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Abstract

We give a survey of S. Mochizuki’s ingenious inter-universal Teichmiiller theory and ex-
plain how it gives rise to Diophantine inequalities. The exposition was designed to be as
self-contained as possible.

Contents

§0. Introduction.
§0.1. Un Fil d’Ariane.
§0.2. Notation.

§1. Reduction Steps via General Arithmetic Geometry.
§1.1. Height Functions.
§1.2. First Reduction.
§1.3. Second Reduction — Log-volume Computations.
§1.4. Third Reduction — Choice of Initial ©-Data.
§2. Preliminaries on Anabelian Geometry.
§2.1. Some Basics on Galois Groups of Local Fields.
§2.2. Arithmetic Quotients.
§2.3. Slimness and Commensurable Terminality.

§2.4. Characterisation of Cuspidal Decomposition Groups.

§3. Mono-anabelian Reconstruction Algorithms.

Received xxxx, 201x. Revised xxxx, 201x.

2010 Mathematics Subject Classification(s):

Key Words: inter-universal Teichmdiller theory, anabelian geometry, Diophantine inequality,
height function, abc Conjecture, Hodge-Arakelov theory

Supported by Toyota Central R&D Labs., Inc. and JSPS Grant-in-Aid for Scientific Research (C)
15K04781
*RIMS, Kyoto University, Kyoto 606-8502, Japan.

e-mail: gokun@kurims.kyoto-u.ac.jp

(© 201x Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



2 GO YAMASHITA

§3.1. Some Definitions.
§3.2. Belyi and Elliptic Cuspidalisations — Hidden Endomorphisms.
§3.2.1. Elliptic Cuspidalisation.
§3.2.2. Belyi Cuspidalisation.
§3.3. Uchida’s Lemma.
§3.4. Mono-anabelian Reconstruction of the Base Field and Function Field.
§3.5. On the Philosophy of Mono-analyticity and Arithmetic Holomorphicity.

§4. The Archimedean Theory — Formulated Without Reference to a Specific Model
C.
§4.1. Aut-Holomorphic Spaces.
§4.2. Elliptic Cuspidalisation and Kummer Theory in the Archimedean Theory.
§4.3. On the Philosophy of Etale-like and Frobenius-like Objects.
§4.4. Mono-anabelian Reconstruction Algorithms in the Archimedean Theory.

§5. Log-volumes and Log-shells.
§5.1. Non-Archimedean Places.
§5.2. Archimedean Places.

§6. Preliminaries on Tempered Fundamental Groups.
§6.1. Some Definitions.
§6.2. Profinite Conjugates vs. Tempered Conjugates.

§7. Etale Theta Functions — Three Fundamental Rigidities.
§7.1. Theta-related Varieties.
§7.2. The Etale Theta Function.
§7.3. [-th Root of the Etale Theta Function.
§7.4. Three Fundamental Rigidities of Mono-theta Environments.
§7.5. Some Analogous Objects at Good Places.

§8. Frobenioids.
§8.1. Elementary Frobenioids and Model Frobenioids.
§8.2. Examples.
§8.3. From Tempered Frobenioids to Mono-theta Environments.

§9. Preliminaries on the NF Counterpart of Theta Evaluation.
§9.1. Pseudo-Monoids of k-Coric Functions.
§9.2. Cyclotomic Rigidity via k-Coric Functions.
§9.3. X-Line Bundles and H-Line Bundles.

§10. Hodge Theatres.
§10.1. Initial ©-Data.
§10.2. Model Objects.
§10.3. ©-Hodge Theatres and Prime-strips.



A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 3

§10.4. The Multiplicative Symmetry X: ONF-Hodge Theatres and NF-, ©-Bridges.

§10.5. The Additive Symmetry H: ©*°"_Hodge Theatres and ©°'-, ©*-Bridges.

§10.6. OT°INF-Hodge Theatres — An Arithmetic Analogue of the Upper Half
Plane.

§11. Hodge-Arakelov-theoretic Evaluation Maps.
§11.1. Radial Environments.
§11.2. Hodge-Arakelov-theoretic Evaluation and Gaussian Monoids at Bad Places.
§11.3. Hodge-Arakelov-theoretic Evaluation and Gaussian Monoids at Good Places.
§11.4. Hodge-Arakelov-theoretic Evaluation and Gaussian Monoids in the Global
Case.

§12. Log-links — An Arithmetic Analogue of Analytic Continuation.
§12.1. Log-links and Log-theta-lattices.
§12.2. Kummer Compatible Multiradial Theta Monoids.

§13. Multiradial Representation Algorithms.
§13.1. Local and Global Packets.
§13.2. Log-Kummer Correspondences and Multiradial Representation Algorithms.

Appendix A. Motivation of the Definition of the ©-Link.
§ A.1. The Classical de Rham Comparison Theorem.
§ A.2. p-adic Hodge-theoretic Comparison Theorem.
§ A.3. Hodge-Arakelov-theoretic Comparison Theorem.
§ A.4. Motivation of the Definition of the ©-Link.

Appendix B. Anabelian Geometry.

Appendix C. Miscellany.
§C.1. On the Height Function.
§ C.2. Non-critical Belyi Maps.
§C.3. k-Cores.
§C.4. On the Prime Number Theorem.
§ C.5. On the Residual Finiteness of Free Groups.
§ C.6. Some Lists on Inter-universal Teichmiiller Theory.

References

8§ 0. Introduction.

The author once heard the following observation, which was attributed to Grothen-
dieck: There are two ways to crack a nut — one is to crack the nut in a single stroke
by using a nutcracker; the other is to soak it in water for an extended period of time
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until its shell dissolves naturally. Grothendieck’s mathematics may be regarded as an
example of the latter approach.

In a similar vein, the author once heard a story about a mathematician who asked
an expert on étale cohomology what the main point was in the ¢-adic (not the p-adic)
proof of the rationality of the congruence zeta function. The expert was able to recall,
on the one hand, that the Lefschetz trace formula was proved by checking various
commutative diagrams and applying various base change theorems (e.g., for proper or
smooth morphisms). On the other hand, neither the commutativity of various diagrams
nor the various base change theorems could be described as the main point of the proof.
Ultimately, the expert was not able to point out precisely what the main point in the
proof was. From the point of view of the author, the main point of the proof seems to lie
in the establishment of a suitable framework (i.e., scheme theory and étale cohomology
theory) in which the Lefschetz trace formula, which was already well known in the
field of algebraic topology, could be formulated and proved even over fields of positive
characteristic.

A similar statement can be made concerning S. Mochizuki’s proof of the abc Con-
jecture. Indeed, once the reader admits the main results of the preparatory papers
(especially [AbsToplll], [EtTh]), the numerous constructions in the series of papers
[IUTchI], IUTchII], [IUTchIII], [IUTchIV] on inter-universal Teichmiiller theory are
likely to strike the reader as being somewhat trivial. On the other hand, the way in
which the main results of the preparatory papers are interpreted and combined in or-
der to perform these numerous constructions is highly nontrivial and based on very
delicate considerations (cf. Remark 9.6.2 and Remark 12.8.1) concerning, for instance,
the notions of multiradiality and uniradiality (cf. Section 11.1). Moreover, when taken
together, these numerous trivial constructions, whose exposition occupies literally hun-
dreds of pages, allow one to conclude a highly nontrivial consequence (i.e., the desired
Diophantine inequality) practically effortlessly! Again, from the point of view of the
author, the point of the proof seems to lie in the establishment of a suitable framework
in which one may deform the structure of a number field by abandoning the frame-
work of conventional scheme theory and working instead in the framework furnished by
inter-universal Teichmiiller theory (cf. also Remark 1.15.3).

In fact, the main results of the preparatory papers [AbsToplll], [EtTh], etc. are
also obtained, to a substantial degree, as consequences of numerous constructions that
are not so difficult. On the other hand, the discovery of the ideas and insights that
underlie these constructions may be regarded as highly nontrivial in content. Examples
of such ideas and insights include the “hidden endomorphisms” that play a central role
in the mono-anabelian reconstruction algorithms of Section 3.2, the notions of arith-
metically holomorphic structure and mono-analytic structure (cf. Section 3.5), and the
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distinction between étale-like and Frobenius-like objects (cf. Section 4.3). Thus, in sum-
mary, it seems to the author that, if one ignores the delicate considerations that occur
in the course of interpreting and combining the main results of the preparatory papers,
together with the ideas and insights that underlie the theory of these preparatory pa-
pers, then, in some sense, the only nontrivial mathematical ingredient in inter-universal
Teichmiiller theory is the classical result [pGC]J, which was already known in the last
century!

A more technical introduction to the mathematical content of the main ideas of
inter-universal Teichmiiller theory may be found in Appendix A and the discussion at
the beginning of Section 13.

The following results are consequences of inter-universal Teichmiiller theory (cf.
Section 1.1 for more details on the notation):

Theorem 0.1.  (Vojta’s Conjecture [Voj] for Curves, [IUTchIV, Corollary 2.3])
Let X be a proper, smooth, geometrically connected curve over a number field; D C X
a reduced divisor; Ux := X \ D. Write wx for the canonical sheaf on X. Suppose that
Ux is a hyperbolic curve, i.e., deg(wx (D)) > 0. Then for any d € Z~o and € € Ry,
we have
ht, . (p) S (1 + €)(log-diff x + log-condp)

on Ux (Q)=?,

Corollary 0.2.  (The abc Conjecture of Masser and Oesterlé [Massl], [Oes|) For

any € € Rso, we have
1+e

max{|al|, |b], |c|} < H p

plabc

for all but finitely many coprime a,b,c € Z with a +b = c.

Proof. We apply Theorem 0.1 in the case where X = I% D> D ={0,1,00}, and
d = 1. Thus, we have wp1 (D) = Op1(1), log-diffp: (—a/b) = 0, log-cond 1,00} (—a/b) =
> plabatylogp, and hto , 1)(—a/b) ~ logmax{|al,|b|} ~ logmax{|al, |b],|a + b|} for
coprime a,b € Z with b # 0, where the first “~” follows from [Silvl, Proposition 7.2],
and we apply the inequality |a + b] < 2max{|al,|b|}. Now let ¢,¢’ € R-o be such that
e > ¢’. According to Theorem 0.1, there exists C' € R such that log max{|al, |b], |c|} <
(1+¢€) 2p|abc log p+ C for any coprime a, b, ¢ € Z with a+b = ¢. Observe that there are
only finitely many triples a, b, ¢ € Z with a-+b = ¢ such that log max{|al, [b], |c[} < E5C.
Thus, we have log max{|al, |b],|c|} < (1+¢€)>] logp + eljf; log max{|al, |b|,|c|} for
all but finitely many coprime triples a, b, ¢ € Z with a4+ b = ¢. This completes the proof
of Corollary 0.2. O

plabe
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§0.1. Un Fil d’Ariane.

By combining a relative anabelian result (a relative version of the Grothendieck
Conjecture over sub-p-adic fields (Theorem B.1)) and the “hidden endomorphism” dia-
gram (EllCusp) (resp. the “hidden endomorphism” diagram (BelyiCusp)), one obtains
a(n) (absolute) mono-anabelian result, i.e., the elliptic cuspidalisation (Theorem 3.7)
(resp. the Belyi cuspidalisation (Theorem 3.8)). Then, by applying Belyi cuspidali-
sations, one obtains a mono-anabelian reconstruction algorithm for the NF-portion of
the base field and function field of a hyperbolic curve of strictly Belyi type over a sub-
p-adic field (Theorem 3.17), as well as a mono-anabelian reconstruction algorithm for
the base field of a hyperbolic curve of strictly Belyi type over a mixed characteristic
local field (Corollary 3.19). This motivates the philosophy of mono-analyticity and
arithmetic holomorphicity (Section 3.5), as well as the theory of Kummer isomorphisms
from Frobenius-like objects to étale-like objects (cf. Remark 9.6.1).

The theory of Aut-holomorphic (orbi)spaces and related reconstruction algorithms
(Section 4) is an Archimedean analogue of the mono-anabelian reconstruction algorithms
discussed above and yields another application of the technique of elliptic cuspidalisa-
tion. On the other hand, the Archimedean theory does not play a very central role in
inter-universal Teichmiiller theory.

The theory of the étale theta function centers around the establishment of various
rigidity properties of mono-theta environments. One applies the technique of ellip-
tic cuspidalisation to show the constant multiple rigidity of a mono-theta environment
(Theorem 7.23 (3)). The cyclotomic rigidity of a mono-theta environment is obtained
as a consequence of the (“precisely”) quadratic structure of a Heisenberg group (Theo-
rem 7.23 (1)). Finally, by applying the “at most” quadratic structure of a Heisenberg
group (and excluding the algebraic section in the definition of a mono-theta environ-
ment), one shows the discrete rigidity of a mono-theta environment (Theorem 7.23 (2)).

The notions of étale-like and Frobenius-like objects play a very important role in
inter-universal Teichmiiller theory (cf. Section 4.3). The significance of Frobenius-like
objects (cf. the theory of Frobenioids, as discussed in Section 8) lies in the fact they
allow one to construct links, or “walls”, such as the ©-link and log-link (cf. Defini-
tion 10.8; Corollary 11.24 (3); Definition 13.9 (2); Definition 12.1 (1), (2); and Defini-
tion 12.3). (The main theorems of the theory of Frobenioids concern category-theoretic
reconstruction algorithms; however, these algorithms do not play a very central role in
inter-universal Teichmiiller theory (cf. [[UTchl, Remark 3.2.1 (ii)]).) By contrast, the
significance of étale-like objects lies in the fact that they allow one to penetrate these
walls (cf. Remark 9.6.1).

The notion of multiradiality plays a central role in inter-universal Teichmiiller theory
(cf. Section 11.1). The significance of the multiradial algorithms that are ultimately
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established lies in the fact that they allow one to

“permute” (up to mild indeterminacies) the theta values in the source of the
O-link and the theta values in the target of the ©-link.

In other words, multiradiality makes it possible to “see” (up to mild indeterminacies) the
“alien” ring structure on one side of ©-link from the point of view of the ring structure
on the other side (cf. the discussion at the beginning of Section 13). This multiradiality,
together with the compatibility of the algorithms under consideration with the ©-link,
will, ultimately, lead to the desired height estimate (cf. Remark 11.1.1).

The multiradial algorithm that we ultimately wish to establish consists, roughly
speaking, of three main objects (cf. the column labelled “(1)” of the table before Corol-
lary 13.13): (mono-analytic étale-like) log-shells (which are related to the local units
of the number fields under consideration) equipped with log-volume functions (cf. Sec-
tion 5), theta values (which are related to the local value groups of the number fields
under consideration) acting on these log-shells, and (global) number fields acting on these
log-shells. In this context, the theta function (resp. k-coric functions (Definition 9.2))
serve(s) as a geometric container for the theta values (resp. the number fields) just
mentioned and allow(s) one to establish the multiradiality of the reconstruction algo-
rithms under consideration. Here, suitable versions of Kummer theory for the theta
function and k-coric functions allow one to relate the respective étale-like objects and
Frobenius-like objects under consideration. These versions of Kummer theory depend
on suitable versions of cyclotomic rigidity.

The cyclotomic rigidity of mono-theta environments discussed above allows one
to perform Kummer theory for the theta function in a multiradial manner (Proposi-
tion 11.4, Theorem 12.7, Corollary 12.8). Similarly, a certain version of cyclotomic
rigidity that is deduced from the elementary fact Qso N Z* = {1} (Definition 9.6)
allows one to perform Kummer theory for k-coric functions in a multiradial manner.
At a more concrete level, the cyclotomic rigidity of mono-theta environments and k-
coric functions plays the role of protecting the Kummer theory surrounding the theta
function and s-coric functions from the Z*-indeterminacies that act on the local units
and hence ensures the compatibility of the ©-link with the portion of the final multi-
radial algorithm that involves the Kummer theory surrounding the theta function and
rk-coric functions (cf. the column labelled “(3)” of the table before Corollary 13.13). By
contrast, the most classical version of cyclotomic rigidity, which is deduced from local
class field theory for MLF’s (cf. Section 0.2), does not yield a multiradial algorithm (cf.
Remark 11.4.1, Proposition 11.15 (2), and Remark 11.17.2 (2)).

The Kummer theory discussed above for mono-theta environments and theta func-
tions (resp. for k-coric functions) leads naturally to the theory of Hodge-Arakelov-
theoretic evaluation (resp. the NF-counterpart (cf. Section 0.2) of the theory of Hodge-
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Arakelov-theoretic evaluation) and the construction of Gaussian monoids, i.e., in essence,
monoids generated by theta values (Section 11.2) (resp. the construction of elements of
number fields (Section 9.2, Section 11.4)). In the course of performing Hodge-Arakelov-
theoretic evaluation at the bad primes, one applies a certain consequence of the theory
of semi-graphs of anabelioids (“profinite conjugates vs. tempered conjugates’ Theo-
rem 6.11). The reconstruction of mono-theta environments from (suitable types of)
topological groups (Corollary 7.22 (2) “Il — M”) and tempered Frobenioids (Theo-
rem 8.14 “F — M”), together with the discrete rigidity of mono-theta environments,
allows one to derive Frobenioid-theoretic versions of the group-theoretic versions of
Hodge-Arakelov evaluation and the construction of Gaussian monoids just described
(Corollary 11.17). In the course of performing Hodge-Arakelov-theoretic evaluation, one
applies the Ffi—symmetry in the Hodge theatres under consideration (Section 10.5) to
synchronise the conjugacy indeterminacies that occur (Corollary 11.16 (1)). The theory
of synchronisation of conjugacy indeterminacies makes it possible to construct “good
diagonals”, which give rise, in the context of the log-theta-lattice, to horizontally coric
objects.

By combining the construction of Gaussian monoids just discussed with the theory
of log-links, one obtains LGP-monoids (Proposition 13.6). Here, it is of interest to
observe that this construction of LGP-monoids makes use of the compatibility of the
cyclotomic rigidity of mono-theta environments with the profinite topology, which is
closely related to the isomorphism class compatibility of mono-theta environments (cf.
Remark 9.6.2 (5)). LGP-monoids are equipped with natural canonical splittings, which
arise, via canonical splittings of theta monoids (i.e., in essence, monoids generated
by theta functions), from the constant multiple rigidity of mono-theta environments
(Proposition 11.7, Proposition 13.6).

The theory of log-links and log-shells, both of which are closely related to the lo-
cal units of number fields under consideration (Section 5, Section 12), together with
the Kummer theory that relates corresponding Frobenius-like and étale-like versions of
objects, gives rise to the log-Kummer correspondences for the theta values (which are
related to the local value groups of the number fields under consideration) and (global)
number fields under consideration (Proposition 13.7 and Proposition 13.11). The canon-
ical splittings of LGP-monoids discussed above may be interpreted, in the context of
the log-Kummer correspondence, as a non-interference property (Proposition 13.7 (2c))
of the LGP-monoids, while the classical fact F ;O[] <., Ov = p(F;

- d) may be inter-

preted, in the context of the l[og-Kummer correspondence, as a non-interference property
(Proposition 13.11 (2)) of the number fields involved (cf. the column labelled “(2)” of
the table before Corollary 13.13).

By passing from arithmetically holomorphic structures to the underlying mono-
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analytic structures, admitting three kinds of mild indeterminacies, and applying the non-
interefence properties of log-Kummer correspondences, one obtains the multiradiality of
the final multiradial algorithm (Theorem 13.12). In the final multiradial algorithm, we
use the theta values (which are related to the local value groups) to construct the ©-pilot
objects (Definition 13.9 (1)), (global) number fields to relate (global Frobenioids arising
from) X-line bundles to (global Frobenioids arising from) H-line bundles (cf. Section 9.3),
and log-shells (which arise from the local units) as mono-analytic containers for theta
values and (global) number fields.

Since the labels attached to the theta values depend on the arithmetically holomor-
phic structure, one cannot, a priori, transport these labels from one side of a ©-link to
the other side of the ©-link. On the other hand, by using processions, one can reduce
the indeterminacy that arises from forgetting these labels (cf. Remark 13.1.1).

Finally, by combining the multiradiality of the final multiradial algorithm with the
compatibility of this algorithm with the ©-link, the compatibility of the log-volumes
with the log-links (Section 5), and various properties concerning global Frobenioids, we
obtain an upper bound for the height of the given elliptic curve (Corollary 13.13, cf.
Remark 13.13.2). The fact that the leading term of the upper bound is of the expected
form may be regarded as a consequence of a certain calculation in Hodge-Arakelov
theory (Remark 1.15.3 (the “miracle identity”)).

Leitfaden

§2. Prel. Anab. —— §6. Prel. Temp.

[

§3. Mono-anab. —— §7. Et. §4. Aut-hol. —— §5. Log-vol. /-sh.

/

§10. Hodge Th. §11. H-A. Eval. ———— §12. Log-link —— §13. Mlt. Alg’m
§8. Fr'"ds —— §9. Prel. NF-Eval. §1. Gen. Arith. Thm. 0.1

The above dependences are rough (or conceptual) relations. For example, we use some
portions of §7 and §9 in the constructions in §10; however, conceptually, §7 and §9 are
mainly used in §11, and so on.
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§0.2. Notation.

General Notation:

For a finite set A, we write #A for the cardinality of A. For a group G and a
subgroup H C G of finite index, we write [G : H| for #(G/H). (For a finite extension
of fields K D F, we also write [K : F| for dimp K. This will not result in any confusion
between the notations “[G : H|” and “[K : F]”.) For a function f on a set X and
a subset Y C X, we write f|y for the restriction of f to Y. We write m for the

van Fesenko wrote, in the published version of his survey “Arithmetic deformation theory via
arithmetic fundamental groups and nonarchimedean theta-functions, notes on the work of Shinichi
Mochizuki”, that he encouraged the author to learn and scrutinise arithmetic deformation theory
subsequent to his meeting with Mochizuki in mid-September 2012. In fact, the author had already
sent an email to Mochizuki on the 1st of September 2012, in which the author expressed his interest
in studying inter-universal Teichmiiller theory.

2In particular, the author began his study of inter-universal Teichmiiller theory of his own will. In
the latest version of Fesenko’s survey (posted on Fesenko’s web site subsequent to the publication
of the published version of the survey), Fesenko replaced the expression “encouraged Yamashita”
by the expression “supported his interest to study the theory”.
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mathematical constant pi (i.e., m = 3.14159 - ).

For a prime number [ > 2, we write Ff := F)*/{£1}, F}** := F; x {£1}, where
{£1} acts on F; by multiplication, and |F;| := F;/{+1} = F; [[{0}. We also write
¥ o= 151 = 4FF and 1F = 1% +1 =51 = #|F|.

Categories:

For an object A in a category, we shall call an object isomorphic to A an isomorph
of A.

For a category C and a filtered ordered set I # (), we write pro-C;(= pro-C)
for the category of pro-objects of C indexed by I, i.e., whose objects are of the form
((Ad)ier, (fij)icjer) (= (Ai)ier), where A; is an object in C, and f; ; is a morphism
A; — A; satisfying f; jfjr = fir for any ¢« < j < k € I, and whose morphisms are
given by Homyp,o-c((A4i)ier, (Bj)jer) = @j lim Home (A;, B;). We also regard objects
of C as objects of pro-C (by setting every transition morphism to be identity). Thus,
relative to this convention, we have Homp,o.c((Ai)icr, B) = lim, Home¢ (4;, B).

For a category C, we write C° for the full subcategory of connected objects, i.e., the
non-initial objects which are not isomorphic to a coproduct of two non-initial objects of
C. We write CT (resp. C1) for the category whose objects are formal (possibly empty)
countable (resp. finite) coproducts of objects in C, and whose morphisms are given by
Home (resp. ¢4y (LL; 4i: [1; By) := 11, [1; Home (4;, Bj) (cf. [SemiAnbd, §0]).

Let C1,Cy be categories. We say that two isomorphism classes of functors f : C; —
Ca, f': C; — C} are abstractly equivalent if there exist isomorphisms a; : C; = C,
ag : Co :>C§ such that f"oa; = aso f.

Let C be a category. We define a poly-morphism A PV B for A,B € Ob(C) to
be a (possibly empty) set of morphisms A — B in C. A poly-morphism for which each

constituent morphism is an isomorphism will be called a poly-isomorphism. If A = B,
poly
then a poly-isomorphism A = B will be called a poly-automorphism. We define
full poly

the full poly-isomorphism A = B to be the set of all isomorphisms A = B.
We define the composite of poly-morphisms {f; : A — B},cr and {g; : B = C}jes
to be {gj o fi :+ A — C}jyerxs. We define a poly-action to be an action via poly-
automorphisms.

Let C be a category. We define a capsule of objects of C to be a finite collection
{A;} ey of objects of C. We shall also refer to {A;};cs as a #J-capsule. We define a
morphism {A;}jc; — {4} }jes between capsules of objects of C to be a collection
of data (¢, (fj)jes) consisting of an injection ¢ : J < J" and a morphism f; : A; — Ai(j)
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in C for each j € J. (Thus, the capsules of objects of C and the morphisms between
capsules of objects of C form a category.) We define a capsule-full poly-morphism
to be a poly-morphism

fi A =AY } = | | Isom¢(A;, Al .
{{ J- 4 (J)}JEJ (F3)ses€ll e s Tsome (A A7 ) ( Jlg] c(4; (J)))

in the category of the capsules of objects of C, associated with a fixed injection ¢ : J —
J’. If the fixed ¢ is a bijection, then we shall refer to the capsule-full poly-morphism as
a capsule-full poly-isomorphism.

Number Fields and Local Fields:

In this survey, we define a number field to be a finite extension of Q (i.e., we
exclude infinite extensions). We define a mixed characteristic (or non-Archimedean)
local field to be a finite extension of @@, for some p. We use the abbreviations NF
for “number field”, MLF for “mixed characteristic local field”, and CAF for “complex
Archimedean field” (i.e., a topological field isomorphic to C).

For a number field F', we write V(F') for the set of equivalence classes of valuations
of F and V(F)*¢ C V(F) (resp. V(F)™™ C V(F)) for the subset of Archimedean
(resp. non-Archimedean) equivalence classes of valuations. For number fields F' C L
and v € V(F), we write V(L), := V(L) xyr {v} (C V(L)), where V(L) — V(F) is
the natural surjection. For v € V(F'), we write F,, for the completion of F' with respect
to v. We write p, for the characteristic of the residue field (resp. e, that is to say,
e =271828---) for v € V(F)™" (resp. v € V(F)?*). We write m, for the maximal
ideal and ord, for the valuation normalised by ord,(p,) = 1 for v € V(F)™". We
normalise v € V(F)"" by v(uniformiser of F,) = 1. (Thus, v(—) = e, - ord,(—), where
we write e, for the ramification index of F,, over Q,,.) We shall write ord for ord, when
there is no fear of confusion.

For a non-Archimedean (resp. complex Archimedean) local field k, we write Oy, for
the valuation ring (resp. the subset of elements of absolute value < 1) of k, O} C Oy
for the subgroup of units (resp. the subgroup of units, i.e., elements of absolute value
= 1), and OF := Oy \ {0} C Oy, for the multiplicative topological monoid of non-zero
elements of O. We shall also refer to Oy as the subset of integral elements of k.
When £k is a non-Archimedean local field, we shall write m; for the maximal ideal of
Oy.

For a non-Archimedean local field K with residue field k£, and an algebraic closure
k of k, we write Frobx € Gal(k/k) or Froby, € Gal(k/k) for the (arithmetic) Frobenius
element, i.e., the map k > 2 — 2% € k. (Note that in this survey, neither the term
“Frobenius element”, the notation Frobg, nor the notation Froby will be used to refer
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to the geometric Frobenius morphism, i.e., the map k 3 z — z'/#F ¢ E)
Topological Groups and Topological Monoids:

For a Hausdorff topological group G, we write (G —) G for the abelianisation
of G as a Hausdorff topological group, i.e., the quotient of G by the closure of the
commutator subgroup of G, and Gy (C G) for the subset of torsion elements in G.

For a commutative topological monoid M, we write (M —)M?®P for the groupifica-
tion of M (i.e., the coequaliser of the diagonal homomorphism M — M x M and the zero-
homomorphism), M;s(C M) for the subgroup of torsion elements of M, M*(C M) for
the subgroup of invertible elements of M, and (M —)MP’ for the perfection of M (i.e.,
the inductive limit ligneN>1 M, where the index set N>; is equipped with the order
structure determined by divisibility, and the transition map from the copy of M at n
to the copy of M at m is given by multiplication by m/n).

For a Hausdorff topological group G, and a closed subgroup H C G, we write

Zg(H):={9€ G|gh=hg,Vhe H},
C Ng(H) = {gEG\gHg_le}, and
CCq(H):={geq| gHg™ ' N H has finite index in H, gHg_l}

for the centraliser, normaliser, and commensurator of H in G, respectively. (Note that
Zc(H) and Ng(H) are always closed in G; however, C(H) is not necessarily closed in
G (cf. [AbsAnab, Section 0], [Anbd, Section 0]).) If H = Ng(H) (resp. H = Cg(H)),
then we shall say that H is normally terminal (resp. commensurably terminal)
in G. (Thus, if H is commensurably terminal in G, then H is normally terminal in G.)

For a group G, we write Inn(G) (C Aut(G)) for the group of inner automorphisms of
G and Out(G) := Aut(G)/Inn(G). We call Out(G) the group of outer automorphisms of
G. Let G be a group with Zg(G) = {1}. Then G — Inn(G) (C Aut(Q)) is injective, and
we have an exact sequence 1 — G — Aut(G) — Out(G) — 1. If f: H — Out(G) is a

out
homomorphism of groups, we write G x H — H for the pull-back of Aut(G) — Out(G)
with respect to f:

1 G Aut(G) —> Out(@) —— 1
-]
1 G G% H o 1.

out
We shall call G x H the outer semi-direct product of H with G with respect to

t
f. (Note that G < H is not necessarily naturally isomorphic to a semi-direct product.)
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When G is a compact Hausdorff topological group, then we equip Aut(G) with the
compact open topology and Inn(G), Out(G) with the induced topology. If, moreover,
H is a topological group, and f is a continuous homomorphism, then we equip with

t
G % H the induced topology.
Curves:

For a field K, we write Up1 = Upy = PL-\ {0,1,00}. We shall call an algebraic
curve over K that is isomorphic to UP}( over K a tripod over K. We write Mg C Mep
for the fine moduli stack of elliptic curves and its canonical compactification.

If X is a generically scheme-like algebraic stack over a field £ which has a finite
étale Galois covering Y — X, where Y is a hyperbolic curve over a finite extension of
k, then we call X a hyperbolic orbicurve over k ([AbsTopl, §0]).

Cyclotomes:

For a field K of characteristic 0 and a separable closure K of K, we write 5 (K) :=
Hom(Q/Z,K ) and po/z(K) = pz(K) ®5 Q/Z. Note that Gal(K/K) acts naturally
on both. We shall use the term cyclotome (associated to K) to refer to any of the
following objects: p5(K), po/z(K), pz, (K) = pz(K) @5 Z; (for some prime number
1), pz/mz(K) = pz(K) ®5 Z/nZ (for some positive integer n). We shall refer to an
isomorph (in the category of topological abelian groups equipped with a continuous
Gal(K /K )-action) of any of the above cyclotomes associated to K (we mainly use the
case of MZ(F)) as a cyclotome. We write Xcyc = Xeye, k& (T€SP. Xeyel = Xeye,l, k) for the
(full) cyclotomic character (resp. the l-adic cyclotomic character) of Gal(K/K) (i.e.,

the character determined by the action of Gal(K/K) on piz(K) (resp. uz, (K))).

8§1. Reduction Steps via General Arithmetic Geometry.

In this section, we apply arguments in elementary arithmetic geometry to reduce
Theorem 0.1 to a certain inequality —[log(q)| < —[log(@)|, which will ultimately be
proved by applying the main theorem concerning the final multiradial algorithm (Sec-
tion 13).

§1.1. Height Functions.

Let Q be an algebraic closure of Q, X a normal, Z-proper, and Z-flat scheme. For
d € Z>1, we write

X@>X@= |J X(F).
[

F:Ql<d
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Write X' for the complex analytic space determined by X (C). An arithmetic line
bundle on X is defined to be a pair £ = (£, || - ||z), where £ is a line bundle on X,
and || - ||z is a hermitian metric on the line bundle £ := L|xare (i.e., the line bundle
determined by £ on X?) which is compatible with complex conjugation on X2, A
morphism of arithmetic line bundles £, — L, is defined to be a morphism of line
bundles £; — L9 such that, locally on X sections of £y that satisfy || - ||z, <1 map
to sections of £y that satisfy ||- ||z, < 1. We define the set of global sections I'(£) to be
Hom(Ox, L), where Ox is the arithmetic line bundle on X determined by the trivial
line bundle equipped with the trivial hermitian metric. We write APic(X) for the set
of isomorphism classes of arithmetic line bundles on X; thus, APic(X) is equipped with
the group structure determined by forming tensor products of arithmetic line bundles.
If f: X — Y is a morphism of normal, Z-proper, Z-flat schemes, then we have a natural
pull-back map f*: APic(Y) — APic(X).

Let F' be a number field. An arithmetic divisor (resp. R-arithmetic divisor) on
F'is defined to be a finite formal sum a =}, cy () cov, where ¢, € Z (resp. ¢, € R) for
v € V(F)™ and ¢, € R for v € V(F)?*. We shall call Supp(a) := {v € V(F) | ¢, # 0}
the support of a and say that a is effective if ¢, > 0 for all v € V(F). We write
ADiv(F) (resp. ADivg(F')) for the group of arithmetic divisors (resp. R-arithmetic
divisors) on F'. A principal arithmetic divisor is defined to be an arithmetic divisor
of the form -, cy(pyon V(f)V = 2o, cy(ryarc[Fo © R]1og(|f[v)v for some f € F*. We
have a natural isomorphism of groups ADiv(F")/(principal elements) = APic(Spec OF)
sending ZUGV( Fy Cov tO the line bundle determined by the rank one projective Op-
module M = (][, ey (g)non mS )~ 1Op equipped with the hermitian metric on M ®7 C =
[Locv(ryere Fo ®r C determined by [], ey pyare e_ﬁ| * |», where we write m, for the
maximal ideal of Op determined by v and |- |, for the usual metric on F;, tensored with
the usual metric on C. We have a (non-normalised) degree map

degp : APic(Spec Of) =2 ADiv(F')/(principal divisors) — R

that sends v € V(F)™" (resp. v € V(F)*°) to log(g,) (resp. 1). We also define

(non-normalised) degree maps degy : ADivg(F) — R in the same way. For any finite
extension K O F and any arithmetic line bundle £ on Spec Of, we have [F—l@]deg r(L) =
1

[K—lﬁ]degK (L|spec 0 ); that is to say, the normalised degree Faydegr is unaffected by

passage to finite extensions of F. Any non-zero element 0 # s € L of an arithmetic
line bundle £ = (L,|| - ||z) on SpecOf determines a non-zero morphism Or — L
and hence an isomorphism of £~! with some fractional ideal a, of F. Thus, deg (L)
can be computed as the degree degp of the arithmetic divisor }-, cy(p)uon v(as)v —
> vev(myae([Fo + Rllog||s||,)v for any 0 # s € L, where v(a,) := mingeq, v(a), and
|| - |[v is the v-component of || - [|z in the decomposition £#¢ = [],cy(pyae Lo Over

(Spec Op)™ = [, ey(pyare Fo Or C.
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For any arithmetic line bundle £ on X, we define the (logarithmic) height func-

tion

htz: X@) (= |J X(@F)|—>R
[F:Q)<oo
associated to £ by setting ht=(z) := ﬁdeg}wx}} (L) for x € X(F), where 7 € X(OF)
is the element € X (F') = X(Op) corresponding to = (recall that X is proper over Z!),
and 27} : APic(X) — APic(SpecOp) is the pull-back map. By definition, we have
htz—o7; = htz- + ht for arbitrary arithmetic line bundles L1, L5 on X ([GenEll,
Proposition 1.4 (i)]). For an arithmetic line bundle (£, || - ||z) with ample generic fiber
Lg on Xg, it is well-known that #{z € X(Q)=? | htz(z) < C} < oo for any d € Z>;
and C' € R (cf. [GenEll, Proposition 1.4 (iv)], Proposition C.1).

For functions o, 3 : X(Q) — R, we write @ > 3 (resp. a < 3, a =~ f3) if there
exists a constant C' € R such that a(z) > f(z) + C (resp. a(z) < B(z) + C, |a(z) —
B(x)| < C) for all x € X(Q). We call an equivalence class of functions relative to ~ a
bounded discrepancy class. Note that htz 2 0 ([GenEll, Proposition 1.4 (ii)]) for
any arithmetic line bunde £ = (£, || - ||z) such that the n-th tensor product E%’" of the
generic fiber Ly on X is generated by global sections for some integer n > 0 (a condition
that holds if, for instance, Lg is ample). (Indeed, suppose that s1,..., s, € I'(Xg, ES")
generate Q%". Write A; := {s; # 0}(C X(Q)) fori =1,...,m (so Ay U---UA,, =
X(Q)). After tensoring L£°" with the pull-back to X of an arithmetic line bundle on
Spec Z (cf. the property htz—g 7 = htz—+htz mentioned above), we may assume (since
X is compact) that the section s; extends to a section of £L&™ such that ||s;||en <1
on X?°. Then, for each i = 1,...,m, the non-negativity of the height htz of points
€ A; C X(Q) may be verified by computing the height of such points by means of s;
and observing that both the Archimedean and non-Archimedean contributions to the
height are > 0.) We also note that the bounded discrepancy class of the height ht-
of an arithmetic line bundle £ = (£, || - ||z) depends only on the isomorphism class
of the line bundle Lo on Xq ([GenEll, Proposition 1.4 (iii)]). (Indeed, for £; and L,
with (£1)g = (L£2)g, since both the line bundle (£1)g ® (Eg)%’(_l) = Ox, and its
inverse are generated by global sections, we have htz— — htz~ = ht,cT P PCIo 2 0 and
htz — htz— 2 0.) When we are only interested in bounded discrepancy classes (and
there is no fear of confusion), we shall write ht., for htz.

