which is indecom-
posable in F. Proof of the claim: Let p; # po be prime ideals in K which do not split
in F. Let f; € K[X] be any irreducible polynomial of degree d > 0, and f, € K[X]
a completely split separable polynomial of the same degree d. By the approximation
theorem, for any € > 0 there exists f € K[X]| a polynomial of degree d, such that
|f — filp, < € and |f — fa]p, < €. Then for sufficiently small € > 0 the splitting fields
of f and f; over K, coincide for ¢ = 1,2 by Krasner’s lemma. By assumption that
p1 # po do not split in F, the splitting fields of f; and fy over K coincide. Then we
have K = F since splitting field of f is K, and f; is any irreducible polynomial. The
claim is proved. We show (1a). We specify a base point of G, to kill the conjugacy
indeterminacy, that is, we take a place ¥ in K, over v, and we use Gy instead of G,.
Take any g € Ce(Gz). Then G5 NGy # {1}, since Gz N gGz9~" = G5 N G g5 has finite
index in G3. Then the above claim implies that Gz N G435 = G5, i.e., gv = v. Thus, we
have g € Gy.

(c): Let Gx C G, be an open subgroup, and g € Zg, (Gg). Then for any finite
Galois extension L over K, the action of g on G, hence on G2, is trivial. By the local
class field theory, the action of g on L* is also trivial. Thus, we have g = 1 since L is
any extension over K.

(b) follows from (a), (c), and Lemma 2.6 (2).

(d) follows from (b) and Lemma 2.6 (1).

(2)(a): This is similar to the proof of (1c). Let H C A be an open subgroup. Let
Xpg — X% denote the finite étale covering corresponding to H. We take any sufficiently
small open normal subgroup H' C A such that H' C H and the corresponding finite
étale covering X+ — Xp has the canonical compactification Xz of genus > 1. We
have an identification H' = 71 (X g, y) for a basepoint 3. Let Jg/ := Jac(Xp-) with the
origin O denote the Jacobian variety of Xpg.. Take an element g € A. Then we have
the following commutative diagram of pointed schemes:

fy

(XH’ay)(—> (XH’ay) (‘]H/7O)
QXL gxl ng
~ Faw

(Xa,9)— (Xu,9(y)) — (Jur,9(0)),
which induces

7Tl(AXH’aZD _>>7Tl(‘]H’7O) —N>T(JH’7O)

gfl gil g;’l
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where T'(Jgs,0) and T(Jy/,g(O)) denote the Tate modules of Jg with origin O and
g(O) respectively (Note that we have the isomorphisms from m; to the Tate modules,
since F' is of characteristic 0). Here, the morphism ¢ : (Jg/,0) — (Jg,g(0)) is the
composite of an automorphism (¢7) : (Jg,0) — (Jg+,0) of abelian varieties and
an addition by ¢g(O). We also have a conjugate action conj(g) : H = m(Xpg,y) —
71 (Xu,g*(y)) = gH'g~! = H’', which induces an action conj(g)2® : (H')*> — (H')2P.
This is also compatible with the homomorphism induced by (g”)":

(H')* —=T(J, 0)

conj(g)abl (g‘])ll

(H/)ab — T(JH/, O)

Assume that ¢ € ZA(H). Then the conjugate action of g on H’, hence on (H')2P,
is trivial. By the surjection (H')*® — T(Jys,0), the action (¢7), : T(Jy,0) —
T(Jg+,O) is trivial. Thus, the action (¢7)" : (Jg/,0) — (Ju+,O) is also trivial, since
the torsion points of Jy: are dense in Jgs. Therefore, the morphism g7 : (Jg/,0) —
(Jur,9*(0)) of pointed schemes is the addition by ¢g(O). Then the compatibility of
9~ Xu,y) — Xu,9(y)) and g7 : (Ju,0) = (Ju,g(0)) with respect to [y and
fo(y) (i-e., the first commutative diagram) implies that 7~ Xuy) = X, 9)),
hence g% : (Xg/,y) — (X, 9(y)), is an identity morphism by (the uniqueness assertion
of) Torelli’s theorem (See [Mil, Theorem 12.1 (b)]). Then we have g = 1 since H' is any
sufficiently small open subgroup in H.

(b) follows from (a), (1c), and (1d).

(c): This is similar to the proof of (1la). We assume that Ca(l;) # I, (resp.
C’Aa)(lg(cl)) # I:gl)). Take g € Ca(ly) (resp. Caw (Iél))) which is not in I, (resp.
I;El)). Since g & I, (resp. g ¢ Ig(gl)), we have a finite Galois covering (resp. a finite
Galois covering of degree a power of [) ¥ — X3 (which is unramified over z) and a
cusp y of Y over x such that y # ¢(y). By taking sufficiently small Ay C A (resp.
Ay C AW), we may assume that Y has a cusp v’ # y,g(y). We have Iy = gl,g1
(resp. I;l()y) = gly)g_l). Since I, N1, (resp. Lu(,l) ﬂI;l()y)

I?Sl)), we have a finite Galois covering (resp. a finite Galois covering of degree a power

) has a finite index in I, (resp.

of l) Z — Y such that Z has cusps z, g(z), and 2’ lying over y, g(y), and y’ respectively,

_ ) _ 7@
and I, = Iy (resp. I;7 = Ig(z)

Az (resp. A(Zl)) (Note that inertia subgroups are well-defined up to inner conjugate).

), i.e., z and g(z) have conjugate inertia subgroups in

On the other hand, we have abelian coverings of Z which are totally ramified over z
and not ramified over g(z), since we have a cusp z’ other than z and g(z) (Note that
the abelianisation of a surface relation ~q -, [[1_{[es, 3] = 1is y1--y, = 1, and
that if n > 3, then we can choose the ramifications at v; and 7, independently). This
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contradicts that z and g(z) have conjugate inertia subgroups in Az (resp. A(ZZ)). O

§2.4. Characterisation of Cuspidal Decomposition Groups.

Let k a finite extension of QQ,. For a hyperbolic curve X of type (g,r) over k, let
Ax and Iy denote the geometric fundamental group (i.e., m of Xi := X Xy, k) and
the arithmetic fundamental group (i.e., m; of X) of X for some basepoint, respectively.
Note that we have a group-theoretic characterisation of the subgroup Ax C IIx (hence,
the quotient Iy — Gy) by Corollary 2.4. For a cusp z, we write I, and D, for the
inertia subgroup and the decomposition subgroup at  in Ax and in Ilx respectively
(they are well-defined up to inner automorphism). For a prime number [, we also write
I;El) and Ag? for the maximal pro-I quotient of I, and Ax, respectively. Put also Hgl() =
IIx /ker(Ax — A()l()). Then we have a short exact sequence 1 — Agl() — Hg? — G — L

Lemma 2.8. ([AbsAnab, Lemma 1.3.9], [AbsTopl, Lemma 4.5]) Let X be a
hyperbolic curve of type (g,r) over k.

1. X is not proper (i.e., r > 0) if and only if Ax is a free profinite group (Note that
this criterion is group-theoretic ).

2. We can group-theoretically reconstruct (g,r) from Ilx as follows:

)wt:2 )Wt=0

r= dim(@l (A%}) ®i @l — dile (Ag(b ®z @l
5 (dimg, A ®5 Q —r+1) ifr>0,

%dim@l AZP ®s Qy ifr=20 for anyl,

+1 ifr>0, forl#p,
g:

where (=)= with w € Z is the subspace on which the Frobenius at p acts with
eigenvalues of weight w, i.e., algebraic numbers with absolute values q2 (Note that
the weight is independent of the choice of a lifting of the Frobenius element Froby
to Gy, in the extension 1 — I, — G — 2Frobk — 1, since the action of the
inertia subgroup on A*;(]? is quasi-unipotent). Here, note also that Gy and Ax are
group-theoretically reconstructed from Ilx by Corollary 2.4, the prime number p,
the cardinality q of the residue field, and the Frobenius element Froby are group-
theoretically reconstructed from Gy by Proposition 2.1 (1), (1) and (3b), and (5)
respectively (See also Remark 2.1.1).

Remark 2.8.1. By the same group-theoretic algorithm as in Lemma 2.8, we can
also group-theoretically reconstruct (g, r) from the extension datum 1 — Agl() — Hg? —
Gy — 1 for any [ # p (i.e., in the case where the quotient Hgl() — Gy, is given).

Proof. (1): Trivial (Note that, in the proper case, the non-vanishing of H? implies
the non-freeness of Ax). (2): Let X < X be the canonical smooth compactification.
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Then we have

r — 1 = dimg, ker {AX ®z Qp — Aab ®s5 Ql} = dimg, ker {AX ®7 Q — Ai‘(—b X5 @l}WtZQ

= dimg, (AX Rz Q )Wt 2 dimg, (Aﬂj ®5 Q )Wt 2
= dimg, (AY ®5 Q)"*=? — dimg, (Aab ®3 Q)™=
= dimg, (AY ®z Q)""=? — dimg, (AY ®z Q1)"",

where the forth equality follows from the self-duality of A. The rest of the lemma (the
formula for g) is trivial. O

Corollary 2.9. ([NodNon, Lemma 1.6 (ii)=(i)]) Let X be an affine hyperbolic
curves over k, and X the canonical smooth compactification. We have the following

group-theoretic characterisations or reconstruction algorithms from Ilx :

1. The natural surjection Ax — A~ (resp. Ag? —» A(Yl) for any |l # p) is group-
theoretically characterised as follows: An open subgroup H C Ax (resp. H C Agl{))
is contained in ker(Ax — Ax) (resp. ker(Af,? — A(Yl))) if and only if r(Xpy) =
[Ax : Hlr(X) (resp. 7(Xng) = [Agl() : Hr(X)), where Xp is the coverings corre-
sponding to H C Ax, and r(—)’s are their number of cusps (Note that r(—)’s are
group-theoretically computed by Lemma 2.8 (2) and Remark 2.8.1.

2. The inertia subgroups of cusps in Agl() for any | # p are characterised as follows:
A closed subgroup A C Ag? which is isomorphic to Z; is contained in the inertia

subgroup of a cusp if and only if, for any open subgroup Aﬁ) C Agl(), the composite
! ! ! )ya
ANAY c AP — AL - (AL

vanishes. Here, Y denotes the canonical smooth compactification of Y (Note that
the natural surjection Ag) — A(?l) has a group-theoretic characterisation in (1)).

3. We can reconstruct the set of cusps of X as the set of Ag?—orbits of the inertia
subgroups in Ag? via conjugate actions by Proposition 2.7 (2¢) (Note that inertia

subgroups in Agl() have a group-theoretic characterisation in (2)).

4. By functorially reconstructing the cusps of any coveringY — X from Ay C Ax C
IIx, we can reconstruct the set of cusps of the universal pro-covering X — X (Note
that the set of cusps of Y is reconstructed in (3)).

5. We can reconstruct inertia subgroups in Ax as the subgroups that fix some cusp
of the universal pro-covering X — X of X determined by the basepoint under
consideration (Note that the set of cusps of X is reconstructed in (4)).
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6. We have a characterisation of decomposition groups D of cusps in llx (resp. in
Hgl() for anyl#p) as D = Ny (I) (resp. D = Ny (I)) for some inertia subgroup
X

in Ax (resp. in Ag?) by Proposition 2.7 (2¢) (Note that inertia subgroups in Ax
and Ag? are reconstructed in (5) and in (2) respectively).

Remark 2.9.1.  (See also [IUTchl, Remark 1.2.2, Remark 1.2.3]) The arguments
in [AbsAnab, Lemma 1.3.9], [AbsTopl, Lemma 4.5 (iv)], and [CombGC, Theorem 1.6
()] are wrong, because there is no covering of degree [ of proper curves, which is ramified
at one point and unramified elsewhere (Note that the abelianisations of the geometric
fundamental group of a proper curve is equal to the one of the curve obtained by

removing one point from the curve).

Proof. The claims (1) is trivial. (2): The “only if” part is trivial since an inertia
subgroup is killed in Ay-. We show the “if” part. Put A(Zl) = AA%Q C Ag?. The natural
surjection AY — AD /AW > 4740 AD) factors as AY — (AP — a/(AnAWY),
since A/(AN Ag)) is isomorphic to an abelian group Z/IZ for some N. By the
assumption of the vanishing of AN A(Y’) in (Ay)?", the image Im{A4 N Ag) — (Ag))ab}
is contained in the subgroup generated by the image of the inertia subgroups in Agi).
Hence, the image Im{A N A — (A)ab — (ADyab o 4740 ADY (= 2/1NZ)} is
contained in the image of the subgroup in A/(A N Ag))(% ZJIN7Z) generated by the
image of the inertia subgroups in A(Y”. Since the composite A C A(Zl) —» A(Zl) / Agi) =
A/(AN Ag))(% ZJINZ) is a surjection, and since Z/INZ is cyclic, there exists the
image I, C (A(Zl))ab of the inertia subgroup of a cusp z in Z, such that the composite
I, C (A(Zl))ab — A/(AﬂAg))(E ZJIN7Z) is surjective (Note that if we are working in the
profinite geometric fundamental groups, instead of pro-I geometric fundamental groups,
then the cyclicity does not hold, and we cannot use the same argument). This means
that the corresponding subcovering Y — Z(— X) is totally ramified at z. The claims

(3), (4), (5), and (6) are trivial. O

Remark 2.9.2.  (Generalisation to [-cyclotomically full fields, See also [AbsTopl,
Lemma 4.5 (iii)], [CombGC, Proposition 2.4 (iv), (vii), proof of Corollary 2.7 (i)]) We can
generalise the results in this subsection for an I-cyclotomically full field & for some [ (See
Definition 3.1 (3) below), under the assumption that the quotient Il1x — Gy, is given, as
follows: For the purpose of a characterisation of inertia subgroups of cusps, it is enough
to consider the case where X is affine. First, we obtain a group-theoretic reconstruction
of a positive power ijc’ Lup to fin of the [-adic cyclotomic character up to a character of

. ab o
finite order by the actions of G on A\ (A ®;Q) (H* ®5 Q) for characteristic open
torsion-free subgroups H C Ax. Next, we group-theoretically reconstruct the [l-adic
cyclotomic character Xcyc,iup to in Up to a character of finite order as Xcyc,i,up to fin =
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Xmax, Where Ymax is the maximal power of X:”yc’up to fin Py which G acts in some
subquotient of H2P ®5Qy for sufficiently small characteristic open torsion-free subgroups
H C Ax. Once we reconstruct the l-adic cyclotomic character Xcyc,i,up to in Up to a
character of finite order, then, for a finite-dimensional Q;-vector space V with continuous
G-action, we take any filtration V = V0 > V1 o ... (resp. V(X;qul’up o) =V0D
V1> . .)) of Q[Gk]-modules (Here V(x~!) denotes the twist of V by x~!) such that
each graded quotient either has the action of Gy factoring through a finite quotient or
has no nontrivial subquotients, and we use, instead of dimg, V¥*=Y (resp. dimg, V"'=2)
in Lemma 2.8, the summation of dimg, V7/V/t1 where the Gi-action on V7 /Vitl

factors through a finite quotient of G, and the rest is the same.

§3. Mono-anabelian Reconstruction Algorithms.

In this section, we show mono-anabelian reconstruction algorithms, which are cru-

cial ingredients of inter-universal Teichmiiller theory.

§3.1. Some Definitions.

Definition 3.1.  ([pGC, Definition 1.5.4 (i)], [AbsTopIII, Definition 1.5}, [CombGC,
Definition 2.3 (ii)]) Let k be a field.

1. We say that k is sub-p-adic, if there is a finitely generated field L over Q, for some
p such that we have an injective homomorphism k& < L of fields.

2. We say that k is Kummer-faithful, if £ is of characteristic 0, and if for any
finite extension &’ of k and any semi-abelian variety A over k', the Kummer map
A(K') — H'(K',T(A)) is injective (which is equivalent to (y~; NA(K) = {0}),
where T'(A) denotes the Tate module of A. -

3. We say that £ is [-cyclotomically full, if the [-adic cyclotomic character xcyc, :
Gk — Z;* has an open image.

Remark 3.1.1.  ([pGC, remark after Definition 15.4]) For example, the following
fields are sub-p-adic:

1. finitely generated extensions of Q,, in particular, finite extensions of Q,,
2. finite extensions of Q, and

3. the subfield of an algebraic closure Q of Q which is the composite of all number
fields of degree < n over Q for some fixed integer n (Note that such a field can be
embedded into a finite extension of Q, by Krasner’s lemma).
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Lemma 3.2.  ([AbsToplll, Remark 1.5.1, Remark 1.5.4 (i), (ii)])

~

. If k 1s sub-p-adic, then k is Kummer-faithful.

NS}

. f k is Kummer-faithfull, then k is [-cyclotomically full for any .

[ %)

. If k is Kummer-faithfull, then any finitely generated field over k is also Kummer-
faithful.

Proof. (3): Let L be a finitely generated extension of k. By Weil restriction, the
injectivity of the Kummer map for a finite extension L’ of L is reduced to the one for
L, i.e., we may assume that L' = L. Let A be a semi-abelian variety over L. Let U be
an integral smooth scheme over k such that A extends to a semi-abelian scheme A over
U and the function field of U is L. By a commutative diagram

A(L) H'(L,T(A))

| |

[LcwAe(Le) — Tlcp) H' (La, T(Ay)),

where |U| denotes the set of closed points, L, is the residue field at x, and A, is the
fiber at x (Note that a € A(L) is zero on any fiber of z € |U|, then a is zero since |U]|
is dense in U), we may assume that L is a finite extension of k. In this case, again by
Weil restriction, the injectivity of the Kummer map for a finite extension L is reduced
to the one for k, which holds by assumption.

(1): By the same way as in (3), by Weil restriction, the injectivity of the Kummer
map for a finite extension &’ of k is reduced to the one for k, i.e., we may assume that
k" = k. Let k embed into a finitely generated field L over Q,. By the base change from
k to L and the following commutative diagram

-

A(k) —— H(k, T(A))
A(L) —— HY(L,T(A)),

the injectivity of the Kummer map for k is reduced to the one for L, i.e., we may
assume that £ is a finitely generated extension over QQ,. Then by (3), we may assume
that k = Q. If A is a torus, then (y~; NA(Q,) = {0} is trivial. Hence, the claim is
reduced to the case where A is an abelian variety. Then A(Q,) is a compact abelian
p-adic Lie group, which contains Z;‘f” for some n as an open subgroup. Hence, we have
Nx>1 NA(Qp) = 0. Thus, the Kummer map is injective. We are done.
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(2): For any finite extensin k&’ over k, the Kummer map for G,,, over k' is injective
by the assumption. This implies that the image of I-adic cyclotomic character G, — Z;°
has an open image. Ol

Definition 3.3.  ([CanLift, Section 2]) Let k be a field. Let X be a geometrically
normal, geometrically connected algebraic stack of finite type over k.

1. Let Locg(X) denote the category whose objects are generically scheme-like algebraic
stacks over k which are finite étale quotients (in the sense of stacks) of (necessarily
generically scheme-like) algebraic stacks over k that admit a finite étale morphism
to X over k, and whose morphisms are finite étale morphisms of stacks over k.

2. We say X admits k-core if there exists a terminal object in Locy(X). We call a
terminal object in Locg(X) a k-core.

For an elliptic curve E over k with the origin O, we call the hyperbolic orbicurve
(cf. Section 0.2) obtained as the quotient (E \ {O})//£1 in the sense of stacks a semi-
elliptic orbicurve over k (cf. [AbsTopll, §0]. It is also called “punctured hemi-elliptic
orbicurve” in [CanLift, Definition 2.6 (ii)]).

Definition 3.4.  ([AbsTopll, Definition 3.5, Definition 3.1]) Let X be a hyper-
bolic orbicurve (See Section 0.2) over a field k of characteristic 0.

1. We say that X is of strictly Belyi type if (a) X is defined over a number field,
and if (b) there exist a hyperbolic orbicurve X’ over a finite extension k' of k, a
hyperbolic curve X" of genus 0 over a finite extension k” of k, and finite étale

coverings X « X' — X",

2. We say that X is elliptically admissible if X admits k-core X — C', where C' is
a semi-elliptic orbicurve.

Remark 3.4.1.  In the moduli space M, , of curves of genus g with r cusps, the
set of points corresponding to the curves of strictly Belyi type is not Zariski open for
2g—2+1r >3, g>1. See [Cusp, Remark 2.13.2] and [Corr, Theorem B].

Remark 3.4.2. If X is elliptically admissible and defined over a number field, then
X is of strictly Belyi type (See also [AbsToplIIl, Remark 2.8.3]), since we have a Belyi
map from once-punctured elliptic curve over a number field to a tripod (cf. Section 0.2).

For a hyperbolic curve X over a field k of characteristic zero with the canonical
smooth compactification X. A closed point = in X is called algebraic, if there are
a finite extension K of k, a hyperbolic curve Y over a number field ' C K with the
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canonical smooth compactification Y, and an isomorphism X x; K 2 Y xp K over K
such that 2 maps to a closed point under the composition X x; K =Y xp K =Y.

§3.2. Belyi and Elliptic Cuspidalisations — Hidden Endomorphisms.

Let k be a field of characteristic 0, and k an algebraic closure of k. Put Gj :=
Gal(k/k). Let X be a hyperbolic orbicurve over k (cf. Section 0.2). Let Ax and Iy
denote the geometric fundamental group (i.e., m of X3 := X xy k) and the arithmetic
fundamental group (i.e., m; of X) of X for some basepoint, respectively. Note that
we have an exact sequence 1 — Ay — Ilx — Gp — 1. We consider the following
conditions on k£ and X:

(Delta)x: We have a “group-theoretic characterisation” (for example, like Proposition 2.2 (1),
(2)) of the subgroup Ax C IIx (or equivalently, the quotient IIx — Gy).

(GC): Isom-version of the relative Grothendieck conjecture (See also Theorem B.1) for
the profinite fundamental groups of any hyperbolic (orbi)curves over k holds, i.e.,
the natural map Isomy(X,Y) — Isomgzt(AX,Ay) := Isomg, (Ax,Ay)/Inn(Ay)
is bijective for any hyperbolic (orbi)curve X, Y over k.

(slim): Gy is slim (Definition 2.5 (1)).

(Cusp)x: We have a “group-theoretic characterisation” (for example, like Proposition 2.9 (3))
of decomposition groups in ITx of cusps.

We also consider the following condition (of different nature):
(Delta)’x: FEither
e IIx is given and (Delta)x holds, or
e Ax C Il are given.

Note that (Delta)yx, (GC), and (slim) are conditions on k and X; however, as for
(Delta)’x, “the content of a theorem” depends on which case of (Delta)’x is satisfied,
i.e., in the former case, the algorithm in a theorem requires only ITx as (a part of) an
input datum, on the other hand, in the latter case, the algorithm in a theorem requires
both of Ax C Ilx as (a part of) input data.

Remark 3.4.3.

1. (Delta) x holds for any X in the case where k is an NF by Proposition 2.2 (1) or k
is an MLF by Corollary 2.4.
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2. (GC) holds in the case where k is sub-p-adic by Theorem B.1.

3. (slim) holds in the case where k is an NF by Proposition 2.7 (1) (d) or k is an MLF
by Proposition 2.7 (1) (c¢). More generally, it holds for Kummmer-faithful field &
by Remark 3.17.3, which is shown without using the results in this subsection.

4. (Cusp)x holds for any X in the case where k is an MLF by Corollary 2.9. More
generally, (Cusp)x holds for [-cyclotomically full field k& for some [ under the as-
sumption (Delta)’x by Remark 2.9.2.

In short, we have the following table (See also Lemma 3.2):

NF, MLF = sub-p-adic = Kummer-faithful = I[-cyclotomically full

(Delta) x holds (GC) holds (slim) holds (Cusp)x holds
for any X under (Delta)’x.
Remark 3.4.4.

1. It seems difficult to rigorously formulate the meaning of “group-theoretic character-
isation”. Note that the formulation for (Delta) x like “any isomorphism Ty, = Iy,
of topological groups induces an isomorphism Ax, = Ay, of topological groups” (it
is called bi-anabelian approach) is a priori weaker than the notion of “group the-
oretic characterisation” of Ax in IIx (this is called mono-anabelian approach),
which allows us to reconstruct the object itself (not the morphism between two
objects).

2. (Important Convention) In the same way, it also seems difficult to rigorously for-
mulate “there is a group-theoretic algorithm to reconstruct” something in the sense
of mono-anabelian approach (Note that it is easy to rigorously formulate it in the
sense of bi-anabelian approach). To rigorously settle the meaning of it, it seems
that we have to state the algorithm itself, i.e., the algorithm itself have to be a part
of the statement. However, in this case, the statement must be often rather lengthy
and complicated. In this survey, we use the phrase “group-theoretic algorithm”
loosely in some sense, for the purpose of making the input data and the output
data of the algorithms in the statement clear. However, the rigorous meaning will
be clear in the proof, since the proof shows concrete constructions, which, properly
speaking, should be included in the statement itself. We sometimes employ this con-
vention of stating propositions and theorems in this survey (If we use the language
of species and mutations (See [[UTchIV, §3]), then we can rigorously formulate
mono-anabelian statements without mentioning the contents of algorithms).

3. Mono-anabelian reconstruction algorithms have an advantage, as contrasted with
bi-anabelian approach, of avoiding “a referred model” of a mathematical object like
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“the C”, i.e., it is a “model-free” (or “model-implicit”) approach. For more in-
formations on Mochizuki’s philosophy of mono-anabelian reconstruction algorithms
versus bi-anabelian reconstruction algorithms, see [AbsTopllIl, §1.3, Remark 3.7.3,
Remark 3.7.5].

In this subsection, to avoid settling the meaning of “group-theoretic characterisa-
tion” in (Delta) x and (Cusp)x (See Remark 3.4.4 (1)), we assume that k is sub-p-adic,
and we include the subgroup Ax (C IIx) as an input datum. More generally, the re-
sults in this section hold in the case where k and X satisfy (Delta)’ x, (GC), (slim),
and (Cusp)x. Note that if we assume that k£ is an NF or an MLF, then (Delta)x,
(GC), (slim), and (Cusp)x hold for any X, and we do not need include the subgroup
Ax (C IIx) as an input datum.

Lemma 3.5. Let ¢ : H — 11 be an open homomorphism of profinite groups,
and ¢1,¢2 : Il = G two open homomorphisms of profinite groups. We assume that G
is slim. If ¢1 01 = o 0, then we have ¢y = ¢o.

Proof. By replacing H by the image of i, we may assume that H is an open
subgroup of II. By replacing H by ﬂgen/HgHgfl, we may assume that H is an open
normal subgroup of II. For any g € Il and h € H, we have ghg™! € H, and ¢1(ghg™!) =
¢a(ghg™") by assumption. This implies that ¢1(g)¢1(h)p1(9)~" = Pa(g)@2(h)pa(g) ™" =
b2(9)p1(h)p2(g) 1. Hence we have ¢1(g)da(g)~! € Zim(m)(G). By the assumption of
the slimness of G, we have Z,1)(G) = {1}, since Im(II) is open in G. Therefore, we

obtain ¢1(g) = ¢2(g), as desired. O

Remark 3.5.1.  In the algebraic geometry, a finite étale covering ¥ — X is an
epimorphism. The above lemma says that the inclusion map IIy C IIx correspoinding
to Y — X is also an epimorphism if Iy is slim. This enables us to make a theory for
profinite groups (without using 2-categories and so on.) which is parallel to geometry,
when all involved profinite groups are slim. This is a philosophy behind the geometry
of anabelioids ([Anbd]).

Choose a hyperbolic orbicurve X over k, and let IIx denote the arithmetic funda-
mental group of X for some basepoint. We have the surjection Illx — G} determined
by (Delta)’x. Note that now we are assuming that k is sub-p-adic, hence, Gy, is slim
by Lemma 3.2 (1) and Remark 3.17.3. Take an open subgroup G C Gy, and put
II:=1Ix x¢g, G, and A := Ax NIL In this survey, we do not adopt the convention that
(—)" always denotes the commutator subgroup for a group (—).

In the elliptic and Belyi cuspidalisations, we use the following three types of oper-

ations:
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Lemma 3.6.  PutIl' := Il x/ to be the arithmetic fundamental group of a hyper-
bolic orbicurve X' over a finite extension k' of k. Put A’ :=ker(Il' — Gj).

1. Let II"” < II' be an open immersion of profinite groups. Then II" arises as a finite
étale covering X" — X' of X', and A" :=T1" N A’ reconstructs Axn.

2. Let II' — II” be an open immersion of profinite groups such that there exists a
surjection II" — G"' to an open subgroup of G, whose restriction to I’ is equal to
the given homomorphism II' — G' C G. Then the surjection II" — G" is uniquely
determined (hence, we reconstruct the quotient I — G"' as the unique quotient of
IT" having this property), and 11" arises as a finite étale quotient X' — X" of X'.

3. Assume that X' is a scheme i.e., not a (non-scheme-like) stack (We can treat or-
bicurves as well; however, we do not use this generalisation in this survey. cf.
[AbsTopl, Definition 4.2 (iii) (c)]). Let 1" — I1" be a surjection of profinite groups
such that the kernel is generated by a cuspidal inertia subgroup group-theoretically
characterised by Corollary 2.9 and Remark 2.9.2 (We call it a cuspidal quotient ).

Then 11" arises as an open immersion X' — X", and we reconstruct Ax. as
A'/A Nker(IT" — I17).

Proof. (1) is trivial by the definition of ITx.
The first asserion of (2) comes from Lemma 3.5, since G is slim. Put (II')%a! .=
Ngerr i gll’'g™" C II, which is normal in II” by definition. Then (II')%! arises from
a finite étale covering (X/)¢® — X’ by (1). By the conjugation, we have an action of
11" on (II')%2. By (GC), this action determines an action of IT”/(I")43! on (X')Gal,
We take the quotient X" := (X')%al/ /(11" /(II')43!) in the sense of stacks. Then IIx
is isomorphic to IT” by definition, and the quotinet (X’)%2! — X" factors as (X')¢2! —
X’ — X" since the intermediate quotient (X’)%2!//(II'/(II")¢2!) is isomorphic to X'.
This proves the second assertion of (2).

(3) is also trivial. O

3.2.1. Elliptic Cuspidalisation. Let X be an elliptically admissible orbicurve over
k. By definition, we have a k-core X — C = (E \ {O})//{£1} where E denotes an
elliptic curve over k with the origin O. Take a positive integer N > 1. Let Uc n =
(E\ E[N])//{£1} C C denote the open sub-orbicurve of C' determined by the image of
E\ E[N]. Put Ux n := Uc,ny Xc X C X, which is an open suborbicurve of X. For a
finite extension K of k, put Xg := X x; K, Cg := C x; K, and Fx := F x,; K. For
a sufficiently large finite extension K of k, all points of Ex[N] are rational over K. We
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have the following key diagram for elliptic cuspidalisation:

(EllCusp) X C E\{0} <Y~ E\ E[N] —> Ug y <~— UX[,\N
E\{0} C X,

where —»’s are finite étale coverings, <—’s are open immersions, and two sqauares are
cartesian.

We will use the technique of elliptic cuspidalisation three times:

1. Firstly, in the theory of Aut-holomorphic space in Section 4, we will use it for the
reconstruction of “local linear holomorphic structure” of an Aut-holomorphic space
(See Proposition 4.5 (Step 2)).

2. (This is the most important usage) Secondly, in the theory of the étale theta function
in Section 7, we will use it for the constant multiple rigidity of the étale theta function
(See Proposition 7.9).

3. Thirdly, we will use it for the reconstruction of “pseudo-monoids” (See Section 9.2).

Theorem 3.7.  (Elliptic Cuspidalisation, [AbsTopll, Corollary 3.3]) Let X be
an elliptically admissible orbicurve over a sub-p-adic field k. Take a positive integer
N > 1, and let Ux n denote the open sub-orbicurve of X defined as above. Then from
the profinite groups Ax C Ilx, we can group-theoretically reconstruct (See Remark 3.4.4
(2)) the surjection

D’e :HUX,N —»HX

of profinite groups, which is induced by the open immersion Ux y — X, and the set of
the decomposition groups in Ilx at the points in X \ Ux n.

We call my : Iy, , — IIx an elliptic cuspidalisation.

Proof. (Step 1): By (Delta)’x, we have the quotient IIx — G} with kernel Ax.
Let G C Gy, be a sufficiently small (which will depend on N later) open subgroup, and
put Il :=1Ilx xg, G, and A := Ax N1IL

(Step 2): We define a category Locg (IT) as follows: The objects are profinite groups
IT" such that there exist open immersions II <= II” < II' of profinite groups and
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surjections IT" — G’, II"” — G” to open subgroups of GG, and that the diagram

H )H//( H/

G Q// Ql

G<—G——G.

is commutative. Note that, by this compatibility, the surjections I" - G’ and I1" - G"”
are uniquely determined by Lemma 3.6 (1), (2) (or Lemma 3.5). The morphisms from
IT; to II, are open immersions II; < Il5 of profinite groups up to inner conjugates by
ker(Ils — G2) such that the uniquely determined homomorphisms IIy - G; C G and
II; - G5 C G are compatible. The definition of the category Locg(II) depends only
on the topological group structure of II and the surjection II — G of profinite groups.
By (GC), the functor X’ + Ilxs gives us an equivalence Lockx (Xx) — Locg(II) of
categories, where K is the finite extension of k corresponding to G C Gi. Then we
group-theoretically reconstruct (Ilx, C)Ilc, as the terminal object (II C)IIcore of the
category Locg(II).

(Step 3): We group-theoretically reconstruct A¢, (C Ilg, ) as the kernel Agore :=
ker(Ileore — G). We group-theoretically reconstruct A Ex\{0} as an open subgroup Ay
of Acore of index 2 such that Ag is torsion-free (i.e., the corresponding covering is a
scheme, not a (non-scheme-like) stack), since the covering is a scheme if and only if the
geometric fundamental group is torsion-free (See also [AbsTopl, Lemma 4.1 (iv)]). We
take any (not necessarily unique) extension 1 — Agy — Iley — G — 1 such that the
push-out of it via Agy C Acore is isomorphic to the extension 1 — Acore — Heore —
G — 1 (Note that Il is isomorphic to Ilg; \ (0}, where Ef \ {O} is a twist of order 1
or 2 of Ex \{O}). We group-theoretically reconstruct I, \ (0 as Ilen (Note that if we
replace G by a subgroup of index 2, then we may reconstruct Il .\ (0}; however, we do
not detect group-theoretically which subgroup of index 2 is correct. However, the final
output does not depend on the choice of Ilgy).

(Step 4): Take

(a) an open immersion ey n < Il of profinite groups with Il /Iy n & (Z/NZ)®2
such that the composite ey n < ey — Hgﬁt factors through as Iy y — HZﬁtN —
Hgﬁt, where Il — Hgﬁt, ey vy — HZﬁfN denote the quotients by all of the conju-
gacy classes of the cuspidal inertia subgroups in Iy, Ilen, v respectively, and

(b) a composite ey y — II' of (N? — 1) cuspidal quotients of profinite groups such
that there exists an isomorphism II" = Il of profinite groups.
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Note that the factorisation ey n — Hzﬁf N = HZﬁt means that the finite étale covering
corresponding to Ilen v < Il extends to a finite étale covering of their compactifica-
tions i.e., the covering corresponding to Il v < Iley is unramified at all cusps as well.
Note that there exists such a diagram

! ~
ey <= e, v — 1I' = Ilep

by (EllCusp). Note that for any intermediate composite Il v — II* — II' of cuspidal
quotients in the composite Iley ny — II' of cuspidal quotients, and for the uniquely
determined quotient IT* — G*, we have G* = G for sufficiently small open subgroup
G C Gy, and we take such an open subgroup G C Gj.

We group-theoretically reconstruct the surjection wgs : Ilg\ g, (n) = g\ (0}
induced by the open immersion E% \ E%[N] — E% \ {O} as the composite mg :
en, nv — II" = 1oy, since we can identify wg» with 75 by (GC).

(Step 5): Let Ilcore,1 denote Ileore for G = Gj. If necessary, by changing Il.y,
we may take Il such that there exists a unique lift of Ilcope,1/Ilen — Out(Iley) to

ut
Out(Iley,n) by (EllCusp). We form Y (ITeore,1/Men) (See Section 0.2) to the surjection
out out
1_[ell,N — 1len i.e., 1_[ell,N X (Hcore,l/Hell) — ey X (Hcore,l/Hell) - Hcore,l; where
out
eore,1/Men — Out(Ilen) (in the definition of X (Ileore,1/Ien)) is the natural one, and

out
eore,1/Ien — Out(Ilen,n) (in the definition of X (core,1/Ilen)) is the unique lift of
eore,1/Ien = Out(Ilen) to Out(Ilen n). Then we obtain a surjection me? : Heore, v :=

out
Hennv X (Ieore,1/Ien) — Ieore,1-  We group-theretically reconstruct the surjection
nc : ly, 5 — Ilg induced by the open immersion Uc y < C as the surjection mce :
Heore, v = Heore 1, since we can identify wer with 7o by (GC).

(Step 6): We form a fiber product xyg IIx to the surjection Ilcore, v — eore1

core,1
e, Ilx N = eore,N XMooy 1Ix = Tleore,1 XTeores Ix = Ilx. Then we obtain a
surjection mx» : IIx v — Ilx. We group-theretically reconstruct the surjection mx :
Iy, — lx induced by the open immersion Ux y < X as the surjection mx- :
IIx y — IIx, since the identification of m¢? with m¢ induces an identification of 7x»
with 7mx.

(Step 7): We group-theretically reconstruct the decomposition groups at the points
of X\Ux,n in ITx as the image of the cuspidal decomposition groups in ITx n, which are

group-theoretically characterised by Corollary 2.9, via the surjection lIx xy — IIx. O

3.2.2. Belyi Cuspidalisation. Let X be a hyperbolic orbicurve of strictly Belyi
type over k. We have finite étale coverings X « Y —» P!\ (N points), where YV
is a hyperbolic curve over a finite extension k' of k, and N > 3. We assume that
Y — X is Galois. For any open sub-orbicurve Ux C X defined over a number field,
put Uy := Y xx Ux. Then by the theorem of Belyi (See also Theorem C.2 for its
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refinement), we have a finite étale covering U;, — Up: from an open sub-orbicurve
Ui, C Uy to the tripod Up: (See Section 0.2) over k’. For a sufficiently large finite
extension K of k', all the points of Y \ U;, are defined over K. We have the following
key diagram for Belyi cuspidalisation:

(BelyiCusp) Uy € Uy ¢ Y
X Y P\ (N points)— Ups Uy X,

where —’s are finite étale coverings, <—’s are open immersions, and the square is carte-

sian.

Theorem 3.8.  (Belyi Cuspidalisation, [AbsTopll, Corollary 3.7]) Let X be an
orbicurve over a sub-p-adic field k. We assume that X s of strictly Belyi type. Then
from the profinite groups Ax C Ilx, we can group-theoretically reconstruct (See Re-
mark 3.4.4 (2)) the set

{Ily, — HX}UX

of the surjections of profinite groups, where Ux runs through the open subschemes of X
defined over a number field. We can also group-theoretically reconstruct the set of the
decomposition groups in llx at the points in X \ Ux, where Ux runs through the open
subschemes of X defined over a number field.

We call II;, — Ilx a Belyi cuspidalisation.

Proof. (Step 1): By (Delta)’x, we have the quotient IIx — G} with kernel Ax.
For sufficiently small (which will depend on U later) open subgroup G C Gy, put
II:=1Ix X Gy G.

(Step 2): Take

(a) an open immersion I <= IT* of profinite grouops,

(b) an open immersion IT* < II**4U of profinite groups, such that the group-theoretic
algorithms described in Lemma 2.8 and Remark 2.9.2 tell us that the hyperbolic
curve corresponding to IT**%V has genus 0,

(c) a composite IT'P4Y — T1'P4 of cuspidal quotients of profinite groups, such that the
number of the conjugacy classes of cuspidal inertia subgroups of II*P4 is three,

(d) an open immersion IT**4 < I1*U" of profinite groups,

(e) a composite V" — 11V of cuspidal quotients of profinite groups, and
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(f) a composite IT*Y — IT** of cuspidal quotients of profinite groups such that there
exists an isomorphism II** 2 IT* of profinite groups.

Note that there exists such a diagram
II < II* — Htpd,U —y Htpd o H*,U’ N H*,U — TI** = IT*

by (BelyiCusp). Note also that any algebraic curve over a field of characteristic 0,
which is finite étale over a tripod, is defined over a number field (i.e., converse of Belyi’s
theorem, essentially the descent theory) and that algebraic points in a hyperbolic curve
are sent to algebraic points via any isomorphism of hyperbolic curves over the base field
(See [AbsSect, Remark 2.7.1]). Put my+ : II*Y — IT** 22 IT* to be the composite. Note
that for any intermediate composite 1%V — II# — II** in the composite v — 11
of cuspidal quotients and for the uniquely determined quotient II# —» G7#, we have
G#* = G for sufficiently small open subgroup G C Gy, and we take such an open
subgroup G C Gg.

We group-theoretically reconstruct the surjection 7y : Il — Ily induced by some
open immersion Uy < Y as my» : II*Y — II*, since we can identify my» with my by
(GC) (Note that we do not prescribe the open immersion Uy — Y').

(Step 3): We choose the data (a)-(e) such that the natural homomorphism ITx /IT* —
Out(IT*) has a wunique lift Iy /II* — Out(IT*Y) to Out(IT*V) (Note that this cor-
responds to that Uy C Y is stable under the action of Gal(Y/X), thus descends to

out

Ux C X). We form o;t(HX/H*) to the surjection IT*V — II* ie., IIXU = II*UV x
(IIx /11*) — II* 0 (IIx /IT*) = IIx. Then we obtain a surjection mx7 : IV — Tlx.
We group-theretically reconstruct the surjection mx : IlI7, — IIx induced by the open
immersion Ux < X as the surjection wx- : IV — IIx, since we can identify 7x-
with mx by (GC) (Note again that we do not prescribe the open immersion Ux — X.
We just group-theoretically reconstruct a surjection Iy, — Ilx for some Ux C X such
that all of the points in X \ Ux are defined over a number field).

(Step 4): We group-theretically reconstruct the decomposition groups at the points

HX’U

of X\ Ux in Ilx as the image of the cuspidal decomposition groups in , which are

group-theoretically characterised by Corollary 2.9, via the surjection IIy, — IIx. [

Corollary 3.9.  ([AbsTopll, 3.7.2]) Let X be a hyperbolic orbicurve over a non-
Archimedean local field k. We assume that X is of strictly Belyi type. Then from the
profinite group 1l x, we can reconstruct the set of the decomposition groups at all closed
points in X.

Proof. The corollary follows from Theorem 3.8 and the approximation of a de-
composition group in (the proof of) Lemma 3.10 below. O
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Since the geometric fundamental group Ax of X (for some basepoint) is topologi-
cally finitely generated, there exist characteristic open subgroups

. CAx[j+1 CAx[j]C...C Ax

of Ax for j > 1 such that (); Ax[j] = {1}. Take an algebraic closure k of k and put
Gy := Gal(k/k). For any section o : G, — Ilx, we put

IIx}j0) := Im(0)Ax[j] C Ix,
and we obtain a corresponding finite étale coverings
o= X[j+ 1,0l = X[j,0] > ... = X.

Lemma 3.10.  ([AbsSect, Lemma 3.1]) Let X be a hyperbolic curve over a non-
Archimedean local field k. Suppose X is defined over a number field. Let o : Gy, — llx
be a section such that Tm(o) is not contained in any cuspidal decomposition group of

[Ix. Then the following conditions on o is equivalent:
1. Im(o) is a decomposition group D, of a point x € X (k).

2. For any j > 1, the subgroup Ilx; , contains a decomposition group of an algebraic

closed point of X which surjects onto Gy,.

Proof. (1)«<=(2): For j > 1, take points z; € X[j,0](k). Since the topological
space [ | i>1 X4, 0](k) is compact, there exists an infinite set of positive integers J’ such
that for any j > 1, the images of =, in X[j, o](k) for j' > j with j* € J' converges to a
point y; € X[j,o](k). By definition of y;, the point y;, maps to y;, in X[j2](k) for any
j1 > jo. We write y € X (k) for the image of y; in X (k). Then we have Im(c) C D,
(up to conjugates), and y is not a cusp by the assumption that Im(o) is not contained
in any cuspidal decomposition group of Ilx.

(1)=(2): By using Krasner’s lemma, we can approximate z € X (k) by a point
2’ € Xp(F) C X(k), where X is a model of X xj, k over a number field F, which is
sufficiently close to z so that 2’ lifts to a point z; € X[j, o](k), which is algebraic. [

§3.3. Uchida’s Lemma.

Let X be a hyperbolic curve over a field k. Take an algebraic closure k of k. Put
Gy := Gal(k/k), and Xz := X x}, k. Let k(X) denote the function field of X. Let Ay
and IIx denote the geometric fundamental group (i.e., m; of X7) and the arithmetic
fundamental group (i.e., m; of X) of X for some basepoint, respectively. Note that we
have an exact sequence 1 - Ax — IIx — G — 1.

We recall that we have I'(X,O(D)) = {f € k(X)* | div(f) + D > 0} U {0} for a
divisor D on X.
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Lemma 3.11.  ([AbsToplll, Proposition 1.2]) Assume that k be an algebraically
closed, and X proper.

1. There are distinct points x,y1,y2 € X (k) and a divisor D on X such that x,y1,y2 &
Supp(D) and (D) := dim, I'(X,O(D)) = 2, and (D — E) =0 for any E = e1 + e
with e1,eq € {x,y1,y2}, e1 # ea.

2. Let x,y1,y2, D be as in (1). For i = 1,2, and A € k*, there exists a unique
fri € k(X)X such that

div(fai) + D >0, fai(z) =X failyi)) #0, fri(yz—i) =0.

3. Let x,y1,y2, D be as in (1). Take N\, € k™ with ﬁ # —1. Let fa1, fu2 € k(X)™ be
asin (2). Then fa1+ fu2 € k(X)) is characterised as a unique element g € k(X)*
such that

div(g) +D >0, g(y1) = faa(y1), 9(y2) = fu2(y2)-

In particular, A\ + p € k* is characterised as g(x) € k*.

Proof. (1): For any divisor D of degree > 2g — 2 4 3 on X, then we have [(D) =
I(Kx — D) +deg(D)+1—g = deg(D)+1—-9g > g+ 2 > 2, by the theorem of
Riemann-Roch (Here, Kx denotes the canonical divisor of X). For any divisor D on
X with d := (D) > 2, we write I'(X,O0(D)) = (f1,..., fa)x, and take a point P in
the locus “f1fa--- fqg # 0”7 in X of non-vanishing of the section fifs--- fg such that
P ¢ Supp(D) (Note that this locus is non-empty since there is a non-constant function
inI'(X,O(D)) by I(D) > 2). Then we have [(D—P) < I(D). On the other hand, we have
I(D)-l(D—P) =l(Kx—D)—I(Kx—D+P)+1 < 1. Thus, we have [(D—P) = [(D)—1.
Therefore, by substracting a suitable divisor from a divisor of degree > 2g — 2+ 3, there
is a divisor D on X with [(D) = 2. In the same way, take x € X (k) \ Supp(D) such that
there is f € I'(X, Ox (D)) with f(x) # 0 (this implies that {(D — z) = (D) — 1 = 1).
Take y; € X(k)\(Supp(D) U {x}) such that thereis g € I'(X, Ox (D—x)) with g(y1) # 0
(this implies that (D —x—y;) =l(D—2z)—1=10), and y5 € X (k) \ (Supp(D) U {z,y1})
such that there are hy € I'(X,Ox (D —z)) and hy € T'(X,Ox (D —y1)) with hy(y2) # 0
and ho(y2) # 0 (this implies that {((D — x — y2) = (D — y1 — y2) = 0). The first claim
(1) is proved. The claims (2) and (3) trivially follow from (1). O

Proposition 3.12.  (Uchida’s Lemma, [AbsToplll, Proposition 1.3]) Assume
that k be an algebraically closed, and X proper. There exists a functorial (with re-
spect to isomorphisms of the following triples) algorithm for constructing the additive
structure on k(X)* U {0} from the following data:

(a) the (abstract) group k(X)*,
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(b) the set of surjective homomorphisms Vx := {ord, : k(X)* — Z}, ¢ x () of the valu-
ation maps at x € X (k), and

(c) the set of the subgroups {U, = {f € k(X)* | f(z) =1} C k(X)*}
k(X)*.

v=ord,EVx Of

Proof. From the above data (a), (b), and (c), we reconstruct the additive structure
on k(X)* as follows:

(Step 1): We reconstruct £ C k(X)* as kK := [, ¢y, ker(v). We also reconstruct
the set X (k) as Vx.

(Step 2): For each v = ord, € Vx, we have inclusions k* C ker(v) and U,, C ker(v)
with £* NU, = {1}, thus we obtain a direct product decomposition ker(v) = U, x k*.
Let pr, denote the projection ker(v) — k* Then we reconstruct the evaluation map
ker(v) 3 f — f(x) € k* as f(x) := pr,(f) for f € ker(v).

(Step 3): We reconstruct divisors (resp. effective divisors) on X as formal finite
sums of v € Vx with coefficient Z (resp. Z>¢). By using ord, € Vx, we reconstruct the
divisor div(f) for an element f in an abstract group k(X)*.

(Step 4): We reconstruct a (multiplicative) k*-module I'(X,O(D)) \ {0} for a
divisor D as {f € k(X)* | div(f) + D > 0}. We also reconstruct {(D) > 0 for a divisor
D as the smallest non-negative integer d such that there is an effective divisor F of
degree d on X such that T'(X,O(D — E)) \ {0} = 0 (See also the proof of Lemma 3.11
(1)). Note that dimy of I'(X, O(D)) is not available yet here, since we do not have the
additive structure on {f € k(X)* | div(f) + D > 0} U {0} yet.

(Step 5): For A\, u € k>, % # —1 (Here, —1 is the unique element of order 2 in £*),
we take ord,,ord,, ,ord,, € Vx corresponding to z,y;,y2 in Lemma 3.11 (1). Then we
obtain unique fx 1, fu2,9 € k(X)* as in Lemma 3.11 (2), (3) from abstract data (a),
(b), and (c). Then we reconstruct the addition A+ u € k* of A and p as g(x). We also
reconstruct the addition A+ p := 0 for % =—1l,and A+0=0+X:= X for A € kX U{0}.
These reconstruct the additive structure on £* U {0}.

(Step 6): We reconstruct the addition f 4 g of f,g € k(X)* U {0} as the unique
element h € k(X)* U {0} such that h(z) = f(x) + g(z) for any ord, € Vx with
f,g € ker(ord,) (Here, we put f(x) := 0 for f = 0). This reconstructs the additive
structure on k(X)* U {0}. O

§3.4. Mono-anabelian Reconstruction of the Base Field and Function
Field.

We continue the notation in Section 3.3 in this subsection. Furthermore, we assume
that k is of characteristic 0.

Definition 3.13.
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1. We assume that X has genus > 1. Let (X C)X be the canonical smooth compact-
ification of X. We define

pz(Ix) := Hom(H?*(Ax, Z), Z).
We call p5(Ilx) the cyclotome of IIx as orientation.

2. In the case where the genus of X is not necessarily greater than or equal to 2, we
take a finite étale covering Y — X such that Y has genus > 2, and we define the
cyclotome of IIy as orientation to be us(Ilx) := [Ax : Ay]us(Ily). It does
not depend on the choice of Y in the functorial sense, i.e., For any such coverings
Y » X, Y — X, take Y” — X which factors through Y/ — Y — X and
Y"” — Y' — X. Then the restrictions H%(Ay, Z) — H*(Ayrr, Z), H(Agr, Z) —
H? (A, 2) (where Y, Y/, and Y are the canonical compactifications of Y, Y’,
and Y respectively), and taking Hom(—,Z) induce natural isomorphisms [Ax :
Ayluz(Iy) < [Ax : Av][Ay : Ayilug(Ilyn) = [Ax @ Ayrluz(yr) = [Ax -
Ay/][Ay/ : Ay//],u,z(ny//) :> [AX : Ay/]uz(ny/) (See [AbSTOpIH, Remark 1.10.1
(1), (i)])-

3. For an open subscheme () # U C X, let Ay — AF*P"(— Ax) be the maximal
intermediate quotient Ay — @ — Ax such that ker (Q — Ax) is in the center of
Q, and Iy — II5"P°™ the push-out of Ay — AFP™ with respect to Ay C
II;;. We call them the maximal cuspidally central quotient of Ay and Ily
respectively.

Remark 3.13.1.  In this subsection, by the functoriality of cohomology with z5(IT_))-
coefficients for an open injective homomorphism of profinite groups Ay C Ay, we always

mean multiplying m on the homomorphism between the cyclotomes Ily and 11z
(See also [AbsToplIIl, Remark 1.10.1 (i), (ii)]).

Proposition 3.14. (Cyclotomic Rigidity for Inertia Subgroups, [AbsTopIII, Propo-
sition 1.4]) Assume that X has genus > 2. Let (X C)X be the canonical smooth com-
pactification of X. Take a non-empty open subscheme U C X. We have an exact
sequence 1 — Ay — Iy — Gy, — 1. For x € X(k)\ U(k), put U, := X \ {x}. Let I,
denote the inertia subgroup of x in Ay (it is well-defined up to inner automorphism of

Ay ), which is naturally isomorphic to Z(1).

1. ker (Ay — Ay,) and ker (Ily — y,) are topologically normally generated by the
inertia subgroups of the points of U, \ U.

2. We have an exact sequence

cusp-cent
L= I = Ay, — A5 — 1,
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which induces the Leray spectral sequence EY'? = HP (A<, HI(1,, 1)) = Hp“(A%}fp‘cent, 1)
(Here, I, and A({}fp_cem act on I, by the conjugates). Then the composite

7 = Hom(I,,I,) = H(Ax, H'(I,, I,,)) = ES!
— B3 = H*(Ax, H(I,, I,)) = Hom (5 (1), I,)

sends 1 € Z to the natural 1somorphism
(Cyc. Rig. Iner.) pz(x) — I,.

(this is a natural identification between “Z(1)” arising from H? and “Z(1)” arising
from I..) Therefere, we obtain a group-theoretic reconstruction of the isomorphism
(Cyc. Rig. Iner.) from the surjection Ay, — Ax (Note that the intermediate quo-
tient Ay, — AGTP™ — A is group-theoretically characterised). We call the
isomorphism (Cyc. Rig. Iner.) the cyclotomic rigidity for inertia subgroup.

Proof. (1) is trivial. (2): By the definitions, for any intermediate quotient Ay, —
@ — Ax such that ker (Q - Ax) is in the center of @, the kernel ker (Q — A) is
generated by the image of I,. Thus, we have the exact sequence 1 — I, — Af}fp'cent —

A~ — 1 (See also [Cusp, Proposition 1.8 (iii)]). The rest is trivial. O

Remark 3.14.1.  In the case where the genus of X is not necessarily greater than
or equal to 2, we take a finite étale covering Y — X such that Y has genus > 2, and
a point y € Y (k') lying over x € X (k) for a finite extension k' of k. Then we have the
cyclotomic rigidity s (Ily) = I, by Proposition 3.14. This induces isomorphisms

1
[Ax:Ay]

pz(Ilx) = [Ax : Aylpuz(Ily)  — pz(Ily) =1, = L.

We also call this the cyclotomic rigidity for inertia subgroup. It does not depend
on the choice of Y and y in the functorial sense of Definition 3.13 (2), i.e., For such
Y » X, Y - X withy € Y(ky), ¥ € Y(ky/), take Y — X with vy’ € Y"(ky»)
lying over Y, Y’ and y, 4/, then we have the following commutative diagram (See also
Remark 3.13.1)

Z = Hom(1,,I,) —— Hom(us(Ily), I,)

= o

1
[Ay :Ayr]
Z = HOIIl(Iy//, Iy//) —_— Hom(uz(ﬂy//), Iy//)

= o~

1
[Ayr:8y1]

Z =Hom(I,, I,;) — Hom(pz (Iy+), I,/).
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For a proper hyperbolic curve X over k, let J¢ denote the Picard scheme parametris-
ing line bundles of degree d on X (Note that J% is a .J := J%torsor). We have a natural
map X — J' (P — O(P)), which induces Ilx — II;i (for some basepoint). For
x € X(k), let t, : G, — 1I;1 be the composite of the section G — Ilx determined
by x and the natural map IIx — Il;i. The group structure of Picard schemes also
determines a morphism II;1 X - - (d-times) - -- x [I;1 — Il ;4 for d > 1. For any divisor
D of degree d on X such that Supp(D) C X (k), by forming a Z-linear combination of
t;’s, we have a section tp : G — 1l ja.

Lemma 3.15.  ([AbsTopllIl, Proposition 1.6]) Assume that k is Kummer-faithful,
and that X is proper. Take an open subscheme () = U C X, and let

ko T(U,05) — H (I, pz(R(X))) = H' Iy, w5 (k) = H (I, ju5(ILx))

denote the composite of the Kummer map (for an algebraic closure k(X) of k(X))

and the natural isomorphism ps(k) = ps(Ilx ) (= Z(l)) (which comes from the scheme
theory).

1. Ky 18 injective.

2. (See also [Cusp, Proposition 2.3 (i)]) For any divisor D of degree 0 on X such
that Supp(D) C X (k), the section tp : G, — Il is equal to (up to conjugates by
Ax ) the section determined by the origin O of J(k) if and only if the divisor D is
principal.

Co

. (See also [Cusp, Proposition 2.1 (i)]) We assume that U = X \ S, where S C X (k)
is a finite set. Then the quotient Ty — TIG*P°™ induces an isomorphism

HY (I s (I ) = H' (g, pz (Tx)).

4. (See also [Cusp, Proposition 1.4 (ii)]) We have an isomorphism
H'(ILx, pz(Ix)) 2 (k)"

where (k*)" denotes the profinite completion of k.

v

. (See also [Cusp, Proposition 2.1 (ii)]) We have a natural exact sequence induced by
the restrictions to I, (x € S):

0 — H'(Ix, H( [ Lo, p3(1x))) = H (I, 5 (1x ) = @ HO (I, H' (L, pz(11x))).
z€S z€S
The cyclotomic rigidity isomorphism (Cyc. Rig. Iner.) p5(Ilx) = I, in Propo-

sition 3.14 induces an isomorphism

HO(Ix, HY (I, pi5(Ix))) = Hompry (I, pz (1 x ) 2 Z
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(Hence, note that we can use the above isomorphism for a group-theoretic recon-
struction later). Then by the isomorphisms in (3) and (4) and the above cyclotomic
rigidity isomorphism, the above exact sequence is identified with

1= (k) = H'(Iy, pz(1x)) = P 2.
zeS

6. The image of T'(U,Op) in H' (y, pz(I1x)) /()" via sy is equal to the inverse
image in H'(Ily, p5(ILx ) /(E*)" of the submodule P, of @,cgZ(C P eqZ) de-
termined by the principal divisors with support in S.

Remark 3.15.1. (A general remark to the readers who are not familiar with the
culture of anabelian geometers) In the above lemma, note that we are currently studying
in a scheme theory here, and that the natural isomorphism 45 (k) 2 iz (ILy ) comes from
the scheme theory. A kind of “general principle” of studying anabelian geometry is like

this:

1. First, we study some objects in a scheme theory to obtain group-theoretic properties
or group-theoretic characterisations.

2. Next, by using the group-theoretic properties or group-theoretic characterisations
obtained in the first step, we formulate group-theoretic reconstruction algorithms,
and we cannot use a scheme theory in this situation.

When we consider cyclotomes as abstract abelian groups with Galois action (i.e., when
we are working in the group theory), we only know a priori that two cyclotomes are
abstractly isomorphic (this is the definition of the cyclotomes), the way to identify them
is not given, and there are Z*-ways (or we have a zx-torsor) for the identification (i.e.,
we have zx—indeterminacy for the choice). It is important to note that the cylotomic
rigidity isomorphism (Cyc. Rig. Iner.) is constructed in a purely group theoretic manner,
and we can reconstruct the identification even when we are working in the group theory.
See also the (Step 3) in Theorem 3.17.

Proof. (1): By the assumption that &k is Kummer-faithful, £(X) is also Kummer-
faithful by Lemma 3.2 (3).

(2): The origin O € J determines a section sp : Gy — Il;, and, by taking (in
the additive expression) the substraction np :=tp — sp : G, — Ay (C II;) (i.e., the
quotient np := tp/so in the multiplicative expression), which is a 1-cocycle, of two
sections tp,so : G — I, we obtain a cohomology class [np] € H' (G, Ay). On the
other hand, the Kummer map for .J(k) induces an injection (J(k) C)J(k)" € H*(k,A ),
since k is Kummer-faithful (Here, J(k)" denotes the profinite completion of J(k)). Then
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we claim that [D] = [O(D)] € J(k) is sent to np € H' (G, Ay) (See also [NTs, Lemma
4.14] and [Naka, Claim (2.2)]). Let ap : J — J denote the morphism which sends x to
x — [D], and for a positive integer N, let Jp ny — J be the pull-back of ap : J — J via
the morphism [N]: J — J of multiplication by N:

JD,N —J
l L[N]
J J.

The origin O € J ([—>M J) corresponds to a k-rational point +-[D] € Jp n(k) lying over
[D] € J(k). By the k-rationality of +[D], we have tp(c) € IL;, , (C II;) for o € Gy.
The inertia subgroup Io (C A\ (oy) of the origin O € J(« Jp n) determines a system

ap

J\{0}€

of geometric points Q@p . n € Jp, ~ (k) corresponding to the divisor % (—[D]) for N > 1
such that Io always lies over Qp n. The conjugation conj(tp(c)) € Aut(Anio})
by tp(o) coincides with the automorphism induced by ¢% := id Xspeck Spec(c71) €
Aut((J \ {O}) @ k) (Note that a fundamental group and the corresponding cover-
ing transformation group are opposite groups to each other). Thus, tp(o)lotp(o)™?
gives an inertia subgroup over o3 (Qp,n) = o(Qp,n). On the other hand, by def-

inition, we have tp(o)zotp(o)™t = tp(o)so(o) tso(d)zoso(o) tsolo)tp(o)™t =

Xeye(0) -1

np(0)zg np(o)~! for a generator zp of Ip, hence, tp(c)lotp(o)~! is an iner-

tia subgroup over vy (np(o) 1) (Qp.n), where vy @ Ay — Aut((J \ J[N]) @ k ]
(J\ {O}) @ k)°PP (Here, (—)°PP denotes the opposite group. Note that a fundamental
group and the corresponding covering transformation group are opposite groups to each

other). Therefore, we have o0(Qp n) = v~(np(c) 1) (Qp.n). By noting the natural
isomorphism Aut ((J\ JIN)) @i k ] (J\{O}) ®k E) >~ J[N] given by v +— v(O), we

obtain that . .
7 (5 C10D) = ~nxlup(@)(O) + ; (-[D).

Hence we have o (%[D]) — +[D] = vn(np(0))(0). This gives us the claim. The
assertion (2) follows from this claim.

(3): We have the following commutative diagram:

0 Hl (Gk; HQ (AcUusp—cent)) Hl (HcUusp—cent) HQ (Glm Hl (A(Iz}lsp-cen‘c))

| | |

0 HY (G, H°(Av)) H'(Iy) HY (G, H' (Av)),

where the horizontal sequences are exact, and we abbreviate the coefficient ji5(Ily) by
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the typological reason. Here, we have
H'(Gy, H (A, pz(1x))) = H (Gr, nz(I1x)) = H' (Gi, HO(AF™, 5 (Ix))),
and
H(Gr, H'(Au, pz(Nx))) = HY(Gi, AF) = HO(Gr, H (AT, iz (x ).

Thus by combining these, the assertion (3) is proved.
(4): By the exact sequence

0 — H'(Gr, H'(Ax, 15 (Ix))) — H' (Ix, p5(Ilx)) — H* (G, H' (Ax, p15(11x))) (2 H*(Gy, AR)),

and H'(Gy, H'(Ax, pz(Ilx))) = HY (G, pz(Ilx)) = (k*)", it suffices to show that
HO(G}, A%®) = 0. This follows from (A32)%* = T(J)% = 0, since NyNJ(k) = 0 by
the assumption that k& is Kummer-faithful (Here, T'(J) denotes the Tate module of J,
and J[N] is the group of N-torsion points of .J).

(5) is trivial by noting H*(ILx, H°([],c g Iz, #5(I1x))) = H' (Ix, p5(I1x)) = (k)"
by (4).

(6) is trivial. O

Let knxr denote the algebraic closure of Q in k (Here, NF stands for “number field”).
If X7 is defined over knr, we say that X is an NF-curve. For an NF-curve X, points
of X (k) (resp. rational functions on X7, constant rational functions (i.e., k C k(X)))
which descend to knp, we call them NF-points (resp. NF-rational functions, NF-
constants) on Xi.

Lemma 3.16.  ([AbsToplll, Proposition 1.8]) Assume that k is Kummer-faithful.
Take an open subscheme ) £ U C X, and put S := X \ U. We also assume that U is
an NF-curve (hence X is also an NF-curve). Let Py C H'(Ily, pz(I1x)) denote the in-
verse image of P, C @,cqZ(C D es 7) via the homomorphism H'(ITy, pz(x)) —
D.cs 7 constructed in Lemma 3.15.

1. an element n € Py is the Kummer class of a non-constant NF-rational function

if and only if there exist a positive integer n and two NF-points x1,xo € U(K')
z = 85, (nn) €
HY(Gr,pu3(I1x)), where sy, : Giy — Iy is the section corresponding to x; for
i = 1,2, satisfy (in the additive expression) (nn)|z, = 0 and (nn)|z, # 0 (i.e., =1
and # 1 in the multiplicative expression).

with a finite extension k' of k such that the restrictions (nn)

2. Assume that there exist non-constant NF-rational functions in I'(U, Of). Then an
element n € PyNHY (G, pz(I1x)) = (k*)" is the Kummer class of an NF-constant
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in k* if and only if there exist a non-constant NF-rational function f € I'(U, Op)
and an NF-point x € U(k") with a finite extension k' of k such that ky (f)|e = 1ls
m Hl(Gk/, /LZ(H_)())

Proof. Let Xnr be a model of Xi over knp. Then any non-constant rational

function on Xyp determines a morphism Xyp — IP% , which is non-constant i.e.,
NF

Xnr(knr) — IP%NF (kxr) is surjective. Then the lemma follows from the definitions. [

Theorem 3.17.  (Mono-anabelian Reconstruction of NF-Portion, [AbsToplIl,
Theorem 1.9]) Assume that k is sub-p-adic, and that X is a hyperbolic orbicurve of
strictly Belyi type. Let X be the canonical smooth compactification of X. From the
extension 1 - Ax — Ilx — Gr — 1 of profinite groups, we can functorially group-
theoretically reconstruct the NF-rational function field kxp(X) and NF-constant field
ke as in the following. Here, the functoriality is with respect to open injective homo-
morphisms of extension of profinite groups (See Remark 3.13.1), as well as with respect

to homomorphisms of extension of profinite groups arising from a base change of the

base field.

(Step 1) By Belyi cuspidalisation (Theorem 3.8), we group-theoretically reconstruct the set
of surjections {Ily — Ilx},; for open sub-NF-curves ) # U C X and the decompo-
sition groups D, in llx of NF-points x. We also group-theoretically reconstruct the
inertia subgroup I, := D, N Ay.

(Step 2) By cyclotomic rigidity for inertia subgroups (Proposition 3.14 and Remark 3.14.1),
we group-theoretically obtain isomorphism I, = ps(Ilx) for any x € X(k), where
I, is group-theoretically reconstructed in (Step 1).

(Step 3) By the inertia subgroups I, reconstructed in (Step 1), we group-theoretically recon-
struct the restriction homomorphism H'(Ily, s (Ix)) — H'(I,, u5(I1x)). By the
cyclotomic rigidity isomorphisms in (Step 2), we have an isomorphism H' (I, pz(I1x)) =
A Therefore, we group-theoretically obtain an exact sequence

1= () = H Iy, p3(Tx)) - P Z
€S
in Lemma 3.15 (5) (Note that, without the cyclotomic rigidity Proposztzon 3.14, we
would have Z* ~indeterminacies on each direct summand of B, eSZ and that the
reconstruction algorithm in this theorem would not work). By the characterisation

of principal cuspidal divisors (Lemma 3.15 (2), and the decomposition groups in

(Step 1)), we group-theoretically reconstruct the subgroup
Pu C H' (y, pz(11y))

of principal cuspidal divisors.
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(Step 4) Note that we already group-theoretically reconstructed the restriction map n

z; N
Lemma 3.16 by the decomposition group D, reconstructed in (Step 1). By the char-
acterisations of non-constant NF-rational functions and NF-constants in Lemma 3.16
(1), (2) in Py reconstructed in (Step 3), we group-theoretically reconstruct the sub-
groups (via Kummer maps ky’s in Lemma 3.15)

Fxe C Fnp(X)* C lim H (T, p(Tx ),
U

where U runs through the open sub-NF-curves of X xi k' for a finite extension k'

of k.

(Step 5) In (Step 4), we group-theoretically reconstructed the datum kxp(X)* in Proposi-
tion 8.12 (a). Note that we already reconstructed the data ord, ’s in Proposition 3.12
(b) as the component at = of the homomorphism H'(Iy, iz (Ix)) — @xesi re-
constructed in (Step 3). Note also that we already group-theoretically reconstructed
the evaluation map f +— f(x) in Proposition 3.12 as the restriction map to the
decomposition group D, reconstructed in (Step 1). Thus, we group-theoretically ob-
tain the data U, ’s in Proposition 3.12 (c). Therefore, we can apply Uchida’s Lemma
(Proposition 3.12), and we group-theoretically reconstruct the additive structures on

kxp U {0}, Enp(X)* U {0}

Proof. The theorem immediately follows from the group-theoretic algorithms re-
ferred in the statement of the theorem. The functoriality immediately follows from the
described constructions. U

Remark 3.17.1.  The input data of Theorem 3.17 is the extension 1 — Ax —
I[Ix — G — 1 of profinite groups. If k is a number field or a non-Archimedean local
field, then we need only the profinite group Ilx as an input datum by Proposition 2.2
(1), and Corollary 2.4. (Note that we have a group-theoretic characterisation of cuspidal
decomposition groups for the number field case as well by Remark 2.9.2.)

Remark 3.17.2.  (Elementary Birational Analogue, [AbsTopIIIl, Theorem 1.11])
Let nx denote the generic point of X. If k is [-cyclotomically full for some [, then we have
the characterisation of the cuspidal decomposition groups in I, at (not only NF-points
but also) all closed points of X (See Remark 2.9.2). Therefere, under the assumption
that &k is Kummer-faithful (See also Lemma 3.2 (2)), if we start not from the extension
1 - Ax = IIx — G — 1, but from the extension 1 — A, — 1I,, = G — 1,
then the same group-theoretic algorithm (Step 2)-(Step 5) works without using Belyi
cuspidalisation (Theorem 3.8) or (GC) (See Theorem B.1), and we can obtain (not only
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the NF-rational function field kxr(X) but also) the rational function field k(X) and
(not only the NF-constant field kyxr but also) the constant field & (Note also that we
do not use the results in Section 3.2, hence we have no circular arguments here).

Remark 3.17.3.  (Slimness of G for Kummer-Faithful k, [AbsToplIIl, a part of
Theorem 1.11]) By using the above Remark 3.17.2 (Note that we do not use the results
in Section 3.2 to show Remark 3.17.2, hence we have no circular arguments here), we
can show that Gy := Gal(k/k) is slim for any Kummer-faithful field k as follows (See
also [pGC, Lemma 15.8]): Let Giy C Gj, be an open subgroup, and take g € Zg, (Gy/).
Assume that g # 1. Then we have a finite Galois extension K of k' such that g : K = K
is not an identity on K. We have K = k'(«) for some o € K. Take an elliptic F over
K with j-invariant a. Put X := E \ {O}, where O is the origin of E. Put also
X9 := X xg, K ie., the base change by g : K = K. The conjugate by g defines
an isomorphism Iy = IIys. This isomorphism is compatible to the quotients to G,
since g is in Zg, (Gg/). Thus, by the functoriality of the algorithm in Remark 3.17.2,
this isomorphism induces an K-isomorphism K(X) & K(X9)(= K(X) ®k4 K) of
function fields. Therefore, we have g(a) = « by considering the j-invariants. This is a

contradiction.

Remark 3.17.4.  (See also [AbsToplIIl, Remark 1.9.5 (ii)], and [IUTchI, Remark
4.3.2]) The theorem of Neukirch-Uchida (which is a bi-anabelian theorem) uses the
data of the decomposition of primes in extensions of number fields. Hence, it has no
functoriality with respect to the base change from a number field to non-Archimedean
local fields. On the other hand, (mono-anabelian) Theorem 3.17 has the functoriality
with respect to the base change of the base fields, especially from a number field to
non-Archimedean local fields. This is crucial for the applications to inter-universal
Teichmiiller theory (For example, see the beginning of 10, Example 8.12 etc.). See also
[IUTchl, Remark 4.3.2 requirements (a), (b), and (c)].

In inter-universal Teichmiiller theory, we will treat local objects (i.e., objects over
local fields) which a priori do not come from a global object (i.e., an object over a
number field), in fact, we completely destroy the above data of “the decomposition of
primes” (Recall also the “analytic section” of Spec O — Spec Of,__,). Therefore, it is
crucial to have a mono-anabelian reconstruction algorithm (Theorem 3.17) in a purely
local situation for the applications to inter-universal Teichmiiller theory. It also seems
worthwhile to give a remark that such a mono-anabelian reconstruction algorithm in a
purely local situation got available by the fact that the bi-anabelian theorem in [pGC]|
was proved for a purely local situation, unexpectedly at that time to many people from
a point of view of analogy with Tate conjecture!
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Definition 3.18. Let £ be a finite extension of Q,. We define

poz(Gr) == lim (H*)tors,  115(Gr) := Hom(Q/Z, pigy/(Gh)),
HCGy: open

where the transition maps are given by Verlangerung (or transfer) maps (See also the
proof of Proposition 2.1 (6) for the definition of Verlangerung map). We call them the
cyclotomes of Gy.

Remark 3.18.1.  Similarly as Remark 3.13.1, in this subsection, by the functorial-

ity of cohomology with uq,z(G (—))-coefficients for an open injective homomorphism of

profinite groups G C G}, we always mean multiplying m on the homomorphism

between the cyclotomes of G, and Gy (See also [AbsTopIIl, Remark 3.2.2]). Note that
we have a commutative diagram

H?(Gr, pgyz(Gr)) — Q/Z

m -restriction l o~ j =
Sk

H*(G, pgyz(Gr)) — Q/Z,
where the horizontal arrows are the isomorphisms given in Proposition 2.1 (7).

Corollary 3.19. (Mono-anabelian Reconstruction over an MLF, [AbsToplII,
Corollary 1.10, Proposition 3.2 (i), Remark 3.2.1]) Assume that k is a non-Archimedean
local field, and that X is a hyperbolic orbicurve of strictly Belyi type. From the profinite
group Il x, we can group-theoretically reconstruct the following in a functorial manner
with respect to open injections of profinite groups:

1. the set of the decomposition groups of all closed points in X,

2. the function field k(X) and the constant field k, and

3. a natural isomorphism
(Cyc. Rig. LCFT) 13(Gr) = pz(0" (Ilx)),

where we put iz(O (Ix)) 1= Hom(Q/Z, k(kxg)) for s : hyp < lim, H' Iy, i3 (TTx)).

We call the isomorphism (Cyc.Rig. LCFT) the cyclotomic rigidity via LCFT or
classical cyclotomic rigidity (LCFT stands for “local class field theory”).

Proof. (1) is just a restatement of Corollary 3.9.
(2): By Theorem 3.17 and Corollary 2.4, we can group-theoretically reconstruct the
fields kxp(X) and knp. On the other hand, by the natural isomorphism H?(Gy, uz(Gr)) =
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7 group-theoretically constructed in Proposition 2.1 (7) (with Hom(Q/Z, —)) and the
cup product, we group-theoretically construct isomorphisms H*(Gy, pz(Gr)) =

Hom(H 1(@,2),2) >~ 3P, We also have group-theoretic constructions of a surjec-
tion G2 — G2 /Im(I;, — G3") and an isormorphism G&°/Im(I, — GiP) = Z by
Proposition 2.1 (4a) and Proposition 2.1 (5) respectively (See also Remark 2.1.1).
Hence, we group-theoretically obtain a surjection H'(Gy, uz(Gy)) — 7. We have
an isomorphism p5(Gy) = ps(Ilx) well-defined up to multiplication by Z*. Then
this induces a surjection H'(Gy, uz(Ilx)) — 7 well-defined up to multiplication by
Z*. We group-theoretically reconstruct the field k£ as the completion of the field
(HY (G, pz(I1x)) Nkp)U{0} (induced by the field structure of kxpU{0}) with respect
to the valuation determined by the subring of (H*(Gy, uz(Ilx)) QE;IF) U {0} generated

by ker {Hl(Gk, pz(Ilx)) — 2} N E;F. The reconstructed object is independent of the
choice of an isomorphism pz(G) = s (Ilx ). By taking the inductive limit of this con-
struction with respect to open subgroups of Gy, we group-theoretically reconstruct k.
Finally, we group-theoretically reconstruct k(X) by k(X) := k e knre(X).

(3): We put pgz(0" (Ilx)) := puz(0O% (llx)) ®5 Q/Z. We group-theoretically re-
construct G* = Gal(k"" /k) by Proposition 2.1 (4a). Then by the same way as Propo-
sition 2.1 (7), we have group-theoretic constructions of isomorphisms:

H*(Gi, pgyz(0” (Tx))) 5 H* (G, 5(K ")) < H*(G™, k((k™)*))
5 H*(G™,7) <~ HY(G"™,Q/Z) = Hom(G™,Q/Z) = Q/Z.

Thus, by taking Hom(Q/Z, —), we obtain a natural isomorphism H?(Gy, p5 (0 (I1x))) =
Z. By imposing the compatibility of this isomorphism with the group-theoretically con-
structed isomorphism H?(Gy, p5(Gy)) = Z in (2), we obtain a natural isomorphism

115(Gr) = pz(O" (Ilx)). O

Remark 3.19.1.  ([AbsToplII, Corollary 1.10 (c¢)]) Without assuming that X is
of strictly Belyi type, we can construct an isomorphism fi5(Gr) = pz(Ilx) (cf. Corol-
lary 3.19 (3)). However, the construction needs technically lengthy reconstruction algo-
rithms of the graph of special fiber ([profGC, §1-5], [AbsAnab, Lemma 2.3|. See also
[SemiAnbd, Theorem 3.7, Corollary 3.9] Proposition 6.6 for the reconstruction without
Galois action in the case where a tempered structure is available) and the “rational pos-
itive structure” of H? (See also [AbsAnab, Lemma 2.5 (i)]), where we need Raynaud’s
theory on “ordinary new part” of Jacobians (See also [AbsAnab, Lemma 2.4]), though
it has an advantage of no need of [pGC]. See also Remark 6.12.2.

Remark 3.19.2.  ([AbsToplII, Proposition 3.2, Proposition 3.3]) For a topological
monoid (resp. topological group) M with continuous Gg-action, which is isomorphic to
O% (resp. k) compatible with the Gj-action, we put pz(M) := Hom(Q/Z, M*)) and
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poz(M) == pz(M) ®5 Q/Z. We call them the cyclotome of a topological monoid
M. We also put M"Y := Mk (G=G")  We can canonically take the generator of
M"™ /M>* =N (resp. the generator of M"/M* up to {£1}) to obtain an isomorphism
(Mvr)eP /(MY)* = Z (resp. an isomorphism (MUF)&P/(M")* =2 7 well-defined up to
{£1}). Then by the same way as Corollary 3.19 (3), we have

H*(Gy, pgyz(M)) = H?(Gy, M®P) < H?*(G", (M"")5P)
= H?(G™, (M™)8P /(M™)*) % H?*(G™,Z) «— H'(G™,Q/Z) = Hom(G™,Q/Z) = Q/Z,
where the isomorphism H?2(GY, (MU7)8P /(M1T)*) (:; H?(G™,Z) is canonically defined

(resp. well-defined up to {£1}), as noted above. Then we have a canonical isomorphism
(resp. an isomorphism well-defined up to {£1})

(Cyc. Rig. LCFT2) 15 (Gr) = pz (M),

by the same way as in Corollary 3.19 (3). We also call the isomorphism (Cyc. Rig. LCFT2)
the cyclotomic rigidity via LCFT or classical cyclotomic rigidity. We also obtain
a canonical homomorphism (resp. a homomorphism well-defined up to {£1})

Mol H'(Lp(M) =l H\(J (G,
JCG: open JCG: open
by the above isomorphism, where the first injection is the canonical injection (The nota-
tion > in OZ = OF - (uniformiser)" indicates that the “direction” N (22 (uniformiser)Y)
of Z (= (uniformiser)?) (or a generator of Z) is chosen, compared to = Og :
(uniformiser)Z, which has {4-1}-indeterminacy of choosing a “direction” or a generator
of Z (= (uniformiser)?). In the non-resp’d case (i.e., the O™-case), the above canonical

injection induces an isomorphism

Kum

~

M — O%(Hx),

where Og (ITx) denotes the ind-topological monoid determined by the ind-topological
field reconstructed by Corollay 3.19. We call this isomprhism the Kummer isomor-
phism for M.

We can also consider the case where M is an topological group with Gj-action,
which is isomorphic to OEX compatible with the Gi-action. Then in this case, we have

H'(J, u7(Gr)),
which are only well-defined up to zx—multiple (i.e., there is no rigidity).

an isomorphism p5(Gr) = pz(M) and an injection M — lim | open

It seems important to give a remark that we use the value group portion (i.e., we
use O%, not O*) in the construction of the cyclotomic rigidity via LCFT. In inter-
universal Teichmiiller theory, not only the existence of reconstruction algorithms, but
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also the contents of reconstruction algorithms are important, and whether or not we
use the value group portion in the algorithm is crucial for the constructions in the final
multiradial algorithm in inter-universal Teichmiiller theory. See also Remark 9.6.2,
Remark 11.4.1, Propositin 11.5, and Remark 11.11.1.

§3.5. On the Philosophy of Mono-analyticity and Arithmetic
Holomorphicity.

In this subsection, we explain Mochizuki’s philosophy of mono-analyticity and arith-
metic holomorphicity, which is closely related to inter-universality.

Let k be a finite extension of Q,, k an algebraic closure of k, and k'(C k) a finite
extension of Q. It is well-known that, at least for p # 2, the natural map

(nonGC for MLF)
Isomtopological fields (E/k, E/k/) — Isomproﬁnite groups(Gal(E/k/>7 Gal(E/k))
(scheme theory) (group theory)

is not bijective (See [NSW, Chap. VII, §5, p.420-423]. See also [AbsTopl, Corollary
3.7]). This means that there exists an automorphism of Gy := Gal(k/k) which does
not come from an isomorphism of topological fields (i.e., does not come from a scheme
theory). In this sense, by treating Gy as an abstract topological group, we can go outside
of a scheme theory. (A part of) Mochizuki’s philosophy of arithmetically holomor-
phicity and mono-analyiticity is to consider the image of the map (nonGC for MLF)
as arithmetically holomorphic, and the right hand side of (nonGC for MLF) as
mono-analytic (Note that this is a bi-anabelian explanation, not a mono-anabelian
explanation (cf. Remark 3.4.4) for the purpose of the reader’s easy getting the feeling.
We will see mono-anabelian one a little bit later). The arithmetic holomorphicity versus
mono-analyticity is an arithmetic analougue of holomorphic structure of C versus the
undeyling analytic strucutre of R?(= C).

Note that G has cohomological dimension 2 like C is two-dimensional as a topo-
logical manifold. It is well-known that this two-dimensionality comes from the exact
sequence 1 — I, — G — ZFrobk — 1 and that both of I, and zFrobk have cohomo-
logical dimension 1. In the abelianisation, these groups correspond to the unit group
and the value group respectively via the local class field theory. Proposition 2.1 (2d)
says that we can group-theoretically reconstruct the multiplicative group k* from the
abstract topological group Gi. This means that we can see the multiplicative struc-
ture of k in any scheme theory, in other words, the multiplicative structure of k is
inter-universally rigid. However, we cannot group-theoretically reconstruct the field &
from the abstract topological group Gy, since there exists a non-scheme theoretic au-
tomorphism of G as mentioned above. In other words, the additive structure of £ is
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inter-universally non-rigid. Proposition 2.1 (5) also says that we can group-theoretically
reconstruct Frobenius element Froby in iFrobk(«— Gy) from the abstract topological
group G}, and the unramified quotient ZFrob;C corresponds to the value group via the
local class field theory. This means that we can detect the Frobenius element in any
scheme theory. In other words, the unramified quotient zFrobk and the value group
Z(« k) are inter-universally rigid. However, there exists automorphisms of the topo-
logical group G, which do not preserve the ramification filtrations (See also [AbsTopllII,
Remark 1.9.4]), and the ramification filtration (with upper numberings) corresponds
to the filtration (1 + m}),, of the unit group via the local class field theory, where my
denotes the maximal ideal of O. In other words, the inertia subgroup I and the unit
group O are inter-universally non-rigid (We can also directly see that the unit group
O/ is non-rigid under the automorphism of topological group k* without the class field
theory). In summary, one dimension of G or k* (i.e., the unramified quotient and the
value group) is inter-universally rigid, and the other dimension (i.e., the inertia subgroup
and the unit group) is not. Thus, Mochizuki’s philosophy of arithmetic holomorphicity
and mono-analyticity regards a non-scheme theoretic automorphism of G as a kind
of an arithmetic analogue of the Teichmiiller dilation of the undeyling analytic
strucutre of R?(=2 C) (See also [Pano, Fig. 2.1] instead of the poor picture below):

t -~ 0

— _

Note that it is a theatre of encounter of the anabelian geometry, the Te-
ichmiiller point of view, the differential over F; (See Remark 1.6.1 and Lemma 1.9)
and the Hodge-Arakelov theory (See Appendix A), which gives rise a Diophan-
tine consequence!

Note also that [Q,GC, Theorem 4.2] says that if an automorphisms of Gy, preserves
the ramification filtration, then the automorphism arises from an automorphism of k/k.
This means that when we rigidify the portion corresponding to the unit group (i.e.,
non-rigid dimension of Gj), then it becomes arithmetically holomorphic i.e., [Q,GC,
Theorem 4.2] supports the philosophy. Note also that we have C* = St x R, where
we put S' := OF C C* (See Section 0.2), and that the unit group S* is rigid and the
“value group” Rsg is non-rigid under the automorphisms of the topological group C*
(Thus, the rigidity and non-rigidity for unit group and “value group” in the Archimedean
case are opposite to the non-Archimedean case).

Let X be a hyperbolic orbicurve of strictly Belyi type over a non-Archimedean
local field k. Corollary 3.19 says that we can group-theoretically reconstruct the field k&
from the abstract topological group Ilx. From this mono-anabelian reconstruction the-
orem, we obtain one of the fundamental observations of Mochizuki: Ilx or equivalently
the outer action Gj, — Out(Ax) (and the actions llx ~ k,Ox, O%, OEX) is arithmeti-
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>
k
and multiplicative group) is mono-analytic (thus, taking the quotient IIx +— Gy is a

cally holomorphic, and Gy, (and the actions Gy ~ O ,Og on multiplicative monoid
“mono-analyticisation”) (cf. Section 0.2 for the notation Og ). In other words, the outer
action of G on Ax rigidifies the “non-rigid dimension” of k*. We can also regard X
as a kind of “tangent space” of k, and it rigidifies k*. Note also that, in the p-adic
Teichmiiller theory (See [pOrd] and [pTeich]), a nilpotent ordinary indigenous bundle
over a hyperbolic curve in positive characteristic rigidifies the non-rigid p-adic deforma-
tions. In the next section, we study an Archimedean analogue of this rigidifying action.
In inter-universal Teichmiiller theory, we study number field case by putting together
the local ones. In the analogy between p-adic Teichmiiller theory and inter-universal
Teichmiiller theory, a number field corresponds to a hyperbolic curve over a perfect field
of positive characteristic, and a once-punctured elliptic curve over a number field corre-
sponds to a nilpotent ordinary indigenous bundle over a hyperbolic curve over a perfect
field of positive characteristic. We will deepen this analogy later such that log-link
corresponds to a Frobenius endomorphism in positive characteristic, a vertical line of
log-theta-lattice corresponds to a scheme theory in positive characteristic, ©-link corre-
sponds to a mixed characteristic lifting of ring of Witt vectors p™ /p"t! ~s pntl /pn+2 g
horizontal line of log-theta-lattice corresponds to a deformation to mixed characteristic,
and a log-theta-lattice corresponds to a canonical lifting of Frobenius (cf. Section 12.1).
In short, we obtain the following useful dictionaries:

rigid ZFroby, value group | multiplicative structure of k St(c C*)
non-rigid Iy, unit group additive structure of k R<o(C C*)

C field k Iy Iy ~ k, O, OF, 0% arith. hol.
R2(= C) | multiplicative group k* Gy Gr ~ O'E , Og mono-an.
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inter-universal Teich. p-adic Teich.
number field hyperbolic curve of pos. char.
onece-punctured ell. curve nilp. ord. indigenous bundle
log-link Frobenius in pos. char.

vertical line of log-theta-lattice scheme theory in pos. char.
O-link lifting p™ /p™tt ~s pn Tl /pnt2

horizontal line of log-theta-lattice deformation to mixed. char.

log-theta-lattice canonical lift of Frobenius

See also [AbsToplll, §1.3] and [Pano, Fig. 2.5]. Finally, we give a remark that
separating additive and multiplicative structures is also one of the main themes of inter-
universal Teichmiiller theory (cf. Section 10.4 and Section 10.5).

§4. The Archimedean Theory — Formulated Without Reference to a
Specific Model C.

In this section, we introduce a notion of Aut-holomorphic space to avoid a spe-
cific fixed local referred model of C (i.e., “the C”) for the formulation of holomorphic-
ity, i.e., “model-implicit” approach. Then we study an Archimedean analogue mono-
anabelian reconstruction algorithms of Section 3, including elliptic cuspidalisation, and

an Archimedean analogue of Kummer theory.

§4.1. Aut-Holomorphic Spaces.
Definition 4.1.  ([AbsToplII, Definition 2.1))

1. Let X,Y be Riemann surfaces.

(a) Let Ax denote the assignment, which assigns to any connected open subset
U C X the group Ax(U) := Aut"™ (U) := {f : U 3 U holomorphic} c
Aut(UtP) := {f: U = U homeomorphic}.

(b) Let U be a set of connected open subset of X such that U is a basis of the
topology of X and that for any connected open subset V C X, if V C U € U,
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then V € U. We call 4 a local structure on the underlying topological space
X'top,

(¢) We call a map f: X — Y between Riemann surfaces an RC-holomorphic
morphism if f is holormophic or anti-holomorphic at any point x € X (Here,
RC stands for “real complex”).

2. Let X be a Riemann surface, and U a local structure on Xt°P,

(a) The Aut-holomorphic space associated to X is a pair X = (X'*P_ Ax), where
XtoP .= X'°P the underlying topological space of X, and Ax := Ax.

(b) We call Ax the Aut-holomorphic structure on X*°P.
(¢) We call Ax|ys a U-local pre-Aut-holomorphic structure on X*P.

(d) If X is biholomorphic to an open unit disc, then we call X an Aut-holomorphic
disc.

(e) If X is a hyperbolic Riemann surface of finite type, then we call X hyperbolic
of finite type.

(f) If X is a hyperbolic Riemann surface of finite type associated to an elliptically
admissible hyperbolic curve over C, then we call X elliptically admissible.

3. Let X, Y be Aut-holomorphic spaces arising from Riemann surfaces X, Y respec-
tively. Let U, V be local structures of X'°P, Y'°P respectively.

(a) A (U,V)-local morphism ¢ : X — Y of Aut-holomorphic spaces is a local
isomorphism ¢'°P : XtP — Y'P of topological spaces suth that, for any U € U
with ¢'°P : U = V € V (homeomorphism), the map Ax(U) — Ay (V) obtained
by the conjugate by ¢'°P is bijective.

(b) IfU, V are the set of all connected open subset of X P, Y*P respectively, then
we call ¢ a local morphism of Aut-holomorphic spaces.

(c) If ¢'°P is a finite covering space map, then we call ¢ finite étale.
4. Let Z, Z’' be orientable topological surfaces.

— T ab

(a) Take p € Z, and put Orn(Z,p) := Mmoo 2. connected, open T (W \ {p})?",
which is non-canonically isomorphic to Z. Note that after taking the abelian-
isation, there is no indeterminacy of inner automorphisms arising from the

choice of a basepoint in (the usual topological) fundamental group 71 (W \{p}).

(b) The assignment p — Orn(Z,p) is a trivial local system, since Z is orientable.
Let Orn(Z) denote the abelian group of global sections of this trivial local
system, which is non-canonically isomorphic to Z™0(%).
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Let o, B : Z — Z' belocal isomorphisms. We say that a and 3 are co-oriented
if the induced homomorphisms a., S« : Orn(Z) — Orn(Z’) of abelian groups

coincide.

A pre-co-orientation ¢ : Z — Z’ is an equivalence class of local isomorphisms
Z — Z' of orientable topological surfaces with respect to being co-oriented.

The assignment which assigns to the open sets U in Z the sets of pre-co-
orientations U — Z’ is a presheaf. We call a global section  : Z — Z’ of the
sheafification of this presheaf a co-orientation.

5. Let X, Y be Aut-holomorphic spaces arising from Riemann surfaces X, Y respec-

tively. Let U, V be local structures of X'°P, Y'°P respectively.

(a)

(b)

(c)

(U, V)-local morphisms ¢1,¢2 : X — Y of Aut-holomorphic spaces is called

.o it t :
co-holomorphic, if ¢;°? and ¢5’" are co-oriented.

A pre-co-holomorphicisation ¢ : X — Y is an equivalence class of (U, V)-
local morphisms X — Y of Aut-holomorphic spaces with respect to being
co-holomorphic.

The assignment which assigns to the open sets U in X*P the sets of pre-co-
holomorphicisation U — Y is a presheaf. We call a global section ( : X — Y
of the sheafification of this presheaf a co-holomorphicisation.

By replacing “Riemann surface” by “one-dimensional complex orbifold”, we can
)

easily extend the notion of Aut-holomorphic space to Aut-holomorphic orbispace.

Proposition 4.2.  ([AbsToplIl, Proposition 2.2]) Let X,Y be Aut-holomorphic
discs arising from Riemann surfaces X, Y respectively. We equip the group Aut(X*P)
of homeomorphisms with the compact-open topology. Let Aut®“(X) (c Aut(X*oP))
denote the subgroup of RC-holomorphic automorphisms of X. We regard AuthOI(X)

and AutRC'hOI(X ) as equipped with the induced topology by the inclusions

Auth(’l(X) C AutRC’hOI(X) C Aut(X*™P),

1. We have isomorphisms

Aut"(X) 2 PSLy(R),  Aut™®™"(X) = PGLy(R)

as topological groups, Aut"(X) is a subgroup in Aut®°M°N(X) of index 2, and
AutREPN( X)) s a closed subgroup of Aut(XtOP).

2. Aut®CPN(X) is commensurably terminal (cf. Section 0.2) in Aut(XP).
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3. Any isomorphism X = Y of Aut-holomorphic spaces arises from an RC-holomorphic
isomorphism X =Y.

Proof. (1) is well-known (the last assertion follows from the fact of complex anal-
ysis that the limit of a sequence of holomorphic functions which uniformly converges on
compact subsets is also holomorphic).

(2) It suffices to show that CAut(Xtop)(AuthOI(X)) = AutRPl (X)) (cf. Section 0.2).
Take o € CAut(Xtop)(AuthOI(X)). Then Aut™(X) N aAut"™! (X))o~ is a closed sub-
group of finite index in Aut"™(X), hence an open subgroup in Aut™(X). Since
Aut"™!(X) is connected, we have Aut"(X) N aAut™ (X))o~ = Aut"!(X). Thus,
a € NAut(Xtop)(AuthOI(X)) (cf. Section 0.2). Then by the conjugation, a gives an au-
tomorphism of Aut™(X). The theorem of Schreier-van der Waerden ([SvdW]) says
that Aut(PSLy(R)) 2 PGLy(R) by the conjugation. Hence, we have v € Aut?“"0!(X).
(Without using the theorem of Schreier-van der Waerden, we can directly show it as fol-
lows: By Cartan’s theorem (a homomorphism as topological groups between Lie groups
is automatically a homomorphism as Lie groups, cf. [Serrel, Chapter V, §9, Theorem
2]), the automorphism of Aut"!(X) given by the conjugate of a is an automorphism of
Lie groups. This induces an automorphism of Lie algebra sl (C) with sla(R) stabilised.
Hence, « is given by an element of PG Lo (R). See also [AbsToplIl, proo of Proposition
2.2 (ii)], [QuContf, the proof of Lemmal.10].)