For x € X(F) C X(Q), where F' denotes the minimal field of definition of x, the
different ideal of F' determines an effective arithmetic divisor 9, € ADiv(F') supported

in V(F)"°". We define the log-different function log-diff x on X (Q) as follows:
X(Q) 3  + log-diff x () := ﬁdegF(Dw) eR.

Let D C X be an effective Cartier divisor. Write Ux := X \ D. For x € Ux (F') C



A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 17

Ux(Q), where F' denotes the minimal field of definition of z, write zp € X(Op) for
the element in X (Op) corresponding to x € Ux(F) C X (F') via the equality X (F) =
X(Op). (Recall that X is proper over Z.) Write D, for the pull-back of the Cartier
divisor D on X to SpecOp via zp : SpecOr — X. Thus, D, may be regarded as
an effective arithmetic divisor on F supported in V(F)"". We shall refer to {2 :=
(Dy)rea € ADiv(F') as the conductor of x. We define the log-conductor function

log-condp on Ux(Q) as follows:

Ux(Q) > x + log-condp(z) := ﬁdeglp(ff) e R.

Note that the function log-diff x on X (Q) depends only on the scheme Xqg ([GenEll,

Remark 1.5.1]). By contrast, the function log-condp on Ux(Q) depends on the pair of
Z-schemes (X, D). Nevertheless, the bounded discrepancy class of log-condp on Ux (Q)
depends only on the pair of Q-schemes (Xg, Dg). (Indeed, this may be verified easily
by applying the fact that any isomorphism Xg — X@ that induces an isomorphism
Dg = D(’@ extends to an isomorphism between the respective restrictions of X, X’ to a

suitable open dense subset of SpecZ ([GenEll, Remark 1.5.1]).)

§1.2. First Reduction.

In this subsection, we show that, to prove Theorem 0.1, it suffices to prove it in a
situation subject to certain restrictions.

Let Q be an algebraic closure of Q. We shall say that a non-empty compact subset
of a topological space is a compact domain if it is the closure of its interior. Let
X be a normal, Z-proper, and Z-flat scheme and Ux an open dense subscheme of X.
Let V' C Vg := V(Q) be a finite subset which contains V§°. For each v € V N Vg*
(resp. v € V. NVg™), let Q, be an algebraic closure of Q,, § # K, G Ux(Q,) (resp.
0 #K, S Ux(Q,)) a Gal(Q,/Q,)-stable compact domain (resp. a Gal(Q,/Q,)-stable
subset whose intersection with each Ux(K) C Ux(Q,), where K ranges over the finite
subextensions of Q,/Q,, is a compact domain in Ux (K)). (Thus, there is a natural
Gal(Q,/Q,)-orbit of bijections X** = X(Q,).) Then we write Ky C Ux(Q) for the
subset of points z € Ux (F) C Ux (Q) where [F : Q] < oo such that for each v € VNVg*
(resp. v € V N V") the set of [F: Q] points of X(Q,) (resp. X(Q,)) determined by
x is contained in /C,. We shall refer to a subset Ky C Ux(Q) obtained in this way
as a compactly bounded subset and to V as its support. Note that it follows
from the approximation theorem in elementary number theory that the IC,’s and V are

completely determined by Ky .

Lemma 1.1.  ([GenEll, Proposition 1.7 (i)]) Let f : Y — X be a generically finite
morphism of normal, Z-proper, Z-flat schemes of dimension two. Let e be a positive
integer, D C X, E C Y effective, Z-flat Cartier divisors such that the generic fibers
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Dq, Eq satisfy the following conditions: (a) Dg, Eg are reduced, (b) Eg = f@l(DQ)red,
and (c) fo restricts a finite étale morphism (Uy)g — (Ux)qg, where Ux := X \ D and
Uy =Y\ E.

(1) We have log-diff x |y + log-condp|y < log-diffy + log-condg on Uy (Q).

(2) Consider the following condition: (d) the ramification index of fq at each point of

Eq divides e. If, moreover, this condition (d) is satisfied, then we have

log-diffy < log-diff x|y + (1 — %) log-condp |y

on Uy (Q).

Proof. First, let us observe that there exists an open dense subscheme Spec Z[1/S] C
Spec Z such that the restriction of Y — X to SpecZ[1/S5] is a finite tamely ramified mor-
phism of proper smooth families of curves. Then it follows from an elementary property
of differents that the prime-to-S portion of the equality log-diff x|y + log-condply =
log-diffy + log-condg and, if one assumes condition (d) to be in force, the prime-to-S
portion of the inequality log-diffy < log-diff x|y + (1 — %) log-condp|y hold. (If the
ramification index of fg at each point of Eg is equal to e, then this inequality is an
equality.) On the other hand, the S-portion of log-cond g and log-condp|y is & 0, while
the S-portion of log-diffy — log-diff x|y is > 0. Thus, it suffices to show that the S-

portion of log-diffy — log-diff x|y is bounded above on Uy (Q). Such a bound may be
obtained as a consequence of the following claim:

Fix a prime number p and a positive integer d. Then there exists a positive
integer n such that for any Galois extension L/K of finite extensions of Q, with
[L : K] <d, the different ideal of L/K contains p"Oyp..

This claim may be verified as follows. First, we observe that when the extension L/K
is tamely ramified, we may take n = 1. Thus, by considering the maximal tamely
ramified subextension of L(u,)/K, we reduce immediately to the case where L/K is
totally ramified p-power extension, and K contains p,. Since p-groups are solvable, we
reduce further to the case where [L : K] = p. Since K D p,, it follows from Kummer
theory that we have L = K(a'/P) for some a € K. Here, a'/P denotes a p-th root of a
in L. By multiplying by a suitable element of (K *)P, we may assume that a € Ok and
a ¢ mb (D pPOg). Then we have O, D a'/POr D pOr. We also have an inclusion of
Ofx-algebras Ok [X]/(XP — a) < Oy, given by sending X + a'/P. Thus, the different
ideal of L/K contains p(a'/?)?P='0p > p'+P=DOp = pPOy. This completes the proof
of the claim and hence of Lemma 1.1. O

Proposition 1.2.  ([GenEll, Theorem 2.1]) Fiz a finite subset V" of Vg To
prove Theorem 0.1, it suffices to show the following: Write Upr := ]P’(%2 \ {0,1,00}. Let
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Ky C Up1(Q) be a compactly bounded subset with support V- = V"™ U V@ ¢ Then for
any d € Z~q and € € R~q, we have

hte,, ((0,1,00p) S (1 + €)(log-diffpr + log-cond,1,00})

on ICV N Upl (@)Sd.

Proof. Let X, D,d, e be as in Theorem 0.1. For any e € Z~, there exists (by the
well-known structure of étale fundamental groups of hyperbolic curves over algebraically
closed fields of characteristic zero) a connected étale Galois covering Uy — Ux such
that the normalisation Y of X in Uy is hyperbolic and the ramification index of Y — X
at each point in E := (D X x Y);eq is equal to e. (Later, we will take e sufficiently large.)
First, we claim that

it suffices to show that, for any € € R-g, we have hty, < (1 + €)log-diffy on
Uy (@)Sd-deg(Y/X).

This claim may be shown as follows: Let ¢ € Ry be such that (1+¢)? < 1+e¢. Then

we have

htey (o) ly S (14 €)htey, < (1+ €)*log-diffy
< (14 €)?*(log-diff x + log-condp)|y < (1 + €)(log-diff x + log-condp)|y

~Y

1 o
for e > % (1 - ﬁ) on Uy (Q)%4e(Y/X) Here, the first “<” follows from

the computation

deg(wy) = deg(wy (E)) - deg(E) = deg(wy () (1~ sty )

= des(wy (B)) (1~ st ) > 1 dea(wy (B)) = rides(wx (D)),

together with the basic properties of height functions reviewed in Section 1.1; the second
“<” is the hypothesis of the claim; the third “<” follows from Lemma 1.1 (2); the final
inequality “<” follows from the choice of € € R~ . Thus, the claim follows from the fact
that the fiber at any point in Ux (Q)=¢ of the natural map Uy (Q)=%de(Y/X) _ 7y (Q)
is non-empty. This completes the proof of the claim.

Thus, it suffices to show Theorem 0.1 in the case where D = (). We assume that
hty,, < (14 €)log-diff x is false on X (Q)=¢. It follows from the compactness of X (K),
where K/Q, (v € V) is a finite extension, that there exists a subset Z C X (Q)~% and an

unordered d-tuple of points =, C X (Q,) for each v € V such that ht,,, < (14¢)log-diff x

—_—

is false on =, and the unordered d-tuples of Q-conjugates of points in = converge to

=, in X(Q,) for each v € V. By Theorem C.2 (the existence of non-critical Belyi
maps), there exists a morphism f : X — P! such that f is unramified over Up1, and
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f(Ey) C Up:(Q,) for each v € V. In particular, it follows that, after possibly eliminating
finitely many elements from =, there exists a compactly bounded subset Ky C Up1 (Q)
such that f(Z) C Ky. Write X D E := f71({0,1,00})1ed- Let €’ € R be such that

1+€" <(1+¢€)(l—2€¢"deg(F)/deg(wx)). Then we have

ht

Q

wx Aty (m) —htoy(g) ~ htw,, ((0,1,001)|x —Dtoy (k)

(1 + €")(log-diffp1 | x + log-condyg 1,001 |x) — hto (k)

(1 + €")(log-diff x 4 log-condg) — hte (&)

(1 + 6//)(log—diffx + htOX(E)) - htOX(E) = (1 + 6”)10g—diffx + E”ht@X(E)
( )

1+ ¢"log-diff x + 2€¢” (deg(FE)/deg(wx ))hty

AN YANRZANR AN

on =. Here, the second “~” follows by applying the natural isomorphism wp: ({0, 1, 00})|x
5 wx (E); the first “<” follows (since f(Z) C Ky) from the displayed inequality in the
statement of Proposition 1.2; the second “<” follows from Lemma 1.1 (1); the third “<”
follows from the inequality log-condg < hto, (g (discussed in more detail below); the
fourth “<” follows from the fact that w?}(Qdeg(E)) ® Ox (—FE)®dee(@x)) is ample since its
degree is equal to 2deg(E)deg(wx) — deg(F)deg(wyx) = deg(E)deg(wx) > 0. (The in-
equality log-condg < hto (g) may be proved by computing the height hto  (z) by means
of the section s € I'(X, Ox(E)) corresponding to the natural inclusion Ox — Ox(E):
the Archimedean contribution to hto, (g is bounded from below in light of the compact-
ness of the space X, while the non-Archimedean contribution to hty , () is bounded
from below by the corresponding non-Archimedean contribution to log-condg, as a
consequence of the “(—).eq” in the definition of log-condg.)

The inequalities of the above display imply that (1 — 2¢”deg(E)/deg(wx))hty, <

WX ~
/ ) - i . o .
— ’ > w
(14€")log-diff x on =. Thus, the choice of ¢/ € R+ implies that ht,,, < (14 €)log-diff x
on =. This contradicts the hypothesis on =. U
§1.3. Second Reduction — Log-volume Computations.

In the present and following subsections, we further reduce Theorem 0.1 to a cer-
tain relation “—[log(q)| < —|log(©)[” (which will be treated in later sections) that
arises naturally from the main results of inter-universal Teichmiiller theory. It might

seem to some readers that it is unnatural and bizzare to consider such objects as the

2
image “¢(p127ord(qﬂ

QQp<i<; 21% log,, (O, ) that induces an automorphism of @, Tl- log,(Ok. ).
Moreover, since the reductions discussed in the present and following subsections con-

j)Ong ®0K3j (®0§i§j0Kﬂi)N) via an arbitrary automorphism ¢ of

sist of just elementary calculations and contain nothing deep, it may appear that the
relation —|log(q)| < —|log(©)| is no less difficult than the inequality that we ultimately

wish to show. However, we would like to give a complete treatment of these elemen-
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tary calculations in these subsections before proceeding to our discussion of anabelian
geometry and inter-universal Teichmiiller theory.

For a € R, we write |a| (resp. [a]) for the largest integer < a (resp. the smallest
integer > a).

Lemma 1.3.  ([IUTchIV, Proposition 1.2 (i)]) Let k be a finite extension of Q,.
We write e for the ramification index of k over Q,. For \ € %Z, we write p*Oy, for the
fractional ideal generated by any element x € k with ord(z) = X. Write

log (p < ) 1
and b:= R /A -
p—2, gy | ¢

N o=

Then we have
p*Ox Clog,(OF) C p~ 0.

If, furthermore, p > 2 and e < p — 2, then p*Oy = log,(O;’) = p~ 0.

Proof. We have a > p%l, since, for p > 2 (resp. p = 2), we have a > %pfz =
1)%2 > p%l (resp. a =2 > 1= p%l) We fix an embedding £ < C,. Then we have

p*Oy C pﬁ’LeOCp N Oy C log,(Oy) for some € > 0, since the p-adic exponential map
converges on pﬁ“O@p and z = log, (exp,(z)) for any z € pﬁﬁOcp for e > 0.
1 _e log —€—
On the other hand, we have pb+% > pfl, since b + % > % —-1= %.
Note that b + % € Z>o, and that b + % > 1 if and only if ¢ > p — 1. Thus, we

have (b+ 1)+ 1 > L since, for e > p— 1 (resp. for e < p — 1), we have (b +

[ p—17
%)4—% > b+% > 1> p%l (resp. (b—l—é)—l—% = % > ]ﬁ) In summary, we have
1
min{(b—i— )+ %,%pﬂi} > zﬁ' For b+ 1 € Z>o, we have (1 +p%0<cp)plﬂre G 1+

1 ) 1\ bt . 1 1 ptte 1
p»~10c,, since ord((1 + pex)? ° —1) 2 min{(b+ ¢) + 3,52~} > ;= for z € Oc,.
Thus, we obtain pbt< log,(O;) C OrNlog,(1 +pﬁ+€Ocp) C Oy ﬂpﬁ“Ocp C pz Oy,
for some € > 0, which gives us the second inclusion. The last claim follows from the

definition of a and b. O

For finite extensions k D ko of Q,, we write 044, for ord(z), where x is any
generator of the different ideal of k over ky. For a € QQ, we write p® € @p for an element
of Q, with ord(p?) = a.

Lemma 1.4. ([IUTchIV, Proposition 1.1]) Let {k;}ics be a finite set of finite ex-
tensions of Qp. Write 0; := 0y, g, - Fiz an element x € I and write 0y« := Zig\{*} 0;.
Then we have

P (®ie1O0k;)~ C ®icrOk, C (Rie1Ok;)",
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where (®;c1O0k,)~ denotes the normalisation of ®;c;Oyk,. (The tensor products are
taken over Z,.) Note that p°I* (®;c10y,)™ is well-defined for suitable p°1* (for example,
products of p° € Oy, fori e I*).

Proof. Tt suffices to show that p°r* (O@p ®0,. ®iciOr,)~ C O@p ®0,, ®ierOk,,
since Of is faithfully flat over Og,. By applying induction on #I, we reduce immedi-
ately to the case where 7] = 2. In this case, Og @0y, (Or, ®z, Ok,) = O@p ®2z, Oky»
and p°2 (Ofp ®z, Ok,)~ C O q, ®z,, Ok, holds by the definition of the different ideal. [

Lemma 1.5.  ([IUTchIV, Proposition 1.3]) Let k D ko be finite extensions of Q,.
We write e and ey for the ramification indices of k and ko over Qp, respectively. Let m
be the unique integer such that p™ | [k : ko] and p™*' { [k : ko]. Write dy := 0y /g, and
Ok := Ok /Q, -

(1) We have dy, + 1/eq <0 + 1/e. If, furthermore, k is tamely ramified over kg, then
we have O, + 1/eg =0 + 1/e.

(2) If k is a finite Galois extension of a tamely ramified extension of ko, then we have
O < 0py +m 4 1/eg.

Remark 1.5.1.  Note that it is the quantity “log-diff +log-cond”, not the quantity
“log-diftf”, that behaves well under passage to field extensions (cf. also the proof of
Lemma 1.11 below). This is one of the reasons that the term log-cond appears in
Diophantine inequalities (cf. Lemma 1.1 for the geometric case).

Proof. (1): We may replace ko by its maximal unramified subextension in k D kg
and assume that k/kq is totally ramified. Choose uniformisers wy € Oy, and w € Oy
and let f(z) € Og,[z] be the minimal monic polynomial of w over Ok,. Then there
exists an O, -algebra isomorphism Oy, [z]/(f(z)) = O which sends = to . Moreover,
f(z) = 2¢/°° modulo my, = (wp). Thus, 0 — Vg, > min{ord(w()),ord(éw%_l))} >
mln{elo, (13 <% — 1)} = % (% — 1), where the inequalities are equalities if k/kg is
tamely ramified.

(2): We apply induction on m. If m = 0, then (2) follows from (1). Thus, we assume
that m > 0. It suffices to show that 05 <, +m+1/eg+e for all € > 0. By assumption,
k is a finite Galois extension of a tamely ramified extension k; of ky. By replacing k; by
its maximal tamely ramified subextension in k D ki and kg by its maximal unramified
subextension in k D ko, we may assume that [k : k1] = p™. Since any p-group is solvable,
there exists a subextension k D ko D ky such that [k : kg] =pand [k : k1] = p™ L. By
the induction hypothesis, we have 0y, < 0k, +(m—1)+1/ey. By replacing k, kg, and ky
by suitable tamely ramified extensions, we may assume that k; D p, and (ex >)e; > p/e,
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where we write e; and ey for the ramification indices of k1 and ks over Q,,, respectively.
By Kummer theory, there exists an inclusion of Op,-algebras Og,[z]/(z? — a) — Oy
for some a € Oy,. Write a'/? € Oy, for the image of z by this homomorphism. By
replacing a by a suitable (k5 )P-multiple of a, we may assume that ord(a) < pe—_;.
Then we have 05, < ord(f'(a'/?)) 4+ 0k, < ord(pa®=V/P) + oy, 4+ (m — 1) + 1/eg <
Ep@—;l + 0, +m+1/eg < p/es +0p, +m—+1/eg <0, +m—+1/ey+ €. This completes

P
the proof of Lemma 1.5. O

For a finite extension k of Q,, we write ufg for the (non-normalised) log-volume
function (i.e., the logarithm of the usual p-adic measure on k) defined on compact open
subsets of k and valued in R. Thus, we have 1,°%(0y,) = 0, 11°%(pOy,) = — log #(O4 /pOs)
—[k : Qp]logp. For a CAF k (cf. Section 0.2 for the definition of the notion of a CAF),
we write 1, for the radial log-volume function. Thus, y}*® is defined on compact
domains of k (cf. Section 1.2 for the definition of the notion of a compact domain), is
valued in R, and satisfies 1,%(Oy,) = 0, 11,°%(eOy) = 1. The non-normalised log-volume
function ,u}:g and twice the radial log-volume function, i.e., 2,u}€°g, may be regarded as
local versions of the non-normalised degree map degy. (Indeed, note that if, for sim-
plicity, F is a totally imaginary number field, and £ is an arithmetic line bundle over
Spec Or equipped with an embedding £ < O into the trivial arithmetic line bundle
over Spec Op, then we have degr(L) = ZUGV(F)HOU ,uF S(Lo) + 2 pev(ryere 2,u10g(/3 )
where £, denotes the 1deal of Op, determined by £ <+ O.) Similarly, the normalised
log-volume function g5~ Q ] u}fg and radial log-volume function ufg may be regarded as
local versions of the normalised degree map ﬁdeg p- (Indeed, note that if, for sim-
plicity, F', £ and L, are as above, then the normalised degree of £ may be written as a
sum of weighted averages

1 log
£ Q]degF Z 2v(F) 30 ug [Fv:Qug] Z [Fy Qv@]( @U@]MF (£v))
ve€eVg™ V(F)3v|vg
1 log
+ Z 2v(F)30ug [Fv Qug] Z [Fo : Quglig (Ev)
VeV V(F)2v|vg

with respect to the weights {[F, : Qu,]}v(F7)30jvg-)
For finite extensions {k; }icr of Q,, the sum of the normalised log-volume functions

{U%:—l(@p]u};g}ig determines (since, for any i € I, we have [kll SIS log(pOk )= —logp) a
log-volume function ,u};g on compact open subsets of k; := ®z€ 1k; (where the tensor

products are taken over QQ,) valued in R, normalised so that uk #(®ic10y,) = 0. For
CAF’s {k;}ic1, we consider the tensor product k; := ®;crk; as a tensor product of
topological rings. Then k; decomposes as a direct sum (or, equivalently, as a direct
product) of CAF’s. Write By C k; for the subset determined by forming the direct
product of the unit balls on the various direct summands. Then we define the log-
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volume function u}flg on compact domains in ky, valued in R, by forming the sum of the
radial log-volumes on the various direct summands. Thus, we have u}:[g(B 1) =0.

Lemma 1.6.  ([IUTchIV, Proposition 1.2 (ii), (iv)] and [IUTchIV, “together
with the fact...consideration” in Steps (v) and (vi) in the proof of Theorem 1.10]) Let
{ki}icr be a finite set of finite extensions of Q,. We write e; for the ramification index
of ki over Q,. We write a; and b; for the quantity a and b defined in Lemma 1.3 for
ki, respectively. Write 0; 1= 0y, /q,, a1 = D ;e @i, br = D ;e bi, and 07 == Y, ;0.
For \ € eiiZ, we write p*Oy, for the fractional ideal generated by any element x € k;
with ord(z) = . Let ¢ : @, 108,(0F) = @ierlog,(O)) (where the tensor products
are taken over Z,) be an automorphism of Z,-modules. We extend ¢ to an automor-
phism of the Q,-vector spaces Q, ®z, ®i6110gp(01fi) by the linearity. We consider
(®ic1O0,)~ as a submodule of Q, ®z, Q;c; logp(O,fi) via the natural isomorphisms
Qp ®z, (®icrO,;)~ = Q, ®z, ®RicrOr, = Q) ®z, ®icrlog,(Oy).

(1) Write I > I*:={i€1|e; >p—2}. For any A € —=Z, i € I, we have
i

~ 1
6 (0 (@ier0k)™) P @) 5108, (OF,)
el

C pL)\—DI—aIJ ® logp(O:i> C pL/\—DI—aIJ—bI (®i€10ki)Na and
iel
B (A1 = (9,0 104,)7) < (<A 07 4+ 1) log(p) + D (3 + log(er)).
iel*

(2) If p>2 and e; =1 for each i € I, then we have

1
¢<(®i610ki)w)’ ® 2_]7 logp(OI:) - ®10gp(01;) - (®i€]0ki)w7

iel iel
and (1% ((®ierOk,)™) = 0.

Remark 1.6.1.  If e; < p — 2, for simplicity, then we have Oy, C % log,(OF) =
%mki, where we write my, for the maximal ideal of k;.

When we consider ﬁ log,(OF) = %mki as a Zp-module (i.e., when we regard it

as having no ring structure), then we cannot distinguish %w 1z2 ..., e,

'p 'p
where we write w for a uniformiser of k;. We can consider this phenomenon as a kind

of “differential over F;” (cf. also the point of view from the Teichmiiller dilation
discussed in Section 3.5).

Proof. (1): We have p®"* % (®;c1O0y,)~ C p™ ®ier Ok, C Q;c;10g,(0; ), where
the first (resp. second) inclusion follows from Lemma 1.4 (resp. Lemma 1.3). Then by
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Lemma 1.3, we have p/\(®z’eIOki)N _ p)\szfalpbﬂraz(@ie]()ki)w C pL)\fDI*aIJpDI+aI
(®ie1Ok,)~ C pr2r=1llog (Ric;OF ) € pA—2r=arl=br(@,c;0y,)~. Thus, we have
¢ (PN (@ie10n,)~) € & (PP 7071 @, log, (0r)) = pA21 =1 @, 10g, (OF)) €
C plA—2r—arl=br(®,.;04,)™, where the last inclusion follows from Lemma 1.3. If p = 2,
we have [0r +ar] >0 +ar > ay = 2#I1. If p> 2, we have a; > e%-’ and 0; > 1 — e% by
Lemma 1.5 (1), hence, we have 0; + a;y > #I. Thus, we obtain the remaining inclusion
PN Qier 2ip log, (0;) C pr2r=1) &, log, (O ) for p > 2.

We show the upper bound of the log-volume. We have a; — ei < 1 < @,

p
where the first inequality for p > 2 (resp. p = 2) follows from a; < eii(pTZ +1) =
ﬁ—k& andp%2 <%forp>2 (resp. a; — + =2— 1L <2 = %), and the second

inequality follows from = > 2log z for x > 0. We also have (b; + ei) log(p) < log(L=5) <
log(2e;) < 1+ log(e;), where the first inequality follows from the definion of b;, the
second inequality follows from ]% < 2 for p > 2, and the last inequality follows from
log(2) < 1. Then by combining these, we have (a; + b;)log(p) < 3 + log(e;). For
i € I\ I*, we have a; = —b;(= 1/e;), hence, we have (a; + b;)log(p) = 0. Then we
obtain 8 (pA =211~ (@,e 10, )™) < (=(A =07 —ag — 1) +by) log(p) = (A +0r +
ar +br + 1) log(p) < (=A+0r +1)log(p) + > e - (3 + log(es)).

(2) follows from (1). O

For a non-Archimedean local field k, we write Z;, := ﬁ log, (Oy; ). For a CAF k, we
also write Zy, := m(unit ball). We shall refer to Zj, as the log-shell of k, where k is a non-
Archimedean local field or a CAF. Let F' be a number field and vg € V™. For V(F) 3
V1,...,Up | Vg, write Zy, ... 4, = ®1<i<nZF,, - (Here, the tensor products are taken over
Zyy.) Let vg € Ve, For V(F) 3 v1,...,0, | vg, we write Z,,, . ., C ®i<i<nFy, for
the image of [[, ., ., Zr, under the natural homomorphism [[i<;cn Fo, = ®1<i<nFo,.
(Here, the tensor i)roducts are taken as topological modules.)_L_et v € V™ (resp.
vg € V#¢). For a subset A C Q. ®2,,, Ly, o, (vesp. A C Ty, ... o
the holomorphic hull of A to be the smallest subset, which contains A, of the form

), we define
@icra;0Or, with a; € Op, in the natural direct sum decomposition of the topological
fields ®1<i<nFy;, = @icrLi.

We define the subgroup of primitive automorphisms Aut(C)P*™ C Aut(C) to
be the subgroup generated by the complex conjugation and the multiplication by +/—1.
(Thus, Aut(C)Prim =2 7,/47, x {£1}.)

In the rest of this subsection, we choose a tuple (F/F, Er, VP24 [ V), where

mod?’ » -+

(1) F is a number field such that v/—1 € F, and F is an algebraic closure of F,

(2) Er is an elliptic curve over F' such that Autz(Ew) = {£1}, where Fz := Er X F,
the 2.3.5(= 30)-torsion points Er[2.3.5] are rational over F', and F' is Galois over
the field of moduli Fy,,q of EF, i.e., the subfield of F' deteremined by the image of
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the natural homomorphism Aut(E#) — Aut(F) = Gal(F/Q)(D Gal(F/F)) (thus,
we have a short exact sequence 1 — Aut(Ew) — Aut(Ex) — Gal(F/Fyoa) — 1),
where we write Aut(E) (resp. Aut#(E%)) for the group of automorphisms (resp.
automorphisms over F) of the group scheme E),

(3) Vbad is a non-empty finite subset VP2d, c vuon (c V4 := V(Flu0q)), such that

mod mod mod
v 1 2 holds for each v € VP2 = and Er has bad multiplicative reduction over

mod?
w € V(F),,

(4) 1 is a prime number [ > 5 such that [ is prime to the elements of V?2d, as well as
prime to ord,, of the g-parameters of Er at w € V(F)** := V(F) xy__, VPad "and

mod mod?

(5) V is a finite subset V C V(K), where K := F(FEFp[l]), such that the restriction of
the natural surjection V(K) — V,0q to V induces a bijection V = V,04q.

(Note that this is not the definition of initial ©-data, in which we will have more
objects and conditions: Definition 10.1.) Write dioq := [Finod : Q], (V¢ C)VE2¢ .=

mod

Vinoa \ VP24 and V(F)geod .= V(F) xy__ V&% We write v € V for the element

mod’ mod *
corresponding to v € Vy,,q via the above bijection.

Lemma 1.7.  ([IUTchIV, Lemma 1.8 (ii), (iii), (iv), (v)])
(1) Fipa = Finod(EF,.,[2]) is independent of the choice of a model Er,,_,.
(2) The elliptic curve Er has at most semistable reduction for all w € V(F)"".

(3) Any model of Ex over F such that all 3-torsion points are defined over F' is iso-
morphic to Er over F'. In particular, we have an isomorphism Ep,_, XF, 'S EF
over F' for a model Ey, , of B over Fypq, such that F' D Fiyq(EF,,,[3]).

(4) The extension K D Fyoa is Galois.

(Here, “tpd” stands for “tripod” i.e., the projective line minus three points.)

Proof. (1): In the short exact sequence 1 — Autz(Ez) — Aut(Ex) — Gal(F/Fnod) —
of
E+, and the field Fyuod4(EF,,.[2]) correpsonds to the kernel of the composite of the sec-

tion Gal(F/Fnoa) — Aut(E%) and the natural homomorphism Aut(Ez) — Aut(Ez[2]).

On the other hand, by the assumption Autz(E%) = {£1}, the natural homomorphism
Aut(E%) — Aut(E5[2]) factors through the quotient Aut(Ew) — Gal(F/Fyoa), since

the action of Autz(FEx) = {£1} on Ex[2] is trivial (—P = P for P € Ex[2]). This
implies that the kernel of the composite Gal(F/Fyoa) — Aut(Ew) — Aut(Eg[2]) is
independent of the section Gal(F/Fy0q) — Aut(E%). This means that Fiyoa(Fr,,,,[2])

is independent of the choice of a model Er__.[2]. The first claim was proved.

1, a section of the surjection Aut(Ew) — Gal(F/Fyodq) corresponds to a model Ep,,_,
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(2): For a prime r > 3, we have a fine moduli X (r)z(; /) of elliptic curves with level
r structure. (Note that it is a scheme since r > 3.) Any F,,-valued point with w { r can
be extended to Op,-valued point since X (r)z1/,] is proper over Z[1/r]. We apply this
to an F,,-valued point defined by Er with a level r = 3 (resp. r = 5) structure (which
is defined over F' by the assumption). Then Er has at most semistable reduction for
w1t 3 (resp. w15). The second claim was proved.

(3): A model of E& over F corresponds to a section of Autp(Ez) — Gal(F/F)
in a one-to-one manner. Thus, a model of E5 over F' whose all 3-torsion points are
rational over F corresponds to a section of Auty(Ez) — Gal(F/F) whose image is in
ker{p : Autp(E%) — Aut(E5[3])}. Such a section is unique by Auty(Ex)Nker(p) = {1},
since Auti(E%) = {£1} and the image of —1 € Aut(Ew) in Aut(£5([3])} is nontrivial.
(Note that if —P = P € E[3] then P € Ex[2] N Ex[3] = {O}.) The third claim was
proved.

(4): A model Ep,, of Ef over Fioq, such that ' D Fipa(Er,,,[3]), gives us a sec-
tion of Autp(Ex) — Gal(F/Fuyoq), hence homomorphisms PEp 1" Gal(F/Fpoq) —
Aut(Ex[r]) for » = 3,1, which may depend on a model Ef, ,. Let g € Gal(F/Foa).
By assumption that F is Galois over Fy.q, we have gGal(F/F)g~! = Gal(F/F) in
Gal(F/Fyod)- Thus, both of Gal(F/K) and gGal(F /K )g~! are subgroups in Gal(F'/F).
We consider the conjugate ngFmod"r(.) = pEp_ (97 ()9) of pp, by g. By defi-
nition, the subgroup Gal(F/K) (resp. gGal(F/K)g~!) is the kernel of PEr_ 1 (resp.
Pngmod, 3(9)_1PEFmod,3(a)PEF 3(g) =

;). On the other hand, since p%, . 5(a) = pE; .
J— mod’ mo
1 for any a € Gal(F'/F) by the assumption, the homomorphism p%FmOd’B arises from a

mod ’
model £, of Ez over Fipq. Then by the third claim (3), the restriction pp,.  ilgaF/F) :
Gal(F/F) — Aut(Ex[l]) to Gal(F'/F) is unique, i.e., ppy,  ilgaF r = 'O%Fmod»l Gal(F/F)-
Hence we have Gal(F/K) = gGal(F/K)g~!. Thus K is Galois over Fy,,q. The fourth
claim was proved. O

We further assume that
(1) Er has good reduction for all v € V(F)&°°d N V(F)"°" with v { 2[, and

(2) we have F' = Fi,a(v—1, Ep, ,[3.5]), where Fi,q := Finod(EF, is
any model of Ez over Fyoq4, and EF, 4 is a model of B over Fypq which is defined

by the Legendre form i.e., of the form y? = z(x — 1)(x — \) with X € Fypq.)

42]). (Here EFg,__,

For an intermediate extension Fy,,q C L C K which is Galois over F},,q, we write
oL € ADiv(L) for the effective arithmetic divisor supported in V(L)®°" determined by
the different ideal of L over Q. We define log(dF) := mdegL (o) € R>p. We can con-
sider the ¢g-parameters of E'r at bad places, since Er has everywhere at most semistable

reduction by Lemma 1.7 (2). We write g € ADivg(L) for the effective R-arithmetic
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divisor supported in V(L)"°" determined by the ¢g-parameters of EFry, := Ep xp (FL) at
primes in V(FL)P2d .= V(FL) xv,__, V°24 divided by the ramification index of F'L/L.
(Note that 2[ is prime to the elements in Supp(q”) even though Er has bad reduc-
tion over a place dividing 21.) We define log(q) = log(q%) := [L—ﬁQ]degL(qL) € Rxo.
Note that log(q”) does not depend on L. We write f* € ADiv(L) for the effective
arithmetic divisor whose support coincides with Supp(q”); however, all of whose coeffi-
cients are equal to 1. (Note that Supp(q”) excludes the places dividing 21.) We define
10g(qL) = Q] Q] degL(qL) € Rx>o.

For an intermediate extension Fi,q C L C K which is Galois over Fy,,q, we define
the set of distinguished places V(L)¥st ¢ V(L)"" to be V(L)¥st .= {w € V(L)"" |
there is v € V(K)3°" which is ramified over Q}. We write V§** and V5!, to be the im-
ages of V(Fipq)4st in Vg and in V04 Tespectively, via the natural surjections V(Fipq) —
Viod = Vg. For L = Q, Fyoq, we write s 1= ZweV(L)dist eww € ADiv(L), where e,
is the ramification index of L,,/Q,,. We define log(s%) := mdegL(sL) € R>g. We

write
A% od i= 2.2 )AZ)* #GLo(Fo) #G Lo (F3)#GLa (F5)dmoa = 2'2.3%.5.dmod-

(Note that #GLQ(]F2) = 2.3, #GLa(F3) = 2.3, and #GLy(F5) = 2°.3.5.) We write
55 = ZUQEVd,st log(p )v@ € ADivg(Q), where vy, := 1 if p,, < dj 4l and 1y, = 0 if
Pug > dyogql. We deﬁne log(sS) := degQ(sg) € R>o.

For number fields ' C L, a R-arithmetic divisor a = ZwGV( L) CwWw on L, and
v € V(F), we define ay := -, cy(r), Col-

Lemma 1.8.  ([IUTchIV, Proposition 1.8 (vi), (vii)]) The extension F/Fipq is
tamely ramified outside 2.3.5, and K/F is tamely ramified outside . The extension
K/Fipa is unramified outside 2.3.5.1 and Supp(gqfed).

Proof. First, we show that Ep,_, xp,_, F' has at most semistable reduction at
w 1 2 for some [F' : Fipqw] < 2 and we can take F' = Fi,q, in the good reduction
case as follows: Now Ep, , is defined by the Legendre form y* = z(z — 1)(z — A). If
A € Of,,, ,, then it has at most semistable reduction since 0 # 1 in any characteristic. If
w\ € O>< for n > 0 where w € Fipq,, is a uniformiser, then by putting 2’ := w"z
and y’ 3”/2y, we have (y')? = 2/(2/ — @")(2' — @"\) over Fipa.w(v/@), Wh1ch has
semistable reduction.
Then the action of Gal(Fipa,./F') on E[3.5] is unipotent (cf. [SGATt1, Exposé
IX §7] the filtration by “finite part” and “toric part”) for w { 2.3.5. Hence, F =
Fipa(v/—1, E[3.5]) is tamely ramified over Fi,q outside 2.3.5. By the same reason, the
action of Gal(Fipd,w/F’') on E[l] is unipotent for w { [, and K = F(E[l]) is tamely

ramified over F' outside [.
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We show the last claim. Er has good reduction outside 21 and Supp(q4), since,
by the assumption, Er has good reduction for all v € V(F)g°°d N V(F)*°" with v { 2I.
Thus, K = Fipa(v/—1, E[3.5.1]) is unramified outside 2.3.5.1 and Supp(qfira). O

In the main contents of inter-universal Teichmiiller theory, we will use the bijection

V & Viea as a kind of “analytlc sectlon of Spec O — SpecOp, and we will

mod?

have an identification of m ,u KU & with ,u( 5 ) and an identification of ugfgv K

with “®Uev (Note that the summation is taken with respect to V, not the

mod (Frnod)v |
whole of the valuation V(K) of K.) This is why we will consider m or its
log log o

normalised version [(Fmod) Tyl Ks ?I;:’()d) 7 = [Kljf@ﬂ(@} for v € V (not for V(K)) with

weight [(Fiuod)v @ Qug) (not [Ky : Qy]) in this subsection (cf. Definition 10.5 (4)).