(3) follows from (2) since (2) implies that Aut?“"°!(X) is normally terminal. [

The followoing corollary says that the notions of “holomorphic structure”, “Aut-
holomorphic structure”, and “pre-Aut-holomorphic structure” are equivalent.

Corollary 4.3.  (asort of Bi-Anabelian Grothendieck Conjecture in the Archimedean
Theory, [AbsToplIl, Corollary 2.3]) Let X, Y be Aut-holomorphic spaces arising from
Riemann surfaces X, Y respectively. Let U, V be local structures of X*P, Y*°P respec-
tively.

1. Any (U,V)-local isomorphism ¢ : X — Y of Aut-holomorphic spaces arises from a
unique étale RC-holomorphic morphism ¢ : X — Y. If X and Y are connected,
then there exist precisely 2 co-holomorphicisations X — Y, corresponding to the
holomorphic and anti-holomorphic local isomorphisms.

2. Any pre-Aut-holomorphic structure on X*P extends to a unique Aut-holomorphic
structure on XtP,

Proof. (1) follows from Proposition 4.2 (3).

(2) follows by applying (1) to automorphisms of the Aut-holomorphic spaces deter-
mined by the connected open subsets of X*P which determine the same co-holomorphicisation
as the identity automorphism. O
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§4.2. Elliptic Cuspidalisation and Kummer Theory in the Archimedean
Theory.

Lemma 4.4.  ([AbsToplll, Corollary 2.4]) Let X be a hyperbolic Aut-holomorphic
orbispace of finite type, arising from a hyperbolic orbicurve X over C. Only from the
Aut-holomorphic orbispace X, we can determine whether or not X admits C-core, and
in the case where X admits C-core, we can construct the Aut-holomorphic orbispace
associated to the C-core in a functorial manner with respect to finite étale morphisms

by the following algorithms:

1. Let Ut — X%P pe any universal covering of X*°P. Then we reconstruct the
topological fundamental group 71 (X™P) as the opposite group Aut(UP /XtoP)oprp
of Aut(U*eP/XtoP),

2. Take the local structure U of U°P consisting of connected open subsets of U°P
which map isomorphically onto open sub-orbispaces of X*°P. We construct a nat-
ural U-local pre-Aut-holomorphic structure on UP by restricting Aut-holomorphic
structure of X on X*P and by transporting it to U*°P. By Corollary 4.3 (2), this
gives us a natural Aut-holomorphic structure Ay on U*P. We put U := (U'*°P, Ap).
Thus, we obtain a natural injection w1 (X©P)PP = Aut(UtP/X*P) — Aut’(U) C
Aut(U) = PGLy(R), where Aut’(U) denotes the connected component of the iden-
tity of Aut(U), and the last isomorphism is an isomorphism as topological groups
(Here, we regard Aut(U) as a topological space by the compact-open topology).

3. X admits C-core if and only if Im(m (XtOP)OPP) .= Tm (7 (XtP)oPP  Aut®(U)) is
of finite index in Meore = Caygo ) (Im(my (X*P)PP)). [f X admits C-core, then the
quotient X *°P — X ope 1= UP / /Tl ore in the sense of stacks is the C-core of X. The
restriction of the Aut-holomorphic structure of U to an appropriate local structure on
U and transporting it to Xcore give us a natural Aut-holomorphic structure Ax,__.. of
Xecore, hence, the desired Aut-holomorphic orbispace (X —)Xcore := (Xcores AX ore )-

Proof. Assertions follow from the described algorithms. See also [CanLift, Remark
2.1.2]. O

Proposition 4.5.  (Elliptic Cuspidalisation in the Archimedean Theory, [AbsToplII,
Corollary 2.7], See also [AbsToplIIl, Proposition 2.5, Proposition 2.6]) Let X be an el-
liptically admissible Aut-holomorphic orbispace arising from a Riemann orbisurface X.
By the following algorithms, only from the holomorphic space X, we can reconstruct the
system of local linear holomorphic structures on X*P in the sense of (Step 10) below in
a functorial manner with respect to finite étale morphisms:
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(Step 1) By the definition of elliptical admissibility and Lemma 4.4 (2), we construct X —
Xeore, where Xeore arises from the C-core Xeore of X, and Xcore is semi-elliptic (cf.
Section 3.1). There is a unique double covering E — Xcore by an Aut-holomorphic
space (not orbispace), i.e., the covering corresponding to the unique torsion-free
subgroup of index 2 of the group l.ore of Lemma 4.4. Here, E is the Aut-holomorphic
space associated to a onec-punctured elliptic curve E '\ {O} over C.

(Step 2) We consider elliptic cuspidalisation diagrams E «~ EN < E (See also the portion of
“E\{O} «- E\ E[N] — E\{O}” in the diagram (EllCusp) of Section 3.2), where
EN — E is an abelian finite étale coveing which is also unramified at the unique
punctured point, E©°P < (EN)Y©P is an open immersion, and EN < E, EN — E are
co-holomorphic. By these diagrams, we can reconstruct the torsion points of the
elliptic curve E as the points in E\EN. We also reconstruct the group structure
on the torsion points induced by the group structure of the Galois group Gal(EN /E),
i.e., 0 € Gal(EN /E) corresponds to “+[P]” for some P € E[N].

(Step 3) Since the torsion points constructed in (Step 2) are dense in E*°P, we reconstruct
the group structure on EYP as the unique topological group structure extending
the group structure on the torsion points constructed in (Step 2). In the subsequent

steps, we take a simply connected open non-empty subset U in F*°P,

(Step 4) Let p € U. The group structure constructed in (Step 3) induces a local additive
structure of U at p, i.e., a+,b:=(a—p)+(b—p)+p €U fora,be U, whenever
it 1s defined.

(Step 5) We reconstruct the line segments of U by one-parameter subgroups relative to the
local additive structures constructed in (Step 4). We also reconstruct the pairs of
parallel line segments of U by translations of line segments relative to the local
additive structures constructed in (Step 4). For a line segment L, put OL to be
the subset of L consisting of points whose complements are connected, we call an
element of OL an endpoint of L.

(Step 6) We reconstruct the parallelograms of U as follows: We define a pre-0-parallelogram
A of U to be L1 ULy U L3 ULy, where L; (i € Z/47Z) are line segments (constructed
in (Step 5)) such that (a) for any p1 # p2 € A, there ezists a line segment L
constructed in (Step 5) with OL = {p1,p2}, (b) L; and L;yo are parallel line seg-
ments constructed in (Step 5) and non-intersecting for any i € Z/AZ, and (c)
LN Lty = (0L;) N (OL;41) with #(L; N Liy1) = 1. We reconstruct the parallel-
ograms of U as the interiors of the unions of the line segments L of U such that
OL C A for a pre-0-parallelogram A. We define a side of a parallelogram in U to



(Step 7)

(Step 8)

(Step 9)
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be a mazimal line segment contained in P\ P for a parallelogram P of U, where P
denotes the closure of P in U.

Let p € U. We define a frame F = (S1,S52) to be an ordered pair of intersecting
sides S1 # So of a parallelogram P of U constructed in (Step 6), such that S1 NSy =
{p}. If a line segment L of U have an infinite intersection with P, then we call L
being framed by F'. We reconstruct an orientation of U at p (of which there are
precisely 2) as an equivalence class of frames of U*P at p relative to the equivalence
relation of frames F = (S1,52), F = (S7,5%) of U at p generated by the relation
that S| is framed by F and Ss is framed by F’.

Let V be the Aut-holomorphic space determined by a parallelogram V*P C U con-
structed in (Step 7). Let p € VP, Take a one-parameter subgroup S of the topo-
logical group Ay (V*°P)(= PSLy(R)) and a line segment L in U constructed in (Step
5) such that one of the endpoints (cf. (Step 5)) of L is equal to p. Note that one-
parameter subgroups are characterised by using topological (not differentiable) group
structure as the closed connected subgroups for which the complement of some con-
nected open neighbourhood of the identity element is not connected. We say that L
is tangent to S-p at p if any pairs of sequences of points of L\{p}, (S-p)\{p} con-
verge to the same element of the quotient space V*°P\ {p} — P(V,p) determined by
identifying positive real multiples of points of V*°P\ {p} relative to the local additive
structure constructed in (Step 4) at p (i.e., projectivification). We can reconstruct
the orthogonal frames of U as the frames consisting of pairs of line segments
L1, Ly having p € U as an endpoint that are tangent to the orbits Sy -p, So - p of
one-parameter subgroups S1,Se C Ay(V®P) such that So is obtained from Sy by
conjugating S1 by an element of order 4 (i.e., “ti”) of a compact one-parameter
subgroup of Ay (V*°P).

Forp e U, let (V)pevcu be the projective system of connected open neighbourhoods
of pin U, and put

A, = {f € Aut((V)pevcu) | f satisfies (LAS), (Orth), and (O'rz')},

where

(LAS): compatibility with the local additive structures of V(C U) at p constructed in

(Step 4),

(Orth): preservation of the orthogonal frames of V(C U) at p constructed in (Step 8),

and

(Ori): preservation of the orientations of V(C U) at p constructed in (Step 7)
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(Step 10)
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(See also Section 0.2 for the Hom for a projective system). We equip A, with the
topology induced by the topologies of the open neighbourhoods of p that A, acts on.
The local additive structures of (Step 4) induce an additive structure on A, := A,U
{0}. Hence, we have a natural topological field structure on A_p. Tha tautological
action of C* on C D U induces a natural isomorphism C* = A, of topological
groups, hence a natural isomorphism C = A_p of topological fields. In this manner,
we reconstruct the local linear holomorphic structure “C* at p” of U at p as
the topological field A, with the tautological action of A,(C A,) on (V)peveu-

For p,p’ € U, we construct a natural isomorphism A, = A, of topological fields as
follows: If p’ is sufficiently close to p, then the local additive structures constructed
in (Step 4) induce homeomorphism from sufficiently small neighbourhoods of p onto
sufficiently small neighbourhoods of p' by the translation (=the addition). These
homeomorphisms induce the desired isomorphism A_p = A_p/. For general p,p’ €
U, we can obtain the desired isomorphism A_p = A_p/ by joining p’ to p via a
chain of sufficiently small open neighbourhoods and composing the isomorphisms on
local linear holomorphic structures. This isomorphism is independent of the choice
of such a chain. We call ((Ap)p, (A, = Ap)pp) the system of local linear
holomorphic structures on E'P or XP. We identify (A, C A,)’s for p’s via
the above natural isomorphisms and let A c AX denote the identified ones.

Proof. The assertions immedeately follow from the described algorithms. O

Hence, the formulation of “Aut-holomorphic structure” succeeds to avoid a specific

fixed local referred model of C (i.e., “the C”) in the above sense too, unlike the usual

notion of “holomorphic structure”. This is also a part of “mono-anabelian philoso-
phy” of Mochizuki. See also Remark 3.4.4 (3), and [AbsTopIIl, Remark 2.1.2, Remark
2.7.4].

Let k be a CAF (See Section 0.2). We recall (cf. Section 0.2) that we write Oy C C

for the subset of elements with |-| < 1in k, O;° C Oy, for the group of units i.e., elements
with | -| =1, and O} := Oy \ {0} C Oy, for the multiplicative monoid.

1.

Definition 4.6.  ([AbsTopllIl, Definition 4.1])

Let X be an elliptically admissible Aut-holomorphic orbispace. A model Kummer
structure xy : k = AX (resp. Kox O < A% resp. rpx 1 kX — A% resp.
Kor OF — A*) on X is an isomorphism of topological fields (resp. its restriction
to O}, resp. its restriction to k*, resp. its restriction to OF). An isomorphism
kart M S AX of topological fields (resp. an inclusion kps : O] — A* of topological
groups, resp. an inclusion ks : kX < A* of topological groups, resp. an inclusion
Ky @ OF — A® of topological monoids) is called a Kummer structure on X,
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if there exist an automorphicm f : X = X of Auto-holomorphic spaces, and an
isomorphism g : M = k of topological fields (resp. an isomorphism g : M = Oy of
topological groups, resp. an isomorphism ¢ : M = k> of topological groups, resp.
an isomorphism g : M = O} of topological monoids) such that f* ok, = Ky oyg
(resp. f*o Kox = KM © g Tesp. ffokpx =Ky ogresp. f¥o Kox = KM 0g), where
i AX S AX (resp. f* i AKX S AX resp. f* i AKX S AX resp. [ AX S A%) s
the automorphism induced by f. We often abbreviate it as X A M.

2. A morphism ¢ : (X; A M) — (Xy A M,) of elliptically admissible Aut-
holomorphic orbispaces with Kummer structures is a pair ¢ = (¢x, ¢ps) of
a finite étale morphism ¢x : X; — Xy and a homomorphism ¢, : My — My of
topological monoids, such that the Kummer structures x; and ko are compatible
with ¢y : My — My and the homomorphism (¢x)s : A% — A% arising from the
functoriality of the algorithms in Proposition 4.5.

The reconstruction
X (X, X~ AX c AX (with field str.) tautological Kummer Structure)

described in Proposition 4.5 is an Archimedean analogue of the reconstruction

— —x Kummer ma
II — <H,H ~ k (with field str.) D k- &5 lim H(J, MZ(H))> ,
JCII: open

described in Corollary 3.19 for non-Archimedean local field k. Namely, the reconstruc-
tion in Corollary 3.19 relates the base field k to IIx via the Kummer theory, and the
reconstruction in Proposition 4.5 relates the base field ﬁ(% C) to X, hence, it is a
kind of Archimedean Kummer theory.

Definition 4.7.  (See also [AbsTopllIl, Definition 5.6 (i), (iv)])

1. We say that a pair G = (C, 8) of a topological monoid C' and a topological sub-
monoid C C is a split monoid, if C is isomorphic to OF, and 8 — (' deter-
mines an isomorphism C* x 5 C of topological monoids (Note that C* and

C are necessarily isomorphic to S* and (0, 1] lég R>( respectively). A morphism
of split monoids G; = (C1, C1) — Gy = (Cs, C') is an isomorphism C; = Cy
of topological monoids which induce an isomorphism C'; = C', of the topological
submonoids.

Remark 4.7.1.  We omit the definition of Kummer structure of split monoids
([AbsToplll, Definition 5.6 (i), (iv)]), since we do not use them in inter-universal Te-
ichmiiller theory (Instead, we consider split monoids for mono-analytic Frobenius-like
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objects). In [AbsTopllII], we consider a split monoid G = (C, 8 ) arising from arith-
holomorphic “OF” via the mono-analyticisation, and consider a Frobenius-like object
M and k~(G) = C™~ x C™ (See Proposition 5.4 below) for G = (C, 8 On the other
hand, in inter-universal Teichmiiller theory, we consider £~ (G) = C~ x C™ directly
from “OZ” (See Proposition 12.2 (4)). When we consider k~(G) directly from “Og”,
then the indeterminacies are only {1} x {£1} (i.e., Archimedean (Indet —)); however,
when we consider a Frobenius-like object for G = (C, ('), then we need to consider
the synchronisation of k; and ks via group-germs, and need to consider 8 up to Ry
(i.e., we need to consider the category TBH in [AbsToplIl, Definition 5.6 (i)]). See also
[AbsToplIl, Remark 5.8.1 (i)].

Let Gx = (O% 7T 8 4x) denote the split monoid associated to the topological field
AX ie., the topological monoid OAX, and the splitting O — OAX NRso =: BAX of
0% — 05:/0x and X~ OF . For a Kummer structure X A OF of an elliptically
admissible Aut holomorphic orbispace, we pull-back O A% via the Kummer structure
O < AX, we obtain a decomposition of OF as O x Ok, where Ok ~ OF/O). We

consider this assignment
—>
(Xﬂ Okb) — (GX A O: X Ok)
as a mono-analytification.

§4.3. On the Philosophy of Etale- and Frobenius-like Objects.

We further consider the similarities between the reconstruction algorithms in Corol-
lary 3.19 and Proposition 4.5, and then, we explain Mochizuki’s philosophy of the
dichotomy of étale-like objects and Frobenius-like objects.

Note also that the tautological Kummer structure X .~ A* rigidifies the non-rigid
“R-o” (See Secton 3.5) in A* (= C*) in the exact sequence 0 — S — CX — Rsg — 0
(See also [AbsToplIl, Remark 2.7.3]). In short, we have the following dictionary:

Arith. Hol. Mono-analytic
I> . . . >< >< %
non-Arch. k/Q, :fin. Iy, IIx~ OE rigidifies O, | G, Gr OE x Of
0— 0 = kX — Z(rigid) = 0 | “k” can be reconstructed O+ non-rigid
> il « ” X =7
Arch. k(= C) X, X~ Oy rigidifies “R Gx, Gx~nO; xOy
0 — S!(rigid) = C* =+ Rsg — 0 | “C” can be reconstructed “R<o”: non-rigid
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We consider profinite groups Ilx, G, categories of the finite étale coverings over
hyperbolic curves or spectra of fields, and the objects reconstructed from these as étale-
like objects, and we consider, on the other hand, abstract topological monoids (with
actions of ITx, Gi), the categories of line bundles on finite étale coverings over hyperbolic
curves, the categories of arithmetic line bundles on finite étale coverings over spectra
of number fields, as Frobenius-like objects, i.e., when we reconstruct Illx ~ Og or
X OF, then these are regarded as étale-like objects whenever we remember that the
relations with IIx and X via the reconstruction algorithms; however, if we forget the
relations with IIx and X via the reconstruction algorithms, and we consider them as an
abstract topological monoid with an action of IIx, and an abstract topological monoid
with Kummer structure on X, then these objects are regarded as Frobenius-like objects
(See also [AbsToplIl, Remark 3.7.5 (iii), (iv), Remark 3.7.7], [Frdl, §I4], [ITUTchI, §I1]).
Note that if we forget the relations with IIx and X via the reconstruction algorithms,
then we cannot obtain the functoriality with respect to IIx or X for the abstract objects.

We have the dichotomy of étale-like objects and Frobenius-like objects both on
arithmetically holomorphic objects and mono-analytic objects, i.e., we can consider 4
kinds of objects — arithmetically holomorphic étale-like objects (indicated by D), arith-
metically holomorphic Frobenius-like objects (indicated by F), mono-analytic étale-like
objects (indicated by D), and mono-analytic Frobenius-like objects (indicated by F')
(Here, as we can easily guess, the symbol - means “mono-analytic”). The types and
structures of prime-strips (cf. Section 10.3) and Hodge theatres reflect this classification
of objects (See Section 10).

Note that the above table also exhibits these 4 kinds of objects. Here, we consider
Gr ~ OF x (07/0F) and Gx » O;f x (OF /Oy’) as the mono-analyticisations of
arithmetically holomorphic objects I, ~ OE , and X » OF respectively. See the
following diagrams:

forget forget

Frobenius-like —— étale-like Frobenius-like —— étale-like
(base with line bundle) (base)  (base with line bundle) (base)
arith. hol. Ix ~ OED i ITx X~ OF X
mono-anlyticisation I ] I }
x 5 Gy A OX X Op— > @
mono-an. G OE x Op ———— Gy, x N Op k X.

The composite of the reconstruction algorithms Theorem 3.17 and Proposition 4.5 with
“forgetting the relations with the input data via the reconstruction algorithms” are
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the canonical “sections” of the corresponding functors Frobenius-like 188" st ale-like
(Note also that, by Proposition 2.1 (2c), the topological monoid OF can be group-
theoretically reconstructed from Gy; however, we cannot reconstruct OE as a submonoid
of a topological field k, which needs an arithmetically holomorphic structure).

In inter-universal Teichmiiller theory, the Frobenius-like objects are used to con-
struct links (i.e., log-links and ©-links). On the other hand, some of étale-like objects
are used (a) to construct shared objects (i.e., vertically coric, horizontally coric, and
bi-coric objects) in both sides of the links, and (b) to exchange (!) both sides of a
O-link (which is called étale-transport. See also Remark 9.6.1, Remark 11.1.1, and
Theorem 13.12 (1)), after going from Frobenius-like picture to étale-like picture, which
is called Kummer-detachment (See also Section 13.2), by Kummer theory and by
admitting indeterminacies (Indet —), (Indet 1), and (Indet v~). (More precisely, étale-
like Iy and Gy are shared in log-links. The mono-analytic G is also (as an abstract
topological group) shared in ©-links; however, arithmetically holomorphic ITx cannot
be shared in ©-links, and even though OE /tors’s are Frobenius-like objects, Og /tors’s
(not Og ’s because the portion of the value group is dramatically dilated) are shared

after admitting Zx—indeterminacies.) See also Theorem 12.5.

étale objects reconstructed from Galois category indifferent to order
-like IMx, Gk, X, Gx coverings can be shared, can be exchanged
. - . = » .
Frobenius | abstract IIx OE’ Gr OE x Ox, Frobenioids order-conscious
. o w = . .
-like XA Oz, Gx »Og x Oc line bundles can make links

§4.4. Mono-anabelian Reconstruction Algorithms in the Archimedean
Theory.

The following theorem is an Archimedean analogue of Theorem 3.17.

Proposition 4.8.  (Mono-anabelian Reconstruction, [AbsToplIII, Corollary 2.8])
Let X be a hyperbolic curve of strictly Belyi type over a number field k. Let k be
an algebraic closure of k, and Ilx the arithmetic fundamental group of X for some
basepoint. From the topological group Ilx, we group-theoretically reconstruct the field
k = knr by the algorithm in Theorem 3.17 (cf. Remark 3.17.1). Take an Archimedean
place T of k. By the following group-theoretic algorithm, from the topological group
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IIx and the Archimedean place v, we can reconstruct the Aut-holomorphic space Xz

associated to Xz = X Xy ky in a functorial manner with respect to open injective

homomorphisms of profinite groups which are compatible with the respective choices of

Archimedean valuations:

(Step 1) We reconstruct NF-points of Xz as conjugacy classes of decomposition groups of NF-

(Step 2)

(Step 3)

(Step 4)

points in llx by in Theorem 3.17. We also reconstruct non-constant NF-rational
functions on X3 by Theorem 3.17 (Step 4) (or Lemma 3.16). Note that we also
group-theoretically obtain the evaluation map f — f(x) at NF-point x as the re-
striction to the decomposition group of x (cf. Theorem 3.17 (Step 4), (Step 5)),
and that the order function ord, at NF-point x as the component at x of the homo-
morphism H' (I, ps(Ix)) — @yegi in Theorem 3.17 (Step 3) (cf. Theorem 3.17
(Step 5)).

Define a Cauchy sequence {z;};en of NF-points to be a sequence of NF-points x
such that there exists an exceptional finite set of NF-points S satisfying the following
conditions:

o x; S for all but finitely many j € N, and

e For any non-constant NF-rational function f on Xz, whose diwvisor of poles
avoids S, the sequence of values {f(x;) € kv}jen forms a Cauchy sequence (in

the usual sense) in k.

For two Cauchy sequences {z;}jen, {y;}jen of NF-points with common exceptional
set S, we call that these are equivalent, if for any non-constant NF-rational func-
tion f on Xy, whose divisor of poles avoids S, the Cauchy sequences {f(x;) €
kxtjen, {f(y;) € kv}jen in ky converge to the same element of k.

For an open subset U C ki and a non-constant NF-rational function f on Xz, put
N(U, f) to be the set of Cauchy sequences of NF-points {x;};en such that f(z;) € U
for all j € N. We reconstruct the topological space X*°P = X(kz) as the set of equiv-
alence classes of Cauchy sequences of NF-points, equipped with the topology defined
by the sets N(U, f). A non-contant NF-rational function extends to a function on
XtP by taking the limit of the values.

Let Ux C X*P, Uy C ky be connected open subsets, and f a mon-constant NF-
rational function on Xz, such that the function defined by f on Ux gives us a
homeomorphism fi : Ux — Usy. Let Auth°1(Ug) denote the group of homeomor-
phisms f : Uy = Uy (C kg), which can locally be expressed as a convergent power
series with coefficients in kz with respect to the topological field structure of k.
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(Step 5) Put Ax(Ux) := fg ' o Aut"(Uy) o fy € Aut(Ux). By Corollary 4.3, we reconstruct
the Aut-holomorphic structure Ax on X*P as the unique Aut-holomorphic structure
which extends the pre-Aut-holomorphic structure defined by the groups Ax(Ux) in

(Step 4).

Proof. The assertions immediately follow from the described algorithms. O

We can easily generalise the above theorem to hyperbolic orbicurves of strictly
Belyi type over number fields.

Lemma 4.9. (Compatibility of Elliptic Cuspidalisation in Archimedean Place
with Galois Theoretic Belyi Cuspidalisation, [AbsTopIIl, Corollary 2.9]) In the situation
of Proposition 4.8, suppose further that X 1is elliptically admissible. From the topolog-
ical group Ilx, we group-theoretically reconstruct the field k = kxg by Theorem 3.17
(cf. Remark 3.17.1), i.e., via Belyi cuspidalisation. Take an Archimedean place T of
k(Ilx). Let X = (X*P  Ax) be the Aut-holomorphic space constructed from the topo-
logical group 1lx and the Archimedean valuation T in Proposition 4.8, i.e., via Cauchy
sequences. Let AX be the field constructed in Proposition 4.5, i.e., via elliptic cusp-
idalisation. By the following group-theoretically algorithm, from the topological group
IIx and the Archimedean valuation v, we can construct an isomorphism AX 5 ke of
topological fields in a functorial manner with respect to open injective homomorphisms
of profinite groups which are compatible with the respective choices of Archimedean val-
uations:

(Step 1) As in Proposition 4.8, we reconstruct NF-points of Xz, non-constant NF-rational
functions on X+, the evaluation map f — f(x) at NF-point x, and the order function
ord, at NF-point x. We also reconstruct E°P and the local additive structures on
it in Proposition 4.5.

(Step 2) The local additive structures of E'°P determines the local additive structures of
X®P . Let x be an NF-point of X+(kz), U an element of a sufficiently small neigh-
bourhood Ux C X'P of x in X*P which admits such a local additive structure.
For each NF-rational function f which vanishes at x, the assignment (U, f) +—
lim,, oo nf (n -5 V) € kg, where “ -, " is the operation induced by the local additive
structure at x, depends only on the image df|, € w, of f in the Zariski cotangent
space w, to Xz. It determines an embedding Ux — Homy, (w,, ks) of topological

spaces, which is compatible with the local additive structures.

(Step 3) Varying the neighbourhood Ux of x, the embeddings in (Step 2) give us an isomor-
phism A, = ky of topological fields by the compatibility with the natural actions
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of Ay, kX respectively. As x wvaries, the isomorphisms in (Step 8) are compati-
ble with the isomorphisms A, — .,Ty in Proposition 4.5. This gives us the desired
isomorphism AX 5 ky.

Remark 4.9.1.  An importance of Proposition 4.5 lies in the fact that the algo-
rithm starts in a purely local situation, since we will treat local objects (i.e., objects
over local fields) which a priori do not come from a global object (i.e., an object over a
number field) in inter-universal Teichmiiller theory. See also Remark 3.17.4.

Proof. The assertions immediately follow from the described algorithms. O

8§ 5. Log-volumes and Log-shells.

In this section, we construct a kind of “rigid containers” called log-shells both
for non-Archimedean and Archimedean local fields. We also reconstruct the local log-
volume functions. By putting them together, we reconstruct the degree functions of
arithmetic line bundles.

§5.1. Non-Archimedean Places.

Let k£ be a finite extension of Q,, and k an algebraic closure of k. Let X be
a hyperbolic orbicurve over k of strictly Belyi type. Put k™~ := (O%< )PE (e« Og) the
perfection of Og (See Section 0.2). The p-adic logarithm log; induces an isomorphism

logz : k™ Sk

of topological monoids, which is compatible with the actions of IIx. We equip £~ with
the topological field structure by transporting it from & via the above isomorphism logz.
Then we have the following diagram, which is called a log-link:

(Log-link (non-Arch)) OZ D OF —» k™~ = (07.)% = (0%.)* u {0} + OF.,

which is compatible with the action of Ilx (this will mean that ITy is vertically core. See
Proposition 12.2 (1), Remark 12.3.1, and Theorem 12.5 (1)). Note that we can construct
the sub-diagram O% > Og — k™, which is compatible with the action of G}, only from
the topological monoid Og (i.e., only from the mono-analytic structure); however, we
need the topological field k (i.e., need the arithmetically holomorphic structure) to
equip k£~ a topological field structure and to construct the remaining diagram k£~ =
(OF. )« OF..
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Definition 5.1. We put

1 pf

(0fx ©) T = 5T (C)™). where I} = Im{o,j ~(0x)" = kN}
where (—)"x denotes the fixed part of the action of ITx, and we call Z, a Frobenius-
like holomorphic log-shell.

On the other hand, from IIx, we can group-theoretically reconstruct an isomorph
k(ITx) of the ind-topological field & by Theorem 3.19, and we can construct a log-shell
T(Ilx) by using k(Ilx ), instead of k. Then we call Z(Ilx) the étale-like holomorphic
log-shell for IIx. By the cyclotomic rigidity isomorphism (Cyc.Rig. LCFT2), the
Kummer homomorphism gives us a Kummer isomorphism

(lx ~ k™) 3 (x ~ & (Tx)) (C lim H' (), g (Tx )

=
U

for k& (ILx) (See (Step 4) of Theorem 3.17, and Remark 3.19.2), hence obtain a Kum-
mer isomorphism

(Kum (non-Arch)) T, = I(Ily)

for Zy. In inter-universal Teichmiiller theory, we will also use the Kummer isomorphism
of log-shells via the cyclotomic rigidity of mono-theta environments in Theorem 7.23
(1) See Proposition 12.2.

Note that we have important natural inclusions
(Upper Semi-Compat. (non-Arch))
Oy's logg(Oy) C Iy and Oy (Ilx), logg (O (Ix)) C Z(Ix),

which will be used for the upper semi-compatibility of [og-Kummer correspondence
(See Proposition 13.7 (2)). Here, we put O (Ilx) := Ox(Ilx)*, Ox(Ilx) := Ox(II)"x,
and Oz(ILy) is the ring of integers of the ind-topological field k(II).

Proposition 5.2.  (Mono-analytic Reconstruction of Log-shell and Local Log-
volume in non-Archimedean Places, [AbsToplll, Proposition 5.8 (i), (ii), (iii)]) Let G
be a topological group, which is isomorphic to Gy. By the following algorithm, from G,
we can group-theoretically reconstruct the log-shell “Iy,” and the (non-normalised) local

«, 10g »

log-volume function “u,’*” (cf. Section 1.8) in a functorial manner with respect to open
homomorphisms of topological groups:

(Step 1) We reconstruct p, f(k), e(k), &, OZ, and OF by Proposition 2.1 (1), (3b), (3c),
(2a), (2¢), and (2b) respectively. To indicate that these are reconstructed from G,
let pa, fa, ea, 5 (G), O%(G) and OEX (G) denote them respectively (From now on,
we use the notation (—)(G) in this sense). Let p© be the number of elements of
5 (@) of pg-power orders, where (=) denotes the fized part of the action of G.
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(Step 2) We reconstruct the log-shell “Z;.” as Z(G) := 2pL(;Im {O%< (@)Y = k™~ (G) = o (G)pf}.
Note that, by the canonical injection Q — End(k™~(G)) (Here, End means the endo-
morphisms as (additive) topological groups), the multiplication by 21%@ canonically
makes sense. We call Z(G) the étale-like mono-analytic log-shell.

(Step 3) Put Ryon(G) := (K~ (G)/OZ(G))", where (—)" denotes the completion with respect
to the order structure determined by the image of OE (G)/O%< (G). By the canonical
isomorphism R = End(Ryon(G)), we consider Ryon(G) as an R-module. It is also
equipped with a distinguished element, i.e., the image F(G) € Ryon(G) of the Frobe-
nius element (constructed in Proposition 2.1 (5)) of OED(G)G/OEX (@) via the com-
posite OE(G)G/O%< (G)¢ C O%(G)/OEX (G) C Rpon(G). By sending falogpe € R
to F(GQ) € Ruon(G), we have an isomorphism R = Ryuon(G) of R-modules. By
transporting the topological field structure from R to Ryon(G) via this bijection, we
consider Ryon(G) as a topological field, which is isomorphic to R.

(Step 4) Let M(k™(G)®) denote the set of open compact subsets of the topological additive
group k~(G)¢. We can reconstruct the local log-volume function u'°8(G) :
M(k™~(G)) = Ruon(G) by using the following characterisation properties:

(a) (additivity) For A, B € M(k™~(G)%) with AN B = (), we have exp(u'°8(G)(AU
B)) = exp(1'°8(GQ)(A)) + exp(u'°8(G)(B)), where we use the topological field
structure of Ryon(G) to define exp(—),

(b) (+-translation invariance) For A € M(k™(G)?) and a € k~(G)¢, we have
o8 (G) (A + a) = plo#(G)(A),

(¢) (normalisation)

18 (G (Z(Q)) = (—1 - % + EGegfg) F(G),

where we put €g to be 1 if pg # 2, and to be 2 if pg = 2.

Moreover, if a field structure on k := k™~(G) is given, then we have the p-adic
logarithm log;, : O — k on k (where we can see k both on the domain and the

codomain), and we have
(5.1) pE(G)(A) = p*8(G) (logy (4))
for an open subset A C O] such that log,, induces a bijection A = log,,(A).

Remark 5.2.1.  Note that, we cannot normalise p'°8(G) by “u!°2(G)(0%.) = 07,
since “O%.” needs arithmetically holomorphic structure to reconstruct (cf. [Q,GC]).
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Remark 5.2.2.  The formula (5.1) will be used for the compatibility of log-
links with log-volume functions (See Proposition 13.10 (4)).

Proof. To lighten the notation, put p := pg, e :=eq, f = fa, m :=mg, € .= €g.
Then we have uLog(Ik) = ceflogp + ,u}:g(log(O,:)) = (eef —m)logp — log(p/ — 1) +
1 (0F) = (eef —m)log p—log(p/ —1)+log (1 - ,%) +u8(Ox) = (cef —m—f)logp =

<—1+ee—%)flogp. O

§5.2. Archimedean Places.

Let k be a CAF (See Section 0.2). Let X be an elliptically admissible Aut-
holomorphic orbispace, and kj : k = AX a Kummer structure. Note that k (resp.
k*, O)) and AX have natural Aut-holomorphic structures, and rj determines co-
holomorphicisations between k (resp. k*, O;) and AX. Let k™~ — k* be the universal
covering of k™, which is uniquely determined up to unique isomorphism, as a pointed
topological space (It is well-known that it can be explicitly constructed by the homo-
topy classes of paths on k*). The topological group structure of £* induces a natural
topological group structure of £~. The inverse (i.e., the Archimedean logarithm) of the

exponential map k — k£* induces an isomorphism
log, : k™~ = k

of topological groups. We equip k™ (resp. OF.) with the topological field structure
(resp. the topological multiplicative monoid structure) by transporting it from & via
the above isomorphism log,. Then r; determines a Kummer structure kg~ : k™~ = AX
(resp. Koy~ : Op~ — ﬁ) which is uniquely characterised by the property that
the co-holomorphicisation determined by kg~ (resp. ko,~) coincides with the co-
holomorphicisation determined by the composite of k™~ =+ k and the co-holomorphicisation
determined by k. By definition, the co-holomorphicisations determined by kg, and ki~
(resp. ko,~ ) are compatible with log, (This compatibility is an Archimedean analogue
of the compatibility of the actions of IIx in the non-Archimedean situation). We have
the following diagram, which is called a log-link:

(Log-link (Arch)) OF Ck* « k™~ = (05.)% = (0%.)*" U {0} + O%.,

which s compatible with the co-holomorphicisations determined by the Kummer struc-
tures (This will mean X is vertically core. See Proposition 12.2 (1)). Note that we can
construct the sub-diagram O} C k* « k™ only from the topological monoid Of (i.e.,
only from the mono-analytic structure); however, we need the topological field k (i.e.,
need the arithmetically holomorphic structure) to equip k™ a topological field structure
and to construct the remaining diagram k™~ = (OF. )% «+ OF..
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Definition 5.3. We put
1
(Ok~ = %Ik C) Ty = O;N -I,;k (C k:N),

where Z; is the the uniquely determined “line segment” (i.e., closure of a connected
pre-compact open subset of a one-parameter subgroup) of £~ which is preserved by
multiplication by +1 and whose endpoints differ by a generator of ker(k™~ — k) (i.e.,
Z; is the interval between “—mi” and “mi”, and Zj is the closed disk with redius 7).
Here, a pre-compact subset means a subset contained in a compact subset, and see
Section 0.2 for m. We call 7 a Frobenius-like holomorphic log-shell.

On the other hand, from X, we can group-theoretically reconstruct an isomorph
k(X) := AX of the field k by Proposition 4.5, and we can construct a log-shell Z(X) by
using k(X), instead of k. Then we call Z(X) the étale-like holomorphic log-shell

for X. The Kummer structure k; gives us a Kummer isomorphism
(Kum (Arch)) T = I(X)
for 7.

Note that we have important natural inclusions
(Upper Semi-Compat. (Arch))
O~ C T, O) Cexpy(Ty) and Op.(X) C Z(X), OF(X) C expy,x) (Z(X))

which will be used for the upper semi-compatibility of [og-Kummer correspondence
(See Proposition 13.7 (2)). Here, we put O} (X) = Ox(X)*, and Ox(X) (See also
Section 0.2) is the subset of elements of absolute value < 1 for the topological field k(X)
(or, if we do not want to use absolute value, the topological closure of the subset of
elements x with lim, o 2™ = 0), and exp,, (resp. expyx)) is the exponential function
for the topological field k (resp. k(II)).

Note also that we use O;. to define Z; in the above, and we need the topological
field structure of k to construct O;~; however, we can construct Z; as the closure of
the union of the images of Z; via the finite order automorphisms of the topological
(additive) group k™, thus, we need only the topological (multiplicative) group structure
of k~ (not the topological field structure of k) to construct Zy.

Proposition 5.4.  (Mono-analytic Reconstruction of Log-shell and Local Log-
volumes in Archimedean Places, [AbsTopllIl, Proposition 5.8 (iv), (v), (vi)]) Let G =
(C, 8) be a split monoid. By the following algorithm, from G, we can group-theoretically
reconstruct the log-shell “I¢”, the (non-normalised) local radial log-volume function
“,u(lé’ &7 and the (non-normalised) local angular log-volume function “ﬁgé)g ”in a functorial
manner with respect to morphisms of split monoids (In fact, the constructions do not

depend on 8, which is “non-rigid” portion. See also [AbsToplll, Remark 5.8.1]):
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(Step 1)

(Step 2)

(Step 3)

(Step 4)

(Step 5)

GO YAMASHITA

Let C~ — C* be the (pointed) unversal covering of C*. The topological group
structure of C* induces a natural topological group structure on C~. We regard
C~ as a topological group (Note that C* and C~ are isomorphic to S' and the
additive group R respectively). Put

KX (G) = C~ x C~, kX(G) =C* x C™.

Let Seg(G) be the equivalence classes of compact line segments on C™, i.e., com-
pact subsets which are either equal to the closure of a connected open set or are
sets of one element, relative to the equivalence relation determined by translation
on C~. Forming the union of two compact line segments whose intersection is a
set of one element determines a monoid structure on Seg(G) with respect to which
Seg(G) = Rsq (non-canonical isomorphism). Thus, this monoid structure deter-
mines a topological monoid structure on Seg(G) (Note that the topological monoid
structure on Seg(G) is independent of the choice of an isomorphism Seg(G) = R> ).

We have a natural homomorphism k™ (G) = C~ x C~ — k*(G) = C* x C™ of two
dimensional Lie groups, where we equip C~,C* with the differentiable structure by
choosing isomorphisms C~ = R, C* = R* (the differentiable structures do not
depend on the choices of isomorphisms). We reconstruct the log-shell “Z¢” as

I(G) := {(az,bx) | € Tn; a,b ER; a® + 0> =1} C k™(G),

where 5. C C™ denotes the unique compact line segment on C~ which is invariant
with respect to the action of {1}, and maps bijectively, except for its endpoints,
to C*. Note that, by the canonical isomorphism R = End(C~) (Here, End means
the endomorphisms as (additive) topological groups), ax for a € R and x € I~
canonically makes sense. We call Z(G) the étale-like mono-analytic log-shell.

We put Rue(G) := Seg(G)®P (Note that R,.(G) = R as (additive) topological
groups). By the canonical isomorphism R = End (R (G)), we consider R (G) as
an R-module. It is also equipped with a distinguished element, i.e., (Archimedean)
Frobenius element F(G) € Seg(G) C Rarc(G) determined by Zf.. By sending 2w €
R to F(G) € Ruc(G), we have an isomorphism R = Rao(G) of R-modules. By
transporting the topological field structure from R to Ra..(G) via this bijection, we
consider R, (G) as a topological field, which is isomorphic to R.

By the same way as Z(G), we put

O (G) = {(az,bx) | x € OTEn; a,b ER; a® + 0> =72} C k™ (G),
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where 0L}~ 1is the set of endpoints of the line segment I}~ (i.e., the points whose
complement are connected. cf. Proposition 4.5). Then we have a natural isomor-
phism Rsg x O (G) ~ k~(G) \ {(0,0)}, where (a,z) is sent to ax (Note that
ar makes sense by the canonical isomorphism R = End(C™) as before). Let
Prag @ k7 (G) \ {(0,0)} = Rso, pray, @ A7 (G) \ {(0,0)}0;-(G) denote the first
and second projection via the above isomorphism. We extend the map pr
E~(G)\ {(0,0)} - Rsg to a map pr,,q : k~(G) — R.

rad -

(Step 6) Let M(k™(QG)) be the set of nonempty compact subsets A C k™ (G) such that A
projects to a (compact) subset pr,,4(A) of R which is the closure of its interior in
R. For any A € M(k™~(G)), by taking the length u(G)(A) of pr,,q(A) C R with re-
spect to the usual Lebesques measure on R. By taking the logarithm p'°8(G)(A) :
log(u(G)(A)) € R = R (G), where we use the canonical identification R =
Rare(G), we reconstruct the desired local radial log-volume function u'°8(G) :
M(E~(G)) = Rarc(G). This also satisfies

_ logm

1 (G)T(G)) =

F(G)
by definition.

(Step 7) Let M(k™(G)) denote the set of non-empty compact subsets A C k™(G) \ {(0,0)}
such that A projects to a (compact) subset pr,,,(A) of Oy (G) which is the closure
of its interior in O} (G). We reconstruct the local angular log-volume function
[i°2(G) : M(E™(G)) = Rawe(G) by taking the integration ji(G)(A) of PTong(A) C
O~ (G) on O} (G) with respect to the differentiable structure induced by the one in
(Step 1), taking the logarithm ji'°8(G)(A) := log(i(G)(A)) € R = R,.(G), where
we use the canonical identification R = Ryo(G), and the normalisation

_ log2m
27

1°4(G)(0(G)) F(G).

Moreover, if a field structure on k := k™ (G) is given, then we have the exponential map
exp : k — k* on k (where we can see k both on the domain and the codomain), and
we have

(5.2) 1 (G)(A) = [i°8(G) (expy(A4))

for a non-empty compact subset A C k with exp,(A) C OF, such that pr,,q and exp,
induce bijections A = pr,,q(A), and A = exp,(A) respectively.

Remark 5.4.1.  The formula (5.2) will be used for the compatibility of log-
links with log-volume functions (See Proposition 13.10 (4)).
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Proof. Proposition immediately follows from the described algorithms. O

§6. Preliminaries on Tempered Fundamental Groups.

In this section, we collect some prelimiraries on tempered fundamental groups, and
we show a theorem on “profinite conjugate vs tempered conjugate”, which plays an

important role in inter-universal Teichmiiller theory.

§6.1. Some Definitions.

From this section, we use André’s theory of tempered fundamental groups ([Al])
for rigid-analytic spaces (in the sense of Berkovich) over non-Archimedean fields. We
give a short review on it here. He introduced the tempered fundamental groups to
obtain a fundamental group of “reasonable size” for rigid analytic spaces: On one
hand, the topological fundamental groups 7T‘1;Op for rigid analytic spaces are too small
(e.g., WEOP(P}CP \ {0,1,00},2) = {1}. If X is a proper curve with good reduction,
then m}°?(X®",z) = {1}). On the other hand, the étale fundamental groups 7¢* for
rigid analytic spaces aree too big (e.g., By the Gross-Hopkins period mappings ([GH1],
[GH2]), we have a surjection 7§t (]P’(lcp,x) — SL3(Q,). See also [A2, 11.6.3.3, and Remark

p

after IIT Corollary 1.4.7]). André’s tempered fundamental group ﬂiem is of reasonable

size, and it comparatively behaves well at least for curves. An étale covering Y — X
of rigid analytic spaces is called tempered covering if there exists a commutative

1

of étale coverings, where T" — X is a finite étale covering, and Z — T is a possibly

diagram

e

N=—N

e

inifinite topological covering. When we define a class of coverings, then we can define
the fundamental group associated to the class. In this case, ﬂemp(X ,x) classifies all
tempered pointed coverings of (X, ). For example, we have 7;°™P (]P’ép \ {0,00}) = Z,
and for an elliptic curve E over C, with j-invariant jg, we have mi"™P(E) = Z x Z if
jl, < 1, and 7i™P(E) = Z x Z if |j|, > 1 (JA1, §4.6]). Here, Z corresponds to the
universal covering of the graph of the special fiber. The topology of m;*™" is a little bit
complicated. In general, it is neither discrete, profinite, nor locally compact; however, it
is pro-discrete. For a (log-)orbicurve X over an MLF, let B*™P(X) denote the category
of the (log-)tempered coverings over the rigid analytic space associated with X. For
a (log-)orbicurve X over a field, let also B(X) denote the Galois category of the finite
(log-)étale coverings over X.



A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 107

Definition 6.1.  ([SemiAnbd, Definition 3.1 (i), Definition 3.4])

1. If a topological group II can be written as an inverse limit of an inverse system of
surjections of countable discrete topological groups, then we call II a tempered
group (Note that any profinite group is a tempered group).

2. Let II be a tempered group. We say that II is temp-slim if we have Zy(H) = {1}
for any open subgroup H C II.

3. Let f :1I; — Il be a continuous homomorphism of tempered groups. We say II;
is relatively temp-slim over II, (via f), if we have Zp, (Im{H — 1l5}) = {1} for
any open subgroup H C II;.

4. ([TUTchI, §0]) For a topological group II, let B*™P(II) (resp. B(II)) denote the cat-
egory whose objects are countable discrete sets (resp. finite sets) with a continuous
[T-action, and whose morphisms are morphisms of Il-sets. A category C is called
a connected temperoid, (resp. a connected anabelioid) if C is equivalent to
BtemP(TI) (resp. B(II)) for a tempered group II (resp. a profinite group II). Note
that, if C is a connected temperoid (resp. a connected anabelioid), then C is natu-
rally equivalent to (C°)T (resp. (C°)*) (See Section 0.2 for (—)°, (=)T and (—)7).
If a category C is equivalent to B*™P(II) (resp. B(II)) for a tempered group II
with countable basis (resp. a profinite group II), then we can reconstruct the topo-
logical group II, up to inner automorphism, by the same way as Galois category
(resp. by the theory of Galois category). (Note that in the anabelioid/profinite
case, we have no need of condition like “having countable basis”, since “compact
set arguments” are available in profinite topology.) We write 71(C) for it. We also
put 71(C%) := 71 ((C°)T) (resp. m1(CY) := w1 ((C)1)) for C a connected temperoid
(resp. a connected anabelioid).

5. For connected temperoids (resp. anabelioids) Cy, C2, a morphism C; — Ca of
temperoids (resp. a morphism C; — C, of anabelioids) is an isomorphism
class of functors C; — C; which preserves finite limits and countable colimits (resp.
finite colimits) (This is definition in [IUTchI, §0] is slightly different from the one
in [SemiAnbd, Definition 3.1 (iii)]). We also define a morphism C{ — CY to be a
morphism (CO)T — (CI)T (resp. (C))*+ — (CHL).

Note that if II;,II; are tempered groups with countable basis (resp. profinite

groups), then there are natural bijections among
e the set of continuous outer homomorphisms 1I; — Ils,

e the set of morphisms B*™P(II;) — B*™P(Ily) (resp. B(Il;) — B(Il;)), and
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e the set of morphisms B*™P(I1;)? — B*™P(I15)° (resp. B(I1;)? — B(1L)?).

(See also [IUTchl, Remark 2.5.3].)

Let K be a finite extension of Q,,.

Lemma 6.2. Let X be a hyperbolic curve over K. Let At;mp C Ht;mp denote
the geometric tempered fundamental group ﬂemp (X, ) and the arithmetic tempered fun-
damental group Wiemp(X, T) for some basepoint T, respectively. Then we have a group-

theoretic charasterisation of the closed subgroup Ag?mp m Hgf-mp.

Remark 6.2.1. By remark 2.4.1, pro-X version of Lemma 6.2 holds as well.

Proof. Note that the homomorphisms A¥™ — Ay = (AY™)" and ™ —
Iy := (I%™)" to the profinite completions are injective respectively, since the ho-
momorphism from a (discrete) free group to its profinite completion is injective (Free
groups and surface groups are residually finite (See also Proposition C.5)). Then by
using the group-theoretic characterisation of Ax in IIx (Corollary 2.4), we obtain a
group-theoretic characterisation of A™ as A™ = ™ N Ax. O

Let K be an algebraic closure of K. Let k and k denote the residue field of K and
K respectively (k is an algebraic closure of k).

Definition 6.3.

1. Let X be a pointed stable curve over k with marked points D. Put X := X \ D.
Then we associate a dual semi-graph (resp. dual graph) Gx to X as follows:
We set the set of the vertices of Gx to be the set of the irreducible components
of X, the set of the closed edges of Gx to be the set of the nodes of X, and the
set of the open edges of Gx to be the set of the divisor of infinity of X (i.e., the
marked points D of 7) To avoid confusion, we write X, and v, for the irreducible
component of X and the node of X corresponding to a vertex v and an closed edge
e respectively. A closed edge e connects vertices v and v’ (we may allow the case of
v =), if and only if the node v, is the intersection of two branches corresponding
to X, and X,,. An open e connects a vertex v, if and only if the marked point
corresponding to e lies in X,,.

2. (cf. [AbsAnab, Appendix]) We contitue the situation of (1). Let ¥ be a set of
prime numbers. A finite étale covering of curves is called of >-power degree if any
prime number dividing the degree is in ¥.. We also associate a (pro-3) semi-graph
Gx(= G%) of anabelioids to X, such that the underlying semi-graph is Gx as
follows: Put X’ := X \ {nodes}. For each vertex v of Gx, let G, be the Galois
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category (or a connected anabelioid) of the finite étale coverings of ¥-power degree
of X| := X, xx X’ which are tamely ramified along the nodes and the marked
points. For the branches v,.(1) and v,(2) of the node v, corresponding to a closed
edge e of Gx, we consider the scheme-theoretic interstion X/, (i) of the completion
along the branch v,(i) at the node v, of X’ for i = 1,2 (Note that XLE(Z.

canonically isomorphic to Spec k((t))). We fix a k-isomorphism X/, Ly =X ! (2)7 We

Ve

identify these, and let X! denote the identified object. Let G, be the Galois category

(or a connected anabelioid) of the finite étale coverings of X-power degree of X/

) 1S non-

which are tamely ramified along the node. For each open edge e, corresponding to
a marked point x, put X/ to be the scheme-theoretic interstion of the completion
of X at the marked point z with X’ (Note that X’ is non-canonically isomorphic
to Speck((t))). Let G., be the Galois category (or a connected anabelioid) of the
finite étale coverings of X-power degree of X! which are tamely ramified along the
marked point. For each edge e connecting vertices v; and ve, we have natural
functors G,, = G, Gy, = G. by the pull-backs. For an open edge e connected to
a vertex v, we have a natural functor G, — G. by the pull-backs. Then the data
Gx(=G%) :={Gv;Ge; Gy — Ge} defines a semi-graph of anabelioids.

. (cf. [SemiAnbd, Definition 2.1]) For a (pro-X) semi-graph G(= G*) = {G,; G.; G, —
G.} of anabelioids with connected underlying semi-graph G, we define a category
B(G)(= B(G¥)) as follows: An object of B(G)(= B(G¥)) is data {S,, ¢e}v.e, where
v (resp. e) runs over the vertices (resp. the edges) of G, such that S, is an object
of G,, and ¢ : e(1)*S,, = e(2)*S,, is an isomorphism in G., where e(1) and e(2)
are the branches of e connecting v; and vy respectively (Here, e(i)* : G,, — G, is
a given datum of G). We define a morphism of B(G) in the evident manner. Then
B(G) itself is a Galois category (or a connected anabelioid). In the case of G = Gx
in (2), the fundamental group associated to B(G)(= B(G*)) is called the (pro-X)
admissible fundamental group of X.

. (cf. [SemiAnbd, paragraph before Definition 3.5 and Definition 3.5]) Let G(= G*) =
{Gv;Ge; Gy — G} be a (pro-3) semi-graph of anabelioids such that the underly-
ing semi-graph G is connected and countable. We define a category BV (G)(=
BV (G*)) as follows: An object of BV(G)(= B><V(G)) is data {S,, ¢¢ }v.c, where
v (resp. e) runs over the vertices (resp. the edges) of G, such that S, is an object
of (GY)T (See Section 0.2 for (—)° and (—) "), and ¢, : e(1)*S,, = e(2)*S,, is an
isomorphism in (G%)T, where e(1) and e(2) are the branches of e connecting v; and
vy respectively (Here, e(i)* : G, — G is a given datum of G). We define a mor-
phism of B°V(G) in the evident manner. We can extend the definition of B°V(G)
to a semi-graph of anabelioids such that the underlying semi-graph G is countable;
however, is not connected. We have a natural full embedding B(G) — BV (G).
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Let (B(G) C) B*mP(G)(= B**mP(G*)) C B°V(G) denote the full subcategory whose
objects {Sy, ¢e }v.e are as follows: There exists an object {S,, ¢.} of B(G) such that
for any vertex or edge ¢, the restriction of {S!,¢.} to G. splits the restriction of
{Sy, ®c} to G i.e., the fiber product of S! (resp. ¢.) with S, (resp. ¢.) over the
terminal object (resp. over the identity morphism of the terminal object) in (G2)T
(resp. (G2)T) is isomorphic to the coproduct of a countable number of copies of S
(resp. ¢.) for any vertex v and any edge e. We call B*™P(G)(= Bt*mP(G*)) (pro-X)
(connected) temperoid associated with G(= G¥).

We can associate the fundamental group Ag™P (= Ag)’temp) = m (B*™P(G)) (=
71 (B*mP(G))) of BY*mP(G)(= B*mP(G¥)) (after taking a fiber functor) by the
same way as a Galois category. Let Ag(= A(gz)) denote the profinite completion of
A(QE)’temp. (Note that Ag(= Ag)) is not the maximal pro-¥ quotient of 71 (B(G*))
since the profinite completion of the “graph covering portion” is not pro-¥). By
definition, Atgemp(z A(gz)’temp) and A(gz) are tempered groups (Definition 6.1 (1),
See also [SemiAnbd, Proposition 3.1 (i)]).

Remark 6.3.1.  (cf. [SemiAnbd, Example 3.10]) Let X be a smooth log-curve over
K. The special fiber of the stable model of X determines a semi-graph G of anabelioids.
We can relate the tempered fundamental group A%™P := 7'*™P(X) of X with a system
of admissible fundamental groups of the special fibers of the stable models of coverings
of X as follows: Take an exhausitive sequence of open characteristic subgroups --- C
N; C -+ C A¥™ (i > 1) of finite index of A%™P. Then N; determines a finite log-
étale covering of X whose special fiber of the stable model gives us a semi-graph G; of
anabelioids, on which Agﬁmp /N; acts faithfully. Then we obtain a natural sequence of
functors - -+ < B*™P(G;) < - < B*™P(G) which are compatible with the actions of
A$™P/N;. Hence, this gives us a sequence of surjections of tempered groups A™ —»
= m(BP(G) N (ARTNG = o = m(BR(G,) M (ARNG) e
71 (B*™P(G)). Then by construction, we have

(61)  AY™=lim (Atgimp % <A§?mp/Ni>) — lim A" ker(N, —» AE™).
We also have

. out — X —

(6.2) Ax = gn <Agi X (AX/Ni)) = @Ax/ker(]\& — Ag, ),
K3 7

where ]/\7\@ denotes the closure of N; in Ax. By these expressions of Ag?mp and Ay in

terms of Atgeimp’s and Ag,’s, we can reduce some properties of the tempered fundamental

group At;mp of the generic fiber to some properties of the admissible fundamental groups
of the special fibers (See Lemma 6.4 (5), and Corollary 6.10 (1)). Let Ag?)’temp denote
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the fundamental group associated to the category of the tempered coverings dominated
by coverings which arise as a graph covering of a finite étale Galois covering of X over K
of ¥-power degree, and Ag?) its profinite completion (Note that Ag?) is not the maximal
pro-X quotient of A;mp or Ax since the profinite completion of the “graph covering
portion” is not pro-X). If p & 3, then we have

Ag{ﬁ_)),temp ~ A(gE),temp and Ag?) ~ A(gz);

since Galois coverings of Y-power degree are necessarily admissible (See [Hur, §3],

[SemiAnbd, Corollary 3.11]).

§6.2. Profinite Conjugates vs. Tempered Conjugates.

Lemma 6.4.  (special case of [SemiAnbd, Proposition 2.6, Corollary 2.7 (i), (ii),
Proposition 3.6 (iv)] and [SemiAnbd, Example 3.10]) Let X be a smooth hyperbolic log-
curve over K. Put A" := n{""P(X xx K) and ™ := 7{""P(X). Let G"P(=
G=temp) denote the temperoid determined by the special fiber of the stable model of
X xxg K and a set ¥ of prime numbers, and put Atgemp = w1 (GY*™P) (for some base
point). Take a connected sub-semi-graph H containing a vertex of the underling semi-
graph G of G*™P. We assume that H is stabilised by the natural action of Gk on G.
Let H*™P denote the temperoid over H obtained by the restriction of G**™P to H. Put
AP =y (HEemP)(C Atgemp). Let Ag and Ay denote the profinite completion of
Atgemp and Agjmp respectively.

1. Ay C Ag is commensurably terminal,

2. Ay C Ag is relatively slim (resp. Agjmp C Atgemp is relatively temp-slim),
3. Ay and Ag are slim (resp. Agfzmp and Atgemp are temp-slim),

4. inertia subgroups in Atgemp of cusps are commensurably terminal, and

. At)?mp and Hgf-mp are temp-slim.

Proof. (1) can be shown by the same manner as in Proposition 2.7 (1a) (i.e.,
consider coverings which are connected over H and totally split over a vertex outside H).
(3) for A: We can show that Ay and Ag are slim in the same way as in Proposition 2.7.
(2): Ay C Ag is relatively slim, by (1), (3) for A and Lemma 2.6 (2). Then the
injectivity (which comes from the residual finiteness of free groups and surface groups
(See also Proposition C.5)) of AX™ < Ay and Az;emp < Ag implies that AYS™ C
AG™P is relatively temp-slim. (3) for Ate™P: It follows from (2) for A*™P in the
same way as in Proposition 2.6 (2). (4) can also be shown by the same manner as in
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Proposition 2.7 (2¢). (5): By the isomorphism (6.1) in Remark 6.3.1 and (3) for A*™P,
it follows that A%™P is temp-slim (See [SemiAnbd, Example 3.10]). Hence, ™ is
also temp-slim by Proposition 2.7 (1c). O

Definition 6.5. Let G be a semi-graph of anabelioids.

1. We call a subgroup of the form A, := m1(G,) (C Ag™P) for a vertex v a verticial
subgroup.

2. We call a subgroup of the form A, := m(G.) (& Z=\P} .= [Ties\ gy Zo)(C AZ™P)
for a closed edge e an edge-like subgroup.

Proposition 6.6.  ([SemiAnbd, Theorem 3.7 (iv)]) Let X be a smooth hyperbolic
log-curve over K. Let gtemp(: gzvtemp) denote the temperoid determined by the special
fiber of the stable model of X and a set X2 of prime numbers, and put Agmp = (GTOMP)
(for some base point). For a vertex v (resp. an edge e) of the underlying sub-semi-graph
G of G*™P, we put A, 1= m1(Gy)(C AF™P) (resp. A = m1(Ge)(C Ag™P)) to be the
profinite group corresponding to G, (resp. G.) (Note that we are not considering open

edges here). Then we have the followng group-theoretic characterisations of A,’s and
A, s.

1. The maximal compact subgroups of Agamp are precisely the verticial subgroups of
Atemp
g .

2. The nontrivial intersection of two mazximal compact subgroups of Atgemp are precisely
the edge-like subgroups of Atgemp.

Remark 6.6.1.  Proposition 6.6 reconstructs the dual graph (not the dual semi-
graph) of the special fiber from the tempered fundamental group without using the
action of the Galois group of the base field. In Corollary 6.12 below, we reconstruct
the inertia subgroups, hence open edges as well, using the Galois action. However,
we can reconstruct the open edges without Galois action, by more delicate method in
[SemiAnbd, Corollary 3.11] (i.e., by constructing a covering whose fiber at a cusp under
consideration contains a node).

We can also reconstruct the dual semi-graph of the special fiber from the profi-
nite fundamental group by wusing the action of the Galois group of the base field (See
[profGC]).

Proof. Let Ag denote the profinite completion of Atgemp. First, note that it follows
that A, N A, has infinite index in A, for any vertices v # v’ by the commensurable
terminality of A™P (Lemma 6.4 (1)). Next, we take an exhausitive sequence of open
characteristic subgroups --- C N; C -+ C Atgemp of finite index, and let G;(— G) be the
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covering corresponding to N;(C Af;’mp). Let G$° denote the universal graph covering
of the underlying semi-graph G; of G,.

Take a compact subgroup H C Atgemp, then H acts continuously on G° for each
1 € I, thus its action factors through a finite quotient. Hence, H fixes a vertex or an
edge of G$° (see also [SemiAnbd, Lemma 1.8 (ii)]), since an action of a finite group on
a tree has a fized point by [Serre2, Chapter I, §6.5, Proposition 27] (Note that a graph
in [Serre2| is an oriented graph; however, if we split each edge of G{° into two edges,
then the argument works). Since the action of H is over G, if H fixes an edge, then
it does not change the branches of an edge. Therefore, H fixes at least one vertex. If,
for some cofinal subset J C I, H fixes more than or equal to three vertices of G3° for
each j € J, then by considering paths connecting these vertices (cf. [Serre2, Chapter I,
§2.2, Proposition 8]), it follows that there exists a vertex having (at least) two closed
edges in which H fixes the vertex and the closed edges (see also [SemiAnbd, Lemma 1.8
(ii)]). Since each G, is finite semi-graph, we can choose a compatible system of such a
vertex having (at least) two closed edges on which H acts trivially. This implies that H
is contained in (some conjugate in Ag of) the intersection of A, and A./, where e and
e’ are distinct closed edges. Hence, H should be trivial. By the above arguments also

show that any compact subgroup in Atgemp

is contained in A, for precisely one vertex
v or in A,, A, for precisely two vertices v,v’, and, in the latter case, it is contained in

A, for precisely one closed edge e. U

Proposition 6.7.  ([IUTchI, Proposition 2.1]) Let X be a smooth hyperbolic log-
curve over K. Let G*™P(= G¥MP) denote the temperoid determined by the special
fiber of the stable model of X and a set X of prime numbers. Put Atgemp = 1 (GemP),
and let Ag denote the profinite completion of Atgemp (Note that the “profinite portion”
remains pro-%, and the “combinatorial portion” changes from discrete to profinite). Let

A C Atgemp be a nontrivial compact subgroup, v € Ag an element such that YAyt C
Ag?mp. Then v € Atgemp.

Proof. Let r (resp. I'**™P) be the “profinite semi-graph” (resp. “pro-semi-graph”)
associated with the universal proﬁnlte étale (resp. tempered) coverlng of G**™P_ Then
we have a natural inclusion I'**™P < T'. We call a pro-vertex in T in the i image of this
inclusion tempered vertex. Since A and YA~y~! are compact subgroups of Ag P there
exists vertices v,v" of G (here G denotes the underlying semi-graph of G*™P) such that
A C AP and Ay~ € AP by Proposition 6.6 (1) for some base points. Here,
AtemP and A'S™P for this base points correspond to tempered vertices v,v/ € [temp,
Now, {1} # yAy~! C yAlmPA=1 N AP “and yAtemPy~1 is also a fundamental group
of G¥*™P with the base point obtained by conjugating the base point under consideration
above by ~. This correponding to a tempered vertex v7 € I'**™P, Hence, for the tem-
pered vertices v7 and v/ , the associated fundamental group has nontrivial intersection.
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By replacing Htgemp by an open covering, we may assume that each irreducible
component has genus > 2, any edge of G abuts to two distinct vertices, and that, for
any two (not necessarily distinct) vertices w, w’, the set of edges e in G such that e abuts
to a vertex w” if and only if w” € {w,w’} is either empty of of cardinality > 2. In the
case where ¥ = {2}, then by replacing Htgemp by an open covering, we may assume that
the last condition “cardinality > 2” is strongthen ot the condition “even cardinality”.

If ¥7 is not equal to v’ nor 7 is adjacent to v/ , then we can construct the covering
over X, (here X, is the irreducible component corresponding to v), such that the
ramification indices at the nodes and cusps of X, are all equal (Note that such a covering
exists by the assumed condition on G in the last paragraph), then we extend this covering
over the irreducible components which adjacent to X, finally we extend the covering to
a split covering over the rest of X (See also [AbsTopllI, Proposition 1.3 (iv)] or [NodNon,
Proposition 3.9 (i)]). This implies that there exist open subgroups J C Agmp which
contain A'S™P and determine arbitrarily small neighbourhoods yA'™Py=1 1 J of {1}.
This is a contradiction. Therefore, v7 is equal to v/ , or v7 is adjacent to v'. In particular,
v7 is tempered since v is tempered. Hence, both of v and v” are tempered. Thus, we
have v € Af;mp , as desired. O

Corollary 6.8.  ([IUTchI, Proposition 2.2]) Let Ag™ and AY™ be as in Lemma 6.4.
1. AG™P C Ag is commensurably terminal, and

2. Agjmp C Ag is commensurably terminal. In particular, A;‘imp C Atgemp 15 also

commensurably terminal as well.

Proof. (1): Let v € Ag be an element such that Atgemp ﬂ'yAtgemp’y_l is finite index
in Atgemp. Let A, C At;mp be a verticial subgroup, and put A := A, N 7Atgemp7_1 C
A, C AG™P. Since [A, : A] = [AG™P : AF™P N yAF™Py7] < o0, the subgroup A is
open in the compact subgroup A,, so, it is a nontrivial compact subgroup of Agmp.
Now, v 'Ay = y_lAvyﬂAtgemp - Atgemp. Since A,y 1Ay C Atgemp and A is a nontrivial
compact subgroup, we have v~ ! € Atgemp by Proposition 6.7. Thus v € Atgemp, as
desired.

(2): We have AY™ C ONgen.p(A;jmp) C COag(AF™) C Cag(Ay) by defini-
tion. By Lemma 6.4 (1), we have Ca,(Ay) = Ag. Thus, we have Ca, (AS™P) =
Ca,, (A%™) combining these. On the other hand, by (1) for A%™P, we have Ca,, (AY™P) =
A™P. By combining these, we have AS™ C Oa, (AS™P) = Oa,, (AS™P) = AY™P ) as
desired. O

Corollary 6.9.  ([IUTchI, Corollary 2.3]) Let Ax, Ag™P, AY™P, H, Ag, Ay
be as in Lemma 6.4. Put AE?EIP = AFMP X ptemo A;jmp(c AX™Y), and Axg =
AX XAg AH(C AX)
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1. At;fﬁp C A';mp (resp. Axm C Ax) is commensurably terminal.
2. The closure of Ag?%p in Ax is equal to Ax .
3. We have Ax g N At;np = At)?f%p(c Ax).

4. Let I, C Ag‘;mp (resp. 1, C Ax) be a cusp x of X. Write T for the cusp in the
stable model corresponding to x. Then I, lies in a At)?mp—(resp. Ax -)conjugate of
At;f%p (resp. Axm) if and only if T meets an irreducible component of the special
fiber of the stable model which is contained in H.

5. Suppose that p ¢ ¥, and there is a prime number | ¢ ¥ U {p}. Then Ax g is slim.
In particular, we can define

t out
temp |, temp ou L
HX,H = AX,H X GK, HX,]HI = AX,H X GK

by the natural outer actions of G on A'}?’rﬁlp and Ax p respectively.

6. Suppose that p & X, and there is a prime number | ¢ 3 U {p}. H;fﬁp C Ht)?mp and

IIx m C lIx are commensurably terminal.

Proof. (1) follows from Lemma 6.4 (1) and Corollary 6.8 (2). Next, (2) and (3) are
trivial. (4) follows by noting that an inertia subgroup of a cusp is contained in precisely
one verticial subgroup. We can show this, (possibly after replacing G by a finite étale
covering) for any vertex v which is not abuted by the open edge e corresponding to the
inertia subgroup, by constructing a covering which is trivial over G, and nontrivial over
Ge ([CombGC, Proposition 1.5 (i)]). (6) follows from (5) and (1). We show (5) (The
following proof is a variant of the proof of Proposition 2.7 (2a)). Let J C Ax be an
open normal subgroup, and put Jy := JNAx . We write J — JZUA for the maximal
pro-X U {l} quotient, and Jﬁu{l} = Im(Jg — JZV{). Suppose a € Ax g commutes
with Jy. Let v be a vertex of the dual graph of the geometric special fiber of a stable
model X; of the covering X; of X5 corresponding to J. We write J, C J for the
decomposition group of v, (which is well-defined up to conjugation in J), and we put

UEU{Z} :=Im(J, — Jzu{l}). First, we show a claim that JUEU{I} N JH?U{Z} is infinite and
non-abelian. Note that J, N Jy, hence also JUE Vi A J§ vt , surjects onto the maxmal

pro-I quotient J! of .J,, since the image of the homomorphism J, C J C Ax — Ag
is pro-¥, and we have ker(J, C J C Ay — Ag) C J,NJg, and | ¢ ¥. Now, J! is
the pro-I completion of the fundamental group of hyperbolic Riemann surface, hence
is infinite and non-abelian. Therefore, the claim is proved. Next, we show (5) from
the claim. We consider various A x-conjugates of JUEU{l} N Jﬁu{l} in J>Y1}, Then
by Proposition 6.6, it follows that a fixes v, since @ commutes with J2 Uit q Jﬁ vl

Moreover, since the conjugation by a on J!(« JvE Uit q Jﬁu{l}) is trivial, it follows
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that a not only fixes v, but also acts trivially on the irreducible component of the
special fiber of X; corresponding to v (Note that any nontrivial automorphism of an
irreducible component of the special fiber induces a nontrivial outer automorphism of
the tame pro-/ fundamental group of the open subscheme of this irreducible component
given by taking the complement of the nodes and cusps). Then « acts on (J>Y{})ab a5
a unipotent automorphism of finite order, since v is arbitrary, hence « acts trivially on
(J¥Uab - Then we have a = 1, as desired since J is arbitrary. O

Corollary 6.10.  ([IUTchI, Proposition 2.4 (i), (iii)]) We continue to use the
same notation as above. We assume that p ¢ ¥ (which implies that Ag?mp —» Ag?)’temp =
AGPeme — Afemp gng Ay o AP = AR — Ag).

1. Let A C Ag?mp be a nontrivial pro-3 compact group, v € llx an element such that
YAy~ € AP, Then we have v € TT™P.

2. ([A1, Corollary 6.2.2]) AKX™ C Ax (resp. g™ C Mx ) is commensurably termi-
nal.

Remark 6.10.1. By Corollary 6.10 (2) and Theorem B.1, we can show a tempered
version of Theorem B.1:

dom ~ dense in an open subgp. of fin. index /yrtemp temp temp
Hom§™ (X,Y) — Homg, (ISP II™MP) /Inn (A ™P)

(For a homomorphism, up to inner automorphisms of At;mp, in the right hand side,
consider the induced homomorphism on the profinite completions. Then it comes from
a morphism in the left hand side by Theorem B.1, and we can reduce the ambigu-
ity of inner automorphisms of the profinite completion of Ay™ to the one of inner
automorphisms of AF™P by Corollary 6.10 (2)). See also [SemiAnbd, Theorem 6.4].

Proof. (1): Take a lift ¥ € TI'¢™ — G of the image of v € MIx — Gk. By
replacing v by v(7)~! € Ax, we may assume that v € Ax. For an open characteristic
sugroup N C A%™P let N denote the closure of N in Ay, and let Gy denote the (pro-
) semi-graph of anabelioids determined by the stable model of the covering of X x x K
corresponding to N. By the isomorphisms (6.1) and (6.2) in Remark 6.3.1, it suffices
to show that for any open characteristic subgroup N C Ag?mp, the image of v € Ax —
Ax /ker(N — Ag,) comes from AP /ker(N — AGTP) < Ax /ker(N — égN). Take
such an N. Since N is of finite index in A%Y™P, we have AP /N = Ax/N. We take
alift ¥ € AP — AP /N =~ Ax /N of the image v € Ax —» Ax/N. By replacing v
by v(7)7! € N, we may assume that v € N. Note that Ay := AN N(Cc N c Ag™) is
a nontrivial open compact subgroup, since N is of finite index in Aggmp. Since Ay is a
pro-Y. subgroup in A'$™P it is sent isomorphically to the image by A%Y™ — A(XZ)’temp.
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Hence, the image Ay C AG™P of Ay by AF™ — A%)’temp = A(QE)’temp = Ag™P is
also nontrivial open compact subgroup (Here we need the assumption p ¢ ¥. If p € ¥,
then we only have a surjection Ag)’temp —» AEJE)’temp , and the image of Ax might be
trivial). Note that Ay is in Atge;np =TIm(N Cc AK™ — Atgemp). Consider the following
diagram, where the horizontal sequences are exact:

1 ——= AZMP —— AP /ker(N — AGTP) —— AY™P /N —— 1

T

Ax [ker(N — AZ™P) Ax/N —>1

1—— Ag,

Since v is in N, the image 5 of vy € Ax —» Ax /ker(N — Ag,) lands in Ag, . Since
An(C Atge;np) is a nontrivial open compact subgroup, and FAy7 ! C AgeNmp by assump-
tion, we conclude 7 € AtgeNmp by Proposition 6.7, as desired. (2) follows from (1) by the
same way as in Corollary 6.8 (1). O

The following theorem is technically important for inter-universal Teichmiiller the-

ory :

Theorem 6.11.  (Profinite Conjugate VS Tempered Conjugate, [[UTchI, Corol-
lary 2.5]) We continue to use the same notation as above. We assume thatp & . Then

1. Any inertia subgroup in lx of a cusp of X is contained in Ht;mp if and only if it
is an inertia subgroup in T of a cusp of X, and

2. A Tlx-conjugete of TIY™ contains an inertia subgroup in T of a cusp of X if
and only if it is equal to TI™P.

Remark 6.11.1.  In inter-universal Teichmiiller theory,

1. we need to use tempered fundamental groups, because the theory of the étale theta
function (see Section 7) plays a crucial role, and

2. we also need to use profinite fundamental groups, because we need hyperbolic or-
bicurve over a number field for the purpose of putting “labels” for each places in
a consistent manner (See Proposition 10.19 and Proposition 10.33). Note also that
tempered fundamental groups are available only over non-Archimedean local fields,
and we need to use profinite fundamental groups for hyperbolic orbicurve over a
number field.

Then in this way, the “Profinite Conjugate VS Tempered Conjugate” situation as in
Theorem 6.11 naturally arises (See Lemma 11.9). The theorem says that the profinite
conjugacy indeterminacy is reduced to the harmless tempered conjugacy indeterminacy.
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~

Proof. Let I,(= 7Z) be an inertia subgroup of a cusp x. By applying Corollary 6.10
to the unique pro-X subgroup of I, it follows that a Il x-conjugate of I, is contained
in TI™P if and only if it is a I P-conjugate of I, and that a ITy-conjugate of TT%™P
containes I, if and only if it is equal to TP O

Corollary 6.12. Let X be a smooth hyperbolic log-curve over K, an algebraic
closure K of K. Then we can group-theoretically reconstruct the inertia subgroups and
the decomposition groups of cusps in TP := 71" (X).

Remark 6.12.1. By combining Corollary 6.12 with Proposition 6.6, we can group-
theoretically reconstruct the dual semi-graph of the special fiber (See also Remark 6.6.1).

Proof. By Lemma 6.2 (with Remark 6.2.1) we have a group-theoretic reconstruc-
tion of the quotient Hf,?mp — G from Hf,?mp . Let Ax and IIx denote the profinite
completions of AY™ and TT'¢™™ respectively. By using the injectivity of AE™ < Ax
and TT™ < Tx (i.e., residual finiteness (See also Proposition C.5)), we can reconstruct
inertia subgroups I of cusps by using Corollary 2.9, Remark 2.9.2, and Theorem 6.11
(Note that the reconstruction of the inertia subgroups in Ax has A x-conjugate inde-
terminacy; however, by using Theorem 6.11, this indeterminacy is reduced to Ag?mp—
conjugate indeterminacy, and it is harmless). Then we can group-theoretically recon-
struct the decomposition groups of cusps, by taking the normaliser Nnc;mp(f ), since T

is normally terminal in A%™ by Lemma 6.4 (4). O

Remark 6.12.2.  (a little bit sketchy here, cf. [AbsAnab, Lemma 2.5], [AbsTopIII,
Theorem 1.10 (c)]) By using the reconstruction of the dual semi-graph of the special
fiber (Remark 6.12.1), we can reconstruct

1. a positive rational structure on H*(Ay, 15(Gk))" := Hom(H?*(Ax, 1iz(Gk)), Z),

2. hence, a cyclotomic rigidity isomorphism:
(Cyc. Rig. via Pos. Rat. Str.) 15 (Gr) = pz(x)

(We call this the cyclotomic rigidity isomorphism via positive rational
structure and LCFT.)

as follows (See also Remark 3.19.1):

1. By taking finite étale covering of X, it is easy to see that we may assume that
the normalisation of each irreducible component of the special fiber of the sta-
ble model X of X has genus > 2, and that the dual semi-graph I'x of the spe-
cial fiber is non-contractible (cf. [profGC, Lemma 2.9, the first two paragraphs
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of the proof o Theorem 9.2]). By Remark 6.12.1, we can group-theoretically re-
construct the quotient At)gmp — AL™P corresponding to the coverings of graphs
(Note that, in [AbsAnab], we reconstruct the dual semi-graph of the special fiber
from profinite fundamental group, i.e., without using tempered structure, via the
reconstruction algorithms in [profGC]J. See also Remark 6.6.1). Let Ax denote tha
profinite completion of A™ and put V := A3%. Note that the abelianisation
yeomb . — (Agembyab o FrSME (D 7)(5£ 0) is a free Z-module. By using a theorem
of Raynaud (cf. [AbsAnab, Lemma 2.4], [Tam, Lemma 1.9], [Ray, Théoreme 4.3.1]),
after replacing X by a finite étale covering (whose degree depends only on p and
the genus of X), and K by a finite unramified extension, we may assume that the
“new parts” of the Jacobians of the irreducible components of the special fiber are
all ordinary, hence we obtain a G g-equivariant quotient V' — V™V such that we
have an exact sequence

0 — VU VROV VIV @5 7, — V0,
P

where V¢ is an unramified G g-module, and V™! is the Cartier dual of an un-
ramified G g-module, and that V% — Vzcomb ;= Veomb @) 7(£ 0). Let (—)_ (like
Vznpew, Vzcomb) denote the tensor product in this proof. Then the restriction of the
non-degenerate group-theoretic cup product

VY @5 VY @5 15(G) = M = H*(A, 13(G)) (2 Z),
where (=) := Hom(—,Z), to (V%)Y
(V)Y g (V)Y @3 43(Gx) — M (2 Z)

is still non-degenerate since it arises from the restriction of the polarisation given
by the theta divisor on the Jacobian of X to the “new part” of X (i.e., it gives us
an ample divisor). Then we obtain an inclusion

(Vzcomb)\/@)iui(GK)@sz SN (VneW)V®ZMZ(GK)®sz N ker(vnew s Vzcomb) C ‘/new7

where the second last inclusion comes from u5(G x)GE = 0.

By the Riemann hypothesis for abelian varieties over finite fields, the (ker(V® —
Vz‘?smb)®zp Qp)¢% = ((ker(Ve — chmb)®zp Qp)cx =0, where (=), denotes the
G k-coinvariant quotient (Note that ker(V¢* —» Vzcsmb) arises from the p-divisible
group of an abelian variety over the residue field). Thus, the surjection V¢ —
J/comb ®5 Zyp has a unique G-splitting VZC;’mb — Vét®(@p. Similarly, by taking
Cartier duals, the injection (Vj‘;omb)v ®5 p5(Gr) @ MY @ Z, — V™ also has a
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unique G g-splitting V™mult —, (Vzcomb)v ®5 5 (Gr ) MY ®5Q,. By these splittings,
the G g-action on Vi ®gz,, gives us a p-adic extension class

nz, € (Vge™) ) @MY @H (K, nz(Gx)) [ H} (K, 17(Gx)) = (V5o™) ") 2@ MY :

0 V(Iglult V@lew V(St 0
P . P p V
(V5o™)Y @ piz (Gr) @ MY Vgomb.

Next, ker(VZ — Vzclomb) is an unramified G g-module, since it arises from [(# p)-

divisible group of a semi-abelian variety over the residue field, where we put 7 =
I, 2p L Again by the Riemann hypothesis for abelian varieties over finite fields,
the injection (Vch’mb)v ® pz(Gr) @ MY = ker(V3eV — Vch’mb) of unramified G-
modules splits uniquely over Q. Then we can construct a prime-to-p-adic extension
class

g € (V5™))2eMY9H (K, 13 (Gx))/Hi (K, 13 (Gr)®Q = (V5™)") oMY @Q -

new comb new comb
0 > ker(Ver — VEomb) - yiew o yeomb

s

(Vimg)" @z (Gr) @ MY

Then combining p-adic extension class and prime-to-p-adic extension class, we ob-
tain an extension class

g € (Vo)) 22eMY@H (K, 15(Gr))/Hi (K, 17(Gk)@Q = (V5)Y)*? oMY 0Q,
Therefore, we obtain a bilinear form
(Vicomb)®2 N MV ®,Z\ (@7

and the image of (V/°mP)®2 (Vi‘;omb)®2 gives us a positive rational structure
(ie., Qso-structure) on M"Y ®5 Q (cf. [AbsAnab, Lemma 2.5]).

2. By the group-theoretically reconstructed homomorphisms

HY (G, pi5(Gr)) = Hom(H (G, Z),Z) = G — G52 Im(Ix — G32) = Z
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in the proof of Corollary 3.19 (2), we obtain a natural surjection

HY(Grpz(Ix)) — Hom(ugz (Gr), pz(Ix)) = H*(Ax, uz(Gx))”

(Recall the definition of 5 (Ilx)). Then by taking the unique topological genera-
tor of Hom(u5(G k), pz(I1x)) which is contained in the positive rational structue
of H*(Ax, pz(GK))Y, we obtain the cyclotomic rigidity isomorphism pz(Gx) =
pz(Hx).
It seems important to give a remark that we use the value group portion (i.e., we
use O, not O*) in the construction of the above surjection H'(Gg,pz(Gk)) =
Hom(H(Gk,Z),Z) = G — G /Im(Ix — G22) = Z, hence, in the construction
of the cyclotomic rigidity via positive rational structure and LCF'T as well. In inter-
universal Teichmiiller theory, not only the existence of reconstruction algorithms, but
also the contents of reconstruction algorithms are important, and whether or not we
use the value group portion in the algorithm is crucial for the constructions in the fi-
nal multiradial algorithm in inter-universal Teichmiiller theory. See also Remark 9.6.2,

Remark 11.4.1, Propositin 11.5, and Remark 11.11.1.

87. Etale Theta Functions — Three Fundamental Rigidities.

In this sectin, we introduce another (probably the most) important ingredient of
inter-universal Teichmiiller theory, that is, the theory of the étale theta functions. In
Section 7.1, we introduce some varieties related to the étale theta function. In Sec-
tion 7.4, we introduce the notion of mono-theta environment, which plays important

roles in inter-universal Teichmiiller theory.

§7.1. Theta-related Varieties.

We introduce some varieties and study them in this subsection. Let K be a finite ex-
tension of Q,, and K an algebraic closure of K. Put G := Gal(K/K). Let X — Spf Ok
be a stable curve of type (1, 1) such that the special fiber is singular and geometrically ir-
reducible, the node is rational, and the Raynaud generic fiber X (which is a rigid-analytic
space) is smooth. For the varieties and rigid-analytic spaces in this Section, we also call
marked points cusps, we always put log-structure on them, and we always consider
the fundamental groups for the log-schemes and log-rigid-analytic spaces. Let HE?mp,
Aggmp denote the tempered fundamental group of X (with log-structure on the marked
point) for some basepoint. We have an exact sequence 1 — Ax — IlIx — Gx — 1.
Put Iy := (IT%™P)", Ax := (AS™)" to be the profinite completions of IT™P, A'™P

respectively. We have the natural surjection Ag?mp —» 7 corresponding to the universal
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graph-covering of the dual-graph of the configuration of the irreducible components of
X. We write Z for this quotient for the purpose of distinguish it from other Z’s. We
also write Ax —» Z for the profinite completion of AX™P — Z.

Put AS = Ax/[Ax, [Ax, Ax]], and we call it the theta quotient of Ay. We also
put Ag = A? AP (= Z(l)), and AY := A%, We have the following exact sequences:

1= Ao = A =AY = 1,
15 2(1) =AY 5 Z 1.

Let (A%™P)® and (A%™P)°!" denote the image of AY™ via the surjections Ax — A

and Ax — (AQ —)AS! respectively:

Ax A9 A

At;mp (At)?mp)@ (A‘;?mp)ell.

Let (H?mp)e and (Hg?mp)e“ denote the push-out of Ht)?mp via the surjections AE?mp —»
(A‘;?mp)@ and AE?mp - ((At)?mp)g —»)(AE?mp)e“ respectively:

[ s (7)o ()

Lo

AT e (A) e (AR
We have the following exact sequences:
1= Ag — (AX™)® — (AT 1,
1= Z(1) = (APl 5 7 1.

Let Y — X (resp. 2 — X) be the infinite étale covering correspoinding to the
kernel TIy™P of TI'¢™ — Z. We have Gal(Y/X) = Z. Here, 9 is an infinite chain of
copies of the projective line with a marked point # 0, co (which we call a cusp), joined at
0 and oo, and each of these points “0” and “cc”is a node in Q). Let (AY™P)®, (AY™P)ell
(resp. (ITy™P)®, (IT3™P)°!) denote the image of AY™P (resp. IT}7™P) via the surjections
A (A0 and AT s (A0 ) (AL (resp. T s (L)
and TI™P — ((TT™P)® =) (IT%™P)°!) respectively:

AP o (AR)O e (AR P e (L) e (11

RV T A

AT (AT (AT I ()0 s ()N
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We also have a natural exact sequence
1= Ag — (AF™)® — (AP™P)ell 1,

Note that (A™P)ell = Z(1) and that (ALX™P)® (=2 Z(1)®2) is abelian.

Let qx € Ok be the ¢g-parameter of X. For an integer N > 1, set Ky :=
K(un, qi(/N) C K. Any decomposition group of a cusp of Y gives us a section Gx —
(T P)ell of the natural surjection (IT}™P)°! — G (Note that the inertia subgroup
of cusps are killed in the quotient (—)°!'). This section is well-defined up to conju-
gate by (AyY™)l. The composite Gy — Gx — (TIy™P)el — (TIE™P)ell /N (AP )ell
is injective by the definition of K, and the image is stable under the conjugate by
TP, since G,y acts trivially on 1 — Z/NZ(1) — (AS™)N/N(AY™) - Z — 1
(whose extension class is given by q;(/N), by the definition of K. Thus, the image
Gry = (™) /N(AF™P)e! determines a Galois covering Yy — Y. We have natu-

ral exact sequences:
1— Iy — I — Gal(Yy/Y) — 1,

1= (A" @ Z/NZ (2 Z/NZ(1)) — Gal(Yy/Y) — Gal(Ky/K) — 1.
Let (AYTP)O, (AFTP)ell (resp. (IIFP)€, (IIyP)<!) denote the image of Ay (resp.
the-;lp) via the surjections At;mp —» (Ag,emp)@ and Agfmp —» ((Agfmp)@ —»)(Agfmp)e”
(resp. TIY™P — (TIy™P)© and ™ — ((IE™P)© —)(ME™P)e) respectively:

AJP o (AP e (AR T e (IP) e (ITP)°N
At}%ﬁlp S5 (Agf;npp S (At}fl\rlnp)ell’ Hgginp s (Ht}fjglp)G . (Ht}fl\rlnp)ell'

We also have a natural exact sequence
1= Ao ® Z/NZ (= Z/NZ(1)) — (IIy"P)° /N (AF™P)® = Gk, — 1.

Let Yn — Y be the normalisation of Q) in Yy, i.e., write ) and Yy as the formal
scheme and the rigid-analytic space associated to Og-algebra A and K-algebra By
respectively, and take the normalisation Ay of A in By, then Yy = Spf An. Here, Yn
is also an infinite chain of copies of the projective line with N marked points # 0, co
(which we call cusps), joined at 0 and oo, and each of these points “0” and “c0”is a
node in ). The covering Yn — 2) is the covering of N-th power map on the each copy
of G,, obtained by removing the nodes, and the cusps correspond to “1”, since we take
a section G — (Hgfmp)e“ corresponding to a cusp in the construction of Yy. Note also
that if N is divisible by p, then 2)x is not a stable model over Spf Ok, .
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We choose some irreducible component of ) as a “basepoint”; then by the natural
action of Z = Gal(Y/X) on 2), the projective lines in ) are labelled by elements of Z.
The isomorphism class of a line bundle on ) is completely determined by the degree
of the restriction of the line bundle to each of these copies of the projective line. Thus,
these degrees give us an isomorphism

Pic(YPn) = ZE,

i.e., the abelian group of the functions Z — Z. In the following, we consider Cartier
divisors on )y, i.e., invertible sheaves for the structure sheaf Og), of . Note that we
can also consider an irreducible component of )y as a Q-Cartier divisor of Y (See also
the proof of [EtTh, Proposition 3.2 (i)]) although it has codimension 0 as underlying
topological space in the formal scheme %)n. Let £y denote the line bundle on 9y
correspoinding to the function Z — Z : a — 1 for any a € Z, i.e., it has degree 1 on any
irreducible component. Note also that we have I'(Y n, Oy, ) = Ok, . In this section,
we naturally identify a line bundle as a locally free sheaf with a geometric object (i.e.,
a (log-)(formal) scheme) defined by it.

Put Jy := Kn(a'/N | a € Ky) C K, which is a finite Galois extension of Ky,
since K /(K)Y is finite. Two splitting of the exact sequence

1= Ao ® Z/NZ — (IIy"P)° /N(AF™)® = Gk — 1

determines an element of H' (G, , Ae®Z/NZ). By the definition of Jy, the restriction
of this element to G j, is trivial. Thus, the splittings coincide over G, , and the image
Gy = (IIY"P)O /N (AF™P) is stable under the conjugate by II'¢™. Hence, the image
Gjy — (Hgf;np)@ JN(AY™)® determines a finite Galois covering Zy — Y. We have

the natural exact sequences

1= 0P — I — Gal(Zy/Yn) — 1,

(7.1) 1> A ®Z/NZ — Gal(Zny/YNn) — Gal(Jny/Kn) — 1.

Let (AXTP)O, (AZTP)ell (resp. (II;7P)€, (I 7)<!) denote the image of AP (resp.
HtZe;lp) via the surjections At;?p —» (A';f;np)@ and Agﬁfp —» ((Agf;np)@ —»)(Angmp)e”
(resp. 1Y — (IIFP)® and P — ((ITY7P)© —) (II3P)ell) respectively:

Agfjrvnp . (At}ffvnp)e s (Agfjrvnp)ell H§Z’V“p . (Hgf]rvnp)@ s (Hgf]rvnp)eu

RV T T

AtZe]rVnp (Atze;np)@ s (AtZe;rlp)ell’ theglp e (HtZe]rvnp)e e (HtZe;lp)eH.
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Let 3y — 2N be the normalisation of ) in Zy in the same sense as in the definition of
. Note that the irreducible components of 3 are not isomorphic to the projective
line in general.

A section s; € T'(2), £1) whose zero locus is the cusps is well-defined up to an
O -multiple, since we have T'(9), Oy) = Og. Fix an isomorphism £§7 5 €|y, and
we identify them. A natural action of Gal(Y/X) (= Z) on £; is uniquely determined
by the condition that it preserves s;. This induces a natural action of Gal(Yy/X) on

£1|Q.JN'
Lemma 7.1.  ([EtTh, Proposition 1.1])

1. The section silyy € T(Dn, Lilyx) = TN, £3N) has an N-th root sy € T(3n, £n|3x)

over 3n.

2. There is a unique action of H;mp on the line bundle £y ROk, Oy over Yn X0k
O, which is compatible with the section sy : 3y — £n Q0r OyJy - Furthermore,
this action factors through TI%™P —» Hg?mp/ﬂtzeﬁlp = Gal(Zn/X), and the action of
A;mp/AtZeglp on £y ®oy, Oy is faithful.

Proof. Put (Yn)jy := YN XKy JN, and Gy to be the group of automorphisms of
LN |(vy),, which is lying over the Jy-automorphisms of (Yy),, induced by elements
of AY™P/AY™ C Gal(Yy/X) and whose N-th tensor power fixes the s1l(vx),, - Then
by definition, we have a natural exact sequence

1— ,LLN(JN) — g]\] — Ag?mp/AgfI\I?p — 1.
We claim that
Hy = ker(Gy — AYTP/AFTP — AP /AT 2 7)

is an abelian group killed by IV, where the above two surjections are natural ones, and
the kernels are uy(Jy) and (AX™)N @ Z/NZ (= Z/NZ(1)) respectively. Proof of
the claim (This immediate follows from the structure of the theta group (=Heisenberg
group); however, we include a proof here): Note that we have a natural commutative
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diagram
1 1
1 —— un(Jn) Hy (AY™)ell @ Z/NZ (= Z/NZ(1)) — 1
lz
1 ——pun(Jn) Gn AR /AT 1
AL AR = AR A (27,
1 1

whose rows and columns are exact. Let ¢ be a primitive N-th root of unity. The function
whose restriction to every irreducible component minus nodes G,,, = Spf Ok[[U]] of
DN is equal f(U) := g—:é represents an element of H which maps to a generator of
AP/ Atye?p, since it changes the pole divisor from 1 to (. Then the claim follows from

. N
the identity HogjgN—l f((TI0) = g:é g__fz UU_EJC\,_l = 1. The claim is shown.
Let Ry be the tautological Z/NZ(1)-torsor Ry — Yy obtained by taking an
N-th root of sy, i.e., the finite 9 ny-formal scheme Spf <@0§j§Nf12?}(_J)>, where the

)

algebra structure is defined by the multiplication 2%(7]\] — Oy, by si]lyy. Then
Gn naturally acts on (Ry)j, = Ry X0k, Jn by the definition of Gy. Since S1|yw
has zero of order 1 at each cusp, (Ry)s, is connected and Galois over X, = X Xg
Jn, and Gy = Gal((Rn)sy/Xsy)- Since (i) Ag?mp/Agfjrvnp acts trivially on uy(Jn),
and (ii) Hy is killed by N by the above claim, we have a morphism 3y xo, K —
RN X0k, Oy over Yn X0, Oy by the definitions of A = Ax/[Ax,[Ax, Ax]|
and Zy, i.e., geometrically, 35 xo, K (— DN X0k, K) has the universality having
properties (i) and (ii) (Note that the domain of the morphism is 35 X0, K, not 3y
since we are considering A(_y, not II_)). Since we used the open immersion G, —
(ITyP)© /N (AF™P)O, whose image is stable under conjugate by IT'¢™P, to define the
morphism 3y — 9y, and s1 |y, is defined over K, the above morphism 3y X0,y K —
RN X0, Oy factors through 3, and induces an isomorphism 3§ = RN Xo wn Oun DY
considering the degrees over Yn X0, Oy on both sides (i.e., this isomorphism means
that the covering determined by Ag ® Z/NZ coincides with the covering determined by
an N-th root of s1]y, ). This proves the claim (1) of the lemma.

Next, we show the claim (2) of the lemma. We have a unique action of Hffémp on

LN Qo Oj, over Pn X0y O, which is compatible with the section sy : 3y —
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LN ®oy,, Oy, since the action of IT™P (= Gal(Yy /X)) on €4y, = £5Y preserves

P on QN preserves the isomorphism class of £x. This

51y, and the action of TI%¢™
action factors through TT'¢™P/ HtZeJrvnp, since sy is defined over Zy. Finally, the action of
™/ HtZe;Vnp is faithful since s; has zeroes of order 1 at the cusps of Yy, and the action

of AP/ Agfilp on Yy is tautologically faithful. O

We set

KN = Koy, Jn IZKN(CLI/N|CL€KN) CK,
QjN = 2)2]\[ XOKN OJN’ YN = Y2N XKN jN, QN = SN‘@N Ei)% XOKN OjN'

(The symbol (—) roughly expresses “double covering”. Note that we need to consider
double coverings of the rigid analytic spaces under consideration to consider a theta
function below.) Let 7 ~ be the composite of the coverings YN — Yy and Zy — Yy,
and 3 N the normalisation of 3 in 7z n in the same sense as in the definition of Q).

Put also
Yi=Yi=Ys 9:=9D1=92, K:=K =J1=Ks.

Since II™ acts compatibly on 9 and 2y, and on Ly ®0y, OJy,and the natural

commutative diagram

QN—>£N

L

Dy —=Dn

temp
Zn
Next, we choose an orientation on the dual graph of the configuration of the irre-

is cartesian, we have a natural action of ITx "> on £, which factors through ™ /11

ducible components of ). Such an orientation gives us an isomorphism Z — Z. We
give a label € Z for each irreducible component of ). This choice of labels also deter-
mines a label € Z for each irreducible component of 9y, Dn. Recall that we can also
consider the irreducible component (2)x); of Yy labelled j as a Q-Cartier divisor of
D (See also the proof of [EtTh, Proposition 3.2 (i)]) although it has codimension 0
as underlying topological space in the formal scheme 9) (Note that (@ ~); is Cartier,

since the completion of 9)x at each node is isomorphic to Spf O iy L, ]}/ (uv — qi(/zN)).

Put Dy = ZjeZ]Q(@N)j (i.e., the divisor defined by the summation of “q§/2N =0
on the irreducible component labelled j with respect to j € Z). We claim that

(7.2) Og, (On) = L (Z L5% ®o, Oj,)-

Proof of the claim: Since Pic(Q:jN) =~ 72 it suffices to show that ZDN(@N)Z = 2
for any i € 7Z, where @N(@N)Z denotes the intersection product of ® and (Q)N)Z,
i.e., the degree of Oy (Dn)|(g),),- We have 0 = Yn.(Dn)i = X7 Dn);-(Dn)i =
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24 ((Yn)i)? by the configuration of the irreducible components of 9y (i.e., an infinite
chain of copies of the projective line joined at 0 and co). Thus, we obtain ((2)x);)? = —2.
Then we have Dn.(Dn); = ez 5> (Dn)j-(Yn)i = (G — 1)* = 2%+ (j + 1) = 2. This
proves the claim.

By the claim, there exists a section

™ DN — L,

well-defined up to an O; -multiple, whose zero locus is equal to ®n. We call 7y a
N

theta trivialisation. Note that the action of Hgfmp on 2) N, &N preserves Ty up to an
O~ -
JIn
Let M > 1 be an integer which divides N. Then we have natural morphisms
Dy » D = D, Dy — D — D, 38 — 3m — 2, and natural isomorphisms
Lyvlyy = S%UV/M), Lulyy = Q%(N/M). By the definition of Jy(= Kon(a'/N | a €

Ksy)), we also have a natural diagram

multiple, since the action of TI}"™ on ) n fixes Dy .

Ey —— L

@Nﬁva

which is commutative up to an O}f -multiple at £y, and an O;M-multiple at £,
N

since 7y and Ty are defined over oy and a2ps respectively (Recall that 2] N =
Dan X0y Oy, )- By the relation O(-U) = —O(U) given in Lemma 7.4 (2), (3) below
(Note that we have no circular argument here), we can choose 71 so that the natural
action of Hg./emp on £ preserves £7,. In summary, by the definition of Jy, we have the

following;:

e By modifying 7n’s by O% -multiples, we can assume that M Ty for any
JIn N

positive integers N and M such that M | N.

e In particular, we have a compatible system of actions of H;?mp on {Dn}n>1,

{EN}Nzl which preserve {7y} n>1.

e Each of the above actions of Ht.Yemp on Qn, £ differs from the action determined
by the action of TTx™ on YPn, Ln ®0y, Oy in Lemma 7.1 (2) by an element of
pn ().

Definition 7.2. We take 7n’s as above. By taking the difference of the compat-
ible system of the action of Hgfmp on {Qj NIN>1, {EN} ~N>1 in Lemma 7.1 determined
by {sn}n>1 and the compatible system of the action of H‘;mp on {@N}Nzl, {EN}Nzl
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in the above determined by {7n}n>1 (Note also that the former actions, i.e., the one
determined by {sy}n>1 in Lemma 7.1 come from the actions of Hg?mp; however, the
latter actions, i.e., the one determined by {7x}n>1 in the above do not come from the
actions of II'¢™P), we obtain a cohomology class

i e Hl(Htemp Ao),

via the isomorphism uy(Jy) = Z/NZ(1) = Ag ® Z/NZ (Note that we are currently
studying in a scheme theory here, and that the natural isomorphism py(Jn) = Ae ®
Z/NZ comes from the scheme theory (See also Remark 3.15.1).

Remark 7.2.1.  (See also [EtTh, Proposition 1.3])

1. Note that 7j© arises from a cohomology class in hén
Z/NZ), and that the restriction

1 temp temp
vor H (I /HZN Beo ®

5

 HIIE /IS, Ao © 2/NE) = m HY (AL, Ao 5 2/N2)
jlvi Hom(Agf;np /At;;“P, Ao ® Z/NZ

12 I3T-

ME

sends #© to the system of the natural isomorphisms {Agf;np /A?:p 5 Ae ®
Z/NZ} x>

2. Note also that so : 2) — 21 is well-defined up to an OX -multiple, son : 3N — SN
is an N-th root of s9, 7 @ — 21 is well-defined up to an O -multiple, and
: Py — £y is an N-th root of 7. Thus, 7i° € Hl(Htemp A@) is well-defined

up to an OIX( -multiple. Hence, the set of cohomology classes

O - - 7j® CH(HtempA)

is independent of the choices of sy’s and 7n’s, where OI.X.{ acts on H 1(H§fmp, Ag)
via the composite of the Kummer map ijf — HYG ir»Ae) and the natural homo-
morphism H' (G, Ag) — Hl(Ht.Yemp, Ag). We call any element in the set O - 7j°

the étale theta class.

§7.2. The Etale Theta Function.

Let (G,, =) C 2 be the irreducible component labelled 0 € Z minus nodes. We
take the unique cusp of 4 as the origin. The group structure of the underlying elliptic
curve X, determines a group structure on i{. By the orientation on the dual graph of
the configuration of the irreducible components of ), we have a unique isomorphism
I = ((A}m over Og. This gives us a multiplicative coordinate U € I'(4f, O5;). This has a
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square root U € I'(§, Og) on §l := $l xg 2 (Note that the theta function lives in the
double covering. See also Lemma 7.4 below).

We recall the section associated with a tangential basepoint. (See also [AbsSect,
Definition 4.1 (iii), and the terminology before Definition 4.1]): For a cusp y € Y (L)
with a finite extension L of K, let D, c II; be a cuspidal decomposition group of y
(which is well-defined up to conjugates). We have an exact sequence

1—>Iy(22(1))—>Dy—>GL—> 1,

and the set Sect(D, — G,) of splittings of this short exact sequnece up to conjugates by
I, is a torsor over H' (G, Z(1)) = (L*)" by the usual way (the difference of two sections
gives us a 1-cocycle, and the conjugates by I, yield 1-coboundaries), where (L*)" is the
profinite completion of L. Let w, denotes the cotangent space to Y at y. For a non-zero
element 6 € w,, take a system of N-th roots (N > 1) of any local coordinate t € my
with dt|, = 6, then, this system gives us a Z(1) (= I,))-torsor (Y@(tl/N))NZl — Y|$
over the formal completion of ¥ at y. This Z(1) (& Iy)—iovering (Y@(tl/N))NZl = Y|g
corresponding to the kernel of a surjection D, — I, (= Z(1)), hence it gives us a section
of the above short exact sequence. This is called the (conjugacy class of ) section
associated with the tangential basepoint 6. In this manner, the structure group
(L*)™ of the (L*)"-torsor Sect(D, — Gp) is canonically reduced to L*, and the L*-
torsor obtained in this way is canonically identified with the L*-torsor of the non-zero
elements of w,. Furthermore, noting also that Y comes from the stable model Qj, which
gives us the canonical Op-submodule @, ( C w,) of w,, the structure group (L*)" of the
(L*)"-torsor Sect(D, — Gr) is canonically reduced to O, and the O[-torsor obtained
in this way is canonically identified with the O -torsor of the generators of @,.

Definition 7.3.  We call this canonical reduction of the (L*)"-torsor Sect(D, —
(1) to the canonical Of -torsor the canonical integral structure of D,, and we say
that a section s in Sect(D, — () is compatible with the canonical integral
structure of D,, if s comes from a section of the canonical O; -torsor. We call the
L*-torsor obtained by the push-out of the canonical Of-torsor via Of — L* the
canonical discrete structure of D,. Let 7! denote the maximal prime-to-p quotient
of Z, and put (OF) :=Im(O} — (L*)®Z'). We call the (O} )'-torsor obtained by the
push-out of the canonical Of-torsor via Of — (Of) the canonical tame integral
structure of D, (See [AbsSect, Definition 4.1 (ii), (iii)]). We also call a reduction of
the (L*)"-torsor Sect(D, — Gp) to a {£1}-torsor (resp. pg-torsor) {£1}-structure
of D, (resp. pg-structure of D,). When a {£1}-structure (resp. pg-structure) of D,
is given, we say that a section s in Sect(D, — Gp) is compatible with the {+1}-
structure of D,, (resp. the pg-structure of D,, if s comes from a section of the
{£1}-torsor (resp. the pg-torsor).
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Lemma 7.4. ([EtTh, Proposition 1.4]) Put

= ¢x* > (-1 g Vit ¢ T'(41, Og).

neZ

Note that @(U) extends uniquely to a meromorphic function on 2) (cf. a classical com-

plex theta function

]- 2 . ]- 1 ]. nln+l2"2n+1
0, 1(7' 4 Zexp <m7’ (n—i— 2> + 21 (z—|—§) (n+§)> = ;Z(_l) qz( 2) U ,

nez nez

. . , _1 l(n_’_l)Q n(n+1)
where q .= €*™7, and U := €™%) and that qx*q5 >’ =qyx > isin K.
1. ©(U) has zeroes of order 1 at the cusps of ), and there is no other zeroes. ©(U)
has poles of order j? on the irreducible component labelled j, and there is no other
poles, i.e., the divisor of poles of @(U) is equal to D1.

2. For a € Z, we have
6(01) = ~B(), O(-11) = ~B(D),

6 (440) = (~1)7q " T-26(0)

3. The classes O;é -ii® are precisely the Kummer classes associated to an O;{—multiple
of the regular function @(U) on the Raynaud generic fiber Y. In particular, for a
non-cuspidal point y € Y(L) with a finite extension L of K, the restriction of the
classes

Oy -ii®l, € H'(Gr, Ae) = HY (G, Z(1)) = (L*)"

lies in L™ C (L>)", and are equal to O;z .0(y) (Note that we are currently studying

in a scheme theory here, and that the natural isomorphism Ag = 2(1) comes from
the scheme theory (See also Remark 3.15.1).

4. For a cusp y € Y(L) with a finite extension L of K, we have a similar statement
as in (3) by modifying as below: Let D, C Ily be a cuspidal decomposition group of
y (which is well-defined up to conjugates). Take a section s : G — D, compatible
with the canonical integral structure of D,. Let s comes from a generator 0 Wy
Then the restriction of the classes

0% ii®lya,) € H(GL, Ae) = H (G, Z(1)) = (LX),
via G, < D, C H;-emp, lies in L C (L*)", and are equal to OI.X-( : %(y), where

dT?(y) is the value at y of the first derivative of O(U) at y by 9. In particular, the



132 GO YAMASHITA

set of the restriction of the classes OI-X.( -7'7'@|S(GL) 1s independent of the choice of the
generator 0 € Wy (hence, the choice of the section s which is compatible with the

canonical integral structure of D, ).

We also call the classes in O;é -ii® the étale theta functions in light of the above
relationship of the values of the theta function and the restrictions of these classes to
G, via points.

Proof. (2):

e 1 1 132 .. _1 L(_p—141)2 .
@(U_l) — ng Z(_l)nq§(n+2) U—2n—1 _ qu Z(_l)_n_lq)2(( n 1+2) U2n+1
nez neL

_ n (i) o .o
= gt S (g e — g,

(1): Firstly, note that q)%(U is the canonical coordinate of the irreducible component
labelled a, and that the last equality of (2) gives us the translation formula for changing
the irreducible components. The description of the divisor of poles comes from this
translation formula and ©(U7) e T'(4l, O;) (i-e., ©(U) is a regular function on §1). Next,
by putting U = =1 in the first equality of (1), we obtain ©(£1) = 0. Then by the last

equality of (2) again, it suffices to show that ©(U7) has simple zeroes at U = £1 on L.
By taking modulo the maximal ideal of O, we have ©(U) = U — U~'. This shows the
claim.

(3) is a consequence of the construction of the classes O - ii® and (1).

(4): For a generator 6 € Wy, the corresponding section s € Sect(D, — Gpr) de-
scribed before this lemma is as follows: Take a system of N-th roots (N > 1) of any
local coordinate ¢ € my  with di|, = 6, then, this system gives us a Z(1) (2 I,))-torsor
(Eij];\(tl/N))NZl —» 2]]9 over the formal completion of 9) at y. This Z(1) (2 I,,)-covering
(Qj];\(tl/N))NZl —» 2)\9 corresponding to the kernel of a surjection D, — I, (= Z(1)),
hence a section s € Sect(D, — Gr). For g € Gy, take any lift g € D, (Hgffmp)

of G, then the above description says that s(g) = (ﬁ(tl/N)/tl/N);]lZl - g, where
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(GUNY I N Y sy € Z(1) = I, (Note that the right hand side does not depend on
the choice of a lift §). The Kummer class of © := O(U) is given by Htemp > h —
(h(6YN)/OYN) N1 € Z(1). Hence, the restriction to G via G Dy C Ht-Yemp is
given by G 3 g = ((G(t"/N)/t/N) "1 g(ON) /O N) N2y = (G((O/D)N) /(O/) N )Nzt €
Z(l). Since ©(U) has a simple zero at y, we have (N((é/t)l/N)/(@/t)1/N)N>1 =
(g((d@/@)1/N)/(d@/9)1/N)N>1, where d@/9 is the first derivative @ at y by 0. Then
GrL 39w (g((d@/@)l/N)/(dG/O)1/N)N21 € Z(l) is the Kummer class of the value

P (y) at y. m

If an automorphism ¢y of Iy is lying over the action of “~1” on the underlying

elliptic curve of X which fixes the irreducible component of ) labelled 0, then we call

t
vy an inversion automorphism of IIy™".

Lemma 7.5.  ([EtTh, Proposition 1.5])

1. Both of the Leray-Serre spectral sequences

By = H((AS™) N HY (Ao, Ae)) = H TP ((AL™)®, Ae),
By = H(G i, H((AF™), Ae)) = HH((IIF™P)°, Ao)

associated to the filtration of closed subgroups
temp\© temp\©
Aep C (Ay ) - (Hy )

degenerate at Eo, and this determines a filtration 0 C Fil*> ¢ Fil' ¢ Fil° =
Hl((Htemp) ,Ag) on Hl((Htemp)@ Ag) such that we have

Fil’/Fil' = Hom(Ae, Ae) = Z,
Fil' /Fil* = Hom((AF™)®/Ae, Ae) = Z - log(U),
Fil? = HY(G, Ae) = HY (G, (1)) S (K*)".

Here, the symbollog(U) denotes the standard isomorphism (Ag-/emp)@/A@ = (Az}emp)e“ =
Z(1) = Ag (given in a scheme theory).

2. Any theta class ij® € Hl(Hgfmp, Ag) arises from a unique class ii® € Hl((H?fmp)@, Ag)
(Here, we use the same symbol §i® by abuse of the notation) which maps to the
identity homomorphism in the quotient Fil°/Fil' = Hom(Ae, Ag) (i.e., maps to
1 € Z = Hom(Ae, Ao)). We consider O;f( -i® C Hl((Hzfmp)@, Ag) additively, and
write 11© + log(O;é) forit. Then a € Z=7 = ™ /TIE™ acts on i + log(O?{)

as
2

i + log(O) ii® — 2alog(U) — % log(gx) +log(Of).
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.. . . . t
In a similar way, for any inversion automorphism vy of I, we have

vy (i1° +1og(0%)) = ij® +log(O%)

ty (log(U) +1og(0})) = —log(U) +1log(O ;).

Proof. (1): Since A = Z(1) and (Ag.,emp)e“ =~ 7(1) and Z(1) has cohomological
dimension 1, the first spectral sequence degenerates at Es, and this gives us a short

exact sequence
0— H'((AF™), Ae) = H'((AY™), Ao) — H' (Ao, Ae) — 0.

This is equal to

0— Z-log(U) — H'((AS™)°, Ag) — Z — 0.
On the other hand, the second spectral sequence gives us an exact sequnece
0— Hl(Gk, A@) — Hl((H;?mp)@, A@) — Hl((Agfmp)@, A@)Gk — HQ(GI"(, A@) — 0.
Then by Remark 7.2.1 (1), the composite

HY (™), Ao) — H'(AE™)°, Ag) O

C HY((AS™)°, Ag) — H' (Ao, Ap) = Z
maps the Kummer class of ©(U) to 1 (Recall also the definition of Zy and the short
exact sequence (7.1)). Hence, the second spectral sequence degenerates at Es, and we
have the description of the graded quotients of the filtration on H 1((H§fmp)@, Ag).

(2): The first assertion holds by definition. Next, note that the subgroup (At-;mp)e“ C

(A™PYell corresponds to the subgroup 27Z(1) C Z(1) x Z = (A%™P)ell by the theory of
Tate curves, where Z(1) C (A'™P)! corresponds to the system of N(> 1)-th roots of
the canonical coordinate U of the Tate curve associated to X, and 22(1) = (A?fmp)e”
corresponds to the system of N (> 1)-th roots of the canonical coordinate U introduced
before (In this sense, the usage of the symbol log(U) € Hom((A;}mp)eH,A@) is justi-
fied). Then the description of the action of a € Z = Z follows from the last equality
of Lemma 7.4 (2), and the first description of the action of an inversion automorphism
follows from the first equality of Lemma 7.4 (2). The second description of the action
of an inversion automorphism immediately follows from the definition. U

The following proposition says that the étale thete function has an anabelian rigid-
ity, i.e., it is preserved under the changes of scheme theory.
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Proposition 7.6.  (Anabelian Rigidity of the Etale Theta Function, [EtTh, The-
orem 1.6]) Let X (resp. TX ) be a smooth log-curve of type (1,1) over a finite extension
K (resp. TK) of Q, such that X (resp. X ) has stable reduction over O (resp O+ ),
and that the special fiber is singular, geometrically irreducible, the node is rational. We
use similar notation for objects associated to YX to the notation which was used for
objects associated to X. Let

temp ~~ tem
v ILP = ILSP
be any isomorphism of abstract topological groups. Then we have the following:
tempy _ yytemp
1o y(I™P) = I

2.~ induces an isomorphism Ae = TAg, which is compatible with the surjections

H'(Gp,Ne) = H (G, Z(1) S (K) — L
HY (G, TA0) 3 HYG, ,2(1)) S (K" - Z

determined the valuations on K and TK respectively. In other words, v induces
an isomorphism H' (G, Ae) = H' (G, -, TAg) which preserves both the kernel of
these surjections and the element 1 € Z in the quotients.

3. The isomorphism v* : Hl(Hgfmp, Ag) = Hl(H:;mp, TAg) induced by v sends 02-7'7'@
to some 17 = H:e)?lp/ﬂgifmp—conjugate of O]‘Xj{' - 1i® (This indeterminacy of TZ-
congugate inevitably arises from the choice of the irreducible component labelled 0).

Remark 7.6.1.  ([EtTh, Remark 1.10.3 (i)]) The étale theta function lives in a

cohomology group of the theta quotient (Hg?mp)@

, not whole of II¢™”. However, when
we study anabelian properties of the étale theta function as in Proposition 7.6, the theta

quotient (Ht)?mp)@ is insufficient, and we need whole of Ht)?mp.

Remark 7.6.2.  ([ITUTchIIL, Remark 2.1.2]) Related with Remark 7.6.1, then, how
about considering Hg(amal temp . 1T x5 Z instead of Hg?mp? (Here, ITx denotes the

profinite fundamental group, and IIx — Z is the profinite completion of the natural
surjection Hggmp — Z.) The answer is that it does not work in inter-universal Te-
ichmiiller theory since we have Nip, (IT}a! tempy jpppartial temp % 7,7 (On the other
hand, Ny, (IT%™P) = %™ by Cororally 6.10 (2)). The profinite conjugacy indetermi-

tial t . . L o .
IR PP gives rise to Z-translation indeterminacies on the coordinates of the

nacy on
evaluation points (See Definition 10.17). On the other hand, for IT%™, we can reduce
the Z-translation indeterminacies to Z-translation indeterminacies by Theorem 6.11

(See also Lemma 11.9).

Remark 7.6.3.  The statements in Proposition 7.6 are bi-anabelian ones (cf. Re-
mark 3.4.4). However, we can reconstruct the 'Z-conjugate class of the theta classes
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Orxjg - 14} in Proposition 7.6 (3) in a mono-anabelian manner, by considering the de-
scriptions of the zero-divisor and the pole-divisor of the theta function.

Proof. (1): Firstly, v sends A%$™ to A?e;p, by Lemma 6.2. Next, note that ~y
sends Ay™P to A?eymp by the discreteness (which is a group-theoretic property) of Z and
TZ. Finally, v sends the cuspidal decomposition groups to the cuspidal decomposition
groups by Corollary 6.12. Hence, 7 sends 1l to II;5, since the double covermgs Y »Y
and 'Y — 1Y are the double covering characterised as the 2-power map 2] : G — Gy
on each irreducible component, where the origin of the target is given by the cusps.

(2): We proved that y(A%Y™) = TAY™. Then v(Ag) = TAg holds, since Ag
(resp. TAg) is group-theoretically defined from A'™ (resp. TA'™P). The rest of the
claim follows from Corollary 6.12 and Proposition 2.1 (5), (6).

(3): After taking some Iy "P/IIy™P 2= Z-conjugate, we may assume that 7y :
H;fmp — Htemp is compatible with suitable inversion automorphisms ¢y and Tty by The-
orem B.1 (cf. [SemiAnbd, Theorem 6.8 (ii)], [AbsSect, Theorem 2.3]). Next, note that
tautologically sends 1 € Z = Hom(Ae,Ag) = Fil’/Fil' to 1 € 7 = Hom(TAg, TAg) =
TFil° /TFil'. On the other hand, #® (resp. 'ij®) is sent to 1 € Z = Hom(Ag, Ag) =
Fil’/Fil' (resp. 1 € Z = Hom(1Ae,Ag) = Fil°/TFil'), and fixed by 1y (resp. Tiy)
up to an OX -multiple (resp. an O ;--multiple) by Lemma 7.5 (2). This determines
ii® (resp. Tn ) up to a (K*)" —multlple (resp. a (TK*)"-multiple). Hence, it is suf-
ficient to reduce this (K *)"-indeterminacy (resp. (K *)’-indeterminacy) to an OI.X-{—
indeterminacy (resp. an O mdetermmacy) This is done by evaluating the class 7©
(resp. T1®) at a cusp y of the irreducible component labelled 0 (Note that “labelled 0”
is group-theoretically characterised as “fixed by inversion isomorphism ¢y (resp. Tty)”),
if we show that « preserves the canonical integral structure of D,,.

(See also [SemiAnbd, Corollary 6.11] and [AbsSect, Theorem 4.10, Corollary 4.11]
for the rest of the proof). To show the preservation of the canonical integral structure of
D, by ~, we may restrict the fundamental group of the irreducible component labelled
0 by Proposition 6.6 and Corollary 6.12 (See also Remark 6.12.1). The irreducible com-
ponent minus nodes I is isomorphic to G, with marked points (=cusps) {£1} C Gy
Then the prime-to-p-quotient Aﬁime'to'p of the geometric fudamental group of the
generic fiber is isomorphic to the prime-to-p-quotient Aﬁ?me_to'p of the one of the special
fiber, where k denotes the residue field of K. This shows that the reduction of the struc-
ture group of (K*)"-torsor Sect(D, — G ) to (07) ==Im(0} — K* ®7/), which is
determined the canonical integral strucure (i.e., the canonical tame integral structure),
is group-theoretically preserved as follows (cf. [AbsSect, Proposition 4.4 (i)]): The outer
action G — Out(Aﬂr;me'tO'p ) canonically factors through G — Out(Aﬁime'to_p ), and

the geometrically prime-to-p-quotient Hg:ime'to'p ) of the arithmetic fundamental group
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. out
of the special fiber is group-theoretically constructed as Aﬂzme'to'p X Gj by using

Gy — Out(Aﬁime_to_p ). Then the decomposition group D;, in the geometrically prime-
to-p-quotient of the arithmetic fundamental group of the integral model fits in a short
exact sequence 1 — (I} :=)I, ® 7 — D, — G}y — 1, where I, is an inertia sub-
group at y. The set of the splitting of this short exact sequence forms a torsor over
HY (G, I) = k*. These splittings can be regarded as elements of H Y(Dy,, I)) whose
restriction to I, is equal to the identity element in H'(I},I;) = Hom(I,,I,). Thus,
the pull-back to D, of any such element of H'(D;,I,) gives us the reduction of the
structure group to (O;’({)/ determined by the canonical integral structure.

Then it suffices to show that the reduction of the structure group of (K *)"-torsor
Sect(D, —» G ) to K*, which is determined the canonical integral strucure (i.e., the
canonical discrete structure), is group-theoretically preserved since the restriction of the
projection Z —» Z/ to Z C Z is injective (cf. [AbsSect, Proposition 4.4 (ii)]).

Finally, we show that the canonical discrete structure of (K*)"-torsor Sect(D, —
G ;) is group-theoretically preserved. Let U be the canonical cooridnate of G, jo- For
y = +1, we consider the unit U F1 € T'(G,, z \ {1}, Og,, ;\{£1}), Which is invertible
at 0, fails to be invertible at y, and has a zero of order 1 at y. We consider the exact

sequence

1 — (K>)" = H' (T jo,4}, 13 () = Z B Z
constructed in Lemma 3.15 (5). The image of the Kummer class £(TF1) € H' (IIp1\ (0,4}, 5 (Ix))
in Z®7Z (ie., (1,0)) determines the set (K*)" - k(U F 1). The restriction of (K*)" -
k(U F 1) to D, is the (K*)"-torsor Sect(D, — G}), since the zero of order of
k(U F1) at y is 1. On the other hand, x(U F 1) is invertible at 0. Thus, the sub-
set K* - k(U F1) ¢ (KX)" - k(U F 1) is characterised as the set of elements of
(K*) - k(U F 1) whose restriction to the decomposition group Dy at 0 (which lies
in (K*)" 2 HY(G,puz(Mx)) € HY(Do, uz(Ilx)) since x(U F 1) is invertible at 0) in
fact lies in K* C (K*)". Thus, we are done by Corollary 6.12 (or Corollary 2.9) (cf.
the proof of [AbsSect, the proof of Theorem 4.10 (i)]). O

From now on, we assume that
1. K=K,

2. the hyperbolic curve X minus the marked points admits a K-core X — C :=
X//{£1}, where the quotient is taken in the sense of stacks, by the natural action
of {£1} determined by the multiplication-by-2 map of the underlying elliptic curve
of X (Note that this excludes four exceptional j-invariants by Lemma C.3, and

3. v-1le K.
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Let X — X denote the Galois covering of degree 4 determined by the multiplication-
by-2 map of the underlying elliptic curve of X (i.e., G'8¢/¢% — G!i&/¢% sending the
coordinate U of the G in the codomain to U2, where U is the coordinate of the G,,"8
in the domain). Let ¥ — X denote its natural integral model. Note that X — C' is
Galois with Gal(X/C) = (Z/2Z)%3.

Choose a square root /—1 € K of —1. Note that the 4-torsion points of the
underlying elliptic curve of X are U = \/_ \/q_X C K for 0 < i,j < 3, and that,
in the irreducible components of X, the 4-torsion points avoiding nodes are 4+/—1.
Let 7 denote the 4-torsion point determined by v/—1 € K. For an étale theta class
ii© € HY(IIE™, Ae), let

OB C HY (I, Ae)

denote the g™/ Hzfmp > 7, X pg-orbit of 7j©.

Definition 7.7.  (cf. [EtTh, Definition 1.9])

1. We call each of two sets of values of 7j©Z>xH2

776 qu2| @qu2| CKX

a standard set of values of 7j©£*#2,

2. There are two values in K* of maximal valuatlons of some standard set of values

of 7®ZXk2 (Note that @(qX\/ 1) = (-1)° ar (\/ 1)-2¢@(y/=1) by the third
equality of Lemma 7.4 (2), and O(—¢2+/—1) = —@(qX\/ 1) by the second equality

*O,ZX pa 3

of Lemma 7.4 (2)). If they are equal to 1, then we say that j is of standard

type.

Remark 7.7.1.  Double coverings X — X and C' — C' are introduced in [EtTh],
and they are used to formulate the definitions of a standard set of values and an étale
theta class of standard type, ([EtTh, Definition 1.9]), the definition of log-orbicurve of
type (1,Z/1Z), (1,(Z/1Z)®), (1,Z/1Z)+, (1,(Z/IZ)®)+ ([EtTh, Definition 2.5]), and the
constant multiple rigidity of the étale theta function ([EtTh, Theorem 1.10]). How-
ever, we avoid them in this survey, since they are not directly used in inter-universal
Teichmiiller theory, and it is enough to formulate the above things by modifying in a

suitable manner.

Lemma 7.8. (cf. [EtTh, Proposition 1.8]) Let C = X//{%1} (resp. TC =
TX//{£1}) be a smooth log-orbicurve over a finite extension K (resp. 1K) of Q, such
that /—1 € K (resp. /—1 € TK). We use the notation T(—) for the associated objects
with 1C. Let v : 5™ 5 Htemp be an isomorphism of topological groups. Then ~y
Htemp, ™ 5 I1, and L™ 55 11907,

induces isomorphisms TP , and
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Proof. (See also the proof of Proposition 7.6 (1)). By Lemma 6.2, the isomor-
phism v induces an isomorphism ya, : AG™ 5 A'Tzecmp. Since AX™P € AG™P (resp.
A'ji?’p C Atemp) is characterised as the open subgroup of index 2 whose profinite
completion is torsion-free i.e., corresponds to the geometric fundamental group of a
scheme, not a non-scheme-like stack (See also [AbsTopl, Lemma 4.1 (iv)]), va. in-
duces an isomorphism ya, : AP 5 AP, Then ya, induces an isomorphism
Vagu (AgmPyell 5 (Atemp)en since (AYTP)! (resp. (AYFP)e!) is group-theoretically
constructed from AS™P (resp. AP, By the discreteness of Gal(Y/X) = Z (resp.
Gal(TY/ TX) = 7Z), the isomorphism Vacu induces an isomorphism 7z : AP AP (=
Z) 5 AFEP/AYSP(22 TZ). Thus, by considering the kernel of the action of ILS™P
(resp. ngcmp) on Ag?mp JAYTP (resp. AP /AYSTP), the isomorphisms v and vz in-
P 5 ISP,

duce an isomorphism v, : Since 7y, preserves the cuspical de-

composition groups by Corollary 6.12, it induces isomorphisms H;?mp 5 H:e.r.“p , and

temp ~ temp
I = IS 0

Proposition 7.9.  (Constant Multiple Rigidity of the Etale Theta Function, cf.
[EtTh, Theorem 1.10]) Let C = X//{£1} (resp. TC = TX//{£1}) be a smooth log-
orbicurve over a finite extension K (resp. TK ) of Q, such that /=1 € K (resp. v/—1 €
TK). We assume that C is a K-core. We use the notation T(—) for the associated objects
with TC. Let v : TIE™ 5 Htemp be an isomorphism of topological groups. Note that the
isomorphism v induces an zsomorphzsm e 5 Htemp by Lemma 7.8. Assume that
v maps the subset 1j©LXH2 C Hl(Htemp Ag) to the subset 15j9-Lxn2 c H(IT; temp ,TAg)

(cf. Proposition 7.6 (3)). Then we have the following:

1. The isomorphism ~ preserves the property that ii®LZ%H2 s of standard type, i.e.,
HOLXE2 s of standard type if and only if THSLXF2 s of standard type. This property

uniquely determines this collection of classes.

2. Note that v induces an isomorphism K* = TK* where K* (resp. TK*) is re-
garded a subset of (K*)" = HY(G,Ae) C HYIS™, Ag)) (resp. (TKX)N =
HY(Gig,TAg) C Hl(Htemp TAg))). Then v maps the standard sets of values of
HOLXE2 to the standard sets of values of THOLxH2,

3. Assume that i®L*H2 (hence, Ti9LXH2 as well by the claim (1)) is of standard type,
and that the residue characteristic of K (hence, TK as well) is > 2. Then ijL*#2
(resp. Ti®LXk2 ) determines a {£1}-structure (See Definition 7.3) on (K*)"-torsor
(resp. (TK>)"-torsor) at the unique cusp of C' (resp. 1C) which is compatible with
the canonical integral structure, and it is preserved by .

Remark 7.9.1.  The statements in Proposition 7.9 are bi-anabelian ones (cf. Re-
mark 3.4.4). However, we can reconstruct the set 5®£X#2 in Proposition 7.9 (2) and
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(3) in a mono-anabelian manner, by a similar way as Remark 7.6.3.

Proof. The claims (1) and (3) follows from the claim (2). We show the claim
(2). Since 7 induces an isomorphism from the dual graph of 2) to the dual graph of
) (Proposition 6.6), by the elliptic cuspidalisation (Theorem 3.7), the isomorphism
~ maps the decomposition group of the points of Y lying over 7 to the decomposition

group of the points of 'Y lying over 7%!. The claim (2) follows from this. O

§7.3. [l-th Root of the Etale Theta Function.

First, we introduce some log-curves, which are related with [-th root of the étale
theta function. Let X be a smooth log-curve of type (1, 1) over a field K of characteristic
0 (As before, we always put the log-structure associated to the cusp on X, and consider
the log-fundamental group). Note also that we are working in a field of characteristic
0, not in a finite extension of Q, as in the previous subsections.

Assumption (0): We assume that X admits K-core.

We have a short exact sequence 1 - Ax — Ilx — Gg — 1, where IIx and Ax
are the arithmetic fundamental group and the geometric fundamental group (with re-
spect to some basepoints) respectively, and G = Gal(K/K). Put AS! := A% =
Ax/[Ax,Ax], A()a( = Ax/[Ax,[Ax,Ax]], and Ag = IHl{/\2A§él — A?(} Then
we have a natural exact sequence 1 — Ag — A§ — AY — 1. Put also II :=
HX/ker(AX - A?()

Take | > 2 be a prime number. Note that the subgroup of A generated by I-th
powers of elements of A is normal (Here we use [ # 2). We write A — Ax for the
quotient of A by this normal subgroup. Put Ag := Im{Ag — Ax}, Ze)? = Ax /Ao,
My := [y /ker(Ax — Ax), and Iy := IIx/Ae. Note that Ag = (Z/IZ)(1) and A%
is a free Z/lZ-module of rank 2.

Let = be the unique cusp of X, and let I, C D, denote the inertia subgroup
and the decomposition subgroup at x respectively. Then we have a natural injective
homomorphism D, — II§ such that the restriction to I, gives us an isomorphism
I, = Aeo(C TIR). Put also D, := Im{D, — IIx}. Then we have a short exact

sequence

1> Ae - D, — Gg — 1.

Assumption (1): We choose a quotient ﬁil — (@ onto a free Z/lZ-module of rank 1 such

.. ——ell 11 . . . ..
that the restriction A; — @ to ZQX remains surjective, and the restriction D, — @ to
D, is trivial.
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Let
X - X

denote the corresponding covering (Note that every cusp of X is K-rational, since the
restriction D, — Q to D, is trivial) with Gal(X/X) = Q, and we write IIx C Ilx,
Ax C Ax, and Z%H C Zi? for the corresponding open subgroups. Let tx (resp. tx)
denote the automorphism of X (resp. X) given by the multiplication by —1 on the
underlying elliptic curve, where the origin is given by the unique cusp of X (resp. a
choice of a cusp of X). Put C := X//ux, C := X//ux (Here, //’s mean the quotients
in the sense of stacks). We call a cusp of C, which arises from the zero (resp. a non-
zero) element of (), the zero cusp (resp. a non-zero cusp) of C. We call tx and tx
inversion automorphisms. We also call the unique cusp of X over the zero cusp of
C the zero cusp of X. This X (resp. C) is the main actor for the global additive (F)

portion (resp. global multiplicative (X) portion) in inter-universal Teichmiiller theory.

Definition 7.10.  ([EtTh, Definition 2.1]) A smooth log-orbicurve over K is
called of type (1,I-tors) (resp. of type (1,Il-tors)y) if it is isomorphic to X (resp.
C) for some choice of ﬁi? — @ (satisfying Assumption (0), (1)).

Note that X — X is Galois with Gal(X/X) = @; however, C — C' is not Galois,
since tx acts on @ by the multiplication by —1, and any generator of Gal(X/X) does
not descend to an automorphism of C' over C' (Here we use [ # 2. See [EtTh, Remark
2.1.1]). Let Ag C I (resp. Ag C Ilg) denote the geometric fundamental group
and the arithmetic fundamental group of C' (resp. C) respectively. Put also Ilg :=
I /ker(Ily — Ix), (resp. ¢ := Mg /ker(Ilx — Ilx),) Ac := Ac/ker(Ax — Ax),

(resp. Ag = Ag/ker(Ax — Ay),), and Zﬁ}l = Ac/ker(Ax — Zi}l).

Assumption (2): We choose €,, € A¢ an element which lifts the nontrivial element of
Gal(X/C) = 7.)27.

We consider the conjugate action of €,, on Ax, which is a free Z/IZ-module of rank 2.
Then the eigenspace of Ax with eigenvalue —1 (resp. +1) is equal to Zzl (resp. Ag).
Hence, we obtain a direct product decomposition

—ell —

Ax

I

([EtTh, Proposition 2.2 (i)]) which is compatible with the conjugate action of ILx (since

. . . ) . = —ell
the conjugate action of ¢,, commutes with the conjugate action of Ilx). Let s, : A; —

_ — —ell
Ax denote the splitting of A x — Ag given by the above direct product decomposition.
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Then the normal subgroup Im(s,) C Ix induces an isomorphism

D, = Tlx/Im(s,)

over Gg.

Assumption (3): We choose any element s4®) of the H' (G, Ag)(=2 K* /(K *)!)-torsor
Sect(D, — G), where Sect(D, — G ) denotes the set of sections of the surjection
ﬁm — GK.

Then we obtain a quotient Iy — ﬁ& — ﬁ&/lm(sL) 5D, — ﬁm/sA(3)(GK) ~ Ag.
This quotient gives us a covering

XX

with Gal(X/X) = Ae. Let Ax C Ay, IIx C IIx denote the open subgroups de-

termined by X. Note that the composition Z& — Z& —» Z;I} is an isomorphism,
and that ZK = Im(sb), Z& = ZK : Z@. Sln(; Gal(é/&) :7Z£/ZX = Z@, and
I, = Ag —»7Z@, the covering X —» X is totally ramified at the cusps (ﬁote also that
the irreducible components of the special fiber of the stable model of X are isomorprhic
to P'; however, the irreducible components of the special fiber of the stable model of X
are not isomorphic to P!). Note also that the image of e, x 1N Ac/Ax is characterised
as the unique coset of Ac/Ax which lifts the nontrivial element of Ac/Ax and nor-
malises the subgroup Ax C A, since the eigenspace of Ay /Ax = Ag with eigenvalue
1 is equal to Ag ([EtTh, Proposition 2.2 (ii)]). We omit the construction of “C” (See
[EtTh, Proposition 2.2 (iii)]), since we do not use it. This X plays the central role in the
theory of mono-theta environment, and it also plays the central role in inter-universal
Teichmiiller theory for places in yhad,

Definition 7.11.  ([EtTh, Definition 2.3]) A smooth log-orbicurve over K is
called of type (1,I-tors®) if it is isomorphic to X (which is constructed under As-
sumptions (0), (1), (2), and (3)).

The underlines in the notation of X and C indicate “extracting a copy of Z/IZ”,
and the double underlines in the notation of X and C indicate “extracting two copy of
Z/1Z” ([EtTh, Remark 2.3.1]).

Lemma 7.12.  (cf. [EtTh, Proposition 2.4]) Let X (resp. TX) be a smooth log-
curve of type (1,1-tors®) over a finite extension K (resp. TK) of Q,. We use the
notation (=) for the associated objects with TX. Assume that X (resp. "X ) has sta-
ble reduction over Ok (resp. Oig) whose special fiber is singular and geometrically

~

irreducible, and the node is rational. Let v : Htgnp — H?ir(np be an isomorphism of
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~ ~

topological groups. Then v induces isomorphisms TP = H?%mp, Htgemp = nggmp

temp ~ temp temp ~ temp temp ~ temp
I = 1L, Oy = e ™, and I — 1S

Proof. By Lemma 6.2, v induces an isomorphism A'™ 5 A?ir(np. By the K-

coricity, the isomorphism 7 induces an isomorphism II;5™" = H?%mp , which induces an
isomorphism AZS™P 5 A:ecmp. Then by the same way as in Lemma 7.8, this induces
isomorphisms Agznp = A:fil(n_p, g™ 5 I, and H';fmp = H?;.mp. Note that Ax
(resp. At x) and Ag (resp. TAg) are group-theoretically C(ElStI‘UCted from Af)?mp_(resp.
A'T;i?lp), and that we can group-theoretically reconstruct Ay C AY™P (resp. As x C

AYEP) by the image of A;mp (resp. A}'P). Hence, the above isomorphisms induce

an isomorphism Z& = ng, since Z& = Z& - Ag (resp. Zi‘g = ZTX -TAg). This
isomorphism induces an isomorphism A%™ 5 A‘ie;(np, since AY™ (reps. A?E;r(np) is
the inverse image of Ax C AY™ (resp. Aix C A{%P) under the natural quotient

~

temp N temp N . . temp temp .
Ay™ — Ay (resp. A" — Ajx). The isomorphism A" — ATK induces

em ~ tem
p B | p

. . t . t t .
an isomprhism Iy oo, since g™ (resp. ILS™) is reconstructed as the

t t
outer semi-direct product Ay %G K (resp. Aix N Gig), where the homomorphism
Gk — Out(Ax) (resp. Gix — Out(A;x)) is given by the above constructions induced
by the action of Gk (resp. Gig). O

Remark 7.12.1.  ([EtTh, Remark 2.6.1]) Suppose p; C K. By Lemma 7.12, we
obtain

Aut(X) = x {£1}, Autg(X) = Z/IZ = {£1}, Autx(C) = {1},

where x is given by the natural multiplicative action of {1} on Z/IZ (Note that C' — C
is not Galois, as already remarked after Definition 7.10 (cf. [EtTh, Remark 2.1.1])).

Now, we return to the situation where K is a finite extension of Q,.

Definition 7.13.  ([EtTh, Definition 2.5]) Assume that the residue characteris-
tic of K is odd, and that K = K. We also make the following two assumptions:

. . —ell
Assumption (4): We assume that the quotient IIy —» Q factors through the natural

quotient Iy —» 7. determined by the quotient Ht;mp —» 7 discussed when we defined Y.

Assumption (5): We assume that the choice of an element of Sect(D, — Gx) in As-

sumption (3) is compatible with the {#1}-structure (See Definition 7.3) of Proposi-
tion 7.9 (3).
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A smooth log-orbicurve over K is called of type (1, Z/IZ) (resp. of type (1, (Z/1Z)®),
resp. of type (1,Z/lZ)+ ), if it is isomorphic to X (resp. X, resp. C) (which is con-
structed under the Assumptions (0), (1), (2), (3), (4), and (5)).

Note also that the definitions of smooth log-(orbi)curves of type (1,I-tors), of type
(1,1-tors)+, and of type (1,I-tors®) are made over any field of characteristic 0, and that
the definitions of smooth log-(orbi)curves of type (1,Z/IZ), of type (1,Z/IZ)+ and of
type (1,(Z/1Z)®) are made only over finite extensions of Q.

Let ¥ — X (resp. g — X) be the composite of the covering ¥ — X (resp.
Y - X) with X — X. Note that the coverings g — Y and Y — Y are of degree [.

We have the following diagram

Ao (2Z/1Z) -

[I~<:

Y y <2y
le Z 2%
X Ao (222/17) X Q(=Z/17) X ext of Z/2Z
— - by pa

l{:ﬁ:l} {£1}

C non-Galois C :

- deg=lI

and note that the irreducible components and cusps in the special fibers of X, X, X,
X, Y, Y, Y, and g are described as follows (Note that X — X and Y — Y are totally
ramified at each cusp):

e X: 1 irreducible component (whose noramalisation = P') and 1 cusp on it.

e X: 2 irreducible components (= P') and 2 cusps on each,

e X: [ irreducible components (= P') and 1 cusp on each,

e X: [ irreducible components (% P') and 1 cusp on each,

e Y: the irreducible components (=2 P!) are parametrised by Z, and 1 cusp on each,
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e Y: the irreducible components (=2 P!) are parametrised by Z, and 2 cusps on each,
e Y: the irreducible components (¢ P1) are parametrised by [Z, and 1 cusp on each,
° g the irreducible components (% P!) are parametrised by [Z, and 2 cusps on each.

We have introduced the needed log-curves. Now, we consider the étale theta
functions. By Assumption (4), the covering Y — X factors through X. Hence,
the class 7 € Hl(Hg-/emp,A@), which is well-defined up to an Oj-multiple, and its

™/ Hg.,emp =~ 7 x uo-orbit can be regarded as objects associated to Htimp.

We recall that the element 7 € H 1(H§fmp, Ao ® Z/IZ) arises froma an element
i® € Hl((H;fmp)e, Ao ® Z/IZ) by the first claim of Lemma 7.5 (2), where we use the
same symbol 7 by abuse of notation. The natural map D, — H‘;fmp — (H%fmp)@
induces a homomorphism Hl((H$mp)@, Ao ® ZJIZ) — HY(D,,Ae ® Z/IZ), and the
image of 7j® € Hl((Ht.Yemp)@, Ao ®Z/IZ) in H'(D,, Ae ® Z/IZ) comes from an element
ii® € HY(D,, Ao ®Z/IZ), where we use the same symbol 7i® by abuse of notation again,
via the natural map H'(D,,Ae ®Z/IZ) — HY(D,, Ae ®7Z/IZ), since we have an exact

sequence
0 — H'(Dy, Mg ® Z/IZ) = H'(Dy, Ao @ ZJIZ) — H'(1Ae, Ao ® Z/IZ),

and the image of #® in H'(IAe,Ae ® Z/IZ) = Hom(lAe, Ae ® Z/I7) vanishes by
the first claim of Lemma 7.5 (2). On the other hand, for any element s € Sect(D, —»
Gx), the map D, > g + g(s(g))~! gives us a 1-cocycle, hence a cohomology class in
HY(D,, Ao ®Z/IZ), where g denotes the image of g via the natural map D, — G. In
this way, we obtain a map Sect(D, — Gx) — H'(D,, Ao ® Z/IZ). (See the following
diagram:

0—— HY(D,, Ao ® Z/I1Z) —— H'(Dy, Ao ® Z,)IZ) —— Hom(IAe, Ao ® Z/IZ)

| |

Sect(D, — Gx) HY((TI"™P)°, Ae @ Z/17),
where the horizontal sequence is exact.) We also have a natural exact sequence
0— H' (Gg,Ao ®Z/)IZ) — H (D,, Ao ® ZJI7) — H' (Ao ® Z/17, Ae ® 7.)IZ).

The image of ij® € H'(D,, Ae ® Z/IZ) in H'(Ag ® Z/IZ, Ag ® Z/IZ) = Hom(Ag ©
2], Ao ® Z/IZ) is the identity homomorphism by the first claim of Lemma 7.5 (2)
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again. The image Im(s) € H'(D,, Ae ® Z/IZ) of any element s € Sect(D, —» Gx) via
the above map Sect(D, — Gx) — H*(D,, Ao ®Z/IZ) in HY (Ao RZ/IZ, Ao RZL/IZ) =
Hom(Ae ® Z/I1Z,Ae ® Z/IZ) is also the identity homomorphism by the calculation
Ao ®ZJNZ > g — g(s(g))"! = g(s(1))™! = g- 17! = g. Hence, any element in
Im{Sect(D, - Gg) — H'(D,, Ao @ Z/IZ)} differs from #i® € H'(D,, Ae ® Z/IZ) by
an H'(Gk,Ae ® Z/IZ) = K* /(K*)-mutiple. Now, we consider the element s*®) ¢
Sect(D, —» Gg) which is chosen in Assumption (3), and let Im(s*®)) € H'(D,, Ag ®
Z,/17) denote its image in H'(D,, Ae ®Z/IZ). By the above discussions, we can modify
ii® € HY(D,,Ae ® Z/IZ) by a K*-multiple, which is well-defined up to a (K*)!-
multiple, to make it coincide with Im(s2®)) € H'(D,, Ae ® Z/IZ). Note that stronger
claim also holds, i.e., we can modify 4© by an O jc-multiple, which is well-defined up to
an (Oy)-multiple, to make it coincide with Im(s*®)), since s*®®) € Sect(D, — Gx),
is compatible with the canonical integral structure of D, by Assumption (5) (Note that
now we do not assume that 7©£*#2 is of standard type; however, the assumption that
s23) is compatible with the {#1}-structure in the case where 7©£%#2 is of standard
type implies that s*(3) is compatible with the canonical integral structure of D, even
we do not assume that 7}©Z*#2 is of standard type). As a conclusion, by modifying
i® € Hl((Hgfmp)@,A@ ® Z/IZ) by an Oj-multiple, which is well-defined up to an
(O%)!-multiple, we can and we shall assume that j® = Im(s2(®)) € HY(D,, Ao ®Z/IZ),
and we obtain an element #® € H 1(H§fmp, Ag ® Z/IZ), which is well-defined up to an
(O%)!-multiple (not an Oj-multiple), i.e., by the choice of X, the indeterminacy on
the ratio of s; and 7; in the definition of 7® disappeared. In the above construction,
an element Sect(D, — G) can be considered as “modulo | tangential basepoint” at
the cusp z, the theta function © has a simple zero at the cusps (i.e., it is a uniformiser
at the cusps), and we made choices in such a way that 7© = Im(s*(3)) holds. Hence,
the covering X — X can be regarded as a covering of “taking a [-th root of the theta
function”.
Note that we have the following diagram

H'(s*G)(Gk), Ao ® Z/IZ)

HY(D,, Ao ® Z)I7)

0 —— H'(D./s*3)(Gk), Ao ® Z/IZ) — H(IIZ™, Ao © Z/17) — Hl(Htimp, Ao ® Z/17)
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where the horizontal sequence and the vertical sequence are exact. Now, the image of
i® = Im(s2®) € HY(D,, Ao ®Z/IZ) in H'(s*®) (G ), Ao ®7Z/IZ) vanishes by the cal-
culation s2G3)(G) 3 s2B)(g) = s4G) () (s2B) (s8B) (9))) 7! = 4B (9)(s2B) ()"t =1
and the above vertical sequence. Thus, 7® = Im(s*(®)) comes from an element of
HY(D,/s*®(Gk), Ao ®Z/IZ). Therefore, the image of ii° € H' (1", Ae ®Z/IZ) in
H! (H';fmp, Ae®7Z/17) vanishes since it arises from the element of H' (D, /s*®)(Gk), Ae®

A lZ);nd the above horizontal sequence. As a conclusion, the image of 1i® € H* (Hgfmp, Ap)
in H 1(I'It.;’mp, Ag) arises from an element #® € H 1(Ht.Yemp, [Ag), which is well-defined

©

up to 01;(- In some sense, 17~ can be considered as an “I-th root of the étale theta

function”. Let 2%/ denote the Hgmp/ﬂgfmp = (IZ x ps)-orbits of 7°.

Definition 7.14.  ([EtTh, Definition 2.7]) We call ﬁe’lzx‘” of standard type,

if j©Lxk2 ig of standard type.

By combining Proposition 7.9 Lemma 7.12, and definitions, we obtain the following:

Corollary 7.15. (Constant Multiple Rigidity of [-th Roots of the Etale Theta
Function, cf. [EtTh, Corollary 2.8]) Let X (resp. 'X) be a smooth log-curve of type
(1,(Z/1Z)®) over a finite extension K (resp. TK) of Q,. We use the notation T(—) for
the associated objects with Té. Let vy : Htéemp = ngp be an isomorphism of topological
groups.

7O LY 2

1. The isomorphism ~y preserves the property that ) 1s of standard type. More-

over, this property determines this collection of classes up to a wi-multiple.

2. Assume that the cusps of X are rational over K, the residue characteristic of K
is prime to I, and that p; C K. Then the {£1}-structure of Proposition 7.9 (3)
determinesa po;-structure (cf. Definition 7.3) at the decomposition groups of the
cusps of X. Moreover, this pg-structure is compatible with the canonical integral
structure (cf. Definition 7.3) at the decomposition groups of the cusps of X, and is
preserved by 7.

Remark 7.15.1.  The statements in Corollary 7.15 are bi-anabelian ones (cf. Re-
mark 3.4.4). However, we can reconstruct the set ﬁ@’@x’” in Corollary 7.15 (1) in a
mono-anabelian manner, by a similar way as Remark 7.6.3 and Remark 7.9.1.

Lemma 7.16.  ([EtTh, Corollary 2.9]) Assume that u; C K. We make a la-
belling on the cusps of X, which is induced by the labelling of the irreducible components
of Y by Z. Then this determines a bijection

{ Cusps of X} /Autg(X) = |F|
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(See Section 0.2 for |Fy|), and this bijection is preserved by any isomorphism =y : Htéemp =

H;mp of topological groups.

Proof. The first claim is trivial (See also Remark 7.12.1). The second claim follows
from Remark 6.12.1. O

§7.4. Three Fundamental Rigidities of Mono-theta Environments.

In this subsection, we introduce the notion of mono-theta environment, and show
important three rigidities of mono-theta environment, that is, the constant multiple
rigidity, the cyclotomic rigidity, and the discrete rigidity.

Definition 7.17.  For an integer N > 1, we put
HNN,K = un A GK

For a topological group II with a surjective continuous homomorphism II - G, we
put

U[pn] =1 Xay My ke, Alpn] = ker (I[pn] - Gr) = A X py,

where A := ker(Il - G ), and we call Il[uy]| cyclotomic envelope of II — G. We
also put

pn (Ipn]) == ker(H[py] — II).

and we call pn (II[uy]) the (mod N) cyclotome of the cyclotomic envelope I1[uy].
Note that we have a tautological section Gx — Il x of II,, k — Gk, and that it
determines a section

s8I — ],

and we call it a mod N tautological section. For any object with II[uy]-conjugate
action, we call a uy-orbit a uy-conjugacy class.

2

Here, the pn in II[un] plays a roll of “un” which comes from line bundles.

Lemma 7.18.  ([EtTh, Proposition 2.11]) Let Il — G (resp. 11 — Gig ) be
an open subgroup of the tempered or profinite fundamental group of hyperbolic orbicurve
over a finite extension K (resp. 'K ) of Qp, and put A = ker(Il - Gg) (resp. TA :=
ker(TIT — Gig) ).

1. The kernel of the natural surjection Alun] — A (resp. TA[un] — TA) is equal to the
center of Alun] (resp. TAlun]). In particular, any isomorphism Alun] = TA[un]
is compatible with the surjections Alun] — A, TAlun] — TA.
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2. The kernel of the natural surjection I[uy] — II (resp. TH[uxn] — TI1) is equal to the
union of the center of the open subgroups of [un] (resp. "M[uyn]). In particular,
any isomorphism U[ux] = TM[uy] is compatible with the surjections M[uy] — 11,
MI{pn] — ML

Proof. Lemma follows from the temp-slimness (Lemma 6.4 (5)) or the slimness
(Proposition 2.7 (2a), (2b)) of A, TA, I, L. O

Proposition 7.19.  ([EtTh, Proposition 2.12])
1. We have an inclusion

ker ((AF™)® = (AF™)M) =146 C [(AF™)°, (AF™)°].

2. We have an equality

(A%™)® ], (AE™)° ]| ((126) 1] = Tm ((A) 180 106 — (Af;;mp)@[m)

(€ (t2e)lun] € (AF™)®fun])

alg

alg .
(agmrye

(agmP)e |lA@
(AX"™)® = (AX™)un] to lAe (C (AF™)).

where s denotes the restriction of the mod N tautological section s

Proof. The inclusion of (1) follows from the structure of the theta group (=Heisen-
berg group) (A%™)®. The equality of (2) follows from (1). O

Remark 7.19.1.  (cf. [EtTh, Remark2.12.1]) As a conclusion of Proposition 7.19

alg
(Ag?n)p ) <)

‘ZA@)’ — i.e., the splitting [Ag X uy —, can be group-
theoretically reconstructed, and the cyclotomic rigidity of mono-theta environment (See

the subgroup Im (s

Theorem 7.23 (1)), which plays an important role in inter-universal Teichmiiller theory,
comes from this fact. Note that the inclusion of Proposition 7.19 (1) does not hold if we
use X instead of X, i.e., ker ((Atgmp)@ — (Atgmp)dl) =Ag ¢ [(Atgnp)@, (Atgmp)@ :

Let sz‘}lg denote the composite

Sz?lg . Ht“emp é} Htemp[[LN] — Ht;mp [MNL

and we call it a mod N algebraic section. Take the composite 7 : Hzfmp — 1Ap ®

Z/NZ = py of the reduction modulo N of any element (i.e., a 1-cocycle) of the collection
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of classes ﬁ@’lzx’” C Hl(Ht.Yemp, [Ag), and the isomorphism [Ag ® Z/NZ = iy, which
comes from a scheme theory (cf. Remark 3.15.1). We put

s ::77—1. alg | Htemp%Htemp[uN]‘

Y

I<:®

and call s amod N theta section. Note that s is a homomorphism, since 58 (gh) =

x b4
n(gh)‘lsz-lg(gh) = (g(n(h))n(g))‘1S§g(g)8§g(h) = (sy"(9)n(h)s5(9) " n(g)) ™! aylg(g)sglg(h) =

—1 alg —1.algp\ _ O e N 0 " -
n(g) Sy (g)n(h) Sy (h) = s32(g9)s(g). Note also that the natural outer action

Gal(Y/X) = Ig™ /Ty™ 2 ™[] /T[] < Out(Iy™ [un])

of Gal(Y./X) on Htxemp [N fixes Im(s?;g : H‘;fmp — H;mp [un]) up to a conjugate by uy,

alg

since the mod N algebraic section 528 extends to a mod N tautological section S ptemp
X

Y

Htemp — Htemp[,uN]. Hence, s up to Ht Plpn]-conjugates is independent of the

choice of an element of 77@ Zxps Hl(Htemp [Ao) (Recall that Htemp — Gal(Y/X) =

IZ x psz). Note also that conjugates by pn corresponds to modlfylng a l-cocycle by
1-coboundaries.
Note that we have a natural outer action

KX — KX J(KX)Y 5 HY Gk, ) — H' (TP, ) — Out(Iy™ ),

where the isomorphism is the Kummer map, and the last homomorphism is given by
sending a 1l-cocycle s to an outer homomorphism sHltgemp (9)a — s(g)s;ltgemp (9)a (g €

alg

Htemp, a € uy) (Note that the last homomorphism is well- defined, since sHtemp (g)asglimp (¢")d (=
Y

Siainn (9953t () 7 (@)a') for g,9' € Y™, a0 € s sent to - -

1 — 1 — 1
5(99')Sptens (99)) 85y (67) 1 (@)a” = 9(5(9))5(9) 8yt (99" )Sns (9) a5y ()

Y

1 1 1 1
= 8(9)9(8(9’))8%%:;;) (9)as]iem (97)a" = 5(9)5 tems (9)5(9 Jas ptems (9')a

/

by s, and since for a 1-coboundary s(g) = b=1g(b) (b € uy) is sent to

1 1 1 1 1 ~1_al
S8 ()0 5(0)5 e (9)0 = b1 G(0)5 e (9 = 5151y (01557 (9) 15 E e (9)c
Y Y Iy Iy X X
1 al ~1_al
=p ! ;tgxemp( g)ba =b 1s;§jn,p(g)ab,
which is an inner automorphism). Note also any element Im(K*) := Im(K* —

Out(ITy™P[un])) lifts to an element of Aut(ITy"™P[uy]) which induces the identity au-
tomorphlsms of both the quotient Ty [uy] — Ht;mp and the kernel of this quotient.
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ACNYVAL

In this natural outer action of K*, an Oj-multiple on 7 corresponds to an

X : ©
O -conjugate of sg

Definition 7.20.  (Mono-theta Environment, [EtTh, Definition 2.13]) Let

Dy i= (Im(K*), Gal(X/X)) € Out(IT"?[un])

denote the subgroup of Out(HtXemp [11n]) generated by Im(K™>) and Gal(Y/X) (= (Z).

1. We call the following collection of data a mod N model mono-theta environ-
ment:

lunl,

e the subgroup Dy (C Out(HtXemp [un])), and

. tem
e the topological group H£

e the puy-conjugacy class of subgroups in Hz’mp [en] determined by the image of

the theta section s?,.

2. We call any collection M = (I, Dry, s2) of the following data a mod N mono-theta
environment:

e a topological group II,
e a subgroup Dy (C Out(II)), and
e a collection of subgroups s of II,

such that there exists an isomorphism II = Hgfmp [n] of topological groups which

maps D C Out(Il) to Dy, and s to the ;N—conjugacy class of subgroups in

H;mp [un] determined by the image of the theta section ).

3. For two mod N mono-theta environments M = (I, Dy, s8), "M = (TTI, Diyy, S?H),
we define an isomorphism of mod N mono-theta environments M = M
to be an isomorphism of topological groups II = TII which maps D to Dip,
and s} to s§;. For a mod N mono-theta environment M and a mod M mono-
theta environment "M with M | N, we define a homomorphism of mono-theta
environments M — "M to be an isomorphism M;; = "M, where M, denotes the

mod M mono-theta environment induced by M.

Remark 7.20.1.  We can also consider a mod N bi-theta environment B =
(I1, Dy, 58, s%lg), which is a mod N mono-theta environment (I, Dy, s§) with a datum
s%lg corresponding to the py-conjugacy class of the image of mod N algebraic section

s?}lg (cf. [EtTh, Definition 2.13 (iii)]). As shown below in Theorem 7.23, three impor-
tant rigidities (the cyclotomic reigidity, the discrete rigidity, and the constant multiple
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rigidity) hold for mono-theta environments. On the other hand, the cyclotomic rigidity,
and the constant multiple rigidity trivially holds for bi-theta environments; however, the
discrete rigidity does not hold for them (See also Remark 7.23.1). We omit the details
of bi-theta environments, since we will not use bi-theta environments in inter-universal

Teichmiiller theory.

Lemma 7.21.  ([EtTh, Proposition 2.14])

1. We have the following group-theoretic chracterisation of the image of the tautological

section of (I1Ae)[un] — lAe as the following subgroup of (A;‘?mp)@[ug\/]:

(186)luv] (N {H(@a™" € (AF™)Ofun] | a € (AF™)®luy], 7 € Aut(UF™ [un]) such that ()},

where

(%) : the image of v in Out( txemp[ ~]) belongs to Dy,
and ~y induces the identity on the quotient Htemp [un] — ™ = G

2. Let t@ : H;fmp — Htemp [un] be a section obtained as a conjugate ofs relative to

the actions of K* cmd IZ. Putd := (s Y) 1t@, which is a 1-cocycle of Ht.Yemp valued

pun]) denote the automorphism given by s;limp (g9)a —
= X

5(g)s;1tgemp( Ja (g € Htfsmp, a € pn), which induces the identity homomorphisms

Y

in un. Let s € Aut(I1 temp[

on both the quotient Htemp[uN] —» Htemp and the kernel of this quotient. Then

i extends to an automorphzsm as € Aut( temp[

un)|), which induces the identity
homomorphisms on both the quotient II mp[uN] — TIy™P and the kernel of this

quotient. The conjugate by as maps s@ to te, and prgserves the subgroup Dy C
Out(ITy™* [u]).

3. Let M = (Htxemp [un], Dy, sg) be the mod N model mono-theta environment. Then

every automorphism of M induces an automorphism of Htemp by Lemma 7.18 (2),

hence an automorphism of Htemp = Aut(II temp) 0 Im(Dy — Out(Il temp)) =
Aut(Htemp) X Out (i) Im(Dy — Out(Htemp)). It also induces an automorphism

of the set of cusps on Relative to the labellmg by Z on these cusps, this induces
an automorphism of Z given by (IZ) x {£1}. This assignment gives us a surjective

homomorphism

Aut(M) — (1Z) x {£1}.
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Proof. (1): Take a lift v € Aut((HtXemp)[,uN]) of an element in Im(K*) C Dy (C
Out((H?mp)[uN])) such that v satisfies (;) Then « can be written as v = 17, where
m € In;(Htemp[uN]) Y2 € Aut(Htemp[uN]) the image of 75 in Out(Htemp[,uN]) is in
Im{K* — H'(Gx, py) = Hl(Htemp, UN) — Out(Htemp [un])}, and the automorphism
induced by 75 of the quotient HZ Plun] — HZ and the automorphism of its kernel (=

temp

fn) are trivial. Since the composite H' (G, uy) — HY(IIg™, un) — Hl(Atemp,uN)
is trivial, the composite H! (Gx, un) — Hl(HtXemp, UN) — Hl(Atemp, UN) — Out(Atemp (un])

is trivial as well. Hence, the automorphism induced by ~2 of Ate Plun] is an inner au-
tomorphism. On the other hand, the automorphism induced by v1 of G is trivial
since the automorphism induced by 2 of G is trivial, and the condition (*). Then

the center-freeness of G (cf. Proposition 2.7 (1c)) implies that vy, € Inn(Hg'fmp lun])

is in Inn(AtXemp [un]). Hence, the automorphism induced by v = 412 of AZ Plun] is
also an inner automorphism. Since (A;mp) [un] (= 1Z % Z(l) X py) is abelian, the

inner automorphism induced by ~ of (Atxemp) [un] is trivial. Then (1) follows from
Proposition 7.19 (2). -
(2): By definition, the conjugate by G5 maps 3@ to t@ Since the outer action

of Gal(Y/X) = IZ on Atemp [un] fixes s & up to un- conJugacy, the cohomology class
of § in H 1(Htemp, pn) is in the submodule generated by the Kummer classes of K*

and (1/l)2llog(U) = 2log(U) by the first displayed formula of Lemma 7.5 (2) (See
Lemma 7.5 (1) for the cohomology class log(U )). Here, note that the cohomology class of
§ is in Fil' since both of (s, aley—1 sY and sa & t@ maps to 1in Fil’/Fil' = Hom(lAe,lAe)
by Lemma 7.5 (2). Note also that “1 /I” comes from that we are working with I-th roots
of the theta functions ne LXH2 (cf, the proof of Lemma 7.5 (2)), and that “I” comes

temp

from [Z. Thus, § descends to a 1- cocycle of Iy valued in pn since the coordinate

(™

U? descends to Y. Hence, d; extends to an automorphlsm as € Aut in]), which

induces identity automorphisms on both the quotient Htemp[ N] — Hgfmp and the kernel

( temp[

of this quotient. The conjugate by a; preserves Dy C Out pN]), since the action

of Gal(Y/X) maps 2log(U) to a K *-multiple of 2log(U).
(3) comes from (2). O

Corollary 7.22.  (Group-Theoretic Reconstruction of Mono-theta Environment,
[EtTh, Corollary 2.18]) Let N > 1 be an integer, | a prime number and X a smooth
log-curve of type (1,(Z/1Z)®) over a finite extension K of Q,. We assume that | and p
are odd, and K = K. Let My be the resulting mod N model mono-theta environment,

O,1Z X 2

which is independent of the choice of a member ofn , up to isomorphism over the
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identity of Htxemp by Lemma 7.21 (2).

1. Let Tﬂtgnp be a topological group which is isomorphic to Hzmp. Then there exists
a group-theoretic algorithm for constructing

e subquotients

THtimp, THtZemp7 TGK, T(ZA@), T(Atéemp>®, T(I—It&emp)é)7 T(Atimp)@’ T(H‘gfmp)@

ofTHtKemp, and
e a collection of subgroups ofTHtgmp for each element of (Z/IZ)/{+£1},

such that any isomorphism TII™ 5 TT™ maps

e the above subquotients to the subquotients

Htimp? Ht'x'emp? Gk,lAe, (Azmp)®> (Htimp)@, (Atxemp)@, (Htxemp)e

of Htgnp respectively, and

e the above collection of subgroups to the collection of cuspidal decomposition
groups of TI'¢™ determined by the label in (Z/1Z)/{%1},

in a functorial manner with respect to isomorphisms of topological groups (and no

. , t
need of any reference isomorphism to I ).

2. 41l M)
There exists a group-theoretic algorithm for constructing a mod N mono-theta en-
vironment TM = (TTL, Dsyy, 8T®H>, where

=P <6, ((T(1Ae) ® Z/NZ) % 'G)

up to isomorphism in a functorial manner with respect to isomorphisms of topolog-
ical groups (and no need of any reference isomorphism to 1™ ). (See also [EtTh,
Corollary 2.18 (ii)] for a stronger form,). B

3. M II)"™
Let ™M = ('TI, Diyy, S?H) be a mod N mono-theta environment which is isomorphic
to Miy. Then there exists a group-theoretic algorithm for constructing a quotient
I — THg,emp, such that any isomorphism TM 5 My maps this quotient to the
quotient Thy™P[un] — TIy™ in a functorial manner with respect to isomorphisms
of mono-theta environments (and no need of any reference isomorphism to My ).

Furthermore, any isomorphism "M = My induces an isomorphism from

Tﬂtgnp = AUt(THt—fmp) X Out(tieme) Im(Diyg — Out(THtimP))
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to Htgnp, where we set the topology of THtKemp as the topology determined by taking

™ = Aus(fy™) X our(rmtemey {1} C ™

to be an open subgroup. Finally, if we apply the algorithm of (2) to THtXemp, then

the resulting mono-theta environment is isomorphic to the original TM, via an iso-
morphism which induces the identity on THtXemp.

4. Let TM = (TH,DTH,S?H), and *M = (il_[,Dm,si@H) be mod N mono-theta environ-
ments. Let THEmp and thKemp be the topological groups constructed in (3) from
M and M resgectively. Then the functoriality of the algorithm in (3) gives us a
natural map

Isom*~ ™ (TM[, *M) — Isom(TIIg™P, *II™P),
which is surjective with fibers of cardinality 1 (resp. 2) if N is odd (resp. even),
where Isom"~ °" denotes the set of un -conjugacy classes of isomorphisms. In par-
ticular, for any positive integer M with M | N, we have a natural homomorphism
AutFV o (TM) — Aut”™ ™ (M), where TMyy; denotes the mod M mono-theta
environment induced by TM such that the kernel and cokernel have the same cardi-
nality (< 2) as the kernel and cokernel of the homomorphism Hom(Z/2Z,7Z/NZ) —
Hom(Z/2Z,7./MZ) induced by the natural surjection Z/N7Z — 7] MZ, respectively.

Proof. (1): We can group-theoretically reconstruct a quotient THg?mp — TGk by
Lemma 6.2, other subquotients by Lemma 7.8, Lemma 7.12 and the definitions, and the
labels of cuspidal decomposition groups by Lemma 7.16.

(2) follows from the definitions (Note that we can reconstruct the set Tﬁ@’@x’” of
theta classes by Remark 7.15.1, thus, the theta section 8% as well (See the construction
of the theta section sg before Definition 7.20)).

(3): We can grou;—theoretically reconstruct a quotient TII — TH§mp by Lemma 7.18
(2). The reconstruction of THt&emp comes from the definitions and the temp-slimness of

FIE™ (Lemma 6.4 (5)). The last claim of (3) follows from the definitions and the
description of the algorithm in (2).

(4): The surjectivity of the map comes from the last claim of (3). The fiber of
this map is a ker(Aut"~ ™ (TM) — Aut(TTI%¢™P))-torsor. By Theorem 7.23 (1) below

(Note that there is no circular argument), the natural isomorphism '(IAg) ® Z/NZ =
pn(f(1Ae[pn])) is preserved by automorphisms of TM. Note that ker(Aut#~ =™ (M) —

Aut(TTI™P)) consists of automorphisms acting as the identity on TIT}™P hence, on

ker(T1TI — FITI"™P) by the above natural isomorphism. Thus, we have

ker(Aut“N'Conj(TI\\/JI) — Aut(THtKemp)) o Hom(THtXemp/TH';fmp, ker(TH N T]:[;mp))’
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where THthmp / THt.X.emp = 115 and ker ("1 — THtimp )) = pn. The cardinality of this group

is 1 (resp. 2) is N is odd (resp. even). The last claim follows from this description. [J

Theorem 7.23.  (Three Rigidities of Mono-theta Environments, [EtTh, Corol-
lary 2.19]) Let N > 1 be an integer, | a prime number and X a smooth log-curve of
type (1,(Z/1Z)®) over a finite extension K of Q,. We assume that | and p are odd,
and K = K. Let My be the resulting mod N model mono-theta environment (which is

CRYAQI

independent of the choice of a member of ) , up to isomorphism over the identity

ofl_I;mp by Lemma 7.21 (2)).

1. (Cyclotomic Rigidity) Let "M = (TII, Diyy, s?n) be a mod N mono-theta environ-
ment which is isomorphic to M. Let THE?mp denote the topological group obtained
by applying Corollary 7.22 (3). Then there exists a group-theoretic algorithm for
constructing subquotients

Hidolun]) € H((AE™)® ) € F(ALE™)® ju])

of TII such that any isomorphism "M = My maps these subquotients to the sub-

quotients
[De[un] € (AY™)°un] € (™) [un]

t . . . . .
of II""™Plun], in a functorial manner with respect to isomorphisms of mono-theta
environments (no need of any reference isomorphism to My ). Moreover, there exists

a group-theoretic algorithm for constructing two splittings of the natural surjection

flAe[un]) = T(1Ae)

such that any isomorphism "M 5 My maps these two splittings to the two splittings
of the surjection
ZA@[ILLN] - ZA@

alg
v
in a functorial manner with respect to isomorphisms of mono-theta environments

determined by the mod N algebraic section s..° and the mod N theta section s?-,.

(no need of any reference isomorphism to M). Hence, in particular, by taking
the difference of these two splittings, there exists a group-theoretic algorithm for

constructing an isomorphism of cyclotomes
(Cyec. Rig. Mono-th.) M1Ae) ® Z/NZ = un(T(1A6[1N]))

such that any isomorphism "M = My maps this isomorphism of the cyclotomes to

the natural isomorphism of cyclotomes

Ao ® Z/NZ = iy (1As|pN])
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in a functorial manner with respect to isomorphisms of mono-theta environments
(no need of any reference isomorphism to My ).

2. (Discrete Rigidity) Any projective system ("My)n>1 of mono-theta environ-
ments is 1somorphic to the natural projective system of the model mono-theta envi-

ronments (My)n>1.

3. (Constant Multiple Rigidity) Assume that ﬂg’lzxm is of standard type. Let

("My)n>1 be a projective system of mono-theta environments. Then there exists a
group-theoretic algorithm for constructing a collection of classes of H* (THt-Yemp, T(1Ag))

such that any isomorphism ("TMy)n>1 — (My)n>1 to the projective sys;ems of the
model mono-theta environments maps the above collection of classes to the collec-
tion of classes of H* (Ht-famp, [Ag) given by some multiple of the collection of classes

Y

"QalZXFLZ
n

of projective systems of mono-theta environments (no need of any reference isomor-

by an elemenfof W in a functorial manner with respect to isomorphisms

phism to (My)n>1).

We call T(IAg) ® Z/NZ the (mod N) internal cyclotome of the mono-theta
environment "M, and uy(T(lAe[un])) the (mod N) external cyclotome of the
mono-theta environment M. We call the above isomorphism (Cyc. Rig. Mono-th.)
the cyclotomic rigidity of mono-theta environment.

Proof. (1): Firstly, note that the restrictions of the algebraic section s?./lg and

the theta section sg to ker{Hzmp - (Hzmp)@} coincide by Remark 7.2.1 (1). ‘Hence,

we can reconstructiker{T(Hg,jmp[,uN]) — T((IT™P)®un])} as the subset of (any -

conjugacy class of) sf; whose elements proje;c to ker{T(H?mp) —» T((H;““’)@)}, via

the projection T(Htfmp[,u]\;]) — T(Htxemp), where T(Htxemp[uN]) — T(Hg,jm ), T(Htxemp),
and T(Htxemp) —» T7((H§mp)® are reconstructed by Lemma 7.18 (2),7Cor011ary77.22
(3) and Corollary 7.22 (1) respectively. We can also reconstruct the subquotients
T(1Ae[un]) C T((Aﬁmp)g[m\/]) C T((Htxemp)@[/ULN]) as the inverse images of T(IAg) C
T((Agfjmp)(a) C T((ﬁﬁmp)g), which are reconstructed by Corollary 7.22 (1) (3), via
the quotient T((Htxemg)@[,LLN]) - T((Hg,jmp)@). We can reconstruct the splitting of

the natural surjection T(1Aelun]) — T7(ZA@) given by the theta section directly as

e
S11-

T(1Ae[un]) = T(IAg) given by the algebraic section by the algorithm of Lemma 7.21

(1).

On the other hand, we can reconstruct the splitting of the natural surjection

(2) follows from Corollary 7.22 (4), since R! lm Hom(Z/2Z,7Z/NZ) = 0 and
R! m  pn = 0. See also Remark 7.23.1 (2).
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(3) follows from Lemma 7.21 (3), Corollary 7.15, the cyclotomic rigidity (1), and
the discrete rigidity (2). O

Remark 7.23.1.  In this remark, we compare rigidity properties of mono-theta
environments and bi-theta environments (See Remark 7.20.1 for bi-theta environments).

1. (Cyclotomic Rigidity) The proof of the cyclotimic rigidity for mono-theta environ-
ments comes from the reconstruction of the image of the algebraic section, and
this reconstruction comes from the quadratic structure of theta group (=Heisenberg
group) (See Remark 7.19.1). On the other hand, for a bi-theta environment, the
image of the algebraic section is included as a datum of a bi-theta environment,
hence, the cyclotomic rigidity trivially holds for bi-theta environment.

2. (Constant Multiple Rigidity) The proof of the constant multiple rigidity for mono-
theta environments comes from the elliptic cuspidalisation (See Proposition 7.9).
On the other hand, for a bi-theta environment, the image of the algebraic section is
included as a datum of a bi-theta environment. This means that the ratio (i.e., the
étale theta class) determined by the given data of theta section and algebraic section
is independent of the simultaneous constant multiplications on theta section and
algebraic section, hence, the constant multiple rigidity trivially holds for bi-theta

environment.

3. (Discrete Rigidity) A mono-theta environment does not include a datum of algebraic
section, it includes only a datum of theta section. By this reason, a mono-theta
environment has “shifting automorphisms” &5 in Lemma 7.21 (2) (which comes
from the “less-than-or-equal-to-quadratic” structure of theta group (=Heisenberg
group)). This means that there is no “basepoint” relative to the IZ action on Y,
i.e., no distinguished irreducible component of the special fiber. If we work with a
projective system of mono-theta environments, then by the compatibility of mod
N theta sections, where N runs through the positive integers, the mod N theta
classes determine a single “discrete” [Z-torsor in the projective limit. The “shift-
ing automorphisms” gives us a [Z-indeterminacy, which is independent of N (See
Lemma 7.21 (3)), and to find a common basepoint for the IZ/NIZ-torsor in the
projective system is the same thing to trivialise a @N 1Z/1Z(= 0)-torsor, which
remains discrete. This is the reason that the discrete rigidity holds for mono-theta
environments. On the other hand, a bi-theta environment includes a datum of alge-
braic section as well. The basepoint indeterminacy is roughly NIZ-indeterminacy
(i.e., the surjectivity of Lemma 7.21 (3) does not hold for bi-theta environments. for
the precise statement, see [EtTh, Proposition 2.14 (iii)]), which depends on N, and
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to find a common basepoint for the I[Z/NIZ-torsor in the projective system is the
same thing to trivialise a lim 17 /NIZ(= lZ)-torsor, which does not remain discrete
(it is profinite). Hence, the discrete rigidity does not hold for bi-theta environments.

Note also that a short exact sequence of the projective systems
0— NIZ —1Z —1Z/NIZ —0 (resp. 0 = 1Z —1Z —IZJIZ — 0 )

with respect to N > 1, which corresponds to bi-theta environments (resp. mono-
theta environments), induces an exact sequence

0 = lim NIZ (= 0) = IZ — IZ — R' lim NIZ(= IZ/1Z) = 0
N N
(resp. 0 = 1Z —1Z — 0 — 31@ZZ(: 0) ),
N

and that R! m o NIZ = zi/zz (resp. R! Wm 17 = 0) exactly corresponds to the
non-discreteness (resp. discreteness) phenomenon of bi-theta environment (resp.
mono-theta environment). See also [EtTh, Remark 2.16.1].

The following diagram is a summary of this remark (See also [EtTh, Introduction]):

cycl. rig. disc. rig. const. mult. rig.
mono-theta env. delicately OK OK delicately OK
(structure of theta group) (elliptic cuspidalisation)
bi-theta env. trivially OK Fails trivially OK

Remark 7.23.2.  If we consider N-th power ON (N > 1) of the theta function ©
instead of the first power ©' = O, then the cyclotomic rigidity of Theorem 7.23 (1) does
not hold since it comes from the quadratic structure of the theta group (=Heisenberg
group) (See Remark 7.19.1). The cyclotomic rigidity of the mono-theta environment
is one of the most important tools in inter-universal Teichmiiller theory, hence, if we
use OV (N > 1) instead of ©, then inter-universal Teichmiiller theory does not work.
If it worked, then it would give us a sharper Diophantine inequality, which would be
a contradiction with the results in analytic number theory (cf. [Mass2]). See also Re-
mark 11.10.1 (the principle of Galois evaluation) and Remark 13.13.3 (2) (N-th power
does not work).
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Remark 7.23.3.  The cyclotomic rigidity rigidifies the Z* 2 Aut (2(1))—indeterminacy
of an object which is isomorphic to “Z(1)”, hence rigidifies the induced Z* = Aut(Z(1))-

indeterminacy of H!(—, “Z(l)”). As for the cohomology class log(0) of the theta func-

tion ©, it ridigifies Z* log(®). The constant multiple rigidity rigidifies log(©) + 7.
Hence, the cyclotomic rigidity and the constant multiple rigidity rigidify the indeter-

minacy 7% log(©) + 7 of the affine transformation type. The discrete rigidity rigidifies
7Z =~ Hom(“Z(1)”, “Z(1)”). Here the second “Z(1)” is a coefficient cyclotome, and it is
subject to 7> = Aut(i(l))—indeterminacy which is rigidified by the cyclotomic rigidity.
The first “2(1)” is a cyclotome which arises as a subquotient of a (tempered) funda-
mental group. Hence, three rigidities of mono-theta environments in Theorem 7.23

correspond to the structure of the theta group (=Heisenberg group) (A'S™?)®:

cyclotomic rigidity constant multiple rigidity
0 discrete rigidity

See also the filtration of Lemma 7.5 (1).

§7.5. Some Analogous Objects at Good Places.

In inter-unversal Teichtller theory, X is the main actor for places in VP2 In this

subsection, for the later use, we introduce a counterpart & of X for places in v&ood and
related objects (However, the theory for the places in VP2 is more important than the
one for the places in V&°°%).

Let X be a hyperbolic curve of type (1,1) over a field K of characteristic 0, C a
hyperbolic orbicurve of type (1,I-tors). (See Definition 7.10) whose K-core C' is also
the K-core of X. Then C determines a hyperbolic orbicurve X := C x¢o X of type
(1,l-tors). Let tx be the nontrivial element in Gal(X /C)(= Z/2Z). Let Gk denote the

absolute Galois group of K for an algebraic closure K. Let [ > 5 be a prime number.
Assumption We assume that Gk acts trivially on A3 ® (Z/IZ).

(In inter-universal Teichmiiller theory, we will use for K = Fy0q(Er, . .,[l]) later.) We
write € for the unique zero-cusp of X. We choose a non-zero cusp € and let ¢ and
€’ be the cusps of X over ¢, and let Ay — AY ® (Z/IZ) - A, be the quotient of
Ag) ® (Z/1Z) by the images of the inertia subgroups of all non-zero cusps except € and
€¢” of X. Then we have the natural exact sequence

0—>I§/ ngu —>A£—>AE®<Z/ZZ) —)O,
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with the natural actions of Gx and Gal(X/C)(= Z/2Z), where E is the genus one
compactification of X, and I/, I~ are the images in A, of the inertia subgroups of
the cusps €, € respectively (we have non-canonically I, = I.» = Z/IZ). Note that tx
induces an isomorphism I, = I, and that tx acts on Ag®(Z/IZ) via the multiplication
by —1. Since [ is odd, the action of tx on A, induces a decomposition

A£1>Az XA,

where tx acts on AF and AZ by +1 and —1 respectively. Note that the natural
composites [, < A; — A} and I.v < A, — AT are isomorphisms. We define
(ILx —)Jx by pushing the short exact sequences 1 — Ax — IlIx — Gg — 1 and by
Ax - A, — A;’:

1 Ax 1199 Gk 1
1 AF Jx Gk 1.

Next, we consider the cusps “2¢’” and “2¢”” of X corresponding to the points of
FE obtained by multiplying ¢’ and €’ by 2 respectively, relative to the group law of
the elliptic curve determined by the pair (X, e”). These cusps are not over the cusp
€ in C, since 2 # +1 (mod [) by I > 5. Hence, the decomposition groups of “2¢’”
and “2¢"” give us sections o : Gxg — Jx of the natural surjection Jx — Gg. The
element 1y € Gal(X/C), which interchange I and I, acts trivially on A (Note also
I = A, «— I.), hence, these two sections to Jx coincides. This section is only
determined by “2¢’” (or “2¢”””) up to an inner automorphism of Jx given by an element
AT; however, since the natural outer action of Gx on A} is trivial by Assumption, it
follows that the section completely determined by “2¢’” (0} “2¢”7) and the image of the
section is normal in Jx. By taking the quotient by this image, we obtain a surjection
(IIKL_*)JQL‘*’ZXQV Let

XX

be the corresponding covering with Gal(&/&) = AN = Z/1Z).

Definition 7.24.  ([IUTchI, Definition 1.1]) An orbicurve over K is called of
type (1, l-torg) if it is isomorphic to g over K for some [ and e.

The arrow — in the notation g indicates a direction or an order on the {41}-orbits
(i.e., the cusps of C) of @ (in Assumption (1) before Definition 7.10) is determined by €

(Remark [IUTchI, Remark 1.1.1]). We omit the construction of “ [0 (See [IUTchI, §1]),

good

since we do not use it. This 5 is the main actor for places in V' in inter-universal

Teichmiiller theory :
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local VP2 | local V&°°d | global B | global K

main actor X 5 X
v

—v

Cr

Lemma 7.25. ([IUTchl, Corollary 1.2]) We assume that K is an NF or an
MLF. Then from II X5 there exists a group-theoretic algorithm to reconstruct llx and
Il (as subgroups of Aut(g) ) together with the conjugacy classes of the decomposition
group(s) determined by the set(s) of cusps {€',€"} and {€} respectively, in a functorial
manner with respect to isomorphisms of topological groups.

See also Lemma 7.8, Lemma 7.12 ([EtTh, Proposition 1.8, Proposition 2.4]).

Proof. First, since 11 X IIx and IIg are slim by Proposition 2.7 (2b), these are
naturally embedded into Aut(II X ) by conjugate actions. By the K-coricity of C, we
can also group-theoretically reconstruct (II X C) e (C Aut(II X )). By Proposition 2.2
or Corollary 2.4, we can group-theoretically reconstruct the subgroups A c C Hg and
A x C IIx (In particular, we can reconstruct [ by the formula [A¢ : A i()] = 20%).
We can reconstruct Ay as a unique torsion-free subgroup of A¢ of index 2. Then we
can reconstruct Iy (C II¢g) as lIx = H - Ix, where H := ker(Ax — A% ® (Z/17)).
The conjugacy classes of the decomposition groups of €, €, and ¢’ in Ily can be
reconstructed as the decomposition groups of cusps (Corollary 2.9 and Remark 2.9.2)
whose image in ILx /11 X is nontrivial. Then we can reconstruct the subgroup Il¢ C Il¢
by constructing a splitting of the natural surjection Il /Ilx — IIo/Ilx determined by
Il /Il x, where the splitting is characterised (since [ 1 3) as the unique splitting (whose
image C Il /Ilx) stabilising (via the outer action on Ilx) the collection of conjugacy

', and ¢’ (Note that if an ivolution

classes of the decomposition groups in IIx of €°, €
of X fixed ¢ and interchanged ¢ and €”, then we would have 2 = —1 (mod [), i.e.,
['| 3). Finally, the decomposition groups of € and €” in IIx can be reconstructed as the

decomposition group of cusps (Corollary 2.9 and Remark 2.9.2) whose image in IIx /I x

_)
is nontrivial, and is not fixed, up to conjugacy, by the outer action of Il /Il x (= Z/27)
on H&. U

Remark 7.25.1.  ([IUTchI, Remark 1.2.1]) By Lemma 7.25, we have

Autg (X)) = Gal(X/C) (= Z/21Z)

(cf. Remark 7.12.1).
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§ 8. Frobenioids.

Roughly speaking, we have the following proportional formula:

Anabelioid (=Galois category) : Frobenioid = coverings : line bundles over coverings,

that is, the theory of Galois categories is a categorical formulation of coverings (i.e., it
is formulated in terms of category, and geometric terms never appear), and the theory
of Frobenioids is a categorical formulation of line bundles over coverings (i.e., it is for-
mulated in terms of category, and geometric terms never appear). In [FrdI] and [FrdII],
Mochizuki developed a general theory of Frobenioids; however, in this survey, we mainly
forcus on model Frobenioids, which mainly used in inter-universal Teichmiiller theory.
The main theorems of the theory of Frobenioids are category-theoretic reconstruction
algorithms of related objects (e.g., the base categories, the divisor monoids, and so on)
under certain conditions; however, we avoid these theorems by including the objects,
which we want to reconstruct, as input data, as suggested in [IUTchl, Remark 3.2.1

(ii)].
§8.1. Elementary Frobenioids and Model Frobenioids.

For a category D, we call a contravariant functor ® : D — 9on to the category
of commutative monoids Mon a monoid on D (In [Frdl, Definition 1.1], we put some
conditions on ®. However, this has no problem for our objects used in inter-universal
Teichmiiller theory.) If any element in ®(A) is invertible for any A € Ob(D), then we
call ® group-like.

Definition 8.1.  (Elementary Frobenioid, [Frdl, Definition 1.1 (iii)]) Let ® be a
monoid on a category D. We consider the following category Fg:

1. Ob(Fg) = Ob(D).
2. For A, B € Ob(D), we put
Homy, (A, B) := {¢ = (Base(¢), Div(¢), degp.(¢)) € Homp (A, B) x ®(A) x N>1}.

We define the composition of ¢ = (Base(¢), Div(¢),deggp.(¢)) : A — B and ¢ =
(Base(v), Div(y), degp.(n)) : B — C as

o := (Base(¢)oBase(), ®(Base(¢)) (Div(4))+degr, () Div(¢), degp, () degr, (¢)) : A = C.
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We call Fg an elementary Frobenioid associated to ®. Note that we have a natural
functor Fg — D, which sends A € Ob(Fg) to A € Ob(D), and ¢ = (Base(¢), Div(¢), degp.(¢))
to Base(¢). We call D the base category of Fg.

For a category C and an elementary Frobenioid Fg, we call a covariant functor
C — Fs a pre-Frobenioid structure on C (In [Frdl, Definition 1.1 (iv)], we need
conditions on ®, D, and C for the general theory of Frobenioids). We call a category
C with a pre-Frobenioid structure a pre-Frobenioid. For a pre-Frobenioid C, we have
a natural functor C — D by the composing with Fg — D. In a similar way, we obtain
operations Base(—), Div(—), degp.(—) on C from the ones on Fg by composing with
Fs — D. We often use the same notation on C as well, by abuse of notation. We also
call ® and D the divisor monoid and the base category of the pre-Frobenioid C
respectively. We put

O*(A) :={¢ € Autc(A) | Base(¢) = id, degp,(¢) = 1} C Aute(A),

and
O% (A) := {¢ € Endc(A) | Base(¢) = id, degp,(¢) = 1} C Endc(A)

for A € Ob(C). We also put uy(A) :={a € O*(4) | a®¥ =1} for N > 1.

Definition 8.2.  ([IUTchl, Example 3.2 (v)]) When we are given a splitting spl :
O% /O* < O (resp. a un-orbit of a splitting spl : O® /O* — O for fixed N') of O —
O% /O*, i.e., functorial splittings (resp. functorial py-orbit of splittings) of O (A) —
O% (A)/O*(A) with respect to A € Ob(C) and morphisms with degp, = 1, then we call
the pair (C,spl) a split pre-Frobenioid (resp. a pun-split pre-Frobenioid).

If a pre-Frobenioid satisfies certain technical conditions, then we call it a Frobe-
nioid (See [Frdl, Definition 1.3]). (Elementary Frobenioids are, in fact, Frobenioids
([FrdI, Proposition 1.5]).) In this survey, we do not recall the definition nor use the
general theory of Frobenioids, and we mainly focus on model Frobenioids.

Definition 8.3.  (Model Frobenioid, [FrdIl, Theorem 5.2]) Let ® : D — 9ton
be a monoid on a category D. Let B : D — 9lon be a group-like monoid on D, and
Divg : B — ®%P a homomorphism. We put ®P*#t := Im(Divg) C ®&P. We consider the
following category C:

1. The objects of C are pairs A = (Ap, «), where Ap € Ob(D), and a € ®(Ap)eP. We
put Base(A) := Ap, ®(A) := ®(Ap), and B(A) := B(Ap).

2. For A= (Ap,a),B = (Bp, ) € Ob(C), we put

Home(A, B) = {‘b = (Base(¢), Div(¢), degg,(¢), ug) € Homp(Ap, Bp) x ®(A) x N>1 x B(A) } |

such that degp,.(¢)a + Div(¢) = ®(Base(¢))(8) + Dive(ue)



A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 165

We define the composition of ¢ = (Base(¢),Div(¢),degp,(¢),us) : A — B and
¥ = (Base(y), Div(v), degp, (v), uy) : B — C' as

oo (Base@) o Base(9), &(Base(¢)) (Div(1)) + degFr<w>Div<¢>,> |
deg, (1) (6), B(Base(s)) () + degy, (1)

We equip C with a pre-Frobenioid structure C — Fg by sending (Ap,a) € Ob(C) to
Ap € Ob(Fg) and (Base(¢), Div(¢), degp, (¢), us) to (Base(¢), Div(¢), degp,(¢)). We
call the category C the model Frobenioid defined by the divisor monoid ® and the
rational function monoid B (Under some conditions, the model Frobenioid is in fact
a Frobenioid).

The main theorems of the theory of Frobenioids are category-theoretic reconstruc-
tion algorithms of related objects (e.g., the base categories, the divisor monoids, and
so on), under certain conditions. However, in this survey, we consider isomorphisms
between pre-Frobenioids not to be just category equivalences, but to be category equiv-
alences including pre-Frobenioid structures, i.e., for pre-Frobenioids F, 7’ with pre-
Frobenioid structures F — Fg, ' — Fg/, where Fg,Fe are defined by D — @,
D’ — P’ respectively, an isomorphism of pre-Frobenioids from F to F’ consists of
isomorphism classes (See also Definition 6.1 (5)) of equivalences 7' = F, D' = D of
categories, and a natural transformation & — ®|p, (where ®|p/ is the restriction of @
via D’ = D), such that it gives rise to an equivalence Fg: — Fg of categories, and the
diagram

Fl—"F

|

For ——Fo

is 1-commutative (i.e., one way of the composite of functors is isomorphic to the other
way of the composite of functors) (See also [IUTchI, Remark 3.2.1 (ii)]).