Lemma 1.9.  ([IUTchlV, some portions of Steps (v), (vi), (vii) of the proof of
Theorem 1.10, and Propotision 1.5]) For vg € Vg, 1 < j < [*(= 1—71)’ and vo,...,v; €
(Vinod)wvg (where vo, ..., v; are not necessarily distinct), we write —|10g(©)|(v,,...,v;} for

the log-volume (i.e., ulog K, ) of the following:

®0<’L<J

o Forvg € Vg™, the holomorphic hull of the union of

— (vertical indeterminacy=:(Indet 1))
.2
qi/mIvo,...wj (resp. Lu,,... w;) for v, € VP2 (resp. for v; € veeod), and

j

— (horlzontal and permutative indeterminacies =:(Indet — ), (Indet +~))
¢ (q% /2101%. Qox,, (®05i§j0Kﬂi)N) (resp. <(®ogi§j01@i)’”)) forv; €
VP fresp. for v; € VE°4), where ¢ : Qug @z, Zug,...v; —+ Qug @24, Lug,.
runs through all of automorphisms of finite dimensional Q,,-vector spaces
which induces an automorphism of the submodule Zy,,...wv;, and the tensor

products ®o<i<; are taken over Z,, (cf. also the “Teichmiiller dilation”

in Section 3.5, and Remark 1.6.1).

e Forvg € V§©, the holomorphic hull of the union of

— (vertical indeterminacy=:(Indet 1))
Lo, ...,v; (C ®0§i§jKEi)’ and

— (horizontal and permutative indeterminacies =:(Indet — ), (Indet ~))
(®o<i<j®i)(Br), where Br = (unit ball)®% in the natural direct sum decom-
position Ro<i<; Ky, = ce? (where the tensor products are taken as topological
modules), and (¢;)o<i<j Tuns through all of elements in [y, ; Aut(Ky _yprim,

Write 0; == 0k, o/ Qug and 0y ==Y o, 0; for vg € VE". Then we have the following
upper bounds of —| log( )\{UO, i}
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(1) For vy € V™, we have

(—g—jord(qyj) +07r + 1) log puy +4(j + 1)1y, log(dy, ql) v; € ybaol7

- |10g( )|{U07 U5} < . * good
(07 + 1) log puy + 4(j + 1)ty log(ds, ql) v, €V

lo
2 iy (du;) lo lo . lo *
TR Tt Heesies i, (O0) RO (5 o) TAG + Dugs (s3,) log(dpgal)-

(2) Forvg € V™ \ VG, we have —[10g(8)|(uy,....;} < 0.
(3) For vg € Vg, we have —|10g(O)](w,.....v;3 < (j +1)log(m).

Remark 1.9.1.  In Section 13, it will be clear that the vertical (resp. horizontal)
indeterminacy arises from the vertical (resp. horizontal) arrows of the log-theta-lattice
i.e., the log-links (resp. the theta-links), and the permutative indeterminacy arises from

the permutative symmetry of the étale picture.

Proof. (1): We apply Lemma 1.6 (1) to A := é—jord(qyj) (resp. 0) for v; € yPad
(vesp. for v, € veeody 1 :={0,1,...,5}, i := j, and k; := K, . (Note that A € Zl_Z

since qifl € K, by the assumptions that K = F(Ep|l]) and that Ep([2] is rational
over F ie., F = F(Er[2]).) Then by the first inclusion of Lemma 1.6 (1), both of
qb( 7 /QZOK ®0Oxc,, (®0§i§j0Km)N> (resp. ¢ <(®0§z‘§10KU.)N)) ((Indet —), (Indet

J /QlI A =Tor]—Tar] Qicr

) and gy v,y (16D, Ly ;) ((Indet 1)) are contained in puy

longQ(OXEi). By the second inclusion of Lemma 1.6 (1), the holomorphic hull of

p%gj—(aﬂ—[aﬂ logp (OIX(U_) is contained in pg,
its log-volume is < (— )\ + 07 + 1)1og(puy) + D_;cr- (3 + log(e;)) by Lemma 1.6 (1).
If e; > py, — 2, then p,, < df 4l, since for v; { I (resp. wv; | 1) we have p,, <
L4+e <1+df 4l/2 < df 4l (resp. py, =1 < df 4l). For e; > p,, — 2, we also have
log(e;) < —3 + 4log(dz 4l), since e; < d* 40*/2 and €3/2 < (d%,4)%. Thus, we have
(=A+07+1)10g(Pug )+ e 1 (B+log(ei)) < (=A+0r+1) log(pug) +4(j+1)twg log(dy,pal),
since if 1y, = 0, (ie., puy > do4ql), then e; < p,, — 2 for all i, hence I* = (). The last
equality of the claim follows from the definitions.

(2): For vg € Vg™ \ VE*', the place vg is unramified in K and vy # 2, since 2
ramifies in K by K 3 v/—1. Thus, the ramification index e; of K, over Qg is 1 for
each 0 < i < j, and p,, > 2. We apply Lemma 1.6 (2) to A := 0, I := {0,1,...,4},
and k; := K, . Both of ¢ <(®0§i§j0KQi)N> ((Indet —), (Indet v»)) and the log-
shell Z,,,...», (Indet 1) are contained in ®;c; logqu (O;;E-; ). By the second inclusion of
Lemma 1.6 (2), the holomorphic hull of ®;¢; log,,, (OIX{EZ-) is contained in (®;e IOIX{QZ. )™,
and its log-volume is = 0.

(A= Wﬂ—faﬂ—fbﬂ( OX )w} and

mod
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(3): The natural direct sum decomposition ®o<;<;j Ky, = C®? (where the tensor
products are taken as topological modules), where K, = C, the hermitian metric on
C®? . and the integral structure B; = (unit ball)®? c C®? are preserved by the
automorphisms of ®o<;<; Ky, induced by any (¢;)o<i<j € H0<Z<j Aut(K, )p“m ((Indet

—), (Indet »~)). Note that, via the natural direct sum decomposition ®o<;<; Ky, =
C®UHD | the direct sum metric on C®UTD induced by the standard metric on C is
27 times the tensor product metric on ®o<i<j Ko, induced by the standard metric on
K, = C (Note that [1®v/—125_ ¢ = 1 and |(V—=1,—v=1)[25¢ = 2) (cf. also [UTchIV,
Proposition 1.5 (iii), (iv)]). The log-shell Z,, ., is contained in 7/**B; (Indet 7).
Thus, an upper bound of the log-volume is given by (j + 1) log(m). O

Lemma 1.10.  ([IUTchIV, Proposition 1.7, and some portions of Steps (v), (vi),
(vii) in the proof of Theorem 1.10]) Fiz vg € Vg. For 1 < j < I*(= 1), we take
the weighted average —[10g(0)lvg.; of —[10g(©)|vy,...,v,} with respect to all (j + 1)-
tuples of elements {vi}to<i<j M (Vimod)vy With weight wy,,.. ., = Hogigj Wy, , where

= [(Finod)v : Qug) (not [Ky : Qu]), i.e.,

—[10g(©)lvg. = > Wag,....v; (—1108(8) [ fu,...,v,});

U07~~~7'Uj E(Vmod)v(@

where W = ZvO ~~~~~ 'Uge(Vrnod)v V0,---,Vj = (Z’l}e(vznod) vQ wv)j+1 = [F od : Q]j+1 and
ZUO 05 € (Vimod)ug 1S the summatwn of all (j + 1)-tuples of (not necessarily distinct)

elements vg,...,v; € (Vmod)v(@. (We write Z for it from now on to lighten the no-
VO,...,Vj

tation.) We write —|log(©)|v, for the average of —|log(©)]uv,,; with respect to 1 <

Jj < I*, (which is called procession normalised average), i.c., —|log(9)l,, =
%Z1§jgl*( [10g(©)]vg.5)-

(1) For vg € V§*, we have

—[108(©) v, < —4 log(qu,) + H2 log(0y ) + log(sy,) + (I + 5) log(ss; ) log(di,eal)-

(2) For vg € Vi \ V™, we have —|log(©) 0.

lug <

(3) Forvg € V§°, we have —[log(@)|v, <1+ 1.

g

Remark 1.10.1.  Under the identification of mu[{ with ,u( and

Fmod)'u
the identification of V with V.4, which are explained before, the weighted average
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log

M, .
1 E Way,...,v; E m corresponds to
U

0<i<yj

J
log o
Ly Z w Mmoo, _ 1 S w S w M Fapodo
vo;-- ’UJ (Fmod)ul Q’UQ] W v U[( rnod) QUQ]

O<Z<]U07 -V OS’LSJ ve(vmod)v(@ Ue(Vmod)vQ
— _J+1 Z log
T [Fmod:Q] 'U/(Fmod)v

Ue(vmod)v(@

which calculates (j+1) times the vg-part of the normalised degree map [ T Q] T ordegr .-

Proof. (1): The weighted average of the upper bound of Lemma 1.9 (1) gives us

o g (qv )
—|10g(8)|vg,; < — —‘727 Z ooy (" TRy, Togl

log

1 “I?'ii (Dg) ’uQvQ( g@) log < *
+ W Z Wy, ...,v; Z [K;i:QUQ] +4 G+l + 4/1’@1)@ (517@) log(dmodl) :
V0,--+,U5

0<i<j

1 jz ij (qﬂj) .
N'OW7 —W o E ’wvo,m’vjm 1S equal to

V0,---,Uj5
J
- &L Higy ()
W 2l > w >, w (Ko Qug]
UE(VmOd)UQ Ue(Vmod)v@
log lo,
— 1 ﬁ “Kﬂ(qﬂ) _ 1 ]_ [Kg:(Fmod)'u] 'u‘Ki (qw)
- [FmOd:Q] 2l Z [KQ:(Frnod)U] - [ mod - Q} 2 Z [K:Fmod] [ng(Fmod)v]
UG(Vmod)vQ ’LUEV(K)U@

.2 lo )

=—wan D () = —F log(a),
weV(K)ug

where the second equality follows from that ,ull?i (o) = pi8 7o (0u)s [Kw t (Finod)w] = [Ky :
(Finod)w], and #V(K), = % for any w € V(K), with a fixed v € V04, since K

g K
is Galois over Fyyoq (Lemma 1.7 (4)). On the other hand, Z wvo, 0 Z (ﬁ?—f@])

vQ
0<i<j
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log (.Q
Mg, ( ) ° « .
— + gt (55,)108(d5,0q0)) s equal to

J

1 ‘u};{’ii (Dg) Mgvg@( (g@) 4 log < 1 d* l
ol > we| Y w gt gt (55,) log(dhal)
0<i<y Ue(vmod)v@ Ue(Vmod)vQ
; 5 (0K)  pge (s3,)
_ +1 v Q 1 < *
=Fig DL w ([ Kooy T a1 4, (55,) 1og(dhoal)
UE(Vlnod)vQ

- log (DK) fe) . (0] *
= [Fijdlzt@] > —[K (Fod)s] + gt (5@ ) +4( + 1)”<l@g (s5,) 10g(d}0al)

Ue(Vmod)UQ
j K'u: Frno v Mloi (Df) lo . lo *
=ity Y SRR g + g (85,) +40 + Dig? (s5,) log(droal)
wGV(K)UQ

= (j + 1) log(dy;,) +log(sy,) +4(j + 1) log(s3, ) log(diaal),

where the second equality follows from Z'UE(V Wy = [Fioa : Q] and the third
equality follows from that u ® (0w) = ulfég (00), [Kw @ (Fmod)v] = [Ky : (Fiod)w], and

#V(K), = % for any w € V(K), with a fixed v € Vy,0q as before. Thus, by
combining these, we have

mod ) vQ

—[108(0)]ug,; < =% 108(quy) + (j + 1) log (0 ) + logs2 + 4(j + 1) log(sy; ) log(di,eal)-

Then (1) holds since we have 7 5, .= (j+1) = Pl g = 15 and L Sicierx J2 =

4
(l*+1)é.2[*+1) = (lJ{QI) . Next, (2) trivally holds by Lemma 1.9 (2). Finally, (3) holds by
Lemma 1.9 (3) with 22 log(m) < &22 <[+ 1 since [ > 3. O

Lemma 1.11.  ([IUTchIV, Steps (ii), (iii), (viii) in the proof of Theorem 1.10,
and Proposition 1.6])

(1) We have the following bound of log(0¥) in terms of log(dFtrd) and log(fFtee):
log(05) < log(d%*»4) + log(f5*»4) + 21og ! + 21.
(2) We have the following bound of log(s@) in terms of log(dFi»d) and log(ffted):
log(sY) < 2dmoa(log(df®) + log(§7t1)) 4 log + 5.

(3) We have the following bound of log(s=)log(d* 4): there is Nprm € Rsq (which is a
constant determined by using the prime number theorem) such that

log(5S> log(d;odl) S %(dmodl + nprm)
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Proof. Note that log(d¥)+log(f¥) = T Q} 2 wev(L)non €wdw log(qw)+[Lf{Q] > weSupp(it)
log(qw) = [L:Q] ZweV(L)non (0w + LfL,w/ew)ew log(qy) for L = K, F, Fipd, Fimod, where
Gw is the cardinality of the residue field of L,,, e, is the ramification index of L,, over
Qp,, and vz, :=1ifw € Supp(f¥), and Li 4 =0 if w ¢ Supp(f©).

(1): The extension F/Fipq is tamely ramified outside 2.3.5 (Lemma 1.8). Then
by using Lemma 1.5 (1) (0r, + 1/ep = 01 + 1/e) for the primes outside 2.3.5 and
Lemma 1.5 (2) (0, +1/e <0p,+1/eg+m+1/e <0r,+1/eo+ (m+1)) for the primes
dividing 2.3.5, we have log(d%') + log(f¥') < log(dftra) 4 log(fftra) + log(2!1.33.52) <
log(0fra) + log(fftea) + 21 since [F : Fipa] = [Fipa(vV=1) : Fipa][F @ Fipa(v—1)] <
2.#GLo(F3).#GLo(F5) = 2.(24.3).(25.3.5) = 210.32.5, and log2 < 1, log3 < 2, logh <
2. In a similar way, we have log(0%) + log(f%) < log(d") + log(f¥') + 2logl, since K/F
is tamely ramified outside [ (Lemma 1.8). Then we have log(0¥) < log(d%) +1log(§¥) <
log(0f") + log(ff) + 2log ! < log(df®wa) + log(ffrd) 4 2log + 21.

(2): We have log(sQ) < dmoa log(s mod) for vg € V™. By using Lemma 1.5

(1), we have log(s mod) < 2(10g(DFtpd) + log( t‘Dd)) for Vg 3 v 1 2.3.5.1, since 1 =
00, + /€,y S VFuas T 1/€Fn0a. < 200F000.0 F LiFumoa v/ €Foa,, )y WheTe Lipoq , i=1
for v € Supp(ffmed) and LfFimoda p = 0 for v ¢ Supp(ffmed). Thus, we have log(s?) <
2dmod (log(dFtrd) + log(F0d)) + log(2.3.5.1) < 2dmed(log(dfird) + log(§fed)) + logl + 5,
since log2 < 1, log3 < 2, and log5 < 2.

(3): We have log(s=)log(dZ 41) < log(dZ 40) ZPSd?nodl 1. By the prime number
theorem lim,, o nlog(py)/pn = 1 (Where Pr is the n-th prime number), there exists

Nprm € R such that ) 1< for n > Nprm. Then log(dyql) D -pcgs 1<

prime p<n - —= 310g('r}) mod

* dioql _ * *
4 log(dmodl)m ad oql i d gl > Mpem, and log(d,o40) Zp<d* < log(Mprm )
310g77(1;;;m) = 3Mprm if dfoql < Mprm. Thus, we have log(s=)log(d 4l) < 3(dioql +
Tprm)- O
Proposition 1.12.  ([IUTchIV, Theorem 1.10]) We set —|log(q)| := —5; log(q).

We have the following an upper bound of —|log(©)] :== =3, v, 1108(©)| v, -

—|log(©)] < —3; log(q)+

S (=5 (1= ) log(a) + (1 + 24pet) (log(77) + log(§771)) + 10(drseal + 7prm))

In particular, we have —|log(@)| < co. If| —|log(q)| < —[log(@)]|, then we have

1log(q) < (14 2med) (log(d"»*) + log(F741)) + 20(df0al + Tprm) |

where Nprm s the constant in Lemma 1.11.
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Proof. By Lemma 1.10 (1), (2), (3) and Lemma 1.11 (1), (2), (3), we have

—|log(©)] < — l+41 log(q) + l+—5 (log(DFtpd) + log(thpd) +2logl + 21)

+(2dmod<log<0“*>d> log(F7»4)) +logl +5) + (I + 5) 5 (dhoal + Mprm) + 1+ 1.

nee A5 — 451 o 245044 _ 141 4 41 _ 14116 20 I+1
Since == = 5> < Y= = (14 7),4 <45 = T, and [ 45 < F A= (for

[ > 5), this is bounded above by

<% (_‘ log(q) + ( é) (log(DF“’d) + log(fF“Pd) + 2logl + 21)

+2 (2dmoa(log(27?) + log(f7»1)) 4+ logl + 5) + 24 (dioql + Mprm) + 4)
H1 (—Llog(q) + (1 + 7 + 3%med) (log(dFrd) + log(thPd))

+ (14 %) (2logl +21) + 1L (logl + 5) + B (d} oal + Mprm) +4) -

Since 4 + 8dmod < 12dmod, (1 + %)(2logl +21) = 2log + 82 4 (1 + 4)21 < 2logi +
81+ (1+1)21 = 2logl + 46 (for I > 5), 161! < 161 =8, and 185 < 16 (for | > 5),
this is bounded above by

< lle (—— log(q) + (1 + —12dl’“°d) (log(DFwd) + log(thpd)) +2logl+ 8 5 (Aol + Mprm) + 74) )

Since 210gl + 74 < 20+ 74 < 2,741 +2.741 = 22.74] < 22.212.3.5] < 4d* modl < (d* odl T+
Nprm ), and 80 + < 10, this is bounded above by

< B (=% log(q) + (14 24==2) (log(27w) + log (7)) + 10(d5,0al + Mprm)) -

(1+ }) > o, this is bounded above by

w0
—
=
Q
@
|
[
I
N

<HL (=1 (1-12)log(q) + (1 + 2dmea) (log(d¥r) + log(F74)) + 10(dfoql + Tprm))

o1 log(q)

If —Hog( )| < —|log(©)], then for any —|log(©)| < Ce log(g) we have —|log(q)| <
—[log(@)] < Ce log( ), hence, | Co > —1 | since |log(q )| = o log(q) > 0. By taking Ce
to be

2L (1 (1 - 12) log(q) + (1 + 2dmet) (log(277) + log (7)) + 10(dfgal + Tprm)) — 1,

we have
Flog(a) < (1— )7 ((1+ 2%m=2) (log (@) + log(f#)) + 10(d}0al + Mprm))

Since (1—12)7! <2 and (1 — 32)(1+4 20%mea) > 1 4 12dmed o 12 < 4 (8] — 21%) which
holds for I > 7 (by dmoa (8] — 240) > 81— 21% > 56 — 2‘;0 > 12), we have

§log(q) < (1 + 2%eed) (log(074) + log(f7)) + 20(djs0al + Mprm)-
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§1.4. Third Reduction — Choice of Initial ®-Data.

In this subsection, we regard Up: as the A-line, i.e., the fine moduli scheme whose S-
valued points (where S is an arbitrary scheme) are the isomorphism classes of the triples
[E, ¢2,w], where E is an elliptic curve f : E — S equipped with an isomorphism ¢, :
(Z)272)%% = E[2] of S-group schemes, and an S-basis w of f+Qp g to which an adapted
x € f.Op(—2(origin)) satisfies x(¢2(1,0)) = 0, 2(¢p2(0,1)) = 1. Here, a section = €
f«Og(—2(origin)), for which {1, 2z} forms Zariski locally a basis of f.Og(—2(origin)), is
called adapted to an S-basis w of f*Q}E /8" if Zariski locally, there is a formal parameter
T at the origin such that w = (1 + higher terms)dT" and = Z;(1 + higher terms)
(cf. [KM, (2.2), (4.6.2)]). Then X\ € Upi(S) corresponds to E : y* = x(x — 1)(z — N),
$2((1,0)) = (z = 0,y = 0), ¢2((0,1)) = (z = 1,y = 0), and w = —‘21—";. For a cyclic
subgroup scheme H C E[l] of order [ > 2, a level 2 structure ¢, gives us a level 2
structure Im(¢p2) of E/H. An S-basis w also gives us an S-basis Im(w) of f*Q%E/H)/S.
For a = (¢2,w), write Im(a) := (Im(¢2), Im(w)).

Let F' be a number field. For a semi-abelian variety E of relative dimension 1 over a
number Spec O whose generic fiber Er is an elliptic curve, we define Faltings height of
E as follows: Let wg be the module of invariant differentials on E (i.e., the pull-back of
Q}s /0w via the zero section), which is finite flat of rank 1 over Or. We equip an hermi-
tian metric ||- |5 on wp, 1= wp®o, F, for v € V(F)* by (||a||31*)? := @ [, ana,
where F, := E X F, and @ is the complex conjugate of a. We also equip an hermi-
|Falt

tian metric || - | on wg ®z C = Grealvev(r)areWE, ® complexveV(F)a(WE, ® UE,),

by || - [|E1 (resp. || - [|F and its complex conjugate) for real v € V(F)*< (resp. for
complex v € V(F)*°), where wg, is the complex conjugate of wg,. Then we obtain
an arithmetic line bundle Wg = (wg,|| - ||E1Y). We define Faltings height of E by
ht™ M (E) = ﬁdegF(wE) € R. Note that for any 0 # a € wg, the non-Archimedean
(resp. Archimedean) portion ht™(E, a)"" (resp. ht"™(E, a)?¢) of ht"™*(E) is given

by _[FI:Q} ZUGV(F)HOH logv(a)logq, = —[FI:Q] log #(wg/awg) (resp. ——[Fle] ZveV(F)arc [F, :

R]log (‘/le fEU a A a>1/2 _ _m ZUGV(F)MC [F, : R]log (‘/le IEU a /\E))7 where htFalt(E)
= ht™(E, a)"" + ht"™* (E, a)*° is independent of the choice of 0 # a € wg (cf. Sec-
tion 1.1).

Let Q be an algebraic closure of Q. For any point [E, a] € Up (Q) of the M-line, we
define ht"™*([E, a]) := ht™(E). When [E,a] € Up: (C) varies, the hermitian metric
|- ]/E8 on wp continuously varies, and gives a hermitian metric on the line bundle wg
on Up1 (C), where £ is the universal elliptic curve of the A-line. Note that this metric
cannot be extended to the compactification P! of the A-line, and the Faltings height has

logarithmic singularity at {0,1,00}. (See also Lemma 1.13 (1) and its proof below.)
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We also introduce some notation. We write ht;’' 10 1 o0}) for the non-Archimedean
portion of hty, , ({0,1,00}) ([E; @]), 1.e., 5P 10.1,001) ([E, 0]) 1= ﬁdegly(:c?({o, 1,00}))
for 2 : Spec Op — P! representing [E,a] € PL(F) = P1(OF) (Note that ' ({0, 1, 00})
is supported in V(F)"°" and deg is the degree map on ADiv(F’), not on APic(Spec Of)).
Note that we have

Dt (10.1.00)) S Bbeys ({0,100}

on P*(Q), since the Archimedean portion is bounded below in light of the compactness
of (P1)2*¢ (cf. the proof of Proposition 1.2).

We also note that ht, in [GenEll, Section 3] is a function on M_;;(Q), on the other
hand, our ht, ;" 10,1,00}) is a function on A-line P!(Q), and that the pull-back of ht, to
the A-line is equal to 6 times our ht,"101,0}) ([UTchIV, Corollary 2.2 (i)], cf. also
the proof of Lemma 1.13 (1) below).

Lemma 1.13.  ([GenEll, Proposition 3.4, Lemma 3.5|, [Silv2, Proposition 2.1,
Corollary 2.3]) Let I > 2 be a prime, E an elliptic curve over a number field F' such that
E has everywhere at most semistable reduction, and H C E|[l] a cyclic subgroup scheme
of order l. Then we have

(1) (relation between ht,, , ({0,1,00}) and ht2!t)

20t < hity, (101,00 S 2067 4 log(hty,, (0,1,003)) S 2067 + €t (£0.1,00))

for any e € R on Up1 (Q),

(2) (relation betwen ht*™'*([E, o)) and ht™([E/H,Im(a)]))
ht™ ! ([E, a]) — %logl < ht™([E/H,Im(a)]) < ht™([E, a]) + %logl.

(3) (relation between ht)' 101,00y ([E;0]) and htl} 101,00y ([E/H, Im(c)]))
Furthermore, we assume that | is prime to v(qg,v) € Zso for any v € V(F'), where
E has bad reduction with q-parameter qg ., (e.g., | > v(qr.) for any such v’s).
Then we have

L htwpl ({0,1,00}) ([E7 a]) = ht(Jlel ({0,1,00}) ([E/H7 Im(a)])

Proof. (1): We have the Kodaira-Spencer isomorphism w?Q >~ wp1({0,1,00}),
where £ is the universal generalised elliptic curve over the compactification P! of the
A-line, which extends £ over the A-line Upi. Thus we have hty, , ({0,1,00}) &~ 2ht,. on
P!(Q). Thus, it is reduced to compare ht,,_ and nt". Here, ht,, is defined by equip-

ping a hermitian metric on the line bundle wg. On the other hand, ht"!* is defined by
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equipping a hermitian metric on the line bundle wg, which is the restriction of wg ot Up:.
Thus, it is reduced to compare the Archimedean contributions of ht,_ and htFl. The
former metric is bounded on the compact space (P')?*¢. On the other hand, we show
the latter metric defined on the non-compact space (Up1)?" has logarithmic singularity
along {0,1,00}. Let 0 # dz € wg be an invariant differential over Op. Then dz de-
composes as ((d2y)real:vev(F)are; (dzv,d_Z’v)COmplex:UGV(F)arc) on Farc =~ Hreal:veV(F)m E,
11 Hcomplexwew Fyarc (Ey ] Ev), where dz,, E, are the complex conjugates of dz,, E,
respectively. For v € V(F)*°, we have E, = F, (05, = F,/(Z @ 7,7) and dz,
is the descent of the usual Haar measure on F,, where qg, = €?™™ and 7, is in
the upper half plane. Then |[|dz,||[F" = (‘/T_i1 [, dzo A dz,)'? = (Im(7,))Y/? =
(— 2 1og(|qz.0[2)) /2 and W™ (B, d2)™° & — 5k S iy [y : ] log(— loglgz.0.)
has a logarithmic singularity at |¢g |, = 0. Thus, it is reduced to calculate the logarith-

mic singularity of ht"™*(E, dz) in terms of hte, , (0,1,00})- We have ||, = [jm,[s =
\qE.o|y ! near |qg o], = 0, where jg is the j-invariant of E. Then by the arithmetic-
geometric inequality, we have h’cF‘B‘lt(E,dz)al”c ~ —ﬁlog 11, ev( F)m(log o) R

> —1log (ﬁ > vev(Fyere 10g |jE|U> near [[,cy(pyue [El0 = 00. On the other hand,

we have [j]; 1 ~ [A]2, [A=1|2,1/|\|? near |\|, = 0, 1, co respectively for v € V(F)3€ since

j = 28(A\2=X+1)3/A2(A—1)2. Thus, we have ht7% (10,100 ([E, @) = ﬁ > vev(Fynen (V(AR)+
v(Ap=1)+v(1/A8))0g @v = grgr Luev(mymen V(i) 108 4u = gy Loev(rynon 108 iz o
By the product formula, this is equal to m Yo ev(Fyare 108 |7E|». By combining these,
we obtain ht™!* (E, dz)"¢ 2 —11og(2ht2 (01,001 ([E, @])) & =5 log(hti (0.1 00 ([E, @)
near [ [, cy(g)are jels = 0. We also have
bt (10,1,001) S Dby ({0,1,003) O P!(Q) since the Archimedean contribution is bounded
below in light of the compactness of (P')**. Therefore, we have ht™" < ht, S ht"t 4
+log(hty,, ({0,1,00}))- This implies 2ht™* < hty, | (10,1,001) S 2ht™ +log(hte, , (f0,1,00}))-
The remaining portion comes from log(1 + z) < ex for any € € R+.

(2): We have ht™*([E, a])™" — logl < ht"™*([E/H,Im(a)])"" < ht"™*([E, o])"
since #coker{wg,/y — wg} is killed by I. We also have ht™ ! ([E/H, Im(a)))*° =
ht™™" ([E, a])* + L log, since (|| - H%a/l}{)z =1(|| - ||E2*)2 by the definition of || - [|F2!* by
the integrations on E(C) and (E/H)(C). By combining the non-Archimedean portion

jEls = 00, or equivalently, near J[,cyz)non

and the Archimedean portion, we have the second claim.

(3): Let v € V(F)™" where E has bad reduction. Then the [-cyclic subgroup
H xp F, is the canonical multiplicative subgroup [F;(1) in the Tate curve E x g F,, by
the assumption [ { v(¢g,,). Then the claim follows from that the Tate parameter of
E/H is equal to [-th power of the one of E. O

Corollary 1.14.  ([GenEll, Lemma 3.5]) In the situation of Lemma 1.13 (3), we
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have

! non
1+ Ehtwpl({o,l,oo})([E7 Oé]) < htww ({O,l,oo})([Ev Oé]) +logl + Ce

for some constant C. € R which (may depend on €, however) is independent of E, F,
H and .

Remark 1.14.1.  The above corollary says that if E[l] has a global multiplicative
subgroup, then the height of E is bounded. Therefore, a global multiplicative subspace
M C EJl] does not exist for general E in the moduli of elliptic curves. A “global mul-
tiplicative subgroup” is one of the main themes of inter-universal Teichmiiller theory.
In inter-universal Teichmiiller theory, we construct a kind of “global multiplicative sub-
group” for sufficiently general F in the moduli of elliptic curves, by going out the scheme
theory. cf. also Appendix A.

Proof. For e > 0, take ¢ > 0 such that 1 < 1+ €. There is a constant A. € R
such that ht,, , (10,1,00}) < 2htFt 4 €'ty ({0,1,00}) + A¢ on Ups (Q) by the second and
the third inequalities of Lemma 1.13 (1). We have ht,, , ({0,1,00}) < 2(1 + e)htFadt + A,
on Up1 (Q) by the choice of ¢ > 0, where A, := 1+€,A’€ By the first inequality of
Lemma 1.13 (1), we have ohtalt < hty, , ({0,1,00}) + B for some constant B € R. Write
Ce :F:ltAe—l—B. Then we have #ehtfj;?({o’l,oo})([E,a]) = ﬁhtg;?({()’l,oo})([E/H, Im(a)]) <
oht™ ! ([E/H,Im(a)]) + A < 2ht™([E, o) +logl+ A, < hte, ; ({0,1,00}) ([, @]) +logl+
C., where the equality follows from Lemma 1.13 (3), and the first inequality follows
from Lemma 1.13 (2). O

From now on, we use the assumptions and the notation in the previous subsec-
tion. We also write log(q¥) (resp. log(q/)) for the R-valued function on the A-line
Up: obtained by the normaised degree ﬁdeg 1, of the effictive (Q-)arithmetic divisor
determined by the g-parameters of an elliptic curve over a number field L at arbitrary
non-Archimedean primes. (resp. non-arcihmedean primes which do not divide 2). Note
that log(q) in the previous subsection avoids the primes dividing 2, and that for a

compactly bounded subset K C Upi(Q) whose support contains the prime 2, we have
log(q¥) = log(q?) on K (cf. [[TUTchIV, Corolarry 2.2 (i)]). We also note that we have

]‘ non
6 log(qv) ~ htwﬂﬂ({o,l,oo}) ~ hty,, ({0,1,00})

on K (C Up1(Q)). (For the first equivalence, see the argument just before Lemma 1.13,
and the proof of Lemma 1.13 (1); For the second equivalence, note that I includes the
unique Archimedean place of Q.)

Proposition 1.15.  ([IUTchIV, Corollary 2.2]) Let K C Up:(Q) be a compactly

bounded subset with support containing Vy® and 2 € Vg™, and A C Up(Q) a finite
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set containing {[(E,a)] | #Autg(E) # {il}}. Then there exists Cx € Rsq, which
depends only on K, satisfying the following property: Let d € Z~g, € € Rsg, and
set d* := 2'2.335.d. Then there exists a finite subset €xex 4, C Upr(Q)=? such that
Crcxe g O A and satisfies the following property: Let x = [(Er, )] € (Upt(F) NK) \
Crcxe g with [F 2 Q] < d. Write Fiyoa for the field of moduli of By := Er XF F,
and Fipg = Fnod(Er,,.[2]) C F where Ep,_.., is a model of E+ over Fhoq (Note
that Fiod(ER,, ,[2]) is independent of the choice of the model Ep,__, by the assumption
of Auti(Ew) # {£1}, and that Funeda(Er,..[2]) C F since [(Ep,o)] € Up(F). cf.
Lemma 1.7 (1)). We assume that all the points of Er[3.5] are rational over F and that
F = Fpa(vV/—1, EF, 4[3.5]), where Ep, , is a model of E over Finq which is defined
by the Legendre form (Note that Er = Er, , XF, . F' and Er has at most semistable
reduction for all w € V(F)"" by Lemma 1.7 (2), (3)). Then Er and Fyoq arise from

an initial ©-data (cf. Definition 10.1)

(F/FXF7Z7CK5VVbad )

mod> £

(Note that it is included in the definition of initial ©-data that the image of the outer
homomorphism Gal(Q/F) — GLy(F;) determined by Erl[l] contains SLy(F;).) Further-

more, we assume that | —|log(q )| < —[log(©)| | for EF and Fyoa, which arise from an

initial ©-data. Then we have

hty,, ({0,1,00) (%) < (1 4 €)(log-diffp: () + log-condyg 1,00} (2)) + Ck-

Remark 1.15.1.  We take A = {[(E,a)] € Up1 (Q) | E does not admit Q-core}. cf.
Definition 3.3 and Lemma C.3 for the definition of k-core, the finiteness of A, and that

A5 {[(B.a)] | #Autg(E) # {+1}}.

Remark 1.15.2. By Proposition 1.15, Theorem 0.1 is reduced to show —|log(q)| <
—[log(©)| for Er and Fy,04, which arise from an initial ©-data. The inequality —| log( )| <
—[log(@)| is almost a tautological translation of the inequality which we want to show
(cf. also Appendix A). In this sense, these reduction steps are just calculations to reduce
the main theorem to the situation where we can take an initial ©-data, i.e., the situation
where the inter-universal Teichmiiller theory works, and no deep things happen in these
reduction steps.

Proof.  First we write €rex 4 := A, and we enlarge the finite set €rcx 4 several
times in the rest of the proof in the manner that depends only on K and d, but not on
xz. When it will depend on € > 0, then we will change the notation €rey. ; by €reg 4.
Let z = [(Er,a)] € (Up (F) NK) \ Ere g

Let 7prm € R be the constant in Lemma 1.11. We take another constant {pm €
R<o determined by using the prime number theorem as follows (cf. [GenEll, Lemma
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4.1]): We define d(z) = > ;.. <,logp (Chebychev’s J-function). By the prime
number theorem (and Lemma C.4), we have ¥(z) ~ x (z — 00), where ~ means that
the ration of the both side goes to 1. Hence, there exists a constant R > &primy > 5 such
that

(s0) %a: <I(z) <

QO W~
8

for any x > &prm-
Let h := h(Ep) = log(q") = ﬁzveV(F)“‘m hy fu log(py) be the summation of
the contributions from ¢, for v € V(F)"°", where we write p, and f, for the residual

characteristic at v and the degree of extension of the residue field over F,, respectively.
Note also that h, € Z>o and that h, = 0 if and only if Er has good reduction at
v. By %log(qv) ~ ht,,, ({0,1,00}) and Proposition C.1, we there are only finiely many
isomorphism classes of Er (hence finiely many x = [Er, a]) satisfying ht < Eprm + Mprm -
Therefore, by enlarging the finite set €rex 4, we may assume that

(Sl) h% Z éprm + Tlprm -
Note that h2 > 5 since {prm > 5 and Nprm > 0. We have

(s2)

2d"h? log(2d*h) > 2[F : Qlh? log(2[F : Qlh) > Y 2k~ 2 log(2hy f, log(py))hu £ log(py)
hy#0

> N hmrlog(hy)he > Y ATz log(ho)hy > D log(hy),

h,#0 hv2h1/2 hu2h1/2

where the third inequality follows from 2log(p,) > 2log2 = log4 > 1. By [F : Q] < d*,
we also have

(3)  d*hF>[F:Qhi= > hTEhfilog(p,) > Y. hTih,log(p,)
vEV(F)non vEV(F)non

> ) h™%h, log(p,) > > log(pu).

ho>h1/2 ho>h1/?
Let A be the set of prime numbers satisfying either
(S1) p < h2,
(S2) p| hy # 0 for some v € V(F)™°", or
(S3) p = p, for some v € V(F)™°" and h, > h.

Then we have
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(S'1) > s1)logp = W(hz) < %h% by the second inequality of (s0), and hz > &prm, Which
follows from (s1),

(S72) 3,.(52).not (s3) 108D < 325 12 log(hy) < 2d*h2 log(2d*h) by (s2), and

(S'3) 3,53 logp < d*h= by (s3).

Then we obtain

(S7123) Va:= log(p) < 2h% +d*h? +2d"h* log(2d" h)
peA

< Ad*h? log(2d*h) < —&pm + 5d*h? log(2d*h),

where the first inequality follows from (S’1), (S’2), and (S’3), the second inequality
follows from 2h2 < d*hz and log(2d*h%) > log4 > 1, and the last inequality follows
from (s1). Then there exists a prime number [ ¢ A such that [ < 2(9 4 + &prm ), because
otherwise we have 94 > 9(2(94 + &pm)) = 2(2(04 + &prm)) = 394, by the second

inequality of (s0), which is a contradiction. Since [ ¢ A, we have

(P1) (upper bound of [)
(5<)hz <1< 10d*hz log(2d*h) (< 20(d*)2h2),
where the second inequality follows from that [ does not satisfy (S1), the third
inequality follows from [ < 2(¥ 4 +&prm) and (S’123), and the last inequality follows
from log(2d*h) < 2d*h < 2d*h (since logz < x for x > 1),

(P2) (monodromy non-vanishing modulo [)
[t hy for any v € V(F)™" such that h, # 0, since [ does not satisfy (S2), and

(P3) (upper bound of monodromy at )
if | = p, for some v € V(F)™", then h, < hz, since | does not satisfy (S3).

Claim 1: We claim that, by enlarging the finite set €rci ;, we may assume that
(P4) there does not exist [-cyclic subgroup scheme in Ep[l].

Proof of Claim 1: If there exists an I-cyclic subgroup scheme in Er[l], then by applying
Corollary 1.14 for € = 1, we have %htg;jjl({o,lm})(m) <logl+Tx < 1+4+Tx (since logz <
z for z > 1) for some T € R, where Tic depends only on K. Thus, ht,;""(0,1,00}) (%)
is bounded because we have ht;" (10 1 00})(%) < 2+ 2T < 45 4+ 225 Tc. Note
also that ht, , ({0,1,00}) & Dt} (10,1,003) 00 K, since K includes the unique Archimedean
place of Q. Therefore, there exist only finitely many such = [Er, a]’s by Proposition

C.1. The claim is proved.

Claim 2: Next, we claim that, by enlarging the finite set €rcx 4, we may assume that



A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 43

(P5) 0 # Vbad .= fy) ¢ Vo | v 4 2l, and Er has bad multiplicative reduction at v}

mod *— mod

Proof of Claim 2: First, we note that we have

2h7 log(5d*h)
8h22(d*)Thi = 16(d*) hi.

(pba) h7logl < h? log(20(d*)%h?)
(p5b) < 8h7 log(2(d*)Th7)

Ll
wlw

<
<

where the first inequality follows from (P1). If VPad = () then we have h = log(g?) <
hzlogl < 16(d*)hi on K, where the first inequality follows from (P3), and the last
inequality is (p5b). Thus, hi, hence h as well, is bounded. Therefore, there exist only

finitely many such x = [Er, a|’s by Proposition C.1. The claim is proved.

Claim 3: We also claim that, by enlarging the finite set €rey ;, we may assume that

(P6) The image of the outer homomorphism Gal(Q/F) — GLy(F;) determined by Er|l]
contains SLo(IF;).

Proof of Claim 3 (cf. [GenEll, Lemma 3.1 (i), (iii)]): By (P2) [ t h, # 0 and (P5)
11

01)
Here, N, generates an [-Sylow subgroup S of GLy(IF;), and the number of [-Sylow
subgroups of GLo([F;) is precisely | + 1. Note that the normaliser of S in GLy(F;) is
the subgroup of the upper triangular matrices. By (P4) E[l] 5 (I-cyclic subgroup),

V‘fnafd # (), the image H of the outer homomorphism contains the matrix N, :=

the image contains a matrix which is not upper triangluar. Thus, the number ngy of

[-Sylow subgroups of H is greater than 1. On the other hand, ny = 1 (mod!) by the

general theory of Sylow subgroups. Then we have ngy =1+ 1since 1l <ng <[+ 1. In
11 10

particular, we have N, = (O 1) ,IN_ = (1 ) € H. Let G C SLy(IF;) be the subgroup

generated by N, and N_. Then it suffices to show that G = SLy(FF;). We note that

for a,b € Ty, the matrix NﬁNi (this makes sense since Nj_ = N! = 1) takes the vector

0
v = (1) to ( bi 1). This implies that we have (IFZX X Fl) C G. This also implies
a

that for ¢ € F/°, there exists A. € G such that A.v = g (= cAjv). Then we have

cv = AT A € Gu. Thus, we proved that (F; x F;) \ { (8) } C Gu. Let M € SLy(F))

be any matrix. By multiplying M by an element in GG, we may assume that Mv = v,

0 10
since (F; x Fy) \ C Gu. This means that M C . Thus, M is a power
0 * 1

of N_. The claim is proved.
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Then we take, as parts of initial ©-data, F to be Q so far, F', Xr, [ to be the
number field F', once-punctured elliptic curve associated to Er, and the prime number,
respectively, in the above discussion, and Vglacfld to be the set Vglacfld of (P5). By using
(P1), (P2), (P5), and (P6), there exist data C'j, V, and ¢, which satisfy the conditions
of initial ©-data (cf. Definition 10.1. The existence of V and ¢ is a consequence of (P6)),

and moreover,

(P7) the resulting initial ©-data (F/F, Xp,l,C,V,Vbad ") satisfies the conditions in
Section 1.3.

Now, we have | —|log(q)| < —|log(©)|| by assumption, and apply Proposition 1.12.

(Note that we are in the situation where we can apply it.)
Then we obtain

20dmod

1
5 log(a) < (1 + ) (log(2"7) 4 log(F*7*)) + 20(dfs0al + Tprm)
(A) < (1 + d*h—%) (log(dw) + log(fF»4)) + 200(d*)*h? log(2d* h) + 207pem,

where the second inequality follows from the second and third inequalities in (P1) and
20dmoq < d¥, 4(:= 2'2.33.5.dmoq) < d*(:= 2'2.33.5.dmoq). We also have

mod
1, o 1 14 1. \ s \
(B) 8 log(q™) — Elog(q) < 8h2 logl < §h2 log(5d*h) < h2 log(2d*h),

where the first inequality follows from (P3) and (P5), the second inequality follows from
(p5a), and the last inequality follows from 5 < 23. We also note that

1

1
(C) 5 log(q”) — g log(q?) < Bk

for some constant Bx € Rsg, which depends only on K, since log(q") ~ log(q?) on K
as remarked when we introduced log(q") and log(qf?) just before this proposition. By
combining (A), (B), and (C), we obtain

1 1 1 1 1
th= g log(a") < (1 d'h ) (los(0") + log(§7)) + (150°)%h log(2dh) + O

; 1 2 ; 1
(ABCQ) < (1 - d*h—f) (log(d"r) + log(F"*»)) + —h=(60d*)*h™ 2 log(2d*h) + 5Ok

6 5

where we write Cic := 407m,,m +2Bx, the first inequality follows from 200 < 152, the sec-
ond inequality follows from 1 < 32 = 1242, Here, we put eg := (60d*)2h~ = log(2d*h) (>
5d*h~z). We have

(Epsilon) g < 4(60d*)2h ™2 log(2(d*)Thi) < 4(60d*)*h~2hT = 4(60d*)>h ™.
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Let € > 0. If eg > min{l,¢}, then hi, hence h as well, is bounded by (Epsilon).
Therefore, by Proposition C.1, by replacing the finite set €xcx 4 by a finite set Erex 4,
we may assume that ep < min{l,e}. Then finally we obtain

1 2 \7! 1 2 \ 71
Eh < (1 - SEE) (1 + geE) (log(OFtpd) + log(fF“’d)) + <1 — 56E> §OIC

< (1 + eg) (log(d"e) + log(f)) + Cx
<(14¢) (IOg—diﬁpl (xg) + log-cond{oylyoo}(mE)) + Ck,

where the first inequality follows from the definition of e and € > 5d*h_%, the sec-
ond inequality follows from % < 1+e¢€g (ie, eg(l —eg) > 0, which holds since
ep < 1), and 1 — %EE > % 5(i.e., ep < 2, which holds since eg < 1), and the
third inequality follows from er < ¢, log-diffp: (zg) = log(d*d) by definition, and
log(ff»e) < log-condyg 1,00} (zE). (Note that Supp(f) excludes the places dividing 2! in
the definition.) Now the proposition follows from £ log(q") ~ hte, , (f0,1,00}) o0 P! (Q) as
remarked just before this proposition (by the effect of this ~, the Cx in the statement

of the proposition may differ from the Cix in the proof). O

Remark 1.15.3.  (Miracle Identity) As shown in the proof, the reason that the
main term of the inequality is 1 (i.e., ht < (—1— ¢)(log-diff +log-cond) + bounded term)

is as follows (cf. the calculations in the proof of Lemma 1.10): On one hand (ht-side), we
11 /2 1 111
173 2aj—1 21733 (3

theta function under consideration lives in a covering of degree 2/, and that we multiply

have an average 6 j2 ~6 )3 = i. Note that we multiply % since the

6 since the degree of A-line over j-line is 6. On the other hand ((log-diff + log-cond)-
side), we have an average l/% Zg/jlj ~ l/%% (é)Z = L. These two values miraculously
coincide! In other words, the reason that the main term of the inequality is 1 comes

from the equality

6 (the degree of A\-line over j-line) x — (theta function involves a double covering)

N | =

(the main term of ZjQ ~ n3/3)
j=1

Wl =

1
X 2 (the exponent of theta series is quadratic) x

1 1 -
=5 (the terms of differents are linear) x 5 (the main term of Z j~n?/2).
j=1
This equality was already observed in Hodge-Arakelove theory, and motivates the defi-
nition of the O-link (cf. also Appendix A). Mochizuki firstly observed this equality, and
next he established the framework (i.e. going out of the scheme theory and studying

inter-universal geometry) in which these calculations work (cf. also [[UTchIV, Remark
1.10.1]).
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Note also that it is already known that this main term 1 cannot be improved by
Masser’s calculations in analytic number theory (cf. [Mass2]).

Remark 1.15.4.  (e-term) In the proof of Proposition 1.15, we also obtained an
upper bound of the second main term (i.e., the main behaviour of the term involved to
€) of the Diophantine inequality (when restricted to K):

ht < &+ #67 log(0)

on K, where x is a positive real constant, ht := ht,,, ({0,1,00}) and 0 := log-diffp: +
log-condyg 1,00} (cf. (ABC) in the proof of Proposition 1.15) It seems that the exponent
% suggests a possible relation to Riemann hypothesis. For more informations, see
[IUTchIV, Remark 2.2.1] for remarks on a possible relation to inter-universal Melline
transformation, and [vFr], [Mass2] for lower bounds of the e-term from analytic num-

ber theory.

Remark 1.15.5.  (Uniform ABC) So-called the uniform abc Conjecture (uni-
formity with respect to d of the bounded discrepancy in the Diophantine inequality)
is not proved yet; however, we have an estimate of the dependence on d of our upper
bound as follows (cf. [[UTchIV, Corollary 2.2 (ii), (iii)]): For any 0 < ¢; < 1, write
€ := 1=€4(< 3). Then we have

min{1, e} leg = min{1, e}~ (60d*)2h 2 log(2d*h)
= (min{1, e}e) 1 (60d*)2h ™2 log(2 (d*)“ahd)

* 1 * l—e*
< (min{1, e}es) 1 (60d*)*T0h~ (27 < ((min{1, e}ey) ~3(60d*)1Heap=1) 27"

where the first inequality follows from hz > 5, and x < logx for x > 1, and the second
inequality follows from —3(3 —€)) = =3 + 2eq < -2t < —1and (5 — €;)(4+ €a) =
_%63 + iﬁd +2 > ied +2 > €+ 2. We recall that, at the final stage of the proof of
Proposition 1.15, we enlarged €rcx 4 to €rex 4 . so that it includes the points satisfying
eg > min{l,e}. Now, we enlarge €rey 4 to €re 4 ,, which depends only on K, d, e,
and €4, so that it includes the points satisfying eg > min{1, e}. Therefore, we obtain
an inequality
ht = éh < Hynif min{1, e}_3e;3d4+€d + Hy

on €rex g, Where Hynie € Ry is independent of K, d, €, and €4, and Hx € R
depends only on K. The above inequality shows an explicit dependence on d of our

upper bound.

§2. Preliminaries on Anabelian Geometry.

In this section, we give some reviews on the preliminaries on anabelian geometry

which will be used in the subsequent sections.
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§2.1. Some Basics on Galois Groups of Local Fields.

Proposition 2.1.  ([AbsAnab, Proposition 1.2.1]) Fori = 1,2, let K; be a finite
extension of Q,, with residue field k;, and K; be an algebraic closure of K; with residue
field k; (which is an algebraic closure of k;). We write e(K;) for the ramification index
of K; over Qp, and write f(K;) = [k; : Fp,]. Write Gk, = Gal(K;/K;), and we
write Pg, C Ik, (C Gg,) for the wild inertia subgroup and the inertia subgroup of G,
respectively. Let o : Gx, — G, be an isomorphism of profinite groups. Then we have

the following:
(1) p1 =p2 (=:p).
(2) The abelianisation o : G3 = G4, and the inclusions k' C O, C KX C G&,
where the last inclusion is defined by the local class field theory, induce isomorphisms
(a) a®® : k5 kX,
(b) a*®: Ok, = O,
(¢) o : OF = O%  (cf. Section 0.2 for the notation OF ), and

(d) a®: K 5 K.

(3) (@) Ky Q) = [Ks: Q)
(b) f(K1)= f(K2), and
(c) e(K1) = e(K>).

(4) The restrictions of a induce

(a) alrg, < Ix, = Ir,, and

(b) Oé|pK1 2PK1 :>PK2.

(5) The induced map Gf}‘}’l/IK1 = G%g/[m preserves the Frobenius element Frobg,
(i.e., the automorphism given by k; > x — x7*).
in-

open

(6) The collection of the isomorphisms {(Oz\Ul)ab R O U;b} o

GKl D) U1L>U2CGK2
duces an isomorphism gz (K1) = pg/z(K2), which is compatible with the actions
of G, fori=1,2, via a: Gy, — Gxg,. In particular, o preserves the cyclotomic

characters Xcyc,i fori=1,2.

(7) The isomorphism o* : H*(Gal(Ks/K>), pug/z(K2)) = H?*(Gal(K1 /K1), pgz(K1))
induced by a is compatible with the isomorphisms H?(Gal(K;/K;), po/z(K;)) =
Q/Z in the local class field theory for i =1,2.
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Remark 2.1.1.  In the proof, we can see that the objects in the above (1)—(7) are
functorially reconstructed by using only K; (or K3), and we have no need of both of
K7 and K3, nor the isomorphism « (i.e., no need of referred models). In this sense, the
reconstruction algorithms in the proof are in the “mono-anabelian philosophy” of
Mochizuki (cf. also Remark 3.4.4 (2), (3)).

Proof. 'We can group-theoretically reconstruct the objects in (1)-(7) from G, as
follows:

(1): p; is the unique prime number which attains the maximum of {rankzl G‘}g } I: prime’
by the local class field theory G52 = (K;)".

(2a): k) = (G )Prime-top the prime-to-p part of the torsion subgroup of Gae,
where p is group-theoretically reconstructed in (1).

(3a): [K; : Q] = rankg, G5 — 1, where p is group-theoretically reconstructed in
(1).

(3b): pf K = 4£(k)) + 1, where k; and p are group-theoretically reconstructed in
(2a) and (1) respectively.

(3¢c): e(K;) = [K; @ Qp]/f(K;), where the numerator and the denominator are
group-theoretically reconstructed in (3a) and (3b) respectively.

(4a): Ik, = ﬂGKZ_ SU: open, e(U)—e(Gr, ) Us Where we write e(U) for the number group-
theoretically constructed from U in (3c) (i.e., e(U) := (rankz U*—1)/ logp(#(Uab)fégne_to_p +
1), where {p} := {p|rankz, G5’ = max;rankz, G3" } and log, is the (real) logarithm
with base p).

(4b): Pg, = (Ik,)P™P the pro-p part of Ig,, where Ig, is group-theoretically
reconstructed in (4a).

(2b): Ok, = Im(Ig,) := Im {Ix, = Gk, - G% } by the local class field theory,
where I, is group-theoretically reconstructed in (4a).

(5): The Fronbenius element Frobg, is characterised by the element in G, /I, (=
G?{bi /Im (I, )) such that the conjugate action on I, /Py, is a multiplication by pf(<)
(Here we regard the topological group Ik, /Pgk, additively), where Ik, and Pk, are
group-theoretically reconstructed in (4a) and (4b) respectively.

(2c): We reconstruc O?{i by the following pull-back diagram:

0 —Im (Ig,) Ga> Gi2 /Im (Ig,) —0
0——=1Im (IKZ) O?( ZzoFl"ObKi —_— 0,

7

where I, and Frobg, are group-theoretically reconstructed in (4a) and (5) respectively.
(2d): In the same way as in (2c), we reconstruc K by the following pull-back
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diagram:
0 ——Im (Ig,) Ga> G52 /Im (Ig,) — 0
0 ——Im (Ig,) K ZFrobg, — 0,

where I, and Frobg, are group-theoretically reconstructed in (4a) and (5) respectively.

(6): Let L be a finite extension of K;. Then we have the Verlangerung (or transfer)
Gi> — G5° of G, C Gk, by the norm map G4 = Hy(Gg,,Z) — H1(Gr,Z) = G5* in
group homology, which is a group-theoretic construction (Or, we can explicitly construct
the Verlangerung G%Pi < G% without group homology as follows: For x € G, , take a
lift 7 € Gk, of . We write Gk, = [[, giG for the coset decomposition, and we write
Tg; = g;u)x; for each i, where r; € G. Then the Verlangerung is given by G}‘g >
x — ([]; s mod [GL,GL]) € G3P, where we write [GL,Gy1] for the topological closure
of the commutator subgroup [Gr,GL] of Gr). Then this reconstructs the inclusion
K < L*, by the local class field theory and the reconstruction in (2d). The conjugate
action of G, on G — G3° preserves L* C G%° by the reconstruction of (2d). This
reconstructs the action of Gk, on L*. By taking the limit, we reconstruct EX, hence
oz (K;) = Q/Z @5 Hom(Q/Z,K; ) equipped with the action of G, .

(7): The isomorphism H?(Gal(K;/K;), pgz(K;)) = Q/Z is defined by the com-
position

H2(Gal(I/K2), poyz(R) 5 HA(Gal(/ ), T ) - HA(Gal(K3/Ky), (K))
= H*(Gal(K}"/K;), Z) «~ H'(Gal(K"/K;), Q/Z) = Hom(Gal(K["/K;), Q/Z) = Q/Z,

where the first isomorphism is induced by the canonical inclusion pgq /Z(E) — EX, the
multiplicative group (K})* (not the field K}'") of the maximal unramified extension K}
of K; and the Galois group Gal(K"/K) are group-theoretically reconstructed in (2d)
and (4a) respectively, the third isomorphism is induced by the valuation (K!")* — Z,
which is group-theoretically reconstructed in (2b) and (2d), the fourth isomorphism
is induced by the long exact sequence associated to the short exact sequence 0 —
7 — Q — Q/Z — 0, and the last isomorphism is induced by the evaluation at Frobg,,
which is group-theoretically reconstructed in (5). Thus, the above composition is group-
theoretically reconstructed. U

§2.2. Arithmetic Quotients.

Proposition 2.2.  ([AbsAnab, Lemma 1.1.4]) Let F be a field, and write G :=
Gal(F/F) for a separable closure F of F. Let

1A= II—-G—=1
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be an exact sequence of profinite groups. We assume that A is topologically finitely
generated.

(1) Assume that F is a number field. Then A is group-theoretically characterised in 11
by the mazimal closed normal subgroup of I which is topologically finitely generated.

(2) (Tamagawa) Assume that F' is a finite extension of Q,. For an open subgroup
I C I, we write A’ :=II'NA and G' :=II'/A’, and let G’ act on (A")2P by the
conjugate. We also assume that

(Tam1)
VII' C I : open, Q := ((A’)ab> o /(tors) is a finitely generated free z—module,

where we write (-)gr for the G'-coinvariant quotient, and (tors) for the torsion
part of the numerator. Then A is group-theoretically characterised in 11 as the
intersection of those open subgroups II' C II such that, for any prime number [ # p,
we have

(Tam?2) dimg, (H')ab ®z Qp — dimg, (H’)ab ®7 Q
= [11: 11] (dimg, ()™ @3 @, — dimg, (I)*™ 27 Q)

where p is also group-theoretically characterised as the unique prime number such
that dimg, (H)ab ®5 Qp — dimg, (H)ab ®5 Qi # 0 for infinitely many prime numbers
[.

Proof. (1): This follows from the fact that every topologically finitely generated
closed normal subgroup of Gal(F/F) is trivial (cf. [F.J, Theorem 15.10]).
(2): We have the inflation-restriction sequence associated to 1 - A - II - G — 1:

1 — H'(G,Q/Z) » H'(I,Q/Z) - H'(A,Q/Z)° — H*(G,Q/Z),

where we write (-)¢ for the G-invariant submodule. For the last term H?(G,Q/Z), we
also have H?(G,Q/Z) = lim H*(G,r7)7) = lim Hom(H®(G, i), Q/Z) = Hom(@n H(G, un),
Q/Z) = 0 by the local class field theory. Thus, by taking Hom(—,Q/Z) of the above

exact sequence, we obtain an exact sequence
0— (A*), = 1I* - G* — 0.

Let F’ denote the finite extension corresponding to an open subgroup G’ C G. Then
by the assumption of (Taml), we obtain

dimg, (I')"” ®5 Q, — dimg, (II)™ 5 Q,
— dimg, (G')*” ©5 Q, — dimg, (G)*” @5 Q, = [F" : Q,),
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where the last equality follows from the local class field theory. The group-theoretic
characterisation of p follows from the above equalies. The above equalites also imply
that (Tam2) is equivalent to [F’ : Q,] = [II : II'|[F : Q,], which is equivalent to
[II:1I')] = [G : G'], i.e., A = A’. This proves the second claim of the proposition. [

Lemma 2.3.  ([AbsAnab, Lemma 1.1.5]) Let F' be a non-Archimedean local field,
and A a semi-abelian variety over F. Let F be an algebraic closure of F, and write
G := Gal(F/F). We write T(A) := Hom(Q/Z, A(F)) for the Tate module of A. Then
Q :=T(A)g/(tors) is a finitely generated free Z-module.

Proof. We have an extension 0 -+ S — A — A’ — 0 of group schemes over F,
where S is a torus and A’ is an abelian variety over F. Then T(S) = Z(1)®" for some
n after restristing on an open subgroup of G, where T'(S) is the Tate module of T
Thus, the image of T'(S) in @ is trivial. Therefore, we may assume that A is an abelian
variety. By [SGATt1, Exposé IX §2], we have extensions

0= T(A)="" = T(A) = T(A)° =0,
0—T(A)2 (A)S - T(A)™ =0

of G-modules, where T(A)<~! and T(A)=~2 are the “fixed part” and the “toric part”
of T'(A) respectively in the terminology of [SGAT7t1, Exposé IX §2], and we have isomor-
phisms T'(A)~! = T(B) for an abelian variety B over F which has potentially good re-
duction, and T(A)? = M°®,7Z, T(A)~2 = M~2®;,7Z(1), where M and M 2 are finitely
generated free Z-modules and G acts both on M? and M ~2 via finite quotients. Thus,
the images of T(A)~2 and T(A)~! in Q are trivial (by the Weil conjecture proved by
Weil for abelian varieties in the latter case). Therefore, we obtain Q =2 (T'(A)Y)g/(tors),
which is isomorphic to (M°)¢/(tors) ®zZ, since Z is flat over Z. Now the lemma follows
since (M?)g/(tors) is free over Z. O

Corollary 2.4. We have a group-theoretic characterisation of A = m (X%, T)
in II = m(X,T) as Proposition 2.2 (2) (Tam2), where X is a geometrically connected
smooth hyperbolic curve over a finite extension F of Q,, ands : Spec F — X a geometric
point lying over Spec F' (which gives a geometric point 3 on X7z =X Xxp F via X7z —
X).

Remark 2.4.1. Let X be a set of prime numbers such that p € ¥ and #X > 2.
In the situation of Corollary 2.4, let A¥ be the maximal pro-¥ quotient, and write
[1* := II/ker(A — A¥). Then the algorithm of Proposition 2.2 (2) works for II* as
well, hence Corollary 2.4.1 holds for IT* as well.

Proof. The corollary immediately follows from Proposition 2.2 (2) and Lemma 2.3.
O
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§2.3. Slimness and Commensurable Terminality.

Definition 2.5.

(1) Let G be a profinite group. We say that G is slim if we have Zg(H) = {1} for any
open subgroup H C G.

(2) Let f: G; — G2 be a continuous homomorhism of profinite groups. We say that
G, relatively slim over Gy (via f) if we have Zg,(Im{H — G2}) = {1} for any
open subgroup H C Gy.

Lemma 2.6.  ([AbsAnab, Remark 0.1.1, Remark 0.1.2]) Let G be a profinite
gruop, and H C G a closed subgroup of G.

(1) If H C G is relatively slim, then both of H and G are slim.

(2) If H C G is commensurably terminal and H is slim, then H C G is relatively slim.

Proof. (1): For any open subgroup H' C H, we have Zy(H') C Zg(H') = {1}.
For any open subgroup G’ C G, we have Zg(G') C Zg(HNG') = {1} since H NG’ is
open in H.

(2): Let H' C H be an open subgroup. The natural inclusion Cq(H) C Co(H') is
an equality since H' is open in H. Then we have Zg(H') C Cq(H') = Co(H) = H.
This combined with Zg(H') = {1} implies Zg(H') = {1}. O

Proposition 2.7.  ([AbsAnab, Theorem 1.1.1, Corollary 1.3.3, Lemma 1.3.1,
Lemma 1.3.7]) Let F' be a number field, and v a non-Archimedean place. Let F, be

an algebraic closure of F,, F the algebraic closure of F in F,.
(1) Write G := Gal(F/F) > G, := Gal(F,/F,).

(a) G, C G is commensurably terminal,
(b) G, C G is relatively slim,

(c) Gy is slim, and

(d) G is slim.

(2) Let X be a hyperbolic curve over F. Let s : SpecF, — Xz = X xp F, be
a geometric point lying over Spec F, (which gives geometric points 3 on X7 =
X xpF, Xp, ==X xp F,, and X via X = X7 — X, and X5 — XF, — X).
Write A := m(X7,5) & m(Xg,3), 11 == m(X,3), and 11, := m(XF,,s). Let x
be any cusp of X& (i.e., a point of the unique smooth compactification of X% over
F which does not lie in X%), and we write I, C A (well-defined up to conjugates)
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for the inertia subgroup at = (Note that I, is isomorphic to Z(1)). For any prime
number l, we write Ig(;l) — AW for the mazimal pro-l quotient of I, C A (Note that
1Y s isomorphic to Z1(1) and that it is easy to see that I = AW g injective).

(a) A is slim,
(b) 11 and 11, are slim, and

(c) I c AD and I, ¢ A are commensurably terminal.

Remark 2.7.1.  Furthermore, we can show that Gal(F/F) is slim for any Kummer-
faithful field F' (cf. Remark 3.17.3).

Proof. (1)(a)(cf. also [NSW, Corollary 12.1.3, Corollary 12.1.4]): First, we claim
that any subfield K C F with K # F has at most one prime ideal which is indecom-
posable in F. Proof of the claim: Let p; # ps be prime ideals in K which do not split
in F. Let f; € K[X] be any irreducible polynomial of degree d > 0, and f, € K[X]
a completely split separable polynomial of the same degree d. By the approximation
theorem, for any € > 0 there exists f € K[X]| a polynomial of degree d, such that
|f — filp, < € and |f — fa]p, < €. Then for sufficiently small ¢ > 0 the splitting fields
of f and f; over K, coincide for ¢ = 1,2 by Krasner’s lemma. By assumption that
p1 # po do not split in F, the splitting fields of f; and fy over K coincide. Then we
have K = F since splitting field of f5 is K, and f; is any irreducible polynomial. The
claim is proved. We show (la). We specify a base point of G, to kill the conjugacy
indeterminacy, that is, we take a place ¥ in K, over v, and we use Gy instead of G,.
Let g € Cq(Gy). Then G5 NG5 # {1}, since G5 N gGrg~! = G5 N G5 has finite index
in G5. Then the above claim implies that Gz N Gz = G5, i.e., gv = v. Thus, we have
g € Gy.

(c): Let Gk C G, be an open subgroup, and g € Zg,(Gk). Then for any finite
Galois extension L over K, the action of g on G, hence on G%b, is trivial. By the local
class field theory, the action of g on L* is also trivial. Thus, we have g = 1 since L is
any extension over K.

(b) follows from (a), (c), and Lemma 2.6 (2).

(d) follows from (b) and Lemma 2.6 (1).

(2)(a): This is similar to the proof of (1c). Let H C A be an open subgroup.
We write Xz — X3 for the finite étale covering corresponding to H. We take any
sufficiently small open normal subgroup H’ C A such that H' C H and the corre-
sponding finite étale covering Xp» — Xp has the canonical compactification Xp/ of
genus > 1. We have an identification H' = 71(Xp,y) for a basepoint y. We write
Jr = Jac(Xp) with the origin O for the Jacobian variety of Xp/. Let ¢ € A. Then
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we have the following commutative diagram of pointed schemes:

Ty
(XHlvy)(—> (XH’ay) - (JH’7O)

A

(Xar, 9(9) > (K, g(y)) 2% (T, g(O)),

which induces

7Tl(AXH’aZD _>>7Tl(‘]H’7O) —N>T(JH’7O)

gfl gil g;’l

1 (Xur,9(y)) —= 11 (Jur,9(0)) ——T(Ju, 9(0)),

where we write T'(Jg/, O) and T'(Jp/, g(O)) for the Tate modules of Jg+ with origin O
and ¢g(O) respectively (Note that we have the isomorphisms from 7 to the Tate modules,
since F' is of characteristic 0). Here, the morphism ¢ : (Jg/,0) — (Jg,g(0)) is the
composite of an automorphism (¢7) : (Jg,0) — (Jg+,0) of abelian varieties and
an addition by g(O). We also have a conjugate action conj(g) : H = m(Xg+,y) —
71 (Xa,g*(y)) = gH'g~! = H’', which induces an action conj(g)2® : (H')*> — (H')2b.
This is also compatible with the homomorphism induced by (g”)":

(H')* —=T(J, 0)

conj(g)abl (g‘])ll

(H/)ab —> T(JH/, O)

Assume that ¢ € ZA(H). Then the conjugate action of g on H’, hence on (H')2P,
is trivial. By the surjection (H')*® — T(Jgs,0), the action (g7). : T(Jy:,0) —
T(Jg,0) is trivial. Thus, the action (g7) : (Jg/,0) — (Jy+,0) is also trivial, since
the torsion points of Jy: are dense in Jy:. Therefore, the morphism g7 : (Jg/,0) —
(Ju,g*(O)) of pointed schemes is the addition by ¢g(O). Then the compatibility of
9% Xu,y) = Xu,g9(y) and g7 : (Ju,0) = (Ju,g(0)) with respect to [y and
fo(y) (i-e., the first commutative diagram) implies that g% - (Xa,y) — Xa,g)),
hence g% : (Xg/,y) — (Xg/,9(y)), is an identity morphism by (the uniqueness assertion
of) Torelli’s theorem (cf. [Mil, Theorem 12.1 (b)]). Then we have g = 1 since H' is any
sufficiently small open subgroup in H.

(b) follows from (a), (1c), and (1d).

(c): This is similar to the proof of (la). We assume that Ca(l,) # I, (resp.
Caw (Ig(gl)) #* Ig(gl)). Let g € Ca(1) (resp. Caw (Ig(cl))) be such that g is not in I, (resp.
Ig(cl)). Since g & I, (resp. g ¢ Ig(gl)), we have a finite Galois covering (resp. a finite
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Galois covering of degree a power of [) Y — X3 (which is unramified over x) and a
cusp y of Y over x such that y # ¢(y). By taking sufficiently small Ay C A (resp.
Ay € AW), we may assume that Y has a cusp ¢’ # y, g(y). We have Iy = gl,g1
0

9(v)
I?Sl)), we have a finite Galois covering (resp. a finite Galois covering of degree a power

0

(resp. o) = gI?J(,”g_l). Since I, N1y, (resp. Lgl) N ) has a finite index in I, (resp.

of l) Z — Y such that Z has cusps z, g(z), and 2’ lying over y, g(y), and y’ respectively,

_ 0 _ 7@
and I, = Iy, (resp. I;7 = Ig(z)

Az (resp. A(Zl)) (Note that inertia subgroups are well-defined up to inner conjugate).

), i.e., z and g(z) have conjugate inertia subgroups in

On the other hand, we have abelian coverings of Z which are totally ramified over z
and not ramified over g(z), since we have a cusp z’ other than z and g(z) (Note that
the abelianisation of a surface relation ~q -, [[1_;[es, 3] = 1is 1+, = 1, and
that if n > 3, then we can choose the ramifications at 7; and 7, independently). This
contradicts that z and g(z) have conjugate inertia subgroups in Ay (resp. A(Zl)). O

§2.4. Characterisation of Cuspidal Decomposition Groups.

Let k a finite extension of Q,. For a hyperbolic curve X of type (g,7) over k, we
write Ax and IIx for the geometric fundamental group (i.e., 1 of Xz := X xj k) and
the arithmetic fundamental group (i.e., m; of X) of X for some basepoint, respectively.
Note that we have a group-theoretic characterisation of the subgroup Ax C IIx (hence,
the quotient Iy — Gy) by Corollary 2.4. For a cusp x, we write I, and D, for the
inertia subgroup and the decomposition subgroup at z in Ax and in IIx respectively
(they are well-defined up to inner automorphism). For a prime number [, we also write
Ig(cl) and Ag? for the maximal pro-I quotient of I, and Ax, respectively. Write also
Hg? =[x /ker(Ax — A()?). Then we have a short exact sequence 1 — Ag? — Hg? —
Gk — 1.

Lemma 2.8. ([AbsAnab, Lemma 1.3.9], [AbsTopl, Lemma 4.5]) Let X be a
hyperbolic curve of type (g,r) over k.

(1) X is not proper (i.e., r > 0) if and only if Ax is a free profinite group (Note that
this criterion is group-theoretic ).

(2) We can group-theoretically reconstruct (g,r) from Ilx as follows:

)Wt:2 +1 ifr>0, forl#p,

. a . a wt=0
r = dlm(@l (A)}D ®Z @l — dlle ( )? ®2 Ql)
1 (dimg, AY @5 Q —r+1) ifr>0,

g:
1 dimg, AY @5 Q ifr =0 for anyl,

where (—)V*=" with w € Z is the subspace on which the Frobenius at p acts with
eigenvalues of weight w, i.e., algebraic numbers with absolute values q¢= (Note that
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the weight is independent of the choice of a lifting of the Frobenius element Froby
to Gy in the extension 1 — I, — G — 2Frobk — 1, since the action of the
inertia subgroup on A%}) is quasi-unipotent). Here, note also that Gy, and Ax are
group-theoretically reconstructed from Ilx by Corollary 2.4, the prime number p,
the cardinality q of the residue field, and the Frobenius element Froby are group-
theoretically reconstructed from Gy by Proposition 2.1 (1), (1) and (38b), and (5)
respectively (cf. also Remark 2.1.1).

Remark 2.8.1. By the same group-theoretic algorithm as in Lemma 2.8, we can
also group-theoretically reconstruct (g, r) from the extension datum 1 — Ag? — Hg? —
Gy — 1 for any [ # p (i.e., in the case where the quotient Hg? — G, is given).

Proof. (1): Trivial (Note that, in the proper case, the non-vanishing of H? implies
the non-freeness of Ax). (2): Let X < X be the canonical smooth compactification.
Then we have

r— 1 = dimg, ker {AY ®5 Q1 > AR @5 Q;} = dimg, ker {AY ®5 Q - AR @5 Ql}WtZQ

= dimg, ( %}) Q7 Ql)WtZQ — dimg, (Aﬂ) Kz Q )Wt:2
= dimg, (AY ®7 Q)"'™* — dimg, (AR ®7 Q)"*°
= dile (A%}D ®Z @l)Wt:2 - dim@z( ®Z @l)Wt 07

where the forth equality follows from the self-duality of A~. The rest of the lemma (the
formula for g) is trivial. O

Corollary 2.9. (|[NodNon, Lemma 1.6 (ii)=-(i)]) Let X be an affine hyperbolic
curves over k, and X the canonical smooth compactification. We have the following

group-theoretic characterisations or reconstruction algorithms from 1lx :

(1) The natural surjection Ax — Ax (resp. Ag? o A(Yl) for any 1 # p) is group-
theoretically characterised as follows: An open subgroup H C Ax (resp. H C Ag?)
is contained in ker(Ax — Axr) (resp. ker(Ag? — A(Yl))) if and only if r(Xpy) =
[Ax : Hr(X) (resp. r(Xu) = [Ag? : Hlr(X)), where Xp is the coverings corre-
sponding to H C Ax, and r(—)’s are their number of cusps (Note that r(—)’s are
group-theoretically computed by Lemma 2.8 (2) and Remark 2.8.1.

(2) The inertia subgroups of cusps in Ag? for any 1 # p are characterised as follows:
A closed subgroup A C Agl() which is isomorphic to Z; s contained in the inertia

subgroup of a cusp if and only if, for any open subgroup A(Y” C Ag?, the composite

ANAY c AP Al - (AL
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vanishes. Here, we write Y for the canonical smooth compactification of Y (Note
that the natural surjection A@ —» A(Yl) has a group-theoretic characterisation in

(1).

(8) We can reconstruct the set of cusps of X as the set of Ag?—orbits of the inertia
subgroups in Ag? via conjugate actions by Proposition 2.7 (2¢c) (Note that inertia

subgroups in Agl() have a group-theoretic characterisation in (2)).

(4) By functorially reconstructing the cusps of any coveringY — X from Ay C Ax C
IIx, we can reconstruct the set of cusps of the universal pro-covering X — X (Note
that the set of cusps of Y is reconstructed in (3)).

(5) We can reconstruct inertia subgroups in Ax as the subgroups that fix some cusp
of the universal pro-covering X — X of X determined by the basepoint under
consideration (Note that the set of cusps of X is reconstructed in (4)).

(6) We have a characterisation of decomposition groups D of cusps in llx (resp. in
Hgl() for anyl#p) as D = Ny (I) (resp. D = Ny (I)) for some inertia subgroup
X

in Ax (resp. in A()l()) by Proposition 2.7 (2¢) (Note that inertia subgroups in Ax
and Agl() are reconstructed in (5) and in (2) respectively).