Definition 8.4.

1. (Trivial Line Bundle) For a model Frobenioid F with base category D, we write
Oy for the trivial line bundle over A € Ob(D), i.e., the object determine by
(A,0) € Ob(D) x ®(A)eP (These objects are called “Frobenius-trivial objects” in
the terminology of [FrdlI|, which can category-theoretically be reconstructed only
from F under some conditions).

2. (Birationalisation, “Z>o ~~ Z”) Let C be a model Frebenioid. Let C°'a' be the
category whose objects are the same as in C, and whose morphisms are given by

Homgvirat (A, B) := lim Home (A, B).
¢:A’— A, Base(¢) :isom, degp,(¢)=1
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(For general Frobenioids, the definition of the birationalisation is a little more com-
plicated. See [Frdl, Proposition 4.4]). We call C**3t the birationalisation of the
model Frobenioid C. We have a natural functor C — CPrat,

(Realification, “Z>¢ ~» R>(”) Let C be a model Frobenioid whose divisor monoid is
® and whose rational function monoid is B. Then let C* be the model Frobenioid
obtained by replacing the divisor monoid ® by ®* := & ®z_ R0, and the rational
function monoid B by B¥ := R - Im(B — ®5P) C (®F)eP (V\_fe need some conditions
on C, if we want to include more model Frobenioids which we do not treat in this
survey. See [Frdl, Definition 2.4 (i), Proposition 5.2]). We call C® the realification
of the model Frobenioid C. We have a natural functor C — CR.

Definition 8.5.  (x-, xu-Kummer structure on pre-Frobenioid, [[UTchII, Ex-

ample 1.8 (iv), Definition 4.9 (i)])

1.

Let G be a toplogical group isomorphic to the absolute Galois group of an MLF.
Then we can group-theoretically reconstruct an ind-topological monoid G ~ O% (G)
with G-action, by Proposition 5.2 (Step 1). Put O*(G) := (O%(G))*, O*(G) :=
(O%(@))tors and O*H(G) := O*(G)/O"(G) (We use the notation O**(—), not
O0*(=)/O*(—), because we want to consider the object O*(—)/O"(—) as an ab-
stract ind-topological module, i.e., without being equipped with the quotient struc-
ture O* /O"). Put

Isomet(G) = {G—equivariant isomorphism O**(G) & O**(G) preserving

the integral str. Im(O* (@) — O**(G)") for any open H C G} .

We call the compact topological group Isomet(G) the group of G-isometries of
O*#(G). If there is no confusion, we write just Isomet for Isomet(G).

. Let C be a pre-Frobenioid with base category D. We assume that D is equivalent

to the category of connected finite étale coverings of the spectrum of an MLF or a
CAF. Let A be a universal covering pro-object of D. Put G := Aut(A), hence,
G is isomorphic to the absolute Galois group of an MLF or a CAF. Then we have
a natural action G ~ O%(Ay). For N > 1, we put

pn(As) =={a € O%(As) | o =1} C O*(Ay) = 0% (Aso)tors C O (As),
and

O (Ax) = O™V (Ax) := O™ (Aco)/iN(Ase) = O7H(As) 1= 07 (Axo) /O (Aco).
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These are equipped with natural G-actions. We assume that G is nontrivial (i.e.,
arising from an MLF). A X-Kummer structure (resp. Xpu-Kummer struc-
ture) on C is a Z*-orbit (resp. an Isomet-orbit)

poly poly

K 1 0*(GQ) = 0*(Ay) (resp. k™" : O*M(G) 5 O*M(As) )

of isomorphisms of ind-topological G-modules. Note that the definition of a x-
(resp. Xp-) Kummer structure is independent of the choice of A,. Note also
that any x-Kummer structure on C is unique, since ker(Aut(G ~ O*(G)) —»
Aut(@)) = Z* (= Aut(0*(G))) (cf. [[UTChII, Remark 1.11.1 (i) (b)]). We call a
pre-Frobenioid equipped with a x-Kummer structure (resp. x u-Kummer structure)
a X-Kummer pre-Frobenioid (resp. X u-Kummer pre-Frobenioid). We call
a split pre-Frobenioid equipped with a x-Kummer structure (resp. xu-Kummer
structure) a split- x-Kummer pre-Frobenioid (resp. split- X u-Kummer pre-
Frobenioid).

Remark 8.5.1.  ([ITUTchII, Remark 1.8.1]) In the situation of Definition 8.5 (1),
no automorphism of O*#(G) induced by an element of Aut(G) is equal to an auto-
morphism of O*#(G) induced by an element of Isomet(G) which has nontrivial im-
age in Z; (Here p is the residual characteristic of the MLF under consideration),
since the composite with the p-adic logarithm of the cyclotomic character of G (which
can be group-theoretically reconstructed by Proposition 2.1 (6)) determines a natural
Aut(G) x Isomet(G)-equivariant surjection O**(G) — Q,, where Aut(G) trivially acts
on Q, and Isomet(G) acts on Q, via the natural surjection Z* —» /i

§ 8.2. Examples.

Example 8.6. (Geometric Frobenioid, [Frdl, Example 6.1]) Let V' be a proper
normal geometrically integral variety over a field k, k(V') the function field of V', and
k(V)~ a (possibly inifinite) Galois extension. Put G := Gal(k(V)~/k(V)), and let
Dy(vy be a set of Q-Cartier prime divisors on V. The connected objects Ob(B(G))
(See Section 0.2) of the Galois category (or connected anabelioid) B(G) can be thought
of as schemes Spec L, where L C k(V)~ is a finite extension of k(V). We write Vi,
for the normalisation of V' in L, and let D denote the set of prime divisors of Vp,
which maps into (possibly subvarieties of codimension > 1 of) prime divisors of Dy v
We assume that any prime divisor of Dy, is Q-Cartier for any Spec L € Ob(B(G)?).
We write ®(L) C Z>o[Dy] for the monoid of effective Cartier divisors D on Vi, such
that every prime divisor in the support of D is in Dy, and B(L) C L* for the group
of rational functions f on V7 such that every prime divisor, at which f has a zero or a
pole, is in Dy. Note that we have a natural homomorphism B(L) — ®(L)8P which sends
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fto(f)o— (f)oo (Here, (f)o and (f)oo denote the zero-divisor and the pole-divisor of
f respectively). This is functrial with respect to L. The data (B(G)°, ®(—),B(-),B —
®eP) determines a model Frobenioid Cy, (v )~ b, -

An object of Cy ()~ p,, Which is sent to Spec L € Ob(B(G)?), can be thought of
as a line bundle £ on V7, which is representable by a Cartier divisor D with support
in Dy. For such line bundles £ on Spec L and M on Spec M (L, M C k(V)"~ are finite
extensions of £(V')), a morphism £ — M in Cy,,(v)~ p, can be thought of as consisting
of a morphism Spec L — Spec M over Spec k(V'), an element d € N>, and a morphism
of line bundles £L®? — M|y, on Vi, whose zero locus is a Cartier divisor supported in
D;.

Example 8.7. (p-adic Frobenioid, [Frdll, Example 1.1], [IUTchI, Example 3.3])
Let K, be a finite extension of Q,, (In inter-universal Teichmiiller theory, we use v €
yeeed nymen). Put
D,:=B(X )’ and D, :=B(K,)°

where X is a hyperbolic curve of type (1, l—m) (See Definition 7.24). By pulling back
finite étale coverings via the structure morphism gfu — Spec K,,, we regard DZ as a
full subcategory of D,. We also have a left-adjoint D, — DZ to this functor, which is
obtained by sending a Hi()v—set E to the G, -set E/ker(Hi()U — Gg,) = ker(Hgv —
Gk, )-orbits of E' ([FrdIl, Definition 1.3 (ii)]). Then

®c, : Spec L — ord(O% )P := (O, /O )P

See Section 0.2 for the perfection (—)Pf) gives us a monoid on D! . By composing the
v
above D, — DZ , it gives us a monoid ®¢, on D,. Also,

(I)CZ : Spec L +— ord(ZZ) (C Ord(oi)pf)

(See Section 0.2 for the perfection (—)Pf) gives us a submonoid e C D¢, on Dy.
These monoids ®¢, on D, and Pc- on DZ determine pre-Frobenioids (In fact, these are
Frobenioid)

Cy CCy

whose base categories are Dg and D, respectively. These are called p,-adic Frobe-
nioids. These pre-Frobenioid can be regarded as model Frobenioids whose rational
function monoids B are given by Ob(D'E_) S SpecL — L* € Mon, and L™ > [
(f)o = (f)oo := image of f € ®¢r- (L) C @¢, (L) ([Frdll, Example 1.1]). Note that the

element p, € Z7 gives us a Splitang splg : O% /O™ — O, hence a split pre-Frobenioid

.7-“; = (CZ, spIZ).
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We also put

—uv

for later use.

Example 8.8. (Tempered Frobenioid, [EtTh, Definition 3.3, Example 3.9, the
beginning of §5], IUTchl, Example 3.2]) Let X := X, — X, := Xy, beahyperbolic
curve of type (1,l-tors®) and a hyperbolic curve of typ; (1,Z/1Z) respectively (Defini-
tion 7.13, Definition 7.11) over a finite extension K, of Q,, (As before, we always put
the log-structure associated to the cusps, and consider the log-fundamental groups).
Put

D, = BP(X ), Dh = B(K,)",

and Dy = B*mP(X )0 (See Section 0.2 for (—)Y. Note also that we have m(D,) =
I, and m (DY) ] Gk, (See Definition 6.1 (4))). We have a natural functor D, —
D;,EWhiCh sends Y — X , to the composite Y — X L X,

For a tempered covering Z — X » and its stable formal model 3 over Oy, where L
is a finite extension of K, let 3. — 3 be the universal combinatorial covering (i.e., the
covering determined by the universal covering of the dual graph of the special fiber of
3), and Z,, the Raynaud generic fiber of 3.

Definition 8.9.  ([EtTh, Definition 3.1], [[UTchI, Remark 3.2.4]) Let Div(3)
denote the monoid of the effective Cartier divisors whose support lie in the union of
the special fiber and the cusps of 3,,. We call such a divisor an effective Cartier
log-divisor on 3. Also, let Mero(3.,) denote the group of meromorphic functions f
on 3 such that, for any N > 1,f admits an N-th root over some tempered covering
of Z. We call such a function a log-meromorphic function on 3.

Definition 8.10. ([EtTh, Definition 3.3, Example 3.9, the beginning of §5],
[[UTchl, Example 3.2])

1. Let A be a tempered group (Definition 6.1). We call a filtration {A;};cr, (where
I is countable) of A by characteristic open subgroups of finite index a tempred
filter, if the following conditions are satisfied:

(a) We have ,.; A; = A.

iel
(b) Every A; admits an open characteristic subgroup A$° such that A;/A® is
free, and, for any open normal subgroup H C A; with free A;/H, we have

A C H.

(c) For each open subgroup H C A, there exists unique A$® C H, and, A C H
implies A7® C Ag> for every i € I.
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Let {A;}ier be a tempered filter of AY™P. Assume that, for any i € I, the covering
detemined by A; has a stable model 37éver a ring of integers of a finite extension of
K,, and all of the nodes and the irreducible components of the special fiber of 3; are
rational (we say that 3; has split stable reduction). For any connected tempered
covering Y — X, which corresponds to an open subgroup H C Aggznp, we put

Oo(Y) = limy Divy (300) 4 Z/Y) By (Y) := ling Mero (3o ) G2 (Zee /)
AXCH AXCH

These determine functors ®q : Dy — Mon, By : Dy — NMon. We also have a natural
functor By — ®FP, by taking f — (f)o — (f)eo. We write BS™* C By for the
subfunctor defined by the constant log-meromorphic functions, and ®§"s* C PgP
for the image of B§°"S* in ®5P.

. Let D' C Dy denote the full subcategory of tempered coverings which are un-

ramified over the cusps of X, (i.e., tempered coverings of the underlying elliptic
curve £, of X ). We have a left adjoint Dy — D§, which is obtained by sending
a llx -set E to the Ilg -set E/ker(Illy — Ilg ):= ker(Ilx, — Ilg )-orbits of F
([FrdII, Definition 1.3 (ii)]). For Y € Ob(D,), let Y°!! denote the image of ¥ by the
composite D, — Dy — DEL. We put, for Y € Ob(D,),

pf
O(Y) = (hg Div (300) G2 (Z/ Yell)) C @y (the image of Y in Dg)P,
Zoo

where Z., range over the connected tempered covering Z,, — Y*°! in D! such
that the composite Zo, — Y — X, arises as the generic fiber of the universal
combinatorial covering 3., of the stable model 3 of some finite étale covering Z —

X, in DE! with split stable reduction over the ring of integers of a finite extension

of K, (We use this ®, not ®p, to consider only divisors related with the theta
function). We write (—)|p, for the restriction, via D, — Dy, of a functor whose
domain is Dy. We also put <I>]§ = Py Q. R>¢ and PR = P ®Z R>¢. Put

B .= BO‘DE X((I)R)gp (I)gp, (I)COHSt = (]R . (I)SonSt)h)E X((I)R)gp (6} C CI)R,
and
]Bconst = Bgonst|/pﬂ % (@R)ep PP (q)const)gp — (R . (Pgonst)|/DE % (@R)ep Pep C ((I)]R)gp.

The data (DQ,Q,IB%,IB% — ®2P) and (Dg, eonst peonst Tgeonst (@ConSt)gp) deter-
mine model Frobenioids

F, and C,(=Freeicn)
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respectively (In fact, these are Frobenioids). We have a natural inclusion C, C FE .
We call £ , @ tempered Frobenioid and C, its base-field-theoretic hull. Note
that C, is also a p,-adic Frobenioid.

4. We write © € OX(O;?-}”‘“) for the reciprocal (i.e., 1/(—)) of the I-th root of the

normalised theta func’aan which is well-defined up to pg; and the action of the
group of automorphisms IZ C Aut(Oy ) (Note that we use the notation Q in

Section 8.3. This is not the reciprocal (1 e., not 1/(—)) one). We also write ¢, for
the g-parameter of the elliptic curve E, over K,. We consider g, as an element
g, € O% (O KU) (= O%, ). We assume that any 2i-torsion point of E, is rational over
K,. Then ¢, admits a 2I-root in OD((’)&J) (=2 O%,)- Then we have

0,(V=a) =g =a/" €07(0x).

(which is well-defined up to i), since O(y/—q) = —q_1/2\/—1_2é(\/—1) =q /2
(in the notation of Lemma 7.4) by the formula ©(¢*/2U) = —¢~'/2U20(U) in
Lemma 7.4. The image of a determines a constant section, which is denoted by

logq,( ) of the monoid ®¢, of Cy. The submonoid
@cl— = Nlqu)( )|DI— C @C |'D)—

gives us a p,-adic Frobenioid
C£ (C C2 = (;v)base—ﬁeld C év)

whose base category is DF The element ¢ € K, determines a pig;(—)-orbit splz of

=v

the splittings of O — O™ /O* on CJ. Hence,
Fi = (Cl,sply)
is a por-split pre-Frobenioid.
Remark 8.10.1.  We can category-theoretically reconstruct the base-field-theoretic
hull C, from F ([EtTh, Corollary 3.8]). However, in this survey, we include the

base-field-theoretic hull in the deta of the tempered Frobenioid, i.e., we call a pair
£, = (£ U’CE) a tempered Frobenioid, by abuse of language/notation, in this survey.

Example 8.11.  (Archimedean Frobenioid, [FrdIl, Example 3.3, [IUTchI, Ex-
ample 3.4]) This example is not a model Frobenioid (In fact, it is not of isotropic type,
which any model Frobenioids should be). Let K, be a complex Archimedean local field

(In inter-universal Teichmiiller theory, we use v € V*). We define a category

Cy
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as follows: The objects of C, are pairs (V,A) of a one-dimensional K,-vector space V/,
and a subset A = B x C C V = O x ord(K)\) (Here we put ord(K)) := K /O .
See Section 0.2 for O, ), where B C OIXQ(% S') is a connected open subset, and
C C ord(K)) = Rsq is an interval of the form (0,)] with A € Rsq (We call A an
angular reéion). The morphisms ¢ from (V,A) to (V’,A’) in C, consist of an element
degp, (¢) € N>; and an isomorphism V®der(¢) 5 V' of K, -vector spaces which sends
A®degr: (@) into A’. We put Div(¢) := log(a) € Rsq for the largest a € Rsq such
that o - Im(A®der(9)) C A’. Let {Spec K, } be the category of connected finite étale
coverings of Spec K,, (Thus, there is only one object, and only one morphism), and
® : {Spec K,} — 9on the functor defined by sending Spec K, (the unique object)

—lo

to ord(O% ) = (0,1] ~* R>¢. Put also Base(V,A) := Spec K, for (V,A) € Ob(C,).
Then the triple (Base(—), ®(—), degg,(—)) gives us a pre-Frobenioid structure C, — Fg
on C, (In fact, this is a Frobenioid). We call C,, an Archimedean Frobenioid (cf.
the Archimedean portion of arithmetic line bundles). Note also that we have a natural
isomorphism O" (C,) = OF  of topological monoids (We can regarad C, as a Frobenioid-
theoretic representation of the topological monoid O?{v).

Let X be a hyperbolic curve of type (1, l—@rg) (See Definition 7.24) over K, and
let § denote the Aut-holomorphic space (See Section 4) determined by g , and put

D, = &U.

Note also that we have a natural isomorphism
K, S AP:
of topological fields (See (Step 9) in Proposition 4.5), which determines an inclusion
Fiy 1 O (Cy) — APz

of topological monoids. This gives us a Kummer structure (See Definition 4.6) on D,,.
Put
F = (Cy, Dy, k),

just as a triple. We define an isomorphism F ol 5 F o of triples in an obvious manner.

Next, we consider the mono-analyticisation. Put

C'E_ =C,.

Note also that APz naturally determines a split monoid (See Definition 4.7) by trans-

porting the natural splitting of K, via the isomorphism K, — AP= of topological fields.
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This gives us a splitting splg on Cg , hence, a split-Frobenioid (C£ ,splg ), as well as a
split monoid
D) = (OD(C'E_),splZ).

We put
Fy = (Cy, Dy, sply),

just as a triple. We define an isomorphism .7-"; L= .7-"572 of triples in an obvious manner.

Example 8.12.  (Global Realified Frobenioid, [Frdl, Example 6.3|, [[UTchI, Ex-
ample 3.5]) Let Fj,0q4 be a number field. Let {Spec Fi,0q} be the category of connected
finite étale coverings of Spec Fy,0q4 (Thus, there is only one object, and only one mor-
phism). Put

o d(Frnod) = @ ord(O%) XZso R>o @ @ ord(Oy),

VEV(Foq)mo" VEV(Fimoaq )2rc

where ord(OF) := OY /O (See Section 0.2 for O, and OF, v € V(Fi04)*"¢). We call
an element of ®(Fy,0q) (resp. P(Finoa)®P) an effective arithmetic divisor (resp. an
arithmetic divisor). Note that ord(OF) = Z>( for v € V(Fioa)"°", and ord(OL) =
R>¢ for v € V(Fi0q)*¢. We have a natural homomorphism

B(Fmod) = Fxod — @(Fmod)gp.

m

Then the data ({Spec Finoa}, @cr- ,B) determines a model Frobenioid

CH—

mod*

(In fact, it is a Frobenioid.) We call it a global realified Frobenioid.
We have a natural bijection

Prime(C'F ) = Vinod

mod

(by abuse of notation, we put Prime(C!"_,) := Prime(®¢r . (Spec Finod))), where Prime(—)

mo

is defined as follows:

Definition 8.13. Let M be a commutative monoid such that 0 is the only in-
vertible element in M, the natural homomorphism M — M?®P is injective, and any
a € M® with na € M for some n € N> is in the image of M — M8P. We define the
set Prime(M) of primes of M as follows ([FrdI, §0]):

1. For a,b € M, we write a < b, if there is ¢ € M such that a + ¢ =b.

2. For a,b € M, we write a < b, if there is n € N> such that a < nb.
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3. For 0 # a € M, we say that a is primary, if a < b holds for any M > b < a, b # 0.

4. The relation a < b is an equivalence relation among the set of primary elements in
M, and we call an equivalence class a prime of M (this definition is different from

a usual definition of primes of a monoid). Let Prime(M) denote the set of primes
of M.

Note that p, determines an element

logmod(pv) S (I)C

mod’U

for v € Vipoa = Prime(C ), where ®cr (= Rx>q) denotes the v-portion of Per-

mod

§ 8.3. From Tempered Frobenioids to Mono-theta Environments.

Let £ be the tempered Frobenioid constructed in Example 8.8. Recall that it has
a base category D, with 71 (D,) = Htemp(_. I,). Let Oy denote the object in £,
corresponding to the trivial line bundle on Y (i.e. OY = (Y 0) € Ob(D,) x &Y. ) See

Definition 8.4 (1)). Let Yin, 3in, 3iv, v, and £,x as in Section 7.1. We can interpret
the pull-backs to 3§ of

1. the algebraic section s;y € I' (3;n, £in]3,,) of Lemma 7.1, and

2. the theta trivialisation 7y € T (iﬁm, EIN> after Lemma 7.1.

as morphisms

n U . ) . )
SN7SN . 03“\’ — 2lN|3lN

in £ respectively. For A € Ob(Z ), let APIrat denote the image of A in the birational-
isation £ — (;ﬁl})bi“’“t (Definition 8.4 (2)). Then by definition, we have

sy o (s§) 7' = QUN ok ((’)ggjt)

for an N-th root of Q, where Q := O/ is a I-th root of the theta function © ([EtTh,
Proposition 5.2 (i)]), as in Section 7.1 (See also the claim (7.2)). Let H(3;n)(C
Autpi(gm)) denote the image of H‘;femp under the surjective outer homomorphism

Ht)?mp — AutDE(glN)a and H(OSZN) (EAut£U (O3IN)/OX (OBZN)) (resp. H(SZN|3ZN) (C

— v

Autg (ElN|31N)/OX(QlN|31N)) ) the inverse image of H(3;y) of the natural injec-
tion Autév <031N>/OX(03ZN) — Autpi(f);m) (resp. Autév (31N|31N)/OX(31N|31N) —
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Autpﬂ(s'm)):

™ — Autp, (3iv) <——Autg (03,,)/0%(03,,) (resp. Autg (£in]3,,)/0% (Einls,) )

Hzmp — H(3n) PH(Os,,) (resp. H(Sixls,,) ).

Note that we have natural isomorphisms H (O3 )= H(3y) = H(EIN\SLN). Choose a
section of Autx (O3, ) — Autpg(?.)l ~ ), which gives us a homomorphism

ShV H(Oy ) — Autél((’)sm).

Then by taking the group actions of H(Q1N|31N) on sy, and s (cf. the actions of Hg}emp
on sy and 7y in Section 7.1), we have unique groups homomorphisms

ST\;gp,S]u\]_gp : H(EZNELN) — Autév (Ele)lN)’

which make diagrams

sy N
OBZN 2lN|3lN 0311\7 - 2lN|3lN
(s%i“imxh)l ls%‘g%) <s§§”ém>(h>l lsi'g"(h)
sy - T
031N £lN|3lN’ 0311\1 - ’Q‘ZN|31N’

commutative for any h € H(£y]| 5 ), where sBV| &y is the composite of s&V with

the natural isomorphism H(fllN\glN) = ‘H((’)gm). Then the difference s,%> o (s38")~?
gives us a l-cocycle H(&n|3, ) — un(£in|3,, ), whose cohomology class in

H'(H(Linls, ) iv (v, ) (€ HYIE™, pn (Lanls,,0)))

is, by construction, equal to the (mod N) Kummer class of an I[-th root g of the
theta function, and also equal to the ﬁ@ modulo N constructed before Definition 7.14
under the natural isomorphisms IAg®(Z/NZ) = l,ulN(f)lN\Sm) = uN(élN\SLN) ([EtTh,
Proposition 5.2 (iii)]). (See also Remark 7.2.1.)

Note that the subquotients TI'¢™® — (II%™?)®, 1Ag C (IT%™P)® in Section 7.1
determine subquotients Autp, (S) — Aut%U(S), (IAg)s C Aut%v(S’) for S € Ob(D,).
As in Remark 7.6.3, Remark 7.9.1, and Remark 7.15.1, by consi(iering the zero-divisor
and the pole-divisor (as seen in this subsection too) of the normalised theta function
é(\/—_l)_l(:), we can category-theoretically reconstruct the [Z x ps-orbit of the theta
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classes of standard type with py (—)-coefficient ([EtTh, Theorem 5.7]). As in the case of
the cyclotomic rigidity on mono-theta environment (Theorem 7.23 (1)), by considering
the difference of two splittings of the surjection (IAg)s[un(S)] — (lAe)s, we can
category-theoretically reconstruct the cyclotomic rigidity isomorphism

(Cyc. Rig. Frd) (lAe)s ® Z/NZ = un(S) (= Lun(S))

for an object S of £ such that yun(S) = Z/INZ, and (lAe)s ® Z/NZ = Z/NZ
as abstract groups ([EtTh, Theorem 5.6]). We call this isomorphism the cyclotomic
rigidity in tempered Frobenioid.

Put (H(3;n) C )Im(Htemp) (C Autp, (3;n)) to be the image of Htemp (Note that

we used Ht.?mp in the definition of H(3;y)) under the natural surjective outer homo-

morphism Htemp - Autpg(gl ~), and

EN = S%gp(Im(Htimp)) : ,LLN('SZN’&N) - Aut£E<£lN‘3lN>

Put also

I ._ temp
EN «— EN le(nifmp) Hg 9

temp Htemp

— Im(IIy™P) is well-defined up to Htemp—conjugate.

where the homomorphism 1I-

Then the natural inclusions ,uN(SlN|31N) — Ey and Im(Hgfmp) < Ey induce an

isomorphism of topological groups
EN & Hgmp[m].

Let (K))YN C OX((EINIEZN)birat) denote the subgroup of elements whose N-
th power is in the image of the natural inclusion K — O*((£x] 5 )P and we
put (O};v)l/N = (K)YN n Ox(élnglN). Then the set of elements of OX(EIN\BZN)
which normalise the subgroup Exy C Autg (£in]5,, ) is equal to the set of elements on
which Htxemp acts by multiplication by an element of iy (Lin 5 ), and it is equal to
(O}}E)l/ﬁ. Hence, we have a natural outer action of (Ofx(g)l/N/uN(f}lmle) = Ok, on
En, and it extends to an outer action of (K;)I/N/MN(EZNBIN) — K on Ey ([EtTh,
Lemma 5.8]). On the other hand, by composing the natural outer homomorphism
™ — Autp, (3;5) with sy®P, we obtain a natural outer action IZ =5 T /I[P —

Out(Ey). Let Dy := (Im (K ),1Z) C Out(E}Y) denote the subgroup generated by these
outer actions of K and IZ.
We also note that sy5 : H(EZN\SW) — Autr (élN|3uv) factors through Ey, and

let sy Hgfmp — EI denote the homomorphism induced by by taking (—) X [ (TP
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Hzmp to the homomorphism H(EIN\BLN) — En. Let s denote the MN(EIN‘glN) -
conjugacy classes of the subgroup given by the image of the homomorphism sy
Then the triple

M(ég) = (E%, D]-v S?’)

reconstructs a (mod N) mono-theta environment (We omitted the details here to verify
that this is indeed a “category-theoretic” reconstruction algorithms. In fact, in inter-
universal Teichmiiller theory, for holomorphic Frobenioid theoretic objects, we can use
“copies” of the model object (category), instead of categories which are equivalent to
the model object (category), and we can avoid “category-theoretic reconstruction algo-
rithms” See also [IUTchl, Remark 3.2.1 (ii)]). Hence, we obtain:

Theorem 8.14.  ([EtTh, Theorem 5.10], [IUTchll, Proposition 1.2 (ii)]) We
have a category-theoretic algorithm to reconstruct a (mod N) mono-theta environment
M(iv) from a tempered Frobenioid F .

Corollary 7.22 (2) reconstructs a mono-theta environment from a topological group
(“IT — M”) and Theorem 8.14 reconstructs a mono-theta environment from a tempered
Frobenioid (“F — M”). We relate group-theoretic constructions (étale-like objects)
and Frobenioid-theoretic constructions (Frobenius-like objects) by transforming them
into mono-theta environments (and by using Kummer theory, which is available by the
cyclotomic rigidity of mono-theta environment), in inter-universal Teichmiiller theory,

especially, in the construction of Hodge-Arakelov-theoretic evaluation maps:
M, — ™ <— T; .-

See Section 11.2.
89. Preliminaries on the NF Counterpart of Theta Evaluation.

§9.1. Pseudo-Monoids of k-Coric Functions.

Definition 9.1.  ([IUTchI, §0])

1. A topological space P with a continuous map PxP D S — P is called a topological
pseudo-monoid if there exists a topological abelian group M (we write its group
operation multiplicatively) and an embedding ¢ : P < M of topological spaces such
that S = {(a,b) € P x P | t(a)-¢(b) € t(P) C M} and the restriction of the group
operation M x M — M to S gives us the given map S — P.

2. If M is equipped with the discrete topology, we call P simply a pseudo-monoid.
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3. A pseudo-monoid is called divisible if there exist M and ¢ as above such that, for
any n > 1 and a € M, there exists b € M with " = a, and if, for any n > 1 and
a € M, ac(P)if and only if a™ € «(P).

4. A pseudo-monoid is called cyclotomic if there exist M and ¢ as above such that,
the subgroup py C M of torsion elements of M is isomorphic to Q/Z, and if
pns C u(P), par - t(P) C o(P) hold.

5. For a cyclotomic pseudo-monoid P, put puz(P) := Hom(Q/Z, P) and call it the
cyclotome of a cycltomic pseudo-monoid P.

Definition 9.2.  ([IUTchl, Remark 3.1.7]) Let F,,q be a number field, and
Cr... = (Fr...\{O})//{£1} a semi-elliptic orbicurve (cf. Section 3.1) over Fioq
which is an F,oq-core (Here, the model EF

mod

over Fi,oq4 is not unique in general). Let
L be Finod or (Fiod)v for some place v of Fiyoq, and put Cp, := Cp, ., Xp.., L and let
|CL| denote the coarse scheme of the algebraic stack C, (which is isomorphic to the
affine line over L), and |CL| the canonical smooth compactification of |Cr|. Let L¢
denote the function field of Cy, and take an algebraic closure Lo of Lo. Let L be the
algebraic closure of L in Lo. We put

Frod if L = Flodq or L = (Finod )y for v:non-Archimedean,
(Finod)v if L = (Fiod)w for v: Archimedean,

L*® =

and
—X

L* if L = Fuoa,

I = ox i
i 1 :(Fmod)v-

1. A closed point of the proper smooth curve determined by some finite subextension
of Lo C L¢ is called a critical point if it maps to a closed point of |Cf| which
arises from one of the 2-torsion points of Ep

mod *

2. A critical point is called a strictly critical point if it does not map to the closed
point of |C}| which arises from the unique cusp of C7..

3. A rational function f € Lo on L is called k-coric (k stands for “Kummer”), if
the following conditions hold:

(a) If f & L, then f has precisely one pole (of any order) and at least two distinct
zeroes over L.

(b) The divisor (f)o of zeroes and the divisor (f)s of poles are defined over a
finite extension of L® and avoid the critical points.

(c) The values of f at any strictly critical point of |C| are roots of unity.
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4. A rational function f € L¢ is called o, k-coric, if there is a positive integer n > 1
such that f™ is k-coric.

5. A rational function f € L¢ is called o kXx-coric, if there is an element ¢ € Ut such

that ¢ - f is oo k-coric.
Remark 9.2.1.
1. A rational function f € L¢ is k-coric if and only if f is o k-coric

2. An . kx-coric function f € L¢ is o r-coric if and only if the value at some strictly
critical point of the proper smooth curve determined by some finite subextension
of Lc C L¢ containing f is a root of unity.

3. The set of k-coric functions (C L¢) forms a pseudo-monoid. The set of o k-coric
functions (C L¢) and the set of .k x-coric functions (C L¢) form divisible cyclo-
tomic pseudo-monoids.

8§9.2. Cyclotomic Rigidity via k-Coric Functions.

Let F' be a number field, [ > 5 a prime number, Xp = Ep \ {O} a once-punctured
elliptic curve, and Fpoq(C F) the field of moduli of Xp. Put Cp := Xg//{+1}, and
K = F(Er]l]). Let Cj be a smooth log-orbicurve of type (1,I-tors)y (See Defini-
tion 7.10) with K-core given by C'x := Cp X K. Note that Cr admits a unique (up to
unique isomorphism) model Cg,__, over Fy,oq, by the definition of Fy,,,q and K-coricity of
Ck. Note that Cj determines an orbicurve X ;- of type (1,[-tors) (See Definition 7.10).

Let TD® be a category, which is equivalent to D® := B(Cx)°. We have an isomor-
phism I := 7 (TD®) 2 I, (See Definition 6.1 (4) for m ((—))), well-defined up to

inner automorphism.

Lemma 9.3.  ([IUTchI, Remark 3.1.2] (i)) From TD®, we can group-theoretically
reconstruct a profinite group TI®F(C TII®) corresponding to Ux, .

Proof. First, we can group-theoretically reconstruct an isomorph TA® of Ac,.
from TII®, by Proposition 2.2 (1). Next, we can group-theoretically reconstruct an
isomorph TA®* of Ax _ from TA® as the unique torsion-free subgroup of TA® of index 2.
Thirdly, we can group-theoretically reconstruct the decomposition subgroups of the non-
zero cusps in TA®F by Remark 2.9.2 (Here, non-zero cusps can be group-theoretically
grasped as the cusps whose inertia subgroups are contained in TA®*). Finally, we
can group-theoretically reconstruct an isomorph TI1®% of II X, as the subgroup of 1@
generated by any of these decomposition groups and TA®*, U
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Definition 9.4.  ([ITUTchI, Remark 3.1.2] (ii)) From ®(= 7 (TD?)), instead
of reconstructing an isomorph of the function field of C directly from TTI® by Theo-
rem 3.17, we apply Theorem 3.17 to TII®* via Lemma 9.3 to reconstruct an isomorph
of the function field of X, with TII®/TII®*-action. We call this procedure the ©-
approach. We also write MS(TH@) to be the cyclotome defined in Definition 3.13
which we think of as being applied via ©-approach.

Later, we may also use ©-approach not only to Ilg, , but also HC , 11 X and 11 X

(See Section 10.1 for these objects). We will always apply Theorem 3.17 to these obJects
via ©-approach (As for IIx (resp. H)_() ), see also Lemma 7.12 (resp. Lemma 7.25)).

Remark 9.4.1.  ([IUTchI, Remark 3.1.2] (iii)) The extension
1= A=A =AY =1
in Section 7.1 gives us an extension class in
HY(AY, Ap) = H2(AS, Z) ® Ae 22 Hom(u;(I1x ), Ae),
which determines an tautological isomorphism
s (Ix ) = Ae.
This also gives us
(Cyc. Rig. Ori. &Theta) ps(lx) = lAe.

As already seen in Section 7, the cyclotome [Ag plays a central role in the theory of the
étale theta function. In inter-universal Teichmiiller theory, we need to use the above
tautological isormophism in the construction of Hodge-Arakelov-theoretic evaluation
map (See Section 11).

By applying Theorem 3.17 to 'TI® (= 71 (TD®)), via the ©-approach (Definition 9.4),
we can group-theoretically reconstruct an isomorph

M (1D°)

of the field F with TTI®-action. We also put M®(1D®) := M®(TD@)X, which is an
isomorph of F~. We can also group-theoretically reconstruct a profinite group TI1® (D
TI®) corresponding to ey ., by a similar way (“Loc”) as in (Step 2) of the proof of
Theorem 3.7 (We con81dered “H’S over G’s” in (Step 2) of the proof of Theorem 3.7;
however, in this case, we consider “II’s without surjections to G’s”). Hence, we obtain

a morphism
Tp® _ ip® . B(TH®)0,
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which corresponding to C'jr — Cr._.,. Then the action of TII® on M® (THI®) naturally
extends to an action of TTI®. In a similar way, by using Theorem 3.17 (especially Belyi
cuspidalisations), we can group-theoretically reconstruct from TII® an isomorph

(TH@))rat (— TH®)

of the absolute Galois group of the function field of C'r__, in a functorial manner. By

d
using elliptic cuspidalisations as well, we can also group-theoretically reconstruct from
TT1® isomorphs

M2 ('D®), M?,.('D?), M?,, ("D?)

o KX

of the pseudo-monoids of k-, k-, and kX~ coric rational functions associated with

Cr

mod

with natural (TTI®)**t-actions (Note that we can group-theoretically reconstruct
evaluations at strictly critical points).

Example 9.5.  (Global non-Realified Frobenioid, [IUTchl, Example 5.1 (i), (iii)])
By using the field structure on M® ("D®), we can group-theoretically reconstruct the
set
V(D®)
of valuations on M~ (TD®) with TTI®-action, which corresponds to V(F). Note also that
the set
"Wined := V(ID®)/TTI® (resp. V(ID®):=V(1D®)/T® )

of TH®-orbits (resp. TTI®-orbits) of V(TD®) reconstructs Vy,0q (resp. V(K)), and that
we have a natural bijection

Prime(TF®

mod

) :> TVmod
(See Definition 8.13 for Prime(—)). Thus, we can also reconstruct the monoid
¢ ("D%)(-)

on TD® which associates to A € Ob(TD®) the monoid ®®(1D®)(A) of stack-theoretic
arithmetic divisors on M®(TD@)A (C M@)(TD@)) (i.e., we are considering the coverings
over the stack-theoretic quotient (SpecOg)//Gal(K/Fnod)(= SpecOp,..,)) with the
natural homomorphism M@)(TD@)A — ®®(TD®)(A)8P of monoids. Then these data
(ID®, ¢®(TD®),M®(TD@)(_) — ®9(1D®)(—)8P) determine a model Frobenioid

J’.'@(TD@)

whose base category is TD®. We call this a global non-realified Frobenioid.
Let TF® be a pre-Frobenioid, which is isomorphic to F®(TD®). Suppose that we
are given a morphism "D® — Base(T F®) which is abstractly equivalent (See Section 0.2)
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to the natural morphism "D® — TD®. We identify Base(F®) with "D® (Note that this
identification is uniquely determined by the F,oq-coricity of Cr,__, and Theorem 3.17).
Let

tFe .— T]:®|TD© (— T}“@)

denote the restriction of TF® to TD® via the natural TD® — TD®. We also call this a
global non-realified Frobenioid. Let also

® .
Jr'Fmod T Jf-F@’terminal object in TD® (C Tf@)

denote the restriction of TF® to the full subcategory consisting of the terminal ob-

ject in TD® (which corresponds to Cp, We also call this a global non-realified

o)
Frobenioid. Note that the base category of TF0q4 has only one object and only one
morphism. We can regard TF®_, as the Frobenioid of (stack-theoretic) arithmetic line
bundles over (SpecOg)//Gal(K/Fpoa) (& Spec Finoa). In inter-universal Teichmiiller
theory, we use the global non-realified Frobenioid for converting X-line bundles into

EB-line bundles and vice versa (See Section 9.3 and Corollary 13.13).

Definition 9.6.  (,.k-Coric and ,,x x-Coric Structures, and Cyclotomic Rigidity
via Qs NZ* ={1})

1. (Global case, [IUTchl, Example 5.1 (ii), (iv), (v)]) We consider O*(O4) (which
is isomorphic to the multiplicative group of non-zero elements of a finite Galois
extension of Fy,.q), varying Galois objects A € Ob(TD®) (Here 04 is a trivial line
bundle on A. See Definition 8.4 (1)). Then we obtain a pair

HI® A TO®x

well-defined up to inner automorphisms of the pair arising from conjugation by TII®.
For each p € Prime(®re(04)), where ®+ e denotes the divisor monoid of TF®,

we obtain a submonoid

TOE c TOX(OE‘irat),
by taking the inverse image of pU{0} C @ re(O4) via the natural homomorphism
O* (Ohrat) — @4 76 (04)8P (i.e., the submonoid of integral elements of O (Ohrat)
with respect to p). Note that the natural action of Autire(O4) on O*(Ohirat)

permutes the OF’s. For each po € Prime(®+ s (O4,)), where Ag € Ob(TD®) is the
terminal object, we obtain a closed subgroup

I, c 'm®

(well-defined up to conjugation) by varying Galois objects A € Ob(TD?®), and by
considering the elements of Auti re (O4) which fix the submonoid TOpD for system
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of p’s lying over pg (i.e., a decomposition group for some v € V(F},04)). Note that
po is non-Archimedean if and only if the p-cohomological dimension of TII,,, is equal
to 24 1 = 3 for inifinitely many prime numbers p (Here, 2 comes from the absolute
Galois group of a local field, and 1 comes from “A-portion (or geometric portion)” of
f119). By taking the completion of TOpD with respect to the corresponding valuation,
varying Galois objects A € Ob(fD®), and considering a system of p’s lying over po,
we also obtain a pair
THPO N T@E)

of a toplogical group acting on an ind-topological monoid, which is well-defined up
to the inner automorphisms of the pair arising from conjugation by II,,, (since 1L,
is commensurably terminal in TTI® (Proposition 2.7)).

Let
(TH®)rat ~ TV®

denote the above pair (TTI®)™t ~ TO®*_ Suppose that we are given isomorphs

KX

(TH®)rat ~ TM® , (TH®)rat ~ TM®
(Note that these are Frobenius-like object) of
(oY A M2,(D°) () A 12, (1)

respectively (Note that these are étale-like object) as cyclotomic pseudo-monoids

rat

with a continuous action of (TII®)™* We call such a pair an k-coric structure,

and an ook X-coric structure on ' F® respectively.

We recall that the étale-like objects M® , (TD®), and M?,  (TD®) are constructed
as subsets of o H'((TI1%)™", u2(T119)) := g, 1@ st open H'Y(H, pg (T119)):

M2, ("D®) (resp. M, (1D®) ) C H'((TI®)™, pQ(111°)).

1%

On the other hand, by taking Kummer classes, we also have natural injections

oo K X

TMin C OOHl((TH®)rat7M’Z\(TMO®On))7 TMo@onx C le((TH®)rataU2(TM® ))7

where o H'((TII®)rt, —) := h—H>1Hc(fH®)”“ open H'(H,-). (The injectivity follows

from the corresponding injectivity for M® , (TD®) and M?, (AT D®) respectively.)

Recall that the isomorphisms between two cyclotomes form a Z*-torsor, and that
k-coric functions distinguish zeroes and poles (since it has precisely one pole (of any
order) and at least two zeroes). Hence, by (Q ® Z D)Qso NZ* = {1}, there exist

unique isomorphisms

(Cyc. Rig. NF1) pS(M®) 5 pp (M2 ), 42 (T®) 5 pp (M2 )

K
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characterised as the ones which induce Kummer isomorphisms

Kum Kum
™2, -~ M2,('D°), ™2, M, ('D?)
respectively. In a similar manner, for the isomorph 'TI® ~ TM® of TI® ~ O®X,
there exists a unique isomorphism

(Cyc. Rig. NF2) pS (T1®) 5 1 (TM®)

characterised as the one which induces a Kummer isomorphism

Kum

FM® 5 M® (D)

between the direct limits of cohomology modules described in (Step 4) of Theo-
rem 3.17, in a fashion which is compatible with the integral submonoids “O¥',> 7. We
call the isomorphism (Cyc. Rig. NF2) the cyclotmoic rigidity via Qso N Z* =
{1} (See [IUTchI, Example 5.1 (v)]). By the above discussions, it follows that TF®
always admits an . k-coric and an .,k Xx-coric structures, which are unique up to
uniquely determined isomorphisms of pseudo-monoids with continuous actions of
(TTI®)™a* respectively. Thus, we regard TF® as being equipped with these uniquely
determined . k-coric and .,k X-coric structures without notice. We also put

® rat
M :

mod

@ rat HI®
(TD@) — (MC*)(TD@))( ) ’ TMgod — (TM@B)( )

Y

M%(TD@) = (MEH(TD@))(THGBYM’ TM? — (TM?OK)(THC*))rat

where (—)(THC@)rat denotes the (TTI®)"*-invariant part.

. (Local non-Archimedean case, [IUTchI, Definition 5.2 (v), (vi)]) For v € V"" let

D, be a category equivalent to B*™P(X U)O (resp. B(X )?) over a finite extension
- " v

K, of Qp,, where X = (resp. gv) is a hyperbolic orbicurve of type (1,(Z/IZ)®)
(Definition 7.13) (resp. of type (1,1-%) (Definition 7.24)) such that the field of
moduli of the hyperbolic curve “X” of type (1,1) in the start of the definition of
hyperbolic orbicurve of type (1, (Z/IZ)®) (resp. of type (1, l-t%)) is a number field

Fioq- By Corollary 3.19, we can group-theoretically reconstruct an isomorph
I, ~ M, ('D,)

of Hf,?mp N O%J (resp. Hiﬁ % O%) from THQ =M UDE)'

= v
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Let v € Vyoqd = V(Fmoa) be the valuation lying under v. From THE, we can
group-theoretically reconstruct a profinite group 'II, corresponding to ClFoa)s DY
a similar way (“Loc”) as in (Step 2) of the proof of Theorem 3.7. Let

TDU

denote B('I1,)°. We have a natural morphism D, — "D, (This corresponds to
X = ClFmoa)e (resp. g — C(Fooa),))- In a similar way, by using Theorem 3.17

(especially Belyi cuspidalisations), we can group-theoretically reconstruct from THE

an isomorph
(THv)rat (— THU)

of the absolute Galois group of the function field of Cg, ), in a functorial manner.
By using elliptic cuspidalisations as well, we can also group-theoretically recon-
struct, from THQ, isomorphs

MK/U(TDQ)’ MOOK'U(TDE)7 MOONXU(TDQ)

of the pseudo-monoids of k-, k-, and . kXx- coric rational functions associated
with C(f,,.,), with natural (TIL,)™"-actions (Note that we can group-theoretically
reconstruct evaluations at strictly critical points).

Let T]-"Q be a pre-Frobenioid isomorphic to the p,-adic Frobenioid C, = (F v)base'ﬁeld

in Example 8.8 (resp. to the p,-adic Frobenioid C, in Example 8.7) whose base
category is equal to TDE. Let

("I1,)"2 ~ "M,

denote an isomorph of ('IL,)™" ~ M, (TD,) determined by TF,. Suppose that we

are given isomorphs
(L) A TM e, ()™ A TML e
(Note that these are Frobenius-like object) of
(")™ A Moo (Do), ()™ A M exo(1Dy)

(Note that these are étale-like objects) as cyclotomic pseudo-monoids with a con-

rat

tinuous action of (TIL,) We call such pairs an ook-coric structure, and an

sok X-coric structure on 'F, respectively.
We recall that the étale-like objects M__ ., (TD,), M_.x,(TD,) is constructed as
subsets of o ' (("IL, )™, Mg (L)) = @HC(THU)M . open H'(H, M%(THQ)):

MWHU(TDQ) (resp. Mmﬂxv(TDy) )CooHl((THv>rataH§(TH2))-
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On the other hand, by taking Kummer classes, we also have natural injections
TMoorw C ooH1((THv)rat7/L2(TMoonv))7 TM?O&X C ooHl((THv)ratvMZ(TMOORX'U))-

(The injectivity follows from the corresponding injectivity for M__ ., ("D,) and M__,.x,, ("D,)
respectively.) Recall that the isomorphisms between two cyclotomes form a Z*-
torsor, and that k-coric functions distinguish zeroes and poles (since it has precisely

one pole (of any order) and at least two zeroes). Hence, by (Q@Z D)Q>OHZX = {1},

there exist unique isomorphisms

(Cyc. Rig. NF3) S (ML) 5 5 ("M o), 18 (L) = ("ML ko)

characterised as the ones which induce Kummer isomorphisms

Kum Kum

My = Mo (DY), ™™ sxo — M_ s (D)

respectively. In a similar manner, for the isomorph II, ~ TM,, of TII, ~ M, (TDE),

there exists a unique isomorphism
(Cyc. Rig. NF4) M; (THE) ~ /«Lz(TMv)

characterised as the one which induces a Kummer isomorphism

Kum

™M, = M, ("D,)

between the direct limits of cohomology modules described in (Step 4) of Theo-
rem 3.17. We also call the isomorphism (Cyc. Rig. NF4) the cyclotmoic rigidity
via Qs NZX = {1} (See [IUTchI, Definition 5.2 (vi)]). By the above discussions,
it follows that T]:g always admits an ., k-coric and .k X-coric structures, which are
unique up to uniquely determined isomorphisms of pseudo-monoids with continuous
actions of (TII,)*" respectively. Thus, we regard T]-"E as being equipped with these
uniquely determined . k-coric and .,k Xx-coric structures without notice. We also
put
I\\/JLW(TDQ) = (MMKU(TDQ))(THU)M7 TMF»'U = (TMOOM)(THUYM,

(Tnv)rat

where (—) denotes the (TII,)**-invariant part.

(Local Archimedean case, [ITUTchI, Definition 5.2 (vii), (viii)]) For v € V**, let "D,
be an Aut-holomorphic orbispace isomorphic to the Aut-holomorphic orbispace §
associated to g

tion 7.24) such that the field of moduli of the hyperbolic curve “X” of type (1,1)
in the start of the definition of hyperbolic orbicurve of type (1, l—w) is a number
field Finoq-

, where X is a hyperbolic orbicurve of type (l,l—‘%) (Defini-
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Let v € Vioa = V(Fiod) be the valuation lying under v. By Proposition 4.5, we
can algorithmically reconstruct an isomorph

TDU

of the Aut-holomorphic orbispace C, associated with C(p,,,), from TD,. We have
a natural morphism D, — "D, (This corresponds to X = C(p0q),- Note that
- v

we have a natural isomorphism Aut("D,) = Gal(K,/(Funod)w) (C Z/27), since Cx
is a K-core. Put
DR (1D, \T) (- 1D,),

where we choose a projective system of (1D, \ ¥)’s which arise as universal covering
spaces of 1D, with ¥ D {strictly critical points}, #% < co (See Definition 9.2 for
strictly critical points). Note that D!t is well-defined up to deck transformations
over ID,. Let

M, ('D,) c AP

denote the topological submonoid of non-zero elements with norm < 1 (which is an
isomorph of O%) in the topological field .A'P> (See Proposition 4.5 for A'Px). By
using elliptic cuspidalisations, we can also algorithmically reconstruct, from TDQ,

isomorphs
Mm'v(TDg)a MOOKU(TDQ)» Moomxv(TDQ) (C HomCO—hol(TD;ataMU(TDQ)gp))

of the pseudo-monoids of k-, k-, and . kX- coric rational functions associated
with C(g,,. ), as sets of morphisms of Aut-holomorphic orbispaces from Iprat to
M, ("D, )eP (= ATDE) which are compatible with the tautological co-holomorphicisation
(Recall that A'Ds has a natural Aut-holomorphic structure and a tautological co-

holomorphicisation (See Definition 4.1 (5) for co-holomorphicisation)).

Let 17, = (1Cy, ™Dy, Try : O™ (TC,) < A'Pv) be a triple isomorphic to the triple
(Cy, Dy, ky) in Example 8.11, where the second data is equal to the above TD,. Put

™, := O™ (7¢C,).

Then the Kummer structure T, gives us an isomorphism

Kum

Thy: TM, = M,("D,)

of topological monoids, which we call a Kummer isomorphism. We can algorith-
mically reconstruct the pseudo-monoids

™ _ o, ™M xo
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of k-coric and ok X-coric rational functions associated to C, ), as the sets of
maps
fprat s M, ("D, )P H TMEP (disjoint union)

which send strictly critical points to TME&P, otherwise to M, (7D, )&P, such that the

id Thy)8P) 1 .
composite "Dt — M, (1D, )&P ] TMEP L) ™) M, (TD,)8P is an element of
M_ .0 ("Dy), M__ . xo(TD,) respectively. We call them an o k-coric structure, and

an ook X-coric structure on T}"y respectively. Note also that TM,W(C TIMIOOM)
can be reconstructed as the subset of the maps which descend to some "D, \ ¥
in the projective limit of TDE“, and are equivariant with the unique embedding

Aut(tD,) «— Aut(A'P+). Hence, the Kummer structure Tx, in T, determines
tautologically isomorphisms

Kum Kum Kum

My = Mo (Do), "M o = Mo (1D0), Mo == Mo (TDy)
of pseudo-monoids, which we also call Kummer isomorphisms.

Remark 9.6.1.  (Mono-anabelian Transport) The technique of mono-anabelian
transport is one of the main tools of reconstructing an alien ring structure in a scheme
theory from another (after admitting mild indeterminacies). In this occasion, we explain
it.

Let TII, *II be profinite groups isomorphic to IIx, where X is a hyperbolic orbicurve
of strictly Belyi type over non-Archimedean local field k (resp. isomorphic to Il¢  as
in this section). Then by Corollary 3.19 (resp. by Theorem 3.17 as mentioned in this
subsection), we can group-theoretically construct isomorphs O™ (TII), O™ (*II) (resp.
M® (T1I), M® (*1I)) of O% (resp. F) with TII-, *II-action from the abstract topological
groups II, *II respectively (These are étale-like objects). Suppose that we are given
isomorphs TO™, O™ (resp. TM®, ¥M®) of O™ (TII), O (*II) (resp. M®(TII), M® (*II))
respectively (This is a Frobenius-like object), and that an isomorphism TII 22 *II of topo-
logical groups. The topological monoids TO> and *O™ (resp. the multiplicative groups
TM® and *M® of fields) are a priori have no relation to each other, since an “isomorph”
only means an isomorphic object, and an isomorphism is not specified. However, we can
canonically relate them, by using the Kummer theory (cf. the Kummer isomorphism in
Remark 3.19.2), which is available by relating two kinds of cyclotomes (i.e., cyclotomes
arisen from Frobenius-like object and étale-like object) via the cyclotomic rigidity via
LCFT (resp. via QsqNZ* = {1}):

Kurgrner induced by Kurf\llmer
(T~T0*) = (I~ O™(')) . G ~ O™ (*IT)) < G11 ~ TO™)

Frobenius-like étale-like étale-like Frobenius-like
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(resp.
Kunimer induced by Kurgmer
(MM~ ®) = (A Mo(T) . gi (11 ~ MO(HD)) & (I ~ TM®)
NS0
Frobenius-like étale-like étale-like Frobenius-like).
In short,
i (mafv®) CE (A M)
a priort
mono-anabelian canonically
:>b 1 (THK\VTM@) o (iﬂmiM@B),

transport

makes ayvailable

D lied i
cyclotomic rigidity Kummer theory *PEY*C mono-anabelian transport.

This technique is called the mono-anabelian transport.

Remark 9.6.2.  (differences between three cyclotomic rigidities) We already met
three kinds of cyclotomic rigidities: the cyclotomic rigidity via LCFT (Cyc. Rig. LCFT2)
in Remark 3.19.2, of mono-theta environment (Cyc. Rig. Mono-th.) in Theorem 7.23 (1),
and via Qs¢ N Z* = {1} (Cyc. Rig. NF2) in Definition 9.6:

nz(Gr) Sz (M), T(186) @ Z/NZ S un(f(18e[un)),  pS(TT1%) 5 gz (tM®),

In inter-universal Teichmiiller theory, we use these three kinds of cyclotomic rigidities
to three kinds of Kummer theory respectively, and they correspond to three portions of
O-links, i.e.,

1. we use the cyclotomic rigidity via LCFT (Cyc. Rig. LCFT?2) for the constant monoids
at local places in V&°°9 N V™" which is related with the unit (modulo torsion) por-
tion of the ©-links,

2. we use the cyclotomic rigidity of mono-theta environment (Cyc. Rig. Mono-th.) for
the theta functions and their evaluations at local places in ybad, which is related
with the value group portion of the ©-links, and

3. we use the cyclotomic rigidity of via Qso N Z* = {1} (Cyc. Rig. NF2) for the non-
realified global Frobenioids, which is related with the global realified portion of the
O-links.

We explain more.
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In Remark 9.6.1, we used TO> (= O% ) and as examples to explain the technique
of mono-anabelian transport. However, in inter-universal Teichmiiller theory, the
mono-anabelian transport using the cyclotomic rigidity via LCFT is useless in the
important situation i.e., at local places in VP (However, we use it in the less
important situation i.e., at local places in V&°°d N V") because the cyclotomic
rigidity via LCFEF'T uses essentially the value group portion in the construction, and,
at places in V°* in inter-universal Teichmiiller theory, we deform the value group
portion in ©-links! Since the value group portion is not shared under ©-links, if
we use the cyclotomic rigidity via LCF'T for the Kummer theory for theta func-
tions/theta values at places in VP24 in a Hodge theatre, then the algorithm is only
valid with in the same Hodge theatre, and we cannot see it from another Hodge
theatre (i.e., the algorithm is uniradial. (See Remark 11.4.1, Proposition 11.15
(2), and Remark 11.17.2 (2)). Therefore, the cyclotomic rigidity via LCFT is not
suitable at local places in \_fbad, which deforms the value group portion.

Instead, we use the cyclotomic rigidity via LCFT at local places in V8°°4 0 ymor,
In this case too, only the unit portion is shared in ©-links, and the value group
portion is not shared (even though the value group portion is not deformed in
the case of V8°° N ¥"°"), thus, we ultimately admit 7 -indeterminacy to make
an algorithm multiradial (See Definition 11.1 (2), Example 11.2, and §A.4. See
also Remark 11.4.1, and Proposition 11.5). Mono-analytic containers, or local log-
volumes in algorithms have no effect by this 2X—indeterminacy.

In V"2, we use the cyclotomic rigidity of mono-theta environment for the Kummer
theory of theta functions (See Proposition 11.14, and Theorem 12.7). The cyclo-
tomic rigidity of mono-theta environment only uses py-portion, and does not use
the value group portion! Hence, the Kummer theory using the cyclotomic rigid-
ity of mono-theta environment in a Hodge theatre does not harm /affect the ones in
other Hodge theatres. Therefore, these things make algorithms using the cyclotomic
rigidity of mono-theta environment multiradial (See also Remark 11.4.1).

In Remark 9.6.1, we used "M® (= FX) and as examples to explain the technique
of mono-anabelian transport. However, in inter-universal Teichmiiller theory, we
cannot transport TM® (= FX) by the technique of the mono-anabelian transport
by the following reason (See also [IUTchII, Remark 4.7.6]): In inter-universal Te-
ichmiiller theory, we consider Il-, as an abstract topological group. This means
that the subgroups Il¢, , [Ix  are only well-defined up to lc,-conjugacy, i.e., the
subgroups Il¢, , llx  are only well-defined up to automorphisms arising from their
normalisers in Il¢c,. Therefore, we need to consider these groups ¢, Ilx, as be-

ing subject to indeterminacies of Ff—poly—actions (See Definition 10.16). However,
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F/ nontrivially acts on TM® (= FX). Therefore, TM® (=2 FX) is inevitablyy subject

to F*-indeterminacies. Instead of TM® (2 FX), we can transport the TII®-invariant
HI®

part TM,oq := (TM®)'I1" (=2 X

S od), since IFZ* trivially poly-acts on it, and there is

no F/*-indeterminacies (See also Remark 11.22.1).

. Another important difference is as follows: The cyclotomic rigidity via LCFT and
of mono-theta environment are compatible with the profinite topology, i.e., it is the

projective limit of the

mod N7 levels. On the other hand, the cyclotomic rigidity
via Q<o N 7% = {1} is not compatible with the profinite topology, i.e., it has no
such “mod N” levels. In the Kummer tower (l;; =) l&n(k:>< — kX« -), we
have the field structures on each finite levels k*(U{0}); however, we have no field
structure on the limit level £%. On the other hand, the logarithm “)_ %” needs
field structure. Hence, we need to work in “mod N” levels to construct log-links,
and the Kummer theory using the cyclotomic rigidity via Qso N Z* = {1} is not
compatible with the log-links. Therefore, we cannot transport global non-realified
Frobenioids under log-links. On the realified Frobenioids, we have the compatibility
of the log-volumes with log-links (i.e., the formulae (5.1) and (5.2) in Proposition 5.2
and Proposition 5.4 respectively). (Note that N-th power maps are not compatible
with addtions, hence, we caanot work in a single scheme theoretic basepoint over
both the domain and the codomain of Kummer N-th power map. This means that
we should work with different scheme theoretic basepoints over both the domain
and the codomain of Kummer N-th power map, hence the “isomorphism class
compatibility” i.e., the compatibility with the convention that various objects of
the tempered Frobenioids are known only up to isomorphism, is crucial here (cf.
[[UTchII, Remark 3.6.4 (i)], [IUTchIII, Remark 2.1.1 (ii)]) (This is also related to

Remark 13.13.3 (2b))).

Cyclotomic rigidity

via LCFT

of mono-theta env.

via Qs NZ* = {1}

Related Component

units

value group

global realified

of ©-links modulo torsion (theta values) component
Radiality uniradial or multiradial multiradial
multiradial up to 7% -indet.
Compatibility with compatible compatible incompatible

profinite top.
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§9.3. KX-Line Bundles and H-Line Bundles.

We continue to use the notation in the previous section. Moreover, we assume that
we are given a subset V C V(K) such that the natural surjection V(K) — V(Fi04)
induces a bijection V= V(F0q) (Note that, as we will see in the following definitions,

we are regarding V as an “analytic section” of the morphism Spec O — SpecOp._ ).
Put V™" .=V NV(K)™" and V¥ :=V N V(K)e.

Definition 9.7.  ([[TUTchIII, Example 3.6]) Let F2_, (i.e., without “”) denote
the global non-realified Frobenioid which is constructed by the model D(C )Y (i.e.,

without “).

L. (R-line bundle) A K-line bundle on (Spec Ox)//Gal(K/Fuoa) is a data L% =
(T, {ty}vev), where

(a) T is an F*_,-torsor, and

(b) t, is a trivialisation of the torsor T, := T Qpx (K /O[X(E) for each v € V,

where F\ ; — K /Op is the natural group homomorphism,

satisfying the condition that there is an element ¢t € T" such that ¢, is equal to the
trivialisation determined by ¢ for all but finitely many v € V. We can define a
tensor product (£¥)®" of a K-line bundle £¥ for n € Z in an obvious manner.

2. (morphism of R-line bundles) Let £ = (T1, {t1 4 }vev), LY = (To, {t2.4 }vev) be
X-line bundles. An elementary morphism £¥ — LY of K-line bundles is
an isomorphism 7} = T of meod-torsors which sends the trivialisation 1, to
an element of the O% -orbit of 5, (i.e., the morphism is integral at v) for each
veV. A morphismiof X-line bundles from Eig to Lég is a pair of a positive
integer n € Zso and an elementary morphism (£LF)®" — £¥. We can define
a composite of morphisms in an obvious manner. Then the X-line bundles on
(Spec Ok)//Gal(K/Fnoa) and the morphisms between them form a category (in
fact, a Frobenioid)

@
Fyob-
We have a natural isomorphism
©) ~ ®
‘/rmod - ‘FMOD

of (pre-)Frobenioids, which induces the identity morphism FX_, — F* . on ®((—)Prat).
Note that the category .Fl\@[OD is defined by using only the multiplicative (X) struc-

ture.
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3. (B-line bundle) A B-line bundle on (SpecOg)//Gal(K/Fyuoq) is a data £F =
{Jy}vev, where J, C K, is a fractional ideal for each v € V (i.e., a finitely generated
non-zero O -submodule of K, for v € V", and a positive real multiple of Ok,
for v € V** (See Section 0.2 for Ok, )) such that J, = O, for finitely many v € V.
We can define a tensor product (LF)®" of a B-line bundle £L® for n € Z in an

obvious manner.

4. (morphism of A-line bundles) Let £ = {J; ,}vev, L3 = {J2.}vev be B-line bun-
dles. An elementary morphism LT — L3 of B-line bundles is an element
feFy 4suchthat f-J, C Jo, (ie., fis integral at v) for each v € V. A mor-
phism of B-line bundles from L to L is a pair of a positive integer n € Z~ and
an elementary morphism (£F)®" — £B. We can define a composite of morphisms
in an obvious manner. Then the H-line bundles on (Spec Ok )//Gal(K/Foa) and
the morphisms between them form a category (in fact, a Frobenioid)

.F®

moo-

We have a natural isomorphism
@ ™~ )
Fmod — Fmod

of (pre-)Frobenioids, which induces the identity morphism FX_, — F_ on ®((—)Prat),
Note that the category Fio,, is defined by using both of the multiplicative (X) and
the additive () structures.

Hence, by combining the isomorphisms, we have a natural isomorphism

(Convert) ]:n@l)oa 5 ]:I\%OD

of (pre-)Frobenioids, which induces the identity morphism F*_, — FX_, on ®((—)Pirat).

§10. Hodge Theatres.

In this section, we construct Hodge theatres after fixing an initial ©-data (Sec-
tion 10.1). More precisely, we construct ©F°'NF-Hodge theatres (In this survey, we call
them XH-Hodge theatres). We can consider Z/IZ as a finite approximation of Z for
[ >> 0 (Note also that we take | >> 0 approximately of order of a value of height
function. See Section ). Then we can consider F* and F fi as a “multiplicative finite
approximation” and an “additive finite approximation” of Z respectively. Moreover, it
is important that two operations (multiplication and addition) are separated in “these
finite approximations” (See Remark 10.29.2). Like Z/IZ is a finite approximation of Z
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(Recall that Z = Gal(2)/X)), a Hodge theatre, which consists of various data involved
by X " gv, (i and so on, can be seen as a finite approximation of upper half plane.

Before preceeding to the detailed constructions, we briefly explain the structure
of a ©*°'NF-Hodge theatre (or XE-Hodge theatre). A ©F°INF-Hodge theatre (or a
XE-Hodge theatre) will be obtained by “gluing” (Section 10.6)

e a ONF-Hodge theatre, which has a F}"-symmetry, is related to a number field, of
arithmetic nature, and is used to Kummer theory for NF (In this survey, we call it
a X-Hodge theatre, Section 10.4) and

e a ©*°"_Hodge theatre, which has a ]Ffi—symmetry, is related to an elliptic curve, of
geometric nature, and is used to Kummer theory for © (In this survey, we call it a
B-Hodge theatre, Section 10.5).

Separating the multiplicative (X) symmetry and the additive (H) symmetry is also
important (See [IUTchIl, Remark 4.7.3, Remark 4.7.6]).

ONF-Hodge theatre | F;*-symmetry (X) | arithmetic nature | Kummer theory for NF

O*°_Hodge theatre Fﬁi—symmetry (B) | geometric nature | Kummer theory for ©

As for the analogy with upper half plane, the multiplicative symmetry (resp. the
additive symmetry) corresponds to supersingular points of the reduction modulo p of
modular curves (resp. the cusps of the modular curves). See the following tables
([IUTchI, Fig. 6.4]):

X-symmetry Basepoint Functions
(cf. Remark 10.29.1) | (cf. Corollary 11.23)
upper half plane | z — igf’rf((:));:g;gg, Z Egﬁf((f))f:;zgg supersingular pts. rat. fct. w = ‘z—jrz
Hodge theatre F;*-symm. F ~ yBor elements of Fl,oq
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H-symmetry Basepoint Functions

(cf. Remark 10.29.1) (cf. Corollary 11.21)

upper half plane | 2 — z+a, 2~ —Z+a cusp trans. fct. ¢ = €™

Hodge theatre ]Ffi—symm. v theta values {qj2}1<j<p:<
:2 - -

Coric symmetry (cf. Proposition 10.34 (3))

upper half plane Zr> 2, —Z

Hodge theatre {£1}

These three kinds of Hodge theatres have base-Hodge theatres (like Frobenioids)
respectively, i.e., a ©T'NF-Hodge theatre (or a XM-Hodge theatre) has a base-©T°!NF-
Hodge theatre (or D-OT'NF-Hodge theatre, or D-KB-Hodge theatre), which is obtained
by “gluing”

e a base-ONF-Hodge theatre (or D-ONF-Hodge theatre, or D-X-Hodge theatre) and

e a base-©OF"-Hodge theatre (or D-O%°'-Hodge theatre, or D-H-Hodge theatre).

A D-©ONF-Hodge theatre (or D-X-Hodge theatre) consists

e of three portions
— (local object) a holomorphic base-(or D- )prime-strip 1D~ = {IDx ,}yev, where
D, , is a category equivalent to B(g )0 for v € VE&°U N Y™ or a category
- v

equivalent to B™P (X U)O for v € ybadj or an Aut-holomorphic orbispace iso-

morphic to X for v € V* (Section 10.3),

— (local object) a capsule 1®; = {TD;},c; of D-prime-strips indexed by J (=
F*) (See Section 0.2 for the term “capsule”), and

— (global object) a category TD® equivalent to B(Cf)°,

e and of two base-bridges
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— a base-(or D-)O-bridge T(bg, which connects the capsule 7® ; of D-prime-strips
to the D-prime-strip T®~, and

— a base-(or D-)NF-bridge Tqﬁgff, which connects the capsule 7®; of D-prime-
strips to the global object TD®.

Here, for a holomorphic base-(or D-)prime-strip '® = {TD,},ev, we can associate its
mono-analyticisation (cf. Section 3.5) T = {ID]},cv, which is a mono-analytic base-
(or D" - )prime-strip.

On the other hand, a D-©%*°-Hodge theatre (or D-B-Hodge theatre) similarly
consists

e of three portions

— (local object) a D-prime-strip 1D, = {ID, , },ev,

— (local object) a capsule @7 = {1D;};cr of D-prime-strips indexed by T (=
F;), and

— (global object) a category "D®* equivalent to B(X x)°,
e and of two base-bridges

— a base-(or D-)OF -bridge Tqﬁii, which connects the capsule T®7 of D-prime-
strips to the D-prime-strip T®, , and

— a base-(or D-)O!-bridge Td)ien, which connects the capsule "D of D-prime-
strips to the global object TD@*.

Hence, the structure of a D-O*°!NF-Hodge theatre (or D- K H-Hodge theatre) is as fol-
lows (For the torsor structures, Aut, and gluing see Proposition 10.20, Proposition 10.34,
Lemma 10.38, and Definition 10.39):

D-OFINF-HT

gluing (>={0,>1})

(Aut = {£1}) D-OFllyT 1D o SEEEATTETL ~TD. D-ONF-HT (Aut = {1})
D-0F bridge 162" | ({£1}x{£1}¥torsor) (rigid) | ¢ D-O-bridge
B-Symm.| (t€ T (2F,)) [Dp gluing (J=(T\{0)/{£1}) 1D, (j € J(2FF)) |R-Symm.
D-6bridge 162" | (Fi'-torsor) (F¥-torsor) | T¢X¥  D-NF-bridge

Geometric (X x ~) Ipo+ fpe (e~ Ck) Arithmetic
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We can also draw a picture as follows (cf. [IUTchl, Fig. 6.5]):

D, = /j: >:i(;,>} 9. — /*
J=(T\{0})/{*1} . :
(1}~ D= /5 /55T )i = Dy = JF)F )
iell d)I;iF
= . K%
B AT L DO = B L) Ff A1 ] DO = B(Cy),
Het HK—X

where /’s express prime-strips.

These are base Hodge theatres, and the structure of the total space of Hodge
theatres is as follows: A ©NF-Hodge theatre (or X-Hodge theatre) consists

e of five portions

— (local and global realified object) a ©-Hodge theatre THT® = ({Tf Yoev, TEE 1)
which consists of
* (local object) a pre-Frobenioid T£ ) isomorphic to the p,-adic Frobenioid
£ (Example 8.7) for v € yseod ﬂinon, or a pre-Frobenioid isomorphic to
the tempered Frobenioid £ for v € yPad (Example 8.8), or a triple T]:-" L=
(fC,, "Dy, Tky), isomorphic to the triple = (Cy, Dy, ky) (Example 831)
of the Archimedean Frobenioid C,, the Aut-holomorphic orbispace D, =
X and its Kummer structure ﬁ;: O"(C,) — APx for v € V¥°, and B

* (global realified object with localisations) a quadruple
TS";O (fe'r Prime(TClgod) 5, {T]-'EF toevs {TpZ}EGY) of a pre-Frobenioid

mod’
isomorphic to the global realified Frobenioid C'r;Od (Example 8.12), a bijec-
tion Prime(TC" ) = V, a mono-analytic Frobenioid-(or F"-)prime-strip

{17 Yvev (See below), and global-to-local homomorphisms {fpf }yev.

— (local object) a holomorphic Frobenioid-(or F-)prime-strip 1§~ = {TFs . }oev,
where T.7-">72 is equalto the T]—"Q’s in the above ©-Hodge theatre THT®.

— (local object) a capsule 1§y = {1§;}jcs of F-prime-strips indexed by J (2 F})
(See Section 0.2 for the term “capsule”),

— (global object) a pre-Frobenioid TF® isomorphic to the global non-realified
Frobenioid F©(D®) (Example 9.5), and
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— (global object) a pre-Frobenioid TF® isomorphic to the global non-realified
Frobenioid F®(1D®) (Example 9.5).

e and of two bridges

— a O©-bridge ng, which connects the capsule '§; of prime-strips to the prime-
strip T§~, and to the ©-Hodge theatre 1§~ --» THT®, and

— an NF-bridge T¢}¥, which connects the capsule TF; of prime-strips to the

¥

global objects TF® --» TF®,

and these objects are “lying over” the corresponding base objects.

Here, for a holomorphic Frobenioid-(or JF-)prime-strip 1§ = {IF,},cv, we can
algorithmically associate its mono-analyticisation (cf. Section 3.5) 1§~ = {T]-"EF toev,
which is a mono-analytic Frobenioid-(or F' -)prime-strip.

On the other hand, a ©F°"-Hodge theatre (or B-Hodge theatre) similarly consists

e of three portions

— (local object) an F-prime-strip 1§, = {TF. , }oev,

— (local object) a capsule 1§71 = {IT: }rer of F-prime-strips indexed by T (22 IF;),
and

— (global object) the same global object TD®* as in the D-B-Hodge theatre,
e and of two bridges

— a ©T-bridge ngi , which connects the capsule T§7 of prime-strips to the prime-
strip 7§, and

— a 0% bridge T@Dgen is equal to the D-O¢!-bridge Tqbgen,

and these objects are “lying over” the corresponding base objects.

Hence, the structure of a ©T°'"NF-Hodge theatre (or XH-Hodge theatre) is as
follows (For the torsor structures, Aut, and gluing see Lemma 10.25, Lemma 10.37,
Lemma 10.38, and Definition 10.39):



A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 199

O*INF-HT T
A
JF-prime-strip

gluing (>={0,>})

(Aut = {£1}) OFL YT  TF,_ o ST S ONF-HT (Aut = {1})
©*-bridge ng:ﬁ: ({£1}x{£1}¥ -torsor) (rigid) ng ©-bridge
luing (J=(T\{0 +1 .
B-Symm.| (teT(2F)) §r . gluing (J=(T\O)/{£1}) 15, (jeJ(2FF)) [R-Symm.
(T(biell:T@T_)TD@i) 0! _bridge ngell (Fli-torsor) (F;*-torsor) ngF NF-bridge
Geometric tpe+ as Arithmetic
TpO_tp®
Y
Kummer for © tF® Kummer for NF

§10.1. Imnitial ®-Data.

Definition 10.1. We call a collection of data

(F/Fa XF7 la QKa Y7 Vbad E)

mod>
an initial ®-data, if it satisfies the following conditions:

1. F is a number field such that /—1 € F, and F is an algebraic closure of F. We
write G := Gal(F/F).

2. X is a once-punctured elliptic curve over F', which admits stable reduction over
all v € V(F)™". We write Erp(D Xp) for the elliptic curve over F' obtaine by
the smooth compactification of Xp. We also put Cp := Xp//{£1l}, where “//”
denotes the stack-theoretic quotient, and —1 is the F-involution determined by the
multiplication by —1 on Er. Let F,0q be the field of moduli (i.e., the field generated
by the j-invariant of Er over Q). We assume that F' is Galois over Fy,oq of degree

prime to [, and that 2 - 3-torsion points of Er are rational over F'.
3. Vglaodd C Viod = V(Fiod) is a non-empty subset of V2o \ {v € V2o | v | 2} such

that X has bad (multiplicative in this case by the condition above) reduction at the
places of V(F) lying over VP24 Put V&°°0 .= v, 1\ VPad (Note that X may have

mod " mod mod
bad reduction at some places V(F) lying over V&°°0) V(F)bad .= ybad »o  y(F),
and V(F)good .= V&4, V(F). Wealso put Ilx, = 71 (Xr) C g, = m(Cr),

and AXF = 7T1(XF XF F) C AC’F = 7T1(CF XF F)
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[ is a prime number > 5 such that the image of the outer homomorphism Grp —
GLy(FF;) determined by the I-torsion points of Er contains the subgroup SLy(F;) C
GLy(IF;). Put K := F(Ep|[l]), which corresponds to the kernel of the above homo-

morphism (Thus, since 3-torsion points of Er are rational, K is Galois over F,oq

bad
mod’

by Lemma 1.7 (4). We also assume that [ is not divisible by any place in V
and that | does not divide the order (normalised as being 1 for a uniformiser) of
the g-parameters of Er at places in V(F)bad,

. Cp is a hyperbolic orbicurve of type (1,I-tors)L (See Definition 7.10) over K with

K-core given by Ck := Cp Xp K (Thus, Cj is determined, up to K-isomorphism,
by Cr by the above (4)). Let X, be a hyperbolic curve of type (1,l-tors) (See
Definition 7.10) over K determined, up to K-isomorphism, by Cj. Recall that we
have uniquely determined open subgroup Ax C A¢ corresponding to the hyperbolic
curve X of type (1, I-tors®) (See Definition 7.11), which is a finite étale covering
of C := Cp xp F (See the argument after Assumption (2) in Section 7.3, where

_ —ell  —
the decomposition A x = A; x Ag does not depend on the choice of €, ).

.V C V(K) is a subset such that the composite V C V(K) — Vy0q is a bijection,

i.e., Vis a section of the surjection V(K) — Vpoq. Put V" := V N0 V(K)"",
Ve = VNV(K)2re, Veood .= YNV(K)&°d, and VP*! .= VNV(K)P2d, For a place
v eV, put (=), == (—)r xp Ky or (=), := (—)x Xk K, for the base change of
a hyperbolic orbicurve over F' and K respectively. For v € VP24 we assume that
the hyperbolic orbicurve C' is of type (1,Z/IZ)+ (See Definition 7.13) (Note that
we have “K = K” since 2-torsion points of Ep are rational). For a place v € V,
it follows that X = xffg admits a natural model X , over K, which is hyperbolic
curve of type (1,(Z/1Z)®) (See Definition 7.13), where v is a place of F' lying over
v (Roughly speaking, X | is defined by taking “/-root of the theta function”). For

v e VP we write II, == Hf,?mp.

—v

. € is a non-zero cusp of the hyperbolic orbicurve C . For v € V, we write ¢, for the

cusp of C, determined by €. If v € ybad, we assume that €, is the cusp, which arises
from the canonical generator (up to sign) of Z via the surjection Il x —» Z determined
by the natural surjection II'¢™ — Z (See Section 7.1 and Definition 7.13). Thus,
the data (Xg := Xp xp K,Cp,€) determines a hyperbolic curve &K of type

(1,1-tors) (See Definition 7.24). For v € veood we write II, := Hi(m'

Note that C'z and € can be regarded as “a global multiplicative subspace and a

canonical generator up to {£1}”, which was one of main interests in Hodge-Arakelov

theory (See Appendix A). At first glance, they do not seem to be a global multiplicative

subspace and a canonical generator up to {£1}; however, by going outside the scheme
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theory (Recall we cannot obtain (with finitely many exceptions) a global multiplicative
subspace within a scheme theory), and using mono-anabelian reconstruction algorithms,
they behave as though they are a global multiplicative subspace and a canonical gener-
ator up to {£1}.

From now on, we take an initial ©-data (F/F, Xp,l,Ck,V, Vhad "¢), and fix it until
the end of Section 13.

§10.2. Model Objects.

From now on, we often use the convention (cf. [[UTchI, §0]) that, for categories C, D,
we call any isomorphism class of equivalences C — D of categories an isomorphism
C — D (Note that this termniology differs from the standard terminology of category
theory).

Definition 10.2.  (Local Model Objects, [IUTchI, Example 3.2, Example 3.3,
Example 3.4]) For the fixed initial ©-data, we define model objects (i.e., without “”)
as follows:

1. (D, : holomorphic, base) Let D, denote the category B*™P(X U)O of connected ob-
jects of the connected temperoid Btemp(X ) for v € V"4 the category B(g )0 of

connected objects of the connected anabelioid B (g ) for v € y&ood Mo and the
Aut-holomorphic orbispace X associated with X for v € V¥ (See Section 4).

2. (D} : mono-analytic, base) Let DY denote the category B(K,)° of connected objects
of the connected anabelioid B(K. ) for v € V", and the split monoid (O™ (C}), splF)
in Example 8.11. We also put G, := m(D}) for v € V'

3. (Cy :holomorphic, Frobenioid-theoretic) Let C, denote the base-field-theoretic hull
(F )basefield (with base category D,) of the tempered Frobenioid £ , in Example 8.8

= U

for v € V"2 the py-adic Frobenioid C, (with base category D,) in Example 8.7 for
v € V&4 ny"n and the Archimedean Frobenioid C, (whose base category has
only one object Spec K, and only one morphism) in Example 8.11 for v € V**.

4. (.F :holomorphic, Frobenioid-theoretic) Let J denote the tempered Frobenioid
F  (with base category D,) in Example 8.8 for v € V"™ the p,-adic Frobenioid

C, (with base category D,) in Example 8.7 for v € V&°! 0 V™" and the triple
(Cy, Dy, ky) of the Archimedean Frobenioid, the Aut-holomorphic orbispace, and
the Kummer structure &, : O”(C,) < AP~ in Example 8.11 for v € V¥

5. (Cl : mono-analytic, Frobenioid-theoretic) Let C denote the p,-adic Frobenioid C
(with base category D") in Example 8.8 for v € V" the p,-adic Frobenioid CF
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(with base category D£ ) in Example 8.7 for v € V&o°d Nyt and the Archimedean
Frobenioid C, (whose base category has only one object Spec K, and only one

morphism) in Example 8.11 for v € V***.

6. (F :mono-analytic, Frobenioid-theoretic) Let F!, denote the jig;-split pre-Frobenioid
(Cf , splZ) (with base category D) in Examplg 8.8 for v € V”* the split pre-
Frobenioid (Ch,spl})) (with base c;tegory DF) in Example 8.7 for v € V&4 nyren,
and the tripl:a (Cg, Df,spl})), where (Cy ,SE)IZ) is the split Archimedean Frobe-

nioid, and D = (O™ (C} ),splg ) is the split monoid (as above) in Example 8.11
for v € V&,

See the following table (We use D,’s (resp. D.’s, resp. F.’s) with v € V for
D-prime-strips (resp. D" -prime-strips, F "—prime—str;pS) later (Se; Definition 10.9 (1)
(2)). However, we use Cy (not £ ) with v € V*" and £ with v € V™ for F-prime-
strips (See Definition 10.9 (3)), and £ s withv € V for ©-Hodge theatres later (See
Definition 10.7)): -

v (Example 8.8) yeeod 0 ymer (Example 8.7) V¢ (Example 8.11)

B (X )0 (IL) B, (L) e

B(K,)? (Gy) B(K,)" (Gy) (O™(C}),sply)
(;ﬂ)base‘ﬁdd (IT, ~ (Ol%)pf) II, ~ (O%)pf Arch. Fr’d C, («ang. region)
temp. Fr’d ;2 (~O-fct.) equal to C, (Cy, Dy, k)
Gy ~ 01% : glj Gy O}% - pl equal to Cy
(Clg_’ spIZ) (CE, SplZ) (Cg, DZ, spIZ)

We continue to define model objects.

Definition 10.3.  (Model Global Objects, [IUTchI, Definition 4.1 (v), Definition
6.1 (v)]) We put
D® = B(Ck)°, D%F :=B(X,)°.

Isomorphs of the global objects will be used in Proposition 10.19 and Proposi-
tion 10.33 to put “labels” on each local objects in a consistent manner (See also Re-
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mark 6.11.1). We will use D® for (D-)X-Hodge theatre (Section 10.4), and D®* for
(D-)HB-Hodge theatre (Section 10.5).

Definition 10.4. (Model Global Realified Frobenioid with Localisations, [[UTchlI,
Example 3.5]) Let CI”_, be the global realified Frobenioid in Example 8.12. Note that

mod
we have the natural bijection Prime(C"

) = Vinod, and an element log”, _,(p,) € Der
for each v € V,0q4. For v € V04, let v € V denote the corresponding element under the
bijection V = Vinoq. For each v € V, we also have the (pre-)Frobenioid Cf (See Defini-
tion 10.2 (5)). Let CJ® denote the realification of C) (Definition 8.4 (3)) for v € V™",
and C, itself for v € V*°. Let logg(py) € @%5 denote the element determined by p,,

where (I>§F denotes the divisor monoid of C; R We have the natural restriction functor
I FR
Cinod — Cy

for each v € V. This is determined, up to isomorphism, by the isomorphism

gl. to loc. 1

K, : (Fmod )]

of topological monoids (For the assignment, consider the volume interpretations of the
arithmetic divisors, i.e., log, #(O(r,.4)./Pv) = mlog&#(()[(g/pg)). Recall
also the point of view of regarding V(C V(K)) as an “analytic section” of Spec Ox —»
Spec Op,,,q (The left hand side ®¢i- , is an object on (Fuod)v, and the right hand side
@% is an object on K,). Let S‘;Od denote the quadruple

~

Pu - (I)C”_ — (1)55 log;md(pv) = [

logg (pv)

Slrlr_lod = (Clrl_lod7 Prime(clrl_lod) :> y? {‘F}Q_}Eey7 {pﬂ}QGY)

of the global realified Frobenioid, the bijection of primes, the model objects .7-"; 's in
Definition 10.2 (6), and the localisation homomorphisms. We define an isomorphism
3';100171 =5 a,2 of quadruples in an obvious manner.

Isomorphs of the global realified Frobenioids are used to consider log-volume func-

tions.

Definition 10.5. (O-version, [IUTchl, Example 3.2 (v), Example 3.3 (ii), Ex-
ample 3.4 (iii), Example 3.5 (ii)])

1. (VP*d) Take v € VP, Let Dy (C D,) denote the category whose objects are
A® = A x gv for A € Ob(DZ ), where x is the product in D,,, and morphisms are
morphisms over zv in D, (Note also that gv € Ob(D,) is defined over K, ). Taking

“(—=) x XU” induces an equivalenc D!, = DO of categories. The assignment

Ob(DY) 3 A% = 0%(O4e) - (B0 6 ) C OF(ORE™)
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determines a monoid Oge(—) on Dy (See Example 8.8 for © € O*(O¥""), and

O(_) for Definition 8.4 (1)). Under the above equivalence D = Dg of ca}egories,
we have natural isomorphism OF, (—) = OFo(—). These are compatible with the

assignment

4 lox = 8 lo,e
and a natural isomorphism O*(04) = O*(O4e) induced by the projection A® =
A X zv — A (See Example 8.8 for ¢ € O%(Ox )). Hence, the monoid Oge (—)

determines a p,-adic Frobenioid
C@ (C fbirat)

whose base category is DS . Note also QU determines a pg;(—)-orbit of splittings

SplS of C2. We have a natural equivalence CE = CS of categories, which sends

Spl; to SI;IS, hence, we have an isomorphism
]—“'ﬂ_(: (Cg,splZ)) = ]-f = (Cg,splg)
of po;-split pre-Frobenioids.

(V&°°d N Y™°7) Take v € V&°°9 N V™", Recall that the divisor monoid of Cg is of
the form Of._ (=) = O/ (—) x Nlog(p,), where we write log(p,) for the element p,
considered additively. We put

OFo (=) i= 0 (=) x Nlog(p,) log(©),

where log(p,)log(©) is just a formal symbol. We have a natural isomorphism

OCD5 (-) = OCDEJ (—). Then the monoid Ozg_)(—) determines a p,-adic Frobenioid

C@

whose base category is D9 := D! . Note also that log(p,)log(6) determines a

splitting spl(g9 of CO. We have a natural equivalence C'ﬂ_ = CS of categories, which

sends splz to spl(;, hence, we have an isomorphism
Fo(=(Clsply)) 5 F2:=(CO.sply)
of split pre-Frobenioids.

(V*°) Take v € V**. Recall that the image ®cr of splz of the split monoid
(OCDHsplZ) is isomorphic to R>o. We write log(p,) € ®c¢r for the element p,
considered additively (See Section 0.2 for p, with Archimedean v). We put

Peo := Rx>qlog(py)10g(O),
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where log(p,)log(@) is just a formal symbol. We also put OCF = (0g-)*, and

CX,? = Oé}. Then we obtain a split pre-Frobenioid

(€2, sply),

such that O (CY) = Ofe X Pco. We have a natural equivalence Cj = Co of

categories, which sends si)lz to splg, hence, we have an isomorphism (CF splk)
(CS, splS) of split pre-Frobenioids, and an isomorphism

Fo(=(C,DL,sply)) & FO = (CO, D, sply)
of triples, where we put DS = DZ .

. (Global Realified with Localisations) Let C!" . be the global realified Frobenioid
considered in Definition 10.4. For each v € V44, let v denote the corresponding
element under the bijection V = V,,,4. Put

¢CH_

theta

- @Ci'l_]od ’ IOg(Q)a

where log(@) is just a formal symbol. This monoid Per determines a global

theta

realified Frobenioid

Ctheta
with a natural equivalence C! . = Ci} .., of categories and a natural bijection
Prime(Clr ...) = Viod. For each v € Vyoq, the element logh 4 (py) € ®or w C

®or  determines an element log" _4(py) log(©) € Perr C ®or . Asin the case

mod thetaV theta

where C'" . We have the natural restriction functor

mod?

OR
Ctheta C

for each v € V. This is determined, up to isomorphism, by the isomorphism

gl. to loc. 1 10gg (pu) log(©) v € V&L
R [ [ g( mod)v]
v (PC? longd (pv) 10g(9) = logg (Pv) logg (Qg) Vbad
B [KE:(Fnlod)v] IOgé(gv) Q 6 -

of topological monoids, where logg(p,)log(@) € @Hég denotes the element deter-
mined by logg(p,) for v € V&4 and logs(9,), lc;gCP(pg) and logq)( ) denote
the element determined by QU, Py, and ¢ resgectively for v € yPad (Note that
logy (8, ) is mot a formal symbgl). Note t};zyxt for any v € V, the localisation homo-

morphisms p, and pg) are compatible with the natural equivalences C\" od = Ctheta,
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and C'Q_ 5 CS:

“mod—theta”

10g0a (P) 108104 (P0) 108(©)

] -

mlogq)(pg) e [KE;(;mod)v] logg (py) log(©)

for v € V&°°4, and

“mod—theta”
10g0a (Pu) " loglq (p) log(©)
pvl Ip?
1 . logg (py) 182(8,)
[Ky:(Fmod)w] log(p (pg) 1‘#—)@” [KE:(%mod)v] logg (gv)

for v € VP24, Let F ot denote the quadruple

3flt;i_heta = (Ctl;;etan Prime(cil;'ileta) :) y? {fg@}QGY’ {P(;}QEY)

of the global realified Frobenioid, the bijection of primes, the ©-version of model
objects ff’s in (1), (2), and (3), and the localisation homomorphisms.

Note that we have group-theoretic or category-theoretic reconstruction algorithms
such as reconstructing D from D,. We summarise these as follows ([[UTchl, Example
3.2 (vi), Example 3.3 (iii)]):

except
éﬂ /C { yare DE
up to lZ-indet. - - =
on 9 for Qeybad fg f CE f Dg
FO Co i DY,

(Note also the remark given just before Theorem 8.14.)

Definition 10.6.  (D-version or “log-shell version”, [IUTchl, Example 3.5 (ii),
(iii)]) Let
DH—

mod

F C

|
mod Y

denotes a copy of CI ..

Let ®pr , Prime(D),4) = Vinod, 10groa(py) € ®p

Q)Dl’x_}od be the corresponding objects under the tautological equivalence C'r;Od = D';Od.
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For each v € V04, let v denote the corresponding element under the bijection V =
Vmod-
For v € V"°"| we can group-theoretically reconstruct from Dg

(REO)Q = Ruon(Gy) (& Rxo)

and Frobenius element F(G,) € (REO)E by (Step 3) in Proposition 5.2 (Recall that
G, = m1(D})). Put also

IOgg(pg) = GQF(GQ) € (REO)@

where e, denotes the absolute ramification index of K.
For v € V¥ we can also group-theoretically reconstruct from the split monoid
DZ = (Olc>1b; ) SPIZ)
(Rgo)g = RarC(Dt) (= RZO)

and Frobenius element F(DY) € (Rgo)g by (Step 4) in Proposition 5.4. Put also

F(D})
logg (pv) = —— € (RSq)w,

where 27 € R* is the length of the perimeter of the unit circle (Note that (RS,), has
a natural R*-module structure).
Hence, for any v € V, we obtain a uniquely determined isomorphism

gl. to loc. 1

Kg: (Fmod)v

~

pQD : (I)D'F — (REO)Q logﬁod(p’u) = [

mod >V

] 10%5 (Pv)

of topological monoids.
Let {§'£ denote the quadruple

SI”E = (DL;od’ Prime(IDL;od) = y, {Dg}yéya {p5}2€Y>

of the global realified Frobenioid, the bijection of primes, the D" -version of model objects
DZ ’s, and the localisation homomorphisms.

§10.3. ©-Hodge Theatres and Prime-strips.

Definition 10.7. (O©-Hodge theatre, [[UTchI, Definition 3.6]) A ®-Hodge the-
atre is a collection

THTQ = ({Tég}QEY7 TSL;od)v

where
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1. (local object) TE , is a pre-Frobenioid (resp. a triple (fC,, "Dy, Tk,)) isomorphic to
the model F ~(resp. isomorphic to the model triple £ = (Cy, Dy, £y)) in Defini-
tion 10.2 (4) for v € V™" (resp. for v € V*°). We WriteiTDQ, TD'E_, TDS, T}";, T}"Q@
(resp. TDZ , TDS, TFE ,T]:Q@) for the objects algorithmically reconstructed from T; )

corresponding to the model objects (i.e., the objects without T).

2. (global realified object with localisations) TF\ . is a quadruple
(Tcr';om Prime(TC]'f;Od) = v, {TIL:}QEY7 {TPQ}QGY)7

where TC!_, is a category equivalent to the model C, _; in Definition 10.4, Prime(TC ;) =

V is a bijection of sets, T]—"g is the reconstructed object from the above local data

gl. to loc.
T]—" and Tp, : becw . — OF et is an isomorphism of topological monoids (Here

TCF is the reconstructed object from the above local data T}" ) such that there ex-
ists an isomorphism of quadruples g mod = mod- We write TStheta, TS'{) for the

algorithmically reconstructed object from TS‘I;O q corresponding to the model objects
(i.e., the objects without T).

Definition 10.8.  (©-link, [[UTchI, Corollary 3.7 (i)]) Let THT® = ({Tf Yoev, I 1),

IHTO = ({i]—' boev, 13 4) be ©-Hodge theatres (with respect to the fixed initial ©-
data). We call the full poly-isomorphism (See Section 0.2)

full poly
~, f
gtheta grnod

the ®-link from "H7 to *H7T (Note that the full poly-isomorphism is non-empty), and

we write it as
e

fur® = ur7e,
and we call this diagram the Frobenius-picture of ®-Hodge theatres ([IUTchlI,
Corollary 3.8]). Note that the essential meaning of the above link is

« QT ~ qN ”

=
for v € YPad,

Remark 10.8.1.  ([IUTchI, Corollary 3.7 (ii), (iii)])

1. (Preservation of D7) For each v € V, we have a natural composite full poly-

isomorphism
full poly

~

fpl 5 1pd = iDL,
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where the first isomorphism is the natural one (Recall that it is tautological for
v € V&°°4 and that it is induced by (—) xzv forv € ybad), and the second full poly-
isomorphism is the full poly-isomorphism of the ©-link. Hence, the mono-analytic
base "Dg " is preserved (or “shared”) under the O-link (i.e., DZ is horizontally coric).
Note that the holomorphic base “D,” is not shared under the ©-link (i.e., ©-link
shares the underlying mono-analytic base structures, but not the arithmetically
holomorphic base structures).

2. (Preservation of O*) For each v € V, we have a natural composite full poly-

isomorphism
full poly
0% 5 0%a > Ol
where the first isomorphism is the natural one (Recall that it is tautological for
v € V&8°9 and that it is induced by (—) x gv for v € V"), and the second full
poly-isomorphism is induced by the full poly-isomorphism of the ©-link. Hence,
@y X »

o is preserved (or “shared”) under the ©-link (i.e., OCXF is horizontally coric).

Note also that the value group portion is not shared under the ©-link.

We can visualise the “shared” and “non-shared” relation as follows:

D, |- —>| (DL ~ 05, ) = (D ~ 0% ) |<— - 'D,

We call this diagram the étale-picture of ®-Hodge theatres ([IUTchl, Corollary
3.9]). Note that, there is the notion of the order in the Frobenius-picture (i.e., T(—) is
on the left, and *(—) is on the right), on the other hand, there is no such an order and it
has a permutation symmetry in the étale-picture (See also the last table in Section 4.3).

This ©-link is the primitive one. We will update the ©-link to ©*#-link, © 2/ -link
(See Corollary 11.24), and O &p-link (resp. @[ng—link) (See Definition 13.9 (2)) in inter-
universal Teichmiiller theory :

“Hodge-Arakelov theoretic eval.” “log -link”
~

Opai-link > Ofp-link (resp. O f-link).

gau

O-link
“theta fct.——>theta values”

and OX—O* /pu

Definition 10.9.  ([IUTchI, Definition 4.1 (i), (iii), (iv) Definition 5.2 (i), (ii),
(iii), (iv)])
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1. (D:holomorphic, base) A holomorphic base-prime-strip, or D-prime-strip is
a collection
D= {TDE}QEY

of data such that TD, is a category equivalent to the model D, in Definition 10.2
(1) for v € V™" and TD, is an Aut-holomorphic orbispace isomorphic to the model
D, in Definition 10.2 (1). A morphism of D-prime-strips is a collection of

morphisms indexed by V between each component.

2. (D" :mono-analytic, base) A mono-analytic base-prime-strip, or D" -prime-
strip is a collection
TKDF = {TDZ}QEY

of data such that TDZ is a category equivalent to the model DZ in Definition 10.2
(2) for v € V™" and TDZ is a split monoid isomorphic to the model D} in Defi-

nition 10.2 (2). A morphism of D" -prime-strips is a collection of morphisms
indexed by V between each component.

3. (F :holomorphic, Frobenioid-theoretic) A holomorphic Frobenioid-prime-strip,
or F-prime-strip is a collection

TS = {TFE}EGY

of data such that TF, is a pre-Frobenioid isomorphic to the model C, (not F,) in
Definition 10.2 (3) for v € V*** and TF, = ('C,, D,, 'k, ) is a triple of a category,
an Aut-holomorphic orbispace, and a Kummer structure, which is isomorphic to
the model £ in Definition 10.2 (3). An isomorphism of F-prime-strips is a

collection of isomorphisms indexed by V between each component.

4. (F"© :mono-analytic, Frobenioid-theoretic) A mono-analytic Frobenioid-prime-
strip, or F'-prime-strip is a collection

TS'_ = {T}-z'):}yey

of data such that TF is a ug-split pre-Frobenioid (resp. split pre-Frobenioid)

v

isomorphic to the model FI in Definition 10.2 (6) for v € V" (resp. v € V&°°9 n
Vo) and T]-Z = (TCZ, TD;E, TsplZ) is a triple of a category, a split monoid, and a
splitting of TC,, which is isomorphic to the model ]55 in Definition 10.2 (6). An
isomorphism of F"-prime-strips is a collection of isomorphisms indexed by V

between each component.

5. (F" : global realified with localisations) A global realified mono-analytic Frobenioid-
prime-strip, or F'"-prime-strip is a quadruple

5 = (¢, Prime(fC") 3V, 1§, {Tpu}uey).
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where TC" is a pre-Frobenioid isomorphic to the model C!. _, in Definition 10.4,
gl. to loc.

~

Prime(TC'") = V is a bijection of sets, T§" is an F"-prime-strip, and Tp, : Sicr, —>
(I)]}SC" is an isomorphism of topological monoids (Here, TC'E_ is the object recon-

I+
mod

structed from T]-"'Q_ ), such that the quadruple T§'" is isomorphic to the model §
in Definition 10.4. An isomorphism of F'"-prime-strips is an isomorphism of

quadruples.

6. Let Autp(—), Isomp(—, —) (resp. Autpr(—), Isompr (—, —) resp. Autxz(—), Isomz(—, —)
resp. Autz-(—), Isomz-(—,—) resp. Autzr(—), Isomzr(—,—)) be the group of
automorphisms of a D-(resp. D'-, resp. F-, resp. F' -, resp. JF'-)prime-strip,
and the set of isomorphisms between D-(resp. D'-, resp. F-, resp. F' -, resp.
F'F-)prime-strips.

Remark 10.9.1.  We use global realified prime-strips with localisations for cal-
culating (group-theoretically reconstructed) local log-volumes (See Section 5) with the
global product formula. Another necessity of global realified prime-strips with locali-
sations is as follows: If we were working only with the various local Frobenioids for
v € V (which are directly related to computations of the log-volumes), then we could
not distinguish, for example, p;'Of, from O, with m € Z for v € V", since the iso-
morphism of these Frobenioids arising from (the updated version of) ©-link preserves
only the isomorphism classes of objects of these Frobenioids. By using global realified
prime-strips with localisations, we can distinguish them (cf. [[UTchIII, (xii) of the proof
of Corollary 3.12]).

Note that we can algorithmically associate D"-prime-strip T®" to any D-prime-
strip D and so on. We summarise this as follows (See also [[lUTchl, Remark 5.2.1 (i),

(iD)]):

tHTO TF D
3 [ — U

Lemma 10.10.  ([IUTchI, Corollary 5.3, Corollary 5.6 (i)])

1. Let 'F®, 2F® (resp. LF®, 2F®) be pre-Frobenioids isomorphic to the global non-
realifed Frobenioid TF® (resp. TF®) in Evample 9.5 , then the natural map

Isom(* F® 2F®) — Isom(Base(! F®), Base(2F®))
(resp. Isom(*F® 2F®) — Isom(Base(' F®), Base(*F®)) )

is bijective.
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2. For F-prime-strips '§, 2§, whose associated D-prime-strips are *D, 2D respectively,

the natural map
Isomz('F,%¥) — Isomp (1D, ?D)

is bijective.

3. For F-prime-strips ‘g, 2§, whose associated D" -prime-strips are 1", 20"
respectively, the natural map

Isomz (1§, 25"7) — Isompr (10", 200)
s bijective.

4. Forv e ybad, let év be the tempered Frobenioid in Example 8.8, whose base category
is D, then the natural map

Aut(E ) — Aut(Dy)

s bijective.

5. For Th-Hodge theatres 17{7@, 27—[79, whose associated D-prime-strips are D,

2D respectively, the natural map
Isom(*HT°,2HT®) — Isomp('D~,2D-)
1$ bijective.

Proof. (1) follows from the category-theoretic construction of the isomorphism
M®(TD®) 5 TM® in Example 9.5. (2) follows from the mono-anabelian reconstruction
algorithms via Belyi cuspidalisation (Corollary 3.19), and the Kummer isomorphism
in Remak 3.19.2) for v € V""" and the definition of the Kummer structure for Aut-
holomorphis orbispaces (Definition 4.6) for v € V*°. (3) follows from Proposition 5.2
and Proposition 5.4. We show (4). By Theorem 3.17, automorphisms of D, arises from
automorphisms of X " thus, the surjectivity of (4) holds. To show the injectivity of
(4), let a be in the kernel. Then it suffices to show that o induces the identity on the
rational functions and divisor monoids of £ . By the category-theoretic reconstruction
of cyclotomic rigidity (See isomorphism (Cyc. Rig. Frd)) and the naturality of Kummer
map, (which is injective), it follows that « induces the identity on the rational functions
of £ . Since « preserves the base-field-theoretic hull, @ also preserves the non-cuspidal
portion of the divisor of the Frobenioid theoretic theta function and its conjugate (these
are preserved by « since we already show that « preserves the rational function monoid
of £ ), hence a induces the identity on the non-cuspidal elements of the divisor monoid
of ;U. Similary, since any divisor of degree 0 on an elliptic curve supported on the
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torsion points admits a positive multiple which is principal, it follows that « induces
the identityo on the cuspidal elements of the divisor monoid of £ , as well. by considering
the cuspidal portions of divisor of a suitable rational functions (these are preserved by
a since we already show that o preserves the rational function monoid of ). (Note
that we can simplify the proof by suitably adding J , more data, and considering the
isomorphisms preserving these data. See also the remark given just before Theorem 8.14

and [IUTchl, Remark 3.2.1 (ii)]). (5) follows from (4). O

Remark 10.10.1.  ([IUTchI, Remark 5.3.1]) Let '§, 2§ be F-prime-strips, whose
associated D-prime-strips are '®, 29 respectively. Let

b: 1D =20

be a morphism of D-prime-strips, which is not necessarily an isomorphism, such that all
of the v(€ ngOd)—components are isomorphisms, and the induced morphism ¢" : 19" —
2®" on the associated D" -prime-strips is also an isomorphism. Then ¢ uniquely lifts to

an “arrow”
1 2
¢ . S — Sa

which we say that v is lying over ¢, as follows: By pulling-back (or making categorical
fiber products) of the (pre-)Frobenioids in 2§ via the various v(€ V)-components of ¢,
we obtain the pulled-back F-prime-strip ¢*(2F) whose associated D-prime-strip is tau-
tologically equal to !®. Then this tautological equality uniquely lifts to an isomorphism
1% 5 ¢*(2F) by Lemma 10.10 (2):

pull back

Iz T ¢*(2g) — 2%

N

1D 29,

Definition 10.11.  ([IUTchI, Definition 4.1 (v), (vi), Definition 6.1 (vii)]) Let
D@ (resp. TD®%) is a category equivalent to the model global object D® (resp. DOF)
in Definition 10.3.

1. Recall that, from "D® (resp. "D®%), we can group-theoretically reconstruct a set
V(ID®) (resp. V(ID®*)) of valuations corresponding to V(K ) by Example 9.5 (resp.
in a slimilar way as in Example 9.5, i.e., firstly group-theoretically reconstructing
an isomorph of the field F from m;(TD®*) by Theorem 3.17 via the ©-approach
(Definition 9.4), secondly group-theoretically reconstructing an isomorph V(fD®%)
of V(F) with 71 ('D®%)-action, by the valuations on the field, and finally consider
the set of my (TD®%)-orbits of V(IDOF)).
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For w € V(TD®)3 ¢ (resp. w € V(IDO*)ar¢) by Proposition 4.8 and Lemma 4.9, we
can group-theoretically reconstruct, from "D® (resp. "D®*), an Aut-holomorphic

orbispace
C('D%w) (resp. X("DOF,w) )

corresponding to C,, (resp. Xy)' For an Aut-holomorphic orbispace U, a mor-
phism
U— "D® (resp. U— DO )

is a morphism of Aut-holomorphic orbispaces U — C(fD®, w) (resp. U — X(1D®*, w))
for some w € V(ID®)2r¢ (resp. w € V(ID@*)are),

2. For a D-prime-strip "D = {ID,},cv, a poly-morphism
i PN tpo (resp. D poly fpo )

is a collection of poly-morphisms {ID, poly DO} ey (resp. {ID, poly DOEY v)
indexed by v € V (See Definition 6.1 (5) for v € V"°" and the above definition in
(1) for v € V*°).

3. For a capsule D = {¢*D}.cg of D-prime-strips and a D-prime-strip 1D, a poly-
morphism

Eg PN tpo (resp. ¥® poly fDOE  resp. FD POl 1y )

is a collection of poly-morphisms {¢® poly D@ cp (resp. {¢D poly DO*} cp,
resp. {¢® poly "D}ecr).

Definition 10.12.  ([IUTchII, Definition 4.9 (i), (iii), (iv), (v), (vi), (vii), (viii)])
Let 1§ = {i}',:): }yev be an F-prime-strip with associated D" -prime-strip D" =
{ipz }QGY'

1. Recall that i]—j’; is a poi-split pre-Frobenioid (resp. a split pre-Frobenioid, resp. a

triple (*C1, iDE, isplZ)) for v € VP (resp. v € V&° N V™" resp. v € V7). Let
t AL be a universal covering pro-object of ¥*D! | and put *G := Aut(*A,.) (hence,

v

'@ is a profinite group isomorphic to G,). For v € VP (resp. v e V8ol nyon),
let

0+ (*Ax) (C 0% (FAx))
denote the submonoid generated by pg;(*As) and the image of the splittings on

v

i]—"f (resp. the submonoid determined by the image of the splittings on i]—“; ), and
put

O»GAOO) = OL(.JFAOO)/H%(JEAOO) (resp. O>(1Aoo) = Ol(iAoo) )a
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and
O™ H(FAy) = 0" (FAs)xO*H(FAy) (resp. O™ H(FAy) := O% (FAo)xO*H(FAL) ).

These are equipped with natural *G-actions.

Next, for v € V™", we can group-theoretically reconstruct, from *@, ind-topological
modules *G ~ OX(}G), *G ~ O**(*@) with G-action, by Proposition 5.2 (Step 1)
(See Definition 8.5 (1)). Then by Definition 8.5 (2), there exists a unique Z*-orbit
of isomorphisms

poly

X 07(@) 5 0% (FAy)

of ind-topological modules with *G-actions. Moreover, %ZX induces an Isomet-orbit

poly

bhxn . oxrt@) 5 0*M(FAL)

of isomorphisms.

For v € V*°", the rational function monoid determined by O™ *#(*A_,)8P with *G-
action and the divisor monoid of i]—"£ determine a model Frobenioid with a splitting.
The Isomet-orbit of isomorphisms iliZX“ determines a x u-Kummer structure (Def-
inition 8.5 (2)) on this model Frobenioid. For v € V" (resp. v € V*), let

if£>><u

denote the resulting split- x y-Kummer pre-Frobenioid (resp. the collection of data
obtained by replacing the split pre-Frobenioid *C, in *F- = (*C!, D!, isplg ) by the
inductive system, indexed by the multiplicative monoid Iglzl, of ;plit I;re—Frgbenioids
obtained from iCZ by taking the quotients by the N-torsions for N € N>;. Thus,
the units of the split pre-Frobenioids of this inductive system give rise to an in-
ductive system - -+ — O*FPN(Ay) = -+- = OFFNM(A ) — ---, and a system of
compatible surjections {(*DL)* — O**N(Ax)}nens, (Which can be regard as a
kind of Kummer structure on 1.7-"5 > 1) for the split monoid iDZ ), and, by abuse of
notation,

1-7:'2_

for the split- x-Kummer pre-Frobenioid determined by the split pre-Frobenioid 1}"5
with the x-Kummer structure determined by ilizx.

. Put
igkbxu — {ij:vkbxu}vev

Let also
B = ey (resp. T = (M ey )
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denote the collection of data obtained by replacing the various split pre-Frobenioids
of ¥F" (resp. *F"™*#) by the split Frobenioid with trivial splittings obtained
by considering the subcategories determined by morphisms ¢ with Div(¢) = 0
(i.e., the “units” for v € V"°") in the pre-Frobenioid structure. Note that 1.7-"5 x
(resp. 1.7:1'): *H) is a split-x-Kummer pre-Frobenioid (resp. a split-x y-Kummer pre-
Frobenioid).

3. An F"X-prime-strip (resp. an F'" XK-prime-strip, resp. an F'»*K-prime-

strip) is a collection
*g}—x — {*fl):)(}yey (resp' *S'—Xu — {*-FL:XM}EGY7 resp. *gl—bxu — {*ngxu}yey )

of data such that *F5 X (resp. *F/ XK resp. *F »*H) is isomorphic to F!
(resp. FFLXH resp. i.%g’x“) for each veV. An is;)morphism of .’F"X-prin;e-
strips (rgsp. .’F'_X-priime-strips, resp. FX-prime-strips) is a collection of
isomorphisms indexed by V between each component.

4. An F'">Xk_prime-strip is a quadruple
*Fxr = (*¢", Prime(*C") SV, *F M {*pytoev)

where *C'" is a pre-Frobenioid isomorphic to the model C;Od in Definition 10.4,

Prime(*C"™) 5 V is a bijection of sets, *F»*# is an F"»*H-prime-strip, and *p, :
gl. to loc.

D.cr = CID]}?C; is an isomorphism of topological monoids (Here, *C£ is the

object reconstructed from * F®»XH1) such that the quadruple *F" is isomorphic to

the model F' . in Definition 10.4. An isomorphism of F'™Xt_prime-strips is

a collection of isomorphisms indexed by V between each component.

5. Let Autz-x (=), Isomz-x (—, —) (resp. Autz-x.(—), [somzrxu(—, —) resp. Autzrwxu(—),
Isomzrexu(—, —) resp. Autzrwxu(—), ISomzirwexu(—, —)) be the group of automor-
phisms of an F~*-(resp. F' *H-, resp. F'®XK- resp. F'»*K.)prime-strip, and
the set of isomorphisms between F© *-(resp. F'*H-, resp. F'»*H- resp. F''»XH-

)prime-strips.

Remark 10.12.1.  In the definition of ifg’xl‘ for v € V**° in Definition 10.12, we
consider an inductive system. We use this as follows: For the crucial non-interference
property for v € V*" we use the fact that the p,-adic logarithm kills the torsion
u(—=) € O*(—). However, for v € V¥ the Archimedean logarithm does not kill the
torsion. Instead, in the notation of Section 5.2, we replace a part of log-link by k™~ —
(0% )8 — (0% )8 /un (k) and consider k™ as being reconstructed from (O} )8P/un (k),
not from (O )P, and put weight N on the corrsponding log-volume. Then there is no
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problem. See also Definition 12.1 (2), (4), Proposition 12.2 (2) (cf. IUTchIII, Remark
1.2.1]), Proposition 13.7, and Proposition 13.11.

Definition 10.13.  ([IUTchIII, Definition 2.4])

1. Let
13'_ = {i}—z'):}yey

be an F"-prime-strip. Then by Definition 10.12 (1), for each w € Y"*, the splittings
of the iz-split-Frobenioid ¥ F', determine submonoids O+(—) C O™ (—) and quo-
tient monoids O+ (—) —» O’(:) = O+ (—)/O*(=). Similarly, for each w € V&°¢,
the splitting of the split Frobenioid *F', determines a submonoid O+(—) C O>(-).
In this case, we put O*(—) := OL(—).iLet

B = A her, 8 = (PR ey

denote the collection of data obtained by replacing the pg-split/split Frobenioid
portion of each i}"g by the pre-Frobenioids determined by the subquotient monoids
O+(—) c O™ (—) and O™ (—), respectively.

2. An F"‘-prime-strip (resp. an F"»-prime-strip) is a collection
= {"F Yeey (vesp. *FT = {"F, " buev )

of data such that *.FQL (resp. *.7-"5’) is isomorphic to 1]_—5¢ (resp. i]—"5’) for each
v € V. An isomorphism of F™1-prime-strips (resp. F™»-prime-strips) is a

collection of isomorphisms indexed by V between each component.
3. An F"t-prime-strip (resp. F'"»-prime-strip) is a quadruple

T = (¢, Prime(*C") 3V, *F, (*putuev)

(resp. *F = (*C‘F, Prime(*C'F) 3V, 5, {*pvtvev) )

where *C'" is a pre-Frobenioid isomorphic to the model C;Od in Definition 10.4,

Prime(*C'") = V is a bijection of sets, *F + (resp. *F ™) is an F"t-prime-strip
gl. to loc.

(resp. F™»-prime-strip), and *p, : e 4 = (I)]BCF is an isomorphism of topo-

logical monoids (Here, *Cg is the object reconstructed from *.7-"5 L (resp. *.7:'2_ ™)),

such that the quadruple *§"+ (resp. *F"™) is isomorphic to the model ", in Def-

inition 10.4. An isomorphism of F'"1-prime-strips (resp. F'™-prime-strips)

is a collection of isomorphisms indexed by V between each component.



218

GO YAMASHITA

§10.4. The Multiplicative Symmetry X: ©@NF-Hodge Theatres and NF-,

©-Bridges.

We begin constructing the multiplicative portion of full Hodge theatres.

Definition 10.14.  ([IUTchI, Definition 4.1 (i), (ii), (v)]) Let "® = {ID, },ev be

a D-prime-strip.

1.

For v € VP (resp. v € V&°°4 N V™) we can group-theoretically reconstruct
in a functorial manner, from ("D, ), a tempered group (resp. a profinite group)
(D m1(TD,)) corresponding to C, by Lemma 7.12 (resp. by Lemma 7.25). Let

TD'U

denote its B(—)°. We have a natural morphism D, — "D, (This corresponds to
éﬂ — C, (resp. X - C,)). Similarly, for v € V**, we can algorithmically
reconstruct, in a functorial manner, from 'D,, an Aut-holomorphic orbispace 1D,
corresponding to C, by translating Lemma 7.25 into the theory of Aut—holomorphig
spaces (since X, admits a K,-core) with a natural morphism "D, — D . Put

TQ = {TQQ}QEY'

. Recall that we can algorithmically reconstruct the set of conjugacy classes of cuspi-

dal decomposition groups of 7 ("D,) or 71 (1D,) by Corollary 6.12 for v € yPad Ty
Corollary 2.9 for v € V&°°4 N Y"1 and by Con;idering mo(—) of a cofinal collection
of the complements of compact subsets of the underlying topological space of TD2
or 'D, for v € V*°. We say them the set of cusps of "D, or TD,.

For v € V, a label class of cusps of "D, is the set of cusps of "D, lying over
a single non-zero cusp of "D, (Note that each label class of cusps consists of two
cusps). We write -

LabCusp("D,)

for the set of label classes of cusps of "D,. Note that LabCusp(1D,) has a natural
F;*-torsor structure (which comes from the action of F;* on @ in the definition of X
in Section 7.1). Note also that, for any v € V, we can algorithmically reconstruct a
canonical element

Tﬂv € LabCusp('D,)

corresponding to €, in the initial ©-data, by Lemma 7.16 for v € ybad, Lemma 7.25
for v € V8°°4 N V™" and a translation of Lemma 7.25 into the theory of Aut-
holomorphic spaces for v € V*.
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(Note that, if we used "D, (i.e., “C,”) instead of TD, (i.e., ‘X ”) for v € V&8I N
= = = v
V*", then we could not reconstruct Tﬂv' In fact, we could make the action of

the automorphism group of TQQ on LabCusp transitive for some v € Y&°°9 0 yron,
by using Chebotarev density theorem (i.e., by making a decomposition group in
Gal(K/F) — GLy(IF;) to be the subgroup of diagonal matrices with determinant
1). See [IUTchI, Remark 4.2.1].)

3. Let "D® is a category equivalent to the model global object D® in Definition 10.3.
Then by Remark 2.9.2, similarly we can define the set of cusps of "D® and the
set of label classes of cusps

LabCusp(TD®),
which has a natural Fl*—torsor structure.
From the definitions, we immediately obtain the following proposition:

Proposition 10.15.  ([IUTchI, Proposition 4.2]) Let 1® = {ID,},ev be a D-
prime-strip. Then for any v,w € V, there exist unique bijections

LabCusp("D,) = LabCusp('D,,)

which are compatible with the Ff—torsor structures and send the canonical element Tﬂv

to the canonical element Tﬂw‘ By these identifications, we can write

LabCusp('®)

for them. Note that it has a canonical element which comes from Tﬂu ’s. The F}*-torsor
structure and the canonical element give us a natural bijection B

LabCusp("D) & F}*.
Definition 10.16. (Model D-NF-Bridge, [I[UTchl, Example 4.3]) Let
Aut. (Cr) CAut(Cg) = Out(HQK) =~ Aut(D®)

denote the subgroup of elements which fix the cusp € (The firs isomorphisms follows
from Theorem 3.17). By Theorem 3.7, we can group-theoretically reconstruct Ax from
llg, . We obtain a natural homomorphism

Out(Ilg, ) — Aut(AY @ Fy)/{£1},

since inner automorphisms of II¢  act by multiplication by +1 on E%[l]. By choosing
a suitable basis of A% ® F;, which induces an isomorphism Aut(A% ® F;)/{£1} =
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GLo(F;)/{+£1}, the images of Aut.(C ) and Aut(Cy) are identified with the following

subgroups
{ (3 ;) } = { (; :) } C Im(Gp,,,) (D SLao(F,)/{*1})

of GLy(F;)/{£1}, where Im(Gp,, ,) C GLo(FF;)/{£1} is the image of the natural action
of Gr. .. = Gal(F/Fyoq) on E#[l]. Put also

VAR = Aut (Cr) -V C VB = Aut(Ck) -V C V(K).
Hence, we have a natural isomorphism
Aut(Cr)/Aut(C) = FF,

thus, VB is the F;*-orbit of Y+, By the above discussions, from 7 (D?®), we can

group-theoretically reconstruct
Aut (D®) C Aut(D®)

corresponding to Aut.(Cy) C Aut(Cg) (See also Definition 10.11 (1), (2)).
For v € VP (resp. v € yeood nymon regp. v € Vo), let

NF . ©
ey : Dy =D

denote the natural morphism correponding to X . C, — Ck (resp. 52 —C, = Ck,

resp. a tautological morphism D, = X ' — C, = C(D®,v)) (See Definition 10.11 (1)).
Put a
SNF = Aut (D) o 6)F o Aut(D,) : D, 22 DO,

Let ©; = {ng }vev be a copy of the tautological D-prime-strip {D, }yev for each
j € F (Here, v; denotes the pair (j,v)). Put

ol
= {ngF}gey D X pe

(See Definition 10.11 (2)). Since ¢)'F' is stable under the action of Aut.(D®), we obtain
a poly-morphism

gf)?lF := (action of j) o #Y'F : D, poly D,

by post-composing a lift of j € F;* = Aut(D®)/Aut(D®) to Aut(D®). Hence, we
obtain a poly-morphism

ol
¢§F = {¢3NF}j€]Fl* Dy = {,Dj}jelﬁ‘l* oY pe
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from a capsule of D-prime-strip to the global object D® (See Definition 10.11 (3)). This
is called the model base-(or D-)NF-bridge. Note that ¢} is equivariant with the
natural poly-action (See Section 0.2) of IFZ* on D® and the natural permutation poly-
action of F}* (via capsule-full poly-automorphisms (See Section 0.2)) on the components
of the cupsule D. In particular, we obtain a poly-action of F;* on (D, D®, oNF).

Definition 10.17.  (Model D-0-Bridge, [[UTchI, Example 4.4]) Let v € V",
Recall that we have a natural bijection between the set of cusps of C, and |F;| by
Lemma 7.16. Thus, we can put labels (€ |F;|) on the collections of cusps of X v X, by
considering fibers over C',. Let -

p- € X, (Ky)

denote the unique torsion point of order 2 such that the closures of the cusp labelled
0 € |F;| and p— in the stable model of X, over O, intersect the same irreducible
component of the special fiber (i.e., “—1” in Grie /q%( ). We call the points obtained
by translating the cusps labelled by j € |F;| by u— ;vvfth respect to the group scheme
structure of £, (D X)) (Recall that the origin of E, is the cusp labelled by 0 € [F;|) the
evaluation points of X, labelled by j. Note that the value of Qv in Example 8.8

at a point of zv lying over an evaluation point labelled by j € |F,;| is in the pg-orbit of

)
J
X JEZ such that j=j in |F,]

,'2/2

. ' - —5%/2 g
by calculation © (\/ —qi) = (—l)iqgi / Vv—1 2£(9(\/—1) = qgg in the notation

of Lemma 7.4 (See the formula é(qimU) = (—1)iq_1/20_2é(U) in Lemma 7.4). In
particular, the points of X . lying over evaluation points of X, are all defined over
Ky, by the definition of X Ui—> X, (Note that the image of a point in the domain of

. (covering map,@) .
Y < Y x Al is rational over K,, then the point is rational over K,. See

also Assumption (5) of Definition 7.13). We call the points in X(K,) lying over the
evaluation points of X, (labelled by j € |F,|) the evaluation points of X (labelled
by j € |F|). We also call the sections G, — II,(= Iy ) given by the evaluation
points (labelled by j € |F;|) the evaluation section of II, 5 G, (labelled by j € |F]).
Note that, by using Theorem 3.7 (elliptic cuspidalisation) and Remark 6.12.1 (together
with Lemma 7.16, Lemma 7.12), we can group-theoretically reconstruct the evaluation
sections from (an isomorph of) IL,.
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Let ®~ = {D> w}wev be a copy of the tautological D-prime-strip {Dy, }wey. Put

st@ ::Aut(D>,v) o (Btemp(nv)o Hzﬂal B(Kv)o f\:lils_ceiciion‘ Btemp(Hv)O) o Aut(Dv,)
=j = = - abelled by j - -

: D, XD,

Note that the homomorphism 71(Dy,) — m1(D>,,) induced by any constituent of the
poly-morphism (ij (which is well-defined up to inner automorphisms) is compatible
with the respective outer actions on 77°°(D,,) and 77*°(Ds ) (Here 7§ denotes the
geometric portion of 71, which can be group-theoretically reconstructed by Lemma 6.2)
for some outer isomorphism 77°°(Dy, ) = 78°°(D> ) (which is determined up to finite
ambiguity by Remark 6.10.1). We say this fact, in short, as ¢Sj is compatible with the
outer actions on the respective geometric tempered fundamental groups.

Let v € V&°°4, Put

full poly
¢y Dy S Dsy

Y

to be the full poly-isomorphism for each j € F},
ol
¢S = {¢Sj}gey 9 =X D,

and

ol

This is called the model base-(or D-)®-bridge (Note that this is not a poly-isomorphism).
Note that © 4 has a natural permutation poly-action by Ffé, and that, on the other hand,

the labels € |F;| (or € LabCusp(®+)) determined by the evaluation sections correspond-

ing to a given j € F}" are fixed by any automorphisms of D- .

Definition 10.18. (D-NF-Bridge, D-O-Bridge, and D-K-Hodge Theatre, [[UTchI,
Definition 4.6])

1. A base-(or D-)NF-bridge is a poly-morphism
FNF . i poly D@,

where TD® is a category equivalent to the model global object D®, and T® ; is a cup-
sule of D-prime-strips indexed by a finite set J, such that there exist isomorphisms
D® 5 D9 D, 5 1D, conjugation by which sends d)iF — T¢§F. An isomor-
phism of D-NF-bridges (Tgbl;F i, Py TD©) ~ (%lj:f L1, P ip@) is a

capsule-full poly

pair of a capsule-full poly-isomorphism 9 ; = 19 7 and an Autg(TD@)—
poly
orbit (or, equivalently, an Aut.(*D®)-orbit) "D® 5 #D® of isomorphisms, which
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are compatible with T(bI;iF, i(bI;iF. We define compositions of them in an obvious

manner.

2. A base-(or D-)O-bridge is a poly-morphism

o0 19, 2 o,

x

where "®. is a D-prime-strip, and T®; is a cupsule of D-prime-strips indexed
by a finite set J, such that there exist isomorphisms ®~ = T®., Dy 5 D,
conjugation by which sends gzﬁg — T(bg. An isomorphism of D-O®-bridges
(Tqﬁg 1D poly T©>> = (%52 D poly ¢@>> is a pair of a capsule-full poly-

capsule-full poly full poly

~ ~

isomorphism ™ ; — '9 7 and the full-poly isomorphism D. 5
19, which are compatible with T(bg, ¢¢>§2. We define compositions of them in an

obvious manner.

3. A base-(or D-)©®NF-Hodge theatre (or a D-X-Hodge theatre) is a collection
NP 19
Ty P-® _ (TDC@ f’_* T@J & T@>) ,

where T¢§F is a D-NF-bridge, and Tgbg is a D-O-bridge, such that there exist iso-
morphisms D® 5 D9 D, 5 1®;, ©. 5 T®., conjugation by which sends
PN — ToNF ) 69 — 162, An isomorphism of D-X-Hodge theatres is a pair
of isomorphisms of D-NF-bridges and D-O-bridges such that they induce the same
bijection between the index sets of the respective capsules of D-prime-strips. We

define compositions of them in an obvious manner.

Proposition 10.19. (Transport of Label Classes of Cusps via Base-Bridges,

t NF

A 149
TUTchl, Proposition 4.7)) Let THTP® — (1p® &% 19, *519.) be o D-K-Hodge

theatre.

1. The structure of D-O-bridge T(bg at v € YPad involving the evaluation sections
determines a bijection
Tx : J S TFE

2. For j € J, v e V™" (resp. v e V), we consider the various outer homomor-
phisms Wl(TDyj) — m(TD®) induced by the (v, j)-portion TngN]F ; TDQJ, — D@ of
the D-NF-bridge Tgbl;lF. By considering cuspidal inertia subgroups of w1 (1D®) whose
unique subgroup of index | is contained in the image of this homomorphism (resp.
the closures in m, ("D®) of the images of cuspidal inertia subgroups of m(TDQj)
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(See Definition 10.14 (2) for the group-theoretic reconstruction of cuspidal inertia
subgroups for v € V*°)  these homomorphisms induce a natural isomorphism

LabCusp('D®) & LabCusp(TDyj)

of F[-torsors. These isomorphisms are compatible with the isomorphism LabCuSp(TDyj) =
LabCuSp(Tij) of B -torsors in Proposition 10.15 when we vary v € V. Hence,

we obtaine a natural isomorphism
LabCusp("D®) = LabCusp('®;)

of F* -torsors.

Neat, for each j € J, the various v(€ YV )-portions of the j-portion T¢j@ 1D, - TD.
of the D-O-bridge 1¢S determine an isomorphism

LabCusp("®,) = LabCusp('D)

of Ff—torsors. Therefore, for each j € J, by composing isomorphisms of ]Fl* -torsors

obtained via T¢?IF, Tgbj@, we get an isomorphism

TQZ%JC : LabCusp("D®) 5 LabCusp(1D-.)
of F[ -torsors, such that Tgb;“c is obtained from T¢¥C by the action by Tx(j) € F¥.

3. By considering the canonical elements Tﬂv € LabCusp(TDE) for v’s, we obtain a
unique element B
[Te] € LabCusp(TD®)

such that, for each j € J, the natural bijection LabCusp(T®s) = F* in Proposi-
tion 10.15 sends Tgbifc([Tg]) =ToMC(Tx(5) - [Te]) = Tx(4). In particular, the element

[te] determines an isomorphism
¢y : LabCusp("D®) 5 J (5 FfF)
of F* -torsors.

Remark 10.19.1.  (cf. [TUTchI, Remark 4.5.1]) We consider the group-theoretic
algorithm in Proposition 10.19 (2) for v € V. Here, the morphism 7 (TDyj) — m (TD®)
is only known up to 1 (D®)-conjugacy, and a cuspidal inertia subgroup labelled by an
element € LabCusp(TD®) is also well-defined up to 71 (TD®)-conjugacy. We have no
natural way to synchronise these indeterminacies. Let J be the unique open subgroup of
index [ of a cuspidal inertia subgroup. A nontrivial fact is that, if we use Theorem 6.11,
then we can factorise J — 1 (TD®) up to w1 (D®)-conjugacy into J < (TDyj) up to
Wl(TDyj )-conjugacy and Wl(TDyj) — m1("D®) up to 71 ("D?)-conjugacy (i.e., factorise

out

— m("D®)). This can be regarded as a partial

out

J & (D) as J X m(TD,)
synchronisation of the indeterminacies.
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Proof. 'The proposition immediately follows from the described algorithms. O
The following proposition follows from the definitions:

Proposition 10.20. (Properties of D-NF-Brideges, D-O-Bridges, D-X-Hodge
theatres, [IUTchl, Proposition 4.8])

1. For D-NF-bridges T1¢5", *¢LF, the set Isom (1o}, *¢LF) is an Ff -torsor.
2. For D-O-bridges 169, *¢2, we have #Isom(T¢JF #oJF) = 1.

3. For D-X-Hodge theatres "HTP®, *HTP™  we have #Isom(THTPH ty7PH) =
1.

4. For a D-NF-bridge T¢}Y and a D-O-bridge 1¢%, the set
capsule-full poly
{capsule-full poly-isom. T©; =595 by which Tgbl;iF, Tgbg form a D-X -Hodge theatre}

is an F}" -torsor.

5. For a D-NF-bridge SF we have a functorial algorithm to construct, up to F}-

indeterminacy, a D-X-Hodge theatre whose D-NF-bridge s TgbliF

Definition 10.21.  ([IUTchI, Corollary 4.12]) Let THTP®, *HTP¥® phe D-X-
Hodge theatres. the base-(or D-)@NF-link (or D-X-link)

fy7P® 2, ty7DPH

is the full poly-isomorphism
full poly

~

= H
Dt = ipf
between the mono-analyticisations of the codomains of the D-O-bridges.

Remark 10.21.1.  In D-K-link, the D" -prime-strips are shared, but not the arith-
metically holomorphic structures. We can visualise the “shared” and “non-shared”
relation as follows:

f7 PR — 5| fpD 2Dl |« — iy 7PH

We call this diagram the étale-picture of D-X-Hodge theatres. Note that we have

a permutation symmetry in the étale-picture.
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We constructed D-X-Hodge theatres. These are base objects. Now, we begin

constructing the total spaces, i.e., X-Hodge theatres, by putting Frobenioids on them.
: L 24 62

We start with the following situation: Let 1H7P® = (fp® & 19, —% 1D.)

be a D-X-Hodge theatre (with respect to the fixed initial ©-data). Let THT® =

({Tév}yey, i3 ) be a ©-Hodge theatre, whose associseted D-prime strip is equal to

mod
"D in the given D-X-Hodge theatre. Let T§~ denote the F-prime-strip tautologically
associated to (the {Tiv}yey -portion of) the ©-Hodge theatre "HT®. Note that D

can ben identified with the D-prime-strip associated to TF~:

THTG P TS>

I

THTD_g f— T®>

Definition 10.22.  ([IUTchI, Example 5.4 (iii), (iv)]) Let TF® be a pre-Frobenioid
isomorphic to F®(TD®) as in Example 9.5, where "D® is the data in the given D-X-
Hodge theatre THTP®. We put TF® := 1 F®|; po, and TFE = TF®| crminal object in 7D®
as in Example 9.5.

1. For § € LabCusp("D®), a §-valuation € V(D) is a valuation which lies in
the “image” (in the obvious sense) via T(bl;iF of the unique D-prime-strip TZDJ- of
the capsule 7D ; such that the bijection LabCusp("D®) = LabCusp(1®,) induced
by W)?IF sends § to the element of LabCusp("D;) = F} (See Proposition 10.15)
labelled by 1 € Fj* (Note that, if we allow ourselves to use the model object D,
then a d-valuation € V('D®) is an element, which is sent to an elemento of VX
V(K) under the bijection LabCusp(D®) = LabCusp(D®) induced by a unique
Aut (TD®)-orbit of isomorphisms "D® = D® sending & + [¢] € LabCusp(D®)).

2. For § € LabCusp("D®), by localising at each of the d-valuations € V(ID®), from
tF® (or, from ((TII®)at ~ TM®) = (1,(1D®) ~ O®*) in Definition 9.6), we can
construct an JF-prime-strip

Uy aC) B

which is well-defined up to isomorphism (Note that the natural projection yEum
Vimod is not injective, hence, it is necessary to think that TF|s is well-defined only
up to isomorphism, since there is no canonical choice of an element of a fiber of the
natural projection yEun Vimod) as follows: For a non-Archimedean d-valuation
v, it is the p,-adic Frobenioid associated to the restrictions to “the open subgroup”
of MI,, N w1 (TD?) determined by § € LabCusp(TD®) (i.e., corresponding to “X”

or “X”) (See Definition 9.6 for 'II, ). Here, if v lies over an element of VPad then
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we have to replace the above “open subgroup” by its tempered analogue, which can
be done by reconstructing, from the open subgroup of THpO N 71 (TD®), the semi-
graph of anabelioids by Remark 6.12.1 (See also [SemiAnbd, Theorem 6.6]). For an
Archimedean §-valuation v, this follows from Proposition 4.8, Lemma 4.9, and the
isomorphism M®(TD®) & TM® in Example 9.5.

. For an F-prime-strip *§ whose associated D-prime-strip is 1D, a poly-morphism

1 5 w tF®
full poly
is a full poly-isomorphism *§ — TF®|s for some § € LabCusp(TD®) (Note that
the fact that T F®|s is well-defined only up to isomorphism is harmless here). We
regard such a poly-morphism *§ POy t 7o g lying over an induced poly-morphism
) ﬂ D®. Note also that such a poly-morphism *F ﬂ T F@ is compatible
with the local and global . k-coric structures (See Definition 9.6) in the following
sense: The restriction of associated Kummer classes determines a collection of poly-
morphisms of pseudo-monoids
{(TH@)rat ~ TM?OH ﬂ iMmm C iMool{X’U}
ve
indexed by V, where the left hand side (TII®)™" ~ TM® _ is well-defined up to au-
tomorphisms induced by the inner automorphisms of (TII®)"* and the right hand
side Jtl\/JIOQ,.w - jFMOQ,{XW is well-defined up to automorphisms induced by the au-
tomorphisms of the F-prime strip *§. For v € V"°", the above poly-morphism is
equivariant with respect to the homomorphisms (*IT, )™ — (TTI®)*at (See Defini-
tion 9.6 (2) for (*II,)"") induced by the given poly-morphism *§ POl t Fo,

. For a capsule F = {°F} of F-prime-strips, whose associated capsule of D-prime-
strips is F®, and an F-prime-strip '§ whose associated D-prime-strip is D, a
poly-morphism

By PN 170 (resp. B RNt )
is a collection of poly-morphisms {¢F poly TFOYcp (resp. {¢F poly Z}ecr). We
consider a poly-morphism “F Poly + r® (resp. £F poly %) as lying over the induced
poly-morphism D Pl +p® (resp. £D poly D).

We return to the situation of

THTG P T3/>

I

TP D
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Definition 10.23. (Model ©-Bridge, Model NF-Bridge, Diagonal F-Objects,
Localisation Functors, [IUTchl, Example 5.4 (ii), (v), (i), (vi), Example 5.1 (vii)]) For
j€eJ,let TS"J- = {T]-"yj }jes be an F-prime-strip whose associated D-prime-strip is equal
to TD;. We also put 7§, := {T§;},cs (i-e., a capsule indexed by j € J).

Let TF® be a pre-Frobenioid isomorphic to F®(1D®) as in Example 9.5, where
fD® is the data in the given D-K-Hodge theatre THTP™. We put TF® := 1 F®|; po,
and TF® = TF®| minal object in 1D®, as in Example 9.5.

1. For j € J, let
ol
w,j@ 15, B 5

denote the poly-morphism (See Definition 10.22 (4)) uniquely determined by T¢;
by Remark 10.10.1. Put

ng = {T?vb?}je[ﬂ‘l* : T%’J ﬂ T;3">-

We regard T4 as lying over T¢9. We call 92 the model ©-bridge. See also the
following diagram:

19, 19, ~<——THTP R — 1D,

\_/

’r(lsjcf)7 T¢§
2. For j € J, let
NF . pol ®
fpNF 1, 2R F

denote the poly-morphism (See Definition 10.22 (3)) uniquely determined by ¢,
by Lemma 10.10 (2). Put

ol
TQ/G:I\!F = {T@bFF}je]Ffé 13, = TFe.

We regard TyLF as lying over T¢XF. We call TpXF the model NF-bridge. See also
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the following diagram:

[RVALNRETRE

...A

T‘Sjv TSJ TF@

| l

19, 10, < THTPH —— TDO,
T¢§_\7F7 T¢§F

3. Take also an F-prime-strip TSU) = {T}—Qm }3<J>GY<J>' We write TQU) for the
associated D-prime-strip to 'F ;. We write V,; := {v;}vev. We have a natural
bijection v, 5V v . These bijections determine the diagonal subset

Vi eV, =],
jed

which admits a natural bijection y< J) 5 V. Hence, we obtain a natural bijection

We have the full poly-isomorphism

full poly

~

T = 13
and the “diagonal arrow”

S — 15,

full poly

~

which is the collection of the full poly-isomorphisms T& 5 TS]- indexed by
j € J. We regard 1§, (resp. TS( 7)) as a copy of %< “situated on” the constituent
labelled by j € J (resp. “situated in a diagonal fashion on” all the consitutents) of
the capsule 7D ;.

We have natural bijections
Vi = V; 5 Prime("F2 ) = Vinod

for j € J. Put
FGy = {1 Foas Yy = Prime("F T )},

f FP = {1724, V; 5 Prime(" 72 1)}
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for j € J. We regard T}"j@) (resp. .7-"<J>) as a copy of T}"ﬁod “situated on” the
constituent labelled by j € J (resp. “situated in a diagonal fashion on” all the
consitutents) of the capsule 7®;. When we write TF?]) for the underlying cate-
gory (i.e., T.7-"5?0(1) of Tf8> by abuse of notation, we have a natural embedding of
categories

T s TF® . T ®

Foy = 17 =117

jeJ

Note that we do not regard the category T]—" ® as being a (pre-)Frobenioid. We write
T}"@R T F®R for the realifications (Definition 8.4) of TF¥

() ()

®R ®R
put T]—" HJEJ T]—"j )

tF <®J> respectively, and

Since T}"ﬁo q is defined by the restriction to the terminal object of "D any poly-
morphism TF Pl t ro (resp. T3, poly TF®) (See Definition 10.22 (3)) induces,
via restriction (in the obvious sense), the same isomorphism class

(T}-@_)T}-@D)T}-go T}-@>gl to loc. T]:

CASH

(resp. (FF® = TF® o) 1FS S TFp S 100 1, )

arc

of restriction functors, for each vy € y<J> (resp. v; € yj) (Here, for vy € Yo
(resp. v; € V§™), we write TF, v, (resp. T.7-"%) for the category component of
the triple, by abuse of notation), i.e., it is independent of the choice (among its
F}*-conjugates) of the poly-morphism TF;, — TF® (resp. TF; — TF®). See also
Remark 11.22.1 and Remark 9.6.2 (4) (in the second numeration). Let

(F® = 1F® o5 )IFS 5 TFE, 10 15

m

~ 1. loc.
(resp. (TFO 5 1F® o)iFe T iFe & 000 g, )

denote the collection of the above isomorphism classes of restriction functors, as
vy (resp. v;) ranges over the elements of V, ;) (resp. V,). By combining j € J,
we also obtain a natural isomorphism classes

Tff]’@ gl'tL;OC' T;S,J

of restriction functors. We also obtain their natural realifications

1. 1 1. loc. 1. loc.
nglsig to oc. TSR TF?Rg i}oc T&EI?; TFJ@Rg ti)OC TSE@
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Definition 10.24. (NF-Bridge, ©-Bridge, X-Hodge Theatre, [IUTchI, Defini-
tion 5.5))

1. an NF-bridge is a collection
£y NF
(i&] AN i 20NN i}“@)
as follows:

(a) *Fs = {}3;},es is a capsule of F-prime-strip indexed by J. We write D ; =
1.7 for the associated capsule of D-prime-strips.
¥D;} ey for th iated le of D-prime-stri

(b) *F@, *F® are pre-Frobenioids isomorphic toy *F®, ¥ F® in the definition of
the model NF-bridge (Definition 10.23), respectively. We write D@, ¥D® for
the base categories of *F®, ¥ F® respectively.

(c) The arrow --» consists of a morphism *D® — *D®  which is abstractly equiv-
alent (See Section 0.2) to the morphism "D® — TD® definition of the model
NF-bridge (Definition 10.23), and an isomorphism *F® 5 }F®|; pe.

(d) 1¢§F is a poly-morphism which is a unique lift of a poly-morphism iqbl;iF :
9, PN DO guch that toNF forms a D-NF-bridge.

Note that we can associate an D-NF-bridge idﬁiF to any NF-bridge ing. An
isomorphism of NF-bridges

1 yNF N 2 NF
<1-3:J1 S 1re 1./—"@) — <23'J2 5 2Fe 2f®)

is a triple

capsule-full poly poly

~

1 2 1 ~ 2 1 ~ 2
S7 — STy FO = .7:©, F® =27®

capsule-full poly poly
of a capsule-full poly-isomorphism 1§, — 257, (We write '1©,; —
poly
29, for the induced poly-isomorphism), a poly-isomorphism 1 F® =5 2F® (We
poly poly
write 1D® = 2D® for the induced poly-isomorphism) such that the pair '©; —
poly

~

29, and 'D® = 2D® forms a morphism of the associated D-NF-bridges, and
an isomoprhism 1F® — 2F®gsuch that this triple is compatible (in the obvious
sense) with 1¢§F, 2 QF, and the respective --+’s. Note that we can associate an
isomorphism of D-NF-bridges to any isomorphism of NF-bridges.
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2. A ©-bridge is a collection
iwg o
CRETa—

as follows:

(a) ¥Fs = {isj}jej is a capsule of F-prime-strips indexed by J We write D ; =
{#D,},es for the associated capsule of D-prime-strips.

(b) ¥HT® is a ©-Hodge theatre.

(c) 3~ is the F-prime-strip tautologically associated to IHT®. We use the no-
tation --» to denote this relationship between F~ and *H7©. We write D+
for the D-prime-strip associated to ¥Fs.

(d) 9 = {WJ? }jeF;:e is the collection of poly-morphisms iw? : 135 poly N
determined by a D-O-bridge ¢9 = {iqb? }jeF;:e by Remark 10.10.1.

Note that we can associate an D-O-bridge ¢S to any ©-bridge 1. An isomor-
phism of ®-bridges

(1&]1 5 *HT@) 5 (2&]2 525 Q”HT@)

is a triple
capsule-full poly full poly
Fn T W S T B, THTO T
capsule-full poly
of a capsule-full poly-isomorphism 1§ 7, — 2% 5, the full poly-isomorphism

poly
1F® =5 2F7© and an isomoprhism 'F® =5 2F® of HT-Hodge theatres, such that

this triple is compatible (in the obvious sense) with 149, 299, and the respective
--+’s. Note that we can associate an isomorphism of D-O-bridges to any isomor-
phism of ©-bridges.

3. A ©ONF-Hodge theatre (or X-Hodge theatre) is a collection

id}fﬁ

1. NF
17_[7‘|X _ (i/’.'@ - _ iJT_'@ ;l)_* I%’J X Isf> N .JLHT@> ’

£NF £0
where (i]-'@ - tFO <¢—9€ i&]) forms an NF-bridge, and (i&J k L SN i”;‘-[7’@)

forms a ©-bridge, such that the associated D-NF-bridge iqﬁiF and the associated
D-O-bridge ¢ form a D-K-Hodge theatre. An isomorphism of X-Hodge the-
atres is a pair of a morphism of NF-bridge and a morphism of ©-bridge, which
induce the same bijection between the index sets of the respective capsules of F-
prime-strips. We define compositions of them in an obvious manner.
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Lemma 10.25.  (Properties of NF-Brideges, ©-Bridges, X-Hodge theatres, [[UTchI,
Corollary 5.6])

1. For NF-bridges 'Y, 2¢XF (resp. ©-bridges 1@[152, zwg, resp. X-Hodge theatres
17—[7&, 27—[7&) whose associated D-NF-bridges (resp. D-O-bridges, resp. D-K-
Hodge theatres) are 1¢LF, 268 (resp. 109, 262, resp. 1y 7PH, QHTDM) respec-
tively, the natural map

Isom(lzpNF 2 F) — Isom( ngF 2 NF)
(resp. Isom(lw 2@[1*) —>Isom( ¢5® 2 2),

resp. Isom(*HT™ 2HTY) - Isom(*HTP® 2HTPH) )
s bijective.
2. For an NF-bridge ing and a O-bridge ing, the set
{ capsule-full poly

capsule-full poly-isom. *F; — *F; by which i@bgF, i¢§ form a X-Hodge theatre}

is an ] -torsor.

Proof. By using Lemma 10.10 (5), the claim (1) (resp. (2)) follows from Lemma 10.10
(1) (resp. (2)). O

§10.5. The Additive Symmetry B: @*°!l_Hodge Theatres and @¢!-,
©*-Bridges.
We begin constructing the additive portion of full Hodge theatres.

Definition 10.26.  ([I[UTchI, Definition 6.1 (i)]) We call an element of F;**
positive (resp. negative) if it is sent to +1 (resp. —1) by the natural surjction
F)* - {£1}.

1. An ]Fli-group is a set £ with a {£1}-orbit of bijections £ = F;,. Hence, any
F li-group has a natural F;-module structure.

2. An Fft-torsor is a set T with an F,;**-orbit of bijections T = F; (Here, F;" > (\, £1)
is actingg on z € F; via z — 4z + A). For an ]Fli—torsor T, take an bijection
f:T 5 Fy in the given Ffi—orbit, then we obtain a subgroup

Aut (T) (resp. Auto(T) )

of Aut(ges)(1) by transporting the subgroup F; = {z +— z + Afor A € F;} C
Aut (gets) (F7) (resp. IFIX'i = {2z 2z + Afor A € Fi} C Autges)(F7)) via f. Note
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that this subgroup is independent of the choice of f in its F fi—orbit. Moreover, any
element of Auty (7)) is independent of the choice of f in its F;-orbit, hence, if we
consider f up to Ffi—orbit, then it gives us a {4-1}-orbit of bijections Aut (T') =
Fy, i.e., Auty (7T) has a natural Fli—group structure. We call Auty (7") the Fli—group

of positive automorphisms of T'. Note that we have [Auty (7T); Aut,(7)] = 2.
The following is an additive counterpart of Definition 10.14

Definition 10.27.  ([IUTchI, Definition 6.1 (ii), (iii), (vi)]) Let ® = {TD,},ev
be a D-prime-strip.

1. For v € V"™ (resp. v € V&°4 N V™) we can group-theoretically reconstruct
in a functorial manner, from (D, ), a tempered group (resp. a profinite group)
(D m1(TD,)) corresponding to X, by Lemma 7.12 (resp. by Lemma 7.25). Let

TQQi

denote its B(—)°. We have a natural morphism D, — 'DF (This corresponds
to X — X, (resp. X - X,)). Similarly, for v € V**, we can algorithmically
reconstruct, in a functorial manner, from TDQ, an Aut-holomorphic orbispace TQf
corresponding to X, by translating Lemma 7.25 into the theory of Aut—holomorphi:
spaces (since X admits a K,-core) with a natural morphism D, — TQ;. Put

Tgi = {ngi}yey

2. Recall that we can algorithmically reconstruct the set of conjugacy classes of cuspi-
dal decomposition groups of 71 (1D,) or Wl(TQ;t) by Corollary 6.12 for v € V°*, by
Corollary 2.9 for v € V8°°4 N V™" and by considering mo(—) of a cofinal collection
of the complements of compact subsets of the underlying topological space of 1D,
or TQ; for v € V*"°. We say them the set of cusps of D, or Tgf.

For v € V, a %-label class of cusps of "D, is the set of cusps of 1D, lying over
a single (not necessarily non-zero) cusp of TQ; We write

LabCusp*(1D,)

for the set of +-label classes of cusps of 'D,. Note that LabCusp(1D, ) has a natural
[F;*-action. Note also that, for any v € V, we can algorithmically reconstruct a zero
element

Tﬂg € LabCusp™ (TD,),
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and a canonical element
f € LabCu D
nvi a Spi( )

which is well-defined up to multiplication by +1, such that we have Tﬂf — Tﬂv
under the natural bijection B B

{LabCuspi(TDg) \ {ng}} J{£1} 5 LabCusp(ID,).
Hence, we have a natural bijection
LabCusp™ (fD,) 5 Fy,

which is well-defined up to multiplication by £1, and compatible with the bijection
LabCusp(1D,) = F/ in Proposition 10.15, i.e., LabCusp™ ("D,) has a natural Fli—
group structure. This structure Fli—group gives us a natural surjection

Aut("D,) - {#1}
by considering the induced automorphism of LabCusp® (1D,). Let
Aut, ("D,) € Aut(TD,)

denote the kernel of the above surjection, and we call it the subgroup of positive
automorphisms Put Aut_(D,) := Aut("D,) \ Aut, ("D,),and we call it the set
of negative automorphisms. Similarly, for o € {£1}Y, let

Auty (TD) € Auty (TD) (resp. Auto (D) C Auty (D) )

denote the subgroup of automorphisms such that any v(€ V)-component is positive
(resp. v(€ V)-component is positive if a(v) = +1 and negetive if a(v) = —1),
and we call it the subgroup of positive automorphisms (resp. the subgroup of
a-signed automorphisms).

3. Let D@ is a category equivalent to the model global object D®* in Definition 10.3.
Then by Remark 2.9.2, similarly we can define the set of cusps of "D®% and the
set of +-label classes of cusps

LabCusp™ (fD®%),
which can be identified with the set of cusps of TDO*.

Definition 10.28.  ([IUTchI, Definition 6.1 (iv)]) Let T® = {TD,},ev, D =
+-full poly

~

{#*D, },ev be D-prime-strips. For any v € V, a +-full poly-isomorphism D, —
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+-full poly
D, (resp. ™® = D) is a poly-isomorphism obtained as the Aut, ("D,)-orbit

(resp. Auty (TD)-orbit) (or equivalently, Aut, (¥D,)-orbit (resp. Auty (*D)-orbit)) of

an isomorphism TD2 = J;DE (resp. 7 5 D). If 7D = #D, then there are precisely two
+-full poly
+-full poly-isomorphisms D, —+ D, (resp. the set of +-full poly-isomorphisms

D, = 1D, has a natural bijection with {+1}¥). We call the +-full poly-isomorphism
determined by the identity automorphism positive, and the other one negative (resp.
the +-full poly-isomorphism corresponding to o € {£1}¥ an a-signed +-full poly-
automorphism). A capsule-+-full poly-morphism between capsules of D-prime-

strips
capsule-+-full poly

~

{T:Dt}teT — {igt’}t’eT’

+-full poly

is a collection of 4+-full poly-isomorphisms '®, — iQL(t), relative to some injection
LT =T,

Definition 10.29.  ([IUTchI, Definition 6.1 (v)]) As in Definition 10.16, we can
group-theoretically construct, from the model global object D@+ in Definition 10.3, the

outer homomorphism
(Aut(X ) =) Aut(DOF) — GLo(Fy) /{£1}

determined by E[l], by considering the Galois action on A3 ®F; (The first isomorphism
follows from Theorem 3.17). Note that the image of the above outer homomorphism

contains the Borel subgroup { <; i) } of SLo(F;)/{£1} since the covering X - - X

corresponds to the rank one quotient A%}’ ®F; — Q. This rank one quotient determines
a natural surjective homomorphism

Aut(D®F) — Ff,

which can be reconstructed group-theoretically from D®*. Let Auty (D®%) c Aut(D®F)
Aut(X ;) denote the kernel of the above homomorphism. Note that the subgroup
Auty (D9F) € Aut(D®*) 5 Aut(X ) contains Autyx (X ), and acts transitively on
the cusps of X . Next, let Aute,s,(DOF) C Aut(D®F) denote the subgroup of auto-
morphisms which fix the cusps of X ;- (Note that we can group-theoretically reconstruct
this subgroup by Remark 2.9.2). Then we obtain natural outer isomorphisms

Autg (X ) = Auty (DOF) /Aut ey, (DOF) 5 F1E,

where the second isomorphism depends on the choice of the cusp € of Cj-. See also the

=
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following diagram:

Aut(X ) ——— Aut(DOF) ——Ff
Ffw(g‘ é)CSLg(]Fl)/{:I:l}
Autg (X o) —— Auti\J(D@i) s

+ 1®
e (0F)

0 £

Attteqsp (DOF).

If we write Aut, (D®F) C Auty(D®F) for the unique subgroup of index 2 containing
Auteysp (D®%), then the cusp € determines a natural F li—group structure on the subgroup

Attty (DOF) /Attteusp (DOF) € Auts (DOF)/Atensy(DOF)

(corresponding to Gal(X z/Xx) C Autx (X)), and a natural Ff-torsor structure on
LabCusp® (D®%). Put also

VE = Auty (DOF) - V = Auteys,(D9F) -V € V(K).

Note also that the subgoup Auty(D®F) C Aut(D®F) = Aut(X ) can be identified
with the subgroup of Aut(X ;) which stabilises V%, and also that we can easily show
that V= = V=" (Definition 10.16) (cf. [[UTchI, Remark 6.1.1]).

Remark 10.29.1.  Note that Ffi—symmetry permutes the cusps of X without
permuting V* (C V(K)), and is of geometric nature, which is suited to construct Hodge-
Arakelov-theoretic evaluation map (Section 11).

On the other hand, F}* is a subquotient of Gal(K/F') and F; -symmetry permutes
various F/-translates of VE = vE" c VB (€ V(K)), and is of arithmetic nature (cf.
[IUTchl, Remark 6.12.6 (i)]), which is suite to the situation where we have to consider
descend from K to F,0q. Such a situation induces global Galois permutations of various
copies of G, (v € V"") associated to distinct labels € F;* which are only well-defined
up to conjugacy indeterminacies, hence, F;*-symmetry is ill-suited to construct Hodge-

Arakelov-theoretic evaluation map.

Remark 10.29.2.  (cf. [ITUTchII, Remark 4.7.6]) One of the important differences
of F;*-symmetry and Ffi—symmetry is that F;*-symmetry does not permute the label 0
with the other labels, on the other hand, F fi—symmetry does.

We need to permute the label 0 with the other labels in Ffi—symmetry to perform
the conjugate synchronisation (See Corollary 11.16 (1)), which is used to construct
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“diagonal objects” or “horizontally coric objects” (See Corollary 11.16, Corollary 11.17,
and Corollary 11.24) or “mono-analytic cores” (In this sense, label 0 is closely related
to the units and additive symmetry. cf. [[UTchII, Remark 4.7.3]),

On the other hand, we need to separate the label 0 from the other labels in IFZ*—
symmetry, since the simultaneous excutions of the final algorithms on objects in each
non-zero labels are compatible with each other by separating from mono-analytic cores
(objects in the label 0), i.e., the algorithm is multiradial (See Section 11.1, and §A.4),
and we perform Kummer theory for NF (Corollary 11.23) with F;*-symmetry (since
F*-symmetry is of arithmetic nature, and suited to the situation involved Galois group
Gal(K/Fiod)) in the NF portion of the final algorithm. Note also that the value group
portion of the final algorithm, which involves theta values arising from non-zero labels,
need to be separated from 0O-labelled objects (i.e., mono-analytic cores, or units). In
this sense, the non-zero labels are closely related to the value groups and multiplicative

symmetry.

Definition 10.30. (Model D-O*-Bridge, [[UTchl, Example 6.2]) In this defini-
tion, we regard F; as an IF;—L—group. Let ©. = {Dy y}vev, D¢ = {Dy, }vev be copies of
the tautological D-prime-strip {D, },ev for each ¢ € F; (Here, v, denotes the pair (¢,v)).
For each t € IF, let

N +-full poly N +-full poly
qﬁ : Dy, — Dyy, ¢f Dy, — Diy
be the positive +-full poly-isomorphisms respectively, with respect to the identifications
with the tautological D-prime-strip {D, },ev. Then we put

+ + ol
2 = {d)? }te]Fl P Dy = {’Dt}tem o Dy .

We call qbii model base-(or D-)@*-bridge.
We have a natural poly-automorphism —1g, of order 2 on the triple (D4,®., ¢<f)
as follows: The poly-automorphism —1y, acts on [F; as multiplication by —1, and induces
poly +-full poly

~

the poly-morphisms ©; — ®_; (t € F;) and ®, —» D, determined by the +-
full poly-automorphism whose sign at every v € V is negative, with respect to the
identifications with the tautological D-prime-strip {D,},eyv. This —1p, is compatible
with Qﬁi in the obvious sense. Similarly, each a € {41} determines a niatural poly-
e

automorphism a® of order 1 or 2 as follows: The poly-automorphism o acts on [F;

as the identity and the a-signed +-full poly-automorphism on ®; (¢ € F;) and ®, . This
C_,):I: . . . C_,):l: . .
o is compatible with ¢3  in the obvious sense.
Definition 10.31. (Model D-©°!-Bridge, [IUTchI, Example 6.3]) In this defi-

nition, we regard [; as an ]Fli-torsor. Let ©; = {Dy, }vev be a copy of the tautological
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D-prime-strip {D, },evy for each ¢t € F;, and put D4 := {D; };er, as in Definition 10.30.
Let D®* be the model global object in Definition 10.3. In the following, fix an isomor-
phism LabCusp™®(D®%*) 3 F; of FiF-torsor (See Definition 10.29). This identification
induces an isomorphism Auty (D®F /Auteys, (DOF) = Ff‘i of groups For v € ybad
(resp. v € VE°I NV resp. v € V), let

ell
o, 1 Dy — DOF

denote the natural morphism correpsonding to X , X, > Xk (resp. g =+ X, =
X, resp. a tautological morphism D, = § —- X, 5 X(D®*,v) (See also Defini-
tion 10.11 (1), (2)).

Put

v

(bg:n = AUtcuSp (D©i> © ¢?Zl © AUt+(D20) : DEO ﬂ D@i7

and
ell ell polg
o = {¢SO Jvev + Do DO

Since qSO@eH is stable under the action of Autc,s,(D®%), we obtain a poly-morphism
e . e 1
o - (action of t) o ¢ "o, B pox

by post-composing a lift of ¢ € F; = Aut, (D®F)/Auteysp (DOF) (C F)'F = Auty (DOF)
/Auteusp (DOF)) to Aut,y (D9F). Hence, we obtain a poly-morphism

ell ell 1
g = {qb? ber, T D4 PO po+

from a capsule of D-prime-strip to the global object D®* (See Definition 10.11 (3)).
This is called the model base-(or D-)©¢°!-bridge.
Note that each v € Ffi gives us a natural poly-automorphism 1 of ® as follows:

The automorphism ~4 acts on [F; via the usual action of IF;“i on F;, and induces the
+-full poly
+-full poly-isomorphism ©®; — D, (+) whose sign at every v € V is equal to the

sign of 7. In this way, we obtain a natural poly-action of Iﬁ'fi on ®y. On the other
hand, the isomorphism Auts (DOF)/Autens,(DOF) =5 F*F determines a natural poly-
action of F** on D®*. Note that gbgeu is equivariant with respect to these natural
poly-actions of F,** on ®1 and D®*. Hence, we obtain a natural poly-action of F,**
on (D4, D%, 9.

Definition 10.32. (D-O*-Bridge, D-0°"-Bridge, D-B-Hodge Theatre, [IUTchI,
Definition 6.4])

1. A base-(or ‘D-)@i-bridge is a poly-morphism

'69" : tor B 1o, ,
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where "®, is a D-prime-strip, and "®r is a cupsule of D-prime-strips indexed
by an ]Fli—group T, such that there exist isomorphisms ©,. = ., D4 = 1D,
whose induced morphism F; = T on the index sets is an isomorphism of IFli—
groups, and conjugation by which sends qﬁii — Td)ii. An isomorphism of D-
O©*-bridges <T¢$i 1D poly T©>> = (i¢2i D poly i®>> is a pair of a
capsule-+full poly
capsule-+-full poly-isomorphism "®7 — D¢ whose induced morphism 7= T”
on the index sets is an isomorphism of Fli—groups, and a +-full-poly isomorphism
+-full poly

~

oM — 19, , which are compatible with quﬁgi, igbgi . We define compositions

of them in an obvious manner.
2. A base-(or D-)©®°!'-bridge is a poly-morphism
9™ 1o, Y tpo+

where "D®* is a category equivalent to the model global object D®*, and T®p

is a cupsule of D-prime-strips indexed by an Fli—torsor T, such that there exist

isomorphisms D®* 5 DO+ D, 5 19, whose induced morphism F; = T on

the index sets is an isomorphism of Fi—torsors and conjugation by which sends

d)een — Tgbi An isomorphism of D-@°!!-bridges (%991] "D poly Tl)@i) =
capsule-+-full poly

(igb@eu D5 poly JtD@i) is a pair of a capsule-+-full poly-isomorphism ®7 5 D4

whose induced morphism T = T’ on the index sets is an isomorphism of IE'Z -

torsors, and an Auteusp(TD®%F)-orbit (or, equivalently, an Aute,s,(FD®F)-orbit)
poly
tpet 5 IDPOE of jsomorphisms, which are compatible with Tgbien, iqﬁeeu.

define compositions of them in an obvious manner.

3. A base-(or D-)@*°_Hodge theatre (or a D-B-Hodge theatre) is a collection
T¢ ¢®e11
THT'D—EE _ 1‘@ i T@T i> Jf’D@:I: ,

where 7' is an IE?li—glroup7 Tgbgeu is a D-0°!-bridge, and Tgbgi is a D-©*-bridge, such
that there exist isomorphisms D@+ 5 DO+ o, 5 19, ©. 5 7D, | conjugation
by which sends gbeel qb@e“ gbgi — Tgbgi. An isomorphism of D-H-Hodge
theatres is a pair of isomorphisms of D-0°"-bridges and D-O©%-bridges such that
they induce the same poly-isomorphism of the respective capsules of D-prime-strips.
We define compositions of them in an obvious manner.

The following proposition is an additive analogue of Proposition 10.33, and follows
by the same manner as Proposition 10.33:
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Proposition 10.33.  (Transport of £-Label Classes of Cusps via Base-Bridges,
.rd)oell

L 92"
[TUTchI, Proposition 6.5]) Let tHTPB = (1D, 1D, — 1DO%) be q D-B-Hodge
theatre.

1. The D-0"-bridge Tgb?j“ induces an isomorphism
T{"zen : LabCuspi(TDEt) = LabCusp™ (fD®%)

of Fli—torsors of £-label classes of cusps for each v € V, t € T. Moreover, the
composite

Tﬁ@e“ = (TCQEH)_1 o (TCGSU) : LabCuSpi(TDyt) = La,bCuspi(TD%)

Uy Wy Wy o

s an isomorphism of]F -groups for w € V. By these identifications Tf@ell of

VyHWy

]Fl -groups LabCusp™ (T D,,) when we vary v € V, we can write
LabCusp® (9,)
for them, and we can write the above isomorphism as an isomorphism
TCt@eH : LabCusp® (f©,) 3 LabCusp® (fDO%)
of ch-torsors.
2. The D-©*-bridge T(bii induces an isomorphism
TCQ@f : LabCuspi(TDyt) = LabCusp™ (1D, ,)

of Fli-gmups of £-label classes of cusps for each v € V, t € T. Moreover, the

composites

ell + ~
TgHw = (ngo) Te w0 (1¢ )"+ LabCusp™ ("D, ) = LabCusp™ ("D ),

VW

te0, = (1¢87) 1 ofe?, , o (1¢97) : LabCusp*('Dy,) 5 LabCusp* (D, )

—t
(Here O denotes the zero element of the IF;E -group T') are isomorphisms ofIF‘li -groups
forw € V, and we also have va w, = Tﬁgiﬁ. By these identifications T{Siw of
]Fl -groups LabCusp (TD>&) when we vary v € V, we can write

LabCusp® (fD,)

for them, and the various Tg‘gi s, and TCS;H ’s determine a single (well-defined)
isomorphism

¢ ; LabCusp® (1D;) = LabCusp® (1®,.)

of IFli -groups.
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3. We have a natural isomorphism
f¢L : LabCusp™ (Do) S 1

ofIFli—torsors, by considering the inverse of the map T > t — ¢} ell(O) € LabCusp® (fDo%),
where 0 denotes the zero element of the ]F‘l:IE -group LabbCuspi (1D4). Moreover, the

composite
+ el 1 + @ell +eF\—1 -0t + 1 ~ + 1
("¢ )7 o ("G )o (¢ ) o('¢y ) : LabCusp™ (Do) = LabCusp™ (Do)
is equal to the action of (TC(?QH)_l((TCi)_l(t)).

4. For a € Auty (TDO%F)/Auteys, (TDOF), if we replece | ot by aof @e“, then the
p + +

»

resulting "fCt@eu 1s related to the original TC?e” by post-composing with the image

of a via the natural bijection
Auty ("DOF) / Attt ensp (1D®F) 5 Auty (LabCusp™ (1D9%)) (22 F)* )
(See also Definition 10.29).

The following is an additive analogue of Proposition 10.20, and it follows from the

definitions:

Proposition 10.34.  (Properties of D-O*-Brideges, D-0°"-Bridges, D-B-Hodge
theatres, [IUTchl, Proposition 6.6])
1. For D-©*-bridges T(bgi, i¢$i , the set Isom(Tqﬁi , i(bgi) is a {£1} x{£1}¥ -torsor,
where the first factor {£1} (resp. the second factor {1}¥) corresponds to the poly-
automorphism —1g, (resp. a@i) in Definition 10.30.

2. For D-©"-bridges Tgbgeu, iqbge“, the set Isom(T¢§F,i¢§F) s an Ffi-torsor, and
we have a natural isomorphism Isom(TgRF, F¢IF) = IsomFli_torsors(T, T') of F)'*-

torsors.
3. For D-B-Hodge theatres THTPE, iHTPE the set Isom(THTDE,i'HTDE) 18

an {£1}-torsor, and we have a natural isomorphism Isom(THTPS 1347P5)
(T, T") of {£1}-torsors.

I

ISOm]Fl:t -groups

4. For a D-©*-bridge W)gi and a D-©"-bridge T¢§°“, the set

capsule-+-full poly N .
capsule—+-full poly-isom. TOp = "®qp by which Tgbg ,Tqbi form a D-H-Hodge theatre

is an Ffi x {£1}Y -torsor, where the first factor Ffi (resp. the subgroup {£1} X
{£1}Y) corresponds to the F)'= in (2) (resp. to the {£1}x{+1}¥ in (1)). Moreover,
the first factor can be regarded as corresponding to the structure group of the F fi—

/
torsor ISOHI]Fli torsors (LT
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5. For a D-©°"-bridge T¢$e“, we have a functorial algorithm to construct, up to ]Ffi-
indeterminacy, a D-H-Hodge theatre whose D'@en-bm’dge i T(ﬁgen.

Definition 10.35.  ([[UTchI, Corollary 6.10]) Let TH7P®, #TP® pe D-m@-
Hodge theatres. the base-(or D-)@%°link (or D-E-link)

gD B By tqyD B

is the full poly-isomorphism
full poly

~

ot = b

between the mono-analyticisations of the D-prime-strips constructed in Lemma 10.38
in the next subsection.

Remark 10.35.1.  In D-B-link, the D" -prime-strips are shared, but not the arith-
metically holomorphic structures. We can visualise the “shared” and “non-shared”
relation as follows:

fu7PE |- — > |TDh = iph |« — iy 7P B

We call this diagram the étale-picture of D-H-Hodge theatres. Note that we have

a permutation symmetry in the étale-picture.

Definition 10.36. (©+-Bridge, ©°!-Bridge, B-Hodge Theatre, [[UTchI, Deifi-
nition 6.11))

1. A ©*-bridge is a poly-morphism
=+ ol
Tl/)?: : TST H ig>7
where §. is an F-prime-strip, and "§r is a cupsule of F-prime-strips indexed
by an Fi-group T, which lifts (See Lemma 10.10 (2)) a D-O©*-bridge Tqﬁgi :
"D poly fD,. An isomorphism of ©Z-bridges (T;/Jgi 1% ﬂT3>> =

€] poly poly
1 . . . . o ol
(iwii g 2 13>) is a pair of poly-isomorphisms 'F7 — *Fr and TF,. —

1F., which lifts a morphism between the associated D-©%-bridges Tﬁi, i¢$i. We

define compositions of them in an obvious manner.

2. A ©°-bridge
tp@" Ty 2N fpoE,

where "D®* is a category equivalent to the model global object D®* in Defini-
tion 10.3, and T§r is a capsule of F-prime-strips indexed by an ]Fli-torsor T, is a
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D-0°"_bridge T(b@e” "D poly "DO% where T® is the associated capsule of D-
prime-strips to f§z. An isomorphism of @e”-bridges (sz@eu 1% ﬂ TD©i> 5

poly poly
e 1
<i¢@ ! e 22X iD@i> is a pair of poly-isomorphisms '§r — *§7 and DO+ =

1DO% which determines a morphism between the associated D-©°!-bridges Tgb@en,
igb@e“ We define compositions of them in an obvious manner.

3. A @*°_Hodge theatre (or a B-Hodge theatre) is a collection
iy 7® _ (e P te T pes
HTZ =8 <— S0 — 'D

where Twi)i is a ©%-bridge, and Tzﬁgeu is a ©°-bridge, such that the associated
D-O*-bridge Tﬁi and the associated D-0°"-bridge ngsge“ form a D-H-Hodge the-
atre. An isomorphism of H-Hodge theatres is a pair of a morphism of ©*-
bridge and a morphism of ©°!-bridge, which induce the same bijection between the
respective capsules of F-prime-strips. We define compositions of them in an obvious
manner.

The following lemma follows from the definitions:

Lemma 10.37.  (Properties of ©*-Brideges, ©°!-Bridges, B-Hodge theatres,
[IUTchI, Corollary 6.12])

1. For ©*-bridges 1¢gi, Q@ZJEi (resp. ©°-bridges 11/)2011, Q@Dicn, resp. H-Hodge the-
atres Y HTE, 27—[TEE) whose associated D-OF -bridges (resp. D-0-bridges, resp.
D-H-Hodge theatres) are 1¢2i, Qqﬁi (resp. 1¢$en, 2¢ien, resp. 'HTPE, QHTD'EE)
respectively, the natural map

+ + + +
Isom(ll/fg ,21/12 )—>Isom(1 2 2 2 )

(resp. Isom(libjE ;/Jeel ) — Isom( qb@en, 2 2911)’
resp. Isom(*HTE 2HTH) = Isom(*HTPE 2HTPE) )
1s bijective.
2. For a ©*-bridge w(f and a O -bridge iwge“, the set

capsule-+-full poly ot N
{capsule—+—full poly-isom. *Fr — *Fpr by which izbi ,11/1@ form a H-Hodge theatre}

s an ]Ffi x {£1}¥ -torsor. Moreover, the first factor can be regarded as correspond-
ing to the structure group of the Ff‘i—torsor ISOIH]Fli sorsors (LT
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§10.6. O=°INF-Hodge Theatres — An Arithmetic Analogue of the
Upper Half Plane.

In this subsection, we combine the multiplicative portion of Hodge theatre and the
additive portion of Hodge theature to obtain full Hodge theatre.

Lemma 10.38.  (From (D-)©*-Bridge To (D-)©-Bridge, [[UTchl, Definition 6.4
(i), Proposition 6.7, Definition 6.11 (i), Remark 6.12 (i)]) Let Tgbgi 1D poly "D, (resp.
ngi 13 poly 1%, ) be a D-OF-bridge (resp. ©F-bridge). Let

T©|T| (resp. Tgm )

denote the I* -capsule (See Section 0.2 for 1T ) of D-prime-strips (resp. F-prime-strips)
obtained from l-capsule "1 (resp. §1) of D-prime-strips (resp. F-prime-strips) by
forming the quotient |T| of the index set T by {£1}, and identifying the components of
the cupsule T®1 (resp. TFr) in the same fibers of T — |T| via the components of the
poly-morphism T¢§Ei = {Tqﬁt@i ter (resp. ngi = {T¢f)i ter) (Hence, each component
ofTCD|T| (resp. Tsm) is only well-defined up to a positive automorphism). Let also

"Drs (resp. "Frs )

denote the I* -capsule determined by the subset T* := |T'|\ {0} of non-zero elements of
|T|.

We identify T®q (resp. TFo) with Dy (resp. 1T+ ) via Tgbgji (resp. Tw((?i), and
let "< (resp. ¥~ ) denote the resulting D-prime-strip (resp. JF-prime-strip) (i.e.,
>={0,>=}). For v € V&° we replace the +-full poly-morphism at v-component of
T¢2i (resp. ngi) by the full poly-morphism. For v € V** we replace the +-full
poly-morphism at v-component off¢gi (resp. ngi) by the poly-morphism determined
by (group-theoretically reconstructed) evaluation section as in Definition 10.17 (resp. by
the poly-morphism lying over (See Definition 10.23 (1), (2), and Remark 10.10.1) the
poly-morphism determined by (group-theoretically reconstructed) evaluation section as
in Definition 10.17). Then we algorithmically obtain a D-O-bridge (resp. a potion of
©-bridge)

T¢§ T poly D (resp. ng s poly 5. )

i a functorial manner. See also the following:

T@o, T©> — Jr@>; T‘SO; T%> = Jr{§>7
D, 10, (t#0) — Dy, 1§, T t#0) - Ty
Drlmpy —  Drs, Srimgpy —  T8r=,

where [t| denotes the image of t € T under the surjection T — |T|.
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Definition 10.39.  ([IUTchI, Remark 6.12.2]) Let {7 2% 1§, be a ©*-bridge,
whose associated D-OF-bridge is T®7 poly "®, . Then we have a group-theoretically
functorial algorithm for constructing a D-O-bridge D s« poly TD. from the D-O%*-
bridge T®7 poly D, by Lemma 10.38. Suppose that this D-O-bridge D x poly D
arises as the D-O-bridge associated to a ©-bridge 3 poly D, - 'HT®, where
J=T%*:

3 2 g, 13, XD, - YT

I |

Lol T, N, S Lo O 1 N

Then the poly-morphism 3 poly iF< lying over T®px poly D is completely de-
termined (See Definition 10.23 (1), (2), and Remark 10.10.1). Hence, we can regard
this portion *F; poly iZ. of the ©-bridge as having been constructed via the func-
torial algorithm of Lemma 10.38. Moreover, by Lemma 10.25 (1), the isomorphisms
between O-bridges have a natural bijection with the the isomorphisms between the
“4% poly 1% "-portion of ©-bridges.

In this situation, we say that the ©-bridge poly Dy - yT® (resp. D-O-
bridge D« poly D) is glued to the OF-bridge 'Fr poly %, (resp. D-OF-bridge
D poly f®, ) via the functorial algorithm in Lemma 10.38. Note that, by Proposi-
tion 10.20 (2) and Lemma 10.25 (1), the gluing isomorphism is unique.

Definition 10.40. (D-XHB-Hodge Theatre, XEB-Hodge Theatre, [[UTchI, Defi-
nition 6.13])

1. A base-(or D-)OFINF-Hodge theatre "HTP™® is a tripe of a D-K-Hodge
theatre THT P, a D-B-Hodge theatre "% 7 P2, and the (necessarily unique) gluing
isomorphism between THT P and TH7P™. We define an isomorphism of D- X

H-Hodge theatres in an obvious manner.

2. A ©*°IINF-Hodge theatre TR is a tripe of a X-Hodge theatre tHTY, a
H-Hodge theatre THTEE, and the (necessarily unique) gluing isomorphism between
t1 7™ and "HT®. We define an isomorphism of XtH-Hodge theatres in an

obvious manner.

§11. Hodge-Arakelov-theoretic Evaluation Maps.

§11.1. Radial Environments.

In inter-universal Teichmiiller theory, not only the existence of functorial group-
theoretic algorithms, but also the contents of algorithms are important. In this subsec-
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tion, we introduce important notions of coricity, uniradiality, and multiradiality for the
contents of algorithms.

Definition 11.1.  (Radial Environment, [[UTchII, Example 1.7, Example 1.9])

1. A radial environment is a triple (R,C, ®), where R, C are groupoids (i.e., cate-
gories in which all morphisms are isomorphisms) such that all objects are isomor-
phic, and ® : R — C is an essentially surjective functor (In fact, in our mind, we
expect that R and C are collections of certain “type of mathematical data” (i.e.,
species), and ® is “algorithmically defined” functor (i.e., mutations). In this
survey, we avoid the rigorous formulation of the language of species and mutations
(See [IUTchIV, §3]), and we just assume that R,C to be as above, and ® to be a
functor. See also Remark 3.4.4 (2)). We call C a coric category an object of C a
coric data, R a radial category an object of R a radial data, and ¢ a radial
algorithm.

2. We call ® multiradial, if ® is full. We call & uniradial, if & is not full. We
call (R,C, ®) multiradial environment (resp. uniradial environment), if ¢ is

multiradial (resp. uniradial).

Note that, if ® is uniradial, then an isomoprhism in C does not come from an
isomorphism in R, which means that an object of R loses a portion of rigidity by
®, i.e., might be subject to an additional indeterminacy (From another point of
view, the liftability of isomorphism, i.e., multiradiality, makes possible doing a kind
of parallel transport from another radial data via the associated coric data. See
[IUTchII, Remark 1.7.1}).

3. Let (R,C,®) be a radial environment. Let "R be another groupoid in which all
objects are isomorphic, T® : "R — C an essentially surjective functor, and WUp :
R — 'R a functor. We call Uz multiradially defined) or multiradial (resp.
uniradially defined) or uniradial if ® is multiradial (resp. uniradial) and if the
diagram

R YRR

|

C

is 1-commutative. We call Ur corically defined (or coric), if ¥ has a fac-
torisation Zx o ®, where Zx : C — TR is a functor, and if the above diagram is

1-commutative.

4. Let (R,C,®) be a radial environment. Let £ be another groupoid in which all
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objects are isomorphic, and Z: R — £ a functor. Let

Graph(2)

—_—
—

denote the category whose objects are pairs (R,Z(R)) for R € Ob(R), and whose
morphisms are the pairs of morphisms (f : R — R, Z(f) : Z(R) — Z(R’)). We call
Graph(Z) the graph of E. We have a commutative diagram

LN Graph(Z)

[}
PGraph(E)

C,
of natural functors, where U= : R (R,ZE(R)) and ®grapnz) : (R,E(R)) — ®(R).

Remark 11.1.1.  ([IUTchII, Example 1.7 (iii)]) A crucial fact on the consequence
of the multiradiality is the following: For a radial environment (R,C,®), let R x¢ R
denote the category whose objects are triple (Ry, Ro, ), where Ry, Ry € Ob(R), and
« is an isomorphism ®(R;) = ®(Rs), and whose morphisms are morphisms of triples

defined in an obvious manner. Then the switching functor
RxcR—=RxcR : (Ri,Ra,a) = (R, Ry, o™ 1)

preserves the isomorphism class of objects of R x¢ R, if ® is multiradial, since any
object (R1, Rz, ) in R X¢ R is isomorphic to the object (Ry, R1,id : ®(R1) = ®(Ry)).
This means that, if the radial algorithm is multiradial, then we can switch two radial
data up to isomorphism.

Ultimately, in the final multiradial algorithm, we can “switch”, up to isomor-
phism, the theta values (more precisely, ©-pilot object, up to mild indeterminacies)
“{igirz }<j<ix” on the right hand side of (the final update of) ©-link to the theta values

(more precisely, ©-pilot object, up to mild indeterminacies) “{f¢’ 2}1<j<p:<” on the left
ZE - -
hand side of (the final update of) ©-link, which is isomorphic to ig (more precisely,

g-pilot object, up to mild indeterminacies) by using the ©-link compatibility of the final
multiradial algorithm (Theorem 13.12 (3)):

2 I 2
e Hejax o {1 Y

I

in

=v

Then we cannot distinguish {iqj2}1<j<l>:e from *q wup to mild indeterminacies (i.e.,
=v - =V

(Indet 1), (Indet —), and (Indet ~)), which gives us a upper bound of height function
(See also Appendix A).
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Example 11.2.

1. A classical example is holomorphic structures on R?:

iC

forgetl

R? < 1C,
forget
where R is the category of 1-dimensional C-vector spaces and isomorphisms of C-
vector spaces, C is the category of 2-dimensional R-vector spaces and isomorphisms
of R-vector spaces, and ® sends 1-dimensional C-vector spaces to the underlying
R-vector spaces. Then the radial environment (R,C,®) is uniradial. Note that
the underlying R? is shared (i.e., coric), and that we cannot see one holomorphic
structure TC from another holomorphic structure C.

Next, we replace R by the category of 1-dimensional C-vector spaces 'C equipped
with the GLg(R)-orbit of an isomorphism TC = R? (for a fixed R?). Then the
resulting radial environment (R,C, ®) is tautologically multiradial:

(fC = R? ~ GLy(R))

forgetl

R2 | (fC 5 R? ~ GL2(R)).

forget

Note that the underlying R? is shared (i.e., coric), and that we can describe the
difference between one holomorphic structure TC and another holomorphic structure
iC in terms of the underlying analytic structure R2.

2. An arithmetic analogue of the above example is as follows: As already explained
in Section 3.5, the absolute Galois group G of an MLF k has an automorphism
which does not come from any automorphism of fields (at least in the case where
the residue characteristic is # 2), and one “dimension” is rigid, and the other
“dimension” is not rigid, hence, we consider G, as a mono-analytic structure. On
the other hand, from the arithmetic fundamental group Ilx of hyperbolic orbicurve
X of strictly Belyi type over k, we can reconstruct the field & (Theorem 3.17),
hence, we consider IIx as an arithmetically holomorphic structure, and the quotient
(ILx —)Gk (group-theoretically reconstructable by Corollary 2.4) as the underlying
mono-analytic structure. For a fixed hyperbolic orbicurve X of strictly Belyi type
over an MLF k, let R be the category of topological groups isomorphic to IIx
and isomorphisms of topological groups, and C the category of topological groups
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isomorphic to G} and isomorphisms of topological groups, and ® be the functor

which sends II to the group-theoretically reconstructed quotien (II —)G. Then the

radial environment (R,C, ®) is uniradial:

1

|

3 3
G =G, 2tG <— 1L

Next, we replace R by the category of topological groups isomorphic to IIx equipped

with the full-poly isomorphism G = G, where (Il —)G is the group-theoretic re-

constructed quotient. Then the resulting radial environment (R,C, ®) is tautologi-

cally multiradial:

full poly

(‘I —-1t'G¢ = G

l

full poly full poly fUHEOIY
=~ Gp 2 WG<—(I-Ta 5 Gy).
See also the following table (cf. [Pano, Fig. 2.2, Fig. 2.3]):
coric underlying analytic str. R? G
uniradial holomorphic str. C II
full poly
multiradial holomorphic str. described C S5 R2 A GLy(R?) | TI/A = @

in terms of underlying coric str.

In the final multiradial algorithm (Theorem 13.12), which admits mild indetermi-

nacies, we describe the arithmetically holomorphic structure on one side of (the final

update of) O-link from the one on the other side, in terms of shared mono-analytic

structure.

Definition 11.3.

([TUTchII, Definition 1.1, Proposition 1.5 (i), (ii)]) Let M? =

(-« M§, « M§,, + --+), be a projective system of mono-theta environments de-
termined by éﬂ (v € VP*), where M$, = (IIyre , Do sgﬂ% ). For each N, by Corol-
lary 7.22 (3) and Lemma 7.12, we can functorially group-theoretically reconstruct, from
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M$, a commutative diagram

Gy (MR)

T NT—

TP o TP (M) e TL™P (M) e TISP (M) > T1L5™P (M)

s

oy (M) ATEP o AP (M) AP (M) AP (MG AL (MS)

of topological groups, which is an isomorph of

Gy

.

Hg”‘p (] ——= Hzmpg Hgmp% Htgmpg I™P

o

N —> A;jmp [n] — At;mpg Atgﬂpg Atgnp% AG™P.

For each N, by Theorem 7.23 (1), we can also functorially group-theoretically recon-
struct an isomorph (IAg)(M%) of the internal cyclotome and the cyclotomic rigidity
isomorphism

(186)(MR) ® (Z/NZ) 5 pin (MYy).

The transition morphisms of the resulting projective system {- - - H'gnp (M) «
Htimp(M%,) < --- } are all isomorphism. We identify these topological groups via these
transition morphisms, and let Htgmp (M®) denote the resulting topological group. Simi-
larly, we define G, (M®), ™ (M), TIE™P (M), TE™ (M), AL (M9), Alg™ (M),
AEP(MO), AL (M), (D) (M) from G, (M), TE™P(MS), Ap™ (M3), A™ (M),
(1Ae)(MY) respectively. We put piz(M?) = Hm (M%), then we obtain a cyclo-
tomic rigidity isomorphism

(186)(1M2) 5 15 (M9).

Proposition 11.4.  (Multiradial Mono-theta Cyclotomic Rigidity, [IUTchII, Corol-
lary 1.10]) Let I, be the tempered fundamental group of the local model objects év for
v € V°* in Definition 10.2 (1), and (IL, —)G, the quotient group-theoretically recon-
structed by Lemma 6.2.
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1. Let C™ be the category whose objects are
G~ O** (@),

where G is a topological group isomorphic to G,, O**(QG) is the group-theoretically
reconstructed monoid by Proposition 5.2 (Step 1) and Definition 8.5 (1), and whose
morphisms (G ~ O**(Q)) = (G' ~ O*¥*(G")) are pairs of the isomorphism
G = G' of topological groups, and an Isomet(G)-multiple of the functorially group-
theoretically reconstructed isomorphism O**(G) = O**(G") from the isomorphism

G>G.
2. Let R® be the category whose objects are triples
T~ 15 (MO (IT Z, G~ O*MG (T ~ (MO (T 7) 2% (G ~ 07(G
~pp(MZ () © Q/Z, G~ O*(G) , app s (T pz(MI (D) © Q/Z) — (G~ O™ (G))|n ),

where 11 is a topological group isomorphic to 11, the topological group (II —)G is the
quotient group-theoretically reconstructed by Lemma 6.2, the notation (—)| denotes
the restriction via Il - G, the notation (M2 (II)) denotes the external cyclotome
(See just after Theorem 7.23) of the projective system of mono-theta environment
MO (II) group-theoretically reconstructed from II by Corollary 7.22 (2) (Note that
such a projective system is uniquely determined, up to isomorphism, by the discrete
rigidity (Theorem 7.23 (2))), and o, x,, is the composite

poly

pz (M2 (I1) ® Q/Z — O* (1) — O*¥(Il) = O**(G)

of ind-topological modules equipped with topological group actions, where the first
arrow is given by the composite of the tautological Kummer map for M?(H) and
the inverse of the isomorphism induced by the cyclotomic rigidity isomorphism of
mono-theta environment (cf. the diagrams in Proposition 11.7 (1), (4)), the second

arrow s the natural surjection and the last arrow is the poly-isomorphism induced
full poly

by the full poly-isomorphism II/A = G (Note that the composite of the above
diagram is equal to 0), and whose morphisms are pairs (fu, fa) of the isomorphism
S (T~ ps(ME(I)©Q/Z) = (I A puz(M2 (1)) ®Q/Z) of ind-topological mod-
ules equipped with topological group actions induced by an isomorphism II = II' of
topological groups with an Isomet(G)-multiple of the functorially group-theoretically
reconstructed isomorphism pz(M2 (1)) ® Q/Z = pz(M2(Il')) ® Q/Z, and the iso-
morphism fo : (G ~ OXH(G)) = (G' ~ O*¥(G")) of ind-topological modules
equipped with topological group actions induced by an isomorphism G = G’ of topo-
logical groups with an Isomet(G)-multiple of the functorially group-theoretically re-
constructed isomorphism O**(G) = O**(G') (Note that these isomorphisms are

. . , . .
automatically compatible o, w0 and o, o, i an obvious sense).

m
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3. Let ®® : R® — C be the essentially surjective functor, which sends (I1 ~ uz(M@(H))®

*

Q/Z,G ~ O (GQ),au xu) to G~ O**(G), and (fu, fa) to fa.

. Let £® be the category whose objects are the cyclotomic rigidity isomorphisms
of mono-theta environments

(18e)(IT) = 1i7(M2 (1))

reconstructed group-theoretically by Theorem 7.23 (1), where 11 is a topological
group isomorphic to 1I,, the cyclomotmes (IAe)(I1) and ps(MP(I1)) are the in-
ternal and external cyclotomes respectively group-theoretically reconstructed from I1
by Corollary 7.22 (1), and whose morphisms are pair of isomorphisms (1Ag)(IT) =
(1Ae)IT') and pz (MO (1)) = ps(M2(I1')) which are induced functorially group-

theoretically reconstructed from an isomorphism of topological groups II = II'.

. Let 2° : R® — £° be the functor, which sends (II ~ pz(MO (1)) ® Q/Z,G ~
O*H(G), 0, xpu) to the cyclotomic rigidity isomorphisms of mono-theta environ-
ments (1Ae)(I1) = pz(M2(I1)) reconstructed group-theoretically by Theorem 7.23

(1), and (fu, fa) to the isomorphism functorially group-theoretically reconstructed
from I S IT'.

Then the radial environment (R®,C™, ®®) is multiradial, and Y=o is multiradially de-

fined, where V=e the naturally defined functor

\Il:
RO =% Graph(=°)

®® l
q:.Graph(E@)

Cl—

by the construction of the graph of =°.

Proof. By noting that the composition in the definition of «,, x, is 0, and that
full poly

we are considering the full poly-isomorphism II/A =5 @G, not the tautological single

isomorphism IT/A = G, the proposition immediately from the definitions. O

Remark 11.4.1.  Let see the diagram



254 GO YAMASHITA

by dividing into two portions:

11 T,U
full poly
f/fa = a 0
-
G full polyn' O*#F < 0 iu,

~

in = @

On the left hand side, by “loosening” (cf. taking GL3(R)-obit in Exapmle 11.2) the
natural single isomorphisms TI/TA = G, *II/*A = G by the full poly-isomorphisms
(This means that the rigidification on the underlying mono-analytic structure G by
the arithmetically holomorphic structure II is resolved), we make the topological group
portion of the functor ® full (i.e., multiradial).