Remark 2.9.1.  (cf. also [IUTchI, Remark 1.2.2, Remark 1.2.3]) The arguments in
[AbsAnab, Lemma 1.3.9], [AbsTopl, Lemma 4.5 (iv)], and [CombGC, Theorem 1.6 (i)]
are wrong, because there is no covering of degree [ of proper curves, which is ramified
at one point and unramified elsewhere (Note that the abelianisations of the geometric
fundamental group of a proper curve is equal to the one of the curve obtained by

removing one point from the curve).

Proof. The claims (1) is trivial. (2): The “only if” part is trivial since an inertia
subgroup is killed in Ay-. We show the “if” part. Write A(ZZ) = AA%D C Ag?. The
natural surjection A(Zl) —» A(Z”/Ag) ~ A/(AN A@”) factors as A(Zl) —» (A(Zl))ab —»
A/(AmAgﬁ)), since A/(AﬂAgﬁ)) is isomorphic to an abelian group Z/I"Z for some N. By
the assumption of the vanishing of AmAgf) in (Ay)?P, the image Im{AﬂAgp — (Ag))ab}
is contained in the subgroup generated by the image of the inertia subgroups in Agi).
Hence, the image Im{A N A — (AD)2b — (Ayab A/ 0 AV (= z/1¥7)} is
contained in the image of the subgroup in A/(A N A@)(g ZJIN7Z) generated by the
image of the inertia subgroups in Agﬁ). Since the composite A C A(Zl) —» A(Zl) /Agf) =
A/(AN Ag))(% ZJINZ) is a surjection, and since Z/INZ is cyclic, there exists the
image I, C (A(Zl))ab of the inertia subgroup of a cusp z in Z, such that the composite
I.C (A(Zl))ab — A/(AﬂAgf))(g ZJIN7Z) is surjective (Note that if we are working in the
profinite geometric fundamental groups, instead of pro-I geometric fundamental groups,
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then the cyclicity does not hold, and we cannot use the same argument). This means
that the corresponding subcovering Y — Z(— X) is totally ramified at z. The claims
(3), (4), (5), and (6) are trivial. O

Remark 2.9.2.  (Generalisation to [-cyclotomically full fields, cf. also [AbsTopl,
Lemma 4.5 (iii)], [CombGC, Proposition 2.4 (iv), (vii), proof of Corollary 2.7 (i)]) We can
generalise the results in this subsection for an I-cyclotomically full field &k for some [ (cf.
Definition 3.1 (3) below), under the assumption that the quotient Il1x — Gy, is given, as
follows: For the purpose of a characterisation of inertia subgroups of cusps, it is enough
to consider the case where X is affine. First, we obtain a group-theoretic reconstruction
of a positive power ijc, Lup to fin of the [-adic cyclotomic character up to a character of

: ab o
finite order by the actions of G on A% (A ®;Q) (H* ®5 Q) for characteristic open
torsion-free subgroups H C Ax. Next, we group-theoretically reconstruct the [-adic
cyclotomic character Xcyc,iup to in Up to a character of finite order as Xcyc,i,up to fin =
Xmax, where Xmax is the maximal power of ijc,up to in Py which G acts in some
subquotient of H2P ®5Qy for sufficiently small characteristic open torsion-free subgroups
H C Ax. Once we reconstruct the [-adic cyclotomic character Xcyc,iup to in UpP to a
character of finite order, then, for a finite-dimensional Q;-vector space V with continuous
G-action, we take any filtration V = V0 > V1 o ... (resp. V(Xc_y](.:,l,up ofmn) =V0D
V1D ... of Q[Gg]-modules (Here we write V(x 1) for the twist of V by x~!) such that
each graded quotient either has the action of GGy factoring through a finite quotient or
has no nontrivial subquotients, and we use, instead of dimg, V¥*=? (resp. dimg, V"*=2)
in Lemma 2.8, the summation of dimg, V7//V7/*! where the Gg-action on V7 /VJiT!

factors through a finite quotient of GGj, and the rest is the same.

§3. Mono-anabelian Reconstruction Algorithms.

In this section, we show mono-anabelian reconstruction algorithms, which are cru-
cial ingredients of inter-universal Teichmiiller theory.
§3.1. Some Definitions.

Definition 3.1.  ([pGC, Definition 1.5.4 (i)], [AbsTopIII, Definition 1.5}, [CombGC,
Definition 2.3 (ii)]) Let k be a field.

(1) We say that k is sub-p-adic, if there is a finitely generated field L over Q,, for some
p such that we have an injective homomorphism k& < L of fields.

(2) We say that k is Kummer-faithful, if k£ is of characteristic 0, and if for any
finite extension k' of k and any semi-abelian variety A over k’, the Kummer map
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A(K') — HY(K',T(A)) is injective (which is equivalent to Ny>1 NAK) = {0}),
where we write T'(A) for the Tate module of A.

(3) We say that k is I-cyclotomically full, if the [-adic cyclotomic character xcyc, :
Gi — Z; has an open image.

Remark 3.1.1.  ([pGC, remark after Definition 15.4]) For example, the following
fields are sub-p-adic:

(1) finitely generated extensions of Q,, in particular, finite extensions of Q,,
(2) finite extensions of Q, and

(3) the subfield of an algebraic closure Q of Q which is the composite of all number
fields of degree < n over Q for some fixed integer n (Note that such a field can be
embedded into a finite extension of Q, by Krasner’s lemma).

Lemma 3.2.  ([AbsToplll, Remark 1.5.1, Remark 1.5.4 (i), (ii)])
(1) If k is sub-p-adic, then k is Kummer-faithful.
(2) If k is Kummer-faithfull, then k is l-cyclotomically full for any .

(3) If k is Kummer-faithfull, then any finitely generated field over k is also Kummer-
faithful.

Proof. (3): Let L be a finitely generated extension of k. By Weil restriction, the
injectivity of the Kummer map for a finite extension L’ of L is reduced to the one for
L, i.e., we may assume that L' = L. Let A be a semi-abelian variety over L. Let U be
an integral smooth scheme over k such that A extends to a semi-abelian scheme A over
U and the function field of U is L. By a commutative diagram

A(L) H'(L,T(A))

| |

Hm€|U| Ay(Ly) — HmE|U| HY(Ly, T(AL)),

where we write |U| for the set of closed points, L, is the residue field at x, and A, is the
fiber at x (Note that a € A(L) is zero on any fiber of x € |U|, then a is zero since |U|
is dense in U), we may assume that L is a finite extension of k. In this case, again by
Weil restriction, the injectivity of the Kummer map for a finite extension L is reduced
to the one for k, which holds by assumption.

(1): By the same way as in (3), by Weil restriction, the injectivity of the Kummer
map for a finite extension k' of k is reduced to the one for k, i.e., we may assume that
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k" = k. Let k embed into a finitely generated field L over Q,. By the base change from
k to L and the following commutative diagram

-

A(k) ——= Hl(k, T(A))
A(L) —— HY(L,T(A)),

the injectivity of the Kummer map for k is reduced to the one for L, i.e., we may
assume that £ is a finitely generated extension over Q,. Then by (3), we may assume
that k = Q,. If A is a torus, then [y, NA(Q,) = {0} is trivial. Hence, the claim is
reduced to the case where A is an abelian variety. Then A(Q,) is a compact abelian
p-adic Lie group, which contains Z;‘?" for some n as an open subgroup. Hence, we have
Ny>1 NA(Qp) = 0. Thus, the Kummer map is injective. We are done.

_(2): For any finite extensin k&’ over k, the Kummer map for G,, over k" is injective
by the assumption. This implies that the image of l-adic cyclotomic character G, — Z;*
has an open image. O

Definition 3.3.  ([CanLift, Section 2]) Let k be a field. Let X be a geometrically
normal, geometrically connected algebraic stack of finite type over k.

(1) We write Locg(X) for the category whose objects are generically scheme-like al-
gebraic stacks over k which are finite étale quotients (in the sense of stacks) of
(necessarily generically scheme-like) algebraic stacks over k that admit a finite étale
morphism to X over k, and whose morphisms are finite étale morphisms of stacks

over k.

(2) We say X admits k-core if there exists a terminal object in Locy(X). We shall
refer to a terminal object in Locy(X) as a k-core.

For an elliptic curve E over k with the origin O, we shall refer to the hyperbolic
orbicurve (cf. Section 0.2) obtained as the quotient (E'\ {O})//=£1 in the sense of stacks
as a semi-elliptic orbicurve over k (cf. [AbsTopll, §0]. It is also called “punctured
hemi-elliptic orbicurve” in [CanLift, Definition 2.6 (ii)]).

Definition 3.4.  ([AbsTopll, Definition 3.5, Definition 3.1]) Let X be a hyper-
bolic orbicurve (cf. Section 0.2) over a field k of characteristic 0.

(1) We say that X is of strictly Belyi type if (a) X is defined over a number field,
and if (b) there exist a hyperbolic orbicurve X’ over a finite extension k' of k, a
hyperbolic curve X” of genus 0 over a finite extension k” of k, and finite étale
coverings X « X' — X",
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(2) We say that X is elliptically admissible if X admits k-core X — C, where C' is

a semi-elliptic orbicurve.

Remark 3.4.1.  In the moduli space M, , of curves of genus g with r cusps, the
set of points corresponding to the curves of strictly Belyi type is not Zariski open for
29 —2+4+1r >3, g>1. cf. [Cusp, Remark 2.13.2] and [Corr, Theorem B].

Remark 3.4.2.  If X is elliptically admissible and defined over a number field, then

X is of strictly Belyi type (cf. also [AbsTopIII, Remark 2.8.3]), since, for an elliptic curve

2 double
E, we have a diagram of finite étale coverins E \ {0} <[<—] E\E[2] — P!\ {4pts}.

cover

For a hyperbolic curve X over a field k of characteristic zero with the canonical
smooth compactification X. A closed point = in X is called algebraic, if there are
a finite extension K of k, a hyperbolic curve Y over a number field FF C K with the
canonical smooth compactification Y, and an isomorphism X x; K 2 Y xp K over K
such that 2 maps to a closed point under the composition X x; K =2Y xp K — Y.

§3.2. Belyi and Elliptic Cuspidalisations — Hidden Endomorphisms.

Let k be a field of characteristic 0, and k an algebraic closure of k. Write G, :=
Gal(k/k). Let X be a hyperbolic orbicurve over k (cf. Section 0.2). We write Ax and
IIy for the geometric fundamental group (i.e., 71 of Xz := X Xj k) and the arithmetic
fundamental group (i.e., m; of X) of X for some basepoint, respectively. Note that
we have an exact sequence 1 — Ay — Ilx — Gp — 1. We consider the following
conditions on k and X:

(Delta) x: We have a “group-theoretic characterisation” (for example, like Proposition 2.2 (1),
(2)) of the subgroup Ax C IIx (or equivalently, the quotient IIx — Gy).

(GC): Isom-version of the relative Grothendieck conjecture (cf. also Theorem B.1) for the
profinite fundamental groups of any hyperbolic (orbi)curves over k£ holds, i.e., the

natural map Isom(X,Y) — Isomgzt(AX,Ay) = Isomg, (Ax,Ay)/Inn(Ay) is

bijective for any hyperbolic (orbi)curve X, Y over k.
(slim): Gy is slim (Definition 2.5 (1)).

(Cusp)x: We have a “group-theoretic characterisation” (for example, like Proposition 2.9 (3))
of decomposition groups in ITx of cusps.

We also consider the following condition (of different nature):

(Delta)’x: Either
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e Ilx is given and (Delta)x holds, or

o Ax C Ilx are given.
Note that (Delta)x, (GC), and (slim) are conditions on k& and X; however, as for
(Delta)’x, “the content of a theorem” depends on which case of (Delta)’x is satisfied,
i.e., in the former case, the algorithm in a theorem requires only IIx as (a part of) an

input datum, on the other hand, in the latter case, the algorithm in a theorem requires
both of Ax C IIx as (a part of) input data.

Remark 3.4.3.

(1) (Delta)x holds for any X in the case where k is an NF by Proposition 2.2 (1) or k
is an MLF by Corollary 2.4.

(2) (GC) holds in the case where k is sub-p-adic by Theorem B.1.

(3) (slim) holds in the case where k is an NF by Proposition 2.7 (1) (d) or k is an MLF
by Proposition 2.7 (1) (c¢). More generally, it holds for Kummmer-faithful field %
by Remark 3.17.3, which is shown without using the results in this subsection.

(4) (Cusp)x holds for any X in the case where k is an MLF by Corollary 2.9. More
generally, (Cusp)x holds for [-cyclotomically full field & for some [ under the as-
sumption (Delta)’x by Remark 2.9.2.

In short, we have the following table (cf. also Lemma 3.2):

NF, MLF = sub-p-adic = Kummer-faithful = I[-cyclotomically full

(Delta)x holds (GC) holds (slim) holds (Cusp) x holds
for any X under (Delta)’x.
Remark 3.4.4.

(1) It seems difficult to rigorously formulate the meaning of “group-theoretic character-
isation”. Note that the formulation for (Delta) x like “any isomorphism IIx, = Iy,
of topological groups induces an isomorphism Ay, = Ax, of topological groups”
(it is called bi-anabelian approach) is a priori weaker than the notion of “group-
theoretic characterisation” of Ay in IIx (this is called mono-anabelian approach),
which allows us to reconstruct the object itself (not the morphism between two ob-
jects).

(2) (Important Convention) In the same way, it also seems difficult to rigorously for-
mulate “there is a group-theoretic algorithm to reconstruct” something in the sense
of mono-anabelian approach (Note that it is easy to rigorously formulate it in the
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sense of bi-anabelian approach). To rigorously settle the meaning of it, it seems
that we have to state the algorithm itself, i.e., the algorithm itself have to be a part
of the statement. However, in this case, the statement must be often rather lengthy
and complicated. In this survey, we use the phrase “group-theoretic algorithm”
loosely in some sense, for the purpose of making the input data and the output
data of the algorithms in the statement clear. However, the rigorous meaning will
be clear in the proof, since the proof shows concrete constructions, which, properly
speaking, should be included in the statement itself. We sometimes employ this con-
vention of stating propositions and theorems in this survey (If we use the language
of species and mutations (cf. [IUTchIV, §3]), then we can rigorously formulate
mono-anabelian statements without mentioning the contents of algorithms).

(3) Mono-anabelian reconstruction algorithms have an advantage, as contrasted with
bi-anabelian approach, of avoiding “a referred model” of a mathematical object like
“the C”, i.e., it is a “model-free” (or “model-implicit”) approach. For more in-
formations on Mochizuki’s philosophy of mono-anabelian reconstruction algorithms
versus bi-anabelian reconstruction algorithms, see [AbsToplIIl, §1.3, Remark 3.7.3,

Remark 3.7.5].

In this subsection, to avoid settling the meaning of “group-theoretic characterisa-
tion” in (Delta)x and (Cusp)x (cf. Remark 3.4.4 (1)), we assume that k is sub-p-adic,
and we include the subgroup Ax (C IIx) as an input datum. More generally, the re-
sults in this section hold in the case where k and X satisfy (Delta)’ x, (GC), (slim),
and (Cusp)x. Note that if we assume that k£ is an NF or an MLF, then (Delta)x,
(GC), (slim), and (Cusp)x hold for any X, and we do not need include the subgroup
Ax (C IIx) as an input datum.

Lemma 3.5. Let ¢ : H — II be an open homomorphism of profinite groups,
and ¢1,¢o : Il — G two open homomorphisms of profinite groups. We assume that G
s slim. If ¢1 o) = ¢ 01, then we have ¢1 = ¢o.

Proof. By replacing H by the image of ¢, we may assume that H is an open

1

subgroup of II. By replacing H by Nyerr/pgH g™, we may assume that H is an open

normal subgroup of II. For any g € Il and h € H, we have ghg~! € H, and ¢;(ghg™!) =
$(ghg™") by assumption. This implies that ¢ (g)r (W) (9)~" = d2(g)da()a(g)~} =
$2(9)P1(h)d2(g) . Hence we have ¢1(9)d2(9) " € Ziman(G). By the assumption of
the slimness of G, we have Zi,1)(G) = {1}, since Im(II) is open in G. Therefore, we

obtain ¢1(g) = ¢2(g), as desired. O

Remark 3.5.1.  In the algebraic geometry, a finite étale covering ¥ — X is an
epimorphism. The above lemma says that the inclusion map IIy C IIx correspoinding
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to Y — X is also an epimorphism if Iy is slim. This enables us to make a theory for
profinite groups (without using 2-categories and so on.) which is parallel to geometry,
when all involved profinite groups are slim. This is a philosophy behind the geometry
of anabelioids ([Anbd]).

Choose a hyperbolic orbicurve X over k, and we write IIx for the arithmetic fun-
damental group of X for some basepoint. We have the surjection Il x — G} determined
by (Delta)’x. Note that now we are assuming that k is sub-p-adic, hence, Gy, is slim
by Lemma 3.2 (1) and Remark 3.17.3. Let G C Gy be an open subgroup, and write
IT:=1Ix x¢g, G, and A := Ax NIL In this survey, we do not adopt the convention that
we always write (—)’ for the commutator subgroup for a group (—).

In the elliptic and Belyi cuspidalisations, we use the following three types of oper-

ations:

Lemma 3.6.  Write II' := Ilx/ to be the arithmetic fundamental group of a
hyperbolic orbicurve X' over a finite extension k' of k. Write A’ := ker(Il' - Gy).

(1) Let 1" < II' be an open immersion of profinite groups. Then II" arises as a finite
étale covering X" — X' of X', and A" :=11" N A’ reconstructs Ax.

(2) Let TI' < TI” be an open immersion of profinite groups such that there exists a
surjection 1" — G" to an open subgroup of G, whose restriction to II' is equal to
the given homomorphism II' — G' C G. Then the surjection II" — G" is uniquely
determined (hence, we reconstruct the quotient 11" — G"' as the unique quotient of

I1"” having this property), and 11" arises as a finite étale quotient X' — X" of X'.

(3) Assume that X' is a scheme i.e., not a (non-scheme-like) stack (We can treat or-
bicurves as well; however, we do not use this gemeralisation in this survey. cf.
[AbsTopl, Definition 4.2 (iii) (c)]). Let I" — 11" be a surjection of profinite groups
such that the kernel is generated by a cuspidal inertia subgroup group-theoretically
characterised by Corollary 2.9 and Remark 2.9.2 (We shall refer to it as a cuspidal

quotient). Then I1” arises as an open immersion X' — X" and we reconstruct
Axroas A'/A"Nker(II" — I1"7).

Proof. (1) is trivial by the definition of IIx.

The first asserion of (2) comes from Lemma 3.5, since G is slim. Write (IT")%2! :=
Ngerrmrgll’'g™" C II, which is normal in II” by definition. Then (II')%! arises from
a finite étale covering (X')9® — X’ by (1). By the conjugation, we have an action of
1" on (II')%2l. By (GC), this action determines an action of IT”/(I')¢al on (X')“al.
We take the quotient X" := (X’)9al/ /(11" /(II')42!) in the sense of stacks. Then Ix~

is isomorphic to II” by definition, and the quotinet (X’)%2! — X" factors as (X’)%a —
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X' — X" since the intermediate quotient (X’)%2!//(II'/(I")43!) is isomorphic to X'.
This proves the second assertion of (2).
(3) is also trivial. O

3.2.1. Elliptic Cuspidalisation. Let X be an elliptically admissible orbicurve over
k. By definition, we have a k-core X — C = (E \ {O})//{£1} where we write E for
an elliptic curve over k£ with the origin O. Let N > 1 be a positive integer. We write
Ucn = (E\ E[N])//{x1} C C for the open sub-orbicurve of C' determined by the
image of E'\ E[N]. Write Ux y := Uc,ny XcX C X, which is an open suborbicurve of X.
For a finite extension K of k, write Xg := X X, K, Cx := C X, K, and Fg := E x; K.
For a sufficiently large finite extension K of k, all points of Ex[N] are rational over K.
We have the following key diagram for elliptic cuspidalisation:

(EllCusp) X C E\ {0} <X~ E\ E[N] —> Uc.y <~— UT N
E\ {0} C X,

where —’s are finite étale coverings, <—’s are open immersions, and two sqauares are
cartesian.
We will use the technique of elliptic cuspidalisation three times:

(1) Firstly, in the theory of Aut-holomorphic space in Section 4, we will use it for the
reconstruction of “local linear holomorphic structure” of an Aut-holomorphic space
(cf. Proposition 4.5 (Step 2)).

(2) (This is the most important usage) Secondly, in the theory of the étale theta function
in Section 7, we will use it for the constant multiple rigidity of the étale theta function
(cf. Proposition 7.9).

(3) Thirdly, we will use it for the reconstruction of “pseudo-monoids” (cf. Section 9.2).

Theorem 3.7.  (Elliptic Cuspidalisation, [AbsTopll, Corollary 3.3]) Let X be
an elliptically admissible orbicurve over a sub-p-adic field k. Let N > 1 be a positive
integer, and we write Ux n for the open sub-orbicurve of X defined as above. Then from
the profinite groups Ax C llx, we can group-theoretically reconstruct (cf. Remark 3.4.4
(2)) the surjection

X :HUX,N %%HX

of profinite groups, which is induced by the open tmmersion Ux y — X, and the set of
the decomposition groups in Ilx at the points in X \ Ux n.
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We shall refer to mx : Il , — Ilx as an elliptic cuspidalisation.

Proof. (Step 1): By (Delta)’x, we have the quotient IIx — G} with kernel Ax.
Let G C Gy, be a sufficiently small (which will depend on N later) open subgroup, and
write Il :=IIx x¢g, G, and A := Ax NIL

(Step 2): We define a category Locg (II) as follows: The objects are profinite groups
IT" such that there exist open immersions II <= II” < II' of profinite groups and
surjections IT" — G’, II"” — G” to open subgroups of G, and that the diagram

H )H//( H/

G Q// Ql

G<—G——QG.

is commutative. Note that, by this compatibility, the surjections II" — G’ and 1" — G”
are uniquely determined by Lemma 3.6 (1), (2) (or Lemma 3.5). The morphisms from
IT; to Iy are open immersions II; < Iy of profinite groups up to inner conjugates by
ker(Ils — G3) such that the uniquely determined homomorphisms II; - G; C G and
I, - G5 C G are compatible. The definition of the category Locg(II) depends only
on the topological group structure of IT and the surjection II — G of profinite groups.
By (GC), the functor X’ + Ilxs gives us an equivalence Lock (Xg) — Locg(Il) of
categories, where K is the finite extension of k corresponding to G C Gi. Then we
group-theoretically reconstruct (Ilx, C)Il¢, as the terminal object (II C)IIcore of the
category Locg(II).

(Step 3): We group-theoretically reconstruct Ac,. (C Il¢,. ) as the kernel Agope :=
ker(Ileore — G). We group-theoretically reconstruct Ag, \ (o} as an open subgroup Ay
of Acore Of index 2 such that Agy is torsion-free (i.e., the corresponding covering is a
scheme, not a (non-scheme-like) stack), since the covering is a scheme if and only if the
geometric fundamental group is torsion-free (cf. also [AbsTopl, Lemma 4.1 (iv)]). We
take any (not necessarily unique) extension 1 — Ag — Iley — G — 1 such that the
push-out of it via Aey C Acore 1S isomorphic to the extension 1 — Acore — Heore —
G — 1 (Note that Iley is isomorphic to gy \ (0}, where Ef \ {O} is a twist of order 1
or 2 of Ex \{O}). We group-theoretically reconstruct I, \ (0 as Ilen (Note that if we
replace G by a subgroup of index 2, then we may reconstruct Ilg,\(0}; however, we do
not detect group-theoretically which subgroup of index 2 is correct. However, the final
output does not depend on the choice of Ilg).

(Step 4): Let

(a) ey n < [y be an open immersion of profinite groups with ey /Iy v = (Z/NZ)®2
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such that the composite ey n < ey — HZﬁt factors through as Il v — Hgﬁt N
cpt : cpt cpt .

I, where we write Iley — IL ", Ten N — Hell, n for the quotients by all of the

conjugacy classes of the cuspidal inertia subgroups in Iley, Ilen v respectively, and

(b) Iy n — II” a composite of (N? — 1) cuspidal quotients of profinite groups such
that there exists an isomorphism IT" = Il of profinite groups.

Note that the factorisation ey n — Hzﬁf N Hzﬂt means that the finite étale covering
corresponding to Iley v < Il extends to a finite étale covering of their compactifica-
tions i.e., the covering corresponding to Il v < 1ley is unramified at all cusps as well.
Note that there exists such a diagram

! ~
ey <= ey, v — 1" = 11y

by (EllCusp). Note that for any intermediate composite Ile n — II* — II" of cuspidal
quotients in the composite Iy v — II' of cuspidal quotients, and for the uniquely
determined quotient II* — G*, we have G* = G for sufficiently small open subgroup
G C Gg, and we take such an open subgroup G C Gj.

We group-theoretically reconstruct the surjection mg : Ug \gr v = e\ {0}
induced by the open immersion E} \ E%[N] < E} \ {O} as the composite mg :
e,y — II' = Iy, since we can identify wg» with 7g by (GC).

(Step 5): We write Ilcore,1 for eore for G = Gj. If necessary, by changing Il
we may take Ilg; such that there exists a wunique lift of Ilsope 1 /Ilen — Out(Iley) to

out
Out(ILey ) by (EllCusp). We form x (Ilgore,1/Ilen) (cf. Section 0.2) to the surjection
out out
1_Iell,N - 1_Iell i.e., 1_Iell,N X (Hcore,l/Hell) - 1_Iell b (Hcore,l/Hell) - 1_Icore,la where
out
eore,1/Ien — Out(Ilen) (in the definition of X (Ilcore,1/Ilen)) is the natural one, and

out
Heore1/Hen — Out(Ilen,n) (in the definition of X (Ileore1/Ien)) is the unique lift of
Heore,1/en — Out(Iley) to Out(Ilen, ). Then we obtain a surjection mo? : Ieore, v :=

out
Hen,n X (Ieore,1/Hen) — Ieore,1.  We group-theretically reconstruct the surjection
nc : My, v — Ilg induced by the open immersion Ug y < C' as the surjection 7c? :
Heore, N — Heore,1, since we can identify mc» with o by (GC).

(Step 6): We form a fiber product xpg IIx to the surjection Icore, v — core,1

core,1
Le., Ix N = Ileore,N XMooy 1Ix = Ilcore,1 XTores Hx = Ilx. Then we obtain a
surjection mx» : IIx y — Ilx. We group-theretically reconstruct the surjection mx :
Hyy » — lx induced by the open immersion Ux y < X as the surjection mx7 :
IIx v — Ilx, since the identification of w7 with m¢ induces an identification of mx»
with 7x.

(Step 7): We group-theretically reconstruct the decomposition groups at the points
of X\Ux n in IIx as the image of the cuspidal decomposition groups in IIx n, which are

group-theoretically characterised by Corollary 2.9, via the surjection lIx ny — IIx. O
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3.2.2. Belyi Cuspidalisation. Let X be a hyperbolic orbicurve of strictly Belyi
type over k. We have finite étale coverings X « Y —» P!\ (IV points), where Y is a
hyperbolic curve over a finite extension &’ of k, and N > 3. We assume that ¥ — X
is Galois. For any open sub-orbicurve Ux C X defined over a number field, write
Uy :=Y xxUx. Then by the theorem of Belyi (cf. also Theorem C.2 for its refinement),
we have a finite étale covering Uj, — Up1 from an open sub-orbicurve Uy, C Uy to the
tripod Up: (cf. Section 0.2) over k’. For a sufficiently large finite extension K of k', all
the points of Y \ Uy, are defined over K. We have the following key diagram for Belyi

cuspidalisation:
(BelyiCusp) Uy € Uy € Y
X Y P!\ (N points)——— Up Ux—— X,

where —’s are finite étale coverings, <’s are open immersions, and the square is carte-

sian.

Theorem 3.8.  (Belyi Cuspidalisation, [AbsTopll, Corollary 3.7]) Let X be an
orbicurve over a sub-p-adic field k. We assume that X s of strictly Belyi type. Then
from the profinite groups Ax C Ilx, we can group-theoretically reconstruct (cf. Re-
mark 3.4.4 (2)) the set

{Hyy = x}y

of the surjections of profinite groups, where Ux runs through the open subschemes of X
defined over a number field. We can also group-theoretically reconstruct the set of the
decomposition groups in llx at the points in X \ Ux, where Ux runs through the open
subschemes of X defined over a number field.

We shall refer to II;;, — Ilx as a Belyi cuspidalisation.

Proof. (Step 1): By (Delta)’x, we have the quotient IIx — G} with kernel Ax.
For sufficiently small (which will depend on U later) open subgroup G C Gy, write
II := HX X G G.

(Step 2): Let

(a) II <= IT* be an open immersion of profinite grouops,

(b) II* < II**4U an open immersion of profinite groups, such that the group-theoretic
algorithms described in Lemma 2.8 and Remark 2.9.2 tell us that the hyperbolic
curve corresponding to II**4:V has genus 0,
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(c) TI*PdU — 114 5 composite of cuspidal quotients of profinite groups, such that the
number of the conjugacy classes of cuspidal inertia subgroups of II*P¢ is three,

(d) II*Pd < I1*U" an open immersion of profinite groups,
(e) sV — IV a composite of cuspidal quotients of profinite groups, and

(f) IV — II** a composite of cuspidal quotients of profinite groups such that there
exists an isomorphism II** 2 IT* of profinite groups.

Note that there exists such a diagram
II < II* — Htpd,U —y Htpd > H*,U’ s H*,U — TI** = IT*

by (BelyiCusp). Note also that any algebraic curve over an algebraically closed field of
characteristic 0, which is finite étale over a tripod, is defined over a number field (i.e.,
converse of Belyi’s theorem, essentially the descent theory) and that algebraic points in
a hyperbolic curve are sent to algebraic points via any isomorphism of hyperbolic curves
over the base field (cf. [AbsSect, Remark 2.7.1]). Write 7y~ : [T*Y — II** = II* to be
the composite. Note that for any intermediate composite 1%V — II# — II** in the
composite 5V = I1** of cuspidal quotients and for the uniquely determined quotient
II# — G#, we have G = @ for sufficiently small open subgroup G C G}, and we take
such an open subgroup G C Gj.

We group-theoretically reconstruct the surjection 7y : Il — 1ly induced by some
open immersion Uy < Y as my» : II*Y — II*, since we can identify my» with my by
(GC) (Note that we do not prescribe the open immersion Uy < Y').

(Step 3): We choose the data (a)-(e) such that the natural homomorphism ITx /IT* —
Out(IT*) has a wunique lift 1y /IT* — Out(IT*Y) to Out(II*Y) (Note that this cor-
responds to that Uy C Y is stable under the action of Gal(Y/X), thus descends to

out

Ux C X). We form o;t(HX/H*) to the surjection IT*V — II* ie., XU = II*UV x
(Ilx /IT*) — IT* O;t (ITx /TI*) = IIx. Then we obtain a surjection mx7 : IV — Ilx.
We group-theretically reconstruct the surjection mx : Ily7, — IIx induced by the open
immersion Ux < X as the surjection wx- : IIV — IIx, since we can identify 7x-
with mx by (GC) (Note again that we do not prescribe the open immersion Uy — X.
We just group-theoretically reconstruct a surjection Iy, — Ilx for some Ux C X such
that all of the points in X \ Ux are defined over a number field).

(Step 4): We group-theretically reconstruct the decomposition groups at the points

HX’U

of X\ Ux in IIx as the image of the cuspidal decomposition groups in , which are

group-theoretically characterised by Corollary 2.9, via the surjection Iy, — IIx. O

Corollary 3.9.  ([AbsTopll, 3.7.2]) Let X be a hyperbolic orbicurve over a non-
Archimedean local field k. We assume that X is of strictly Belyi type. Then from the
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profinite group Ilx, we can reconstruct the set of the decomposition groups at all closed
points in X.

Proof. The corollary follows from Theorem 3.8 and the approximation of a de-
composition group in (the proof of) Lemma 3.10 below. O

Since the geometric fundamental group Ax of X (for some basepoint) is topologi-
cally finitely generated, there exist characteristic open subgroups

. CAx[j+1 CcAx[j]C...C Ax

of Ax for j > 1 such that (; Ax[j] = {1}. Let k be an algebraic closure of k and write
G} := Gal(k/k). For any section o : G — Ilx, we write

Ix(j0) = Im(o)Ax[j] C Ilx,
and we obtain a corresponding finite étale coverings
o= X[j+ 1,0l = X[j,0] > ... > X.

Lemma 3.10.  ([AbsSect, Lemma 3.1]) Let X be a hyperbolic curve over a non-
Archimedean local field k. Suppose X is defined over a number field. Let o : Gy, — llx
be a section such that Im(o) is not contained in any cuspidal decomposition group of
[Ix. Then the following conditions on o is equivalent:

(1) Im(o) is a decomposition group D, of a point x € X (k).

(2) For any j > 1, the subgroup Ilx(; 5 contains a decomposition group of an algebraic
closed point of X which surjects onto Gy,.

Proof. (1)«<=(2): For j > 1, take points z; € X[j,0](k). Since the topological
space [ [, X4, 0](k) is compact, there exists an infinite set of positive integers .J’ such
that for any j > 1, the images of =, in X[j, o](k) for j' > j with j* € J’ converges to a
point y; € X[j, o](k). By definition of y;, the point y;, maps to y;, in X[js](k) for any
j1 > jo. We write y € X (k) for the image of y; in X (k). Then we have Im(c) C D,
(up to conjugates), and y is not a cusp by the assumption that Im(o) is not contained
in any cuspidal decomposition group of Ilx.

(1)=(2): By using Krasner’s lemma, we can approximate = € X (k) by a point
r' € Xp(F) C X(k), where X is a model of X xj k over a number field F, which is
sufficiently close to z so that 2’ lifts to a point z; € X[j, o](k), which is algebraic. [
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§3.3. Uchida’s Lemma.

Let X be a hyperbolic curve over a field k. Let k be an algebraic closure of k.
Write Gy, := Gal(k/k), and Xz := X xy k. We write k(X) for the function field of
X. We write Ax and IIx for the geometric fundamental group (i.e., 7 of X3) and
the arithmetic fundamental group (i.e., m; of X) of X for some basepoint, respectively.
Note that we have an exact sequence 1 — Ax — IIx — G — 1.

We recall that we have I'(X,O(D)) = {f € k(X)* | div(f) + D > 0} U {0} for a
divisor D on X.

Lemma 3.11.  ([AbsToplll, Proposition 1.2]) Assume that k be an algebraically
closed, and X proper.

(1) There are distinct points x,y1,y2 € X (k) and a divisor D on X such that x,y1,y2 &
Supp(D) and (D) := dim, I'(X,O(D)) =2, and (D — E) =0 for any E = e; + e
with e1,e2 € {xaylayQ}J €1 7£ €2.

(2) Let x,y1,y2,D be as in (1). For i = 1,2, and X € k*, there exists a unique
i € k(X)™ such that

div(fai) +D >0, fai(z) =X failyi)) #0, friyz—i) =0.

(8) Let x,y1,y2, D be asin (1), and A\, u € k* be such thatﬁ # —1. Let also fx1, fu2 €
kE(X)* be asin (2). Then fa1+ fu2 € k(X)* is characterised as a unique element
g € k(X)* such that

div(g) + D >0, g(y1) = fa1(v1), 9(y2) = fu2(y2)-

In particular, A+ p € k* is characterised as g(x) € k*.

Proof. (1): For any divisor D of degree > 2¢g — 2+ 3 on X, then we have [(D) =
I(Kx — D) +deg(D)+1—g = deg(D)+1—g > g+ 2 > 2, by the theorem of
Riemann-Roch (Here, we write Kx for the canonical divisor of X). For any divisor D
on X with d := (D) > 2, we write I'(X, O(D)) = (f1,..., fa)k, and take a point P
in the locus “fifo--- fqg # 0”7 in X of non-vanishing of the section f; fo--- fg such that
P ¢ Supp(D) (Note that this locus is non-empty since there is a non-constant function in
['(X,0(D)) by I(D) > 2). Then we have (D — P) < [(D). On the other hand, we have
I(D)-l(D-P)=l(Kx—D)—l(Kx—D+P)+1 < 1. Thus, we have [(D—P) = [(D)—1.
Therefore, by substracting a suitable divisor from a divisor of degree > 2g — 2+ 3, there
is a divisor D on X with [(D) = 2. In the same way, take x € X (k) \ Supp(D) such that
there is f € I'(X, Ox (D)) with f(x) # 0 (this implies that [(D—xz) =1(D)—1 = 1). Let
y1 € X (k) \ (Supp(D) U {x}) be such that there is g € I'(X, Ox (D — x)) with g(y1) # 0
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(this implies that [(D—x—y;) = (D —xz)—1=10), and y5 € X (k) \ (Supp(D) U {z,y1})
such that there are hy € I'(X,Ox (D —z)) and hy € I'(X, Ox (D —y1)) with hy(y2) # 0
and ha(y2) # 0 (this implies that I(D — z — y2) = (D — y1 — y2) = 0). The first claim
(1) is proved. The claims (2) and (3) trivially follow from (1). O

Proposition 3.12.  (Uchida’s Lemma, [AbsToplll, Proposition 1.3]) Assume
that k be an algebraically closed, and X proper. There exists a functorial (with re-
spect to isomorphisms of the following triples) algorithm for constructing the additive
structure on k(X)* U {0} from the following data:

(a) the (abstract) group k(X)*,

(b) the set of surjective homomorphisms Vx = {ord, : k(X)* — Z}, . x () of the valu-
ation maps at x € X (k), and

(c) the set of the subgroups {U, = {f € k(X)* | f(z) =1} C k(X)*}
k(X)*.

v=ord, EVx Of

Proof. From the above data (a), (b), and (c), we reconstruct the additive structure
on k(X)* as follows:

(Step 1): We reconstruct k* C k(X)* as k™ := [, o), ker(v). We also reconstruct
the set X (k) as Vx.