On the right hand side, the fact that the map pu — O** is equal to zero makes the
ind-topological module portion of the functor ® full (i.e., multiradial). This means that
it makes possible to “simultaneously perform” the algorithm of the cyclotomic rigidity
isomorphism of mono-theta environment without making harmfull effects on other radial
data, since the algorithm of the cyclotomic rigidity of mono-theta environment uses
only p-portion (unlike the one via LCFT uses the value group portion as well), and
the p-portion is separated from the relation with the coric data, by the fact that tha
homomorphism p — O** is zero.

For the cyclotomic rigidity via LCFT, a similarly defined radial environment is
uniradial, since the cyclotomic rigidity via LCF'T uses the value group portion as well,
and the value group portion is not separated from the coric data, and makes harmfull
effects on other radial data. Even in this case, we replace O¥ (=) by O*(—), and we
admit 2X—indeterminacy on the cyclotomic rigidity, then it is tautologically multiradial
as seen in the following proposition:

Proposition 11.5.  (Multiradial LCFT Cyclotomic Rigidity with Indetermina-
cies, [IUTchII, Corollary 1.11]) Let 11, be the tempered fundamental group of the local
model objects X = for v € VP2 in Definition 10.2 (1), and (I, —)G, the quotient
group-theoretically reconstructed by Lemma 6.2.

1. Let C" be the same category as in Proposition 11./.

2. Let RYCFT be the category whose objects are triples
(T~ 07() , G~ OP(G) , o )

where 11 is a topological group isomorphic to 1L, the topological group (II —)G
is the quotient group-theoretically reconstructed by Lemma 6.2, O% (I1) is the ind-
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topological monoid determined by the ind-topological field group-theoretically recon-
structed from 11 by Corollary 3.19 and o, «, 15 the following diagram:

7ZX -orbit
poly

(I~ O%(I)) = (Il ~ OP(I)) 5 (G~ OP(G))|n + (G~ OX(@)|n — (G~ O* ()|

of ind-topological monoids equipped with topological group actions determined by the
full poly

~

Z* -orbit of the poly-morphism determined by the full poly-morphism II/A —

G, where A = ker(Il - G) and the natural homomorphisms, where OFP(II) :=
@Jcﬂzopen(OD(H)gp)J (resp. O®fP(QG) := @ch:wen(OD(G)gp)J}, and whose
morphisms are pairs (fm, fg) of the isomorphism fr : (Il ~ O™ (1)) = (I ~

A~

O% (I1")) of ind-topological monoids equipped with topological group actions induced
by an isomorphism II = TI' of topological groups with an Isomet(G)-multiple of
the functorially group-theoretically reconstructed isomorphism O (II) = O™ (II'),
and the isomorphism fa : (G ~ OFP(G)) 5 (G' ~ OBP(G")) of ind-topological
groups equipped with topological group actions induced by an isomorphism G = G’ of
topological groups with an Isomet(G)-multiple of the functorially group-theoretically
reconstructed isomorphism OBP(G) = OBP(G') (Note that these isomorphisms are

. . , . .
automatically compatible o x, and ag, o, in an obvious sense).

3. Let ®CFT . RECFT _ CF be the essentially surjective functor, which sends (II ~
O>(I),G ~ OFP(G),a %) to G ~ OXM(G), and (fu, fa) to the functorially
group-theoretically reconstructed isomorphism (G ~ O**(GQ)) = (G' ~ OXH(G")).

4. Let EYCFT be the category whose objects are the pairs of the 7% -orbit (= the full
poly-isomorphism, cf. Remark 3.19.2 in the case of O )
pily
17(G) = pz(07(G))
of cyclotomic rigidity isomorphisms via LCFT reconstructed group-theoretically
by Remark 3.19.2 (for M = O*(G)), and the Aut(G)-orbit (which comes from

full poly

~

the full poly-isomorphism II/A — G)

poly

uz(G) = (1Ae)(ID)

of the isomorphism obtained as the composite of the cyclotomic rigidity isomor-
phism via positive rational structure and LCFT ps(G) = ps(I) group-theoretically
reconstructed by Remark 6.12.2 and the cyclotomic rigidity isomorphism s (II) =
(IAg)(II) group-theoretically reconstructed by Remark 9.4.1, where 11 is a topolog-
ical group isomorphic to 1L, the topological group (I —)G is the quotient group-
theoretically reconstructed by Lemma 6.2, and (IAg)(II) is the internal cyclotome
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group-theoretically reconstructed from II by Corollary 7.22 (1), and whose mor-
phisms are triple of isomorphisms ps(G) = pz(G'), pz(0*(G)) = pz(0*(G))
and (I1Ae)(I1) = (1Ae)(II") which are induced functorially group-theoretically re-
constructed from an isomorphism of topological groups I = II'.

5. Let ZLCFT . RLCFT o eLCFT be the functor, which sends (I ~ O™ (I1),G ~
ng(G),aD,X u) to the pair of group-theoretically reconstructed isomorphisms, and
(fm, fa) to the isomorphism functorially group-theoretically reconstructed from IT =
IT'.

RLCFT, C}—’ @LCFT)

Then the radial environment ( 1s multiradial, and VYzrcrr 15 multi-

radially defined, where Wgrcer the naturally defined functor

RLCFT LCFTGraph( LCFT)

(I)LCFTl
éGraph(ELCFT)

CF

by the construction of the graph of ZFCFT,

Definition 11.6.  ([IUTchII, Remark 1.4.1 (ii)]) Recall that we have hyperbolic
orbicurves X L X, »C, forve ybad, and a rational point

H— € XQ('KE)

(i.e., “=1”7 in Gﬁ,ilg/qg . See Definition 10.17). The unique automorphism tx of X
of order 2 lying over 1x (See Section 7.3 and Section 7.5) corresponds to the unique

Atemp Htemp

-outer automorphism of over G, of order 2. Let also ¢ X denote the latter

71) —v

automorphism by abuse of notation. We also have tempered coverings Y Y — Y —- X . X,

Note that we can group-theoretically reconstruct Hgfmp Htemp from H X, by Corol-

lary 7.22 (1) and the description of ¥ — Y. Let Htemp( ), temp( ) denote the

reconstructed ones from a topological group II 1somorphlc to 1l X respectlvely Since

K, contains 14, there exist rational points
(Mf)Y:' S zE(Kg)a (N*)é € éE(KE)u

such that (p— )Y — (u-)x — p—. Note that x fixes the Gal(X /X, )-orbit of (u-)x,
since ¢y fixes yi—, hence tx fixes (p—)x, since Aut(X ) = X {jzl} by Remark 7.12.1
(Here, tx corresponds to the second factor of i x {:l:l} since [ # 2). Then it follows
that there exists an automorphism

5
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of g of order 2 lifting ¢x, which is uniquely determined up to IZ-conjugacy and composi-
tion with an element € Gal(gv /Y ) = o, by the condition that it fixes the Gal(iv /Y )-
orbit of some element (“(—)y” by abuse of nonation) of the Gal(zv [ X )(EIZ X po)-

orbit of (u_)y. Let ¢y also denote the corresponding A;fmp—outer automorphism of
temp e
Hiv

ty-denote the automorphism of Yy induced by ¢y
Let a

by abuse of notation. We call 1y an inversion automorphism as well. Let

temp
D,_ CIIY

—v

denote the decomposition group of (— )y-, which is well-defined up to Agfmp—conjugacy.

Hence, D,,  is determined by ¢y up to At}fvmp—conjugacy. We call the pai;s

(l’i € Aut(zv) ) (,u_)y> , or (/,}", € Aut(Ht.Zemp)/Inn(Agfmp) , Du)

aCl aCl

a pointed inversion automorphism. Recall that an étale theta function of standard
type is defined by the condition on the restriction to D,, is in pg (Definition 7.7 and
Definition 7.14).

Proposition 11.7.  (Multiradial Constant Multiple Rigidity, [ITUTchII, Corol-
lary 1.12]) Let (R®,C", ®®) be the multiradial environment defined in Proposition 11.4.

1. There is a functorial group-theoretic algorithm to reconstruct, from a topological
group 11 isomorphic to Htgmp (v € VP2 the following commutative diagram:

O (IT) U O (I) - oo O(ID)C o H (ITE™P (D), (1Ae)(1D))

= glecl. Rig. Mono-Th. in Prop.11.4

O* (M2 (I1)) U O* (M2 (II)) - ool

—env

(M (I1)) = oo H' (L™ (M2 (I1)), 117 (M2 (I1))),

where we put, for a topological group 11 isomorphic to Hggmp (resp. for a projec-

—wv

tive system MO of mono-theta environments determined bj; év), Hgfmp(ﬂ) (resp.

H;emp(M?)) to be the isomorph of Hg.,emp reconstructed from IIS™P(I1) by Defini-

Y Y Y
tion 11.6 (resp. from Hgfmp(M?) by Definition 11.3 and the descrption of Y — Y ),
and B
oo H (TP (D), (1Ae) (1)) = lim HY (I (ID) i J, (1Ae ) (1)),

- JCII:open, of fin. index -
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o H (ISP (MO), 15 (MO)) = lim HY (I (M) xp1 J, 1 (M9)),
- JCII:open, of fin. index -

and

o 8(IT) (C oo H' (TP (ID), (1A6) (D)) (resp. oo (MY) (C oo H (TP (M), 5 (MY)) )

denotes the subset of elements for which some positive integer multiple (if we con-
sider multiplicatively, some positive integer power) is, up to torsion, equal to an
element of the subset

O(I1) (C H' (TP (1), (1Ae) (1)) (resp. 6 (MP) (C H(IIE™P(M?), uz (M?)) )

of the pi-orbit of the reciprocal of lZ X ps-orbit ﬁ@’@x’” of an l-th root of the
étale theta function of standard type in Section 7.3 (resp. corresponding to the
wi-orbit of the reciprocal of (IZ X psg)-orbit ﬁ@’lzx‘” of an l-th root of the étale
theta function of standard type in Section 7.3, via the cyclotomic rigidity isomor-
phism (1Ag)(M®P) 5 us(M?) group-theoretically reconstructed by Theorem 7.23
(1), where (I1Ae)(M®) denotes the internal cyclotome of the projective system M9
of mono-theta environments group-theoretically reconstructd by Theorem 7.23 (1))
(Note that these can functorially group-theoretically reconstructed by the constant

multiple rigidity (Proposition 11.7)), and we define

O™ (M2 (11))
to be the submodule such that the left vertical arrow is an isomorphism. We also
put
0% (1) := O™ (IT) - o f(IT),  O% o (MP(IT)) := OF (ML (IT)) - o, (M (IT)).
2. There is a functorial group-theoretic algorithm
I = {(,D)}{1),
which construct, from a topological group 11 isomorphic to Hg?mp, a collection

—wv

of pairs (1, D), where v is a At.Yemp(H)(:: Hg/emp(ﬂ) N A)-outer automorphism of

Hg./emp(l_[), and D C H?mp(ﬂ) is a Agfmp(ﬂ)—conjgacy class of closed subgroups
cozrrespondmg to the poz’ited muersion zutomorphisms in Definition 11.6. We call
each (1,D) a pointed inversion automorphism as well. For a pointed inver-
sion automorphism (1, D), and a subset S of an abelian group A, if v acts on

Im(S — A/Ators), then we put S* := {s € S| t(smod Ators) = smod Ators}-
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3. Let (1, D) be a pointed inversion automorphism reconstructed in (1). Then the re-
striction to the subgroup D C Hgfmp (IT) gives us the following commutative diagram:

{0*8(ID)} —————— 0" (1) (C o H'(IL (1Ae)(I1)))
l %LCycl. Rig. Mono-Th. in Prop.11.4
{0%f,, (MP(ID)) } —— O (M (IT)) (C oo H'(IL, pz(MP(I1)))

where we put

HY(IL, (1Ae)(TD)) := lim H'(J,(1Ae)(IT)),

JCII:open, of fin. index
W H L iz (MO(I1))) = lim H(J, i3 (MO (I1).
JCII:open, of fin. index

Note that the inverse image of the torsion elements via the upper (resp. lower) hori-
zontal arrow in the above commutative diagram is equal to o0(I1)" (resp. f_ (MO (11))*).

In particular, we obtain a functorial algorithm of constructing splittings
O*H(IL) x {c(ID)' /O (1)}, O**(MP (1)) x {sf, (M (ID))*/O*(M2(I1))}
of {O% (T} OH(IT)  (resp. {0%ocf,, (MIO(IT))}/O*(M2(IT)) ),
4. For an object (IL ~ pz(ME(I1)) ® Q/Z, G ~ O**(G), o, x ) of the radial category
RO, we assign

e the projective system MO (II) of mono-theta environments,
o the subsets O (11 )UO>< 0(IT) (C Hl(l_[temp( ), ({Ae)(I1))), and
O™ (M2 (IN)UO* 8 (MP(IT)) (C Hl(Htemp(M@(H)),Mz(M?(H)))) in (1),
(

e the splittings OX“( ) X {cc8(I1)* JO(ID)}, and
O*H(MP(I1)) x {sof, (M2 (IL))*/O* (M2 (II))} in (3), and

e the diagram

=env

poly

pz (M2 (ID)®Q/Z = OM (M (I1)) = O*(II) — O*(II) - O**(Il) = O0**(G),

where the first arrow is induced by the tautological Kummer map for MO (II),
the second arrow is induced by the vertical arrow in (1), the third and the
fourth arrow are the natural injection and surjection respectively (Note that the

composite is equal to 0), and the last arrow is the poly-isomorphism induced
full poly

~

by the full poly-isomorphism II/A  — G.
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Then this assignment determines a functor 2™ : R® — £°. and the natural
functor WUzenw : R® — Graph(Z®™Y) is multiradially defined.

Proof. Proposition immediately follows from the described algorithms. O

Remark 11.7.1.  See also the following étale-pictures of the étale theta func-

tions:

BT | = = > |G ~ O*H(G) ~ Tsomet(G) [< — —| 00(H)

ol (MO(TI)) | — — > |G ~ O*H(G) ~ Tsomet(G) | < — —| oo (MO (1))

=env =env

Note that the object in the center is a mono-analytic object, and the objects in the left
and in the right are holomorphic objects, and that we have a permutation symmetry
in the étale-picture, by the multiradiality of the algorithm in Proposition 11.7 (See also
Remark 11.1.1).

Remark 11.7.2.  ([IUTchII, Proposition 2.2 (ii)]) The subset

0(I1) C B(IT) (resp. wf'(I1) C (1))

determines a specific g (O(II))-orbit (resp. O (II)-orbit) within the unique (IZ X po;)-
orbit (resp. each (IZ x p)-orbit) in the set O(I) (resp. 0(II)).

§11.2. Hodge-Arakelov-theoretic Evaluation and Gaussian Monoids at
Bad Places.

In this subsection, we perform the Hodge-Arakelov-theoretic evaluation, and con-
struct Gaussian monoids for v € ybad (Note that the case for v € ybad plays a central
role). Recall that Corollary 7.22 (2) reconstructs a mono-theta environment from a
topological group (“IT — M”) and Theorem 8.14 reconstructs a mono-theta environ-
ment from a tempered Frobenioid (“F + M”). First, we transport theta classes § and
the theta evaluations from a group theoretic situation to a mono-theta environment
theoretic situation via (“IT — M”) and the cyclotomic rigidity for mono-theta environ-
ments, then, via (“F — M”), a Frobenioid theoretic situation can access to the theta
evaluation (See also [IUTchlI, Fig. 3.1]):

II't M | F

0, eval —— Qenv? evaleny,
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JF-Theoretic Theta Monoids _Kummer M-Theoretic Theta Monoids

l Galois Evaluation

F-Theoretic Gaussian Monoids <—— M-Theoretic Gaussian Monoids.
(Kummer) ™!, or forget
Note also that, from the view point of the scheme theoretic Hodge-Arakelov theory
and p-adic Hodge theory (See Appendix A), the evaluation maps correspond, in some
sense, to the comparison map, which sends Galois representations to filtered p-modules
in the p-adic Hodge theory.

Definition 11.8.  ([[UTchII, Remark 2.1.1, Proposition 2.2, Definition 2.3])

1. For a hyperbolic orbicurve (—), over K,, let I'_) denote the dual graph of the
special fiber of a stable model. Note that each of maps

FX—>FZ I'x
Fy—%ry, F&

induces a bijection on vertices, since the covering X , X, s totally ramified at
the cusps. Let a

FECFK

denote the unique connected subgraph of I'x, which is a tree and is stabilised by
tx (See Section 7.3, Section 7.5, and Definition 11.6), and contains all vertices of
T X- Let

chlz

denote the unique connected subgraph of I'x, which is stabilised by ¢ x and contains

precisely one vertex and no edges. Hence, if we put labelson 'y by {—1*,...,—1,0,1,...,1*},
where 0 is fixed by tx, then I'%; is obtained by removing, from I'x, the edge con-

necting the vertices labelled b; +1*, and I'§ consists only the vertex labelled by

0. From I'yy, ¢ I'% (C I'x), by taking suitable connected components of inverse

images, we obtain finite connected subgraphs

rycrk crlyx, Iy crfcrly, Iy crfcrly,

which are stabilised by respective inversion automorphisms tx, ¢y, ty (See Sec-

tion 7.3, Section 7.5, and Definition 11.6). Note that each I (’_) maps isomorphically
to I'%.
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Put
Mo := ", C Iy =", < I, (= ")

[ >
X Ty X .T% X,

for ¥ := {l} in the notation of Corollary 6.9 (i.e., H = I'%), Note that we have
Iy C thmp NI, = I3™P. Note also that I,y is well-defined up to II,-conjugacy,
and after fixing IL,)., tl?e%ubgroup II,4 C I, is well-defined up to I, -conjugacy.
Moreover, note that we may assume that 11, I, and ¢y have been chosen so that
some representative of ¢y stabilises I1,o and I,y Finall?, note also that, from II,,
we can functorially grou:p—theoretically reconstruct the data (Ilye C Ilyp C 11, ¢y )
up to II,-conjugacy, by Remark 6.12.1. -

We put
Ay = AR AT = AR AP = ASTP, I = P, T o= ISP
(Note also that we can group-theoretically reconstruct these groups from II, by

Lemma 7.12). We also use the notation (—) for the profinite completion in this
subsection. We also put

My = Ny (Tee)  © Iy = Ny (Thp) C 115,
Note that we have
Iye/Mye = I /My = T3 /1L, 55 AT/A, 5 Gal(X, /X,) = Z/1Z,

and
5, NI, = M., 5 NII, = Ty,

since 11, and II,p are normally terminal in II,, by Corollary 6.9 (6).

resp. of ﬁg, resp. of ﬁﬂ:)

~

is the set of II,-conjugacy (resp. Hi—conjugacy, resp. Il,-conjugacy, resp. ﬁgi—

A +-label class of cusps of II, (resp. of Hf,

conjugacy) classes of cuspidal inertia subgroups of II, (resp. of I+, resp. of ﬁg,

v

resp. of II¥) whose commensurators in IIF (resp. in IIF, resp. in IIF, resp. in

ﬁi) determine a single Hgi-conjugacy (resp. Hi—conjugacy, resp. ﬁ:;—conjugacy,

resp. ﬁi—conjugacy) class of subgroups in HEjE (resp. in I, resp. in I resp.

v v

in ﬁ:;) (Note that this is group-theoretic condition. Note also that such a set of
I1,-conjugacy (resp. Hgi—conjugacy7 resp. Il,-conjugacy, resp. H:;—conjugacy) class
is of cardinality 1, since the covering X , X, s totally ramified at cusps (or the

covering X ~— X is trivial).) Let

LabCusp™ (II,) (resp. LabCusp™ (Hi), resp. LabCusp™ (ﬁg), resp. LabCuspi(ﬁQi) )
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o resp. of ﬁg, resp. of
ﬁi) Note that LabCusp™(II,) can be naturally identified with LabCusp® (D,) in
Definition 10.27 (2) for 7D, := B*™P(I1,)", and admits a group-theoretically recon-

structable natural action of F}*, a group-theoretically reconstructable zero element

denote the set of +-label classes of cusps of II, (resp. of ILF

Tﬁg € LabCuspi(Hg) = LabCusp™ (D, ), and a group-theoretically reconstructable

+-canonical element Tﬁf € LabCusp™(II,) = LabCusp™(D,) well defined up to
multiplication by +1.

5. An element ¢ € LabCuspi(Hg) determines a unique vertex of I'% (cf. Corollary 6.9
(4)). Let T'$ < I'% denote the connected subgraph with no edges whose unique
vertex is the vertex determined by t. Then by a functorial group-theoretic algorithm,
I'% gives us a decomposition group

ITyer C Iy C 11,
well-defined up to I, -conjugacy. We also put

ey = Nypx (Tuet).
(Note that we have a natural isomorphism H;t,t /Myer = Gal(X ,/X,) by Corol-
lary 6.9 (6)). B

6. The images in LabCuspi(Hi,t) (resp. LabCusp™ (ﬁ;’[)) of the FF;-action, the zero el-
ement Tﬂg, and *-canonical element Tﬂf of LabCusp™ (II,,) in the above (4), via the

natural outer injection II, — HgjE (resp. IL, — ﬁi), determine a natural Fli—torsor
structure (See Definition 10.26 (2)) on LabCuspi(Hgi) (resp. LabCuspi(ﬁgi)).
Moreover, the natural action of IS /ITF (resp. ﬁg’r/ﬁi) on II¥ (resp. ﬁj)
preserves this Fli—torosr structure, thus, determines a natural outer isomorphism
II5er /TIE = F'® (resp. ﬁg’r/ﬁi > F2E).

Here, note that, even though II, (resp. ﬁz) is not normal in IIS°" (resp. ﬁgor), the
cuspidal inertia subgroups of I, (resp. ﬁg) are permuted by the conjugatg action
of TI{" (resp. ﬁzor), since, for a cuspidal inertia subgroup I in H:; (resp. ﬁgi), we
have INIL, = I' (resp. I ﬂﬁg = I') (Here, we write multiplicatively in the notation
I'), and IIF (resp. ﬁgi) is normal in ITI5°" (resp. ﬁg’r) ([IUTchII, Remark 2.3.1]).

Lemma 11.9.  ([IUTchIIL, Corollary 2.4]) Take t € LabCusp™ (IL,). Put

Ayot = AQ N Hyota A;t t = Az: N H;t.“ Hyhg = Hyot N H’;;Hlp’ Ayit = AQ N Hyhg,

L]
—v

Agp = 8y Ny, Agy i= Ay NIy, Mg =Ty NP A g = Ay N

—u
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Note that we have
[yet : Hyst] = [Ty : Hy&] = [Ayet 1 Apat] = [App - Ayﬁ] =2,

I,

vet

o] = [T

i

1Ly ] = [A;t.t tAyet] = [Ayi> cAy] =1

1. Let I; C 11, be a cuspidal inertia subgroup which belongs to the £-label class t such
that It C Ayet (resp. It C Ayy). Fory € ﬁi, let (<)Y denote the conjugation
Y(=)y~t by . Then for v € ﬁi, the following are equivalent:

(a) v € Ay (resp. 7 € Agy),
(b) Itwl c I}, (resp. Itw/ c I, ),

vet
(c) 7" C (5, (resp. I C (IL5)7).

vet

2. In the situation of (1), put 6 :== vy € ﬁi, then any inclusion
s _ Y10 s _ Y1
L =17 Clle = e (resp. I} =1)7 C I,y =115, )

as in (1) completely determines the following data:

(a) a decomposition group D? := Nng(If) c 1%, (resp. D? := Nng(ff) C HZS)’

vet

(b) a decomposition group Di_ C I ., well-defined up to (H;t,)é—conjugacy (or,

B’
equivalently (A;t,)‘s-conjugacy), corresponding to the torsion point pu_ in Def-

wnition 11.6.

(¢) a decomposition group Dg“i C Hg“ (resp. Df’M C Hf)‘), well-defined up to
+
(Hyot
(resp. (Aj,)‘s—conjugacy)), that is, the image of an evaluation section corre-

)9 -congugacy (resp. (H;t,)‘s—conjugacy) (or equivalently, (Aj,t)‘s—conjugacy

sponding to j_-translate of the cusp which gives rise to I?.

Moreover, the construction of the above data is compatible with conjugation by ar-
bitrary 6 € Agi as well as with tha natural inclusion Il e C Il,p, as we vary the

non-resp’d case and resp’d case.

3. (F)'*-symmetry) The construction of the data (2a), (2¢) is compatible with conjuga-
tion by arbitrary ¢ € II;°", hence we have a Az"‘"/A;t = H;OT/H;t = Ffi—symmetry

on the construction.

Proof. We show (1). The implications (a) = (b) = (c) are immediately follow
from the definitions. We show the implication (¢) = (a). We may assume vy = 1 without
loss of generality. Then the condition I} C H;t,t C IIF (resp. I C Hyi> C 1)

implies 7/ € A:; by Theorem 6.11 (“profinite conjugate vs tempered conjugate”). By
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Corollary 6.9 (4), we obtain ' € ﬁgi.t (resp. 7' € 3;&,), where (/—\) denotes the closure
in ﬁgi (which is equal to the profinite completion, by Corollary 6.9 (2)). Then we obtain
v € ﬁi,t N Ai = Ayi.t (resp. 7' € ﬁyi, N A:; = Ayi,) by Corollary 6.9 (3).

(2) follows from Theorem 3.7 (elliptic cuspidalisation) and Remark 6.12.1 (together
with Lemma 7.16, Lemma 7.12) (See also Definition 10.17). (3) follows immediately from

the described algorithms. O
Let
(ZA@)(Hgi>
denote the subquotient of IT,z determined by the subquotient (IAg)(IL,) of II, (Note
that the inclusion I,z < II, induces an isomorphism (IAg)(ILz) = (IAe)(ILy)). Let

HE - GQ(HQ)v Hgi - GQ(Hyﬁ)

denote the quotients determined by the natural surjection I, - G, (Note that we can
functorially group-theoretically reconstruct these quotients by Lemma 6.2 and Defini-
tion 11.8 (2)).

Proposition 11.10.  (II-theoretic Theta Evaluation, [IUTchII, Corollary 2.5,
Corollary 2.6])

1. Let I? = Itwl C Hg; C I}, =115, be as in Lemma 11.9 (2). Then the restriction
of the " -invariant sets 0" (T1)), «0'(I1)) of Remark 11.7.2 to the subgroup I, C

H;ﬁ’mp(ﬂg)(c I1,) gives us pg-, p-orbits of elements
0'(IN5) € el () € o H' (I, (1A6) (I )) o=l H' (g % J, (1Ae) (T} )).
CII, : open

The further restriction of the decomposition groups nyﬂf in Lemma 11.9 (2) gives
us -, p-orbits of elements
0'(I1;) € b (I0;) € o H'(G,(ITy), (18e)(I0)) == lim  H'(Jo, (18e)(IL)),

= =\ ok —
JGcGE(H;") : open

—_

conj. by ~
for each t € LabCuspi(HZ) = LabCusp®(Il,). Since the sets Qt(HZ‘),

wgt(ﬂz‘) depend only on the label |t| € |F|, we write

[t .t t] L t
g (HZ‘) .—Q (HZ‘), b (HZS) = OOQ (HZ>)
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2. If we start with an arbitrary ﬁi—conjugate HZ; of IL,z , and we consider the result-

ing por-, p-orbits Q'“(HZ‘), OOQM(HZ;) arising from an arbitrary Ai—conjugate I?
conj. by vy
of I contained in HZ;, as t runs over LabCusp™ Iy — LabCusp™(Il,), then

we obtain a group-theoretic algorithm to construct the collections of -, p-orbits
{eltl(m )} {Ooglt\(ﬂv )}

which is functorial with respect to the isomorphisms of topological groups 11,, and
compatible with the independent conjugacy actions of Ai on the sets {I;*}

{Ii?ll }»yleﬁgi and {HZ2 }fy efif — { v> oA

ltlelFy] |tl€[Fi|

Y1 Eﬁi,f -

8. The ~y-conjugate of the quotient 11,5 — G(IL,5) determines subsets

(o H'(Gu(ITy ), (186)(I05)) D) OX(Ig)  C woH'(I, (186) (I175)),

070 (I ) = OX (I )8 (11T ) © 0% (I ) 1= 0% (I ) (1)) © o HU(ITy, (1A0)(IT5 ),
which are compatible with O* (=), O* 0" (—) in Proposition 11.7, respectively, rel-

ative to the first restriction operation in (1). We put

OXH(ITy ) == 0% (I ) /0" (1), ).

4. In the situation of (1), we taket to be the zero element. Then the set Ht(lTy . ) (resp.

Ht(H7 )) is equal to pgy (resp. w). In particular, by taking quotietn by O“(H7 ),
the restriction to the decomposition group D _ (where t is the zero element) gives
us splittings

O™ (I ) x {oof (115 ) /O (I ) }

of O* 0 (1)) /O (I, ), which are compatible with the splittings of Proposition 11.7
(3), relative to the first restriction operation in (1):

0 e OFH(ITTy) o 0% (I ) JOM(ITTy ) — (I ) ORIy ) — 01

Remark 11.10.1.  (principle of Galois evaluation) Let us consider some “mysteri-
ous evaluation algorithm” which constructs theta values from an abstract theta function,
in general. It is natural to require that this algorithm is compatible with taking Kummer
classes of the “abstract theta function” and the “theta values”, and that this algorithm
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extend to coverings on both input and output data. Then by the natural requirement
of functoriality with respect to the Galois groups on either side, we can conclude that
the “mysterious evaluation algorithm” in fact arises from a section G' — II;. (II) of the
natural surjection Iy (II) = G, as in Proposition 11.10. We call this the principle of
Galois evaluation.:Moreover, from the point of view of Section Conjecture, we expect
that this sections arise from geometric points (as in Proposition 11.10).

Remark 11.10.2.  ([IUTchII, Remark 2.6.1, Remark 2.6.2]) It is important that
we perform the evaluation algorithm in Proposition 11.10 (1) by using single base point,
i.e., connected subgraph Fz C I'x, and that the theta values

(M) C HY(Gy(IgY), (1Ae)(Ig))

live in the cohomology of single Galois group G (Il y) with single cyclotome (IAg) (HZ;)
coefficient for various |t| € |F;|, since we want to consider the collection of the theta
values for |t| € |F;|, not as separated objects, but as “connected single object”, by syn-
chronising indeterminacies via Iﬁ‘fi-symmetry, when we construct Gaussian monoids
via Kummer theory (See Corollary 11.17).

Remark 11.10.3.  ([ITUTchII, Remark 2.5.2]) Put
H@i = H§K7 A@i = AXK‘

Recall that, using the global data A®% (= ﬁgi), we put 4-labels on local objects in
a consistent manner (Proposition 10.33), where the labels are defined in the form of
conjugacy classes of I;. Note that A®F (= ﬁgi) is a kind of “ambient container” of
ﬁf—conjugates of both I; and A,;. On the other hand, when we want to vary w,
the topological group I,z is purely local (unlike the label ¢, or conjugacy classes of
I;), and cannot be globalised, hence, we have the independence of the A®* (= ﬁf)-
conjugacy indeterminacies which act on the conjugates of Iy and A, . Moreover, since
the natural surjection ﬁg’r —» ﬁzor / ﬁgi =~ Ffi deos not have a splitting, the Ezor—outer
action of ﬁg’r/ﬁi =~ F'F in Lemma 11.9 (3) induces independent A®F = ﬁi—conjugacy

indeterminacies on the subgroups I for distinct t.

Remark 11.10.4.  ([IUTchII, Remark 2.6.3]) We explain the choice of I'}, C T'y..
Take a finite subgraph I'' C I'y.. Then

1. For the purpose of getting single base point as explained in Remark 11.10.2, the
subgraph I should be connected.

2. For the purpose of getting the crucial splitting in Proposition 11.10 (4), the subgraph
I should contain the vertex of label 0.
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3. For the purpose of making the final height inequality sharpest (cf. the calculations
in the proof of Lemma 1.10), we want to maximise the value

1 ) ‘2
AT Z ML e, j=j in |F {i },

JEF,

where we identified I'y- with Z. Then we obtain #I” > [*, since the above function
is non-decreasing when #I" grows, and constant for #I" > [*.

4. For the purpose of globalising the monoids determined by theta values, via global
realified Frobenioids (See Section 11.4), such a manner that the product formula
should be satisfied, the set {j € I, j = j in |[F;|} should consist of only one element
for each j € F)*, because the indep;ndent conjugacy indeterminacies explained in
Remark 11.10.3 are incompatible with the product formula, if the set has more than
two elements.

Then the only subgraph satisfying (1), (2), (3), (4) is F;

For a projective system M® = (.- + MY, + MY, < ---) of mono-theta environ-
ments such that Hz’mp(M*@) =~ 11, where M§, = (e , Do, 51\?@ ), put

Myge = lim Mo .
M

Note that we have a natural homomorphism IIyje — Hg’mp(M*@) of topological groups

whose kernel is equal to the external cyclotome u (M®), and whose image correpsonds
to TI5™P. Let

v

HM?‘ C HMS)» C Ilye

denote the inverse image of II,z C I,y C II, 2 II™P(M®) in Iye respectively, and

UZ(M*QS)v (ZA@)(M?ﬁ)a HQS(M?$)7 GQ(M?>)

denote the subquotients of Ilyje determined by the subquotient MZ(M*@) of Ilje and
the subquotients (ZA@)(Htéemp(M*@)), Iz, and GQ(Htéemp(M?)) of 11, = Hzmp(l\\/ﬂ*@).
Note that we obtain a cyclotomic rigidity isomorphism of mono-theta environment

(1Ae)(MSy) = iz (MS)

~

by restricting the cyclotomic rigidity isomorphism of mono-theta environment (IAg)(M2) =
117(M?) in Proposition 11.4 to ITje (Definition [ITUTchII, Definition 2.7]).
*b
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Corollary 11.11.  (M-theoretic Theta Evaluation, [IUTchII, Corollary 2.8]) Let
MO be a projective system of mono-theta environments with H%emp(Mf?) =1II,. Let

(M2)

denote the projective system of mono-theta environments obtained via transport of struc-
ture from the isomorphism 11, — I} given by the conjugation by .

1. LetI9 =1 ¢ 0, C Iy =119, be as in Lemma 11.9 (2). Then by using the

cyclomotic rigidity isomorphisms of mono-theta environment
(1A0)(MZ)Y) = nz((MZ)7), (18e)((MP)) = pz((M?)7)

(See just before Corollary 11.11), we replace H'(—, (1Ae)(—)) by H'(—, pz(—))
in Proposition 11.10. Then the (" -invariant subsets 0*(I1}) C O(I1)), 8" (I[)) C
o O(I1}) determines .Y -invariant subsets

0 (M))co_ ((MP)), b

—en

L (M2)7) € o

env —env

(M2)7).
The restriction of these subsets to HQ;((M?‘)W) gives us fior-, p-orbits of elements

0. ((M3)7) C ool (M5)7) C ool (T (ME)7), uz((M55)7)),

=env =env
where ooﬂl(l_[y;((M?;)W), —) = liﬂjcﬁg;open Hl(HQ;((M?;)V) Xg, —). The
further restriction to the decomposition groups D,‘;“_ in Lemma 11.9 (2) gives us
Wor-, p-orbits of elements

00, (M3)7) C ool (ME)7) C oo H' (Gu((ME)), 1z (ME)7),

where we put OOHI(GQ((M?;)V% -)

conj. by ~

13 1 _
=1 6y (8, )7 open T (G0 =), for each

te LabCuspi(HZ) = LabCusp®(Il,). Since the sets anv((MS);W% w8 (M

—env

depend only on the label |t| € |Fy|, we write

o (M)7) =0 (M5)), b

9" g (%)) = oot (ME)).

=env

2. If we start with an arbitrary ﬁi—conjugate Hy;((M?‘)V) of Tz (M?‘), and we
consider the resulting po;-, p-orbits QLﬂV((M?‘)V), OOQLtiv((M?S 7) arising from
an arbitrary ﬁvi—conjugate I? of I; contained in Hgg((M?‘)V), as t runs over

;onj. by ~
LabCuSpi(HZ) —~5  LabCusp™ (IL, ), then we obtain a group-theoretic algorithm

to construct the collections of po;-, p-orbits

{QLﬂv((M§‘)7>}|t|eFl| ’ {MQLZV((M?‘)W)}HEW ’

©
*P

)7)
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which is functorial with respect to the projective system MO of mono-theta environ-
ments, and compatible with the independent conjugacy actions of Agi on the sets

{I"} ez = {11}, cazx and {TLp (MZ)72)} oz = {Tp (MZ)72)} a2

3. In the situation of (1), we take t to be the zero element. By using the cyclomotic
rigidity isomorphisms in (1) we replace (IAe)(—) by puz(—) in Proposition 11.10,
then we obtain splittings

O M(MZ)7) % {ool, ((M5)7)/O" (M)}

L Ie) Ie) . . . -
of O%oc.  ((M;)7)/O"(Mg;)Y), which are compatzbli with the splittings of Propo-

sition 11.7 (3) (with respect to any isomorphism MO = MO (IL,)), relative to the

first restriction operation in (1):

label 0

T.\.

0 ——= O*H((M$)7) —— 0%l ((M3)7)/O*((M3;)7) —= ool (M$5)7)/O*((M$)7) — 0.
Remark 11.11.1.  (Theta Evaluation via Base-field-theoretic Cyclotomes, [[UTchII,
Corollary 2.9, Remark2.9.1]) If we use the cyclotomic rigidity isomorphisms

p7(Gu(Ily)) = (1Ae)(ILy), pz(Gy(IT);)) = (1Ae)(IT); )

determined by the composites of the cyclotomic rigidity isomorphism via positive
rational structure and LCFT “45(G) = 5 (I1)” group-theoretically reconstructed
by Remark 6.12.2 and the cyclotomic rigidity isomorphism “u5 (IT) = (IAg)(II)” group-
theoretically reconstructed by Remark 9.4.1 and its restriction to HZ‘ (like Propo-
sition 11.5; however, we allow indeterminacies in Proposition 11.5), instead of using
the cyclomotic rigidity isomorphisms of mono-theta environment (ZA@)((M*@‘)”) =
,uz((I\\/JI?‘)V), (1A0)((M2)7) 5 us((MP)7), then we functorially group-theoretically
obtain the following similar objects with similar compatibility as in Corollary 11.11:
("-invariant subsets

0! (I17) C 6, (I1}), o' (IT}) C w8, (IT}).

The restriction of these subsets to lTy gives us ig;-, p-orbits of elements

where OoHl(HZ‘, —) = hﬂjcﬁ open HY(11Y f —). The further restriction to the

>< ~
o I,
decomposition groups D,‘Z . in Lemma 11.9 (2 ) gives us pig-, p-orbits of elements

QZS(HZ;) - OOQES(HZ;) - ooHl(GQ<H;;)aMZ(GQ<HZ;))>7
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+
where OoHl(GQ(HZ‘), —) = h_r}njccG (7, ) - open H'(Jg,—), for each t € LabCusp™ (II})

conj. by v
= LabCusp™(IL,). Since the sets Qt L5, OOHt (1175 depend only on the label

|t] € |F|, we write

It] — ot |t] . t
0, () =0, (5) ooy (M) = ool (L)),

Hence, the collections of pig;-, pu-orbits

{0'|DtS|(H7 )}|t|eIFl| { Q]';S'(Hf )}ItIEIle

O (I Jos * {ocll (05 )/ OM(IT5 e}
(

of 0% o) (I1);)/O*(IL) s (Here, O*H(—)bs, O™ (—)bs, OF(—)bs denote the objects
correspondlng to O*H (=), O%(=), O*(—), respectively, via the cyclotomic rigidity iso-

and splittings

morphism):

label O

0—— OXM(HZ‘)bS —_— OXWQES(HZ‘)/ON(HZ;%S —_— WQES(HZS)/ON(HZ$)bS —0.

Note that we use the value group portion in the construction of the cyclotomic rigidity
isomorphism via positive rational structure and LCFT (cf. the final remark in Re-
mark 6.12.2). Therefore, the algorithm in this remark (unlike Corollary 11.11) is only
uniradially defined (cf. Proposition 11.5 and Remark 11.4.1).

On the other hand, the cyclotomic rigidity isomorphism via positive rational struc-
ture and LCFT has an advantage of having the natural surjection

H'(Gy(=), 15(Gu(-))) - Z

in (the proof of) Corollary 3.19 (cf. Remark 6.12.2), and we use this surjection to
construct some constant monoids (See Definition 11.12 (2)).

Definition 11.12.  (M-theoretic Theta Monoids, [[UTchII, Proposition 3.1]) Let
M be a projective system of mono-theta environments with Htemp (M®) =~ 11,.

1. (Split Theta Monoids) We put

env

—env

ey (M) = {w (M) = 0 (M) - g (M) (C oo H (I (M), MZ<M@>>>},

T (02 i {0, (02) i O (02 -t (VD) (€ o (1™ (0421500}

env
L
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These are functorially group-theoretically reconstructed collections of submonoids of
oH*! (Ht.Yemp (M®), 5 (M?)) equipped with natrural conjugation actions of H;mp (M®),

together: with the splittings up to torsion determined by Corollary 11.11 (73) We
call each of W (M9), W

Ly ¢ (M®) a mono-theta-theoretic theta monoid.

2. (Constant Monoids) By using the cyclotomic rigidity isomorphism via positive ra-
tional structure and LCFT, and taking the inverse image of Z C Z via the surjection
HY(Gy(=), p5(Gu(—))) — i/ (See Remark 11.11.1) for G,(M?) := GQ(Hg?mp(M*@)),
we obtain a functorial group-theoretic reconstruction -

Wons (M) C oo HH(IE™ (M), 15 (M)
of an isomorph of O%v, equipped with a natural conjugate action by Hzmp(M*@).

We call U, (M®) a mono-theta-theoretic constant monoid.

Definition 11.13.  ([IUTchII, Example 3.2])

1. (Split Theta Monoids) Recall that, for the tempered Frobenioid F  (See Exam-

ple 8.8), the choice of a Frobenioid-theoretic theta function © € O ((’)?}rat) (See

—v

Example 8.8) among the ugl(O};,irat)—multiples of the Autpg(zv)—conjugates of O

determines a monoid O?s,(—) on DY (See Definition 10.5 (1)) Suppose, for sim-
plicity, the topological group II, arises from a universal covering pro-object A, of
D,. Then for AQ := A, x zv € pro-Ob(Dy) (See Definition 10.5 (1)), we obtain
submonoids B

Ve ia = Ofo (AS) = 0%e (A)0, |18 C ooV = 0% (AL) 0> |ae € OX(O55™).

For the various conjugates Qg of © for a € Autpg(zv), we also similarly obtain
submonoids a a a
Uro o Colre, COX(OREM).

oo

Put

Vre 1= {‘I’fg,a} oV re o= {oo‘I’fg,a}

a€ll, a€ll,

where we use the same notation «, by abuse of notation, for the image of « via the

surjection IL, — AutDE(Yv). Note that we have a natural conjugation action of II,

on the above collections of submonoids. Note also that QSZO |ae gives us splittings
up to torsion of the monoids ¥re o, oo ¥ re o (cf. splé9 in Definition 10.5 (1)), which
are compatible with the Hg-act;on. Note that, from v ,» We can reconstruct these
collections of submonoids with II,-actions together with the splittings up to torsion
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up to an indeterminacy arising from the inner automorphismsof 11, (cf. Section 8.3.
See also the remark given just before Theorem 8.14). We call each of ¥re ,,
¥ re o a Frobenioid-theoretic theta monoid.

2. (Constant Monoids) Similarly, the pre-Frobenioid structure on C, = (£ U)base'ﬁeld C

F , gives us a monoid O¢ (=) on D,. We put
Ve, = OF (AD),

which is equipped with a natural II,-action. Note that, from F ,» We can reconstruct
I, ~ ¥¢,, up to an indeterminacy arising from the inner automorphisms of IL,.
We call ¥¢, a Frobenioid-theoretic constant monoid.

Proposition 11.14.  (F-theoretic Theta Monoids, [IUTchII, Proposition 3.3])

Let M® be a projective system of mono-theta environments with Ht)?mp(M*@) = II,.

Suppose that MO arises from a tempered Frobenioid T;y n a @-Hodgeitheatre tHTe =
({Tgﬂ}wey, TS'I;Od) by Theorem 8.1/ (“F — M”):

MY =M ("E ).

1. (Split Theta Monoids) Note that, for an object S of F such that pn(S) =
ZJINZ, and (IAg)s @ Z/NZ = Z/NZ as abstract groups,_%he exterior cyclotome
MZ(M?(Tgv)) corresponds to the cyclotome pz(S) = Hm un (S), where pun(S) C
O*(S) C Autiz (S) (¢f. [IUTchII, Proposition 1.3 (i)]). Then by the Kummer
maps, we obtain Ecollections of Kummer isomorphisms

Kum Kum
~ ~ l/

©
\111]:5-)’0( 5wl (MD), oo\Iijf)‘),a — 0o Veny

env

(M2),

of monoids, which is well-defined up to an inner automorphism and compatible
with both the respective conjugation action of H;mp(M?), and the splittings up

w »

to torsion on the monoids, under a suitable bijection of [Z-torsors between “” in

Definition 11.8, and the images of “a” via the natural surjection 11, — lZ:
“7s  + “Im(a)”s.
2. (Constant Monoids) Similary, using the correspondence between the exterior cy-

clotome uz(M?(Tév)) and the cyclotome pz(S) = lim un(S), we obtain Kum-
mer isomorphisms

Kum
Uie, = Wens(M?)
for constant monoids, where TC, = (U:Tv)base'ﬁeld, which s well-defined up to

an inner automorphism, and compatible with the respective conjugation actions of
Htemp(M@)
X o
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Proof. Proposition follows from the definitions. O

In the following, we often use the abbreviation (,)(—) for a description like both of
(=) and - (—).
Proposition 11.15.  (II-theoretic Theta Monoids, [IUTchII, Proposition 3.4])

Let M® be a projective system of mono-theta environments with Htgnp(M?) = II,.
Suppose that MO arises from a tempered Frobenioid Tiv in a ©-Hodge theatre tHT® =
({Téw}ﬂey, T3 ) by Theorem 8.14 (“F +— M”):

mod
MP =MP(TE ).

We consider the full poly-isomorphism

full poly

~

M? (L) = MP(TE)

of projective systems of mono-theta environments.

~

1. (Multiradiality of Split Theta Monoids) Each isomorphism 3 : MO (IL,) =
M?(Tév) of projective system of mono-theta environmens induces compatible col-

lections of isomorphisms

B
I, 5 O™ (MO(IL,)) = TE™MO(TE)) = OEPMO(TE))
~ ~ r~
B Kum™*!
(00) qjenv(M*@(Hg)) :> (o0) qjenv(M*@(Tiv)) ; (OO)‘I,T}—S’

which are compatible with the respective splittings up to torsion, and

B
Gy = Go(MP(1IL,)) = Gg(M?(Tiv)) = GQ(I\\/JI*@(T;U))
N N %
B Kum !
Veny (MO (IL))¢ = Ve MP(TE ) 5 ¥

Moreover, the functorial algorithm
I, = (I, ™ (00) Yenv (M®(11,)) with splittings up to torsion),
which is compatible with arbitrary automorphisms of the pair
Go(MP(TE)) ~ (Trpe)** = (Wi ze)*/torsions

arisen as Isomet-multiples of automorphisms induced by automorphisms of the pair
GQ(M*@(Tév)) ~ (Wire)™, relative to the above displayed diagrams, is multira-
dially defined in the sense of the natural functor “Uarapn(z) ” of Proposition 11.7.
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2. (Uniradiality of Constant Monoids) Each isomorphism (3 : MO (I1,) = M? (Tiv)
of projective system of mono-theta environmens induces compatible collections of

1somorphisms
- s t
I, = Ig™P (M2 (IL)) S ™ MP(TE)) = ™ MP(TE)
Y N Y
B Kum™!
Uens(MP(IL,)) = Ues(MP(FE)) = Uic,,
and ;
GE — GQ(M?(HE)) — GQ(M*@(T£ )) = GQ(M*@ (Tiv))
N N N
B Kum™!
s MO(1)* 5 U MOCE)) 5 0,

Moreover, the functorial algorithm
My — (T A W (M (TL))),

which fails to be compatible (Note that we use the cyltomic rigidity isomorphism via
rational positive structure and LOFT and the surjection H*(Gy(—), pz(Gy(—))) —
Z to construct the constant monoid, which use the value group portion as well) with

automorphisms of the pair
GQ(M?(Téu)) ~ (Wie, ) 1= (Wie, ) /torsions

induced by automorphisms of the pair G,(M® (Tiv)) ~ (Wie, )™, relative to the
above displayed diagrams, is uniradially defined.

Proof. Proposition follows from the definitions. O

Corollary 11.16.  (M-theoretic Gaussian Monoids, [IUTchII, Corollary 3.5])
Let M® be a projective system of mono-theta environments with Htlemp(M?) = II,.

For t € LabCusp™ (HEmp(M?)), let (—); denote copies labelled by t of various objects

functorially constructed from M® (We use this convention after this corollary as well).

1. (Conjugate Synchronisation) If we regard the cuspidal inertia subgroups C
Hg?mp (M®) corresponding tot as subgroups of cuspidal inertia subgroups onggmp(M?),
then the Azmp (MO)-outer action of F}* = A‘gmp(M*@)/AEmp(M*@) on H&emp(M*@)

induces isomorphisms between the pairs

GQ(M?)t ~ Wens (M?)t
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of a labelled ind-topological monoid equipped with the action of a labelled topological
group for distinct t € LabCusp™ (IIY™(M?)). We call these isomorphisms Ffi-
symmetrising isomorphisms.Wlian we identify these objects labelled by t and
—t via a suitable Ffi-symmetm’sing isomorphism, we write () for the resulting
object labelled by |t| € |F;|. Let

(=) qr)

denote the object determined by the diagonal embedding in Hltlele (=)j¢ via suitable
]Ffi—symmetrising isomorphisms (Note that, thanks to the ]Fl”i—symmetm'smg 180-
morphisms, we can construct the diagonal objects). Then by Corollary 11.11, we
obtain a collection of compatible morphisms

(MX™P(M2) =) M (MS) — Go(ME ) (r))

*

5% %

diag
Uens(M2) 5

\I[cns(M*@><HFl|)7
which are compatible with Ffi—symmetm’sing isomorphisms and well-defined up to
an inner automorphism of T "P(MQ) (i.e., this inner automorphism indetermi-

nacy, which a priori depends on |t| € |F,|, is independent of |t| € |F|).
2. (Gaussian Monoids) We call an element of the set

QFZ* = 0|t| - H \I/cns(M*@)|t|

—env —env
|t|eF* |t|eF*

a value-profile (Note that this set has of cardinality (21)'" ). Then by using F*-
symmetrising isomorphisms and Corollary 11.11, we obtain a functorial algorithm
to construct, from MO, two collections of submonoids

\Ijgau(M*@) = W{(M?) = WCHS(M?)TFfe) '§N - H \IICHS(MS))IH )

%
ItIEF; £ :value profile

oW gan(MO) := { W (M®) := \I/CDS(I\\/JI?)?Fﬁ.S@zoC I ZensM2)y

%
[tIEF; £ : value profile

where each Ig(M®) is equipped with a natural GE(M?‘)<]F;:<>—action. We call each of
Ue(M®), 5o ¥e(M?) a mono-theta-theoretic Gaussian monoid. The restric-
tion operations in Corollary 11.11 give us a collection of compatible evaluation
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isomorphisms

8

Dt#_ ’s
(™ (MP) =) e (M)  «-- {Go(MZ; )41}y e

% %

eval

~

(o) VUl (MO) 5 (00) Ve (M2),

which is well-defined up to an inner automorphism of Htgmp(M*@) (Note that up to

single inner automorphism by Ffi-symmetm'smg isomorphisms), where «-- denotes
the compatibility of the action of GQ(M?;)M on the factor labelled by |t| of the
o We(M®). Let

eval

(c0) Weny (M*@) - (o0) Wgau (M?)

denote these collections of compatible evaluation morphisms induced by restriction.

3. (Constant Monoids and Splittings) The diagonal-in-|F;| submonoid ¥eus(M?) (r,))
can be seen as a grpah between the constant monoid \PCHS(M?)O labelled by the zero
element 0 € |Fy| and the diagonal-in-F}* submonoid \PCHS(M?)<F7€>, hence determines
an isomorphism

diag
\IJCHS(MS))O = qjcns(M?)<ﬂr;é>
of monoids, which is compatible with respective labelled GQ(M?‘)—actions. More-
over, the restriction operations to zero-labelled evaluation points (See Corollary 11.11)

give us a splitting up to torsion

cns cns

Ue(MP) = 0 (M?)@Ffé) N T (MP) = T X (I\\/JIS?)(IF;;6> L £Q20

of each of the Gaussian monoids, which is compatible with the splitting up to torsion
of Definition 11.12 (1), with respect to the restriction isomorphisms in the third
display of (2).

Proof. Corollary follows from the definitions. O

Corollary 11.17.  (F-theoretic Gaussian Monoids, [[UTchII, Corollary 3.6]) Let
M® be a projective system of mono-theta environments with TP (M?) = TI,. Sup-

pose that MO arises from a tempered Frobenioid Tév m a @—I;odge theatre THT® =
({Téw}yey, Tg ) by Theorem 8.14 (“F +— M”):

mod

MY =M?(TE).
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1. (Conjugate Synchronisation) For each t € LabCuspi(HtXemp(M*@)) the Kum-
mer isomorphism in Proposition 11.14 (2) determines a collection of compatible
morphisms

*

(" (M2) =) Gu(MD) — Gu(MZ):

% m

Kum

(Wig, )t = Wens(MD)y,
which are well-defined up to an inner automorphism (which is independent of t €
LabCusp™ (II temp(l\/[[@))) themp(Me), and F}'=-symmetrising isomorphisms be-
tween distinct t € LabCusp (Htemp(M@)) induced by the Ax (M®)-outer action of
B = Ac(M2)/Ax (M2) on Ty (MP).

2. (Gaussian Monoids) For each value-profile &, let

Ur('F) € ¥r(E)  JI (Wie )i
[t|eF

denote the submonoid determined by the monoids We(MP), We(M®) in Corol-

Kum

~

2)
lary 11.16 (2), respectively, via the Kummer isomorphism (Wic, )1 — Wens(MP)y
in (1). Put

Ur,,(E,) = {¥x(E) V() = {w¥r(F))

} ) )
—¥" ) ¢ :value profile —v £ : value profile

where each H}‘g(Tév> is equipped with a natural GQ(M?)@;:e)—actz’on. We call each
of Hfg(Tév), OOH;;(Tiv) a Frobenioid-theoretic Gaussian monoid. Then by
composing the Kummer isomorphism in (1) and Proposition 11.14 (1), (2) with the
restriction isomorphism of Corollary 11.16 (2), we obtain a diagram of compatible
evaluation ismorphisms

8 P

Dt,u, S ~
My (M) = M) e {GuMF)udyerr = {GuMD)jn by ers
~ ~ r ™~
Kum eval Kum™*!
¥ire, = (o¥uM?) 5 (WMD) 3 ()UR(E).

which is well-defined up to an inner automorphism of TP (M®) (Note that up to

single inner automorphism by Ffi—symmetm’sing isomo?phisms ), where «-- is the

same meaning as in Corollary 11.16 (2). Let
Kum eval Kum™*!

(00)\1}1‘.7-';9 = (m)\Penv<M?) = (m)qjgau(M?) = (OO)\I/}—gau(Tég)

denote these collections of compatible evaluation morphisms.



A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 279

3. (Constant Monoids and Splittings) By the same manner as in Corollary 11.16
(3), the diagonal submonoid (Vic, )(r,|y determines an isomorphism
diag
(\I/TCE)O — (\I[TCE)GF;?)
of monoids, which is compatible with respective labelled GQ(M?)-actions. Moreover,
the splittings in Corollary 11.16 (3) give us splittings up to torsion

\Ij]:g(Tég) = (‘I’fxcg)ml*) -Tm(€)", OO\II]:g(T‘F ) = (\I’?CE)(]FI*) - Tm(¢)%=0

—uv

(Here Im(—) denotes the image of Kum ™' oevaloKum in (2)) of each of the Gaussian
monoids, which is compatible with the splitting up to torsion of Definition 11.12 (1),
with respect to the restriction isomorphisms in the third display of (2).

Proof. Corollary follows from the definitions. O

Remark 11.17.1.  ([TUTCcIII, Remark 2.3.3 (iv)]) It seems interesting to note that
the cyclotomic rigidity of mono-theta environments admits Ff i-symmetry, contrary
to the fact that the theta functions, or the theta values g{f’s do not admit ]Ffi—
symmetry. This is because the construction of the cyclotomic rigidity of mono-theta
environments only uses the commutator structure [, | (in other words, “curvature”) of
the theta group (i.e., Heisenberg group), not the theta function itself.

Remark 11.17.2.  (II-theoretic Gaussian Monoids, [IUTchII, Corollary 3.7, Re-
mark 3.7.1]) If we formulate a “Gaussian analogue” of Proposition 11.15, then the re-
sulting algorithm is only uniradially defined, since we use the cyclotomic rigidity isomor-
phism via rational positive structure and LCFT (cf. Remark 11.11.1 Proposition 11.15
(2)) to construct constant monoids. In the theta functions level (i.e., “env”-labelled
objects), it admits multiradially defined algorithms; however, in the theta values level
(i.e., “gau”-labelled objects), it only admits uniradially defined algorithms, since we
need constant monoids as containers of theta values (Note also that this container is
holomorphic container, since we need the holomorphic structures for the labels and ]Ffi—
synchronising isomorphisms). Later, by using the theory of log-shells, we will modify
such a “Gaussian analogue” algorithm (See below) of Proposition 11.15 into a multi-
radially defined algorithm after admitting mild indeterminacies (i.e., (Indet 1), (Indet
—), and (Indet ~)) (See Theorem 13.12 (1), (2)).

A precise formulation of a “Gaussian analogue” of Proposition 11.15 is as follows:
Let MO be a projective system of mono-theta environments with IT%™?(M?) = II,,.

Suppose that M® arises from a tempered Frobenioid T£ ,ina @—Hodge?heatre tH7e =
({TE, Yuwev, "§hoa) by Theorem 8.14 (“F — M”):

mod

M =M?(TE).
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We consider the full poly-isomorphism

full poly

~

MP(IL,) = MP(E)

of projective systems of mono-theta environments. Let M*@‘ (Tév) denote M*@‘ for
MP = MP(TE ). For MY = MPQ(IL,), we identify IT,z(MS;) and G,(MS;) with

I,z and G,(IL,z) respectively, via the tautological isomorphisms II,; (M*@;) = Iz,

Gu(My) = Gy (I).

1. Each isomorphism 8 : MQ(I,) = M?(Tév) of projective system of mono-theta
environments induces compatible collections of evaluation isomorphisms

&

Pt % et ~ ot
I, 5 - {Gg(nﬂ‘>‘tl}|t‘eF?€ = {Gu M35 ( éﬂ))m}lt‘@??ﬁ S {GoMP( éﬁ))lt‘}\tleﬂ?fé
o eval o B ° Kurn*l
(00) Teny (MQ (M) 5 (o) TeMPMy)) 3 () TP (TE))) = (00)¥Fe (),
and
diag B
.. ~ ~ T ~ (€] .
GQ(Hyb) - GQ(H2>)<F;<> — Gv (M ,( ;ﬁ))(wf) - GE(M* (Tig))w;f)
N N N N

eva B
W (M2 (I1,)) ¢ :>1‘1’s(M@(Hv))X:> veM2(E)) = UR(E)"

env
where «-- is the same meaning as in Corollary 11.16 (2).

2. (Uniradiality of Gaussian Monoids) The functorial algorithms

I, = (Gu(ILg) ™ Wgay (M®(I1,)) with splittings up to torsion),

I, — (00 Vgau(MP(I1,)) with splittings up to torsion),

which fails to be compatible (Note that we use the cyltomic rigidity isomorphism via
rational positive structure and LCFT and the surjection H(Gy(—), u5(Gy(—))) —
Z to construct the constant monoid, which use the value group portion as well) with

automorphisms of the pair
GQ(M?(Tév))<]F;;<> ~ \Ilfg(Tgv)X“ = \Ilfg(T;v)X/torsions

induced by automorphisms of the pair GE(M?(Tév)) ~ Vr, (T]:-"U)X, relative to
the above displayed diagrams in (1), is uniradially defined. B
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§11.3. Hodge-Arakelov-theoretic Evaluation and Gaussian Monoids at
Good Places.

In this subsection, we perform analogues of the Hodge-Arakelov-theoretic evalua-
tion, and construction of Gaussian monoids for v € V&°°4,
Let v € V&°°4. For v € V& N Y™ (resp. v € V), put

I, :=1Ix C Iy =1y C I =1,

(resp. Uy =X C Uy =X, C Uy :=Cy),

where § , X,, and C, are Aut-holomorphic orbispaces (See Section 4) associated to 5 ,
v T — - v

X, and C,, respectively. Note that we have I /ITF = F'* (resp. Gal(Uf /Ugr) =

EL 7S

F,**). We also write

A, C IO, — G,(I1,), A:; C H;E — GQ(HEi), AT C T — Gy (II5)

(resp. DZ (Uy,) )

the natural quotients and their kernels (resp. the split monod), which can be group-
theoretically reconstructed by Corollary 2.4 (resp. which can be algorithmically re-

~

constructed by Proposition 4.5). Note that we have natural isomorphisms G, (IL,) —
Gu(IIF) = G (II5") = G,

Proposition 11.18.  (II-theoretic (resp. Aut-hol.-theoretic) Gaussian Monoids
at v € V8°U N Y™ (resp. at v € V#€), [TUTchII, Proposition 4.1, Proposition 4.3])

1. (Constant Monoids) By Corollary 3.19 (resp. by definitions), we have a func-
torial group-theoretic algorithm to construct, from the topological group G, (resp.
from the split monoid DE), the ind-topological submonoid equipped with G,-action
(resp. the topological monoid)

Ggm \chns(GQ) C ooHl(G@ MZ(GQ)) = hg”l Hl(Jv NZ(GQ))
JCG, :open
(resp. \I'CHS(DZ) = OD(C'E_) )

which is an isomorph of (G, ~ O%U), (resp. an isomorph ofO%U). Thus, we obtain
a functrotal group-theoretic algorithm to construct, from the topological group II,
(resp. from the Aut-holomorphic space Uy ), the ind-topological submonoid equipped
with Gy (IL,)-action (resp. the topological monoid)

Gy(Ily) ™ Wens(Ily) := Wens(Gu(1Ly)) C o H* (GQ(HQ)MUZ(GQ(HB)))
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(7"6317- lpcnS([Ug) = \IICHS(DqE (Uv)) )7

1 N\ =1 1 _ T ) — 15
where oo H (GQ(HE)’ ) T thCGE(HE) :open H (J7 )’ ool (HE’ ) T 11énJCGE(HE) :open
Hl(Hi X Gu(IL) J; _)7 and OOHl (Hg’ _) = @JCG&(HQ :open H' (Hg X Gy (M) J, _)'

2. (Mono-analytic Semi-simplifications) By Definition 10.6, we have the func-
torial algorithm to construct, from the topological group G, (resp. from the split
monoid Dlg_ ), the topological monoid equipped with the distinguished element

'_
logGg(pg) € Rxo(Gy) = (REO)@ (resp. 10gD (po) € RZO(DE) = (REO)E7 )
(See “logs (p,)” in Definition 10.6) and a natural isomorphism

R
\I!cns

(Gg) = (\IICHS(GQ)/‘IICDS(GQ)X)R = (REO)E

(resp. WX

cns

(DZ) 1= (Wens (Dg)/q/cns (D£> x )R = (REO)E )

of the monoids (See Proposition 5.2 (resp. Proposition 5.4)). Put

Vs (Gy) 1= Pens(Gy) ™ X (REO)E (resp. W (DZ) = \PcnS(DZ)X X (REO)E ),

cns

put

Uons(ly) = W (Gy(Ily)), \IICHS<H2>X = \IJCHS(GE(HQ))Xv R>o(ILy) == R>0(Gy(1Ly))

cns

(resp. WEa(Uy) := UEL(D, (Uy)), Wons(Up)™ = Pens(Dy, (Uw))*, R0(Uy) := Rx0(D, (Uy))

Just as in (1).

3. (Conjugate Synchronisation) If we regard the cuspidal inertia subgroups C I,
corresponding to t as subgroups of cuspidal inertia subgroups of Hyi, then the Agi—
outer action of F}'* = A /A on ITE (resp. the action of F)'* = Gal(UE /US)
on the various Gal(U,/UF)-orbits of cusps of Uy) induces isomorphisms between
the pairs (resp. between the labelled topological monoids)

Gy(y)e ~ Wens(Ily)r  (resp. Wens(Uy)e )

of the labelled ind-topological monoid equipped with the action of the labelled topo-
logical group for distinct t € LabCuspi(Hg) = LabCuspi(B(Hg)O) (resp. t €
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LabCusp™(U,)) (See Definition 10.27 (1) (resp. Definition 10.27 (2)) for the def-
inition of LabCuspi(—)). We call these isomorphisms Ffi-symmetrising iso-
morphisms. These symmetrising isomorphisms determine diagonal submonoids

\I,cns |[Fl|) C H \I[cns |t| \chns IF* - H \chns |t|
[t €]Fy |t| €F*

which are compatible with the respective labelled G, (11,)-actions

(resp.  Wens(U <|IF‘l| - H Vens (U \t|7 Wens(U ]F* C H Wens (U |t| ),
t|€[F] |t|EFF
and an isomorphism

diag diag

Uens(ly)o — \chns(Hg><[Fl*> (resp.  Wens(Uy)o — \IICHS(UQ)@T;@ )

of ind-topological monoids, which is compatible with the respective labelled G (I1,)-

actions (resp. of topological monoids).

. (Theta and Gaussian Monoids) Put

\I}env(Hg) = \I]cns(Hg)X X {RZO : logng<pg) : IOgHE(Q)}

(resp. \I'enV([Ug) = \IICHS(UQ>X X {RZO ) log[ui(pg) : 10gwl@)} ),

where lognﬂ(pg) . 1ognﬂ(g) (resp. logUE(pg) -logmﬂ(g)) is just a formal symbol, and

Vg (Tl) = Wens (Iy) s X {RZO. <jz : 1ognu(pv)>j}

C H s () = H Wens(Ily) ;< Rxo(1ly);
JEFF JEFF

(resp. Ugan(Uy) := Wens(Uy) S s, X SR> - <j2 . IOgUl(pg)> .
(F) J

- H Vs (Uw); = H Vens(Up); x R>0(Uy); )

jGIE‘ JEF,

where log™® (p,) (resp. log"(py,)) is just a formal symbol, and Rsq - (=) is de-
fined by the R>o-module structures of R>o(IL,);’s (resp. R>o(Uy);’s). Note that
we need the holomorphic structures for the labels and Ffi—synchmmsmg 150mor-
phisms. In particular, we obtain a functorial group-theoretically algorithm to con-
struct, from the topological group II, (from the Aut-holomorphic space U, ), the
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theta monoid Weny(IL,) (resp. Weny(Uy)), the Gaussian monoid Vgay(IL,) (resp.
Uoon(Uy)) equipped with natural G, (Il )-actions and splittings (resp. equipped with
natural splittings), and the formal evaluation isomorphism

eval

~

‘I[enV(Hg) — \I'gau(ng) : 10gH2(pg) : 1OgH£(@) = (92 'logng(py))j

eval

~

(7"6517- \I'env([Ug) - \Ijgau(Ug) : logUE(pg) : logUE(G) = (]2 : IOgUE(pQ))j )

which restricts to the identity on the respective copies of Wens(I1,)* (resp. Wens(Uy)™ ),
and is compatible with the respective Gy (IL,)-actions and the natural splittings (resp.
compatible with the natural splittings).

Remark 11.18.1.  ([IUTchII, Remark 4.1.1 (iii)]) Similarly as in Proposition 11.15
and Remark 11.17.2, the construction of the monoids W¢,s(IL,) (resp. Wens(Uy)) is

uniradial, and the constructions of the monoids W (Il,), Weny(IL,), and Wy, (11,)

cns
SS

(resp. U (Uy), Veny(Uy), and Wgay,(U,)), and the formal evaluation isomorphism

eval eval

~ ~

Ueny(Ily) — Ugau(Il,) (resp. Weny(Uy) — Veau(Uy)) are multiradial. Note that,
the latter ones are constructed by using holomorphic structures; however, these can be

described via the underlying mono-analytic structures (See also the table after Exam-
ple 11.2).

Proof. Proposition follows from the definitions and described algorithms. O

Proposition 11.19.  (F-theoretic Gaussian Monoids at v € yeeod n ynen (resp.
at v € V), [IUTchII, Proposition 4.2, Proposition 4.4]) For v € V&4 N V™™ (resp.
v e V¥) let Tév = 1C, (resp. Tév = (1Cy, "D, = 'U,, 'ky)) be a p,-adic Frobenioid
(resp. a triple) in a ©-Hodge theatre "HT® = ({T]::w}ﬂey, T5 ). We assume (for

simplicity) that the base category of Tév is equal to Btzmp(THQ)o). Let

G,("T,) ~ Uip (resp. Wip = o> ('c,) )
denote the ind-topological monoid equipped with GE(THE)—action (resp. the topological
monoid) determined, up to inner automorphism arising from an element ofJfHE by Tév,

and
TGy ~ Ui (resp. Wip = OD(TCE) )

denote the ind-topological monoid equipped with TGg—action (resp. the topological monoid)
determined, up to inner automorphism arising from an element ofTG2 by the v-component
TF; of F-prime-strip {TFQ}QEX determined by the ©-Hodge theatre THT® .
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1. (Constant Monoids) By Remark 3.19.2 (resp. by the Kummer structure Tk, ),

we have a unique Kummer isomorphism

Kum Kum

~

Ui = Uens(TIL) (resp. Uiz 5 Uops(TU,) )

of ind-topological monoids with G, (TIL,)-action (resp. of topological monoids).

2. (Mono-analytic Semi-simplifications) We have a unique 7% -orbit (resp. a
unique {£1}-orbit)

“Kum?” “Kum?”
7% -orbit, poly {+£1}-orbit, poly
X ~ X ~ Fy X
2o S Uens(TGy) ™ (resp. Wip = Uens("DE)* )

of isomorphisms of ind-topological groups with 1G,-action (resp. of topological
groups), and a unique isomorphism

“Kum” “‘Kum”

~ ~

\IJTF = (\IJTF/\IJTF) 50wk (1Gy) (resp. xpm = (xpm/xpm) 5 wi (D) )

cns

of monoids, which sends the distinguished element of \IJ]F‘]_.F determined by the unique
generator (resp. byp, = e =2.71828-- -, i.e., the element of the complex Archimedean

field which gives rise to \I/T]_— whose natuml logamthm is equal to 1) Of\IJT]:)— /\I/T]_.F
y) (resp. W& (D)) determined by log “u(p,) €

R>o(TG,) (resp. log E(pg) € R>o('DL)). In particular, we have a natural poly-

cns (

the distinguished element of Ui

1somorphism

(Kum » {‘Kum ”»
poly poly

~ ~

\Ili}g =0 F><\Ihr]w 5 (1G,) (resp. U Fr .—\IJ F><\IIUW — U

cns cns

('Dy) )

of ind-topological monoids (resp. topological monoids) which is compatible with the
natural splittings (We can regard these poly-isomorphisms as analogues of Kummer
isomorphism). We put \Ifis}_ : \Ili}.F (resp. \Il = \Ili}.F) hence we have a

tautological isomorphism

tauto tauto

~ ~

tr — \Ifisfg (resp. ?Si — ?S}—E ).
3. (Conjugate Synchronisation) The Kummer isomorphism in (1) determines a

collection of compatible Kummer isomorphisms

Kum Kum

(Uir )¢ — \IICHS(THg)t (resp. (‘IJTiv)t = \chnchg)t ),
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which are well-defined up to an inner automorphism of T1_[E (which is independent
of t € LabCusp®(11L,)) for t € LabCusp® ('II,) (resp. t € LabCusp®(TU,)), and
F fi—symmetﬂsz’ng isomorphisms between distinct t € LabCuspi(THg) (resp. t €
LabCuspi(TUg)) induced by the TAEi—outer action of Fl”i = TAZOY/TA:; on TH:;
(resp. the action of F)'* = Gal(T[UQi/TUg’r) on the various Gal(TUQ/TUi)—orbits of
cusps of TTUQ). These symmetrising isomorphisms determine an isomorphism

diag diag

~ ~

Wiz Jo = (Vig )y (respo (Prz Jo = (Vig Jwxy )

—v

of ind-topological monoids (resp. topological monoids), which are compatible with
the respective labelled G, (11L,)-actions.

4. (Theta and Gaussian Monoids) Let

qufS’ \Ij]:gau (Tiv) (Tesp' quFS? \Il]:gau(-rgv) )

denote the monoids with GQ(THQ)—actz'ons and natural splittings, determined by
Weny (1TLy), Waan(T1IL,) in Proposition 11.18 (4) respectviely, via the isomorphisms
in (1), (2), and (3). Then the formal evaluation isomorphism of Proposition 11.18
(4) gives us a collection of evaluation isomorphisms

1

Kum eval Kum™
\IJTJ-‘S — \IJEHV(THE) - \Ilgau(THQ) — \I[]:gau (Tév)
Kum eval Kum™!

~

(T@Sp. \IIT]_‘S :> \Penv(THg) :> \I]gauUHg) - \Ij]:gau (T]:

—u

) )

which restrict to the identity or the isomorphism of (1) or the inverse of the iso-

X

morphism of (1) on the various copies of \I/T£ , Wens(TIL,)*, and are compatible

with the various natural actions of G, (T1L,) and natural splittings.

§11.4. Hodge-Arakelov-theoretic Evaluation and Gaussian Monoids in
the Global Case.

In this subsection, we globalise the constructions in Section 11.2 (v € V**) and
in Section 11.3 (v € V&8°°%) via global realified Frobenioids (See also Remark 10.9.1).
We can globalise the local Ffi—symmetries to a global Ffi—symmetry, thanks to the
global{+1}-synchronisation in Proposition 10.33 (See also Proposition 10.34 (3)).
This is a H-portion of constructions in XH-Hodge theatres. In the final multiradial
algorithm, we use this E-portion to construct ©-pilot object (See Proposition 13.7 and
Definition 13.9 (1)), which gives us a H-line bundle (See Definition 9.7) (of negative
large degree) through an action on mono-analytic log-shells (See Corollary 13.13).
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Next, we also perform NF-counterpart (cf. Section 9) of Hodge-Arakelov-theoretic
evaluation. This is a X-portion of constructions in XH-Hodge theatres. In the final
multiradial algorithm, we use this K-portion to construct actions of copies of “F,; ,” on
mono-analytic log-shells (See Proposition 13.11 (2)), through which we convert X-line
bundles into H-line bundles (See the category equivalence (Convert) just after Defini-

tion 9.7) and vice versa (See Corollary 13.13).

Corollary 11.20.  (II-theoretic Monoids associated to D-B-Hodge Theatres, [[UTchII,
Corollary 4.5]) Let
T(]S(ii T¢(iell
fHTPE = (tn, & to, =5 Do)
be a D-H-Hodge theatre, and
D= {:EDQ}QGY

a D-prime-strip. We assume, for simplicity, that ¥D, = B*™P(*1,)0 for v € V*°". Let
ok = {iDZ}gey denote the associated D" -prime-strip to *®, and ssume that iDZ =
Btemp(iGE)O fOT’ v e ynon.

1. (Constant Monoids) By Definition 11.12 (2) for v € V°*! and Proposition 11.18
(1) forv € V&ood we obtain a functorial algorithm, with respect to the D-prime-strip
19, to construct the assignment

{Gu(MO (L)) ~ U MO (1))} v € VP,
Uens (D) 1 V3 01 Ueng("D)y 1= § { G (L) ~ W (11,) } v € Y& nyron,
\Pcns(ipg) vE yarc,

where U (*D), is well-defined only up to a 11, -conjugacy indeterminacy for v €
ynon‘

2. (Mono-analytic Semi-simplifications) By Proposition 11.18 (2) for v € V&°°4
and the same group-theoretic algorithm for v € yhad (Here, we put Wens(IL,) =
Uens(MO(11,)) ), we obtain a functorial algorithm, with respect to the D" -prime-
strip YO, to construct the assignment

{1G, ~ U5,(1GY)} ve V™,
s (ifDZ) v e yarc7

cns

TS (D7) - Voum U (D7), =

cns cns

where \Ilifjs(iZDF)E is well-defined only up to a iGQ—conjugacy indeterminacy for

v € V", Fach U=

cns

(*D"), is equipped with a splitting

\DSS

cns

(ifDF)Q = g, (i@F); X RZO(%‘DF)Q

cns
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and each R>o(*D"), is equipped with a distinguished element
log ® (p,) € Rso("D"),.

If we regard ¥ as constructed from *®, then we have a functorial algorithm, with
respect to the D-prime-strip D, to construct isomorphisms

\chns<i®>; :> \Piis,(i@}_);

for each v € V, which are compatible with G,(*11,) = *G,-actions for v € V",

By Definition 10.6 ( “D-version”), we also obtain a functorial algorithm, with respect
to D" -prime-strip *D", to construct a (pre-)Frobenioid

D" (M)
isomorphism to the model object C\ . in Definition 10.4, equipped with a bijection
Prime(D" (¥27)) 5V,
and localisation isomorphisms
gl. to loc.
Yooyt Pprory, — Rso(tD7),
of topological monoids.
(Conjugate Synchronisation) We put
T = 1¢y 0 T¢®" 0 (¢O7)~ : LabCusp* (1D, ) 3 T

(See Proposition 10.33). The various local F,'* -actions in Corollary 11.16 (1) and
Proposition 11.18 (3) induce isomorphisms between the labelled data

\chns(T@>)t

for distinct t € LabCuspi(TDg. We call these isomorphisms Ffi-symmetrising
isomorphisms (Note that the global {£1}-synchronisation established by Propo-
sition 10.33 is crucial here). These ]Ffi-symmetrismg isomorphisms are compatible
with the (doubly transitive) ]Ffi—action on the index set T of the D-©°!-bridge Tqﬁgeu

with respect to ¢, hence, determine diagonal submonoids

\I]CHS(T©>-)<|F1|> C H \chns(T©>—)|t|7 \I]cns<T@>—)<[5‘l*> C H \chns(T©>-)|t|7
[t|E€[F:] |t|eF}

and an isomorphism
diag

~

Vers(1D )0 5 Wes(1D) o)
consisting of the local isomorphisms in Corollary 11.16 (3) and Proposition 11.18

(3).
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4. (Local Theta and Gaussian Monoids) By Corollary 11.16 (2), (3) and Propo-
sition 11.18 (4), we obtain a functorial algorithm, with respect to the D-prime-strip
D, , to construct the assignments

(00) Perv (D) 1 Vo0

{G ( ( ))}jGF* a% (oo)\I/env(M*@ (TH2>) v E ybad N ynon,
(00) Vv (D) 1= § {Gy (1 )} jers ™ (o0) Penv (') v e Vel n v,
o0) Yeny (YU, v e V™,

and
(00) Yegau (D) : Vo 0
{Gu(M2 (L))} jepr ™ (00) Pgau(MP(TTL,)) v € V¥ q Vo,
(00) Ygau (1D )y 1= {GQ(THE)}]EFZ* A (00) Ugan (TTL,) v € VeI nyron,
(00) Vgau (FUy) v e Ve,

where we put Oo\Ilenv(THQ) = \Ilenv(THQ) (resp. oo\Ilenv(TUg) = \Ilenv(TUy)) and
OO\IIgau(THg) = \Pgau(THg) (TeSP- oo\IlgaU(TUg) = \I/gau(TUE)) forv e ngOd nyren
(resp. v € V) and (o0)Venv ("D )u '8, (00) Ygau (1D )u s are equipped with natural
splittings, and compatible evaluation isomorphisms

eval

~

(oo)\I/env(T©>-) — (oo)legau(T®>-)
constructed by Corollary 11.16 (2) and Proposition 11.18 (4).

5. (Global Realified Theta and Gaussian Monoids) We have a functorial algo-
rithm, with respect to the D" -prime-strip T to construct a (pre-)Frobenioid

Deny ("D1)

env

as a coply of the Frobenioid D" (1DL) of (2) above, multiplied a formal symbol
)_
logT33> (©), equipped with a bijection

Prime(D!, (D7) 5V,

env

and localisation isomorphisms

gl. to loc.
@DH— (Tg'-) v — \I/env(TQ';)E

env

of topological monoids. We have a functorial algorithm, with respect to the D' -
prime-strip "% to construct a (pre-)Frobenioid

D (197) H DH(IDL);

gau
JEFF
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whose divisor and rational function monoids are determined by the weighted diagonal
(42 )jEFz%’ equipped with a bijection
Prime(D", (TQ';)) 5V,

gau

and localisation isomorphisms

gl. to loc.

q)Dn— (TQ';),E L) \Ilgau(T@';)E

gau

of topological monoids for each v € V. We also have a functorial algorithm, with
respect to the D" -prime-strip T@i to construct a global formal evaluation iso-

morphism
eval

(DY) = Dyu('D)

DII—

env

of (pre-)Frobenioids, which is compatible with local evaluation isomorphisms of (4),
with respect to the localisation isomorphisms for each v € V and the bijections
Prime(—) = V.

Proof. Corollary follows from the definitions. O

Corollary 11.21.  (F-theoretic Monoids associated to BB-Hodge Theatres, [[UTchII,
Corollary 4.6]) Let

T'l/}ii .‘_wgell
fHT® = (153 & 15 = DO

be a H-Hodge theatre, and

ig = {i}— 2}26Y
an F-prime-strip. We assume, for simplicity, that the D-H-Hodge theatre associated to
THTE s equal to iy 7TPE i Corollary 11.20, and that the D-prime-strip associated

to ¥F is equal to *® in Corollary 11.20. Let iF~ = {ifg}gey denote the associated
F-prime-strip to *F.

1. (Constant Monoids) By Proposition 11.19 (1) for V&°°%, and the same group-
theoretic algorithm for v € V°*1 we have a functorial algorithm, with respect to the

F-prime-strip ¥, to construct the assignment

(Gt s} weue

\Ilcns(i%’) Voum \chns(ig)g = i} yare
tF, veENVTT,

where \IICHSGS)E is well-defined only up to a II_Ig-conjugacy indeterminacy for v €
V", By Proposition 11.14 (2) for v € VP2 (where we take “C,” to be *F,) and
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Proposition 11.19 (1) for v € V&4 we obtain a collection of Kummer isomor-
phism

Kum

Vens((F) = Pens(*D).

. (Mono-analytic Semi-simplifications) By Proposition 11.19 (2) for V&°°¢, and
the same group-theoretic algorithm for v & VP2 we have a functorial algorithm,
with respect to the F -prime-strip *§~, to construct the assignment

PSS (igl—) c Voue PSS (igl—)g — \II?FE

cns cns

where WSS (*7), is well-defined only up to a *G,-conjugacy indeterminacy for v €

V", Each ¥ss

cns

(37, is equipped with its natural splitting, and for v € V™", with
. fory € U
is not preserved by automorphism of TF!;. See also the first table in Section 4.3 cf.
[IUTchIl, Remark 4.6.1]). By Proposition 11.19 (2) for v € V&°° and the same

group-theoretic algorithm for v € V**4 we have a functorial algorithm, with respect

a distinguished element (Note that the distinguished element in

to F-prime-strip *§", to construct the collection of poly-isomorphisms (analogues

of Kummer isomorphism)

44}<um ”
poly

PSS (iSF) ; PSS (i@#)

cns cns

Let
ig“_ = (iC”_, Prime(iclk) :> y; 13'_7 {ipﬂ}ﬂey)

be the F'™-prime-strip associated to *F. We also have a functorial algorithm, with
respect to F'™-prime-strip *F", to construct an isomorphism

‘Kum?”

icH— L> :D||—(i®|—)
(We can regard this isomorphism as an analogue of Kummer isomorphism), where
DY (D) is constructed in Corollary 11.20 (2), which is uniquely determined by
the condition that it is compatible with the respective bijections Prime(—) = V and

the localisation isomorphisms of topological monoids for each v € V, with respect to

“Kum”
poly
the above collection of poly—isomoqj{ohisms s ((F5) 5 U _(#D) (Note that,
[{ um])
poly “Kum”

~

if we reconstruct both W _(iFT) 5 U

cns cns

(D7) and ¢ 5 DFEFDY) in a
compatible manner, then the distinguished elements in W5, at v € V* can be
computed from the distinguished elements at v € V" and the structure (e.g.. using
rational function monoids) of the global realified Frobenioids *C", D" (#D"). cf.

[IUTchII, Remark 4.6.1]).
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3. (Conjugate Synchronisation) For each t € LabCuspi(T®>), the collection of
isomorphisms in (1) determine a collection of compatible Kummer isomorphisms

Kum

~

\Ilcns(T3">—)t — \Ifcns(T©>—)t7

where W (1D, ); is the labelled data constructed in Corollary 11.20 (3), and the
L, -conjugacy indeterminacy at each v € V is independent of t € LabCuspi(TCDg,
and Fﬁi—symmeﬂsing isomorphisms induced by the various local ]F;"i—actions mn
Corollary 11.17 (1) and Proposition 11.19 (8) between the data labelled by distinct
t e LaubCuspjE (1D,). These Ffi—symmetrising 1somorphisms are compatible with
the (doubly transitive) Ffi-action on the index set T of the D-©°-bridge Tgbgeu
with respect to T¢ in Corollary 11.20 (3), hence, determine (diagonal submonoids

and) an isomorphism

Vens("F)o = Tens () 52,y
consisting of the local isomorphisms in Corollary 11.17 (3) and Proposition 11.19
(3).
4. (Local Theta and Gaussian Monoids) Let

fr V% ¢ t2/7°©
SJ—> ©> - HT

be a ©-bridge which is glued to the ©F-bridge associate to the B-Hodge theatre
"HT® via the algorithm in Lemma 10.38 (Hence, J = T*). By Corollary 11.17
(2), (3) and Proposition 11.19 (4), we have a functorial algorithm, with respect to
the above ©-bridge with its gluing to the ©F -bridge associated to T’HTE, to construct
assignments

(oo)ql]:env (THTG) : y DU —

{GQ(THQ)}je]FZ* ~ (oo)\IIT}'E ve vy

(OO)\P]:env (THTG)E = arc
(00) Wi Fe v eV,

and

{GQ(THE)}]‘GFZ* ~ (oo)‘I’fgau(T]:'—E) v e Vror
() V7 (E,) v e Ve

A

(Here the notation (=) (FHT®) is slightly abuse of notation), where we put V7, ("HT®),
= Ve (1HT®),, and oo\IlJrgau(T’H'T@)2 = \Il]-"gau(THT@)y for v € V&°°U and
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(Oo)\I!]-‘env(THT@>Q S, (00) ¥ Fpan ("HT®)y’s are equipped with natural splittings, and
compatible evaluation isomorphisms

Kum eval Kum™!

~

) V7 (HT®) 5 (o Wen (D) 5 (o) Teau(Dr) 5 () Ur. (HT®)
constructed by Corollary 11.17 (2) and Proposition 11.19 (4).

5. (Global Realified Theta and Gaussian Monoids) By Proposition 11.19 (4)

“Kum”

~

for labelled and non-labelled versions of the isomorphism *C'™ =  DF(FD") of
(2) to the global realified Frobenioids DL, (1DL), D'g:u(T@';) constructed in Corol-

lary 11.20 (5), we obtain a functorial algorithm, with respect to the above ©-bridge,
to construct (pre-)Frobenioids

Ch (HT®), Ch (1HT®)

(Here the notation (=)(THT®) is slightly abuse of notation. Note also that the
construction of C (FHT®) is similar to the one of Cly.,, in Definition 10.5 (4))
with equipped with bijections

Prime(C  ("HT®)) 3V, Prime(c", ((HT®)) 3V,

gau
localisation isomorphisms

gl. to loc. gl. to loc.
(I)cu— (FHT®) v — \I/]:

env env

~

(HTO)N,  ®er (nreryy — Vru (HTO)

of topological monoids for each v € V, and evaluation isomrphisms

“Kum” eval “Kum™1”

¢t (HT®) 3 Db (o) 3 Db (o) S b (fHT®)

env gau gau

of (pre-)Frobenioids constructed by Proposition 11.19 (4) and Corollary 11.20 (5),
which are compatible with local evaluation isomorphisms of (4), with respect to the
localisation isomorphisms for each v € V and the bijections Prime(—) S5 V.

Proof. Corollary follows from the definitions. O
Next, we consider X-portion.

Corollary 11.22.  (II-theoretic Monoids associated to D-X-Hodge Theatres, [[UTchII,
Corollary 4.7]) Let
DX "% "o
fHTP™ = (1D® & 19, 5 1D.)
be a D-K-Hodge theatre, which is glued to the D-H-Hodge theatre t3,7P8 of Corol-
lary 11.20 via the algorithm in Lemma 10.38 (Hence, J =T ).
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(Global Non-realified Structures) By Ezample 9.5, we have a functorial algo-
rithm, with respect to the category "D®, to construct the morphism

tpe er@7
the monoid/field/pseudo-monoid
m(1D®) A ME(1D®), = ("D®) A M°(1D®), 7 (ID®) ~ M®, (ID?)

with 7 (1D®)- /w53 (T1D®)-actions (Here, we use the notation 7, (TD®), 71 (T1D®) and
mat(1D®), not TII®, TH®, (TTI®)™t in Example 9.5, respectively, for making clear
the dependence of objects), which is well-defined up to mi (TD®)- /x2t (TD®)-conjugay
indeterminacies, the submooid/subfield/subset

®

M2, (1D®) c M®(1D®), My ,(I1D®) c M (I1D®), M®(I1D®) c M®, (D),

mod
of m1 (1D®)- /rt2t (1D®)-invariant parts, the Frobeniods

]:@

mod

(TD©) C ]—"®(TD@) S ]—"©(TD©)

(Here, we write Fo(T1D®), FO(1D®) for TFE ., TF® in Example 9.5, respectively)

with a natural bijection (by abuse of notation)
Prime(F® ,(1D®)) 5V,
and the natural realification functor

]:@

mod

(TD©) — fr?l(ﬂfd(TD@)‘

(F;f-symmetry) By Definition 10.22, for j € LabCusp("D®), we have a functorial
algorithm, with respect to the category TD®, to construct an F-prime-strip

FO('D);,

which is only well-defined up to isomorphism, Moreover, the natural poly-
action of F} on D@ induces isomorphisms between the labelled data

®

mod

FO('D®));, My,

8 oa(MD®);, Mpa(1D®);,

{m™('D®) ~ M2, ('D)};, 7

mod

('D®); — FEX(1D®);

mod

for distinct j € LabCusp(D®). We call these isomorphisms F;-symmetrising
isomorphisms. These ]Ffé-symmetm'sing isomorphisms are compatbile with the
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(simply transitive) ]Fl*—actz'on on the index set J of the D-NF-bridge T¢§F with re-
spect to (s : LabCusp("D®) = J(= F) in Proposition 10.19 (3), and determine
diagonal objects

~—=® ~®
I\\/Hr@iod(T (]F*) - H Mmod TD@ Mmod(TD©)<Fl*> - H Mmod<TD©)j’
JEFF JEFF
Let also
F@(TD@)]m;:e), {Wiat(TD@B) mMiR<TD©)}<Ffé>7 ‘Fn@iod( )( — ‘Fn?g%d(—rp )( F¥)

denote a purely formal notational shorthand for the above F} -symmetrising isomor-
phisms for the respective objects (See also Remark 11.22.1 below).

3. (Localisations and Global Realified Structures) For simplicity, we write
D, = {TD%_}EGY (resp. T@'JT = {Tng}yey) for the D-(resp. D" -)prime-strip
associated to the F-prime-strip F©(1D®)|; (See Definition 10.22 (2)). By Defini-
tion 10.22 (2), Definition 9.6 (2), (3), and Definition 10.23 (3), we have a functorial
algorithm, with respect to the category TD®, to construct (1-)compatible collections
of “localisation” functors/poly-morphisms

('D®); B0 FO(IDO);, FER(1DO); 25" (FO(IDO)))F,

mod

,F®

mod

ra; 1. to loc.
{7 (1D®) A M2 ('D®)); 2 M2, ('D,,) € M2, (D)}

up to isomorphism, together with a natural isomorphism

gl.real’d to gl. non-real’d®@R

I+ - ~ R
D" (19%) — FER (1D®);

mod

of global realified Frobenioids (global side), and a natural isomorphism

localised (gl.real’d to gl. non-real d®R)
'_ ~
R>o("Dj)y — Y (re(1Do)),)% 0

of topological monoids for each v € V (local side), which are compatible with the re-
gl. to loc.

~

spective bijections Prime(—) = V and the localisation isomorphisms {(P'DH—(TQ}—) v

R>0(T©F) o Juev constructed by Corollary 11.20 (2) and the above FE%, (1D®); gl to Joc

(]:@(TD@)| DR, Finally, all of these structures are compatible with the respective

F* -symmetrising isomorphisms of (2).

Remark 11.22.1.  ([IUTchII, Remark 4.7.2]) Recall that F}*, in the context of
F;*-symmetry, is a subquotient of Gal(K/F') (See Definition 10.29), hence we cannot
perform the kind of conjugate synchronisations in Corollary 11.20 (3) for ]Fl*—symmetry
(for example, it nontrivially acts on the number field M (fD®)). Therefore, we have to
work with
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1. F-prime-strips, instead of the corresponding ind-topological monoids with Galois
actions as in Corollary 11.20 (3),

2. the objects labelled by (—)mod (Note that the natural action of Galois group Gal(K/F)
on them is trival, since they are in the Galois invariant parts), and

3. the objects labelled by (—)__,

because we can ignore the conjugacy indeterminacies for them (In the case of (2), there
is no conjugacy indeterminacy). See also Remark 9.6.2 (4) (in the second numeration).

Proof. Corollary follows from the definitions. O

Corollary 11.23.  (F-theoretic Monoids associated to X-Hodge Theatres, [[UTchII,
Corollary 4.8]) Let

ng

A *HT@)

TwzF
<_'

THng(T]-"GB e-- 1FO

be a X-Hodge theatre, which lifts the D-X-Hodge theatre fqy 7P of Corollary 11.22,
and is glued to the H-Hodge theatre 75 of Corollary 11.21 wvia the algorithm in
Lemma 10.38 (Hence, J =T%*).

1. (Global Non-realified Structures) By Definition 9.6 (1) (the Kummer isomor-
phism by the cyclotomic rigidity isomorphism via QsoNZ* = {1} (Cyc.Rig.NF1)),
we have a functorial algorithm, with respect to the pre-Frobenioid TF®, to construct

Kummer isomorphism

Kum Kum

(P (ID®) A M2, } = {7(1D®) A M2, (1D®)}, "M = ME(1D®)

of pseudo-monoids with group actions, which is well-defined up to conjugacy in-
determinacies, and by restricting Kummer classes (cf. Definition 9.6 (1)), natural

Kummer isomorphisms

Kum Kum

{m(1D%) A MO} = {m*('D%) A MO(TD®)}, TMg,q — M,q (D),

Kum Kum

ra r® ~ ra r® r® ~ r®
{m=(D%) A M7} 5 {7P4(D%) A TIT (D)}, TMpoq — Mlpoa(1D°).

mod
These isomorphisms can be interpreted as a compatible collection of isomorphisms
Kum Kum Kum Kum

tFre = Fo(ip®), 17® = Fo(1D9), 178 | = F2 L (1D9), TFEE = FEX,(1DO)

mod

of (pre-)Frobenioids (cf. Definition 9.6 (1), and Example 9.5).
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2. (F;*-symmetry) The collection of isomorphisms of Corollary 11.21 (1) for the

capsule TF; of the F-prime-strips and the isomorphism in (1) give us, for each
§ € LabCusp("D®)(= J), a collection of Kummer isomorphisms

Kum Kum

5 S 1re); 5 FDO)y, {n(D9) A TME, ), 5 (a1 (D) A M2,.('D9)},,

Kum Kum
~ ~  ==®
UME?]Od) — Mgod(TDGD)j? (TMmod) — Mmod(TD(@)j?
Kum Kum
(T“Fffod)j - fgod(TD@)jv (T‘Frnod) gg{d(TID@>

and B} -symmetrising isomorphisms between the data indexed by distinct j € LabCusp(1D?®),
induced by the natural poly-action of F]" on TF®. These F}* -symmetrising isomor-

phisms are compatbile with the (simply transitive) F}*-action on the index set J of

the D-NF-bridge T¢XF with respect to T¢x : LabCusp(TD®) 5 J(= Ff) in Propo-

sition 10.19 (3), and determine various diagonal objects

( mod (F7) - H JrIMIr@?lod ( rnod (F7) C H rnod

]G]F* ]G]F*

and formal notational “diagonal objects” (See Corollary 11.22 (2))

m m

TI@‘(F?)? {W]{at(TD®)mTMo®om}(Ff>v (T‘F@od)wl*)? (Fod)(lﬁ‘l*)‘

. (Localisations and Global Realified Structures) By Definition 10.22 (2) and

Definition 10.23 (3), we have a functorial algorithm, with respect to the NF-bridge
t oy NF

'35 ¢—>* TFO -5 TF® to construct mutually (1-)compatible collections of localisa-

tion functors/poly-morphisms,

gl. to loc. gl. to loc. R
(T‘Fr(?lod)j — Tf&v]’ (Tfmod) ] TSJ )
r gl. to loc.
{{Wlat(T’D@) iy TMiﬁ}j — TMoole C TMOO,.@XU]. }veV’

up to isomorphism, which is compatible with the collections of functors/poly-morphisms
of Corollary 11.22 (3), with respect to the various Kummer isomorphisms of (1),
(2), together with a natural isomorphism

gl.real’d to gl. non-real’d®@R

I+ ~ R
ch — (T‘Fgod)j
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of global realified Frobenioids (global side), which is compatible with respective bijec-
tions Prime(—) =V, and a natural isomorphism

localised (gl.real’d to gl. non-real’ d®R)

\IJ*SJ“ v - \IIT]:?,E
of topological monoids for each v € V (local side), which are compatible with the
gl. to loc.
respective bijections Prime(—) = V, the localisation isomorphisms {®ior , —
J =
TSF Yuev constructed by Corollary 11.20 (2) and the above (1FEX); gl to Joc.