(Step 2): For each v = ord, € Vx, we have inclusions k* C ker(v) and U, C ker(v)
with £* NU, = {1}, thus we obtain a direct product decomposition ker(v) = U, x k*.
We write pr, for the projection ker(v) — k£* Then we reconstruct the evaluation map
ker(v) 5 f — f(x) € k* as f(z) := pr,(f) for f € ker(v).

(Step 3): We reconstruct divisors (resp. effective divisors) on X as formal finite
sums of v € Vx with coefficient Z (resp. Z>¢). By using ord, € Vx, we reconstruct the
divisor div(f) for an element f in an abstract group k(X)*.

(Step 4): We reconstruct a (multiplicative) k*-module I'(X,O(D)) \ {0} for a
divisor D as {f € k(X)* | div(f) + D > 0}. We also reconstruct {(D) > 0 for a divisor
D as the smallest non-negative integer d such that there is an effective divisor E of
degree d on X such that I'(X,O(D — E)) \ {0} = 0 (cf. also the proof of Lemma 3.11
(1)). Note that dimy of I'(X, O(D)) is not available yet here, since we do not have the
additive structure on {f € k(X)* | div(f) + D > 0} U {0} yet.

(Step 5): For A\, u € k*, ﬁ # —1 (Here, —1 is the unique element of order 2 in £*),
we take ord,,ord,, ,ord,, € Vx corresponding to z,y;,y2 in Lemma 3.11 (1). Then we
obtain unique fi 1, fu,2,9 € k(X)* as in Lemma 3.11 (2), (3) from abstract data (a),
(b), and (c). Then we reconstruct the addition A + u € k* of A and p as g(x). We also
reconstruct the addition A+ p := 0 for ﬁ =—1,and A+0 =0+ X := X for A € kX U{0}.
These reconstruct the additive structure on k£* U {0}.
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(Step 6): We reconstruct the addition f + g of f,g € k(X)* U {0} as the unique
element h € k(X)* U {0} such that h(z) = f(x) + g(x) for any ord, € Vx with
f,g € ker(ord,) (Here, we write f(x) := 0 for f = 0). This reconstructs the additive
structure on k(X)* U {0}. O

§3.4. Mono-anabelian Reconstruction of the Base Field and Function
Field.

We continue the notation in Section 3.3 in this subsection. Furthermore, we assume
that k is of characteristic 0.

Definition 3.13.

(1) We assume that X has genus > 1. Let (X C)X be the canonical smooth compact-
ification of X. We define

5(Ilx) = Hom(H*(A, Z), 2).
We shall refer to u(Ilx) as the cyclotome of IIx as orientation.

(2) In the case where the genus of X is not necessarily greater than or equal to 2, we
take a finite étale covering Y — X such that Y has genus > 2, and we define the
cyclotome of IIy as orientation to be us(Ilx) := [Ax : Ay]us(Ily). It does
not depend on the choice of Y in the functorial sense, i.e., For any such coverings
Y » X,V - X, take Y — X which factors through Y/ — Y — X and
Y"” — Y’ — X. Then the restrictions H?(Ay, 7) — H? (A, 7), H?(Av, 7) —
H? (A, 2) (where Y, Y/, and Y are the canonical compactifications of Y, Y’,
and Y respectively), and taking Hom(—,Z) induce natural isomorphisms [Ay :
Ayluz(y) < [Ax : Av][Ay : Ayiluz(Tlyr) = [Ax @ Ayrluz(yr) = [Ax
Ay [Ay: o Ayilps(lyr) 5 [Ax @ Ayi]us(ITys) (cf. [AbsToplll, Remark 1.10.1
(1), (i)]).

(3) For an open subscheme ) # U C X, let Ay — AF*P"(— Ax) be the maximal
intermediate quotient Ay — @ — Ax such that ker (Q — Ax) is in the center of
Q, and TIyy — TI5*P°™ the push-out of Ay — AF*P ™ with respect to Ay C .
We shall refer to them as the maximal cuspidally central quotient of Ay and
11y respectively.

Remark 3.13.1.  In this subsection, by the functoriality of cohomology with z5(IT_))-
coefficients for an open injective homomorphism of profinite groups Ay C Ay, we always

mean multiplying m on the homomorphism between the cyclotomes Ily and 11z
(cf. also [AbsToplIIl, Remark 1.10.1 (i), (ii)]).
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Proposition 3.14. (Cyclotomic Rigidity for Inertia Subgroups, [AbsToplIII, Propo-
sition 1.4]) Assume that X has genus > 2. Let (X C)X be the canonical smooth com-
pactification of X. Let U C X be a non-empty open subscheme. We have an exact
sequence 1 — Ay — Hy — G — 1. For v € X(k) \ U(k), write U, := X \ {x}. We
write I, for the inertia subgroup of x in Ay (it is well-defined up to inner automorphism
of Ay ), which is naturally isomorphic to 2(1)

(1) ker (Ay — Ay,) and ker (IIy — Iy, ) are topologically normally generated by the
inertia subgroups of the points of U, \ U.

(2) We have an ezact sequence
- t
L= I, = AP = Ay — 1,

which induces the Leray spectral sequence EY'? = HP (A<, HI(1,, 1)) = Hp+q(A§}fp'Cent, I,)
(Here, I, and A?};Sp_cent act on I, by the conjugates). Then the composite

7 = Hom(I,,I,) = H(Ax, H'(I,,I,)) = Eg’l
— B3 = H*(Ax, H(I,, I,)) = Hom(uz (1), I,)

sends 1 € Z to the natural isomorphism
(Cyc. Rig. Iner.) pz(x) — 1.

(this is a natural identification between “Z(1)” arising from H? and “Z(1)” arising
from I..) Therefere, we obtain a group-theoretic reconstruction of the isomorphism
(Cyc. Rig. Iner.) from the surjection Ay, — Ax (Note that the intermediate quo-
tient Ay, —» Af}fp_cent — A is group-theoretically characterised). We shall refer
to the isomorphism (Cyc. Rig. Iner.) as the cyclotomic rigidity for inertia sub-

group.

Proof. (1) is trivial. (2): By the definitions, for any intermediate quotient Ay, —
@ — A such that ker (Q - Ax) is in the center of @, the kernel ker (Q — A) is
generated by the image of I,,. Thus, we have the exact sequence 1 — I, — A?}fp_cem —
A~ — 1 (cf. also [Cusp, Proposition 1.8 (iii)]). The rest is trivial. O

Remark 3.14.1.  In the case where the genus of X is not necessarily greater than
or equal to 2, we take a finite étale covering ¥ — X such that Y has genus > 2, and
a point y € Y (k') lying over 2 € X (k) for a finite extension k&’ of k. Then we have the
cyclotomic rigidity u5(Ily) = I, by Proposition 3.14. This induces isomorphisms

1
[Ax:Ay]

pa(x) = [Ax : Aylps(Iy) =5 pp(ly) 2 1, = L.
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We shall also refer to this as the cyclotomic rigidity for inertia subgroup. It does
not depend on the choice of Y and y in the functorial sense of Definition 3.13 (2), i.e., For
suchY - X, Y - X withy € Y(ky), v € Y'(ky/), take Y — X with " € Y (ky~)
lying over Y, Y’ and y,y’, then we have the following commutative diagram (cf. also
Remark 3.13.1)

Z = Hom(1,,I,) — Hom(us(Ily), I,)

= o

1
[Ay Ay ]
Z = Hom (I, Iyr) — Hom (pig (Iy ), L)

_ 1
= [Ayr:Ay ]

Z =Hom(I,, I,;) — Hom(pz (Iy+), I,/).

For a proper hyperbolic curve X over k, we write J¢ for the Picard scheme
parametrising line bundles of degree d on X (Note that J% is a J := J9-torsor). We have
a natural map X — J! (P~ O(P)), which induces IIx — II ;1 (for some basepoint).
For x € X(k), let t, : G — I1;1 be the composite of the section G — IIx determined
by x and the natural map IIx — II;1. The group structure of Picard schemes also
determines a morphism Il;:1 x - - (d-times) - -+ X I1 ;1 — I1;a for d > 1. For any divisor
D of degree d on X such that Supp(D) C X (k), by forming a Z-linear combination of
t,’s, we have a section tp : G — Il ja.

Lemma 3.15.  ([AbsToplll, Proposition 1.6]) Assume that k is Kummer-faithful,
and that X is proper. Let ) # U C X be an open subscheme, and we write

ko : D(U,00) = H' Wy, pz(k(X))) = H' (I, pz (k) = H' (y, pz (Ix )

for the composite of the Kummer map (for an algebraic closure k(X) of k(X)) and the

natural isomorphism piz(k) = ps(Ilx ) (= Z(l)) (which comes from the scheme theory).
(1) Ky is injective.

(2) (cf. also [Cusp, Proposition 2.3 (i)]) For any divisor D of degree 0 on X such that
Supp(D) C X (k), the sectiontp : Gy, — Il is equal to (up to conjugates by Ax ) the
section determined by the origin O of J(k) if and only if the divisor D is principal.

(3) (cf. also [Cusp, Proposition 2.1 (i)]) We assume that U = X \ S, where S C X (k)
is a finite set. Then the quotient Iy — TI5"P ™ induces an isomorphism

H (I s (Ilx ) = H' (Hy, pg(11x).
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(4) (cf. also [Cusp, Proposition 1.4 (ii)]) We have an isomorphism
H'(ILx, piz(Ix)) 22 (k™)™
where we write (k*)" for the profinite completion of k*.

(5) (cf. also [Cusp, Proposition 2.1 (ii)]) We have a natural exact sequence induced by
the restrictions to I, (x € S):

0 — H'(Tlx, H([ [ I, pz(Tx))) — H (TP 15 (1)) — @D HO (T, H' (I, 115 (T1x))).
zeS zeSs

The cyclotomic rigidity isomorphism (Cyc. Rig. Iner.) 5(Ilx) = I, in Propo-
sition 3.14 induces an isomorphism

H (I, H' (I, piz(11x))) = Homp (I, p(1x)) = Z

(Hence, note that we can use the above isomorphism for a group-theoretic recon-
struction later). Then by the isomorphisms in (3) and (4) and the above cyclotomic
rigidity isomorphism, the above exact sequence is identified with

1= (k) — H'(Iy, pz(x)) = P Z.
zeS

(6) The image of T(U,Op) in H'(Ily, s (Ix))/(K*)" via ky is equal to the inverse
image in H'(Ily, p5(ILx )/ (E*)" of the submodule P, of @,cgZ(C P egZ) de-
termined by the principal divisors with support in S.

Remark 3.15.1. (A general remark to the readers who are not familiar with the
culture of anabelian geometers) In the above lemma, note that we are currently studying
in a scheme theory here, and that the natural isomorphism p5 (k) & pz(I1x) comes from
the scheme theory. A kind of “general principle” of studying anabelian geometry is like

this:

(1) First, we study some objects in a scheme theory to obtain group-theoretic properties
or group-theoretic characterisations.

(2) Next, by using the group-theoretic properties or group-theoretic characterisations
obtained in the first step, we formulate group-theoretic reconstruction algorithms,
and we cannot use a scheme theory in this situation.

When we consider cyclotomes as abstract abelian groups with Galois action (i.e., when
we are working in the group theory), we only know a priori that two cyclotomes are
abstractly isomorphic (this is the definition of the cyclotomes), the way to identify them
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is not given, and there are Z*-ways (or we have a Zx—torsor) for the identification (i.e.,
we have zx—indeterminacy for the choice). It is important to note that the cylotomic
rigidity isomorphism (Cyc. Rig. Iner.) is constructed in a purely group-theoretic manner,
and we can reconstruct the identification even when we are working in the group theory.
cf. also the (Step 3) in Theorem 3.17.

Proof. (1): By the assumption that &k is Kummer-faithful, £(X) is also Kummer-
faithful by Lemma 3.2 (3).

(2): The origin O € J determines a section sp : Gy — Il;, and, by taking (in
the additive expression) the substraction np :=tp — sp : G, — Ay (C II;) (i.e., the
quotient np := tp/so in the multiplicative expression), which is a 1-cocycle, of two
sections tp,so : G — I, we obtain a cohomology class [np] € H' (G, Ay). On the
other hand, the Kummer map for .J(k) induces an injection (J(k) C)J(k)" € H*(k,Ay),
since k is Kummer-faithful (Here, we write J(k)” for the profinite completion of J(k)).
Then we claim that [D] = [O(D)] € J(k) is sent to np € H(Gg,Ay) (cf. also [NTs,
Lemma 4.14] and [Naka, Claim (2.2)]). We write ap : J — J for the morphism which
sends = to z — [D], and for a positive integer N, let Jp ny — J be the pull-back of
ap : J — J via the morphism [N]: J — J of multiplication by N:

Jp,N —

J
l L[N]
J J.
[N]

The origin O € J(= J) corresponds to a k-rational point +[D] € Jp n(k) lying over
[D] € J(k). By the k-rationality of +[D], we have tp(o) € I, , (C ;) for o € Gy.
The inertia subgroup Io (C A j\(oy) of the origin O € J(« Jp n) determines a system

ap

J\{O}¢

of geometric points @p n € Jp (k) corresponding to the divisor + (—[D]) for N > 1
such that Io always lies over Qp n. The conjugation conj(tp(c)) € Aut(Anio})
by tp(o) coincides with the automorphism induced by o} := id Xgpeck Spec (a7 1) €
Aut((J \ {O}) @ k) (Note that a fundamental group and the corresponding cover-
ing transformation group are opposite groups to each other). Thus, tp(o)lotp(o)™?
gives an inertia subgroup over ox (Qp.n) = o(@p,n). On the other hand, by def-

inition, we have tp(c)zotp(o)™t = tp(o)so(c) tso(o)zos0(0) tso(o)tp(o)™! =

Xeye (o) -1

np(0)zg np(o)~! for a generator zp of Ip, hence, tp(o)lotp(o)~?! is an iner-

tia subgroup over vy (np(o)™1)(Qp n), where vy : Ay — Aut((J \ J[N]) @ k ]
(J \ {O}) @i k)°PP (Here, we write (—)°PP for the opposite group. Note that a funda-
mental group and the corresponding covering transformation group are opposite groups

to each other). Therefore, we have o(Qp n) = vn(np(c) 1) (@p.n). By noting the nat-



78 GO YAMASHITA

[

ural isomorphism Aut ((J \ J[N]) @ k al (J\{O}) ®k E) =~ J[N] given by v — ~v(0),

we obtain that

(5 (-1DD) =~ (ap(0))(©) + 5 (~IDD.

Hence we have o (+[D]) — &[D] = vn(np(0))(0). This gives us the claim. The
assertion (2) follows from this claim.

(3): We have the following commutative diagram:

0 Hl (Gk; H() (Agjusp—cent)) Hl (ngusp—cent) H() (Gk:7 Hl (Atltjusp—cent))

| | |

0 ——— H' (G}, H*(Ay)) ———— H'(Ily) ———— H°(Gy, H' (Av)),

where the horizontal sequences are exact, and we abbreviate the coefficient 15 (Ily) by

the typological reason. Here, we have
HY (Gr, H(Av, p5(11x))) = H (Gr, 4z (Ix)) = H' (G, HO(AGP ™, 15 (11x))),
and
H (G, H'(Av, p13(Ix))) = HY(Gi, AY) = H* (G, H' (AG™ ™, pi5(1x ).

Thus by combining these, the assertion (3) is proved.
(4): By the exact sequence

0 — HY (G, H(Ax, pz(Ix))) = H' (I, iz (Ix)) — H(Gy, H' (Ax, pz(Ix))) (=2 HY(Gi, AY)),

and H'(Gi, H'(Ax, p5(Ilx))) = HY(Gg, pz(I1x)) = (k*)", it suffices to show that
H®(G, A%®) = 0. This follows from (A3)% = T(J)% = 0, since Ny NJ(k) = 0 by
the assumption that k is Kummer-faithful (Here, we write T'(J) for the Tate module of
J, and J[N] is the group of N-torsion points of .J).

(5) is trivial by noting H*(ILy, H°([],c g Iz, #5(I1x))) = H' (Ix, pz(I1x)) = (k)"
by (4).

(6) is trivial. O

We write knp for the algebraic closure of QQ in k (Here, NF stands for “number
field”). If Xy is defined over knr, we say that X is an NF-curve. For an NF-curve
X, points of X (k) (resp. rational functions on X+, constant rational functions (i.e.,
k C k(X))) which descend to kxr, we shall refer to them as NF-points (resp. NF-

rational functions, NF-constants) on Xi.
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Lemma 3.16.  ([AbsToplll, Proposition 1.8]) Assume that k is Kummer-faithful.
Let ) # U C X be an open subscheme, and write S := X \U. We also assume that U is
an NF-curve (hence X is also an NF-curve). We write Py C H'(Iy, pz(I1x)) for the
inverse image of Py C @,cqZ(C D,eq 7.) via the homomorphism H' (11, ps(Ilx)) —
D.cs 7 constructed in Lemma 3.15.

(1) an element n € Py is the Kummer class of a non-constant NF-rational function

if and only if there exist a positive integer n and two NF-points x1,zo € U(K')
o= s () €
HY (G, pu5(I1x)), where sy, : Gy — Iy is the section corresponding to x; for

with a finite extension k' of k such that the restrictions (nn)

i = 1,2, satisfy (in the additive expression) (nn)|z, = 0 and (nn)|z, # 0 (i.e., =1
and # 1 in the multiplicative expression).

(2) Assume that there exist non-constant NF-rational functions in T'(U, Of;). Then an
element n € PyNHY (G, pz(Ilx)) = (k*)" is the Kummer class of an NF-constant
in k* if and only if there exist a non-constant NF-rational function f € T'(U, Op)
and an NF-point x € U(k") with a finite extension k' of k such that ky (f)|e = 1ls
in HY (G, pz(Ix)).

Proof. Let Xnr be a model of Xz over knr. Then any non-constant rational
function on Xyp determines a morphism Xyp — IP%N , which is non-constant i.e.,
F

Xnr(knp) — IP%NF (kxr) is surjective. Then the lemma follows from the definitions. [

Theorem 3.17.  (Mono-anabelian Reconstruction of NF-Portion, [AbsToplIl,
Theorem 1.9]) Assume that k is sub-p-adic, and that X is a hyperbolic orbicurve of
strictly Belyi type. Let X be the canonical smooth compactification of X. From the
extension 1 - Ax — Ilx — Gr — 1 of profinite groups, we can functorially group-
theoretically reconstruct the NF-rational function field kxp(X) and NF-constant field
ke as in the following. Here, the functoriality is with respect to open injective homo-
morphisms of extension of profinite groups (cf. Remark 3.13.1), as well as with respect

to homomorphisms of extension of profinite groups arising from a base change of the

base field.

(Step 1) By Belyi cuspidalisation (Theorem 3.8), we group-theoretically reconstruct the set
of surjections {Ily — Ilx '}, for open sub-NF-curves ) # U C X and the decompo-
sition groups D, in Ilx of NF-points x. We also group-theoretically reconstruct the
inertia subgroup I, := D, N Ay.

(Step 2) By cyclotomic rigidity for inertia subgroups (Proposition 3.14 and Remark 3.14.1),
we group-theoretically obtain isomorphism I, = pz(Ilx) for any x € X (k), where
I, is group-theoretically reconstructed in (Step 1).
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(Step 8) By the inertia subgroups I, reconstructed in (Step 1), we group-theoretically recon-
struct the restriction homomorphism H'(Ily, p(Ix)) — H'(I,, p5(I1x)). By the

cyclotomic rigidity isomorphisms in (Step 2), we have an isomorphism H' (I, pz(I1x))
7. Therefore, we group-theoretically obtain an exact sequence

1— (k) = H'(Iy, pz(1x)) = P Z
€S

in Lemma 3.15 (5) (Note that, without the cyclotomic rigidity Proposition 3.14, we
ves L, and that the
reconstruction algorithm in this theorem would not work). By the characterisation

would have Z* -indeterminacies on each direct summand of €@

of principal cuspidal divisors (Lemma 3.15 (2), and the decomposition groups in
(Step 1)), we group-theoretically reconstruct the subgroup

Py C H'(Ily, iz (1y))

of principal cuspidal divisors.

(Step 4) Note that we already group-theoretically reconstructed the restriction map n|., in
Lemma 3.16 by the decomposition group D, reconstructed in (Step 1). By the char-
acterisations of non-constant NF-rational functions and NF-constants in Lemma 3.16
(1), (2) in Py reconstructed in (Step 3), we group-theoretically reconstruct the sub-

groups (via Kummer maps Ky ’s in Lemma 3.15)

e © e (X) € lim H (I, iz (T1x)),
U

where U runs through the open sub-NF-curves of X X1 k' for a finite extension k'
of k.

(Step 5) In (Step 4), we group-theoretically reconstructed the datum knp(X)* in Proposi-
tion 3.12 (a). Note that we already reconstructed the data ord,’s in Proposition 3.12
(b) as the component at x of the homomorphism H'(Iy, pz(I1x)) — @xesi Te-
constructed in (Step 3). Note also that we already group-theoretically reconstructed
the evaluation map f +— f(x) in Proposition 3.12 as the restriction map to the
decomposition group D, reconstructed in (Step 1). Thus, we group-theoretically ob-
tain the data U, ’s in Proposition 3.12 (c). Therefore, we can apply Uchida’s Lemma
(Proposition 3.12), and we group-theoretically reconstruct the additive structures on

kxp U {0}, Enp(X)* U {0}

Proof. The theorem immediately follows from the group-theoretic algorithms re-
ferred in the statement of the theorem. The functoriality immediately follows from the
described constructions. O
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Remark 3.17.1.  The input data of Theorem 3.17 is the extension 1 - Ax —
I[Ix — Gy — 1 of profinite groups. If k£ is a number field or a non-Archimedean local
field, then we need only the profinite group Ilx as an input datum by Proposition 2.2
(1), and Corollary 2.4. (Note that we have a group-theoretic characterisation of cuspidal
decomposition groups for the number field case as well by Remark 2.9.2.)

Remark 3.17.2.  (Elementary Birational Analogue, [AbsTopIIl, Theorem 1.11])
We write nx for the generic point of X. If k is l-cyclotomically full for some [, then
we have the characterisation of the cuspidal decomposition groups in II, , at (not only
NF-points but also) all closed points of X (cf. Remark 2.9.2). Therefere, under the
assumption that k is Kummer-faithful (cf. also Lemma 3.2 (2)), if we start not from
nx - an -

Gk — 1, then the same group-theoretic algorithm (Step 2)-(Step 5) works without using

the extension 1 - Ax — IIx — G — 1, but from the extension 1 — A

Belyi cuspidalisation (Theorem 3.8) or (GC) (cf. Theorem B.1), and we can obtain (not
only the NF-rational function field kxp(X) but also) the rational function field k(X)
and (not only the NF-constant field kxr but also) the constant field k& (Note also that

we do not use the results in Section 3.2, hence we have no circular arguments here).

Remark 3.17.3.  (Slimness of Gy, for Kummer-Faithful k, [AbsToplll, a part of
Theorem 1.11]) By using the above Remark 3.17.2 (Note that we do not use the results
in Section 3.2 to show Remark 3.17.2, hence we have no circular arguments here), we
can show that G, := Gal(k/k) is slim for any Kummer-faithful field & as follows (cf.
also [pGC, Lemma 15.8]): Let Gy C G, be an open subgroup, and take g € Zg, (Gy/).
Assume that g # 1. Then we have a finite Galois extension K of k' such that g : K = K
is not an identity on K. We have K = k’(«) for some a € K. Let E be an elliptic curve
over K with j-invariant . Write X := E \ {O}, where O is the origin of E. Write
also X9 := X x g, K i.e., the base change by g : K = K. The conjugate by g defines
an isomorphism IIx = IIxs. This isomorphism is compatible to the quotients to G,
since g is in Zg, (Gg/). Thus, by the functoriality of the algorithm in Remark 3.17.2,
this isomorphism induces an K-isomorphism K(X) = K(X9)(= K(X) ®k,4 K) of
function fields. Therefore, we have g(«) = « by considering the j-invariants. This is a

contradiction.

Remark 3.17.4.  (cf. also [AbsToplIIl, Remark 1.9.5 (ii)], and [IUTchl, Remark
4.3.2]) The theorem of Neukirch-Uchida (which is a bi-anabelian theorem) uses the
data of the decomposition of primes in extensions of number fields. Hence, it has no
functoriality with respect to the base change from a number field to non-Archimedean
local fields. On the other hand, (mono-anabelian) Theorem 3.17 has the functoriality
with respect to the base change of the base fields, especially from a number field to
non-Archimedean local fields. This is crucial for the applications to inter-universal



82 GO YAMASHITA

Teichmiiller theory (For example, see the beginning of 10, Example 8.12 etc.). cf. also
[IUTchI, Remark 4.3.2 requirements (a), (b), and (c)].

In inter-universal Teichmiiller theory, we will treat local objects (i.e., objects over
local fields) which a priori do not come from a global object (i.e., an object over a
number field), in fact, we completely destroy the above data of “the decomposition of
primes” (Recall also the “analytic section” of Spec O — Spec Op,_ ). Therefore, it is
crucial to have a mono-anabelian reconstruction algorithm (Theorem 3.17) in a purely
local situation for the applications to inter-universal Teichmiiller theory. It also seems
worthwhile to give a remark that such a mono-anabelian reconstruction algorithm in a
purely local situation got available by the fact that the bi-anabelian theorem in [pGC]|
was proved for a purely local situation, unexpectedly at that time to many people from
a point of view of analogy with Tate conjecture!

Definition 3.18. Let k be a finite extension of Q,. We define

poz(Gr) = lim (H*)tors,  p15(G) := Hom(Q/Z, pgz(Gr)),

HCG},: open

where the transition maps are given by Verlangerung (or transfer) maps (cf. also the
proof of Proposition 2.1 (6) for the definition of Verlangerung map). We shall refer to
them as the cyclotomes of Gj.

Remark 3.18.1.  Similarly as Remark 3.13.1, in this subsection, by the functorial-
ity of cohomology with g,z (G (—))-coeflicients for an open injective homomorphism of
profinite groups G C G}, we always mean multiplying m on the homomorphism
between the cyclotomes of Gy, and Gy (cf. also [AbsToplIIl, Remark 3.2.2]). Note that

we have a commutative diagram

H2(Gr, pgyz(Gr)) — Q/Z

[Gkﬁ -restrictionl/ o~ l_
Sk

H*(Gy, pogyz(Grr)) — Q/Z,
where the horizontal arrows are the isomorphisms given in Proposition 2.1 (7).

Corollary 3.19. (Mono-anabelian Reconstruction over an MLF, [AbsToplII,
Corollary 1.10, Proposition 3.2 (i), Remark 3.2.1]) Assume that k is a non-Archimedean
local field, and that X is a hyperbolic orbicurve of strictly Belyi type. From the profinite
group Il x, we can group-theoretically reconstruct the following in a functorial manner
with respect to open injections of profinite groups:

(1) the set of the decomposition groups of all closed points in X,
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(2) the function field k(X) and the constant field k, and

(3) a natural isomorphism
(Cyc.Rig. LCFT) 13(Gr) = pz(0” (Ilx)),

where we put 15(O% (Ilx )) := Hom(Q/Z, k(kxp)) for k : kgp < ling, H'(ITy, pz(x)).

We shall refer to the isomorphism (Cyc.Rig. LCFT) as the cyclotomic rigidity via
LCFT or classical cyclotomic rigidity (LCFT stands for “local class field theory”).

Proof. (1) is just a restatement of Corollary 3.9.

(2): By Theorem 3.17 and Corollary 2.4, we can group-theoretically reconstruct the
fields kxr(X) and knp. On the other hand, by the natural isomorphism H?(Gy, pz(Gr)) =
Z group-theoretically constructed in Proposition 2.1 (7) (with Hom(Q/Z, —)) and the
cup product, we group-theoretically construct isomorphisms H'(Gy, 15(Gr)) =5
Hom(H(Gy,Z),7Z) = G2P. We also have group-theoretic constructions of a surjection
G — G /Im(I, — G%P) and an isormorphism G2°/Im(I, — G&P) = 7 by Propo-
sition 2.1 (4a) and Proposition 2.1 (5) respectively (cf. also Remark 2.1.1). Hence,
we group-theoretically obtain a surjection H'(Gy, u5(Gy)) — Z. We have an isomor-
phism p5(G) = ps(Ilx) well-defined up to multiplication by Z*. Then this induces
a surjection H' (G, pz(Ix)) — Z well-defined up to multiplication by Z*. We group-
theoretically reconstruct the field k£ as the completion of the field (H' (G, pz(I1x)) N
E;(TF) U{0} (induced by the field structure of ESF U{0}) with respect to the valuation de-
termined by the subring of (H! (G}, pZ(HX))ﬂE;F)U{O} generated by ker {Hl (G, pz(Ix)) — Z}ﬂ

E;IF. The reconstructed object is independent of the choice of an isomorphism 15 (G},) =
pz(Ilx). By taking the inductive limit of this construction with respect to open sub-
groups of G, we group-theoretically reconstruct k. Finally, we group-theoretically
reconstruct k(X) by k(X) :=k e knr(X).

(3): We put pgz(0O" (Ilx)) = puz(0" (Ilx)) ®5 Q/Z. We group-theoretically re-
construct G* = Gal(k"" /k) by Proposition 2.1 (4a). Then by the same way as Propo-
sition 2.1 (7), we have group-theoretic constructions of isomorphisms:

H*(Gh, pgyz(0” (Tx))) 5 H* (G, 5(K ")) < H*(G™, k((k™)*))
5 H*(G™,7) <~ HY(G"™,Q/Z) = Hom(G™,Q/Z) = Q/Z.

~

Thus, by taking Hom(Q/Z, —), we obtain a natural isomorphism H?(Gy, u (0% (ILx))) =
Z. By imposing the compatibility of this isomorphism with the group-theoretically con-
structed isomorphism H?(Gy, p5(Gy)) = Z in (2), we obtain a natural isomorphism

15(Gi) 5 z(0% (L)), 0
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Remark 3.19.1.  ([AbsToplll, Corollary 1.10 (c)]) Without assuming that X is
of strictly Belyi type, we can construct an isomorphism p5(Gy) = pz(IIx) (cf. Corol-
lary 3.19 (3)). However, the construction needs technically lengthy reconstruction al-
gorithms of the graph of special fiber ([profGC, §1-5], [AbsAnab, Lemma 2.3]. cf. also
[SemiAnbd, Theorem 3.7, Corollary 3.9] Proposition 6.6 for the reconstruction without
Galois action in the case where a tempered structure is available) and the “rational pos-
itive structure” of H? (cf. also [AbsAnab, Lemma 2.5 (i)]), where we need Raynaud’s
theory on “ordinary new part” of Jacobians (cf. also [AbsAnab, Lemma 2.4]), though
it has an advantage of no need of [pGC]. cf. also Remark 6.12.2.

Remark 3.19.2.  ([AbsToplII, Proposition 3.2, Proposition 3.3]) For a topological
monoid (resp. topological group) M with continuous Gg-action, which is isomorphic
to Og (resp. EX) compatible with the Gj-action, we write (M) := Hom(Q/Z, M *))
and pgz(M) = puz(M) ®5 Q/Z. We shall refer to them as the cyclotome of a
topological monoid M. We also write M™ := M¥r(G=C™)  We can canonically take
the generator of M"/M* = N (resp. the generator of M /M up to {£1}) to obtain
an isomorphism (M"")8P /(M")* = 7Z (resp. an isomorphism (M")&P/(M")* = 7,
well-defined up to {£1}). Then by the same way as Corollary 3.19 (3), we have

H2(G/€7,UQ/Z<M)) :> HZ(Gk,Mgp) ; H2(Gur7 (Mur)gp)
5 HA(GY™, (M™)eP /(M) ) (13 H?*(G™,Z) <~ H'Y(G",Q/Z) = Hom(G™,Q/Z) = Q/Z,

where the isomorphism H?(G", (M"")&P /(M1T)*) (:; H?(G",Z) is canonically defined

(resp. well-defined up to {£1}), as noted above. Then we have a canonical isomorphism
(resp. an isomorphism well-defined up to {£1})

(Cyc. Rig. LCFT?2) 15 (Gr) = pz (M),

by the same way as in Corollary 3.19 (3). We shall also refer to the isomorphism
(Cyc. Rig. LCFT2) as the cyclotomic rigidity via LCFT or classical cyclotomic
rigidity. We also obtain a canonical homomorphism (resp. a homomorphism well-
defined up to {£1})

M< lm H'(Jpuz(M)= lim  H'(Jp5(Gr)),

— —
JCG: open JCG: open

by the above isomorphism, where the first injection is the canonical injection (The nota-
tion > in OE = OEX - (uniformiser)Y indicates that the “direction” N (2 (uniformiser)")

of Z (= (uniformiser)?) (or a generator of Z) is chosen, compared to E o= OEX :
(uniformiser)?, which has {#1}-indeterminacy of choosing a “direction” or a generator
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of Z (= (uniformiser)?). In the non-resp’d case (i.e., the O™-case), the above canonical

injection induces an isomorphism

Kum

M = OZ(Ix),
where we write Og (ITx) for the ind-topological monoid determined by the ind-topological
field reconstructed by Corollay 3.19. We shall refer to this isomprhism as the Kummer
isomorphism for M.
We can also consider the case where M is an topological group with Gj-action,
which is isomorphic to OEX compatible with the G-action. Then in this case, we have

Hl(‘]a Hz(Gk)),
which are only well-defined up to zx—multiple (i.e., there is no rigidity).

an isomorphism p5(Gy) = pz(M) and an injection M < oo

It seems important to give a remark that we use the value group portion (i.e., we
use O%, not O*) in the construction of the cyclotomic rigidity via LCFT. In inter-
universal Teichmiiller theory, not only the existence of reconstruction algorithms, but
also the contents of reconstruction algorithms are important, and whether or not we
use the value group portion in the algorithm is crucial for the constructions in the
final multiradial algorithm in inter-universal Teichmiiller theory. cf. also Remark 9.6.2,
Remark 11.4.1, Propositin 11.5, and Remark 11.11.1.

§3.5. On the Philosophy of Mono-analyticity and Arithmetic
Holomorphicity.

In this subsection, we explain Mochizuki’s philosophy of mono-analyticity and arith-
metic holomorphicity, which is closely related to inter-universality.

Let k be a finite extension of Q,, k an algebraic closure of k, and k'(C k) a finite
extension of Q. It is well-known that, at least for p # 2, the natural map

(nonGC for MLF)
Isomtopological fields (E/k, E/k/) — Isomproﬁnite groups(Gal(E/k/>v Gal(E/k»
(scheme theory) (group theory)

is not bijective (cf. [NSW, Chap. VII, §5, p.420-423]. cf. also [AbsTopl, Corollary 3.7]).
This means that there exists an automorphism of G}, := Gal(k/k) which does not come
from an isomorphism of topological fields (i.e., does not come from a scheme theory).
In this sense, by treating Gy as an abstract topological group, we can go outside of a
scheme theory. (A part of ) Mochizuki’s philosophy of arithmetically holomorphicity and
mono-analyiticity is to consider the image of the map (nonGC for MLF) as arithmeti-
cally holomorphic, and the right-hand side of (nonGC for MLF) as mono-analytic
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(Note that this is a bi-anabelian explanation, not a mono-anabelian explanation (cf.
Remark 3.4.4) for the purpose of the reader’s easy getting the feeling. We will see mono-
anabelian one a little bit later). The arithmetic holomorphicity versus mono-analyticity
is an arithmetic analougue of holomorphic structure of C versus the undeyling analytic
strucutre of R?(=2 C).

Note that G has cohomological dimension 2 like C is two-dimensional as a topo-
logical manifold. It is well-known that this two-dimensionality comes from the exact
sequence 1 — I, — G — ZFrobk — 1 and that both of I, and ZFrobk have cohomo-
logical dimension 1. In the abelianisation, these groups correspond to the unit group
and the value group respectively via the local class field theory. Proposition 2.1 (2d)
says that we can group-theoretically reconstruct the multiplicative group £* from the
abstract topological group Gi. This means that we can see the multiplicative struc-
ture of k in any scheme theory, in other words, the multiplicative structure of £ is
inter-universally rigid. However, we cannot group-theoretically reconstruct the field k
from the abstract topological group Gy, since there exists a non-scheme-theoretic au-
tomorphism of G as mentioned above. In other words, the additive structure of k is
inter-universally non-rigid. Proposition 2.1 (5) also says that we can group-theoretically
reconstruct Frobenius element Froby in iFrobk(«— Gy) from the abstract topological
group G}, and the unramified quotient ZFrob;C corresponds to the value group via the
local class field theory. This means that we can detect the Frobenius element in any
scheme theory. In other words, the unramified quotient zFrobk and the value group
Z(« k) are inter-universally rigid. However, there exists automorphisms of the topo-
logical group G which do not preserve the ramification filtrations (cf. also [AbsTopllII,
Remark 1.9.4]), and the ramification filtration (with upper numberings) corresponds to
the filtration (1+m}),, of the unit group via the local class field theory, where we write
my for the maximal ideal of Oy. In other words, the inertia subgroup I and the unit
group O are inter-universally non-rigid (We can also directly see that the unit group
O/ is non-rigid under the automorphism of topological group k* without the class field
theory). In summary, one dimension of G or k* (i.e., the unramified quotient and the
value group) is inter-universally rigid, and the other dimension (i.e., the inertia subgroup
and the unit group) is not. Thus, Mochizuki’s philosophy of arithmetic holomorphicity
and mono-analyticity regards a non-scheme-theoretic automorphism of G as a kind
of an arithmetic analogue of the Teichmiiller dilation of the undeyling analytic
strucutre of R?(=2 C) (cf. also [Pano, Fig. 2.1] instead of the poor picture below):

t -~ 0
— e

Note that it is a theatre of encounter of the anabelian geometry, the Te-
ichmiiller point of view, the differential over F; (cf. Remark 1.6.1 and Lemma 1.9)
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and Hodge-Arakelov theory (cf. Appendix A), which gives rise a Diophantine
consequence!