S’J the isomorphisms of Corollary 11.22 (3), and various (Kummer) isomorphisms
of (1), (2). Finally, all of these structures are compatible with the respective F} -

symmetrising isomorphisms of (2).

Proof. Corollary follows from the definitions. ]
Put the results of this Chapter together, we obtain the following;:

Corollary 11.24.  (Frobenius-picture of XH-Hodge Theatres, [IUTchII, Corol-

lary 4.10]) Let P 7Rty T8 he REB-Hodge theatres with respect to the fived initial
O-data. Let T’HTDMEE, IHTPRE denote the assosiated D- X H-Hodge theatres respec-
tively.

1.

(Constant Prime-strips) Apply the constructions of Corollary 11.21 (1), (3)
for the underlying H-Hodge theatre of IHTHB. Then the collection Uens(TF): of
data determines an F-prime-strip for each t € LabCuSpi(T©>). We identify the
collections

cns( ~7:>-> \I’cns(T}_>)<Ff>

diag
of data, via the isomorphisms — in Corollary 11.21 (3), and let

"3 = (€K, Prime('DX) = V, T35, {Tpaptvev) (ie, A={0, (Ff)}")

denote the resulting F'" -prime-strip determined by the algorithm “F — F" 7. Note
that we have a natural isomorphism T%‘F = TS'FOd of F'" -prime-strips, where 1F\"
is the data contained in the ©-Hodge theatre of faTHE,

mod

(Theta and Gaussian Prime-strips) Apply Corollary 11.21 (4), (5) to the un-
derlying ©-bridge and B-Hodge theatre of THT®E . Then the collection Vx, (THT®)

of data, the global realified Frobenioid TCopny := Cenv(THT@), localisation isomor-
gl. to loc.

~

phisms ®+p — \IIJ.-env(THT@)E for v €V give rise to an F'" -prime-strip

env,U

Jr%/‘eknv - (TC'eFm” Prlme(TDIanv) — V Jrg/env’ {Tpenv,y}yEY)
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(Note that 75 ("HT®)). Thus, there
is a natural identification isomorphism 15, = TFieas where TFL, is associated
to data in YHT® (See Definition 10.5 (4) for 1§ ).

Similarly, the collection W g, (T”HTQ) of data, the global realified Frobenioid TCgau =
gl. to loc.

is the F©-prime-strip determined by Uz

env env

~

Cgau(T’HT@), localisation isomorphisms ®ic, ., — (T’HT@) forveV

gau

give rise to an F"_prime-strip
ngau - (Tcg;lv’ Prlme(Tplg'_au) :> y? ngalﬁ {T,Ogau,y}gey)

(Note that 1T, is the F~-prime-strip determined by \If;gau(T”HT@)). Finally, the
evaluation isomorphisms of Corollary 11.21 (4), (5) determine an evaluation iso-

morphism
eval

Tgenv Sgau
of F'"-prime-strips.

. (©@*#- and ©Z} -Links) Let

i%’K»XM (T’@Sp. TSII-DX;L, resp. TS«H-PXH )

env gau

donote FIF»Xu_prime-strip associated to the F'© -prime-strip iS'F (resp. T | resp.
[ Sgau) (See Definition 10.12 (3) for F'*®*F-prime-strips). Then the functriality of
this algorithm induces maps

ISOIH]:IF(TSQHV7 S‘Z) — ISOHI‘FW»xu(T-SW»X“ i%l'_>><//')

env

Isompk(TSgau, g'g) — Tsom zresu (TFEXH, ig‘bxu)

gau

Note that the second map is equal to the composition of the first map with the

eval 1 8,

evaluation isomorphism T§" and the functorially obtained isomorphism

env gau

TR X 28 vl TS'F’X“ from this isomorphism. We call the full poly-isomorphism

full poly full poly

~ ~

Tgll-bxu AN iggbx,u (T‘@Sp. TSH_>X“ AN iggbxu )

env gau

the ©*#-link (resp. ©Zh-link) from FHTEE 1o *HTRE (¢f Definition 10.8),
and we write it as

X @X,LL
fUTEE O TS (esp. TuTHE Ty iy THE
and we call this diagram the Frobenius-picture of XH-Hodge theatres (This
is an enhanced version of Definition 10.8). Note that the essential meaning of the
above link is

((Qi ; gi] 2 (T,esp. « {gzﬁ}]l\lsjgl* ; qN 2 )

=v
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for v e VP24,

4. (Horizontally Coric F™*K-Prime-strips) By the definition of the unit portion

of the theta monoids and the Gaussian monoids, we have natural isomorphisms
=X
TSA M

where TFH, TR, IS are the F~>*F-prime-strips associated to the F" -prime-

Tgenf/u x ng Xp

gau

strips T&Z, LK ngau, respectively. Then the composite
poly poly
fbxp X TSZX“ (resp. TSZXM In G R TSZXM )

env gau

~

'_
T%AXH

full poly

with the poly-isomorphism induced by the full poly-isomorphism TgER**
full poly
15£>Xu (resp. T§Iexn iSZ’X“) in the definition of ©*H-link (resp. ©XW

gau gau”
link) is equal to the full poly-isomorphism of F"*F-prime-strips. This means that

(*)SZX” is preserved (or “shared”) under both the ©**-link and ©XF -link (This is

gau

an enhanced version of Remark 10.8.1 (2)). Note that the value group portion is not
shared under the ©*F-link and the ©XH -link. Finally, this full poly-isomorphism

gau

induces the full poly-isomorphism

full poly

T@Z AN igz
of the associated D™ -prime-strips. We call this the D- X B-link from 2 7PRE 4
ITPRE and we write it as

fggPRE Dy tgyDRE

This means that (T)®'y is preserved (or “shared”) under both the ©*F-link and
©xH -link (This is an enhanced version of Remark 10.8.1 (1), Definition 10.21 and

gau

Definition 10.35). Note that the holomorphic base “HTPEE» is not shared under
the ©*H-link and the ©X! -link (i.e., ©*F-link and ©X! -link share the underlying

gau gau

mono-analytic base structures, but not the arithmetically holomorphic base struc-

tures).

5. (Horizontally Coric Global Realified Frobenioids) The full poly-isomorphism
full poly

DY = DY in (4) induces an isomorphism

~

(D" ("DR), Prime(D" ('04)) =V, {Topr yhvev) = (D' (*DR), Prime(D" (*D)) 5 V., {*ppr 4 }vev)

of triples. This isomorphism is compatible with the Rsg-orbits

“I<um ”
poly

~

(‘Cx, Prime('Cx) 3V, {Tpapteer) = (D7("D}), Prime(D" ("0%)) = V, {Topr »}vev)
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and

“‘Kum”
poly

~

(CK, Prime(*CX) 2V, {fpaptoey) = (D7(*DR), Prime(D"(*DR)) =V, {*ppr u }ev)

of isomorphisms of triples obtained by the functorial algorithm in Corollary 11.21
(2), with respect to the ©*H-link and the © X} -link. Here, the R<g-orbits are natu-

gau

rally defined by the diagonal (with respect to Prime(—)) Rsg-action on the divisor
monoids.

Proof. Corollary follows from the definitions. O

Remark 11.24.1.  (Etale picture of D- X B-Hodge Theatres, [[UTchII, Corollary
4.11]) We can visualise the “shared” and “non-shared” relation in Corollary 11.24 as
follows:

f7PRE | S Tl =il |« — | iy PR

We call this diagram the étale-picture of XH-Hodge theatres (This is an enhanced
version of Remark 10.8.1, Remark 10.21.1 and Remark 10.35.1). Note that, there is the
notion of the order in the Frobenius-picture (i.e., T(—) is on the left, and ¥(—) is on the
right), on the other hand, there is no such an order and it has a permutation symmetry
in the étale-picture (See also the last table in Section 4.3). Note that these constructions
are compatible, in an obvious sense, with Definition 10.21 and Definition 10.35, with
respect to the natural identification (D' = ()DL .

§12. Log-links — An Arithmetic Analogue of Analytic Continuation.

§12.1. Log-links and Log-theta-lattices.

Definition 12.1.  ([I[UTchII, Definition 1.1]) Let '§ = {TF,},ev be an F-
prime-strip with the associated F"-prime-strip (resp. F' *-prime-strip, resp. D-prime-
strip) 5 = {T}-’g_}yey (resp. IFm = {T}—'Q_XH}QEM resp. 19 = {TDQ}EEY)'

1. Let v € V*". Let
(Wir, > W =) Uy = (U )P

denote the perfection of W (cf. Section 5.1). By the Kummer isomorphism of

gp

Remark 3.19.2, we can construct an ind-topological field structure on W3~ , which is
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an isomorph of K, (See Section 5.1 for the notation (—)&2). Then we can define the

~ N . . ~ N 8P
t7 » and this gives us an isomorphism log, : V7. — ¥
v —_ v v

of ind-topological groups. Thus, we can transport the ind-topological field structure

py-adic logarithm on W

gp . ~ . T )
of U3~ into W, . Hence, we can consider the multiplicative monoid “O"” of non-
v v

zero integers of \P*Nfg’ and let Wy, 7,) denote it. Note that \I'%pg (7)) = \I/;“fg. The
pair THg ~ Wiog(i F,) determines a pre-Frobenioid
log(TF,).
The resulting TTI,-equivariant diagram
(Log-link v € V") Uip, D Vo - Up = Yo

is called the tautological log-link associated to T]-"Q (This is a review, in our
setting, of constructions of the diagram (Log-link (non-Arch)) in Section 5.1), and

we write it as
T]-"2 Log, [og(T]-"E).

(poly)
For any (poly-)isomorphism (resp. the full poly-isomorphism) log("F,) = *F,
full poly

~

(resp. log(TF,) = *F,) of pre-Frobenioids, we call the composite 'F, og,

(poly)
log(TF,) = *%F, alog-link (resp. the full log-link) from TF, to ¥F, and we

write it as

log

T}"Q — i]:2 (resp. TJ’-"2 full fog

tE, ).

Finally, put

1
ITIE = Im <(\I,T>< )GE(THE) — \I/Tf:) C \I’Ur; — g

20, Fu log(17y)”
and we call this the Frobenius-like holomorphic log-shell associated to Jf.’)-'2
(This is a review of Definition 5.1 in our setting). By the reconstructible ind-

topological field structure on ¥z~ = pER

log(1F,)> We can regard Z+ 7, as an object

: . . [
associated to the codomain of any log-link TF, 24 tF,.

. Let v € V¥, Recall that 'F, = (1C,,D,, Tk,) is a triple of a pre-Frobenioid TC,,

an Aut-holomorphic space T[U2 = TDE, and a Kummer structure T/@ cWiE, =
o"('¢,) — ATDE, which is isomorphic to the model triple (Cy, Dy, ky) of Defi-
nition 10.2 (3). For N > 1, let W¥¥ < ¥, C W8 denote the subgroup of
N-th roots of unity, and \I/TN]__v —» \IJ%’_. “for the universal covering of the topological
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group \Ilfg_.g (Recall that W5 — \If%)_.2 is an isomorph of “C =5 C*”). Then the
composite

LA s \I,gp s \I,gp \I]MN
T Fy tFy T}-g/ 1 Fy

: : : 8P /\yHN ~
is also a universal covering of Wiz /L 7,- We can regard W as constructed

from W& /WHY (See also Remark 10.12.1, Proposition 12.2, (4) in this definition,

Proposition 13.7, and Proposition 13.11). By the Kummer structure T/@Q, we can
gp
T F,

o . : ~ ~ 8P
and this gives us an isomorphism log, : W, — Wi

construct a topological field structure on ¥

~

T Fu’
topological groups. Thus, we can transport the topological field structure of ¥

Then we can define the Archimedean
logarithm on W o

of
8P
tF,

. ~ tp,

into W7 , and the Kummer structure Wiz < A Po into a Kummer structure
~ ~ t . .. . .

Ty o W5 = A Pu. Hence, we can consider the multiplicative monoid “O>”

of non-zero elements of absolute values < 1of U7, , and let Wi, 7, ) denote it.

&P 0y~
Note that \I/[ag(ui) = @ng'

holomorphic space TIUE, and the Kummer structure Tn'; determines a triple

The triple of topological monoid Wo4(i 7,), the Aut-

log(TF,).
The resulting co-holomorphicisation-compatible-diagram

: arc ~ g
(Log-link v € V) Uip, C U« Ufp = Wi- o)

is called the tautological log-link associated to T]—"2 (This is a review, in our
setting, of constructions of the diagram (Log-link (Arch)) in Section 5.2), and we

write it as
17, tog, log(TF,).
(poly)
For any (poly-)isomorphism (resp. the full poly-isomorphism) log(TF,) — *F,
full poly (poly)

lo

(resp. log(fF,) 5 1F,) of triples, we call the composite T F, —> log(tF,) =
tF, alog-link (resp. the full log-link) from TF, to *F, and we write it as

log full log
— —

T]:g i]—“2 (resp. T}"Q i}"y ).

Finally, let
Ti

A

denote the \P;;g(u__g)

which is preserved by multiplication by +1 and whose endpoints differ by a gen-

-orbit of the uniquely determined closed line segment of vy

erator of the kernel of the natural surjection Wi7. — Wi (ie., “the line seg-
ment [—m, +7]"), or (when we regard U7 as constructed from WL /WY ) equiv-

alently, the \IJ[XO o F )—orbit of the result of multiplication by N of the Ilniquely
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determined closed line segment of Wz which is preserved by multiplication by 41
and whose endpoints differ by a generator of the kernel of the natural surjection
Uy \Ilfg__g/\llfgg (i.e., “the line segment N[—+-, 4+ %] = [—7, +7]"), and we call
this the Frobenius-like holomorphic log-shell associated to T, (This is a
review of Definition 5.3 in our setting). By the reconstructible topological field

gp
structure on ¥y r. = W2-

log(1F,)> We can regard Zi 7, as an object associated to the

codomain of any log-link T]-"Q log, i]:g.

. We put

[O_Q(Tg) = {[O_Q(T]:E) = qj?fﬂ}vev

for the collection of ind-topological modules (i.e., we forget the field structure on
W ), where the group structure arises from the additive portion of the field struc-

tures on \Il’;fg. For v € V""", we regard \If}vfg as equipped with natural G, (TTL,)-
action. Put also

[UQ(TS) = {[Og(TFQ)}EGY

for the JF,-prime-strip determined by log(TF,)’s, and let

5 % log(13)

denote the collection {TF, log, log("F,)}uey of diagrams, and we call this the

tautological log-link associated to T§. For any (poly-)isomorphism (resp. the full
(poly) full poly
poly-isomorphism) log(T§) = F (resp. log(TF) = *F) of F-prime-strips, we
(poly)
call the composite § tog, log('F) = *F alog-link (resp. the full log-link) from

% to 1§ and we write it as

full log
—

g 0% 4% (pesp. 13 5.

Finally, we put
Tiz = {ZiF, }vev,

and we call this the Frobenius-like holomorphic log-shell associated to §.
We also write

Iiz C log(")

for {Zix, C log(TFy)}vev. We can regard Ziz as an object associated to the

codomain of any log-link T§ fog, i3,

For v € V™" (resp. v € V¥°), the ind-topological modules with G, (II)-action
(resp. the topological module and the closed subspace) Ziz, C [o_g(T}"Q) can be
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constructed only from the v-component T}"E X1 of the associated F*#-prime-strip,
by the xp-Kummer structure, since these constructions only use the perfection
(—)Pf of the units and are unaffected by taking the quotient by O#(—) (cf. (Step
2) of Proposition 5.2) (resp. only from the v-component T]—"E of the associated
F'-prime-strip, by (Step 3) of Proposition 5.4, hence, only from the v-component
T]:g Xt of the associated F™*H-prime-strip, by regarding this functorial algorithm
as an algorithm which only makes us of the quotien of this unit portion by uy for

N > 1 with a universal covering of this quotient). Let
Lipin C log(TF,*")

denote the resulting ind-topological modules with G, (II,)-action (resp. the result-
ing topological module and a closed subspace). We call this the Frobenius-like
mono-analytic log-shell associated to T.’F': XK Finally, we put

Tigrsn = {Lyprontoey C log(F§7%) = {log("F,**)}vey

for the collections constructed from the F™*#-prime-strip T§™** (not from TF). We

call this the Frobenius-like mono-analytic log-shell associated to T >~

Proposition 12.2.  (log-Links Between F-Prime-strips, [[UTchIII, Proposition
1.2]) Let 1§ = {TFytvev, & = {#F, fuev be F-prime-strips with associated F***-prime-
strips (resp. D-prime-strips, resp. D" -prime-strips) 1§ H = {1F 1} oy, T§H =
{ifgx“}gey (resp. D = {TDE}QGM D = {ipz}QEY} resp. D" :7{TID£}QGY7 Ol
{(¥DF Y ev ), respectively, and TF tog, 1% a log-link from 1§ to ¥F. We recall the log-link
diag;“ams

(poly)
gp ~ gp
([09n0n> \IIT]'—E ) \ij}"g - [O_g(TFE) = \IIFQ(T}‘E) — \11?7:27
op (pgvly) ep
(108axc) Vip, C U « log("F) = ¥ iry 5 Uip.

for v € V™" and v € V¥, respectively.
1. (Vertically Coric D-Prime-strips) The log-link '§ 199, £% induces (poly-)isomorphisms

(poly) (poly)

~ ~

fp 5 tp, D7 5 19"

of D-prime-strips and D" -prime-strips, respectively. In particular, the (poly-)isomorphism
(poly)
"D 5 1D induces a (poly-)isomorphism
(poly)

~

\I]CHS(TQ) — \I[cns(:t@)-
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2. (Compatibility with Log-volumes) For v € V™" (resp. v € V¥), the dia-

gram log, .. (resp. the diagram log,,. ) is compatible with the natural p,-adic log-

:
volumes on (\Ilfg)_. ) e and (\Il%pg(w__ ))

\If>< and the natural radial log-volume on \Ijlog(T}' )) in the sense of the formula
(5. 1) of Proposition 5.2 (resp. in the sense of the formula (5.2) of Proposition 5.4).
When we regard Vi as constructed from \If%)_. /\I/“N (See Definition 12.1 (2)),
then we equip \IJ%)E /\If the metric obtained by descending the metric of \Ij’f]—" ;
however, we regard the object Wb /\I/ (or W /\IJ ) as being equipped with

1, (resp. the natural angular log-volume on

a “weight N7, that s, the log- volume of v /\If 18 equal to the log-volume of
\Ilfg)rl ([IUTchIII, Remark1.2.1 (i)]) (See also Remark 10.12.1, Definition 12.1 (2),
(4), Proposition 13.7, and Proposition 13.11).

((Frobenius-like) Holomorphic Log-shells) For v € V™" (resp. v € V¥°), we

have

11

v t
\D[ngffg)’ Im ((\Ij;(]:g) HE%E(TFE)) < IT]:E (C [O_g(T‘FQ))

(See the inclusions (Upper Semi-Compat. (non-Arch)) O}, log(Oy) C I in Sec-
tion 5.1) (resp.

Uiog(tr,) CLig, (C [o_g(T]-"E)) , ¥ CIm <L;E — \If%’%)

(See the inclusions (Upper Semi-Compat. (Arch)) OF. C Ii, O C exp,(Zy) in
Section 5.2) ).

((Frobenius-like and Etale-like) Mono-analytic Log-shells) For v € V"
(resp. v € V*°) by Proposition 5.2 (resp. Proposition 5.4), we have a functorial
algorithm, with respect to the category TDJ (= B(TG,)°) (resp. the split monoid
TD£ ), to construct an ind-topological module equipped with a continuous TGQ—action
(resp. a topological module)

lo_g(TDD = {TGQm kN(TGQ)} (resp. [o_g(TDZ) = l{:N(TGE) )
and a topological submodule (resp. a topological subspace)
Tipr :=I('Gy) C k™(1Gy)

(which is called the étale-like mono-analytic log-shell associated to TD£ )
equipped with a py,-adic log-volume (resp. an angular log-volume and a radial log-
volume). Moreover, we have a natural functorial algorithm, with respect to the
split-x pu-Kummer pre-Frobenioid T]:EX“ (resp. the triple T.7-"'2_“‘), to construct an
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Isomet-orbit (resp. {*1} X {£1}-orbit arising from the independent {+1}-
actions on each of the direct factors “k~(G) = C~ x C™~” in the notation of Propo-
sition 5.4)

[{Kum ”
poly

~

log(tF#) 5 log('D))

of isomorphisms of ind-topological modules (resp. topological modules) (cf. the poly-
{{Kumi}
poly

(87 — U,

(*D") of Corollary 11.21 (2)). We also have
a natural functorial algorithm, with respect to the py,-adic Frobenioid T]-"Q (resp.

isomorphism WU
the triple T F, ), to construct isomorphisms (resp. poly-isomorphisms of the {1} X
{+£1}-orbit arising from the independent {11}-actions on each of the direct factors
“k~(G) = C™ x C™7 in the notation of Proposition 5.4)

ep (poly) ta,gto - inducedbe Kum -
(Uor = )log("F,) = log('F,#) — log("D})
induced by Kum
ap (poly) tagto poly, {ii} x{£1}
(resp. (T, = )log('F,) = log(TF>H) S log('D}) )

of isomorphisms of ind-topological modules (resp. topological modules) (cf. the iso-
morphism Wens (D)5 = WS (*D7)X of Corollary 11.20 (2) and the Kummer iso-

cns
Kum

morphism Vs () 5 Ueons(3D) of Corollary 11.21), which is compatible with the
respective TGQ and GQ(THE)—actions, the respective log-shells, and the respective log-
volumes on these log-shells (resp. compatible with the respective log-shells, and the

respective angular and radial log-volumes on these log-shells).
The above (poly-)isomorphisms induce collections of (poly-)isomorphisms

4Kum ”
poly

~

log("§™") := {log("F, ") }vey = log("D") = {log("D},)}vev,

(KKUm ”
poly

~

Ifgkxu = {IT]:UFX#}QEY — I’TCDF = {ITDZ}QGY’

induced by Kum
(poly) tauto poly

(Tens(*F) = { W7 hoev =) log('3) == {log("F) }pew = log(1F*) = log("D"),

induced by Kum
tauto poly

~

IT& = {IT]:E}QGY — Ifgkxp, :> IT@F



308 GO YAMASHITA

(Here, we regard each \Il%_. as equipped with G,(*I1,)-action in the definition of
Ve (F5) ).

5. ((Etale-like) Holomorphic Vertically Coric Log-shells) Let *® be a D-prime-
strip with associated D" -prime-strip *O". Let

§("9)

denote the F-prime-strip determined by U.ns(*D). Assume that 1§ = 1§ = F(*D),
and that the given log-link is the full log-link g full oo % = 3(*D). We have a
functorial algorithm, with respect to the D-prime-strip *2, to construct a collection

of topological subspaces
I*@ = ITS

(which is called a collection of vertically coric étale-like holomorphic log-
shell associated to *® ) of the collection Wans(*D) = Uens(*F),and a collection of
1somorphisms

Ty = Tupr

(cf. the isomorphism \Ilc,ﬂs(i@)gX S5 (FD7)X of Corollary 11.20 (2)).

Remark 12.2.1.  (Kummer Theory, [IUTchIII, Proposition 1.2 (iv)]) Note that

the Kummer isomorphisms

(poly)

~

of Corollary 11.21 (1) are not compatible with the (poly-)isomorphism ¥ (D) =
e (D) of (1), with respect to the diagrams (log,,,) and (log,,.)-

Remark 12.2.2.  (Frobenius-picture, [[UTchIII, Proposition 1.2 (x)]) Let {"F}nez
be a collection of F-prime-strips indexed by Z with associated collection of D-prime-
strips (resp. D" -prime-strips) {"®},cz (resp. {"D"},cz). Then the chain of full

log-links
full lo _ full lo full lo full lo
_>g (n 1)3’ _)g n&’ _>g (n+1)8' _>g

of F-prime-strips (which is called the Frobenius-picture of log-links for F-prime-
strips) induces chains of full poly-isomorphisms

full poly full poly full poly full poly

~

5 hpy 3 ornp K Mgy X

full poly full poly full poly full poly

~ ~

:> (n—l)CDF :> TL@F B (n—l—l)@F A
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of D-prime-strips and D" -prime-strips respectively. We identify (7)®’s by these full
poly-isomorphisms, then we obtain a diagram

o full fog \Pcns((n_l)g) full log \I}CHS(TLS) full log \IJCDS((H"_I)S) full log o
Kum Kum
Kum Kum Kum
Tens (D).

This diagram expresses the vertical coricity of W.,s({7)®). Note that Remark 12.2.1
says that this diagram is not commutative.

Proof. Proposition follows from the definitions. O

Definition 12.3.  (log-Links Between XH-Hodge Theatres, [IUTchIII, Proposi-
tion 1.3 (i)]) Let
T AT
be XMH-Hodge theatres with associated D- K B-Hodge theatres (7 PX% 1y 7P-XE
respectively. Let T§s, 1§, 7§, (in 7§,), 18 (in T§r) (resp. 3>, 1§, ¥, (in *3,),
'3, (in *§r)) denote F-prime-strips in the XM-Hodge theatre fay 758 (resp. i’H'Tgaa).

For an isomorphism
SR e N

of D- X HH-Hodge theatres, the poly-isomorphisms determined by = between the D-
prime-strips associated to '§~, g~ (resp. '§., *T., resp. TSJ-, i&'j, resp. '8t 1)

poly poly
uniquely determines a poly-isomorphism log(T§~) = s (resp. log(Tg.) = 3.,
poly poly log
resp. log("F;) = *3;, resp. log(TS:) = ¥3:), hence, a log-link T§~ = *F~ (resp.

log log log
TS>_ :> i%’>_7 resp. TSJ :> isj, resp. TS"t :> i%t>7 by Lemma 10.10 (2) We write

P rRE L8 g

for the collection of data = : THTPXE X 19, 7D-NE L log e, T3 og o {15 g
¥5: jes, and {13, log %, }ier, and we call it a log-link from THTEE to I THE,

pol

When E is replaced by a poly-isomorphism TH7P™E 5 19y 7PRE (eqp  the full
full poly
poly-isomorphism fy7PHE X j33’—[7'D'&Ea), then we call the resulting collection of

log-links constructed from each constituent isomorphism of the poly-isomorphism (resp.
full poly-isomorphism) a log-link (resp. the full log-link from tTHTHE o PHTHE,

and we also write it

Py ®E 108 g KE (resp. THT™HE Y ).
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Note that we have to carry out the construction of the log-link first for single = for the
purpose of maintaining the compatibility with the crucial global {41 }-synchronisation
in the B-Hodge theatre ([IUTchIII, Remark 1.3.1]) (cf. Proposition 10.33 and Corol-
lary 11.20 (3)) (For a given poly-isomorphism of XH-Hodge theatres, if we consid-
ered the uniquely determined poly-isomorphisms on JF-prime-strips induced by the
poly-isomorphisms on D-prime-strips by the given poly-isomorphism of XH-Hodge the-
atres, not the “constituent-isomorphism-wise” manner, then the crucial global {£1}-
synchronisation would collapse (cf. [IUTchl, Remark 6.12.4 (iii)], [IUTchII, Remark
4.5.3 (iii)])).

Remark 12.3.1.  (Frobenius-picture and Vertical Coricity of D- X H-Hodge the-
atres, [IUTChIII, Proposition 1.3 (ii), (iv)]) Let {"HT®®},.cz be a collection of K-
Hodge theatres indexed by Z with associated collection of D- X H-Hodge theatres
{"HTPEEY, cz. Then the chain of full log-links

o full log (n_l)HTlgEﬂ full log n,}_[,],gga full log (n+1)HTx|33 full log o

of XH-Hodge theatres (which is called the Frobenius-picture of log-links for XH-
Hodge theatres) induces chains of full poly-isomorphisms

full poly full poly full poly full poly

~ ~

N () pDRE X g DRE X (bl DB N

of D- X B-Hodge theatres. We identify (2 g7 P-BEsg by these full poly-isomorphisms,
then we obtain a diagram

o full log (nfl)’HTgEE full log n’HTgEE full log (n+1)H7_gEE full log o
Kum l Kum
Kum

(_)HT,D—&BH,

Kum Kum

where Kum expresses the Kummer isomorphisms in Remark 12.2.1. This diagram ex-
presses the vertical coricity of OHTPHEE Note that Remark 12.2.1 says that this

diagram is mot commutative.

Definition 12.4.  ([IUTchIII, Definition 1.4]) Let {"™HT2®}, <z be a collec-
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tion of XH-Hodge theatres indexed by pairs of integers. We call either of the diagrams

full log full log
O nmtigy BB O nttmt1grRE 07
full log full log
‘ @XH n,mHT‘ZBﬂ @XH n—l—l,mHT@EH @XH
full log full log
full log full log
X @X/,L @X/,L
LB nymelgy BB TEN ngl mplg g ME Te

X p
gau

@ au
L E nymgy B e

full log

X p

full log

full log

X
gau

n+1,mHT®EE © :

full log

the log-theta-lattice. We call the former diagram (resp. the latter diagram) non-
Gaussian (resp. Gaussian).

Remark 12.4.1.  For the proof of the main Theorem 0.1, we need only two adjacent
columns in the (final update version of) log-theta-lattice. In the analogy with p-adic
Teichmiiller theory, this means that we need only “lifting to modulo p?” (See the last
table in Section 3.5).

Theorem 12.5.  (Bi-Cores of the Log-Theta-Lattice, [[UTchIII, Theorem 1.5])
Fiz an initial Th-data

F/F, Xp, I, Ck, V, V224 ).
(/7 y Uy K

mod>

For any Gaussian log-theta-lattice corresponding to this initial ©-data, we write ™2
(resp. ™D~ ) for the D-prime-strip labelled “~7 (resp. “>”) of the XEB-Hodge theatre.
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1. (Vertical Coricity) The vertical arrows of the Gaussian log-theta-lattice induce
the full poly-isomorphisms between the associated D- X H-Hodge theatres

full poly full poly full poly
X n,mHTD-IZEE ~ n,m+1H7~D-@EE| ~ e

where n is fixed (See Remark 12.3.1).

2. (Horizontal Coricity) The horizontal arrows of the Gaussian log-theta-lattice in-
duce the full poly-isomorphisms between the associated F > -prime-strips

full poly full poly full poly

~

~ n,mS;ZX,u :> n—|—1,mgzxu :>
where m is fived (See Corollary 11.24 (4)).

3. (Bi-coric F™*F-Prime-strips) Let “™®'\ for the D" -prime-strip associated to
the F' -prime-strip ™'\ of Corollary 11.24 (1) for the XB-Hodge theatre nmay THE

We idenfity the collections W n,s("™ D)o, \I’ms("’m@})@lﬁe) of data via the isomor-
diag

~

phism Wens (MO )o — \Ilcns(”’m©>_)<F;:e> constructed in Corollary 11.20 (3), and
let

SZ(n’m@Q

denote the resulting F' -prime-strip (Recall that “A = {0, (F})}”) Note also we
have a natural identification isomorphism Fh ("™D. ) = FL (WMD), where FL(MMD-)
denotes the F' -prime-strip determined by W ns("™®) (Recall that “>= {0, =} ”.

See Lemma 10.38). Let

F(TDL), FH (D)

denote the associated F"*-prime-strip and F~*H-prime-strip to FA(""mD.), re-
spectively. By the isomorphism “Uens(1D)X = U (*D7) X7 of Corollary 11.20
(2), we have a functorial algorithm, with respect to the D" -prime-strip »™D'y, to
construct an F~ X -prime-strip SZX ("”n@Z). We also have a functorial algorithm,

with respect to the D-prime-strip ™™, , to construct an isomorphism

tauto

FA(MMDL) S BN (D),
by definitions. Then the poly-isomorphisms of (1) and (2) induce poly-isomorphisms

poly poly poly

~ ~ ~

SR S D) S

poly poly poly

~ ~ ~

Nt SZXN(mm@Z) A SZXN(TH-LWCDZ) = ...
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of F XK _prime-strips, respectively. Note that the poly-isomorphisms (as sets of iso-
morphisms) of F~*F-prime-strips in the first line is strictly smaller than the poly-
isomorphisms (as sets of isomorphisms) of F~*F-prime-strips in the second line

tauto

~

in general, with respect to the above isomorphism F ("D, ) S F(mDR),
by the existence of non-scheme theoretic automorphisms of absolute Galois groups
of MLF’s (See the inclusion (nonGC for MLF) in Section 3.5), and that the poly-
morphisms in the second line are not full by Remark 8.5.1. In particular, by com-
posing these isomorphisms, we obtain poly-isomorphisms

poly

= ~N b ' m!
FAHDR) S FA(T D))
of F™ >t _prime-strips for any n',m’ € Z. This means that the F~ > -prime-strip

SZX“(”’T”CDZ) is coric both horizontally and vertically, i.e., it is bi-coric. Finally,
Kum

~

the Kummer isomorphism “U.(3F) = Wens(*D)” of Corollary 11.21 (1) deter-
mines Kummer isomorphism

induced by Kum

~

, =X FXpn, -
"8 — Sa (MM DR)

which is compatible with the poly-isomorphisms of (2), and the x u-Kummer struc-
tures at v € V" and a similar compatibility for v € V¥ (See Definition10.12

(1)).
. (Bi-coric Mono-analytic Log-shells) The poly-isomorphisms in the bi-coricity

in (3) induce poly-isomorphisms

poly

~

{L,mgz c [o_g(”’m’DZ)} ~ {L/,m,@z C log(™™ @2)},
Fx = p?\}y Fx 'm’
{ISZX“(“’T”@Z) C [o_g(gA H(n,mgA))} — {ISZX“(“/’WIQZ) C [O—g(%A M(n ,m @A))}
for any n,m,n’,m, € Z, which are compatible with the natural poly-isomorphisms
({Kumii

poly

= n,m ~ n,m
{Toemoy, © 0g@EDR)} = {Tonpy © log("" D)}

of Proposition 12.2 (4). On the other hand, by Definition 12.1 (1) for “Uns(TFw)o”
and “\PCHS(T3>)<F?<> 7 in Corollary 11.24 (1) (which construct ™™F' ), we obtain

Tomg, C log("™™Sa)
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18 15 a slight abuse of notation since no F-prime-strip ““"Fa” has been defined).
This i light ab tat ' F-pri trip ““™MEA 7 has been d d
Then we have natural poly-isomorphisms

induced by Kum
tauto poly

~

{Tomga Clog(™™Fa)} {In,mgzm c [a_g(”’msgw)} ~ {L,mgz c [o_g(”’mZDZ)}

(See Proposition 12.2 (4)), where the last poly-isomorphism is compatible with the
poly-isomorphisms induced by the poly-isomorphisms of (2).

(Bi-coric Mono-analytic Global Realified Frobenioids) The poly-isomorphisms
poly
nmpte 5 ”/’m/QZ of D" -prime-strips induced by the full poly-isomorphisms of (1)

and (2) for n,m,n’,m’ induce an isomorphism
(D" (*"(Dh), Prime(D" (""(95)) 3 V, ("™ ppr , }uev)
5 (DF (D), Prime(D" (U (D)) SV, " iy uew)
of triples (See Corollary 11.20 (2), and Corollary 11.24 (5)). Moreover, this isomor-

phism of triples is compatible, with respect to the horizontal arrows of the Gaussian
log-theta-lattice, with the R<g-orbits of the isomorphisms

("™Cx, Prime("™™Cx) = V, {"™"pau}vev)

“Kum”

~

= (DN (DY), Prime(DF (MD}R)) S Y, {" " ppr bvev)

of triples, obtained by the functorial algorithm in Corollary 11.21 (2) (See also
Corollary 11.24 (1), (5)).

Proof. Theorem follows from the definitions. O

§12.2. Kummer Compatible Multiradial Theta Monoids.

In this subsection, we globalise the multiradiality of local theta monoids (Propo-

sition 11.7, and Proposition 11.15) to cover the theta monoids and the global realified
theta monoids in Corollary 11.20 (4), (5) Corollary 11.21 (4), (5), in the setting of
log-theta-lattice.

In this subsection, let THTH®E be a XH-Hodge theatre with respect to the fixed

initial ©-data, and nmay T8 3 collection of XH-Hodge theatres arising from a Gaussian

log-theta-lattice.

Proposition 12.6.  (Vertical Coricity and Kummer Theory of Theta Monoids,

[IUTchIII, Proposition 2.1]) We summarise the theta monoids and their Kummer theory

as follows:
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1. (Vertically Coric Theta Monoids) By Corollary 11.20 (4) (resp. Corollary 11.20
(5)), each isomorphism of the full poly-isomorphism induced by a vertical arrow of
the Gaussian log-theta-lattice induces a compatible collection

(oo)\:[lenv(n,m®>)g(m)qjenv(n’m+1©>) (7”68]). DH_ (mm@;);D”_ (n,m—|—1@l;) )

env env

of isomorphisms, where the last isomorphism is compatible with the respective bijec-

tion Prime(—) =V, and localisation isomorphisms.

2. (Kummer Isomorphisms) By Corollary 11.21 (4) (resp. Corollary 11.21 (5)),
we have a functorial algorithm, with respect to the XH-Hodge theatre T"HT&EE, to
construct the Kummer isomorphism

Kum “‘Kum”

(oo)\I!fenv(THT@) :> (oo)\IJenv<T©>) (7’68]). CLZV(THTG) :> D«I:nv(TQ};> )

Here, the resp’d isomorphism is compatible with the respective Prime(—) = V and
the respective localisation isomorphisms. Note that the collection Vo, (D<) of

data gives us an F~-prime-strip 5, (1D<), and an F"-prime-strip F'. (1D-) =

(DY, (MD5), Prime(DL,, (M05)) 5 V, §L..(0D5), {ppr_}wev) and that the non-

env env env > o

resp’d (resp. the resp’d) Kummer isomorphism in the above can be interpreted as

an isomorphism

induced by Kum “Kum”
JrS:nv - 8"e_nv (T 0 > ) (T@Sp. Tgle}_nv — SIe}_nv (T@ > ) )

of F"-prime-strips (resp. F' -prime-strips).

3. (Compatibility with Constant Monoids) By the definition of the unit portion
of the theta monoids (See Corollary 11.24 (4)), we have natural isomorphisms

I3 5 The, S (Mh) 5§55 (D.),

induced by Kum

which are compatible with the Kummer isomorphisms TF5 = 3 (D),
induced by Kum

N = FUM(EDR) of (2) and Theorem 12.5 (3).

Proof. Proposition follows from the definitions. O

Theorem 12.7.  (Kummer-Compatible Multiradiality of Theta Monoids, [[UTchIII,
Theorem 2.2]) Fix an initial Th-data

(F/F7 XF7 l> QK; Y, Vbad §>.

mod»

Let THT®E be XH-Hodge theatre with respect to the fixzed initial ©-data.
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The natural functors which send an F'©-prime-strip to the associated F'™**- and
FrXE_prime-strips and composing with the natural isomorphisms of Proposition 12.6
(3) give us natural homomorphisms

Aut g (F5 (D)) = Autzer o (FERP(DL)) — Autzo o (F(FDR)),

env

— Autzewn (TFE2XH) = Atz (1504

env

Aut £+ (TS

env)

(Note that the second homomorphisms in each line are surjective), which are compat-
“Kum?” induced by Kum

~

ible with the Kummer isomorphisms 135~ 5 g (1D.), TSZX“ =
SFX“(TC‘DZ) of Proposition 12.6 (2), and Theorem 12.5 (3)

(Kummer Aspects of Multiradiality at Bad Primes) For v € V", [et

env

\I}J_ (©>>2 C OO\IIenV(T:D>)Q’ ooq]éenv(THTe)E - Ool:[j]:env(rHTG)E?

denote the submonoids corresponding to the respective splittings (i.e., the submonoids
generated by “oog;nv(M*@) ” and the respective torsion subgroups). We have a com-
mutative diagram

poly

FHT®)y D 0¥ r THTOW Coovr,  THTOY » wovr, FHTOIH 3 (3

 Fony San
oly

Kum |2~ Kum |2~ Kum |2~ Kum |2~ ‘Kum?” | =~
poly
oo‘l’é_nv(T’D>>g > oo‘I’env(T@>)g - oo‘I’env(T@>)EX - oo\I’env(TZ)>)E><H - WZEE(TDA)E;L»

ss
Cns

where TD'y and 1§\ are as in Theorem 12.5 (3), and Corollary 11.24 (1), respec-
tively, the most right vertical arrow is the poly-isomorphism of Corollary 11.21 (2),
the most right lower horizontal arrow is the poly-isomorphism obtained by composing

the inverse of the isomorphism F5X(1Ds) +— SZX(TCDZ) of Proposition 12.6 (3)

and the poly-automorphism of W3S (T’DZ);“ induced by the full poly-automorphism

cns
of the D" -prime-strip T@A, and the most right upper horizontal arrow is the poly-
isomorphism defined such a manner that the diagram is commutative. This com-
mutative diagram is compatible with the various group actions with respect to the
diagram

full poly
m P ('os ) » Gum@ Dy v) = M@ (T Dy ) = Gum@ (D5 ) 3 o@D L))

(TSZ);“ is equal to the

zero map, hence the identity automorphism on the following objects is compatible

Finally, each of the various composite oo\IfenV(TBD )“ — P

cns

(with respect to the various natural morphisms) with the collection of automorphisms

f \IJSS

cns

(182)5# induced by any automorphism in Autkau(TSFX“).

& env (

D) O oo Weny (195)],

(1z)st the cyclotome pus(M2(TDs ) @ Q/Z with respect to the natural isomorphism

7/ v

NZ(M?(TD>,2)) ® Q/Z = oo\I}eHV(T@>)ﬁ
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(M)E  the projective system MO (TD>7Q) of mono-theta environments

(spl)it the splittings VL (1D<), — oo\Ifenv(T©>)5 by the restriction to the zero-
labelled evaluation points (See Corollary 11.11 (3) and Definition 11.12 (1)).

Proof. Theorem follows from the definitions. O

Corollary 12.8.  ([IUTchIII, Etale Picture of Multiradial Theta Monoids, Corol-
lary 2.3]) Let {”’mHT@EE}n,meZ be a collection of XH-Hodge theatres arising from a
Gaussian log-theta-lattice, with associated D-XH-Hodge theares nma TPEE e con-
sider the following radial environment. We define a radial datum

full poly

I = ((HTPHE, §h (D), Trbad gUwoh), §o(D.) 5 §U(0R))

to be a quintuple of

(HTD)% a D-X H-Hodge theatre T?—[TDMEE,
(FP)§ the F-prime-strip §t,, ("D~ associated to THTPHE,

(bad)§t  the quadruple TRP* = (L, p), (uz)S, (M)SE, (spl)S) of Theorem 12.7 (2) for
vE ybad}

(FXm)st the F>*F-prime-strip SZX”(TQZ) associated to THTPX® | and

full poly

~

(envA)St  the full poly-isomorphim F 30 (1Ds) = SZX”(T’DZ).

env

We define a morphism from a radial datum TR to another radial datum *9R to be a

quintuple of

(HTP)S an isomorphism THTPXE 5ty 7P¥B o DK B-Hodge theatres,

Mor gz

(F'F)lévt[orm the isomorphism F. (1D-) 5§ (*D<) of F-prime-strips induced by the iso-
morphism (HTT)$S.,,

~

(bad)lévtlorm the isomorphism T9RP2d 5 tpbad of wyadruples induced by the isomorphism
(HTP)SS,,s and

(F7M) oy, @n isomorphism FAHIDR) S FLMDR) of Frxk-prime-strips
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(Note that the isomorphisms of (F'")$E  and (F7>#)S., are automatically compatible
with (envA)¢).
We define a coric datum

fe = (T, ¢ (o))

to be a pair of

(@F)Eét a D" -prime-strip 1O, and

(F M) the F>Foprime-strip § **(TD") associated to D"

We define a morphism from a coric datum T€ to another coric datum *€ to be a pair

of

(@F)Kf’grc an isomorphism 1OF 5 1DV of D -prime-strips, and

(B )M an isomorphism §*H(T1DF) = F>#(PDY) of F~#-prime-strips which induces
ét

the isomorphism (@F)Morg on the associated D" -prime-strips.

We define the radial algorithm to be the assignment

full poly

~

o= (TP, §hL (1D, TP v ioh), §(to.) 5 g (MDh))

env

= Te= (9}, §7%(10h))

ét

and the assignment on morphisms determined by the data (F™7**){i,. .

1. (Multiradiality) The functor defined by the above radial algorithm is full and

essentially surjective, hence the above radial environment is multiradial.

2. (Etale Picture) For each D- X B-Hodge theatre "™ HTPEE with n,m € 7, we

can associate a radial datum ™" R. The poly-isomorphisms induced by the vertical

poly poly

arrows of the Gaussian log-theta-lattice induce poly-isomorphisms --- = ™»mR 5
poly

nmtlg 5 ... of radial data by Theorem 12.5 (1). Let

TL709:{
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denote the radial datum obtained by idenfitying ™™R for m € Z wvia these poly-

tsomorphisms, and
n,o@

denote the coric datum obtained by applying the radial algorithm to ™°R. Similarly,

the poly-isomorphisms induced by the horizontal arrows of the Gaussian log-theta-
full poly full poly full poly

~ ~

lattice induce full poly-isomorphisms --- = mmdl 5 ntlmpl X
of D" -prime-strips Theorem 12.5 (2). Let

0. 00

denote the coric datum obtained by idenfitying ™°€ for n € Z wvia these full poly-
isomorphisms. We can visualise the “shared” and “non-shared” relation in Corol-
lary 12.8 (2) as follows:

env

gll— (n,o©>) _'_n,o%bad b = > SZXM(O,OQZ) - glﬁl—nv(n’,o©>) _f_n',o%bad e

We call this diagram the étale-picture of multiradial theta monoids. Note
that it has a permutation symmetry in the étale-picture (See also the last table in
Section 4.3). Note also that these constructions are compatible, in an obvious sense,
with Definition 11.24.1.

. (Kummer Compatibility of ©x! -Link, env — A) The (poly-)isomorphisms

of F*t-prime-strips of /induced by (envA)§t, (FN){,.,. » and (F7)i,,,. are com-
full poly

patible with the poly-isomorphisms ”’mSZX“ = ”+1’m$ZX“ of Theorem 12.5 (2)
arising from the horizontal arrows of Gaussian log-theta-lattice, with respect to the
induced by Kum induced by Kum

~

Kummer isomorphisms ”’mSZX“ =5 3’2“%’””@2); mmaEt -
Sh (™MD of Theorem 12.5 (8) and Proposition 12.6 (2). In particular, we have

env

a commutative diagram

full poly

n,ms;lei ~ 5 n—i—l,mgleﬁ

induced by Kum & “Awrenv” ﬂl lﬁ induced by Kum & “Arenv”

full poly
T (MmoDE) = Foar(mTheDh).
. (Kummer Compatibility of © 3} -Link, L & I) The isomorphisms FEL (D) S
Sh (mtbmgy), mmggbad T ntlm ggbad ¢ (et (bad)fg}iorm are compatible

env Morgp ?
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full poly
with the poly-isomorphisms "’mS’ZX“ = ""’1””82)(“ of Theorem 12.5 (2) arising

from the horizontal arrows of Gaussian log-theta-lattice, with respect to the Kummer
“Kum” induced by Kum

isomorphisms n,ms:lel-nv ~ glel—nv<n,m@>)} n,mgzxu ~ 3Z><u(n,m®2)}
(‘Kum »

~

and ("™Cy, Prime("™CR) = V, {""patvev) = (DT(M"DY), Prime (DT (""DY))

5V, {"™ppr y}tvev) of Proposition 12.6 (2), Theorem 12.5 (3), (5) and their

ntLm( ) labelled versions, and the full poly-isomorphism of projective system of
full poly

~

mono-theta environments ‘MQ (1D~ ) = M?(Tév)” of Proposition 11.15.

Proof. Corollary follows from the definitions. O

Remark 12.8.1.  ([IUTchIII, Remark 2.3.3]) In this remark, we explain similari-
ties and differences between theta evaluations and NF evaluations. Similarities are as
follows: For the theta case, the theta functions are multiradial in two-dimensional ge-
ometric containers, where we use the cyclotomic rigidity of mono-theta environments
in the Kummer theory, which uses only p-portion (unlike the cyclotomic rigidity via
LCFT), and the evaluated theta values (in the evaluation, which depends on a holo-
morphic structure, the elliptic cuspidalisation is used), in log-Kummer correspondence
later (See Proposition 13.7 (2)), has a crucial non-interference property by the constant
multiple rigidity (See Proposition 13.7 (2)). For the NF case, the x-coric functions are
multiradial in two-dimensional geometric containers, where we use the cyclotomic rigid-
ity of via Qs N 7" = {1} in the Kummer theory, which uses only {1}-portion (unlike
the cyclotomic rigidity via LCFT), and the evaluated number fields (in the evaluation,
which depends on a holomorphic structure, the Beyli cuspidalisation is used), in log-
Kummer correspondence later (See Proposition 13.11 (2)), has a crucial non-interference
property by F* N1, <. Ov = u(F,4) (See Proposition 13.7 (2)). See also the fol-
lowing table: -

mulirad. geom. container

in mono-an. container

cycl. rig.

log-Kummer

theta

NF

theta fet. 23" theta values ¢ *(ell. cusp’n)

(depends on labels&hol. str.)

o Kk-coric fct. 2l NF FX

mod

(indep. of labels, dep. on hol. str.)

(up to {£1})(Belyi cusp’n)

mono-theta

via Q>0 N ix

= {1}

no interf. by
const. mul. rig.

no interf. by

meod ﬁr[vﬁoo O?} =H
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The differences are as follows: The output theta values gj ’ depend on the labels j € F/*
(Recall that the labels depend on a holomorphic structﬁre), and the evaluation is com-
patible with the labels, on the other hand, the output number field F\_ , (up to {£1})
does not depend on the labels j € F/* (Note also that, in the final multiradial algorithm,
we also use global realified monoids, and these are of mono-analytic nature (since units
are killed) and do not depend of holomorphic structure). We continue to explain the
differences of the theta case and the NF case. The theta function is transcendental
and of local nature, and the cyclotomic rigidity of mono-theta environments, which is
compatible with profinite topology (See Remark 9.6.2), comes from the fact that the
order of zero at each cusp is equal to one (Such “only one valuation” phenomenon cor-
responds precisely to the notion of “local”). Note that such a function only exists as
a transcendental function. (Note also that the theta functions and theta values do not
have Ffi—symmetry; however, the cyclotomic rigidity of mono-theta enrionments have
Ffi—symmetry. See Remark 11.17.1). On the other hand, the rational functions used in
Belyi cuspidalisation are algebraic and of global nature, and the cyclotomic rigidity via
Q=0 N 7x = {1}, which is obtained by sacrificing the compatibility with profinite topol-
ogy (See Remark 9.6.2). Algebraic rational function never satisfy the property like “the
order of zero at each cusp is equal to one” (Such “many valuations” phenomenon corre-
sponds precisely to the notion of “global”). See also the following table (cf. [[UTchIII,
Fig. 2.7]):

theta || B (0 is permuted) | transcendental | local compat. w/prof. top. “one valuation”

NF

We also explain the “vicious circles” in Kummer theory. In the mono-anabelian
reconstruction algorithm, we use various cyclotomes p}, arising from cuspidal inertia
subgroups (See Theorem 3.17), these are naturally identified by the cyclotomic rigidity
isomorphism for inertia subgroups (See Proposition 3.14 and Remark 3.14.1). We write
pg, for the cyclotome resulting from the natural identifications. In the context of log-
Kummer correspondence, the Frobenius-like cyclotomes up’s are related to uZt, via

X (0 is isolated) algebraic global | incompat. w/prof. top. | “many valuations”
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cyclotomic rigidity isomorphisms:

L 1-,uFr

xu;n
log

1 Kum v
®Flpy —— O 17,

log
Kum

If we consider these various Frobenius-like pg.’s and the vertically coric étale-like ,ueyt
as distinct labelled objects, then the diagram does not result in any “vicious circles” or
“loops”. On the other hand, ultimately in Theorem 13.12, we will construct algorithms
to describe objects of one holomorphic structure on one side of ©-link, in terms of
another alien arithmetic holomorphic structure on another side of ©-link by means of
multiradial containers. These multiradial containers arise from étale-like versions of
objects, but are ultimately applied as containers for Frobenius-like versions of objects.
Hence, we need to contend with the consequences of identifying the Frobenius-like pg.’s

and the étale-like 1, which gives us possible

‘vicious circles” or “loops”. We consider
the indeterminacies arising from possible “vicious circles”. The cyclotome ,uzt is subject

to indeterminacies with respect to multiplication by elements of the submonoid
1" € Ny x {#1}

generated by the orders of the zeroes of poles of the rational functions appearing the cy-
clotomic rigidity isomorphism under consideration (Recall that constructing cyclotomic
rigidity isomorphisms associated to rational functions via the Kummer-theoretic ap-
proach of Definition 9.6 amounts to identifying various p},’s with various sub-cyclotomes
of pup’s via morphisms which differ from the usual natural identification precisely by

multiplication by the order € Z at a cusp “x” of the zeroes/poles of the rational func-
tion). In the theta case, we have

Hord — {1}
as a consequence of the fact that the order of the zeros/poles of the theta function at

any cusp is equal to 1. On the other hand, for the NF case, such a phenomenon never
happens for algebraic rational functions, and we have

Im(I°¢ — N>;) = {1}

by the fact Qsg N Z* = {1}. Note also that the indeterminacy arising from Im(I°*¢ —
{£1}) (C {£1}) is avoided in Definition 9.6, by the fact that the inverse of a non-
constand k-coric rational function is never k-coric, and that this thechnique is incompat-
ible with the identification of i, and pg, discussed above. Hence, in the final multiradial
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algorithm, a possible Im(I°™¢ — {£1}) (C {#1})-indeterminacy arises. However, the to-
tality F <, of the non-zero elements is invariant under {£1}, and this indeterminacy is
harmless (Note that, in the theta case, the theta values ng have no {41}-invariance).

§13. Multiradial Representation Algorithms.

In this section, we construct the main multiradial algorithm to describe objects of
one holomorphic structure on one side of ©-link, in terms of another alien arithmetic
holomorphic structure on another side of ©-link by means of multiradial containers. We
briefly explain the ideas. We want to “see” the alien ring structure on the left hand
side of ©-link (more precisely, O &p-link) from the right hand side of ©-link:

> (eye)

o — 0

As explained in Section 4.3, after constructing link (or wall) by using Frobenius-like ob-
jects, we relate Frobenius-like objects to étale-like objects via Kummer theory (Kum-
mer detachment). Then étale-like objects can penetrate the wall (étale transport)
(cf. Remark 9.6.1). We also have another step to go from holomorphic structure to the
underlying mono-analytic structure for the purpose of using the horizontally coric (i.e.,
shared) objects in the final multiradial algorithm. This is a fundamental strategy:

arith.-holomorphic Frobenius-like obj’s data assoc. to F-prime-strips
4 Kummer theory
arith.-holomorphic étale-like obj’s  data assoc. to D-prime-strips
J forget arith.-hol. str.
mono-analytic étale-like obj’s data assoc. to D™ -prime-strips.

We look more. The O-link only concerns the multiplicative structure (X), hence, it
seems difficult to see the additive structure () on the left hand side, from the right
hand side. First, we try to overcome this difficulty by using a log-link (Note that Ffi—
symmetrising isomorphisms are compatible with log-links, hence, we can pull-back Wg,,
via log-link to construct ¥y,gp):

P (eye)

& 1Og(OX”) —_— 0

°
T ] log-link
°

X O+
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However, the square

> (eye)
H log(O*H) ./\M.
T ][og T[og
X O*H o— >0
(C]

is non-commutative (cf. log(a®) # (loga)™), hence we cannot describe the left vertical
arrow in terms of the right vertical arrow. We overcome this difficulty by considering
the infinite chain of log-links:

Then the infinite chain of log-links is invariant under the vertical shift, and we can
describe the infinite chain of log-links on the left hand side, in terms of the infinite
chain of log-links on the right hand side. This is a rough explanation of the idea.

§13.1. Local and Global Packets.

Here, we introduce a notion of processions.

Definition 13.1.  ([IUTchI, Definition 4.10]) Let C be a category. A n-procession
of C is a diagram of the form

all capsule-full poly all capsule-full poly all capsule-full poly
s “ e —>

P1 — PQ Pn,

where P; is a j-capsule of Ob(C) for 1 < j < n, and each < is the set of all capsule-full
poly-morphisms. A morphism from an n-procession of C to an m-procession of C

all capsule-full poly all capsule-full poly all capsule-full poly all capsule-full poly
Py — e — P, — Q1 — e — m

consists of an order-preserving injection ¢ : {1,...,n} — {1,...,m} together with a

le-full pol
capsule-full poly-morphism P; PR Py Q. for 1 <j <n.
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Ultimately, [*-processions of D" -prime-strips corresponding to the subsets {1} C
{1,2} C --- C F;* will be important.

Remark 13.1.1.  As already seen, the labels (LabCusp(—)) depend on the arith-
metically holomorphic structures (See also Section 3.5), i.e., A_)’s or II(_)’s (Recall
that II_) for hyperbolic curves of strictly Belyi type over an MLF has the information of
the field structure of the base field, and can be considered as arithmetically holomorphic,
on the other hand, the Galois group of the base field (II_y —)G ) has no information
of the field structure of the base field, and can be considered as mono-analytic). In
inter-universal Teichmiiller theory, we will reconstruct an alien ring structure on one
side of (the updated version of) ©-link from the other side of (the updated version of)
O-link (See also the primitive form of ©-link shares the mono-analytic structure "D,
but not the arithmetically holomorphic structures D,, *D, (Remark 10.8.1)), and we
cannot send arithmetically holomorphic structures from one side to the other side of
(the updated version of) ©-link. In particular, we cannot send the labels (LabCusp(—))
from one side to the other side of (the updated version of ) ©-link, i.e., we cannot see
the labels on one side from the other side:

L2, ..., 0% — 2,7 ...,
Then we have (I*)!" -indeterminacies in total. However, we can send processions:
{1} = {1,2} = {1,2,3} — - > {1,2,...,[*} — {7} > {07} == {77,... 7}

In this case, we can reduce the indeterminacies from (I*)!" to (I*)l. If we did not
use this reduction of indeterminacies, then the final inequality of height function would
be weaker (More precisely, it would be ht < (2 + €)(log-diff 4+ log-cond), not ht <
(1 + €)(log-diff + log-cond)). More concretely, in the calculations of Lemma 1.10, if we
did not use the processions, then the calculation Zi* Zlgjgl* (j+1)= l*TH + 1 would
be changed into 1+ Y i<j<rs (% +1) = 1% 4+ 1, whose coefficient of [ would be twice.

For j =1,...,1F (Recall that [* = [* + 1 = 521 (See Section 0.2)), we put
S¥:={1,....5}, S7:={0,...,j—1}
Note that we have
S¥f cS¥c--CcSE=FF, ST cSyc- CSh=|F
We also consider S;e as a subset of Sjﬁrl.
Definition 13.2.  ([IUTchI, Proposition 4.11, Proposition 6.9]) For a D-0©-bridge
t© t 0T
D, g D (resp. D-O%F-bridge TDr ¢—i> TD,), let

Proc("®;) (resp. Proc('®r) )
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denote the {*-processin (resp. Zi—procession) of D-prime-strips determined by the sub-
capsules of 7D ; (resp. D7) corresponding to the subsets S¥ C S5 C ... C Sf; =T, *
(resp. ST € Sf c ... C Slii = |F;|), with respect to the leeCtIOII TX J = ]F*
of Proposition 10.19 (1) (resp. the bijection |T| = |F;| determined by the Fli—group
structure of T'). For the capsule 7D (resp. T®¥.) of D" -prime-strips associated to oy
(resp. "®7), we similarly define the I*-processin (resp. I*-procession)

Proc("®) (resp. Proc("®F) )
of D" -prime-strips. If the D-O-bridge T¢2 (resp. the D-O*-bridge Wf) arises from
a capsule ©-bridge (resp. ©F-bridge), we similarly define the I*-processin (resp. [*-
procession)

Proc(T&]) (resp. Proc(TST) )
of F-prime-strips.
Proposition 13.3.  (Local Holomorphic Tensor Packets, [ITUTchIII, Proposition
3.1]) Let
{QS}aeSf = {{QJE}QGY}aGSf

be a j-capsule of F-prime-strips with index set Sji. ForV 3 v( | vg € Vg := V(Q)),
we regard log(“Fy) as an inductive limit of finite dimensional topological modules over

Qug, by log(“Fy) = ligjcang:open([o_g(o‘fg))“’. We call the assignment

Vg3 vg + log(® = P log(*Fy)

yBQW@
the 1-tensor packet associated to the .’F—prime—strip 5, and the assignment
Vg3 vg — log(5 = ) log("
aESf
the j-tensor packet associated to the collection {*§} .+ of F-prime-strips,
J
where the tensor product is taken as a tensor product of ind-topological modules.
1. (Ring Structures) The ind-topological field structures on log(“F,) for a € S;-t

determine an ind-topological ring structure on lo_g(Sé't Fuy) as an inductive limit of
direct sums of ind-topological fields. Such decompositions are compatible with the
natural action of the topological group “11, on the direct summand with subscript v
of the factor labelled c.

2. (Integral Structures) Fiz o € SjJrl’ veV, vg € Vg withv | vg. Put

10g(1F,) = log(“F,) @ ® 10a(*Fo) b C log(S1 7).
J+1\{a}
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Then the ind-topological submodule [o_g(Sirl’o‘]-"g) forms a direct summand of the
ind-topological ring [O_g(Sﬁlva)' Note that [o_g(sﬁl’o‘]:g) is also an inductive limit
of direct sums of ind-topological fields. Moreover, by forming the tensor product
with 1’s in the factors labelled by [ € S;EH \ {a}, we obtain a natural injective
homomorphism

log(*F,) — log(%+1°F,)

of ind-topological rings, which, for suitable (cofinal) choices of objects in the induc-
tive limit descriptions for the domain and codomain, induces an isomorphism of
such an object in the domain onto each of the direct summand ind-topological fields
of the object in the codomain. In particular, the integral structure

ﬁ[ag(ﬂfg) = ql[og("‘fg)u{o} C [O_g(a"rg)

determines integral structures on each of the direct summand ind-topological fields
+ +
appearing in the inductive limit descriptions of [o_g(SjH’o‘]:y), lo_g(SjH}"vQ).

[

Note that log(“F,) is an isomorph of log(KEX) >~ K,, the integral structure Uig(ar,)
is an isomorph of Og—, and [O_g(Sﬁl,an is an isomorph of @ K, = hg@z

Proof. Proposition follows from the definitions. O

Remark 13.3.1.  ([ITUTchIII, Remark 3.1.1 (ii)]) From the point of view of “an-
alytic section” Vg — V(C V(K)) of Spec K — Spec Fyuoq, we need to consider the
log-volumes on the portion of log(“F,) corresponding to K, relative to the weight

1
[Ky ¢ (Finod)w]”
where v € Vjh0q denotes the valuation corresponding to v via the bijection Vioq — V
(See also Definition 10.4). When we consider Py, ., as in case of log(“F,,), we use

the normalised weight

1
(Kt (Fiuoa)s] - (S0t (Frnoa)u : Quc])

so that the multiplication by p,, affects log-volumes as +log(py,) (resp. by —log(py,))

non

for vg € Vi (resp. vg € V§™) (See also Section 1.2). Similarly, when we consider

+
log-volumes on the portion of lo_g(SjH Fuog

with V 3 v, | vg for 0 < i < j, we have to consider these log-volumes relative to the

) corresponding to the tensor product of Ky,

weight
1

Hogz‘gj [Kyi t (Frod)v;]’
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where v; € Vy,0q4 corresponds to v,. Moreover, when we consider direct sums over all

possible choices for the data {Qi}ies_i_H, we use the normalised weight
1
(Mocics e, + Fuoa)er])  { X tutocscs elrmmarog st (osics(Fnod)us  Qucl) }

(See also Section 1.2) so that the multiplication by p,,, affects log-volumes as +log(py,)

(resp. by —log(py,)) for vg € Vi© (resp. vg € V™) (See Section 0.2 for the notation
(Vm0d>v(@>-

Proposition 13.4.  (Local Mono-analytic Tensor Packets, [IUTchIII, Proposi-
tion 3.2]) Let

"D Vaesr = {{*Di}uer}

+
aeSj

be a j-capsule of D" -prime-strips with index set Sf. We call the assignment

Vg > wvg = log( O‘DF = @ log( O‘DF
V3av|vg

the 1-tensor packet associated to the D" -prime-strip “®, and the assignment

Vo 2 vg [og : ® log( aDF

+
aeS]

the j-tensor packet associated to the collection {Oé@}_}ogES:.t of D" -prime-strips,
J

where the tensor product is taken as a tensor product of ind-topological modules. For

a € Sﬁl, veV, vg € Vg with v | vy, put

log($+10DY) = log(*D) @ X lg("Di)t C logSrDh ).
eSg‘iJrl\{a}

If {QDP}aeSji arises from a j-capsule

ek a T+
e L ) S

of F™XF_prime-strips, then we put

log (“F5 ) := log(“DY), log(®s FL#) := log(% DS, ), log(S+1F ) = log(%+1oDY),

and we call the first two of them the 1-tensor packetassociated to the F™~X#-prime-
strip “§"**, and the j-tensor packet associated to the collection {*F *#} .+
J

of F"XKk_prime-strips, respectively.
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1. (Mono-analytic/Holomorphic Compatibility) Assume that {*®"}  _c+ arises
J
from a j-capsule

{*Ftaesr = { " Fuloev)oees

of F-prime-strips. We write {QSFX“}aegi for the j-capsule of FT*F-prime-strips
J

“Kum »
tauto poly

associated to {*F}, ccx. Then the (poly-)isomorphisms log(TF,) = log(FFI*+) 5
: 2080w 080y
log(TDY) of Proposition 12.2 (4) induce natural poly-isomorphisms

“Kum” “‘Kum”
tauto poly tauto poly

~

a o+ ~ amy- Si - ~ ST -
log(“Fuy) = log(“Fp ") = log(“D})), log(%i Fuy) = log(%s S F JH) = log(™ D,,),

{(Kum ”
tauto poly

[o_g(Sil’a}“g) 5 [o_g(SjEH,a]_—;x,u) = log(Sirl’aDZ)

of ind-topological modules.

2. (Integral Structures) For V. > v | vg € Vi the étale-like mono-analytic log-
shells “Lipr " of Proposition 12.2 (4) determme topological submodules
Z(eD. ) C log(®D: ), Z(5 D) C log(5 D ), Z(5+1oDE) ¢ log(Sr+1oDh)
vQ _g v/ vQ v/ v g v/

which can be regarded as integral structures on the Q-spans of these submodules.
ForVsuv|uvg € V@ by regarding the étale-like mono-analytic log-shells “Lip-" of
Proposition 12.2 (4) as the “closed unit ball” of a Hermitian metric on “lo_g(TﬁZ) 7
and putting the induced direct sum Hermitian metric on [o_g(o‘D: @), and the induced

. . . :l: . . . .
tensor product Hermitian metric on log(SJ' DgQ), we obtain Hemitian metrics on

[o_g(o‘Dq'jQ), [o_g(sjiDq'jQ), and [o_g(sjiﬂ’o‘DtQ), whose associated closed unit balls

o o + + £ o o
I(*D;,) C log(“D},), Z(% Dy,) C log(% Dy,), Z(%i+1°D}) C log(%+1°D}),

+
can be regarded as integral structures on [a_g(aD:Q), [o_g(Sj D;@), and [og( Jrl’O‘DF )
respectively. For any V 3 v | vg € Vg, we put

ap- ap- am- SEF Y . SHPNE N
I%(*D},) := Q-span of Z(*D,, ) C log(“D},), I D) := Q-span of Z(* Dy, ) C log(* D} ),

TO(EHoDh) = Q-span of Z(51+1°DY) C log(S+1°D.).

If {O‘QF}QGSﬂ_E arises from a j-capsule {*§} e of F-prime-strips then, the objects
J J

7(*D%,), T%(°D,), (5 DYy ), I9(5 DY), T(S+° DY), T(S+1:°D}) determine

+
ij

vQ

I(*Fuy)y TUOFuy), I( Fup)y IO Fup), IE+°F,), T8Em°F,),
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and

+ + £, £,
T(OFLm), TOFM), TG FRm), T2 By, T Fr), 10 e

(‘Kum’}
tauto poly
via the above natural poly-isomorphisms log(* Fo,) — [o_g(o‘}"gQX“) — lo_g(o‘D:Q),
“‘Kum”
tauto poly tauto

log(* Fop) 3 log(*T FiXm) 5 log( D), log(T 0 F,) S log(Ce e FpH)
[o_g(S;'_LH’O‘DZ) of ind-topological modules.

Proof. Proposition follows from the definitions. O
Proposition 13.5.  (Global Tensor Packets, [[UTchIII, Proposition 3.3]) Let
T

be a XH-Hodge theatre with associated X- and H-Hodge theatres T?—[T&, TS respec-
tively. Let {*F},cqx be a j-capsule of F-prime-strips. We consider Sjé as a subset of
J

the index set J appearing the X-Hodge theatre FHT™ via the isomorphism Ty : J = F
of Proposition 10.19 (1). We assume that for each o € S , a log-link

°F -5 15,
poly
(i.e., a poly-morphism [og(o‘g) 5 15, of]: -prime-strips) is given. Recall that we have
a labelled version (TMiod)- of the field TMmod (See Corollary 11.23 (1), (2)). We call

—® —®
(TIMImOd)S;:6 = ®(TMmod)a

ozES;:é
the global j-tensor packet associated to S;é and the XH-Hodge theatre T TR,

1. (Ring Structures) The field structures on (TMiod)a for o € S§ determine a

ring structure on (TMiod)S%, which decomposes uniquely as a direct sum of num-
ber fields. Moreover, by composing with the given log-links, the various localisation
functors “(1F®

mod/J

); — 187 of Corollary 11.23 (3) give us a natural injective local-
1sation ring homomorphism

— I to 1
((Mpoa)gs = > g Fyy) = ] toa(S+1 7,
! 'UQEVQ
to the product of the local holomorphic tensor packets of Proposition 13.3, where we
. +
consider S;‘é as a subset of Sjirl, and the component labelled by 0 in lo_g(SjH}"vQ) of
the localisation homomorphism is defined to be 1.
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2. (Integral Structures) For a € S;:é, by taking the tensor product with 1’s in the
factors labelled by 5 € S;é \ {a}, we obtain a natural injective ring homomorphism

(Modda = (Moa)ss
which induces an isomorphism of the domain onto a subfield of each of the di-
rect summand number fields of the codomain. For each vg € Vg, this homomor-
phism 1s compatible, in the obvious sense, with the natural injective homomorphism
log(“Fy) — lo_g(SJj‘EJrl’o‘ v) of ind-topological rings of Proposition 13.3 (2), with re-
spect to the localisation homomorphisms of (1). Moreover, for each vg € v (resp.

arc

vg € V§°©), the composite

—® —® gl. to loc. + +

(TMmod)a — (TI\\AImOd)Sfé — [0_g<sj+1fv@) - [0_g<gj+1fv@)
of the above displayed homomorphism with the vg-component of the localisation ho-
momorphism of (1) sends the ring of integers (resp. the set of elements of absolute
value < 1 for all Archimedean primes) of the number field (TMiod)a into the sub-
module (resp. the direct product of subsets) constituted by the integral structures on
+ +
[O_g(SJ‘H]:U@) (resp. on various direct summand ind-topological fields oflo_g(SJ‘H]:vQ))
of Proposition 13.3 (2).

Proof. Proposition follows from the definitions. O

§13.2. Log-Kummer Correspondences and Multiradial Representation
Algorithms.

Proposition 13.6.  (Local Packet-Theoretic Frobenioids, [IUTchIII, Proposi-
tion 3.4])

1. (Single Packet Monoids) In the situation of Proposition 13.3, for a € S;Erp v E

V, vg € Vg with v | vg, the image of the monoid Viog(ar,)s its submonoid \I’f;g(a]__v)

R
log

st | ,a .. . .
log(®i+v*F,) of Proposition 15.3 (2), determines monoids

of units, and realification W (0 Fy)? via the natural homomorphism log(“F,) —

X ot R

+
W a1 ) waCittmyy Wiagfi1o )

which are equipped with Gy (*11,)-actions when v € V', and for the first monoid,
with a pair of an Aut-holomorphic orbispace and a Kummer structure when v € V¢,

We regard these monoids as (possibly realified) subquotients of lo_g(Sﬁl’o‘]:g) which
act on appropriate (possibly realified) subquotients oflo_g(gﬁl’a]:g). (For the purpose

+
of equipping Vi, F,) etc. with the action on subquotients of lo_g(SJ’Jrl’O‘]-"g), in the
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algorithmical outputs, we define \Ifr (§¢+1 “r) etc. by using the image of the natural
og(CItL T Fy,

homomorphism log(*F,) — [O_g(Sji+1’O‘FE)).
(Local Logarithmic Gaussian Procession Monoids) Let
tggRE 109, g e

be a log-link of XA-Hodge theatres. Consider the F-prime-strip processions Proc(Tgr).
Recall that the Frobenius-like Gaussian monoid o)V r,, ., (tHT®), of Corollary 11.21
(4) is defined by the submonoids in the product Hjeﬂ?f (Wig )j (See Corollary 11.17

(2), Proposition 11.19 (4)). Consider the following diagram:

HJGFl* [O_g(]ifg) C HjGJFl* [U_g(SnglJ:iJT_'E)

U U
poly by (1)
- ~ +
ey (Brz)); Hjerr Ywoguiiry = Iljery Yioalier 74 m,
U
\II]:gau (Téﬂ)

where \I/]:gau(T]:-"v) in the last line denotes, by abuse of notation, \If].-g(Tév) for a
value profie & in the case of v e V" We take the pull-backs of \If]:;u(Tév)
via the poly-isomorphism given by log-link FHT™E log, IHT™E and send them
to the isomorphism HjE]F;;e Wiog(iit ) = HjelF;:e \Il[og(s;—ﬂl,j;ifg) constructed in (1).
By this construction, we obtain a functorial algorithm, with respect to the log-link
b B log, fqy 7 HE of XH-Hodge theatres, to construct collections of monoids

log lo
Vouv = \DfLGP((i—HTrHT&EE)E qufLGP((iA)THTgE)E?

equipped with splittings up to torsion when v € V" (resp. splittings when v €
veo°od). We call them Frobenius-like local LGP-monoids or Frobenius-like
local logarithmic Gaussian procession monoids. Note that we are able to
perform this construction, thanks to the compatibility of log-link with the Ffi-
symmetrising isomorphisms.

Note that, for v e V4, we have

o t )
<j-1abelled component of \IJ;LGP((iu’)THTgEE)SE( H”)) C IQ(S?EH’J’*]:Q)

(i.e., “(E D)0k Wi Qlog(O% )”), where (—)Gﬂ(inﬂ) denotes the invariant
v =y v
part, and the above j-labelled component of Galois invariant part acts multiplica-
+
tively on Z2(S+174 F,). For any v € V, we also have

<j—labelled component of (\IJfLGP((iﬂ))THTgEH)j)G”(iHv)> C Z@(Sﬁuﬁifg)
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(i.e., (K, D) Ok. C Qlog(Og )" forv € veood ) where I, = {1} for v € V™,

and the above j-labelled component of Galois invariant part of the unit portion acts
+ .

multiplicatively on ZQ 5+ ’”]—"2).

Proof. Proposition follows from the definitions. O

Proposition 13.7.  (Kummer Theory and Upper Semi-Compatibility for Verti-
cally Coric Local LGP-Monoids, [IUTchIIL, Proposition 3.5]) Let {""HT=P}, mez be
a collection of XH-Hodge theatres arising from a Gaussian log-theta-lattice. For each n
ins, let

n,oHTD—gﬁﬂ

denote the D-XKH-Hodge theatre determined, up to isomorphism, by n.mg TP form €
Z, via the vertical coricity of Theorem 12.5 (1).

1. (Vertically Coric Local LGP-Monoids and Associated Kummer Theory)
Let

SO )

denote the F-prime-strip associated to the labelled collection of monoids “W (" °D ) ”
of Corollary 11.20 (3). Then by applying the constructions of Proposition 13.6 (2) to

the full log-links associated these (étale-like) F-prime-strips (See Proposition 12.2
(5)), we obtain a functorial algorithm, with respect to the D- X H-Hodge theatre
noy TPRE 4o construct collections of monoids

YEQ — \IJLGP(TL,OHTD—&EE)27 OO\IJLGP(n,oHTD—@EEI)U

equipped with splittings up to torsion when v € VP (resp. splittings when v €
veood). We call them vertically coric étale-like local LGP-monoids or verti-
cally coric étale-like local logarithmic Gaussian procession monoids. Note
again that we are able to perform this construction, thanks to the compatibility
of log-link with the Ffi-symmetrising isomorphisms. For each n,m € Z,
this functorial algorithm is compatible, in the obvious sende, with the functorial
alogrithm of Proposition 13.6 (2) for T(—=) = ™™(=), and *(=) = "™~ 1(-), with
respect to the Kummer isomorphism

Kum

~

\chns(n’mls">)t — \chns(n’og>)t

of labelled data of Corollary 11.21 (3) and the identification of nm' & with the F-
prime-strip associated to \Ifcns("’m’&)t form’ = m —1,m. In particular, for each

n,m € Z, we obtain Kummer isomorphisms

Kum

log ~ n.o _
(OO)\I[}—LGP (n,m—1—>n7mr71_[7-@EE\)g ~ (oo)lIJ}—LGp( , HTD &EE)U
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for local LGP-monoids forv € V.

2. (Upper Semi-Compatibility) The Kummer isomorphisms of the above (1) are
upper semi-compatible with the log-links nym—19 BB 108 n,mag R of XH-
Hodge theatres in the Gaussian log-theta-lattice in the following sense:

a) (non-Archimedean Primes) For vg € V§°*, (and n € 7Z) by Proposition 13.6
Q Q

(2), we obtain a vertically coric topological module
+
IEHF (™D )ug)-

Then for any j =0,...,0%, m € Z, v | vg, and m’ > 0, we have

m’ n,m X L s* n,o
&R Kumolog (qfcns( : &)m) C IEH F( D, )y),

where Kum denotes the Kummer isomorphism of (1), and log”™ denotes the
m’-th iteration of p,-adic logarithm part of the log-link (Here we consider the
m/’-th iteration only for the elements whose (m' — 1)-iteration lies in the unit
group). See also the inclusion (Upper Semi-Compat. (non-Arch)) in Sec-
tion 5.1.

(b) (Archimedean Primes) For vg € V&€, (and n € Z) by Proposition 13.6 (2),
we obtain a vertically coric closed unit ball

+
ZE F("D 0 )g)-

Then for any j =0,...,0%, m € Z, v | v, we have

+ o
Q) Kum (qfcns(mmgggl) CIEHF(D, ),
|tl€s3,

® Kum (ClOSGd ball of radius 7 inside WCHS(”7WS>)%) C I(Saj‘[+1]-"(”’°©>)vQ),
+

[t1€S5; 4

and, form’ >1,

[ogm/

<closed ball of radius 7 inside \Ifcns("’mgg%li) D (a subset) — \Ifcns(”’m—m’&)'j',
where Kum denotes the Kummer isomorphism of (1), and log™ denotes the

m’-th iteration of the Archimedean exponential part of the log-link (Here we
consider the m’-th iteration only for the elements whose (m' — 1)-iteration lies

in the unit group). See also the inclusion (Upper Semi-Compat. (Arch)) in
Section 5.2.
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(¢) (Bad Primes) Letv € Y, and j # 0. Recall that the monoids (OO)\I/]:LGP(@&)THT&EE)Q,
and (OO)\I/L(;P(“’%"l'TDMEE)2 are equipped with natural splitting up to torsion
in the case of «¥(—), and up to 2l-torsion in the case of W(—). Let

lo
((n,m—l#)n,mHTgaﬂ) C

n,m—128yn.m XH
(oo)\I]-J}:LGP v (OO)\I[}-LGP(( ’ 1=)m, HT )

vy

(00) \IlﬁGP (n,oHTD—IXEEI>E c (00) Uy ap (71,,0f71_[z7~”D—|XEE|)2

denote the submonoids defined by these splittings. Then the actions of the
monoids [
\I]‘JfLGP((n,m—IA)n,mHTlgHH)E (m c Z)

on the ind-topological modules
TUEHIF(D,),) © log(F I F(0D,),) (=1, 0%),

via the Kummer isomorphisms of (1) is mutually compatible, with respect to
the log-links of the n-th column of the Gaussian log-theta-lattice, in the follow-
ing sense: The only portions of these actions which are possibly related to each
other via these log-links are the indeterminacies with respect to multiplication
by roots of unity in the domains of the log-links (since U (=)NU* (=) = g ).
Then the p,-adic logarithm portion of the log-link sends the indeterminacies at
m (i.e., multiplication by pg) to addition by zero, i.e., no indeterminacy! at
m+1 (See also Remark 10.12.1, Definition 12.1 (2), (4), and Proposition 12.2
(2) for the discussion on quotients by WYY for v € V¥*©).

Now, we consider the groups

n,m o ("I, n,m— to n,m X\ Go (™™ L,
(Vens (" Fs o)) Gl @y (= 1) mmag M) Gl :

v

of units for v € V, and the splitting monoids

nm—12%n.m XIH
\I;]i__LGP(L 1=3)n,mq )u

forv e vPad g acting on the modules
IO (0D )ug)

not via a single Kummer isomorphism of (1), which fails to be compatible with the log-
links, but rather via the totality of the pre-composites of Kummer isomorphisms with
iterates of the py-adic logarithmic part/Archimedean exponential part of log-links as in
the above (2). In this way, we obtain a local log-Kummer correspondence between
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the totality of the various groups of units and splitting monoids for m € Z, and their
actions on the “T(—)” labelled by “n,o”

{ Kumo log™ (groups of units, splitting monoids at (n,m)) ~ Z%(™°(=)) Ymez. m>0,

which is invariant with respect to the translation symmetries m — m + 1 of the n-th

column of the Gaussian log-theta-latice.

Proof. Proposition follows from the definitions. O

Proposition 13.8.  (Global Packet-Theoretic Frobenioids, [IUTchIII, Proposi-
tion 3.7])

1. (Single Packet Global non-Realified Frobenioid, X-Line Bundle Version)
In the situation of Proposition 13.5, for each o € Sf, by the construction of Defi-
nition 9.7 (1), we have a functorial algorithm, from the image

~r® F® 7® +
(Myion)a = Im ((Mga)a = (Maa)ss = log(+ Fye))

of the number field, via the homomorphisms of Proposition 13.5 (1), (2) to construct
a (pre-)Frobenioid

(" Ftop)a

with a natural isomorphism
("Faod)a = ((Fitop)a

of (pre-)Frobenioids (See Corollary 11.23 (2) for (T F®

mod
tological isomorphism (TMiod)a = (TM?AOD)Q on the associated rational function

monoids. We ofthen identify (T]-"fod)a with (TFop)a, via the above isomorphism.

We write (Y FEE ) a for the realification of (*FEop)a-

)a), which induces the tau-

2. (Single Packet Global non-Realified Frobenioid, B-Line Bundle Version)
For each a € S;-"é, by the construction of Definition 9.7 (2), we have a functorial

algorithm, from the number field (TMi,D)a = (TM?/IOD)Q and the Galots invariant

local monoids
+ o G'u anv)
(\I]Kc»g(sﬂq’l7 ‘FE)) 7( -

of Proposition 13.6 (1) for v € V, to construct a (pre-)Frobenioid
(Tfnc?oa)a

(Note that, forv € V™" (resp. v € V), the corresponding local fractional ideal J,
of Definition 9.7 (2) is a submodule (resp. subset) ofIQ(SJj'EH’O‘ ») whose Q-span is

+
equal to Q5+ F,) ) with natural isomorphisms

(T‘Fn@‘?oa)oé :> (T‘Fﬁod)OH (T‘Fn?ab)a :> (T‘FSOD)Q
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of_(p@;“e—)Frobemﬁgs, which induces the tautological isomorphisms (TM,@EO@)Q = (TMiod)a,
("M,00)0 — ("Myjop)a on the associated rational function monoids, respectively.

We write (TFEX),, for the realification of (TFL,)a.

moo

. (Global Realified Logarithmic Gaussian Procession Frobenioids, X-Line

Bundle Version) Let fHTHE 199, 1978 log-link. In this case, in the construc-
tion of the above (1), (2), the target [o_g(s;'il}"v@) of the injection is I-labbeled ob-
ject [o_g(SjiH’j;ifVQ), thus, we write ((i_’)TMﬁOD)Q, ((i_’)TMi,D)a, ((i_’)TFA@IOD)a,
(DT FE 1, fOT(TMIC:E/IOD)af (TME@)W (Foop)as (1FE3)a, respectively, in order

to specify the dependence. Consider the diagram

gl.real’d to gl. non-real’d®@R
M rels ~ (T FE®R Y X  (F)T EOR -y
[jers '€ ’ [lers ("Frnoa)i = Hje]F;f(( T Fiop)i»
U
Tcll—

gau

where the isomorphisms in the upper line are Corollary 11.23 (3) and the reali-
fication of the isomorphism in (1). Then by sending the global realified portion
TC'g'_au of the F'"-prime-strip Tg'gau of Corolllary 11.24 (2) via the isomorphisms
of the upper line, we obtain a functorial algorithm, with respect to the log-link

b0 108, gy of Proposition 13.6 (2), to construct a (pre-)Frobenioid

plogyt
Clap(CH 1 THE),

We call GClp = C'LFGP(GM)THT&E) a Frobenius-like global realified
LGP-monoid or Frobenius-like global realified X-logarithmic Gaussian

lo
procession monoids. The combination of it with the collection ¥ r, ., ((14)%{7‘&&)
of data constructed by Proposition 13.6 (2) gives rise to an F'" -prime-strip

uH)T%‘IEGP = ((i_))TclIfGPa Prime((i_})TcﬁGP) =V, (i_))Tg'iGPa {(i%)TPLGP,y}QGY)
with a natural isomorphism

Tglgau ~ (i%)TglIEGP
of F'"-prime-strips.

. (Global Realified Logarithmic Gaussian Procession Frobenioids, B-Line
Bundle Version) Put
tlogyy tlogyy
‘I’.F[g,,(( =2) HT&EE) = U r (( =3 HT&EE), (i—>)T3:[ng — (iﬁ)TgEGP‘

LGP
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~

In the construction of (3), by replacing ({FEX); 5 ((Fasp); by ((FER);, =

mod mod
log

(T]-"n(?g%)j, we obtain a functorial algorithm, with respect to the log-link b8 28

T1 TS of Proposition 13.6 (2), to construct a (pre-)Frobenioid

rlogyt
=ntel =l (O HTEE),

and an F'" -prime-strip
(=gl = (k| Prime(UICk ) 3V, GIEL ()T Y )

with tautological isomorphisms

~

I+ I+ ~ I+
ngau - (iﬁ)TS’LGP — (IQ)TS[QP

[gp((iﬂ)T’HT&Eﬁ) a Frobenius-like
global realified [gp-monoid or Frobenius-like global realified H-logarithmic

of F'*-prime-strips. We call (i_”TC'I;p = CI

Gaussian procession monoids.

(Global Realified to Global non-Realified®R) By the constructions of global
realified Frobenioids C'LFGP((iﬂ))T%TgEE) and C'[;p((iﬂ)T”H'T&EE) of (3), (4), we
have a commutative diagram

tlogyy
Clap(C D HTHE) [T, s (Fi60);

lg -

plogyt
Clop (T HTI > T, o (1 Fims)-

In particular, by the definition of (Tfnc’?oa)j in terms of local fractional ideals, and
the product of the realification functors H]E]F;:e (F2); — H]E]F;:e (FF2E);, we ob-
tain an algorithm, which is compatible, in the obvious sense, with the localisation
isomorphisms {1 pigp v tvev and {TpLap.wtvev, to construct objects of the (global)

categories C'[;p((iﬂ’)THTgEB), C'LFGP(@%)THT&EE), from the local fractional ideals
generated by elements of the monoid Y, ((imm?'-l'T&EE)2 for v e VP2,

Proof. Proposition follows from the definitions. O

Definition 13.9.  ([IUTchIII, Definition 3.8])

. Put \I/J%[mu ((iﬂ)THTgE)U = ‘Ifjr.-[gp((iﬁm”;'-[T&EE)E for v € V", When we regard

the object of

H (T‘Fn@?ob)j

JEF]
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and its realification determined by any collection, indexed by v € VP24, of generators
up to g of the monoids \IfL (CFB))THTWH)U, as an object of the global realified
Frobenioid (—)iClp CLGP( PNy TREY op Gotel = o (8RB
then we call it a ®-pilot object.

We call the object of the global realified Frobenioid TC\ of Corollary 11.24 (1)
determined by any collection, indexed by v € ybad, of generators up to torsion of

lgp lgp(

the splitting monoid associated to the split Frobenioid T]—"Z’y in the v-component
of the F-prime-strip T§'y of Corollary 11.24 (1), a g-pilot object.

. Let PR 7R 8 g 788 e 5 log-link of XH-Hodge theatres, and
*HTgEB
a XH-Hodge theatre. Let

*Sszu (resp. (i—>)T{§f|I|:EIZ>)<M7 resp. (1—>)TS,II->><;L )

be the '™ *#_prime-strip associated to the F'"-prime strip *§'y of Corollary 11.24
(1) (resp. F)FF 0, resp. GFF D). We call the full poly-isomorphism

full poly full poly
(gl 2, gt (o (oighexu =y wghexi

the @ &p-link (resp. @f;’; -link) from THTHE to *HTHE relative to the log-link

[ o
b ™E 28 THTmH, and we write it as

X Qx#
B NGy o 7B (regp, THTEE % ey ),

. Let {”’m’HTgE}n,mez be a collection of XH-Hodge theatres indexed by pairs of
integers. We call the diagram

full log full log
X

@LGP n’m+1HT|ZEB LGP n+1, m+1H7-|ZEH LGP .

full log full log

Orér Orér Orér
: nmeTgEE : n—|—1,me7'&53 :

full log full log
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(resp.

full log full log

(Shin (Shin Shin
lgp n’m+17_[7.&EE] [gp ”+1’m+17—[T&EE lgp

full log full log

X p X

(S]
[9‘“; n,meTgaa tep n—l—l,mHTXEE

X [
Glgp

full log full log

) the LGP-Gaussian log-theta-lattice (resp. [gp-Gaussian log-theta-lattice),
where the Opp-link (resp. O f-link) from nomy THE o ntLmaTRE §g taken

relative to the full log-link n,m—1lg ¥ full fpg nm T8 Note that both of @fép—

link and @f;’;—link send ©-pilot objects to g-pilot objects.

Proposition 13.10.  (Log-volume for Packets and Processions, [[UTchIII, Propo-
sition 3.9])

1. (Local Holomorphic Packets) In the situation of Proposition 13.4 (1), (2), for

Vouv|uvg e V" (resp. Vo u|wvg € V), a € S;-—LH,
(resp. the radial log-volume) on each of the direct summand p,,-adic fields (resp.
complex Archimedean fields) of Z%(*F,,), IQ(Sj‘EH}"UQ), and IQ(Sa‘iH’j]:vQ) with the

normalised weights of Remark 13.3.1 determines log-volumes

the pyy-adic log-volume

o +
/’LLO,%)Q . M(IQ(QF’UQ>) — R) 'ulgz‘é»l:’UQ : M(IQ(SJ+1FUQ)) - R,
HlSojinhy : M(IQ(S;EFI’O(‘FE)) - R’

where M(—) denotes the set of compact open subsets of (—) (resp. the set of com-
pact closures of open subsets of (—)), such that the log-volume of each of the local
holomorphic integral structures

Oar,

vQ

C IQ(QFU@)a Osi

+1 Fug

st st
- IQ( J+1FUQ)’ OSji—H’O‘]'—E < IQ( it Oé‘/t‘y)a
given by the integral structures of Proposition 13.3 (2) on each of the direct sum-
mand, 1 equal to zero. Here, we assume that these log-volumes are normalised in
such a manner that multiplication by p, corresponds to —log(p,) (resp. +log(py))
on the log-volume (cf. Remark 15.3.1) (See Section 0.2 for p, with Archimedean v).
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We call this normalisation the packet-normalisation. Note that “,ulsof

j+1°Y
vaariant by permutations of Sjﬂrl. When we are working with collections of capsules

7 48 in-

in a procession, we normalise log-volumes on the products of “M(—)” associated to
the various capsules by taking the average over the various capsules. We call this

normalisation the procession-normalisation.

2. (Mono-analytic Compatibility) In the situation of Proposition 13.4 (1), (2),
for Vo u|vg € V™ (resp. Vo w |vg € Vi), a € Sjjirl, by applying the p,,-adic
log-volume (resp. the radial log-volume) on the mono-analytic log-shells “Tip-”
of Proposition 12.2 (4), and adjusting appropriately the discrepancy between the
local holomorphic integral structures of Proposition 13.3 (2) and the mono-analytic
integral structures of Proposition 13.4 (2), we obtain log-volumes

g - M(Z%(°D},)) — R, ,fgf;i . M(Z2(5+D) ) - R

IU/O( ,VQ Y

HEE L, MEOCD)) 5 R

+
Sj+1 ;0L

where M(—) denotes the set of compact open subsets of (—) (resp. the set of com-
pact closures of open subsets of (—)), which are compatible with the log-volumes
of (1), with respect to the natural poly-isomorphisms of Proposition 13.4 (1). In
particular, these log-volumes can be constructed via a functorial alogrithm from the
D -prime-strips. If we consider the mono-analyticisation of an F-prime-strip pro-
cession as in Proposition 13.6 (2), then taking the average of the packet-normalised
log-volumes gives rise to procession-normalised log-volumes, which are compatible
with the procession-normalised log-volumes of (1), with respect to the natural poly-
isomorphisms of Proposition 13.4 (1). By replacing “D™7 by F"*F, we obtain a
similar theory of log-volumes for the various objects associated to the mono-analytic

log-shells “L; zrxu”
paty P MBS > Rk M(ZO( L 14)) = R,
g M(z@(Sﬁuang“)) — R,

1

which is compatible with the “D™ "-version, with respect to the natural poly-isomorphisms
of Proposition 13.4 (1).

3. (Global Compatibility) In the situation of Proposition 13.8 (1), (2), put

(J+1]-"V H 796 a+1.7-" 0) C [o_g(SjiHFVQ): H [o_g(Sﬁl}"vQ)

vp€Vg v€Vo
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and let
+ +
MO F) © [ MECHFy)
UQGV@
denote the subset of elements whose components have zero log-volume for all but
finitely many vg € Vg. Then by adding the log-volumes of (1) for vg € Vg, we
obtain a global log-volume
weE s MIYCM Fy)) = R

+
S511,Ve

which is invariant by multiplication by elements of

+
("Maoo)a = (Myjopla C© I+ Fiy)

;5_1. The global log-volume ,ulgof V@({Jg}yey)

G410

of an object {J,}vev of ((FZ.s)a (See Definition 9.7 (2)) is equal to the degree
of the arithmetic line bundle determined by {Jy}vev (cf. the natural isomorphism
("Fmoo)a — (T

mod

(product formula), and permutations of S

Ja of Proposition 13.8 (2)), with respect to a suitable normali-
sation.

4. (log-Link Compatibility) Let {""HT B}, ..cz be a collection of REB-Hodge the-
atres arising from an LGP-Gaussian log-theta-lattice.

(a) For n,m € Z, the log-volumes of the above (1), (2), (3) determine log-volumes
on the various “I%(—)” appearing in the construction of the local/global LGP-

/gp-monoids/Frobenioids in the F'" -prime-strips “’mS‘EGP, ”’mg‘[;p of Propo-

sition 13.8 (3), (4), relative to the log-link n,m—1lg ¥ full oo n.ma T8,

(b) At the level of the Q-spans of log-shells “I%(—)” arising from the various JF-
prime-strips involved, the log-volumes of (a) indexed by (n,m) are compatible,
in the sense of Proposition 12.2 (2) (i.e., in the sense of the formula (5.1) of
Proposition 5.2 and the formula (5.2) of Proposition 5.4 ), with the log-volumes
indexed by (n, m— 1) with respect to the log-link nm—19rRE L8 5, g, 7R
(This means that we do not need to be worried about how many times log-
links are applied in the log-Kummer correspondence, when we take values

of the log-volumes).

Proof. Proposition follows from the definitions. O

Proposition 13.11.  (Global Kummer Theory and Non-Interference with Local
Integers, [ITUTchIII, Proposition 3.10]) Let {"™HT™ }, mez be a collection of K-
Hodge theatres arising from an LGP-Gaussian log-theta-lattice. For each n
nZ, let

n,0q, 7 D-HE
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denote the D-XH-Hodge theatre determined, up to isomorphism, by n.magy THP form €
Z, via the vertical coricity of Theorem 12.5 (1).

1. (Vertically Coric Global LGP- [gp-Frobenioids and Assosiated Kummer
Theory) By applying the construcions of Proposition 13.8 to the (étale-like) F-
prime-strips “F("°D.)¢” and to the full log-links associated to these (étale-like)
F-prime-strips (See Proposition 12.2 (5)), we obtain functorial algorithms, with
respect to the D- X H-Hodge theatre ”’OHTDMEE, to construct vertically coric
étale-like number fields, monoids, and (pre-)Frobenioids equipped with

natural isomorphisms

@

N n,0 -XIH ~r® n,o -XIH n,o -XH n,o -XH
Mmoa( ' HTD )CM :MMOD< ' HTD )a ) M?wa( ’ HTD )a - M%/[O])( ’ /HTD )a,

MiOd(n,oHTD—@EE\)a S M® (n,oHTDJXEE)O”

mod

Fr(de(n,oHTD—®53>a ~ Fn(?ga(n’OHTD_IXBE‘)a ;f-l\@;)[OD(n,oHTD—ﬁEE)a
x via Tx . . . . - . . .
fora €S, C J, and vertically coric étale-like 7" -prime-strips equipped
with natural isomorphisms

SII—(n,Or]_[T’D—&Eﬂ)gau gglk(n,oHTD—ﬁEB)LGP ~ fH_(n’OHTD_‘EEH)[gp-

Note again that we are able to perform this construction, thanks to the com-
patibility of log-link with the Ffi-symmetrising isomorphisms. For each
n,m € 7, these functorial algorithms are compatible, in the obvious sense, with
the (non-vertically coric Frobenius-like) functorial algorithms of Proposition 13.8
for (=) = ™™ (=), and *(-) = ™™~ 1(~), with respect to the Kummer isomor-

phisms
Kum
qjcns(n7m/3>)t :> \I/cns(n’m/®>->t7
Kum Kum
("MEoq); D MEG (" D), (M Mpeq); S Mg ("™ D),

of labelled data (See Corollary 11.21 (3), and Corollary 11.23 (2)), and the evident
identification of”’mlst with the F-primes-strip associated to \Pcns(”’m/3>)t form' =
m — 1, m. In particular, for each n,m € Z, we obtain Kummer isomorphisms

Kum Kum

~

mod

Kum Kum

Yo — M®

mod MOD/mod

n,0 - n,m— nmir® 7® n,o -
( ’ HTD gEﬂ)ou (( ’ =), MMOD/moD)Oé - MMOD/moD( 7 HTD @EEI)O“

n,0 -XH n,m— n,m ~ n,0 -XIH
(e TP, ((mmolmnmy® Ja = Myop mes (" HT )0,



344 GO YAMASHITA

Kum Kum
~ -XH - ~ -XH
o P o (e A P (L 1_))n7m]:1\@/310D/maa)a - ‘FI\%OD/maD<n7OHTD )

m

Kum Kum
n,m Ik ~ Ik /n,0 D-XH n,m—1—)n,m~l+ ~ I /n,o D-XH

(Here (_)MOD/maD is the shorthand for “(—)mop (resp. (—)meo)”, and (_)LGP/[gp
is the shorthand for “(—)vap (resp. (—)wgp)”) of fields, monoids, Frobenioids, and
F'"_prime-strips, which are compatible with the above various equalities, natural
inclusions, and natural isomorphisms.

2. (Non-Interference with Local Integers) In the notation of Proposition 13.4
(2), Proposition 13.6 (1), Proposition 13.8 (1), (2), and Proposition 13.10 (3), we
have

£ o * +
(TM?AOD)amH \Iﬂog(gﬁl’”’f@ = N((TMI(?/IOD>a) - HI@(SH1’ ]:2) = H I@(Sj+lfv@) = IQ(SJH}—VQ)

veV veV v €V

(i “Fliga M [oe Oy, = 1(Fioa) ) (Here, we identify Ty, T8CT )

+
with TQ(Si+1 Fuy)). Now, we consider the multiplicative groups

((n,m—l—))n,me\@/IODb

of non-zero elements of number fields as acting on the modules
+
IO F ("D, )v,)

not via a single Kummer isomorphism of (1), which fails to be compatible with
the log-links, but rather via the totality of the pre-composites of Kummer isomor-
phisms with iterates of the py-adic logarithmic part/Archimedean exponential part
of log-links, where we observe that these actions are mutually compatible, with
respect to the log-links of the n-th column of the LGP-Gaussian log-theta-lattice, in
the following sense: The only portions of these actions which are possibly related to
each other via these log-links are the indeterminacies with respect to multiplication
by roots of unity in the domains of the log-links (by the above displayed equal-
ity). Then the py-adic logarithm portion of the log-link sends the indeterminacies
at m (i.e., multiplication by p(m=1=2)mmME (Y, ) to addition by zero, i.e., mo
indeterminacy! at m + 1 (See also Remark 10.12.1, Definition 12.1 (2), (4), and
Proposition 12.2 (2) for the discussion on quotients by \Ilfgv forv e V). In this
way, we obtain a global log-Kummer correspondence between the totality of
the various multiplicative groups of non-zero elements of number fields for m € Z,
and their actions on the “T%(—)” labelled by “n,o”

{ Kum o log™ (((mm=1=mmME 0 0)5) ~ T (=) bmez, mr>0,
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which is invariant with respect to the translation symmetries m — m+1 of the n-th
column of the LGP-Gaussian log-theta-latice.

3. (Frobenioid-theoretic log-Kummer Correspondences) The Kummer isomor-
phisms of (1) induce, via the log-Kummer correspondence of (2), isomorphisms of
(pre-)Frobenioids

Kum Kum

((n,m—l—))n,m}-l\%OD)a A fl\@/BIOD(n,oHTD-XBH)a, ((n,m—l—))n,m;ﬁﬂgD)a ~ fl\(?[I(R;D(n,oHTD-XHﬂ)a

which are mutually compatible with the log-links of the LGP-Gaussian log-theta-
lattice, as m rus over the elements of Z. These compatible isomorphisms of (pre-
)Frobenioids with the Kummer isomorphisms of (1) induce, via the global log-
Kummer correspondence of (2) and the splitting monoid portion of the the local
log-Kummer correspondence of Proposition 13.7 (2), a Kummer isomorphism

Kum

(n,m—l—))n,mgl}—J_ ~
LGP

SrH—J_ (n’OHTD_&EE)LGP

of associated F'™*-prime-strips, which are mutually compatible with the log-links

of the LGP-Gaussian log-theta-lattice, as m rus over the elements of Z.

Note that we use only MOD-/LGP-labelled objects in (2) and (3), since these are defined
only in terms of multiplicative operations (X), and that the compatibility of Kummer
isomorphisms with log-links does not hold for mod-/Igp-labelled objects, since these are
defined in terms of both multiplicative and additive operaions (X and B ), where we only
expect only a upper semi-compatibility (cf. Definition 9.7, and Proposition 15.7 (2)).

Proof. Proposition follows from the definitions. O
The following the Main Theorem of inter-universal Teichmiiller theory:

Theorem 13.12.  (Multiradial Algorithms via LGP-Monoids/Frobenioids, [[UTchIII,
Theorem 3.11]) Fiz an initial ©-data

F/F, Xp, |, Cr, V, VP24 = ¢)
(/7 y Uy XKy Yo

mod>

Let
{n,mHTIZEE }n,mEZ

be a collection of KH-Hodge theatres, with respect to the fixed initial ©-date, arising
from an LGP-Gaussian log-theta-lattice. For each n € 7Z, let

n,oHTD-gEE

denote the D- X H-Hodge theatre determined, up to isomorphism, by nmay THE for
m € Z, via the vertical coricity of Theorem 12.5 (1).
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1. (Multiradial Representation) Consider the procession of D" -prime-strips Proc(™°D})
{eDEY e {Dy, D} e L {0 DL D
Consider also the following data:

(Shells) (Unit portion — Mono-anaytic Containers) For V > v | vg, j € |F|, the
topological modules and mono-analytic integral structures

I(Sﬁlm,ol):@) C IQ(SjiJ,-l;nvo’D:@)’ I(Sﬁpj;n@p@ C I@(Sﬁpj;n,oljg),
which we regard as equipped with the procession-normalised mono-analytic log-

volumes of Proposition 13.10 (2),
(ThVals) (Value Group Portion — Theta Values) For v € V", the splitting monoid

\Pi_GP (n,oHTD-@EE)U

of Proposition 13.7 (2c), which we regard as a subset of
I1 7O dmophy,
JEFF
. . . . . . ] IQ gi 17j;”v° [ .
equipped with a multiplicative action on Hjem?e (it Dy, ), via the natural
poly-isomorphisms

“Kum?”~ 1
poly tauto™ !

~

ZQ(S;‘t+17j;naOD£) :> Z@(S;‘t+1aj;nao‘7.—'_xﬂ(©>)g) - IQ(S;‘:+1J;”7OF(©';)E)
of Proposition 13.4 (2), and
(NFs) (Global Portion — Number Fields) For j € F}, the number field
AT N + . o i e
Mo (" HT P %)) = Mgy ("HTP ™), c 78Dl ) o= [ T8EmmeD))
v €V
with natural isomorphisms
Faton("HTPHE); 5 Flo(CHTPH0) 50 Fidp(MHT P H0); 5 FRi (eHT P H0);

(See Proposition 13.11 (1)) between the associated global non-realified/realified
Frobenioids, whose associated global degrees can be computed by means of the
log-volumes of (a).
Let
n,omLGP
denote the collection of data (a), (b), (c) regarded up to indeterminacies of the
following two types:
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(Indet ) the indeterminacies induced by the automorphisms of the procession of D -
prime-strip Proc(™°®".), and

(Indet —) for eachvg € Vg™ (resp. vg € Vi©), the indeterminacies induced by the action
of independent copies of Isomet (resp. copies of {1} x{£1}-orbit arising from
the independent {£1}-actions on each of the direct factors “k™~(G) = C~xC™”
of Proposition 12.2 (4)) on each of the direct summands of the j + 1 factors
appearing in the tensor product used to define IQ(SJ‘iH;"’ODZQ)

Then we have a functorial algorithm, with respect to Proc(”’ogt'}), to construct
moRLGE (from the given initial ©-data). For n,n' € Z, the permutation symmetries
of the étale picture of Corollary 12.8 (2) induce compatible poly-isomorphisms

poly , poly ,
Proc(”’(’@;) —  Proc("” ’09;), nogLGP & nloprLGP

poly

~

which are, moreover, compatible with the poly-isomorphisms ™°Df = ”/"’@g in-
duced by the bi-coricity of the poly-isomorphisms of Theorem 12.5 (3). We call
poly

~

the switching poly-isomorphism ™°RVGP 5 n'ojLEP 4y étale-transport poly-
isomorphism (See also Remark 11.1.1), and we also call (Indet ~~) the étale-

transport indeterminacies.

2. (log-Kummer Correspondence) For n,m € Z, the Kummer isomorphisms

Kum Kum
~ —® ~  =—®
\IICHS(n’mS>)t - \IICHS(mo@%)t? (n’mMmod)j — Mmod(n’op©)jv

Kum
{mi™(""D®) A M} S {mY (D) A~ ME(MPD)
(where t € LabCusp™ ("°D,.)) of labelled data of Corollary 11.21 (3), Corollary 11.23
(1), (2) (cf. Proposition 13.7 (1), Proposition 153.11 (1)) induce isomorphisms be-
tween the vertically coric étale-like data (Shells), (ThVals), and (NFs) of (1), and
the corresponding Frobenius-like data arising from each XH-Hodge theatre nmay TRE

(a) for V3 v|vg, j € |Fi|, isomorphisms

‘(Kum ”
tauto poly

~

TOETFy) 5 @@ Ee 5 1O,

“‘Kum?”

n ) tauto i ‘ poly N )
I(Q)(Sjﬂu;mm]:g) ~ I(Q)(Sj+1zj;n,mf£Xu) ~ I(Q)(SJ‘H’J;”’ODE)
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of local mono-analytic tensor packets and their Q-spans (See Proposition 13.4
(2)), all of which are compatible with the respective log-volumes by
Proposition 13.10 (2) (Here, T\ (=) is a shorthand for “TL(—) (resp. T9(=))”),

(b) for V** 5 v, isomorphisms

Kum

~

\Ij‘JﬁLGP((n,m—lﬁ)n,mHTgﬁﬂ)E ~ \Ijﬂ_GP(n,oHTD—&E)U

of splitting monoids (See Proposition 13.7 (1)),
(c) for j € F[, isomorphisms

Kum

~

n,m— n,myr® ~r® n,0 -XIH
(( 1), MMOD/maD)j - I\\/JIMOD/moD( ’ HTD )jv

Kum

~

n,m—1—)n,m ® ® n,o 'D-XH
(( > fMOD/maD)j - ‘FMOD/mUD( HT )j’

Kum

n,m—1—=)nm r®R ~ ®R n,0 D-XH
(( > fMOD/maD)j - ‘FMOD/mUD( HT )j’

of number fields and global non-realified/realified Frobenioids (See Proposi-
tion 18.11 (1)), which are compatible with the respective natural isomorphisms
between “(—)mop ” and (—)moeo " (Here, (—)MoOD/mod @5 @ shorthand for “(—)mop
(resp. (—)mod)”), here, the last isomorphisms induce isomorphisms

Kum

(n,m—1—=)n,mpl- ~ I n,o 'D-XH
Crep/igp — CLGP/[gp( HT )

(Here, (—)rap/1gp is a shorthand for “(—)rLap (resp. (—)igp)”) of the global re-
alified Frobenioid portions of the F'" -prime-strips (mm=1=)nmgl Fr (o HTP ) o,
(nym—l=)nmale = nd FF n,oq 7 P-XE [ See Proposition 153.11 (1)).

lgp ap

Kum

~

Moreover, the various isomorphisms \IIJ%LGP((”’m_1_>)"”"7-['7'&EE)2 5 Wk (OHTPEE),
Kum
and ("N 0n ma); T Maton jmes ("HTPEE); s in (b), (¢) are mu-
tually compatible with each other, as m runs over Z, with respect to the log-links
of the n-th column of the LGP-Gaussian log-theta-lattice, in the sense that the
only portions of the domains of these isomorphisms which are possibly related to
each other via the log-links consist of p in the domains of the log-links at (n,m),
and these indeterminacies at (n,m) (i.e., multiplication by p) are sent to addi-
tion by zero, i.e., no indeterminacy! at (n,m + 1) (See Proposition 13.7 (2c),

Kum

~

Proposition 13.11 (2)). This mutual compatibility of(("’m_lﬁ)"’mM?AOD/moa)j —

Kum

~

M?AOD/WD(”’OHTD'&EE)j s implies mutual compatibilities of ((Wm=1=mmES - . 5
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Kum

~

FyoD (n’OHTDMEE)j s, and <(n’m_1_>)n’m~7:1\@[OD)j - FA@IOD(n’OHTDME)j s (Note
that the mutual compatibility does not hold for (—)meo-labelled objects, since these
are defined in terms of both multiplicative and additive operaions (X and H), where
we only expect only a upper semi-compatibility (cf. Definition 9.7, Proposition 13.7
(2), and Proposition 13.11 (3)). On the other hand, the isomorphisms of (a) are

subject to the following indeterminacy:

(Indet 1) the isomorphisms of (a) are upper semi-compatible, with respect to the log-
links of the n-th column of the LGP-Gaussian log-theta-lattice, as m runs over
Z, in a sense of Proposition 13.7 (2a), (2b).

(We call (Indet —) and (Indet 1) the Kummer detachment indetermina-
cies.) Finally, the isomorphisms of (a) are compatible with the respective
log-volumes, with respect to the log-links of the n-th column of the LGP-Gaussian
log-theta-lattice, as m runs over Z (This means that we do not need to be worried
about how many times log-links are applied in the log-Kummer correspondence,

when we take values of the log-volumes).

3. (O &p-Link Compatibility) The various Kummer isomorphisms of (2) are com-
patible with the @fgp-links in the following sense:

(a) (Kummer on A) By applying the Ffi—symmetry of the WH-Hodge theatre

Kum

nmy THE yhe Kummer isomorphism Uens (M8 ) = Wens(°Dy ) induces
induced by Kum

o Kummer isomorphism ™™g <" = FUH (D) (See Theo-

rem 12.5 (3)). Then we have a commutative diagram

full poly
~/

n,mgzxu 5 n—i—l,mgzxﬂ

induced by Kum %‘l l%’ induced by Kum

full poly

FAH (oD ) T (oD ),

where the upper horizontal arrow is induced (See Theorem 12.5 (2)) by the
O &p-link between (n,m) and (n+ 1,m) by Theorem 12.5 (3).

(b) (A — env) The F"-prime-strips “™F" , § ("°D) appearing implicitly in

env’ env

the construction of the F'" -prime-strips (nm—1=nmal i (moHTPEEY op,

— - . . . - ~
(n,m 1_’)”’m3'[;p, Fr(onT? &EE)[gp’ admit natural isomorphisms ™™MF A S
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n,m g p SZXM(n,OQZ) 5 FEXH (DY) of associated F*F-prime-strips (See

env J env

Proposition 12.6 (3)). Then we have a commutative diagram

full poly

~

n,mgzxu 5 n+1,mgz><u

induced by Kum & “Awenv” %l l% induced by Kum & “Awsenv”

full poly
Sgné“(n’o®;> - S';nf/u(n+1’o®;)v

where the upper horizontal arrow is induced (See Theorem 12.5 (2)) by the
O &p-link between (n,m) and (n+ 1,m) by Corollary 12.8 (3).

(c) (env — gau) Recall that the (vertically coric étale-like) data ““°R” i.e.,

(PHTPHE, Gl (D), [0 ("D5) D o Wom ("D )y up (M2 (°D5.0)) @ Q/Z, ME(7Ds,),

full poly

~

oo\péhv(n’o@>)g_» wlpenv(n’og>)ﬁ} ) Squ(n,o©2)7 SZanM(mO@>) — SZX“(""’@Z)>

yeybad
of Corollary 12.8 (2) implicitly appears in the construction of the F' -prime-

strips (n’m_lﬁ)n’mg{GP) Sw(n,o,HTD-&EEI)LGP’ (n,m—l—))n,mgl{l;é} S\k(n,oHTDMEEI)[gp'
This (vertically coric étale-like) data arising from ™°HT Y- B s related to
corresponding (Frobenius-like) data arising from the projective system of the
mono-theta environments associated to the tempered Frobenioids of the XH-
Hodge theatre nomy THE gy v E ybad via the Kummer isomorphisms and
poly-isomorphisms of projective systems of mono-theta environments of Propo-
sition 12.6 (2), (3) and Theorem 12.5 (8). With respect to these Kummer
isomorphisms and poly-isomorphisms of projective systems of mono-theta en-

vironments, the poly-isomorphism

poly

~

n,o% = n—i—l,o%

full poly

~

mduced by the permutation symmetry of the étale picture noqyPRE X
ntloq T PRE o compatible with the full poly-isomorphism

- full poly -
n,m X ~ n+1m X
Sa — Sa

of F Xt -prime-strips induced by O &p-link between (n,m) and (n+1,m) and
so on. Finally, the above two displayed poly-isomorphisms and the various
related Kummer isomorphisms are compatible with the wvarious evaluation
map implicit in the portion of the log-Kummer correspondence of (2b), up to
indeterminacies (Indet »~\), (Indet —), (Indet 1) of (1), (2).
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(d) (k-coric — NF) With respect to the Kummer isomorphisms of (2) and the
gluing of Corollary 11.21, the poly-isomorphism

rat /n,o n,o 1. to loc. n,o n,o
{1 (D) A M2, (7 DO) ) B ML (" Dy,) € Moo (VD)

poly

5 D) M, (DO} M (D) € M (D)

(See Corollary 11.22 (3)) induced by the permutation symmetry of the étale
full poly

picture "°HTPHE 5 ntlogrDRE o compatible with the full poly-

1isomorphism
full poly
n,m X1 ~ n+lmatXp
Sa — Sa

of F™*H_prime-strips induced by O] &p-link between (n,m) and (n+1,m). Fi-
nally, the above two displayed poly-isomorphisms and the various related Kum-
mer isomorphisms are compatible with the various evaluation map implicit in
the portion of the log-Kummer correspondence of (2b), up to indeterminacies

(Indet «), (Indet —), (Indet 1) of (1), (2).

Proof. Theorem follows from the definitions. O

A rough picture of the final multiradial representation is as follows:

( n>n<od)1 T (anod)l%

(% (%

73}

1%

1
\IJLGP7

where the multiplicative group (F.*_,); of non-zero elements of a j-labelled number field
acts on Z;@ , and PUi,p acts on I;Q in the (j + 1)-capsule by multiplication by ng. Note

that \IfﬁGP does not act on other components IBQ, . ,I;.@il of the (j + 1)—cap81_11e. Note
also that the 0-labelled objects (together with the diagonal labelled objects) are used to
form horizontally coric objects (Recall that “A = {0, (F/)}”), and (F.

mod)j’S or \Ijﬂ,—GP
do not act on 0-labelled (Q-span of) log-shell ISQ.

veVY
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The following table is a summary of Theorem 13.12 and related topics:

(temp. conj. vs. prof. conj. — Ffi—conj. synchro.— diag.—hor. core— O] p-link])

(1) (Objects)

(2) (log-Kummer)

(3) (Comat’ty with ©[§p-link)

Ffi—sym. Z (e~ units) inv. after admitting inv. after admitting
7l (Indet 1) (indet —) (~ Z*-indet.)
Ffi—sym. ‘PfGP val. gp. no interf. by const. mult. rig. protected from Z*-indet.
H (+—compat. of log-link (ell. cusp’n<pro-p anab. by mono-theta cycl. rig.
w/ F;*-sym.) +hidden. endom.) («<—quad. str. of Heis. gp.)
F;*-sym. M,,0q NF no interf. protected from Z*-indet.
X Belyi cusp’n(«+—pro-p anab. by Fiioa M Lycoo Ov =1 by Qs NZX = {1}

+hidden endom.)

others: (compat. of log.-vol. w/ log-links), (Arch. theory:Aut-hol. space (ell. cusp’n is used))

(disc. rig. of mono-theta), (étale pic.: permutable after admitting (indet \») (autom. of proc. incl.))

Corollary 13.13.
lary 3.12]) Let

—[log(©)| € RU {+o0}

(Log-volume Estimates for ©-Pilot Objects, [IUTchIII, Corol-

denote the procession-normalised mono-analytic log-volume (where the average is taken
over j € F}) of the holomorphic hull (See the definiton after Lemma 1.6) of the
union of the possible image of a O®-pilog object, with respect to the relevant

Kummer isomorphisms in the multiradial representation of Theorem 13.13 (1), which
we regard as subject to the indeterminacies (Indet 1), (Indet — ), and (Indet ) of

Theorem 13.13 (1), (2). Let

—[log(g)] € R
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denote the procession-normalised mono-analytic log-volume of the image of a g-pilot
object, with respect to the relevant Kummer isomorphisms in the multiradial represen-
tation of Theorem 13.13 (1), which we do not regard as subject to the indeterminacies
(Indet 1), (Indet — ), and (Indet ) of Theorem 13.13 (1), (2) (Note that we have
|log(q)| > 0). Then we obtain

—[log(g)| < —[log(©)]

(i.e., ‘0 < —(large number) + (mild indeterminacies)”. See also § A.4). Note also that
the explicit computations of the indeterminacies in Proposition 1.12, in fact, shows that
—|log(®)| < co.

orL
Proof. The ©]p-link 0,09, 758 LGP 1,09y 7HE 1 quces the full poly-isomorphism
full poly

0,0 xFPxp ~ 1,0Fp X
SLGp - N of

g-pilot objects. By the Kummer isomorphisms, the %°-labelled Frobenius-like objects

FF»xu_prime-strips, which sends ©-pilot objects to a

corresponding to the objects in the multiradial representaion of Theorem 13.12 (1) are
isomorphically related to the %°-labelled vertically coric étale-like objects (i.e., mono-
analytic containers with actions by theta values, and nubmer fields) in the multira-
dial representaion of Theorem 13.12 (1). After admitting the indeterminacies (indet
), (indet —), and (indet 1), these (0, o0)-labelled vertically coric étale-like objects
are isomorphic (See Remark 11.1.1) to the (1, 0)-labelled vertically coric étale-like ob-
jects. Then Corollary follows by comparing the log-volumes (Note that log-volumes are
invariant under (Indet »), (Indet —), and also compatible with log-Kummer corre-
spondence of Theorem 13.12 (2)) of (1,0)-labelled g-pilot objects (by the compatibility
with ©[&p-link of Theorem 13.12 (3)) and (1, o)-labelled ©-pilot objects, since, in the
mono-analytic containers (i.e., Q-spans of log-shells), the holomorphic hull of the union
of possible images of ©-pilot objects subject to indeterminacies (Indet «), (Indet —),
(Indet 1) contains a region which is isomorphic (not equal) to the region determined by
the g-pilot objects (This means that “very small region with indeterminacies” contains
“almost unit region”). O

Then Theorem 0.1 (hence, Corollary 0.2 as well) is proved, by combining Proposi-
tion 1.2, Proposition 1.15, and Corollary 13.13.

Remark 13.13.1. By admitting (Indet v»), (Indet —), and (Indet 1), we obtain
objects which are ivariant under the @féP—link. On the other hand, the Eép—link can
be considered as “absolute Frobenius” over Z, since it relates (non-ring theoretically)
a to {gi 2}1§j§l§e. Therefore, we can consider

(Indet «) the permutative indeterminay in the étale transport:
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N

o —>o<—e “IG,=*G,” (and autom’s of processions)
(Indet —) the horizontal indeterminacy in the Kummer detachment:
o e TOXH = 10> with integral structures,
and

(Indet 1) the vertical indeterminacy in the Kummer detachment:

o log(O*)—— 2ip log(O™)
[og] logT /
° 0k

as “descent data from 7Z to F,”.

Remark 13.13.2.  The following diagram (cf. [IUTchIII, Fig. 3.8]) expresses the
tautological two ways of computations of log-volumes of g-pilot objects in the
proof of Corollary 13.13:

. étale transport X
H-line bdls.; . ;.;% assoc. to >~ HB-line bdls.; o ; ;% assoc. to
{0:°¢3%},cv up to Indet.’s {1:°¢i%},ev up to Indet.’s
=u =

suited to Fmoo

Kummer detach.

. compare log-vol.’s
via log-Kummer corr. p g

compatibility with ©)5 H

o lip-tink
X-line bdl_.zassoc. to = X-line bdl. assoc. to ~ [ H-line bdl. assoc. to
{O’ng) Yoev suited to Fayob {l’ogv Yvev - {1’°gv Yoev '

These tautological two ways of computations of log-volumes of g-pilot objects can be
considered as computations of self-intersection numbers “A.A” of the diagonal “A C
Z ®p, Z" from point view of Remark 13.13.1. This observation is compatible with
the analogy with p-adic Teichmuller theory (See last table in Section 3.5), where the
computation of the global degree of line bundles arising from the derivative of the
canonical Frobenius lifting («» ©-link) gives us an inequality (1 —p)(2¢g —2) < 0 (Recall
that self-intersection numbers give us Euler numbers). This inequality (1—p)(2¢g—2) <0
essentially means the hyperbolicity of hyperbolic curves. Analogously, the inequality
[log(©)] < [log(g)| =0

means the hyperbolicity of number fields.
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See also the following table (cf. [[UTchIII, Fig. 3.2]):

X-line bundles, MOD/LGP-labelled objects BB-line bundles, mod/Igp-labelled objects
defined only in terms of X defined in terms of both X and H
value group/non-coric portion unit group/coric portion
“(=)Fer of O7 Lp-link “(=)xmr of @fép/(%[xgg-link
precise log-Kummer corr. only upper semi-compatible log-Kummer corr.
ill-suited to log-vol. computation suited to log-vol. computation
subject to mild indeterminacies

Remark 13.13.3.  In this remark, we consider the following natural questions:

How about the following variants of ©-links?

1.
{gi }1Sj§l>:é — gi\ ()\ € R>O),
2.
2
{(gj )N}lgjgp:e — gv (N> 1), and
3.

a4 — gi (A € Ryp).

From conclusions, (1) works, and either of (2) or (3) does not work.

1. ([IUTchIII, Remark 3.12.1 (ii)]) We explain the variant (1). Recall that we have
| ~ ht >> |deg(gq )| = 0. Then the resulting inequalty from “the generalised O] p-

=v
link” is

A-0 < —(ht) + (indet.)

~Y

for A << [, which gives us the almost same inequality of Corollary 13.13, and weaker
inequality for A > [ than the inequality of Corollary 13.13 (since deg(q ) < 0).
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2. ([EtTh, Introduction, Remark 2.19.2, Remark 5.12.5], [IUTchII, Remark 1.12.4,
Remark 3.6.4], [IUTchIII, Remark 2.1.1]) We explain the variant (2). There are
several reasons that the variant (2) does not work (See also the principle of Galois
evaluation of Remark 11.10.1):

(a)

If we replace © by O (N > 1), then the crucial cyclotomic rigidity of mono-
theta environments (Theorem 7.23 (1)) does not hold, since the construction
of the cyclotomic rigidity of mono-theta environments uses the quadraticity of
the commutator |, ] structure of the theta group (i.e., Heisenberg group) (See
also Remark 7.23.2). If we do not have the cyclotomic rigidity of mono-theta
environments, then we have no Kummer compatibility of theta monoids (cf.
Theorem 12.7).

If we replace © by ©F (N > 1), then the crucial constant multiple rigidity
of mono-theta environments (Theorem 7.23 (3)) does not hold either, since, if
we consider N-th power version of mono-theta environments by relating the
1-st power version of mono-theta environments (for the purpose of maintain-
ing the cyclotomic rigidity of mono-theta environments) via N-th power map,
then such N-th power map gives rise to mutually non-isomorphic line bundles,
hence, a constant multiple indeterminacy under inner automorphisms arising
from automorphisms of corresponding tempered Frobenioid (cf. [ITUTchIII, Re-
mark 2.1.1 (ii)], [EtTh, Corollary 5.12 (iii)]).

If we replace © by ©F (N > 1), then, the order of zero of © at cusps is equal
to N > 1, hence, in the log-Kummer correspondence, one loop among the
various Kummer isomorphisms between Frobenius-like cyclotomes in a column
of log-theta-lattice and the vertically coric étale-like cyclotome gives us the N-
power map before the loop, therefore, the log-Kummer correspondence totally
collapes. See also Remark 12.8.1 (“vicious circles”).

If it worked, then we would have

0 < —N(ht) + (indet.),

which gives us an inequality

1
ht < N(l + ¢)(log-diff + log-cond)

~J

for N > 1. This contradicts Masser’s lower bound in analytic number theory
([Mass2]).

3. ([IUTchIII, Remark 2.2.2]) We explain the variant (3). In the theta function case,
we have Kummer compatible splittings arisen from zero-labelled evaluation points



A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 357

(See Theorem 12.7):

R
id A (OX o) NI O-labeligd, ev- pt. H/A) _) Aut(G), Isomet ~ (G ~ O*F)
I~ > 1eOxr,

Here, the crucial Kummer compatibility comes from the fact that the evaluation
map relates the Kummer theory of O*-portion of O -6 on the left to the coric O*#
on the right, via the evaluation .0 — 1 € O*#. On the other hand, in the case of
the variants (3) under consideration, the corresponding arrow maps Q’\ —1e OXH,
hence, this is incompatible with passage to Kummer classes, since the Kummer class

of g)‘ in a suitable cohomology group of II/A is never sent to the trivial element of
- full poly

~

the relavant cohomology group of G, via the full poly-isomorphism IT/A — G.

Appendix A. Motivation of the Definition of the ®-Link.

In this section, we explain a motivation of ©-link from a historical point of view,
i.e., in the order of classical de Rham’s comparison theorem, p-adic Hodge comparison
theorem, Hodge-Arakelov comparison theorem, and a motivation of ©-link. This section
is an explanatory section, and we do not give proofs, or sometimes rigorous statements.
See also [Pano, §1].

8§ A.1. The Classical de Rham Comparison Theorem.

The classical de Rham’s comparison theorem in the special case for G,,(C) = C*

says that the pairing
H1(Gm(C),2) ®z Hir(Gm(C)/C) —

which sends [y]®|w] to f w, induces a comparison isomorphism H}y (G,,(C)/C) = C®z
(H1(G,,(C),Z))* (Here, (-)* denotes the Z-dual). Note that H1(G,,(C),Z) = Z ||,
H}1 (G, (C)/C) = C[4E], and f 4T = 27, where 7o denotes a counterclockwise loop
around the origin, and T" denotes a standard coordinate of G,,

8§ A.2. p-adic Hodge-theoretic Comparison Theorem.

A p-adic analogue of the above comparison paring (in the special case for G,,, over
Q) in the p-adic Hodge theory is the pairing

Tme ®Zp H(}R(Gm/(@p) — BcrySa
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which sends e ® [4] to (“ fg% = ")logle] = t(= t¢), where T}, denotes the p-adic
Tate module, € = (€,), is a system of p-power roots of unity (i.e., ¢ = 1, €1 # 1, and
€l 1 = €n), Berys is Fontaine’s p-adic period ring (See also [Fo3]), and ¢ = log [¢] is an
element in B,ys defined by € (See also [Fo3]). The above pairing induces a comparison
isomorphism Be.ys ®q, Hig (G, /Qp) = Berys ®z, (1,Gp,)* (Here, (-)* denotes the
Z,-dual). Note that € = (€,,), is consdered as a kind of analytic path around the origin.

We consider the pairing in the special case for an elliptic curve E over Z,. We
have the universal extension 0 — (LieE((\)fp)* — E(&p — Eg, — 0 (See [Mess] for
the universal extension) of Eg, := E ®z, Q, (Here, (-)* denotes the Qp,-dual, and
E(\pr (2 Eg,) is the dual abelian variety of Eg,). By taking the tangent space at
the origin, we obtain an extension 0 — (LieEy )* — LieEép — LieEg, — 0 whose
Qp-dual is canonically identified with the Hodge filtration of the de Rham cohomol-
ogy 0 — (LieEg,)* — Hir(Eqg,/Qp) — LieEy — 0 under a canonical isomorphism
Hin(Eg,/Qy,) = (LieE&p)* (See also [MM] for the relation between the universal ex-
tension and the first crystalline cohomology; [BO1] and [BO2] for the isomorphism
between the crystalline cohomology and the de Rham cohom(ﬂo\gy). For an element

wgt of (LieE(T@p)*, we have a natural homomorphism log,, . E(&p — G, /Q, such that

the pull-back (logwE )*dT" is equal to wgr, where E&p is the formal completion of E&p

at the origin, and @a /0, is the formal additive group over Q,.
Now, the pairing in the p-adic Hodge theory is

T,E ® (LieE}, )* — Berys,

which sends P ® wgi to (“ waET = 7)log,, . [P], where P = (F,), satisfies that
P, € E(Qp), Po = 0, and pP,y; = P,. The above pairing induces a comparison
isomorphism Berys ®g, Hig(Gm/Qp) = Berys ®z, (T,Gm)* (Here, (-)* denotes the Z,-
dual). Note again that P = (P,), is consdered as a kind of analytic path in E. See
also [BO1] and [BO2] for the isomorphism between the de Rham cohomology and the
crystalline cohomology; [MM] for the relation between the first crystalline cohomology
and the universal extension; [Mess| for the relation between the universal extension
and the Dieudonné module; [Fo2, Proposition 6.4] and [Fol, Chapitre V, Proposition
1.5] for the relation between the Dieudonné module and the Tate module (the above

isomorphism is a combination of these relations).
§ A.3. Hodge-Arakelov-theoretic Comparison Theorem.

Mochizuki studied a global and “discretised” analogue of the above p-adic Hodge
comparison map (See [HASurl], [HASurll]). Let E be an elliptic curve over a number
field F, | > 2 a prime number. Assume that we have a nontrivial 2-torsion point
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P € E(F)[2] (we can treat the case where P € E(F) is order d > 0 and d is prime to
l; however, we treat the case where d = 2 for the simplicity). Put £ = O(l[P]). Then

roughly speaking, the main theorem of Hodge-Arakelov theory says that the evaluation
map on ET[l|(= EJl])

F(ET, L|gt)des<t =, Llgip(= Llgy = @ep k)

is an isomorphism of F-vector spaces, and preserves specified integral structures (we
omit the details) at non-Archimedean and Archimedean places. Here, I'(ET, £| g )de8<!
denotes the part of I'(ET, £|+) whose relative degree is less than I (Note that Zariski
locally ET is isomorphic to E x Al = Spec Og[T]). Note that dimp I'(ET, £|gt)dee<! =
I?, since dimp I'(E, £) = I, and that dimp L|gy = [* since #E[l] = [?. The left hand
side is the de Rham side, and the right hand side is the étale side. The discretasation
means that we consider [-torsion points E[l], not the Tate module, and in philosophy,
we consider E[l] as a kind of approximation of “underling analytic manifold” of E (like
€ = (én)n and P = (P,), were considered as a kind of analytic paths in G,, and E
respectively). We also note that in the étale side we consider the space of functions
on E[l], not E[l] itself, which is a common method of quantisations (like considering
universal enveloping algebra of Lie algebra, not Lie algebra itself, or like considering
group algebra, not group itself).

(For the purpose of the reader’s easy getting the feeling of the above map, we also
note that the G,,-case (i.e., degenerated case) of the above map is the evaluation map

F[T]deg<l — EBCGMF

sending f(T') to (f(¢))ceu,, which is an isomorphism since the Vandermonde determi-
nant is non-vanishing.)

For j > 0, the graded quotient Fil™/ /Fil™™! (in which the derivations of theta
function live) with respect to the Hodge filtration given by the relative degree on the
de Rham side (=theta function side) is isomorphic to wg(_j ), where wg is the pull-back
of the cotangent bundle of E to the origin of E. On the other hand, in the étale side
(=theta value side), we have a Gaussian pole ¢’ /8L r in the specified integral structure
near the infinity (i.e., ¢ = 0) of Mg). This Gaussian pole comes from the values of theta
functions at torsion points. We consider the degrees of the corresponding vector bundles
on the moduli of elliptic curves to the both sides of the Hodge-Arakelov comparison map.

The left hand side is

since (w5’ = [Qp,,) = [logg], where Quq,, is the cotangent bundle of My and 6 is
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the degree of the A-line over the j-line. The right hand side is

13 12
- -2 ~ ——
SZJZ::OJ [log ] ~ =57 [log q].

Note that these can be considered as a discrete analogue of the calculation of Gaussian
integral
o0 2
/ e Vdr =7
— 0o

from the point of view that —g; Zé;t 72

log q] is a Gaussian distribution (i.e., j — 52)
in the cartesian coordinate, and — Z;;B jlwe] = —%[w g] is a calculation in the polar
coordinate and [wg] is an analogue of /7, since we have w$? = QO and the integration

of Q4. around the infinity (i.e., ¢ = 0) is 27i. See also Remark 1.15.1

ell

8§ A.4. Motivation of the Definition of the ®-Link.

In the situation as in the Hodge-Arakelov setting, we assume that E has everywhere
stable reduction. In general, E[l] does not have a global multiplicative subspace, i.e., a
submodule M C E[l] of rank 1 such that it coincides with the multiplicative subspace
for each non-Archimedean bad places. However, let us assume such a global multiplica-
tive subspace M C FE[l] exists in sufficiently general E in the moduli of elliptic curves.
Take an isomorphism M x N = E[l] as finite flat group schemes over F' (not as Galois
modules). Then by applying the Hodge-Arakelov comparison theorem to E’ := E/N
over K := F(E]l]), we obtain an isomorphism

42
L((ENT, L|(gryr)tee<t = ¢ (¢7 Ok) ®o K,

(— =) <isix (=15

where ¢ = (qy)v:bad is the g-parameters of the non-Archimedean bad places. Then by
the incompatibility of the Hodge filtration on the left hand side with the direct sum
decomposition in the right hand side, the projection to the j-th factor is nontrivial for
most j:

Fil = ¢Ox < ¢’ Ok,

1

where we put ¢ := ¢2. This morphism of arithmetic line bundles is considered as

an arithmetic a:nalogue of Kodaira-Spencer morphism. In the context of (Diophantine
applications of) inter-universal Teichmiiller theory, we take [ to be a prime number in
the order of the height of the elliptic curve, thus, [ is very large (See Section 10). Hence,
the degree of the right hand side in the above inclusion of the arithmetic line bundles
is negative number of a very large absolute value, and the degree of the left hand side

is almost zero comparatively to the order of [. Therefore, the above inclusion implies

0 < —(large number) (=~ —ht),
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which gives us a upper bound of the height ht < 0 in sufficiently general £ in the moduli
of elliptic curves.

However, there never exists such a global multiplicative in sufficiently general E in
the moduli of elliptic curves (If it existed, then the above argument showed that the
height is bounded from the above, which implies the number of isomorphism class of £
is finite (See also Proposition C.1)). If we respect the scheme theory, then we cannot
obtain the inclusion ¢Ox — QjQOK. Mochizuki’s ingenious idea is: Instead, we respect

the inclusion Ok — ng Ok, and we say a good-bye to the scheme theory. The ©-link
in inter-universal Teichmiiller theory is a kind of identification

(©-link) : {gﬁhgg‘gz*(:l%) = g

in the outside of the scheme theory (In inter-universal Teichmdiiller theory, we also con-
struct a kind of “global multiplicative subspace” in the outside of the scheme theory).
So, it identifies an arithmetic line bundle of negative degree of a very large absolute
value with an arithmetic line bundle of almost degree zero (in the outside of the scheme
theory). This does not mean a contradiction, because both sides of the arithmetic
line bundles belong to the different scheme theories, and we cannot compare their de-
grees. The main theorem of the multiradial algorithm in inter-universal Teichmiiller
theory implies that we can compare their degrees after admitting mild indeterminacies
by using mono-anabelian reconstruction algorithms (and other techniques). We can cal-
culate that the indeterminacies are (roughly) log-diff +1log-cond by concrete calculations.
Hence, we obtain
0 < —ht + log-diff + log-cond,

i.e., ht < log-diff +1log-cond. We have the following remark: We need not only to recon-
struct (up to some indeterminacies) mathematical objects in the scheme theory of one
side of a ©-link from the ones in the scheme theory of the other side, but also to reduce
the indeterminacies to mild ones. In order to do so, we need to control them, to reduce
them by some rigidities, to kill them by some operations like taking p-adic logarithms
for the roots of unity (See Proposition 13.7 (2c), Proposition 13.11 (2)), to estimate
them by considering that some images are contained in some containers even though
they are not precisely determinable (See Proposition 13.7 (2), Corollary 13.13), and to
synchronise some indeterminacies to others (See Lemma 11.9, and Corollary 11.16 (1))
and so on. This is a new kind of geometry — a geometry of controlling indeterminacies
which arise from changing scheme theories i.e., changing unverses. This is Mochizuki’s
inter-universal geometry.
Finally, we give some explanations on “multiradial algorithm” a little bit. In
the classical terminology, we can consider different holomorphic structures on R?, i.e.,
C = R? = C, where one C is an analytic (not holomorphic) dilation of another C,
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and the underlying analytic structure R? is shared. We can calculate the amount of
the non-holomorphic dilation C = R? = C based on the shared underlying analytic
structure R? (If we consider only holomorphic structres and we do not consider the
underlying analytic structure R?, then we cannot compare the holomorphic structures
nor calculate the non-holomorphic dilation). This is a prototype of the multiradial
algorithm. In philosophy, scheme theories are “arithmetically holomorphic structures”
of a number field, and by going out the scheme theory, we can consider “underlying
analytic structure” of the number field. The ©-link is a kind of Teichmiiller dilation
of “arithmetically holomorphic structures” of the number field sharing the “underlying
analytic structure”. The shared “underlying analytic structure” is called core, and each
“arithmetically holomorphic structure” is called radial data. The multiradial algorithm
means that we can compare “arithmetically holomorphic structures” (of the both sides
of ©-link) based on the shared “underlying analytic structure” of the number field after
admitting mild indeterminacies (In some sense, this is a partial (meaningful) realisation
of the philosophy of “the field of one element” Fy). Mochizuki’s ideas of “underlying
analytic structure” and the multiradial algorithm are really amazing discoveries.

Appendix B. Anabelian Geometry.

For a (pro-)veriety X over a field K, let IIx (resp. Ax) be the arithmetic funda-
mental group of X (resp. the geometric fundamental group of X) for some basepoint.
Let Ag’;) be the maximal pro-p quotient of Ax, and put Hg?) = IIx /ker(Ax — Agf)).
For (pro-)varieties X, Y over a field K, let Hom$ ™ (X,Y) (resp. Isomg(X,Y)) de-
note the set of dominant K-morphisms (resp. K-isomorphisms) from X to Y. For
an algebraic closure K over K, put Gg := Gal(K/K). Let HomZ ™" (ILx,IIy) (resp.
Hom‘ép;n(ﬂg?), Hgf)), resp. Isomg™(Ax, Ay), resp. Isomgit(Ag?), Agf’))) denote the set

)to

of open continuous G i-equivariant homomorphisms from Ilx to ITy (resp. from Hg]()
Hgf ), resp. from Ax to Ay up to composition with an inner automorphism arising from
Ay, resp. from Ag?) to Agf) up to composition with an inner automorphism arising

from Agf)).

Theorem B.1. (Relative Version of the Grothendieck Conjecture over Sub-p-
adic Fields [pGC, Theorem A]) Let K be a sub-p-adic field (Definition 3.1 (1)). Let
X be a smooth pro-variety over K. Let'Y be a hyperbolic pro-curve over K. Then the
natural maps

Hom$™ (X,Y) — Hom@P*" (I, Iy') /Inn(Ay) — HomgP*™ (1%, 11{)) /Inn(A ()
are bijective. In particular, the natural maps

Isomg (X,Y) — Isomgit(AX, Ay) — Isomgit(Ag?), Ag?))
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are also bijective.

Remark B.1.1. The Isom-part of Theorem B.1 holds for a larger class of field
which is called generalised sub-p-adic field ([TopAnb, Theorem 4.12]). Here, a field K
is called generalised sub-p-adic if there is a finitely generated extension L of the

fractional field of W(F,) such that we have an injective homomorphism K < L of

fields. ([TopAnb, Definition 4.11]), where W (F,) denotes the ring of Witt vectors with
coefficients in F,.

Appendix C. Miscellany.
§ C.1. On the Height Function.

Proposition C.1. ([GenEll, Proposition 1.4 (iv)]) Let £ = (L,|| - ||z) be an
arithmetic line bundle such that Lg is ample. Then we have #{x € X (Q)=? | htz(z) <
C} < oo for any d € Z>1 and C € R.

Proof. By using ES" for n >> 0, we have an embedding Xg — ]P’g for some N.
By taking a suitable blowing-up f : X — X, this embedding extends to g : X < P¥
over Spec Z, where X is normal, Z-proper, Z-flat, and fq : )?Q = Xg. Then the propo-
sition for (X,£) is reduced to the one for (X, f*£). As is shown in Section 1.1, the
bounded discrepancy class of ht L depends only on (f*L)g. Thus, the proposition
for (X, f*£) is equivalent to the one for (X, g*m), where m is the line bun-
dle Opy (1) equipped with the standard Fubini-Study metric || - [[rs. Then it suffices
to show the proposition for (Pg,m). For 1 < e < d, we put Q = (P} Xgpecz
-+ (e-times) - - - Xgpecz PY)/(e-th symmetric group), which is normal Z-proper, Z-flat.
The arithmetic line bundle ®;<;<.pr; Opg(l) on PV XSpecz * -+ (e-times) - -+ Xgpecz PN
descends to Lg = (L, || ||lz,) on Q with (Lg)q ample, where pr; is the i-th projection.
For any x € PY(F) where [F : Q] = e, the conjugates of x over Q determine a point
rg € Q(Q), and, in turn, a point y € Q(Q) determines a point x € PV (F) up to a finite
number of possibilities. Hence, it suffices to show that #{y € Q(Q) | htZQ (y) <C} <o
for any C' € R. We embed Q < P) for some M by (ﬁQ)Sm for m >> 0. Then by the
same argument as above, it suffices to show that #{z € PM(Q) | htg—(z) < C} < 00

]pM(l)

for any C' € R. For x € PM(Z)(= PM(Q)), we have htm(x) = deggpz*Opum (1) by

definition. We have degg : APic(SpecZ) = R since any projective Z-module is free (Q
has class number 1), where an arithmetic line bundle £z ¢ on SpecZ in the isomorphism
class corresponding to C' € R via this isomorphism is (Ogpecz, e~ | - |) (Here | - | is the
usual absolute value). The set of global sections I'(Lz.¢) is {a € Z | |a| < e“} which

is a finite set (see Section 1.1 for the definition of I'(L£)). We also have Lz ¢, — Lz ¢,
for C; < Cy. Take the standard generating sections zo, ...,z € T(P2, Opa (1)) (“the
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coordinate (zg : ... : xp) € PM7) with ||ai|lps < 1 for 0 < i < M ie., zq,...,20m €
F(m). Then for z € PM(Z)(= PM(Q)) with htg (1)( x) < C, we have a map
x*Opnm (1) — Ly ¢, which sends zg,...,xp € F(OP%( )) to z*(xg),...,x*(xp) €
I'(Lz,c). This map {z € PM(Z) | htg (1)( z) < O} = I'(L7.0)2M+D) | which sends
to (z*(z0),...,2*(zar)), is injective since zo, ..., zy € T(PY, Op (1)) are generating
sections. In short, we have {z € PM(Q) | hto M(l)(ac) <C}cC{(xg:... :xpy) €
PM(Q) | z; € Z, |x;] < e“ (0 < i < M)}. Now, the proposition follows from the
finiteness of T'(Lz,c)®M+1), O

§ C.2. Non-critical Belyi Maps.

The following theorem, which is a refinement of a classical theorem of Belyi, is used
in Proposition 1.2.

Theorem C.2. ([Belyi, Theorem 2.5], non-critical Belyi map) Let X be a proper
smooth connected curve over Q, and S, T C X (Q) finite sets such that SNT = (). Then
there exists a morphism ¢ : X — ]P’L such that (a) ¢ is unramified over ]P’}@\ {0,1, 00},

(b) ¢(S) € {0,1,00}, and (c) $(T )CIP’l( Q) \ {0, 1, 00}

Proof. (Step 1): By adjoining points of X (Q) to T, we may assume that #7 >
2gx + 1, where gx is the genus of X. We consider T as a reduced effective divisor
on X by abuse of notation. Take sy € I'(X, Ox(T')) such that (sg)g = 7', where (sp)o
denotes the zero divisor of s9. We have H!(X,Ox (T — x)) = H*(X,wx(z —T))* =0
for any z € X(Q) since deg(wx(z —T)) < 29x —2 — (2gx +1) +1 = —2. Thus,
the homomorphism I'(X, Ox (T')) — Ox(T) ® k(x) induced by the short exact sequnce
0 — Ox(T —z) - Ox(T) —» Ox(T) ® k(z) — 0 is surjective. Hence, there exists
an s; € I'(X,0x(T)) such that s;(t) # 0 for all t € T since Q is infinite. Then
(so : s1) has no basepoints, and gives us a finite morphism ¢ : X — ]P% such that
Y*Op1(1) = Ox(T'), and ¢(t) = 0 for all t € T since (s9)o = 1. Here, v is unramified
over 0 € ]P’}@, since *Op1(1) = Ox(T) and T is reduced. We also have 0 ¢ (95)
since (s9)o = T and SNT = (. Then by replacing X, T, and S by IP’}@, 0, and
P(S)N{zx € IP’}@ | ¢ ramifies over x} respectively, the theorem is reduced to the case
where X = IP’}@, T = {t} for some t € P1(Q) \ {0}

(Step 2): Next, we reduce the theorem to the case where X = IE%, S c PHQ),
T = {t} for some t € P1(Q) \ {oco} as follows: We will construct a non-zero rational
function f(x) € Q(z) which defines a morphism ¢ : IP% — IE% such that ¢(S) C P}(Q),
#(t) ¢ ¢(S), and ¢ is unramified over ¢(t). By replacing S by the union of all Gal(Q/Q)-
conjugates of S, we may assume that S is Gal(Q/Q)-stable (Note that ¢ ¢ (new S) since
t € PL(Q) and t ¢ (old S)). Put m(S) := maxp([F : Q] — 1), where F runs through
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the fields of definition of the points in S, and d(S) := Y ([ : Q] — 1), where F
runs thrhough the fields of definition of the points in S with [F' : Q] — 1 = m(95).
Thus, S C PH(Q) is equivalent to d(S) = 0, which holds if and only if m(S) = 0. We
use an induction on m(S), and for each fixed m(S), we use an induction on d(S). If
m(S),d(S) # 0, take o € S\ P1(Q) such that d := [Q(a) : Q] is equal to m(S) + 1.
We choose a; € Q such that 0 < [t — a1 < (mingeg\ (o0} [$ — a1])/d(1 + d.d!). Then
by applying an automorphism f(z) := (minges\ (oo} |s — a1])/(z — a1) of Pg (and
replacing ¢ and S by f1(f) and f;(.S) respectively), we may assume that |s| < 1 for all
s € S(= S\{oo}) and |t| > d(1+d.d!) (Note that the property (new t) € P(Q)\{oo} still
holds since |(old t) —a;| > 0 and fi(z) € Q(x)). Let g(z) = 2%+ c12¢ 1+ +¢4 € Q]
be the monic minimal polynomial of « over Q. Then |¢;| < d! for 1 < i < d since ¢; is a
summation of (‘j)(g d!) products of i conjugates of . Thus, |g(s)| < 1+|e1|+- - +|ecq| <
1+d.d and |¢'(s)] < d+d|ei| 4+ -+ d|eg| < d(1+d.d) for all s € S(= 5\ {o0}) since
|s] < 1 (Here ¢'(z) is the derivative of g(z)). Hence, t ¢ g(S) U g(S,) =: S’, where
So:=1{8€ Q| g (B) =0} We also have [Q(/) : Q] < d for any o/ € g(S,) since
g(z), g () € Q[z] and deg(g’(z)) < d. Therefore, S’ is Gal(Q/Q)-stable and we have
m(S’") < m(S) or (m(S") = m(S) and d(S’) < d(5)). This completes the induction,
and we get a desired morphism ¢ by composing the constructed maps as above.

(Step 3): Now, we reduced the theorem to the case where X = I[%, S c PLQ),
and T = {t} for some t € P}(Q) \ {oc} with SNT = 0. We choose ay € Q such
that 0 < |t — az| < (Mingeg\{oo} |$ — a2])/4. Then by applying an automorphism
fo(x) := 1/(z — az) of Py (and replacing ¢t and S by fa(t) and fo(S) respectively),
we may assume that |t| > 4|s| for all s € S(= S\ {o0}). (Note that the property
(new t) € PH(Q) \ {oo} still holds since |(old t) — az| > 0 and fo(z) € Q(x)). New
t is not equal to O since old ¢ is not equal to co. By applying the automorphism
x + —x of P, we may assume that ¢ > 0 (still t € P*(Q) \ {0,00}). By applying an
automorphism f3(z) := = + ag of I%, where a3 := maxg\ (s0}5s'<0 5’| (a3 := 0 when
{s" € S\ {0} | s’ <0} =0) and replacing t and S by f3(t) and f5(S) respectively, we
may assume that s > 0 for all s € S(= 5\ {o0}) and ¢t > 2s for all s € S(= S5\ {o0}),
since (t 4+ a3)/(s+ as) > t/(s+ a3) > t/2a3 > 2 where t, s are old ones (still (new ¢) €
P}(Q)\{0,0}). By adjoing {0, 0o} (if necessary for 0), we may assume that S O {0, co}
since t ¢ {0, 00}.

(Step 4): Thus, now we reduced the theorem to the case where X = IP’}@, {0,000} C
S c PL(Q), T = {t} for some t € P1(Q) \ {oo} with SNT =0, and s > 1, ¢ > 2s
for every s € S\ {0,00}. We show the theorem in this case (hence the theorem in
the general case) by the induction on #S. If #S5 < 3 then we are done. We assume
that #S > 3. Let a4 € Q be the second smallest s € S\ {0,00}. By applying
an automorphism fy(z) := x/asq of Py (and replacing ¢t and S by fi(t) and fu(S)
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respectively), we may assume moreover that 0 < r < 1 for some r € S and s > 1 for
every s € S\{0,r,1,00} Put r = m/(m-+n) where m,n € Z~y. We consider the function
h(z) := z™(x — 1)" and the morphisms 1, 9" : Py — P defined by h(z) and h(z) + as
respectively, where a5 := —mingeg\ {0} 1(s). We have h({0,1,7,00}) C {0,h(r),oo}.
Thus #¢(S) < #S and hence #v'(S) < #S. Any root of the derivative h'(z) =
m=lg - 1) ((m+n)r—m) =0isin {0,7,1,00} C S. Thus 9 is unramified outside
¥(S), and hence 1’ is unramified outside ¢’(S). Now h(z) is monotone increasing for
x > 1 since h/(z) > 0 for z > 1. Thus we have h(t) > h(s) for s € S\ {oo} with s > 1
since t > 2s > s. We also have h(t) > h(2) > 1 since ¢ > 2 (which comes from t > 2s
for s = 1 € S). Thus, ¢(t) ¢ ¥(S) since |h(z)] < 1 for 0 < x < 1. Hence we also
have ¢/(t) ¢ ¢'(S). Now we claim that (h(t) + as)/(h(s) +as) > 2 for all s € S\ {c0}
such that h(s) + as # 0. If this claim is proved, then by replacing S, t by ¢'(.S), ¥'(t)
respectively, we are in the situation with smaller #S where we can use the induction

T

hypothesis, and we are done. We show the claim. First we observe that we have
h(t)/h(s) = (t/s)™((t—1)/(s—1))" > (t/s)™F" > (t/s)? (*) for s € S\ {00}, since t > s
implies (t —1)/(s—1) > t/s. In the case where n is even, we have a5 = 0 since h(s) > 0
for all s € S\ {00} and h(0) = 0. Thus, we have (h(t) 4+ a5)/(h(s) + as) = h(t)/h(s) >
(t/s)2 >t/s >2for 1 <s €8\ {oco} by (*). On the other hand, h(s) + a5 = h(s) =0
for s = 0,1 and (h(t) + as)/(h(r) + a5) = h(t)/h(r) > h(t) = "t —-1)" >t > 2
by 0 < h(r) < 1 and ¢t > 2. Hence the claim holds for even n. In the case where n
is odd, we have a5 = |h(r)| = (;;25,)" (;i55)" since h(x) < 0 for 0 < x < 1 and,

m+n
r=r & h(z) =0fr0 <z <1 Wealso have 0 < a5 = (;;55)" )" <
i = T S dme = 1. Then for 1 < s € S\ {oo} with h(s) > a5, we
have (h(t) + as)/(h(s) +as) > h(t)/2h(s) > (t/s)?/2 > 2 by (¥). For 1 < s € S\ {oo}

)/

with h(s) < as, we have (h(t)+as)/(h(s)+as) > h(t)/2a5 > 2h(t) = 2t (t—1)" >t > 2
by 0 < as < 1/4 and t > 2. For s =r € S, we have h(r) + a5 = —as + a5 = 0. For
s =0,1¢€ S, wehave (h(t)+as)/(h(s)+as) = (h(t)+as)/as > h(t) =t™(t—1)" >t > 2
by 0 < a5 < 1/4 and ¢t > 2. Thus, we show the claim, and hence, the theorem. Ol

§ C.3. k-Cores.

Lemma C.3. ([CanLift, Proposition 2.7]) Let k be an algebraically closed field
of characteristic 0.

1. If a semi-elliptic (cf. Section 3.1) orbicurve X has a nontrivial automorphism, then
it does not admit k-core.

2. There exist precisely 4 isomorphism classes of semi-elliptic orbicurves over k which
do not admit k-core.

Proof. (Sketch) For algebraically closed fields k& C &/, the natural functor from
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the category Et(X) of finite étale coverings over X to the category Et(X xj k') of
finite étale coverings over X xj k' is an equivalence of categories, and the natural map
Isomy (Y1, Y2) — Isomy (Y7 xi k', Y X k') is a bijection for Y7,Ys € Ob(Et(X)) by
the standard arguments of algebraic geometry, i.e., For some k-variety V such that the
function field k(V') of V is a sub-field of k', the diagrams of finite log-étale morphisms
over (X xi k', D xj k') (Here, X is a compactification and D is the complement) under
consideration is the base-change of the diagrams of finite étale morphisms over V with
respect to Speck’ — Speck(V') — V, we specialise them to a closed point v of V', we
deform them to a formal completion V, at v, and we algebrise them (See also [CanLift,
Proposition 2.3], [SGA1, Exposé X, Corollaire 1.8]), and the above bijection is also
shown in a similar way by noting H(Y, we I
Y — X in the argments of deforming the diagrams under consideration to ‘A/U. Thus,

(—D)|y) = 0 for any finite morphism

the natural functor Locy(X) — Locy (X xj k') is an equivalence categories. Hence, the
lemma is reduced to the case where k = C.
We assume that k£ = C. Note also that the following four statements are equivalent:

(i) X does not admit k-core,

(ii) m1(X) is of inifinite index in the commensurator Cpgy,,(r)o (m1(X)) in PSLy(R)%(=
Aut(H)) (Here, PSLy(R)" denotes the connected component of the identity of
PSLy(R), and H denotes the upper half plane),

(iii) X is Margulis-arithmetic (See [Corr, Definition 2.2]), and
(iv) X is Shimura-arithmetic (See [Corr, Definition 2.3]).

The equivalence of (i) and (ii) comes from that if X admits k-core, then the morphism
to k-core X — Xcore is isomorphic to H/mi(X) — H/Cpsr,myo(71(X)), and that if
m1(X) is of finite index in Cpgy,,ryo (71(X)), then H /71 (X) — H/Cpsr,w)o (71(X)) is
k-core (See also [CanLift, Remark 2.1.2, Remark 2.5.1]). The equivalence of (ii) and
(iii) is due to Margulis ([Marg, Theorem 27 in p.337, Lemma 3.1.1 (v) in p.60], [Corr,
Theorem 2.5]). The equivalence of (iii) and (iv) is [Corr, Proposition 2.4].

(1): We assume that X admits a k-core Xcore. Let Y — X be the unique double
covering such that Y is a once-punctured elliptic curve. Let Y, X ore denote the smooth
compactifications of Y, Xcore respectively. Here, we have Y\ Y = {y}, and a point of Y’
is equal to y if and only if its image is in Xcore \ Xcore.- Thus, we have Xcore \ Xeore = {7}
The coarsification (or “coarse moduli space”) of X ore is the projective line ]P’}C over k.
By taking the coarification of a unique morphism Y — X 4, we obtain a finite ramified
covering Y —» P}. Since this finite ramified covering Y — Pi comes from a finite étale
covering ¥ — Xcore, the ramification index of ¥ —» IP’,lC is the same as all points of
Y lying over a given point of PL. Thus, by the Riemann-Hurwitz formula, we obtain
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—2d+y, 2 ~(e; — 1), where e;’s are the ramification indices over the ramiﬁcation points
of P}, and d is the degree of the morphism Y — P}. Hence, by >, 2 o-(e; —1) =2, the
possibility of e;’s are (2,2, 2,2), (2,3,6), (2,4,4), and (3, 3,3). Since y is the unique point
over z, the largest e; is equal to d. In the case of (2,2,2,2), we have X = X ope, and X
has no nontrivial automorphism. In other three cases, Y is a finte étale covering of the
orbicurve determind by a triangle group (See [Takel]) of type (2,3, 00), (2,4,00), and
(3,3,00). By [Takel, Theorem 3 (ii)], this implies that Y is Shimura-arithmetic, hence
X is Shimura-arithmetic as well. This is a contradiction (See also [CanLift, Remark
2.1.2, Remark 2.5.1]) by the above equivalence of (i) and (iv).

(2): If X does not admit k-core, then X is Shimura-arithmetic by the above equiv-
alence of (i) and (iv). Then by [Take2, Theorem 4.1 (i)], this implies that, in the
notation of [Take2], the arithmetic Fuchsian group m1(X) has signature (1;00) such
that (tr(a),tr(B),tr(aB)) is equal to (v/5,2v/5,5), (vV6,2v3,3v?2), (2v/2,2v/2,4), and

(3,3,3). This gives us precisely 4 isomorphism classes. O

§C.4. On the Prime Number Theorem.

For z > 0, put w(z) := #{p | p : prime < z} and J(z) = Zprime;pgx log p
(Chebychev’s ¥-function). The prime number theorem says that

mw(z) ~

xT

log 2 (x — 00),

where, ~ means that the ratio of the both side goes to 1. In this subsection, we show
the following proposition, which is used in Proposition 1.15.

Lemma C.4.  7(x)~ = (¢ = 00) if and only if )(x) ~ x (x — o0).

This is well-known for analytic number theorists. However, we include a proof here

for the convenience for arithmetic geometers.

Proof. 'We show the “only if” part: Note that J(z) = [{" logt-d(n(t)) = m(z)log z—
m(1)logl — [} ﬁclt = n(z)logz — [, #dt (since 7r( ) =0 for t < 2). Then it suf-
fices to show that lim,_, ., & = fx W(t)dt = 0. By assumption ) _ O( L ), we have

t logt
1oz w(t) g, 1 (% d T dt _ (VT d VT VT
_f2 Tdt =0 <_ 2 logt> By 2 @ — J2 logt—i_ff logt — log2+log\f’we obtain
limg o0 L[5 ”gt) dt = 0. We show the “if” part: Note that m(x f3/2 g7 d(0(t) =
d(z)  9(3/2) ot 7(t) :
Des — loé(3/2) + f3/2 ozt = loga: + [5 Tog 7 0t (since 9(t ) =0 for t < 2). Then it
suffices to show that lim,_, o logm Iy t(figzy dt = 0. By assumption 9¥(t) = O(t), we have

logxz rx O ogx T
52 [ o dt = O (5 [y (logt>2)- By Jy toardt = 3 otk + [ ok <

z z log x I(t
(1O\g/;)2 + (log\\gg, we obtain lim,_, o g f2 t(lo(ggp dt = 0. 0




A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 369

§ C.5. On the Residual Finiteness of Free Groups.

Proposition C.5. (Residual Finiteness of Free Groups) Let F' be a free group.

Then the natural homomorphism F — F to its profinite completion F s imjective.

Proof. Let a € F'\ {1}. It suffices to show that there exists a normal subgroup
H C F of finite index such that a ¢ H. Let Gen (C F) be a set of free generators of F'.
Write Gen™ ! := {a~! | a € Gen} C F. Thus, any element of F' may be written as a finite
product of elements of Gen U Gen!. Let a = ayan_1-- a1, where a; € Gen U Gen_l,
be such a representation of a (i.e., as a finite product of elements of Gen U Gen_l) of
minimal length. Let ¢ : Gen — G4 be a map such that, for x € Gen, ¢(z) € Snyq
sends i — i+ 1 if x = a4 andj|—>j—11fx:a;_11.
it suffices to observe that since the representation a = ayan_1---aq is of minimal
1

(To see that such a ¢ exists,
length, the equations a; = x, a;—1 = =~ cannot hold simultaneously.) Since Gen is
a set of free generators of F, the map ¢ : Gen — G411 extends to a homomorphism
¢p : F' — S pn41 such that, for i = 1,..., N, the permutation ¢p(a;) sends i — i + 1.
Write H for the kernel of ¢p. Since ¢p induces an injection of F'/H into the finite
group Sy 1, it follows that H is a normal subgroup of finite index in F'. Then ¢r(a)
sends 1 — N + 1, hence, in particular, is nontrivial, i.e., a € H, as desired. U

§ C.6. Some Lists on Inter-universal Teichmiiller Theory.

Model Objects
Local:

VP2 (Example 8.8) yeeod 0 yer (Example 8.7) V¢ (Example 8.11)

Beme(x )0 (IL,) B(X,) (L) S

BK,® (G BK,® (G (0°(Cy),spl5)
(J;g)base‘ﬁeld (IT, ~ (O%)pf) II, ~ (O%)pf Arch. Fr’d C, («ang. region)
temp. Fr’d ]:-"2 (O-fct.) equal to C, (Cy, Dy, Kyy)
Gy~ O -:U GENO%-])S equal to C,
(CE, splZ) (C'g_v spIZ) (CE, D;, splZ)

We use C, (not ;v) with v € V"" and F with v € V¢ for F-prime-strips (See
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Definition 10.9 (3)), and £ ’s with v € V for ©-Hodge theatres.

Global:
©:=B(Ck)°’, D :=B(Xg)", o
gl. to loc.
smod : (Cltlod’ Prlme(cltlod) — V {‘F }U€V7 {pU (I)C”'Od,v ; Q)ERE’- }EEY )

(Po 1081m0a (Po) = ey 1080 (P0) )-

Some Model Bridges, and Bridges

. (model D-NF-bridge, Def. 10.16) ¥ := Aut(D®) o ¢J'F o Aut(D,) : D, Poly pe.
= {¢NF}U€V D poly D@, quF (action of j) o pNF : D; poly DO,
pol
¢NF {(bNF} jE€F ¥ P Dy = {9 } S 4 DO,

e (model D-O-bridge, Def. 10.17)

Btemp (Hv)o evalﬁ:}tion Btemp (Hv)o (y c ybad)

) —  labelled by j -
d)gj = AUt(D>,2) o full poly OAut(Dyj)

~

Btemp(Hv)O X Btemp (HU)O (Q c ygood)

ol ol ol
D,, Doy, 99 = {qsgj}yey 0, 2., 69 = {gb?}jew c Dy XD,

o (model ©!-bridge, Def. 10.31) ¢ := Autcusy (DOF) 069, 0Auty (Dy,) : Dy, poly
D©i,

e e 1 e . e l
o T {ng@ H}UGV D 28 pOE| 4© b= (action of t) o ¢f b, PY pot
6e11 . {¢@e11} ) 041 D@i
= tefr; - + .

N +-full poly N +-full poly
e (model ©F-bridge, Def. 10.30) ¢g" : Dy, —> Dry, ¢F : Dy -

t Uy
ol

D>,27 (bgi = {d)t@i}t@ﬁ : ©:|: = {gt}tG]Fl u ©>-'

IwzF Iw*

o (NF-,©-bridge, Def. 10.24) (}§;, — IFQ - 1F®) (g, 3. --
HTe).
o (69 0% bridge, Def. 10.36) Tp9" : 13, 2N tpot  ty0* . 15, PN 15
Theatres

e (O-Hodge theatre, Def. 10.7) THTO = ({T]: }UEVaTsmod)

¢NF T T¢@

)
e (D-R-Hodge theatre, Def. 10.18 (3)) THTP® = (ID® % 1, 5 1D.).
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£y NF :
(X-Hodge theatre, Def. 10.24 (3)) YHTY = (1F® «—- 1F© <w—>é 5, — i B -

HT®).

@ eell
T2

+
(D-B-Hodge theatre, Def. 10.32 (3)) T#7P5 (TCD> Dy — 1DOF),

eecll
Twi

tp©F
(BB-Hodge theatre, Def. 10.24 (3)) THTE = (1§, & §r — TDO%).

e (D- R @-Hodge theatre, Def. 10.40 (1)) THTPEE — (13708 B8 19, 7D-8)

e (XHB-Hodge theatre, Def. 10.40 (2)) THTHE = (tyTE sliije fHT™).
Properties(Proposition 10.20, Lemma 10.25, Proposition 10.34, Lemma 10.37)

o Isom(Tp}", ¥¢JF) ran F*-torsor.

o #Isom(TpRF ToNF) = 1.

o #lsom(THTP™ IHTPH) =1

TQSI;F,T(,bO; form a D-X-Hodge theatre

e Isomcapsule-full poly (D, D) : an F"-torsor.

o TONF o THTPH up to F*-indeterminacy.

e Isom(1yF 2¢9pNF) = Isom(!

SNF 2gNEF)

o Isom(192,2¢Q) = Isom(1¢2,2¢2).

o Isom(*HT®,2HT®) 5 Isom (1D, 2D-).

o Tsom(*HTE 2HT®) 5 Isom(*HTP®, 21 TP ™).
o Isomcapsule-full poly(igJy i%J’)iwiF’iwi form a BHodge theatre . ;) F}*-torsor.
) Isom(Tqﬁgi,i(bgi): a {£1} x {£1}¥-torsor.

o Isom(TolF o) : an Fl”i—torsor. we have a natural isomorphism

o Tsom(THTPE *HTPE) . an {+1}-torsor.

Oi t ecll g
° Isomcapsule +-full poly( D, T@T,) o3 ,'¢3  form a D-BHodge theatre - an lelzl:x{il}y_

torsor.
o Tgb@eu THTD'EE, up to Ffi—indeterminacy.
o Isom(1¢$i,2¢$i> =5 ISOIH( ¢@i 2 )

ell ell ell ell
o Isom('p? ,*y?) 5 Tsom('¢Q" 202 ).
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o Tsom("HTE 2HTE) 3 Tsom(VHTPE 2HTPE).

0 10! FHodge theat NE= 4
o Isomcapsule-+-full poly(igT;iST’) v v orm & odge theatre.  an Fl X {:I:l}f_

torsor.

Links

full poly

~

e (D-R-link, Def. 10.21) iHTP® 2, iy7P® (iph =, iph)

full poly
o (D-F-link, Def. 10.35) iH7TP® 2y iy7PE (i =, iph).

full poly
o (D-RB-ink, Cor. 11.24 (4)) fHTPHE 2y iy7PR8 ik = i9h).
o full poly
e (O-link, Def. 10.8) THT® = In7© (15h .. = F- ).
oxk full poly
o (©*i-link, Cor. 11.24 (3)) THT™® == 7™ (ighexn = 1gi»xn),
QXH full poly
o (4 -link, Cor. 11.24 (3)) THT™XE =3 Fy7™E  (1ghexp =y 1giexm),
full poly

exk ~
o (O lp-link, Def. 13.9 (2)) THTHSE ICP w7 ®EB ((o)igrhxn Ty wglieoan

X p full poly
g

(S] ~
o (O f-link, Def. 13.9 (2)) THT™® = w78 (Gotgibon =y gl

o (log-link, Def. 12.3) TH7™® 18 19, 7%8
R e N T st e S O S NN A T S DU A A
i her).
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abc Conjecture, 5
uniform -, 42
abstractly equivalent, 9
algorithm
multiradial, 190, 238, 361
uniradial, 190
a-signed automorphism
- of T, 235
anabelioid
connected -, 107
morphism of -s, 107
angular region, 172
arithmetic
Margulis-, 367
Shimura-, 367
arithmetically holomorphic, 82
arithmetic divisor, 13, 173
Q-, 13
R-, 13
effective -, 13, 173
principal -, 13
arithmetic line bundle, 12
Aut-holomorphic disc, 86
Aut-holomorphic orbispace, 87
Aut-holomorphic space, 86
elliptically admissible -, 86
hyperbolic - of finite type, 86
local morphism of -s, 86
Uu,v)- -, 86
co-holomorpic (U, V)- -, 87
finite étale (U,V)- -, 86
morphism to "D®, 214
morphism to DO+ 214
Aut-holomorphic structure, 86
U-local pre- -, 86

bi-anabelian, 59
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bi-coric
- FTXk_prime-strip, 313

bounded discrepancy class, 14

bridge
D-NF- -, 222
D-6- -, 223

D-O- - is glued to D-O*- -, 246
D-0¢- - 240

D-0%- -, 239
NF- -, 231
e- -, 232

O- - is glued to OF- -, 246
el - 243

O*- -, 243
base-NF- -, 222
base-O- -, 223
base-0°ll- - 240
base-©*- -, 239

isomorphism of D-NF- -s, 222
isomorphism of D-O- -s, 223
isomorphism of D-0°¢- _s, 240
isomorphism of D-0%- -s, 240
isomorphism of NF- -s, 231
isomorphism of ©- -s, 232
isomorphism of ©°l- _s, 244
isomorphism of ©*- -s, 243
model D-NF- -, 221

model D-0O- -, 222

model D-0°- - 239

model D-O*- -, 238

model NF- -, 228

model O- -, 228

model base-NF- -, 221

model base-O- -, 222

model base-©°l- -, 239

model base-O*- -, 238
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CAF, 10

capsule, 10
#J--, 10

- -full poly-isomorphism, 10
- -full poly-morphism, 10
morphism of -, 10
Cauchy sequence, 97
equivalent -, 97
closed point
algebraic -, 57
co-holomorphicisation, 87
pre- -, 87
commensurably terminal, 11
commensurator, 11
compactly bounded subset, 15
support of -, 15
condition
-(Cusp)x, 58
-(Delta) x, 58
-(Delta)’x, 58
-(GC), 58
-(slim), 58
co-orientation, 87
pre- -, 87
co-oriented, 87
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strictly -, 178

cusp

+-label class of -s of II,, 262
+-label class of -s of H:;, 262
+-label class of -s of TD®, 235
+-label class of -s of 1D, 234
+-label class of -s of ﬁg, 262
+-label class of -s of ﬁf, 262
label class of -s of TD@,7219
label class of -s of TDE, 218
non-zero -, 141

set of -s of TD®, 219

set of -s of "DO* 235

set of -s of TDE, 218, 234

set of -s of 1D, 234

set of -s of TQ;, 218

zero -, 141

cuspidalisation

Belyi -, 65
elliptic -, 62

cuspidal quotient, 61

cyclotome, 12

- of Gk, 79
-of M, 81
- of P, 178

coric, 247 - of Ilx as orientation, 70
sk~ -, 179 -of K, 12
k- - structure, 183, 185, 188 - of fun], 148
ok X- -, 179 external - of TM, 157
ok X- - structure, 183, 185, 188 internal - of ™M, 157
k- -, 178 cyclotomic envelope, 148
- category, 247 cyclotomic rigidity
- data, 247 - for inertia subgroup, 71
-ally defined, 247 - in tempered Frobenioid, 176
bi- -, 96 - of mono-theta environment, 157

horizontally -, 96, 209, 238 - via Q<o N 7% = {1}, 184, 186
vertically -, 96 - via LCFT, 80, 81

critical point, 178 - via positive rational structure and
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LCFT, 119
classical -, 80, 81

decent data from Z to Fq, 354

edge-like subgroup, 112
element

negative - of F,'*, 233

positive - of Ffi, 233
étale-like object, 94
étale theta class, 129

- of standard type, 138, 147

standard set of values of -, 138
étale theta function, 132
étale-transport, 96, 323, 347

indeterminacies, 347
evaluation isomorphism, 277, 278, 280,

286, 289, 293

formal -, 284

global formal -, 290

of F'"-prime-strips, 299
evaluation points

-of X, 221

-of X 221

Faltings height, 33
Fli—group, 233
Fli-torsor, 233
positive automorphism of, 234
frame, 91
-d, 91
orthogonal -, 91
Frobenioid, 164
un-split pre- -, 164
x-Kummer pre- -, 167
x pu-Kummer pre- -, 167
p-adic -, 168
Archimedean -, 172
base category of elementary -, 164
base category of pre- -, 164

base-field-theoretic hull of tempered
-, 171

birationalisation of model -, 166

divisor monoid of model -, 165

divisor monoid of pre- -, 164

elementary -, 164

global non-realified -, 181, 182

global realified -, 173

isomorphism of pre- -s, 165

model -, 165

pre- -, 164

pre- - structure, 164

rational function monoid of model -,
165

realification of model -, 166

split pre- -, 164

split- x-Kummer pre- -, 167

split- x u-Kummer pre- -, 167

tempered -, 171

vertically coric étale-like pre- -, 343

Frobenius

absolute -, 353

Frobenius-like object, 94
fundamental group

admissible - , 109

Galois evaluation

principle of -, 267, 356

graph

dual - , 108
dual semi- - , 108
semi- - of anabelioids, 109

graph of =, 248

height function, 13
Hodge theatre

D-ONF- -, 223
D-0+Fell _ 240
D-O*°INF- -, 246
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D-XH- -, 246

D-H- -, 240

D-X- -, 223

©- -, 207

ONEF- -, 232

@:I:ell_ -, 244

O*INF- -, 246

H- -, 244

X- -, 232

XH- -, 246

base-ONF- -, 223

base-O%¢ll - 240

base-OF°INF- -, 246

isomorphism of H- -, 244

isomorphism of K- -, 232

isomorphism of XH- -s, 246

isomorphism of D-H- -s, 240

isomorphism of D-K- -s, 223

isomorphism of D- X H- -s, 246
holomorphic hull, 22

indeterminacy
horizontal -, 25, 26
permutative -, 25, 26
vertical -, 25, 26
initial ©-data, 36, 199
inter-universal Melline transformation,
42
inversion automorphism, 133, 141, 257
pointed -, 257, 258
isometry of O**(G), 166
isomorph, 12
isomorphism

of categories, 201

k-core, 57
admit -, 57
Kummer-detachment, 96, 323
indeterminacy, 349

Kummer-faithful, 55
Kummer isomorphism
- by Kummer structure, 187, 188
- for M, 81
- for F-prime-strips, 297
- for Z, 100, 103
- for & (Ilx), 100
- for algebraic closure of number
fields, 184, 296
- for constant monoids, 273, 285, 291
- for labelled Frobenioids, 297
- for labelled constant monoids, 285,
292
- for labelled number fields, 297
- for labelled pseudo-monoids, 297
- for local LGP-monoids, 333
- for monoids, 186
- for number fields, 296
- for pseudo-monoids, 184, 186, 296
- for theta monoids, 273
- of F'*_prime-strip, 345
Kummer structure
X- -, 167
X p- -, 167
- of an Aut-holomorphic space, 93
model - of an Aut-holomorphic
space, 92
morphism of elliptically admissible
Aut-holomorphic orbispaces
with -s, 93

[-cyclotomically full, 54, 55

line bundle
B- -, 193
X- -, 192
elementary morphism of H- -s, 193
elementary morphism of X- -s, 192
morphism of H- -s, 193
morphism of X- -s, 192
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tensor product of B- -, 193

tensor product of X- -, 192
line segment, 90

- tangent to S - p, 91

endpoint of -, 90

parallel -s, 90

link
D-ONF- -, 225
D-©*ell _ 243
D-BB- -, 243
D-K- -, 225
D- X B- -, 300
O- -, 208
OXF- -, 299
O7&p- -, 339
OxH- -, 299
O/ k.- 339

lgp~
log- - from TF, to ¥F,, 302, 303

log- - from T§ to *F, 304
log- - from THTXE to *HTHE 309
base-©ONF- -, 225
base-OF¢ll- - 243
full log- - from TF, to *F,, 302, 303
full log- - from ¥ to 13, 304
full log- - from THT™® to I TP,
309
generalised O] p- -, 355
log- -, 99, 103
tautological log- - associated to TF,,
302, 303
tautological log- - associated to g,
304
local additive structure, 90
local field, 10
local linear holomorphic structure, 92
system of -s, 92
local structure, 86

log-conductor function, 14

log-different function, 14
log-divisor
effective Cartier, 169
log-Kummer correspondence
global -, 344
local -, 335
log-meromorphic function, 169
log-orbicurve
of type (1, (Z/I1Z)®), 144
of type (1,Z/1Z), 144
of type (1,Z/1Z)+, 144
of type (l,l-tﬂ), 161
of type (1, l-tors), 141
of type (1, l-tors)y, 141
of type (1, I-tors®), 142
log-shell, 21, 103
étale-like holomorphic -, 100, 103
étale-like mono-analytic -, 101, 104
étale-like mono-analytic - associated
to D}, 306
Frobenius-like holomorphic -, 100
Frobenius-like holomorphic -
associated to T]-"2, 302, 304
Frobenius-like holomorphic -
associated to 1§, 304
Frobenius-like mono-analytic -
associated to T]—"EX“, 305
Frobenius-like mono-analytic -
associated to T *#, 305
vertically coric étale-like
holomorphic - associated to *2,
308
log-theta-lattice, 311
LGP-Gaussian -, 340
[gp-Gaussian -, 340
Gaussian -, 311
non-Gaussian -, 311

log-volume function, 20, 101
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global -, 342
radial -, 20, 104

maximal cuspidally central quotient, 70
miracle identity, 41
MLF, 10
mono-analytic, 82
mono-anabelian, 44, 59, 92
mono-anabelian transport, 188
monoid
-on D, 163
Frobenioid-theoretic constant -, 273
Frobenioid-theoretic Gaussian -, 278
Frobenioid-theoretic theta -, 273
Frobenius-like global realified
H-logarithmic Gaussian
procession -, 338
Frobenius-like global realified
X-logarithmic Gaussian
procession -, 337
Frobenius-like global realified LGP-
-, 337
Frobenius-like global realified [gp- -,
338
Frobenius-like local LGP- -, 332
Frobenius-like local logarithmic
Gaussian procession -, 332
group-like - on D, 163
mono-theta-theoretic constant -, 272
mono-theta-theoretic Gaussian -, 276
mono-theta-theoretic theta -, 272
morphism of split -s, 93
primary element of -, 174
prime of -, 174
split -, 93
vertically coric étale-like -, 343
vertically coric étale-like local LGP-
-, 333
vertically coric étale-like local

logarithmic Gaussian procession
-, 333
multiradial, 247
- environment, 247
-ly defined, 247
pn-conjugacy class, 148
mutations, 59, 247

negative automorphism
- of "D, 235
NF, 10
-constant, 75
-curve, 75
-point, 75
-rational function, 75
normalisation
packet- -, 341
procession- -, 341
normally terminal, 11
number field, 10
vertically coric étale-like -, 343

orbicurve
- of strictly Belyi type, 57
elliptically admissible -, 57
hyperbolic -, 12
semi-elliptic -, 57

orientation, 91

outer semi-direct product, 12

parallelogram, 90
pre-0- , 90
side of -, 91

parallel transport, 247

picture
étale- - of D-H-Hodge theatres, 243
étale- - of D-K-Hodge theatres, 225
étale- - of ©-Hodge theatres, 209
étale- - of XH-Hodge theatres, 301
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étale- - of multiradial theta monoids,

319

étale- - of the étale theta functions,
260

Frobenius- - of XH-Hodge theatres,
299

Frobenius- - of log-links for
XH-Hodge theatres, 310

Frobenius- - of log-links for
JF-prime-strips, 308

Frobenius- - of ©-Hodge theatres,

208
pilot object
O- -, 339
q- -, 339

poly

~+-full - -isomorphism, 235

a-signed +-full - -automorphism, 236

- -action, 10

- -automorphism, 10

- -isomorphism, 10

- -morphism, 9

capsule-+-full - -morphism, 236

full - -isomorphism, 10

negative +-full - -automorphism, 236

positive +-full - -automorphism, 236
positive automorphism

- of ]Fli—torsor, 234

- of 'D,, 235

- of T, 235
positive rational structure, 118, 121
prime number theorem, 30, 37, 368

prime-strip

D- -, 210
Dh- -, 210
F- -, 210
Fr- - 210

Fr--, 210

Flrexu__ 216
Fieo - 217
Frto - 217
Frexu_ . 216
Freo - 217
Frt -, 217
Frxu_o_ 216
Fx- -, 216

arrow of F- -s lying over ¢, 213
global realified mono-analytic
Frobenioid- -, 210
holomorphic base- -, 210
holomorphic Frobenioid- -, 210
isomorphism of F- -s, 210
isomorphism of F'"- -s, 211
isomorphism of F"- -s, 210
isomorphism of F'"»*#- _g 216
isomorphism of F™»- -s, 217
isomorphism of F'Ft- -s, 217
isomorphism of F™»*#- -5, 216
isomorphism of F»- -s, 217
isomorphism of F1- -s, 217
isomorphism of F™*#- -5, 216
isomorphism of F™*- -s, 216
mono-analytic base- -, 210
mono-analytic Frobenioid- -, 210
morphism of D- -s, 210
morphism of D"- -s, 210
poly-morphism from D- - to D®,
214
poly-morphism from D- - to TDO*,
214
poly-morphism from F- - to T F®,
227
poly-morphism from a capsule of F-
- to TF@, 227
poly-morphism from a capsule of F-
- to an F- -, 227
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poly-morphism from a cupsule of D-
- to D@, 214
poly-morphism from a cupsule of D-
- to TDO%, 214
poly-morphism from a cupsule of D-
-toaD--, 214
vertically coric étale-like F'"- -, 343
primitive automorphisms, 22
procession
n- -, 324
morphism of -s, 324
normalised average, 27
pseudo-monoid, 177
cyclotomic -, 178
divisible -, 178
topological -, 177

radial

- algorithm, 247

- category, 247

- data, 247

- environment, 247
RC-holomorphic morphism, 86
Riemann hypothesis, 42

section
- associated with a tangential
basepoint, 130
mod N algebraic -, 148, 149
mod N theta -, 150
slim, 48
relatively -, 48
species, 59, 247
structure of D,
pa2r- , 130
compatible with -, 130
{£1}-, 130
compatible with -, 130
canonical discrete- , 130

canonical integral- , 130
compatible with -, 130
canonical tame integral- , 130
sub-p-adic, 55
generalised -, 363

symmetrising isomorphism

F- -, 294
F)'*- -, 276, 283, 288
synchronisation

global {#1}- -, 286, 288, 310

Teichmiiller dilation, 21, 25, 83
temp-slim, 107
relatively -, 107
tempered covering, 106
tempered filter, 169
tempered group, 107
temperoid, 110
temperoid
connected -, 107
morphism of -s, 107
tensor packet
global j- - associated to Sf and a
XH-Hodge theatre, 330
local holomorphic 1- - associated to
an J-prime-strip, 326
local holomorphic j- - associated to a
collection of F-prime-strips, 326
local mono-analytic 1- - associated
to an D" -prime-strip, 328
local mono-analytic 1- - associated
to an F~XF-prime-strip, 328
local mono-analytic j- - associated
to a collection of
D -prime-strips, 328
local mono-analytic j- - associated
to a collection of
F Xk prime-strips, 328
O-approach, 180
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theta environment
homomorphism of mono- - , 151
mod N bi- -, 151
mod N model mono- -, 151
mod N mono- -, 151

isomorphism of - | 151
theta quotient, 122
theta trivialisation, 128

tripod, 12

uniradial, 247
- environment, 247
-ly defined, 247
upper semi-compatibility, 100, 103

valuation

0- -, 226
value-profile, 276
verticial subgroup, 112
Vojta’s Conjecture

- for curves, 5
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Index of Symbols

ADivg(F), 13
ADivg(F), 13
APic(X), 12

Aut (D®%), 237
Aut, ('D,), 235
Aut, (fD), 235
Aut, (T), 233
Aut_(TD,), 235
Aut, (TD), 235
Attteysp (DOF), 236
Autp(—), 211
Autp- (—), 211
Aut (Cp), 219
Aut (D?), 220
Autz(—), 211
Aut z(—), 211
Aut}"\l—bxu(_), 216
Autz (—), 211
Autzewxu(—), 216
Aut]:»—x (—), 216
Aut]:kxu(_), 216
Aut(Ut°P), 85
Aut™(U), 85
Auty (DO%), 236
Auty (T), 233
Aut3 (S), 175

G, 152

g, 152

a®”, 238

Base(¢), 163
B(I1), 107
Btemp (11, 107
Bemp (X)), 107
B(X), 107
B(G), 109
B¥(G), 110
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BtemP(G), 110 neg, 319
B, 170 Xeye, 12
By, 170 Xeye,l, 12
B, 170 fx, 223
Bconst7 170
BR, 166 Arodr 24
d*, 36

C, 137, 141 deg p, 13
Cr, 199 degy (¢), 163
Ca(H), 11 Div(¢), 163
%} ) 22%% Div_ (300), 169

y 29K D, , 257
Cl, (C HTSE) 338 D5, 264
Clep (G TH8) 337 D,, 140
C, 141 D?, 264
Cr, 200 D}, . 264
C, 200 Dy, 169
C, 247 Del, 170
chirat 165 D- ., 222
cr (PHT®), 293 D®, 202
Cr (fHT®), 293 DOE 202
TClgp» 338 p® 181
=ik, 337 DI (DY), 315
fCony, 208 D (1DL), 289
"Caans 299 Dr, 176
fch, 211 Dy, (1D5), 290
fch a4 208 D" (D7), 288
fC,, 208 D (1DL),, 290
Cr 45 173 D, , 220
Cr, 252 D, 208, 210
C'R, 203 D2, 208
C", 168, 171, 172 fpE 234
CR, 166 pE 234
Clretar 205 D, 218
€O, 204, 205 D, 185
C,, 168, 171, 172 D, 208, 210
C("D®, w), 214 Dygo,, 250
¢, 319 D 45 206

fe, 318 Dy, 168, 169, 173



D, 203-205
D,, 187

fprat 187

D,, 168, 169, 172
Dy, 151

Do, 222

9,, 220

D, 210

D, 245

D7, 229

D 210

"D, 245

Dy, 127

mmpL, 312

Dy, 238

D, , 238

D,, 238

B PN ipe 914
Eg PN tpot o1y
B PN g 914
D PN Do 914
i PN ipe+ 914
ol 24

., 14

Ayg, 264

Ayy, 264

Ayat, 263

Ayet, 263

Ac,, 199

A®E 267

AT 262, 281
AP (MO, 251
AETP(MS), 251
A, 160

Az, 161

AT, 161

Ag, 110

ASY, 110
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AGP 110
Ag™P, 110
Alpn], 148
Ac, 141

Ao 141

Ac, 141

Ao, 140

Ax, 140

A%, 140

AL, 264

Ajay, 263

A¥, 262, 281
Aye , 251

Ao, 122, 140
A;:Jusp-cent7 70
A,, 112

A,, 262, 281
Al 122, 140
Ax,, 199
Axm, 115
AP, 115

A%, 111
At 111
AP 122
(Ag?mp>ell7 122
(AE™P)O 122
A, 122, 140
AP (MP), 251
ASMP(MS), 251
Ax, 200

AP (MP), 251
AP (M), 251
(Agfjjlp)ell, 123
(AYP)©, 123
AYTP 122
(A‘gfmp)ell, 123
(AY™P)© 123
AFTP(MP), 251
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AZ“P(M%), 251 Ff, 9
(A?Il\lnp)ell, 125 F;ﬂi, 9
(A'ﬂzemp)@7 125 Fg, 163
N
Fe®(ID9), 181

expy, 103 FﬁOD, 192
eXPyy(x), 103 FEPR X 215
Ep, 199 P 216
E, 161 EFFx 216
E,, 170 tF 215
genv’ 260 Tf‘?@’ 182
ELCFT 255 I F®, 5226
£9, 253 ®
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Ey, 176 {7, 230
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€y, 141 fFOR 230
5; 160 TFPR, 230
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€, 160 T T®R L 2
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7'7@7 e tF,, 185, 187, 210
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(1 Fo0)ar 337 f5h, 208
tF, “2tF,, 302, 303 1§, 300
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