Note also that [Q,GC, Theorem 4.2] says that if an automorphisms of G, preserves
the ramification filtration, then the automorphism arises from an automorphism of & /k.
This means that when we rigidify the portion corresponding to the unit group (i.e.,
non-rigid dimension of Gy), then it becomes arithmetically holomorphic i.e., [Q,GC,
Theorem 4.2] supports the philosophy. Note also that we have C* = S! x R, where
we write St := Of C C* (cf. Section 0.2), and that the unit group S* is rigid and the
“value group” R~ is non-rigid under the automorphisms of the topological group C*
(Thus, the rigidity and non-rigidity for unit group and “value group” in the Archimedean
case are opposite to the non-Archimedean case).

Let X be a hyperbolic orbicurve of strictly Belyi type over a non-Archimedean local
field k. Corollary 3.19 says that we can group-theoretically reconstruct the field k£ from
the abstract topological group Ilx. From this mono-anabelian reconstruction theorem,
we obtain one of the fundamental observations of Mochizuki: Ilx or equivalently the
outer action Gy, — Out(Ax) (and the actions Ilx ~ k,Ox, OZ,07) is arithmetically

holomorphic, and Gy (and the actions Gy ~ O%

,Og on multiplicative monoid and
multiplicative group) is mono-analytic (thus, taking the quotient IIx — Gy is a “mono-
analyticisation”) (cf. Section 0.2 for the notation O% ). In other words, the outer action
of G on Ax rigidifies the “non-rigid dimension” of £*. We can also regard X as
a kind of “tangent space” of k, and it rigidifies k*. Note also that, in the p-adic
Teichmiiller theory (cf. [pOrd| and [pTeich]), a nilpotent ordinary indigenous bundle over
a hyperbolic curve in positive characteristic rigidifies the non-rigid p-adic deformations.
In the next section, we study an Archimedean analogue of this rigidifying action. In inter-
universal Teichmiiller theory, we study number field case by putting together the local
ones. In the analogy between p-adic Teichmiiller theory and inter-universal Teichmiiller
theory, a number field corresponds to a hyperbolic curve over a perfect field of positive
characteristic, and a once-punctured elliptic curve over a number field corresponds to
a nilpotent ordinary indigenous bundle over a hyperbolic curve over a perfect field of
positive characteristic. We will deepen this analogy later such that log-link corresponds
to a Frobenius endomorphism in positive characteristic, a vertical line of log-theta-lattice
corresponds to a scheme theory in positive characteristic, ©-link corresponds to a mixed
characteristic lifting of ring of Witt vectors p™/p"™t ~s p"™1 /p"*2 a horizontal line of
log-theta-lattice corresponds to a deformation to mixed characteristic, and a log-theta-
lattice corresponds to a canonical lifting of Frobenius (cf. Section 12.1).
In short, we obtain the following useful dictionaries:
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rigid ZFroby, value group | multiplicative structure of k St(c C*)
non-rigid Iy, unit group additive structure of k R-o(C CX)
C field k IIx Ix ~ k, O, O%, or arith. hol.
R2(= C) | multiplicative group k* G G ~ OF, o mono-an.

inter-universal Teich.

p-adic Teich.

number field

hyperbolic curve of pos. char.

onece-punctured ell. curve

nilp. ord. indigenous bundle

log-link

Frobenius in pos. char.

vertical line of log-theta-lattice

scheme theory in pos. char.

O-link

lifting p" /p" Tt~ p L /pn i

horizontal line of log-theta-lattice

deformation to mixed. char.

log-theta-lattice

canonical lift of Frobenius

cf. also [AbsToplll, §1.3] and [Pano, Fig. 2.5]. Finally, we give a remark that
separating additive and multiplicative structures is also one of the main themes of inter-

universal Teichmiiller theory (cf. Section 10.4 and Section 10.5).

§4. The Archimedean Theory — Formulated Without Reference to a
Specific Model C.

In this section, we introduce a notion of Aut-holomorphic space to avoid a spe-

cific fixed local referred model of C (i.e.,

“the C”) for the formulation of holomorphic-

ity, i.e., “model-implicit” approach. Then we study an Archimedean analogue mono-
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anabelian reconstruction algorithms of Section 3, including elliptic cuspidalisation, and
an Archimedean analogue of Kummer theory.

§4.1. Aut-Holomorphic Spaces.
Definition 4.1.  ([AbsTopllIl, Definition 2.1))
(1) Let X,Y be Riemann surfaces.

(a) We write Ax for the assignment, which assigns to any connected open subset
U C X the group Ax(U) := Aut™(U) := {f : U 5 U holomorphic} C
Aut(UtP) := {f : U = U homeomorphic}.

(b) Let U be a set of connected open subset of X such that U is a basis of the
topology of X and that for any connected open subset V C X, if V C U € U,
then V' € U. We shall refer to U as a local structure on the underlying
topological space X P,

(c) We shall refer to a map f : X — Y between Riemann surfaces as an RC-
holomorphic morphism if f is holormophic or anti-holomorphic at any point
z € X (Here, RC stands for “real complex”).

(2) Let X be a Riemann surface, and U a local structure on X*P.

(a) The Aut-holomorphic space associated to X is a pair X = (X*P_ Ax), where
XtoP := X'P the underlying topological space of X, and Ax := Ax.

(b) We shall refer to Ax as the Aut-holomorphic structure on X*P.

(c) We shall refer to Ax|y as a U-local pre-Aut-holomorphic structure on
xtop

(d) If X is biholomorphic to an open unit disc, then we shall refer to X as an
Aut-holomorphic disc.

(e) If X is a hyperbolic Riemann surface of finite type, then we shall refer to X as
hyperbolic of finite type.

(f) If X is a hyperbolic Riemann surface of finite type associated to an elliptically
admissible hyperbolic curve over C, then we shall refer to X as elliptically
admissible.

(3) Let X, Y be Aut-holomorphic spaces arising from Riemann surfaces X, Y respec-
tively. Let U, V be local structures of XtP, Y°P respectively.

(a) A (U,V)-local morphism ¢ : X — Y of Aut-holomorphic spaces is a local
isomorphism ¢t°P : X*P — Y'P of topological spaces suth that, for any U € U
with ¢'°P : U = V € V (homeomorphism), the map Ax(U) — Ay (V) obtained
by the conjugate by ¢'°P is bijective.
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(b) IfU, V are the set of all connected open subset of X P, Y*°P respectively, then
we shall refer to ¢ as a local morphism of Aut-holomorphic spaces.

(c) If ¢*P is a finite covering space map, then we shall refer to ¢ as finite étale.

(4) Let Z, Z' be orientable topological surfaces.

T b
(a) Let p € Z, and we define Orn(Z, p) := prWCZ: connected, open T (W \ {p})?®,
which is non-canonically isomorphic to Z. Note that after taking the abelianisa-
tion, there is no indeterminacy of inner automorphisms arising from the choice

of a basepoint in (the usual topological) fundamental group 71 (W \ {p}).

(b) The assignment p — Orn(Z,p) is a trivial local system, since Z is orientable.
We write Orn(Z) for the abelian group of global sections of this trivial local
system, which is non-canonically isomorphic to Z™(%).

(c) Let a, 8 : Z — Z' be local isomorphisms. We say that « and /3 are co-oriented
if the induced homomorphisms a., 8, : Orn(Z) — Orn(Z’) of abelian groups

coincide.

(d) A pre-co-orientation ( : Z — Z’ is an equivalence class of local isomorphisms
7 — 7' of orientable topological surfaces with respect to being co-oriented.

(e) The assignment which assigns to the open sets U in Z the sets of pre-co-
orientations U — Z’ is a presheaf. We shall refer to a global section ¢ : Z — Z’
of the sheafification of this presheaf as a co-orientation.

(5) Let X, Y be Aut-holomorphic spaces arising from Riemann surfaces X, Y respec-
tively. Let U, V be local structures of X'°P, Y'°P respectively.

(a) (U,V)-local morphisms ¢1, ¢ : X — Y of Aut-holomorphic spaces is called
co-holomorphic, if ¢}°° and ¢5’® are co-oriented.
(b) A pre-co-holomorphicisation ¢ : X — Y is an equivalence class of (U, V)-

local morphisms X — Y of Aut-holomorphic spaces with respect to being
co-holomorphic.

(¢) The assignment which assigns to the open sets U in X'P the sets of pre-co-
holomorphicisation U — Y is a presheaf. We shall refer to a global section
¢ : X = Y of the sheafification of this presheaf as a co-holomorphicisation.

By replacing “Riemann surface” by “one-dimensional complex orbifold”, we can
easily extend the notion of Aut-holomorphic space to Aut-holomorphic orbispace.

Proposition 4.2.  ([AbsToplll, Proposition 2.2]) Let X,Y be Aut-holomorphic
discs arising from Riemann surfaces X, Y respectively. We equip the group Aut(X™P)
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of homeomorphisms with the compact-open topology. We write Aut?“"° (X)) (C Aut(XtoP))
for the subgroup of RC-holomorphic automorphisms of X. We regard AuthOl(X) and
AutREON XY as equipped with the induced topology by the inclusions

AuthOI(X) C AutRC’hOI(X) C Aut(X*P).
(1) We have isomorphisms
Aut™(X) = PSLy(R), Aut®Cl(X) = PGLy(R)

as topological groups, AuthOI(X) is a subgroup in AutRC’hOI(X) of index 2, and
Aut®CPN (XY s a closed subgroup of Aut(XtoP).

(2) AutRCN(X) is commensurably terminal (cf. Section 0.2) in Aut(XP).

(3) Any isomorphism X = Y of Aut-holomorphic spaces arises from an RC-holomorphic
isomorphism X =Y.

Proof. (1) is well-known (the last assertion follows from the fact of complex anal-
ysis that the limit of a sequence of holomorphic functions which uniformly converges on
compact subsets is also holomorphic).

(2) It suffices to show that CAut(XtOP)(AuthOI(X)) = Aut®POl(X) (cf. Section 0.2).
Let a € CAut(Xtop)(AuthOl(X)). Then Aut"™!(X) N aAut"™! (X))o~ is a closed sub-
group of finite index in Aut™(X), hence an open subgroup in Aut"™(X). Since
Aut™!(X) is connected, we have Aut™(X) N aAut"!(X)a=' = Aut"™'(X). Thus,
a € NAut(me)(AuthOl(X)) (cf. Section 0.2). Then by the conjugation, « gives an au-
tomorphism of Aut"™(X). The theorem of Schreier-van der Waerden ([SvdW]) says
that Aut(PSLy(R)) = PGLy(R) by the conjugation. Hence, we have o € Aut®°(X).
(Without using the theorem of Schreier-van der Waerden, we can directly show it as fol-
lows: By Cartan’s theorem (a homomorphism as topological groups between Lie groups
is automatically a homomorphism as Lie groups, cf. [Serrel, Chapter V, §9, Theorem
2]), the automorphism of Aut™'(X) given by the conjugate of o is an automorphism of
Lie groups. This induces an automorphism of Lie algebra slo(C) with slo(R) stabilised.
Hence, « is given by an element of PG L2 (R). cf. also [AbsToplIl, proo of Proposition
2.2 (ii)], [QuContf, the proof of Lemmal.10].)

(3) follows from (2) since (2) implies that Aut®“"°'(X) is normally terminal. [

The followoing corollary says that the notions of “holomorphic structure”, “Aut-
holomorphic structure”, and “pre-Aut-holomorphic structure” are equivalent.

Corollary 4.3.  (asort of Bi-Anabelian Grothendieck Conjecture in the Archimedean
Theory, [AbsTopllIl, Corollary 2.3]) Let X, Y be Aut-holomorphic spaces arising from
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Riemann surfaces X, Y respectively. Let U, V be local structures of X*P, Y*°P respec-
tively.

(1) Any (U,V)-local isomorphism ¢ : X — Y of Aut-holomorphic spaces arises from a
unique étale RC-holomorphic morphism ¢ : X — Y. If X and Y are connected,
then there exist precisely 2 co-holomorphicisations X — Y, corresponding to the

holomorphic and anti-holomorphic local isomorphisms.

(2) Any pre-Aut-holomorphic structure on X*P extends to a unique Aut-holomorphic
structure on XtP,

Proof. (1) follows from Proposition 4.2 (3).

(2) follows by applying (1) to automorphisms of the Aut-holomorphic spaces deter-
mined by the connected open subsets of X*P which determine the same co-holomorphicisation
as the identity automorphism. O

§4.2. Elliptic Cuspidalisation and Kummer Theory in the Archimedean
Theory.

Lemma 4.4. ([AbsToplll, Corollary 2.4]) Let X be a hyperbolic Aut-holomorphic
orbispace of finite type, arising from a hyperbolic orbicurve X over C. Only from the
Aut-holomorphic orbispace X, we can determine whether or not X admits C-core, and
in the case where X admits C-core, we can construct the Aut-holomorphic orbispace
associated to the C-core in a functorial manner with respect to finite étale morphisms

by the following algorithms:

(1) Let U*™P — X™P be any universal covering of X*P. Then we reconstruct the
topological fundamental group 71 (X*P) as the opposite group Aut(UP/XtoP)oprp
of Aut(U*°P/XtoP),

(2) Let U be the local structure of U°P consisting of connected open subsets of U©P
which map isomorphically onto open sub-orbispaces of X*°P. We construct a natural
U-local pre-Aut-holomorphic structure on U°P by restricting Aut-holomorphic struc-
ture of X on X*P and by transporting it to U*°P. By Corollary 4.3 (2), this gives
us a natural Aut-holomorphic structure Ay on U™P. We write U := (U*P, Ay).
Thus, we obtain a natural injection mp(XtOP)°PP = Aut(UtP /XtP) s Aut®(U) C
Aut(U) = PGLy(R), where we write Aut®(U) for the connected component of the
identity of Aut(U), and the last isomorphism is an isomorphism as topological
groups (Here, we regard Aut(U) as a topological space by the compact-open topology).

(3) X admits C-core if and only if Tm(my (X*P)oPP) := Im(7y (XtoP)oPP  Aut’(U)) is
of finite index in Icore 1= Cyoy(Im(m (XWP)OPP)). If X admits C-core, then the
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quotient X *°P — X ope 1= U™P / /Tl re in the sense of stacks is the C-core of X. The
restriction of the Aut-holomorphic structure of U to an appropriate local structure on
U and transporting it to Xcore give us a natural Aut-holomorphic structure Ax. ., of
Xecore, hence, the desired Aut-holomorphic orbispace (X —)Xcore := (Xcores AX ore)-

Proof. Assertions follow from the described algorithms. cf. also [CanLift, Remark
2.1.2]. O

Proposition 4.5.  (Elliptic Cuspidalisation in the Archimedean Theory, [AbsTopIII,
Corollary 2.7], cf. also [AbsToplIll, Proposition 2.5, Proposition 2.6]) Let X be an el-
liptically admissible Aut-holomorphic orbispace arising from a Riemann orbisurface X.
By the following algorithms, only from the holomorphic space X, we can reconstruct the
system of local linear holomorphic structures on X*P in the sense of (Step 10) below in
a functorial manner with respect to finite étale morphisms:

(Step 1) By the definition of elliptical admissibility and Lemma 4.4 (2), we construct X —
Xeore, Where Xeore arises from the C-core Xcore of X, and Xcore 1s semi-elliptic (cf.
Section 3.1). There is a unique double covering B — Xcore by an Aut-holomorphic
space (not orbispace), i.e., the covering corresponding to the unique torsion-free
subgroup of index 2 of the group l.ore of Lemma 4.4. Here, E is the Aut-holomorphic

space associated to a onec-punctured elliptic curve E\ {O} over C.

(Step 2) We consider elliptic cuspidalisation diagrams E « EN < E (cf. also the portion of
“E\{O} «~ E\ E[N] — E\{O}” in the diagram (EllCusp) of Section 3.2), where
EN — E is an abelian finite étale coveing which is also unramified at the unique
punctured point, E©°P «— (EN)Y©P js an open immersion, and EN < E, EN — E are
co-holomorphic. By these diagrams, we can reconstruct the torsion points of the
elliptic curve E as the points in E\EN. We also reconstruct the group structure
on the torsion points induced by the group structure of the Galois group Gal(EYN /E),
i.e., o € Gal(EN /E) corresponds to “+[P]” for some P € E[N].

(Step 3) Since the torsion points constructed in (Step 2) are dense in E*°P, we reconstruct
the group structure on EYP as the unique topological group structure extending
the group structure on the torsion points constructed in (Step 2). In the subsequent

steps, we take a simply connected open non-empty subset U in P,

(Step 4) Let p € U. The group structure constructed in (Step 3) induces a local additive
structure of U atp, i.e., a+,b:=(a—p)+ (b—p)+p €U fora,be U, whenever
it 1is defined.

(Step 5) We reconstruct the line segments of U by one-parameter subgroups relative to the
local additive structures constructed in (Step 4). We also reconstruct the pairs of



94 GO YAMASHITA

parallel line segments of U by translations of line segments relative to the local
additive structures constructed in (Step 4). For a line segment L, write OL to be
the subset of L consisting of points whose complements are connected, we shall refer
to an element of OL as an endpoint of L.

(Step 6) We reconstruct the parallelograms of U as follows: We define a pre-0-parallelogram

A of U to be L1 ULy U L3 ULy, where L; (i € Z/47Z) are line segments (constructed
in (Step 5)) such that (a) for any p1 # p2 € A, there ezists a line segment L
constructed in (Step 5) with OL = {p1,p2}, (b) L; and L;yo are parallel line seg-
ments constructed in (Step 5) and non-intersecting for any i € Z/AZ, and (c)
L;NLiy1 = (0L;) N (OL;x1) with #(L; N Liy1) = 1. We reconstruct the parallel-
ograms of U as the interiors of the unions of the line segments L of U such that
OL C A for a pre-0-parallelogram A. We define a side of a parallelogram in U to
be a mazximal line segment contained in P\ P for a parallelogram P of U, where we
write P for the closure of P in U.

(Step 7) Let p € U. We define a frame F' = (S1,S53) to be an ordered pair of intersecting
sides S1 # Sa of a parallelogram P of U constructed in (Step 6), such that S1 NSy =
{p}. If a line segment L of U have an infinite intersection with P, then we shall
refer to L as being framed by F'. We reconstruct an orientation of U at p (of
which there are precisely 2) as an equivalence class of frames of U°P at p relative
to the equivalence relation of frames F = (S1,S2), F = (S1,5%) of U at p generated
by the relation that S| is framed by F and Ss is framed by F’.

(Step 8) Let V be the Aut-holomorphic space determined by a parallelogram V*° C U con-
structed in (Step 7). Let p € V®©°P. Let S be a one-parameter subgroup of the
topological group Ay(V'P)(= PSLy(R)) and a line segment L in U constructed in
(Step 5) such that one of the endpoints (cf. (Step 5)) of L is equal to p. Note that
one-parameter subgroups are characterised by using topological (not differentiable)
group structure as the closed connected subgroups for which the complement of some
connected open neighbourhood of the identity element is not connected. We say that
L is tangent to S-p at p if any pairs of sequences of points of L\{p}, (S-p)\{p} con-
verge to the same element of the quotient space V*°P\ {p} — P(V,p) determined by
identifying positive real multiples of points of V*°P\ {p} relative to the local additive
structure constructed in (Step 4) at p (i.e., projectivification). We can reconstruct
the orthogonal frames of U as the frames consisting of pairs of line segments
L1, Ly having p € U as an endpoint that are tangent to the orbits Sy -p, So - p of
one-parameter subgroups S1,Se C Ay(V®©P) such that So is obtained from Sy by
conjugating S1 by an element of order 4 (i.e., “ti”) of a compact one-parameter
subgroup of Ay (V°P).
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(Step 9) Forp e U, let (V)pevcu be the projective system of connected open neighbourhoods

of p in U, and put

A, = {f € Aut((V)pevcu) | f satisfies (LAS), (Orth), and (Om')},

where

(LAS): compatibility with the local additive structures of V(C U) at p constructed in

(Step 4),

(Orth): preservation of the orthogonal frames of V(C U) at p constructed in (Step 8),

and

(Ori): preservation of the orientations of V(C U) at p constructed in (Step 7)

(Step 10)

(cf. also Section 0.2 for the Hom for a projective system). We equip A, with the
topology induced by the topologies of the open neighbourhoods of p that A, acts on.
The local additive structures of (Step 4) induce an additive structure on A_p =AU
{0}. Hence, we have a natural topological field structure on A_p. Tha tautological
action of C* on C D U induces a natural isomorphism C* = A, of topological
groups, hence a natural isomorphism C = .A_p of topological fields. In this manner,
we reconstruct the local linear holomorphic structure “C* at p” of U at p as
the topological field A, with the tautological action of A,(C A,) on (V)peveu-

For p,p’ € U, we construct a natural isomorphism A, = A, of topological fields as
follows: If p’ is sufficiently close to p, then the local additive structures constructed
in (Step 4) induce homeomorphism from sufficiently small neighbourhoods of p onto
sufficiently small neighbourhoods of p' by the translation (=the addition). These
homeomorphisms induce the desired isomorphism .A_p = .A_p/. For general p,p’ € U,
we can obtain the desired isomorphism A_p = .A_p/ by joining p’ to p via a chain
of sufficiently small open neighbourhoods and composing the isomorphisms on local
linear holomorphic structures. This isomorphism is independent of the choice of
such a chain. We shall refer to ((A,)p, (A, = Ay )p,) as the system of local
linear holomorphic structures on E*P or X*P. We identify (A, C A,)’s for
p’s via the above natural isomorphisms and we write AX C AX for the identified
ones.

Proof. The assertions immedeately follow from the described algorithms. O

Hence, the formulation of “Aut-holomorphic structure” succeeds to avoid a specific

fixed local referred model of C (i.e., “the C”) in the above sense too, unlike the usual

notion of “holomorphic structure”. This is also a part of “mono-anabelian philoso-
phy” of Mochizuki. cf. also Remark 3.4.4 (3), and [AbsTopIIl, Remark 2.1.2, Remark
2.7.4].
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Let k be a CAF (cf. Section 0.2). We recall (cf. Section 0.2) that we write O C C

for the subset of elements with |-| < 1in k, O;° C Oy, for the group of units i.e., elements
with |- | =1, and O} := Oy \ {0} C O for the multiplicative monoid.

(1)

Definition 4.6.  ([AbsTopllIl, Definition 4.1))

Let X be an elliptically admissible Aut-holomorphic orbispace. A model Kummer
structure ry, : k = AX (resp. Rox O — A% resp. kpx : kX — A%, resp.
Kor o — A*) on X is an isomorphism of topological fields (resp. its restriction
to O), resp. its restriction to k*, resp. its restriction to OY). An isomorphism
ka2 M S AX of topological fields (resp. an inclusion s : O < A* of topological
groups, resp. an inclusion sy : kX < AX of topological groups, resp. an inclusion
kv @ OF < A* of topological monoids) is called a Kummer structure on X
if there exist an automorphicm f : X = X of Auto-holomorphic spaces, and an
isomorphism g : M = k of topological fields (resp. an isomorphism g : M = O of
topological groups, resp. an isomorphism ¢ : M = kX of topological groups, resp.
an isomorphism g : M = OY of topological monoids) such that f* ok, = Kkpog
(resp. f*o Koy = KM © g Tesp. ffokpx =kpogresp. ffo Koz = KM o g), where
AR S AX (resp. f* 1 AX S AX resp. f*: AX S AX resp. fr: AKX S A% s
the automorphism induced by f. We often abbreviate it as X/ M.

A morphism ¢ : (X; A M) — (Xy A M) of elliptically admissible Aut-
holomorphic orbispaces with Kummer structures is a pair ¢ = (¢x, ¢ar) of
a finite étale morphism ¢x : X; — Xy and a homomorphism ¢, : My — My of
topological monoids, such that the Kummer structures x; and ko are compatible
with ¢ps : My — M, and the homomorphism (¢x), : AXt — AXe arising from the
functoriality of the algorithms in Proposition 4.5.

The reconstruction

X (X, X A A* ¢ AX (with field str.) tautological Kummer structure)

described in Proposition 4.5 is an Archimedean analogue of the reconstruction

Kummer map

II <H,H ~ K (with field str.) D & — lim H*(J, uz(H))> :

JCII: open

described in Corollary 3.19 for non-Archimedean local field k. Namely, the reconstruc-

tion in Corollary 3.19 relates the base field k to IIx via the Kummer theory, and the

reconstruction in Proposition 4.5 relates the base field ﬁ(% C) to X, hence, it is a

kind of Archimedean Kummer theory.
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Definition 4.7.  (cf. also [AbsToplIl, Definition 5.6 (i), (iv)])

(1) We say that a pair G = (C, 8) of a topological monoid C and a topological sub-
monoid C C is a split monoid, if C is isomorphic to OF, and 8 — (' deter-
mines an isomorphism C* x 5 C of topological monoids (Note that C* and

6 are necessarily isomorphic to S* and (0, 1] lég R>( respectively). A morphism
of split monoids G; = (O, C1) = G5 = (Cy, C'3) is an isomorphism C; = Cj
of topological monoids which induce an isomorphism C; = C'5 of the topological
submonoids.

Remark 4.7.1. We omit the definition of Kummer structure of split monoids
([AbsToplll, Definition 5.6 (i), (iv)]), since we do not use them in inter-universal Te-
ichmiiller theory (Instead, we consider split monoids for mono-analytic Frobenius-like
objects). In [AbsTopllIl], we consider a split monoid G = (C, 8) arising from arith-
holomorphic “OF” via the mono-analyticisation, and consider a Frobenius-like object
M and k~(G) = C~ x C™ (cf. Proposition 5.4 below) for G = (C, 8) On the other
hand, in inter-universal Teichmiiller theory, we consider £~ (G) = C~ x C™ directly
from “Og” (cf. Proposition 12.2 (4)). When we consider £~ (G) directly from “Og”,
then the indeterminacies are only {1} x {£1} (i.e., Archimedean (Indet —)); however,
when we consider a Frobenius-like object for G = (C, C'), then we need to consider
the synchronisation of k; and ks via group-germs, and need to consider 8 up to Ry
(i.e., we need to consider the category TBH in [AbsToplIl, Definition 5.6 (i)]). cf. also
[AbsToplIl, Remark 5.8.1 (i)].

We write Gx = (Oix, 8 4x) for the split monoid associated to the topological field
AX i.e., the topological monoid O%x, and the splitting O%; > O%x N Ry =: 8Ax of
O%x — 0%:/0x and X ~ OF. For a Kummer structure X A Oy, of an elliptically
admissible Aut-holomorphic orbispace, we pull back O A% via the E}ummer structure
Oy — A%, we obtain a decomposition of OF as O} x Oy, where O, = OF /O;. We

consider this assignment
—)
(XA Op) — (Gx ~ O x Oy)
as a mono-analytification.

§4.3. On the Philosophy of Etale-like and Frobenius-like Objects.

We further consider the similarities between the reconstruction algorithms in Corol-
lary 3.19 and Proposition 4.5, and then, we explain Mochizuki’s philosophy of the
dichotomy of étale-like objects and Frobenius-like objects.

Note also that the tautological Kummer structure X .~ A* rigidifies the non-rigid
“R<o” (cf. Secton 3.5) in A* (=2 C*) in the exact sequence 0 — S! — CX — Ryo — 0
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(cf. also [AbsToplll, Remark 2.7.3]). In short, we have the following dictionary:

Arith. Hol. Mono-analytic
D . . . >< >< H
non-Arch. k/Q, :fin. Iy, IIx~ OE rigidifies O; | G, G~ OE x O
0—-0; >k — Z(rigid) - 0 | “k” can be reconstructed O/ : non-rigid
[ «w I X g
Arch. k(2 C) X, X~ Oy rigidifies “R Gx, Gx O} xOy
0 — S*(rigid) = C* — Rso — 0 | “C” can be reconstructed “R<¢”: non-rigid

We consider profinite groups Ilx, Gy, categories of the finite étale coverings over
hyperbolic curves or spectra of fields, and the objects reconstructed from these as étale-
like objects, and we consider, on the other hand, abstract topological monoids (with
actions of Ix, G), the categories of line bundles on finite étale coverings over hyperbolic
curves, the categories of arithmetic line bundles on finite étale coverings over spectra
of number fields, as Frobenius-like objects, i.e., when we reconstruct IIx ~ Og or
X OF, then these are regarded as étale-like objects whenever we remember that the
relations with IIxy and X via the reconstruction algorithms; however, if we forget the
relations with ITx and X via the reconstruction algorithms, and we consider them as an
abstract topological monoid with an action of Il x, and an abstract topological monoid
with Kummer structure on X, then these objects are regarded as Frobenius-like objects
(cf. also [AbsToplll, Remark 3.7.5 (iii), (iv), Remark 3.7.7], [Frdl, §I4], [IUTchI, §I1]).
Note that if we forget the relations with IIxy and X via the reconstruction algorithms,
then we cannot obtain the functoriality with respect to IIx or X for the abstract objects.

We have the dichotomy of étale-like objects and Frobenius-like objects both on
arithmetically holomorphic objects and mono-analytic objects, i.e., we can consider 4
kinds of objects — arithmetically holomorphic étale-like objects (indicated by D), arith-
metically holomorphic Frobenius-like objects (indicated by F), mono-analytic étale-like
objects (indicated by D"), and mono-analytic Frobenius-like objects (indicated by F')
(Here, as we can easily guess, the symbol F means “mono-analytic”). The types and
structures of prime-strips (cf. Section 10.3) and Hodge theatres reflect this classification
of objects (cf. Section 10).

Note that the above table also exhibits these 4 kinds of objects. Here, we consider
Gr ~ OF % (O%/O%) and Gx ~ O x (OF /O[) as the mono-analyticisations of arith-

metically holomorphic objects Il ~ OF, and X ~ OF respectively. cf. the following
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diagrams:
o forget . - forget , .
Frobenius-like ——— étale-like Frobenius-like ——— ¢tale-like
(base with line bundle) (base)  (base with line bundle) (base)
arith. hol. IIx ~ OE | IIx X~ O X
mono-anlyticisation I ] I [
x . 5 Gx NOX%xOp— =@
mono-an. G~ Of X Op—— Gy, x N Ug k X-

The composite of the reconstruction algorithms Theorem 3.17 and Proposition 4.5 with
“forgetting the relations with the input data via the reconstruction algorithms” are
the canonical “sections” of the corresponding functors Frobenius-like 0188 st ale-like
(Note also that, by Proposition 2.1 (2c), the topological monoid O} can be group-
theoretically reconstructed from Gy; however, we cannot reconstruct OE as a submonoid
of a topological field k, which needs an arithmetically holomorphic structure).

In inter-universal Teichmiiller theory, the Frobenius-like objects are used to con-
struct links (i.e., log-links and ©-links). On the other hand, some of étale-like objects
are used (a) to construct shared objects (i.e., vertically coric, horizontally coric, and
bi-coric objects) in both sides of the links, and (b) to exchange (!) both sides of a
O-link (which is called étale-transport. cf. also Remark 9.6.1, Remark 11.1.1, and
Theorem 13.12 (1)), after going from Frobenius-like picture to étale-like picture, which
is called Kummer-detachment (cf. also Section 13.2), by Kummer theory and by
admitting indeterminacies (Indet —), (Indet 1), and (Indet v»). (More precisely, étale-
like Iy and Gy are shared in log-links. The mono-analytic G, is also (as an abstract
topological group) shared in ©-links; however, arithmetically holomorphic ITx cannot
be shared in ©-links, and even though Og /tors’s are Frobenius-like objects, Og /tors’s
(not Og ’s because the portion of the value group is dramatically dilated) are shared

after admitting Zx—indeterminacies.) cf. also Theorem 12.5.

étale objects reconstructed from Galois category indifferent to order
-like IMx, Gk, X, Gx coverings can be shared, can be exchanged
. o « = - .
Frobenius | abstract IIx OE’ Gr OE x Ox, Frobenioids order-conscious
. - « = . .
-like XA Oz, Gx »Og x Oc line bundles can make links
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§4.4. Mono-anabelian Reconstruction Algorithms in the Archimedean

Theory.

The following theorem is an Archimedean analogue of Theorem 3.17.

Proposition 4.8.  (Mono-anabelian Reconstruction, [AbsToplII, Corollary 2.8])

Let X be a hyperbolic curve of strictly Belyi type over a number field k. Let k be an al-
gebraic closure of k, and Ilx the arithmetic fundamental group of X for some basepoint.

From the topological group Ix, we group-theoretically reconstruct the field k = knr by

the

algorithm in Theorem 3.17 (cf. Remark 3.17.1). Let v be an Archimedean place of

k. By the following group-theoretic algorithm, from the topological group Ix and the

Archimedean place U, we can reconstruct the Aut-holomorphic space Xz associated to

X5

= X X kg in a functorial manner with respect to open injective homomorphisms of

profinite groups which are compatible with the respective choices of Archimedean valua-
tions:

(Step 1)

(Step 2)

We reconstruct NF-points of Xz as conjugacy classes of decomposition groups of NF-
points in llx by in Theorem 3.17. We also reconstruct non-constant NF-rational
functions on X3 by Theorem 3.17 (Step 4) (or Lemma 3.16). Note that we also
group-theoretically obtain the evaluation map f — f(x) at NF-point x as the re-
striction to the decomposition group of x (cf. Theorem 3.17 (Step 4), (Step 5)),
and that the order function ord, at NF-point x as the component at x of the homo-
morphism H' (I, ps(Ix)) — @yesi in Theorem 3.17 (Step 3) (cf. Theorem 3.17
(Step 5)).

Define a Cauchy sequence {z;};en of NF-points to be a sequence of NF-points x
such that there exists an exceptional finite set of NF-points S satisfying the following
conditions:

o z; &S for all but finitely many j € N, and

e For any non-constant NF-rational function f on Xz, whose diwisor of poles
avoids S, the sequence of values {f(x;) € kv}jen forms a Cauchy sequence (in

the usual sense) in k.

For two Cauchy sequences {z;}jen, {y;}jen of NF-points with common exceptional
set S, we call that these are equivalent, if for any non-constant NF-rational func-
tion f on Xy, whose divisor of poles avoids S, the Cauchy sequences {f(x;) €
kxtjen, {f(y;) € kv}jen in ky converge to the same element of ks.
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(Step 8) For an open subset U C ki and a non-constant NF-rational function f on X,
write N(U, f) to be the set of Cauchy sequences of NF-points {x;}jen such that
f(xzj) € U for all j € N. We reconstruct the topological space X*P = Xg(kz) as
the set of equivalence classes of Cauchy sequences of NF-points, equipped with the
topology defined by the sets N (U, f). A non-contant NF-rational function extends
to a function on X*P by taking the limit of the values.

(Step 4) Let Ux C X™P_ Uy C kg be connected open subsets, and f a non-constant NF-
rational function on Xz, such that the function defined by f on Ux gives us a
homeomorphism fy : Ux = Uy. We write Aut™ (Usy) for the group of homeomor-
phisms f : Uy = Uy (C ky), which can locally be expressed as a convergent power

series with coefficients in kz with respect to the topological field structure of k.

(Step 5) Write Ax(Ux) := f5; ' oAut"!(Uy)o fy € Aut(Ux). By Corollary 4.3, we reconstruct
the Aut-holomorphic structure Ax on X*P as the unique Aut-holomorphic structure

which extends the pre-Aut-holomorphic structure defined by the groups Ax(Ux) in
(Step 4).

Proof. The assertions immediately follow from the described algorithms. O

We can easily generalise the above theorem to hyperbolic orbicurves of strictly
Belyi type over number fields.

Lemma 4.9. (Compatibility of Elliptic Cuspidalisation in Archimedean Place
with Galois Theoretic Belyi Cuspidalisation, [AbsTopIIl, Corollary 2.9]) In the situation
of Proposition 4.8, suppose further that X 1is elliptically admissible. From the topolog-
ical group Ilx, we group-theoretically reconstruct the field k = kxg by Theorem 3.17
(cf. Remark 3.17.1), i.e., via Belyi cuspidalisation. Let U be an Archimedean place of
k(Ilx). Let X = (X'*P Ax) be the Aut-holomorphic space constructed from the topo-
logical group 1lx and the Archimedean valuation U in Proposition 4.8, i.e., via Cauchy
sequences. Let AX be the field constructed in Proposition 4.5, i.e., via elliptic cusp-
idalisation. By the following group-theoretically algorithm, from the topological group
IIx and the Archimedean valuation v, we can construct an isomorphism AX S ke of
topological fields in a functorial manner with respect to open injective homomorphisms
of profinite groups which are compatible with the respective choices of Archimedean val-
uations:

(Step 1) As in Proposition 4.8, we reconstruct NF-points of Xz, non-constant NF-rational
functions on X+, the evaluation map f — f(x) at NF-point x, and the order function
ord, at NF-point x. We also reconstruct E*°P and the local additive structures on
it in Proposition 4.5.
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(Step 2) The local additive structures of EYP determines the local additive structures of
XtP . Let x be an NF-point of Xw(kz), U an element of a sufficiently small neigh-
bourhood Ux C X%P of x in X*P which admits such a local additive structure.
For each NF-rational function f which vanishes at x, the assignment (U, f)
lim,, yoo nf (n -5 U) € kg, where “ -, " is the operation induced by the local additive
structure at x, depends only on the image df |, € w, of f in the Zariski cotangent
space wy to Xi. It determines an embedding Ux — Homy, (w,, ks) of topological

spaces, which is compatible with the local additive structures.

(Step 3) Varying the neighbourhood Ux of x, the embeddings in (Step 2) give us an isomor-
phism Ay = kg of topological fields by the compatibility with the natural actions
of Ay, kX respectively. As x wvaries, the isomorphisms in (Step 8) are compati-
ble with the isomorphisms A, = .A_y in Proposition 4.5. This gives us the desired
1somorphism Ry

Remark 4.9.1. An importance of Proposition 4.5 lies in the fact that the algo-
rithm starts in a purely local situation, since we will treat local objects (i.e., objects
over local fields) which a priori do not come from a global object (i.e., an object over a
number field) in inter-universal Teichmiiller theory. cf. also Remark 3.17.4.

Proof. The assertions immediately follow from the described algorithms. O

8§ 5. Log-volumes and Log-shells.

In this section, we construct a kind of “rigid containers” called log-shells both
for non-Archimedean and Archimedean local fields. We also reconstruct the local log-
volume functions. By putting them together, we reconstruct the degree functions of

arithmetic line bundles.

§5.1. Non-Archimedean Places.

Let k£ be a finite extension of Q,, and k an algebraic closure of k. Let X be a
hyperbolic orbicurve over k of strictly Belyi type. Write k™~ := (O%< )PE (- Og) the
perfection of Og (cf. Section 0.2). The p-adic logarithm log; induces an isomorphism

logz : kK~ Sk

of topological monoids, which is compatible with the actions of I[Ix. We equip £~ with
the topological field structure by transporting it from k via the above isomorphism logz.
Then we have the following diagram, which is called a log-link:

(Log-link (non-Arch)) O% D OEX —- k™ = (OEN)@ = (O};)gp u{0} « Or.,
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which is compatible with the action of Ilx (this will mean that IIx is vertically core. cf.
Proposition 12.2 (1), Remark 12.3.1, and Theorem 12.5 (1)). Note that we can construct
the sub-diagram O% D OEX — k™, which is compatible with the action of G}, only from
the topological monoid Og (i.e., only from the mono-analytic structure); however, we
need the topological field k (i.e., need the arithmetically holomorphic structure) to
equip k£~ a topological field structure and to construct the remaining diagram k£~ =
(O5~)% « Of-.

Definition 5.1. We put

(0fx ©) T = %pz;; (C (k™)x),  where T} := Im{o,j = (og)pf = kzN}
where we write (—)!x for the fixed part of the action of Iy, and we shall refer to Z;,
as a Frobenius-like holomorphic log-shell.

On the other hand, from IIx, we can group-theoretically reconstruct an isomorph
k(Ilx) of the ind-topological field k& by Theorem 3.19, and we can construct a log-
shell Z(Ilx) by using k(ILx), instead of k. Then we shall refer to Z(Ilx) as the
étale-like holomorphic log-shell for IIx. By the cyclotomic rigidity isomorphism
(Cyc. Rig. LCFT2), the Kummer homomorphism gives us a Kummer isomorphism

(Mx ~ &) S (Mx A& (Mx)) (C lim B (), gz (1))
U

for k- (ILx) (cf. (Step 4) of Theorem 3.17, and Remark 3.19.2), hence obtain a Kummer
isomorphism

(Kum (non-Arch)) T, = I(Ily)

for Z;.. In inter-universal Teichmiiller theory, we will also use the Kummer isomorphism
of log-shells via the cyclotomic rigidity of mono-theta environments in Theorem 7.23
(1) cf. Proposition 12.2.

Note that we have important natural inclusions
(Upper Semi-Compat. (non-Arch))
Oy, logg(Oy) C I and O (Ilx), logg iy, (Of (Ix)) C Z(Ilx),

which will be used for the upper semi-compatibility of [og-Kummer correspondence
(cf. Proposition 13.7 (2)). Here, we write O] (ILx) := Ox(Ilx)*, Ox(Ilx) := O (II)"x,
and Oz(ILy) is the ring of integers of the ind-topological field k(II).

Proposition 5.2.  (Mono-analytic Reconstruction of Log-shell and Local Log-
volume in non-Archimedean Places, [AbsToplIl, Proposition 5.8 (i), (ii), (iii)]) Let G
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be a topological group, which is isomorphic to Gy. By the following algorithm, from G,
we can group-theoretically reconstruct the log-shell “Iy.” and the (non-normalised) local

«, 108 »

log-volume function u}k (cf. Section 1.3) in a functorial manner with respect to open

homomorphisms of topological groups:

(Step 1) We reconstruct p, f(k), e(k), k", O%, and O% by Proposition 2.1 (1), (3b), (3c),
(2a), (2c), and (2b) respectively. To indicate that these are reconstructed from G,
we write pg, fa, e, EX(G), OE(G) and OEX(G) for them respectively (From now
on, we use the notation (—)(G) in this sense). Let p ¢ be the number of elements
OfEX (@) of pg-power orders, where we write (—) for the fized part of the action

of G.

(Step 2) We reconstruct the log-shell “Z;” as Z(G) := %%Im {OEX ()¢ = k™~ (G) := Og (G)pf}.
Note that, by the canonical injection Q — End(k™~(G)) (Here, End means the endo-
morphisms as (additive) topological groups), the multiplication by 21v+c canonically
makes sense. We shall refer to Z(G) as the étale-like mono-analytic log-shell.

(Step 3) Write Ryon(G) := (EX(G)/OEX(G))A, where we write (—)" for the completion with
respect to the order structure determined by the image of O%(G)/OEX (G). By the
canonical isomorphism R = End(Ryon(G)), we consider Ryon(G) as an R-module.
It is also equipped with a distinguished element, i.e., the image F(G) € Ryon(G)
of the Frobenius element (constructed in Proposition 2.1 (5)) of O%(G)G/O%< (@)
via the composite O%(G)G/O%< (@) C OZ(G)/OZ(G) C Ryon(G). By sending
falogpa € R to F(G) € Ryon(G), we have an isomorphism R = Ryon(G) of R-
modules. By transporting the topological field structure from R to Ryon(G) via this

bijection, we consider Ryon(G) as a topological field, which is isomorphic to R.

(Step 4) We write M(k™(G)Y) for the set of open compact subsets of the topological additive
group k~(G)Y. We can reconstruct the local log-volume function p'°8(G) :
M(E~(G)%) = Ruon(G) by using the following characterisation properties:

(a) (additivity) For A, B € M(k™~(G)%) with AN B = (), we have exp(u'°8(G)(AU
B)) = exp('°8(G)(A)) + exp(u!°8(G)(B)), where we use the topological field
structure of Ryon(G) to define exp(—),

(b) (+-translation invariance) For A € M(k™(G)%) and a € k~(G), we have
poE(G)(A + a) = 1'% (G)(A),

(¢) (normalisation)

,UJIOg(G)(I(G)) = (—1 — % —+ EGegfg> F(G),

where we write e to be 1 if pg # 2, and to be 2 if pg = 2.
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Moreover, if a field structure on k := k™~(G)% is given, then we have the p-adic
logarithm log,, : OF — k on k (where we can see k both on the domain and the
codomain), and we have

(5.1) o8 (G)(A) = 1'°8(G) (logy (A))
for an open subset A C O] such that log,, induces a bijection A = log,,(A).

Remark 5.2.1.  Note that, we cannot normalise p'°8(G) by “u!°8(G)(0%.) = 07,

since “O%.” needs arithmetically holomorphic structure to reconstruct (cf. [Q,GC]).

Remark 5.2.2.  The formula (5.1) will be used for the compatibility of log-links
with log-volume functions (cf. Proposition 13.10 (4)).

Proof. To lighten the notation, write p := pg, e :=eq, [ = fq, m :=mg, € :== €g.
Then we have uLog(Ik) = ceflogp + ,u}fg(log(O,:)) = (eef —m)logp — log(p/ — 1) +
1 (0F) = (eef —m)log p—log(p/ —1)+log (1 - ,%) +u8(Ox) = (cef —m—f)logp =

<—1+ee—%)flogp. O

§5.2. Archimedean Places.

Let k be a CAF (cf. Section 0.2). Let X be an elliptically admissible Aut-holomorphic
orbispace, and sy, : k = AX a Kummer structure. Note that k (resp. k*, OF) and AX
have natural Aut-holomorphic structures, and x; determines co-holomorphicisations be-
tween k (resp. k*, O;) and AX. Let k™~ —» k* be the universal covering of k*, which
is uniquely determined up to unique isomorphism, as a pointed topological space (It
is well-known that it can be explicitly constructed by the homotopy classes of paths
on k™). The topological group structure of £* induces a natural topological group
structure of k~. The inverse (i.e., the Archimedean logarithm) of the exponential map

k — k* induces an isomorphism
log, : k™~ = k

of topological groups. We equip k™ (resp. Oj.) with the topological field structure
(resp. the topological multiplicative monoid structure) by transporting it from k via
the above isomorphism log,. Then k; determines a Kummer structure ki~ : £~ 5 AX
(resp. Kop~ i Ok~ — ﬁ) which is uniquely characterised by the property that
the co-holomorphicisation determined by kg~ (resp. ko,~) coincides with the co-
holomorphicisation determined by the composite of k™~ = k and the co-holomorphicisation
determined by k. By definition, the co-holomorphicisations determined by k, and kg~

(resp. ko,~ ) are compatible with log;, (This compatibility is an Archimedean analogue
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of the compatibility of the actions of IIx in the non-Archimedean situation). We have
the following diagram, which is called a log-link:

(Log-link (Arch)) OF C k* « k™~ = (05.)% = (0%.)*" u {0} «+ OF.,

which s compatible with the co-holomorphicisations determined by the Kummer struc-
tures (This will mean X is vertically core. cf. Proposition 12.2 (1)). Note that we can
construct the sub-diagram O] C k* « k™ only from the topological monoid O} (i.e.,
only from the mono-analytic structure); however, we need the topological field k (i.e.,
need the arithmetically holomorphic structure) to equip £~ a topological field structure
and to construct the remaining diagram k~ = (O )22 < OF..

Definition 5.3. We put
]' X * ~
OkN :%Ikc Iy = OkNIk (Ck ),

where Z; is the the uniquely determined “line segment” (i.e., closure of a connected
pre-compact open subset of a one-parameter subgroup) of k™~ which is preserved by
multiplication by +1 and whose endpoints differ by a generator of ker(k™~ — £*) (i.e.,
T} is the interval between “—mi” and “mi”, and Zj is the closed disk with redius 7).
Here, a pre-compact subset means a subset contained in a compact subset, and see
Section 0.2 for m. We shall refer to Z; as a Frobenius-like holomorphic log-shell.
On the other hand, from X, we can group-theoretically reconstruct an isomorph
k(X) := AX of the field k by Proposition 4.5, and we can construct a log-shell Z(X) by
using k(X), instead of k. Then we shall refer to Z(X) as the étale-like holomorphic

log-shell for X. The Kummer structure ki gives us a Kummer isomorphism
(Kum (Arch)) T = I(X)
for 7.

Note that we have important natural inclusions
(Upper Semi-Compat. (Arch))
O~ C I, O Cexpy(Zy) and Op.(X) C I(X), OF (X) C expyx)(Z(X))

which will be used for the upper semi-compatibility of [og-Kummer correspondence
(cf. Proposition 13.7 (2)). Here, we write O; (X) := Op(X)*, and O(X) (cf. also
Section 0.2) is the subset of elements of absolute value < 1 for the topological field k(X)
(or, if we do not want to use absolute value, the topological closure of the subset of
elements x with lim, o 2™ = 0), and exp,, (resp. expyx)) is the exponential function
for the topological field k (resp. k(II)).
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Note also that we use O;. to define Zj in the above, and we need the topological
field structure of k to construct O/~; however, we can construct Z; as the closure of
the union of the images of Z; via the finite order automorphisms of the topological
(additive) group k™, thus, we need only the topological (multiplicative) group structure
of kK~ (not the topological field structure of k) to construct Zy.

Proposition 5.4. (Mono-analytic Reconstruction of Log-shell and Local Log-
volumes in Archimedean Places, [AbsToplIl, Proposition 5.8 (iv), (v), (vi)]) Let G =
(C, 8) be a split monoid. By the following algorithm, from G, we can group-theoretically
reconstruct the log-shell “I¢”, the (non-normalised) local radial log-volume function

‘u(lé)g 7 and the (non-normalised) local angular log-volume function ‘%}é)g 7 in a functorial

manner with respect to morphisms of split monoids (In fact, the constructions do not

depend on 8, which is “non-rigid” portion. cf. also [AbsToplll, Remark 5.8.1]):

(Step 1) Let C~ — C* be the (pointed) unversal covering of C*. The topological group
structure of C* induces a natural topological group structure on C~. We regard
C~ as a topological group (Note that C* and C~ are isomorphic to S' and the
additive group R respectively). Write

¥ (G) = C~ x C~, k*(G):=C*xC".

(Step 2) Let Seg(G) be the equivalence classes of compact line segments on C™, i.e., com-
pact subsets which are either equal to the closure of a connected open set or are
sets of one element, relative to the equivalence relation determined by translation
on C~. Forming the union of two compact line segments whose intersection is a
set of one element determines a monoid structure on Seg(G) with respect to which
Seg(G) = Rsqg (non-canonical isomorphism). Thus, this monoid structure deter-
mines a topological monoid structure on Seg(G) (Note that the topological monoid
structure on Seg(G) is independent of the choice of an isomorphism Seg(G) = R>¢ ).

(Step 3) We have a natural homomorphism k™ (G) = C~ x C~ — k*(G) = C* x C™ of two
dimensional Lie groups, where we equip C~,C* with the differentiable structure by
choosing isomorphisms C~ = R, C* = R* (the differentiable structures do not

depend on the choices of isomorphisms). We reconstruct the log-shell “Z¢” as
I(G) := {(az,bz) | € Tn; a,b €R; a® + 0> =1} C k™(G),

where we write L5~ C C~ for the unique compact line segment on C~ which is
invariant with respect to the action of {£1}, and maps bijectively, except for its
endpoints, to C*. Note that, by the canonical isomorphism R = End(C"™) (Here,
End means the endomorphisms as (additive) topological groups), ax for a € R and
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(Step 4)

(Step 5)

(Step 6)

(Step 7)

GO YAMASHITA

x € I} canonically makes sense. We shall refer to Z(G) as the étale-like mono-
analytic log-shell.

We write R,c(G) := Seg(G)8P (Note that R,(G) = R as (additive) topological
groups). By the canonical isomorphism R = End(R,.(G)), we consider Ry (G) as
an R-module. It is also equipped with a distinguished element, i.e., (Archimedean)
Frobenius element F(G) € Seg(G) C Rarc(G) determined by Zf... By sending 2w €
R to F(G) € Ru(GQ), we have an isomorphism R = R,..(G) of R-modules. By
transporting the topological field structure from R to Rue(G) via this bijection, we
consider R, (G) as a topological field, which is isomorphic to R.

By the same way as T(G), we put
07 (G) := {(az,bz) | x € IT¢En; a,b ER; a® +b° =72} CkY(G),

where 0L}~ is the set of endpoints of the line segment I}~ (i.e., the points whose
complement are connected. cf. Proposition 4.5). Then we have a natural isomor-
phism Ry x O (G) ~ k~(G) \ {(0,0)}, where (a,x) is sent to ax (Note that
ar makes sense by the canonical isomorphism R = End(C™) as before). We
write Prg + K(G)\ {(0,0)} — Reug, Pra ¢ K¥(G)\ {(0,0)}07(G) for the
first and second projection via the above isomorphism. We extend the map pr

EX(G)\{(0,0)} - Rug to a map pryq : k7(G) = R.

rad *

Let M(k™(G)) be the set of non-empty compact subsets A C k™~ (G) such that
A projects to a (compact) subset pr.,4(A) of R which is the closure of its inte-
rior in R. For any A € M(k™(Q)), by taking the length u(G)(A) of pr,q(4) C
R with respect to the usual Lebesgues measure on R. By taking the logarithm
po2(G)(A) :=log(u(G)(A)) € R = Rare(G), where we use the canonical identifica-
tion R = R,,o(G), we reconstruct the desired local radial log-volume function
pog(G) : M(k™(G)) = Rawe(G). This also satisfies

_ logm

HE(G)T(G)) = =

F(G)
by definition.

We write M(k™(G)) for the set of non-empty compact subsets A C k™ (G)\ {(0,0)}
(A) of O; (G) which is the closure
of its interior in O} (G). We reconstruct the local angular log-volume function
8 (G) - M(E™(G)) = Rawe(G) by taking the integration ji(G)(A) of Ploang(A) C
O~ (G) on O (G) with respect to the differentiable structure induced by the one in
(Step 1), taking the logarithm ji°8(G)(A) := log(ji(G)(A)) € R = R,..(G), where

such that A projects to a (compact) subset pr

ang
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we use the canonical identification R = Ry,o(G), and the normalisation

_ log2m
27

% () (0F- (@) F(G).

Moreover, if a field structure on k := k™ (G) is given, then we have the exponential map
exp : k — k* on k (where we can see k both on the domain and the codomain), and
we have

(5.2) HE(G)(A) = [1'°8(G) (expy,(4))

for a non-empty compact subset A C k with exp,(A) C OF, such that pr,,q and exp,

induce bijections A = pr,,q(A), and A = exp,(A) respectively.

Remark 5.4.1.  The formula (5.2) will be used for the compatibility of log-links
with log-volume functions (cf. Proposition 13.10 (4)).

Proof. Proposition immediately follows from the described algorithms. O

§6. Preliminaries on Tempered Fundamental Groups.

In this section, we collect some prelimiraries on tempered fundamental groups, and
we show a theorem on “profinite conjugates vs. tempered conjugates”, which plays an
important role in inter-universal Teichmiiller theory.

§6.1. Some Definitions.

From this section, we use André’s theory of tempered fundamental groups ([Al])
for rigid-analytic spaces (in the sense of Berkovich) over non-Archimedean fields. We
give a short review on it here. He introduced the tempered fundamental groups to
obtain a fundamental group of “reasonable size” for rigid analytic spaces: On one
hand, the topological fundamental groups 7T‘1;Op for rigid analytic spaces are too small
(e.g., WEOP(P}CP \ {0,1,00},2) = {1}. If X is a proper curve with good reduction,
then m}°°(X®",z) = {1}). On the other hand, the étale fundamental groups 7¢* for
rigid analytic spaces aree too big (e.g., By the Gross-Hopkins period mappings ([GH1],
[GH2]), we have a surjection 7§t (IP’}CP, z) — SLa(Q,). cf. also [A2, I1.6.3.3, and Remark
after IIT Corollary 1.4.7]). André’s tempered fundamental group ;"™ is of reasonable
size, and it comparatively behaves well at least for curves. An étale covering Y — X

of rigid analytic spaces is called tempered covering if there exists a commutative

!

diagram

—_—

<~ <N

e



110 GO YAMASHITA

of étale coverings, where T" — X is a finite étale covering, and Z — T is a possibly
inifinite topological covering. When we define a class of coverings, then we can define
the fundamental group associated to the class. In this case, ﬂemp(X ,x) classifies all
tempered pointed coverings of (X, ). For example, we have 7;°™P (Pe, \ {0,00}) = Z,
and for an elliptic curve E over C, with j-invariant jg, we have mi""P(E) = Z x Z if
jl, < 1, and 7°™P(E) = Z x Z if |j|, > 1 (JA1, §4.6]). Here, Z corresponds to the
universal covering of the graph of the special fiber. The topology of 7;*™" is a little bit
complicated. In general, it is neither discrete, profinite, nor locally compact; however,
it is pro-discrete. For a (log-)orbicurve X over an MLF, we write B*™P(X) for the
category of the (log-)tempered coverings over the rigid analytic space associated with
X. For a (log-)orbicurve X over a field, we also write B(X) for the Galois category of
the finite (log-)étale coverings over X.

Definition 6.1.  ([SemiAnbd, Definition 3.1 (i), Definition 3.4])

(1) If a topological group II can be written as an inverse limit of an inverse system of
surjections of countable discrete topological groups, then we shall refer to Il as a
tempered group (Note that any profinite group is a tempered group).

(2) Let II be a tempered group. We say that II is temp-slim if we have Z(H) = {1}
for any open subgroup H C II.

(3) Let f :1II; — II; be a continuous homomorphism of tempered groups. We say 11y
is relatively temp-slim over Il (via f) if we have Zy, (Im{H — II»}) = {1} for
any open subgroup H C II;.

(4) ([IUTchI, §0]) For a topological group II, we write B*™P(II) (resp. B(II)) for
the category whose objects are countable discrete sets (resp. finite sets) with a
continuous Il-action, and whose morphisms are morphisms of Il-sets. A category
C is called a connected temperoid, (resp. a connected anabelioid) if C is
equivalent to B*™P(II) (resp. B(II)) for a tempered group II (resp. a profinite group
IT). Note that, if C is a connected temperoid (resp. a connected anabelioid), then
C is naturally equivalent to (C°)T (resp. (C°)*1) (cf. Section 0.2 for ()%, (=) and
(—)1). If a category C is equivalent to B**™P(II) (resp. B(II)) for a tempered group
IT with countable basis (resp. a profinite group II), then we can reconstruct the
topological group II, up to inner automorphism, by the same way as Galois category
(resp. by the theory of Galois category). (Note that in the anabelioid/profinite
case, we have no need of condition like “having countable basis”, since “compact
set arguments” are available in profinite topology.) We write 71(C) for it. We also
write 71 (CY) := w1 ((C°) ") (resp. m1(CY) := m1((CY)71)) for C a connected temperoid
(resp. a connected anabelioid).
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(5) For connected temperoids (resp. anabelioids) C;, C3, a morphism C; — Ca of
temperoids (resp. a morphism C; — C» of anabelioids) is an isomorphism
class of functors Co — C; which preserves finite limits and countable colimits (resp.
finite colimits) (This is definition in [IUTchI, §0] is slightly different from the one
in [SemiAnbd, Definition 3.1 (iii)]). We also define a morphism C? — CJ to be a
morphism (C))T — (C9)T (resp. (CP)+ — (CI)1).

Note that if IIy,II; are tempered groups with countable basis (resp. profinite
groups), then there are natural bijections among

e the set of continuous outer homomorphisms II; — Ils,
e the set of morphisms B*™P(II;) — B*™P(Ily) (resp. B(Il;) — B(Ily)), and
e the set of morphisms BY*™P(11;)% — B*™P(I1,)0 (resp. B(I1;)? — B(Il,)?).

(cf. also [ITUTchI, Remark 2.5.3].)

Let K be a finite extension of Q,.

Lemma 6.2. Let X be a hyperbolic curve over K. We write Ag?mp C Ht)?mp
for the geometric tempered fundamental group ﬂemp(X ,T) and the arithmetic tempered
fundamental group ﬂemp(X, T) for some basepoint T, respectively. Then we have a

group-theoretic characterisation of the closed subgroup A™ in TI'™P.

Remark 6.2.1. By remark 2.4.1, pro-X version of Lemma 6.2 holds as well.

Proof. Note that the homomorphisms A'Y™ — Ay := (AY™)" and TP —
Iy := (I%™)" to the profinite completions are injective respectively, since the ho-
momorphism from a (discrete) free group to its profinite completion is injective (Free
groups and surface groups are residually finite (cf. also Proposition C.5)). Then by
using the group-theoretic characterisation of Ax in IIx (Corollary 2.4), we obtain a
group-theoretic characterisation of A%™ as AY™ = ™ N Ax. O

Let K be an algebraic closure of K. We write k and k for the residue field of K
and K respectively (k is an algebraic closure of k).

Definition 6.3.

(1) Let X be a pointed stable curve over k with marked points D. Write X := X \ D.
Then we associate a dual semi-graph (resp. dual graph) Gx to X as follows:
We set the set of the vertices of Gx to be the set of the irreducible components
of X, the set of the closed edges of Gx to be the set of the nodes of X, and the



112

(2)
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set of the open edges of Gx to be the set of the divisor of infinity of X (i.e., the
marked points D of 7) To avoid confusion, we write X, and v, for the irreducible
component of X and the node of X corresponding to a vertex v and an closed edge
e respectively. A closed edge e connects vertices v and v’ (we may allow the case of
v =), if and only if the node v, is the intersection of two branches corresponding
to X, and X,,. An open e connects a vertex v, if and only if the marked point
corresponding to e lies in X,,.

(cf. [AbsAnab, Appendix]) We contitue the situation of (1). Let ¥ be a set of
prime numbers. A finite étale covering of curves is called of »-power degree if any
prime number dividing the degree is in ¥.. We also associate a (pro-3) semi-graph
Gx(= G%) of anabelioids to X, such that the underlying semi-graph is Gx as
follows: Write X’ := X \ {nodes}. For each vertex v of Gx, let G, be the Galois
category (or a connected anabelioid) of the finite étale coverings of Y-power degree of
X! := X, xx X' which are tamely ramified along the nodes and the marked points.
For the branches v, (1) and v.(2) of the node v, corresponding to a closed edge e of
Gx, we consider the scheme-theoretic interstion X/, L (0) of the completion along the
branch v, (i) at the node v, of X’ for i = 1,2 (Note that leje(i) is non-canonically
isomorphic to Speck((t))). We fix a k-isomorphism X ) = X| ), we identify
these, and we write X/ for the identified object. Let G. be the Galois category
(or a connected anabelioid) of the finite étale coverings of Y-power degree of X
which are tamely ramified along the node. For each open edge e, corresponding to
a marked point x, write X/ to be the scheme-theoretic interstion of the completion
of X at the marked point z with X’ (Note that X’ is non-canonically isomorphic
to Speck((t))). Let G., be the Galois category (or a connected anabelioid) of the
finite étale coverings of X-power degree of X! which are tamely ramified along the
marked point. For each edge e connecting vertices v; and ve, we have natural
functors G,, = G, Gy, = G, by the pull-backs. For an open edge e connected to
a vertex v, we have a natural functor G, — G. by the pull-backs. Then the data
Gx(=G%) :={Gv;Ge; Gy — Ge} defines a semi-graph of anabelioids.

(cf. [SemiAnbd, Definition 2.1]) For a (pro-X) semi-graph G(= G*) = {G,; Ge; Gy —
G.} of anabelioids with connected underlying semi-graph G, we define a category
B(G)(= B(G*)) as follows: An object of B(G)(= B(G*)) is data {S,, ¢e}v.e, where
v (resp. e) runs over the vertices (resp. the edges) of G, such that S, is an object
of G,, and ¢, : e(1)*S,, = €(2)*S,, is an isomorphism in G., where e(1) and e(2)
are the branches of e connecting v; and vy respectively (Here, e(i)* : G,, — G, is
a given datum of G). We define a morphism of B(G) in the evident manner. Then
B(G) itself is a Galois category (or a connected anabelioid). In the case of G = Gx
in (2), the fundamental group associated to B(G)(= B(G¥)) is called the (pro-X)
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admissible fundamental group of X.

(4) (cf. [SemiAnbd, paragraph before Definition 3.5 and Definition 3.5]) Let G(= G*) =
{Gv;Ge; Gy — G} be a (pro-3) semi-graph of anabelioids such that the underly-
ing semi-graph G is connected and countable. We define a category BV (G)(=
BV (G*)) as follows: An object of BV(G)(= B¥<°V(G)) is data {S.,, ¢e }v.c, where
v (resp. e) runs over the vertices (resp. the edges) of G, such that S, is an object
of (G9)T (cf. Section 0.2 for (—)? and (—)T7), and ¢, : e(1)*S,, = e(2)*S,, is an
isomorphism in (G0)T, where e(1) and e(2) are the branches of e connecting v; and
vy respectively (Here, e(i)* : G, — G is a given datum of G). We define a mor-
phism of B°V(G) in the evident manner. We can extend the definition of B°V(G)
to a semi-graph of anabelioids such that the underlying semi-graph G is countable;
however, is not connected. We have a natural full embedding B(G) < B°Y(G). We
write (B(G) C) B*™P(G)(= B*™mP(G*)) C BY(G) for the full subcategory whose
objects {Sy, ¢e }v,c are as follows: There exists an object {57, ¢.} of B(G) such that
for any vertex or edge ¢, the restriction of {S),¢.} to G. splits the restriction of
{Su, e} to G i.e., the fiber product of S (resp. ¢.) with S, (resp. ¢.) over the
terminal object (resp. over the identity morphism of the terminal object) in (G%)T
(resp. (G9)T) is isomorphic to the coproduct of a countable number of copies of S/,
(resp. ¢.) for any vertex v and any edge e. We shall refer to B*mP(G)(= BtemP(G¥))
as the (pro-X) (connected) temperoid associated with G(= G¥).

We can associate the fundamental group AZ™P (= A(gz)’temp) = m (BYMP(G)) (=
71 (BY*™P(G®))) of BY™P(G) (= B*™P(G*)) (after taking a fiber functor) by the same
way as a Galois category. We write Ag(= A(gz)) for the profinite completion of
A(QE)’temp. (Note that Ag(= A(gz)) is not the maximal pro-X quotient of 7 (B(G*))
since the profinite completion of the “graph covering portion” is not pro-X). By
definition, Atgemp(: A(gz)’temp) and A(gz) are tempered groups (Definition 6.1 (1),
cf. also [SemiAnbd, Proposition 3.1 (i)]).

Remark 6.3.1.  (cf. [SemiAnbd, Example 3.10]) Let X be a smooth log-curve over
K. The special fiber of the stable model of X determines a semi-graph G of anabelioids.
We can relate the tempered fundamental group AY™P := 7/°™P(X) of X with a system
of admissible fundamental groups of the special fibers of the stable models of coverings
of X as follows: Let --- C N; C --- € A¥™ (i > 1) be an exhausitive sequence of
open characteristic subgroups of finite index of Ag?mp. Then N; determines a finite
log-étale covering of X whose special fiber of the stable model gives us a semi-graph G;
of anabelioids, on which Ag?mp /N; acts faithfully. Then we obtain a natural sequence
of functors - - - < B*™P(G;) «+ - - - + B'*™P(G) which are compatible with the actions of
AS™P/N;. Hence, this gives us a sequence of surjections of tempered groups A%™ —»
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out out
C = m(BP(G)) 0 (AYTP/NG) e m(BER(G))) 0 (ARTP/NG) e
71 (B*™P(G)). Then by construction, we have

(6.1) Aggmp o I&D (Atgeimp O;t (At;mp/Ni)) — @Agﬁmp/ker(]\fi _y Atgimp)'
We also have

(6.2) Ax = Jim (Agi 0 (Ax/ﬁi)) = lim A /ker(N; — Ag,),
i i

where we write ]/V\Z for the closure of V; in A x. By these expressions of AE?mp and Ax in
terms of A‘zmp’s and Ag,’s, we can reduce some properties of the tempered fundamental
group Ag?mp of the generic fiber to some properties of the admissible fundamental groups
of the special fibers (cf. Lemma 6.4 (5), and Corollary 6.10 (1)). We write Ag?)’temp for
the fundamental group associated to the category of the tempered coverings dominated
by coverings which arise as a graph covering of a finite étale Galois covering of X over K
of Y-power degree, and Ag?) its profinite completion (Note that Ag?) is not the maximal
pro-X quotient of Ag?mp or Ax since the profinite completion of the “graph covering
portion” is not pro-X). If p & 3, then we have

Ag?),temp ~ Aéz),temp and Ag?) ~ A(gz);
since Galois coverings of ¥-power degree are necessarily admissible (cf. [Hur, §3], [SemiAnbd,

Corollary 3.11]).

8§6.2. Profinite Conjugates vs. Tempered Conjugates.

Lemma 6.4. (special case of [SemiAnbd, Proposition 2.6, Corollary 2.7 (i), (ii),
Proposition 3.6 (iv)] and [SemiAnbd, Example 3.10]) Let X be a smooth hyperbolic log-

curve over K. Write A™ = 7{""P(X xx K) and TT™P := 71""P(X). We write
Gtemp(= gEtemp) for the temperoid determined by the special fiber of the stable model
of X xx K and a set ¥ of prime numbers, and write Atgemp = w1 (G*™P) (for some

base point). Let H be a connected sub-semi-graph containing a vertex of the underling
semi-graph G of G*™P . We assume that H is stabilised by the natural action of Gk
on G. We write H'*™P for the temperoid over H obtained by the restriction of G*™P
to H. Write AY™P = 7y (H*™P)(C Atgemp). We write Ag and Ay for the profinite

completion of Atgemp and A;‘imp respectively.
(1) Ay C Ag is commensurably terminal,
(2) Ay C Ag is relatively slim (resp. Af™P C AG™P is relatively temp-slim),

(3) Ay and Ag are slim (resp. Agjmp and Atgemp are temp-slim,),
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(4) inertia subgroups in Atgemp of cusps are commensurably terminal, and

(5) AP and TIX™ are temp-slim.

Proof. (1) can be shown by the same manner as in Proposition 2.7 (1a) (i.e.,
consider coverings which are connected over H and totally split over a vertex outside H).
(3) for A: We can show that Ay and Ag are slim in the same way as in Proposition 2.7.
(2): Ay C Ag is relatively slim, by (1), (3) for A and Lemma 2.6 (2). Then the
injectivity (which comes from the residual finiteness of free groups and surface groups (cf.
also Proposition C.5)) of A%™ < Ay and Agsmp < Ag implies that AY™ C Atgemp
is relatively temp-slim. (3) for A*™P: It follows from (2) for A*™P in the same way as
in Proposition 2.6 (2). (4) can also be shown by the same manner as in Proposition 2.7
(2¢). (5): By the isomorphism (6.1) in Remark 6.3.1 and (3) for A*™P_ it follows that
AS™P is temp-slim (cf. [SemiAnbd, Example 3.10]). Hence, ™ is also temp-slim by
Proposition 2.7 (1c). O

Definition 6.5. Let G be a semi-graph of anabelioids.

(1) We shall refer to a subgroup of the form A, := 71(G,) (C Atgemp) for a vertex v as
a verticial subgroup.

(2) We shall refer to a subgroup of the form A, = m1(G.) (& ZZ\P} = [Ties\ oy Zo)(C
Atgemp) for a closed edge e as an edge-like subgroup.

Proposition 6.6.  ([SemiAnbd, Theorem 3.7 (iv)]) Let X be a smooth hyper-
bolic log-curve over K. We write G'*™P(= G¥mP) for the temperoid determined by
the special fiber of the stable model of X and a set ¥ of prime numbers, and write
Atgemp = m1(G*™P) (for some base point). For a verter v (resp. an edge e) of
the underlying sub-semi-graph G of G*™P  we write A, = m1(G,)(C Atgemp) (resp.
A, :=m(Ge)(C Atgemp)) to be the profinite group corresponding to G, (resp. G.) (Note
that we are not considering open edges here). Then we have the followng group-theoretic
characterisations of A, ’s and A, ’s.

(1) The mazimal compact subgroups of Atgemp are precisely the verticial subgroups of
Atemp
g .

(2) The nontrivial intersection of two mazximal compact subgroups of A‘fgemp are precisely

. tem
the edge-like subgroups of Ag P,

Remark 6.6.1.  Proposition 6.6 reconstructs the dual graph (not the dual semi-
graph) of the special fiber from the tempered fundamental group without using the
action of the Galois group of the base field. In Corollary 6.12 below, we reconstruct
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the inertia subgroups, hence open edges as well, using the Galois action. However,
we can reconstruct the open edges without Galois action, by more delicate method in
[SemiAnbd, Corollary 3.11] (i.e., by constructing a covering whose fiber at a cusp under
consideration contains a node).

We can also reconstruct the dual semi-graph of the special fiber from the profinite
fundamental group by using the action of the Galois group of the base field (cf. [profGC]).

Proof. We write Ag for the profinite completion of Atgemp. First, note that it fol-
lows that A,NA, has infinite index in A, for any vertices v # v" by the commensurable
terminality of A™P (Lemma 6.4 (1)). Next, we take an exhausitive sequence of open
characteristic subgroups - -+ C N; C -+ C Ag™P of finite index, and let G;(— G) be the
covering corresponding to N;(C Atgemp). We write G$° for the universal graph covering
of the underlying semi-graph G; of G,.

Let H C Af;mp be a compact subgroup, then H acts continuously on G$° for each
1 € I, thus its action factors through a finite quotient. Hence, H fixes a vertex or an
edge of G{° (cf. also [SemiAnbd, Lemma 1.8 (ii)]), since an action of a finite group on
a tree has a fized point by [Serre2, Chapter I, §6.5, Proposition 27] (Note that a graph
in [Serre2| is an oriented graph; however, if we split each edge of G{° into two edges,
then the argument works). Since the action of H is over G, if H fixes an edge, then
it does not change the branches of an edge. Therefore, H fixes at least one vertex. If,
for some cofinal subset J C I, H fixes more than or equal to three vertices of G3° for
each j € J, then by considering paths connecting these vertices (cf. [Serre2, Chapter I,
§2.2, Proposition 8]), it follows that there exists a vertex having (at least) two closed
edges in which H fixes the vertex and the closed edges (cf. also [SemiAnbd, Lemma 1.8
(ii)]). Since each G, is finite semi-graph, we can choose a compatible system of such a
vertex having (at least) two closed edges on which H acts trivially. This implies that H
is contained in (some conjugate in Ag of) the intersection of A, and A./, where e and
e’ are distinct closed edges. Hence, H should be trivial. By the above arguments also
show that any compact subgroup in Atgemp is contained in A, for precisely one vertex
v or in A,, A, for precisely two vertices v,v’, and, in the latter case, it is contained in
A, for precisely one closed edge e. U

Proposition 6.7.  ([IUTchl, Proposition 2.1]) Let X be a smooth hyperbolic log-
curve over K. We write G**™MP (= G¥'°mP) for the temperoid determined by the special
fiber of the stable model of X and a set X of prime numbers. Write Atgemp = (G,
and we write Ag for the profinite completion of Atgemp (Note that the “profinite portion”
remains pro-%, and the “combinatorial portion” changes from discrete to profinite). Let

A C AG™ be a nontrivial compact subgroup, v € Ag an element such that yAy~' C
Atgemp. Then v € Atgemp.
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Proof. LetT (resp. I'**™P) be the “profinite semi-graph” (resp. “pro-semi-graph”)
associated with the universal profinite étale (resp. tempered) covering of G*™P. Then
we have a natural inclusion I'**™P — T". We shall refer to a pro-vertex in I in the image

1 are compact subgroups

of this inclusion as a tempered vertex. Since A and yAy~
of Atgemp, there exists vertices v,v’ of G (here we write G for the underlying semi-

graph of G'**™P) such that A C A'™ and yAy~' c A'™P by Proposition 6.6 (1) for

U/
some base points. Here, A'**™P and Afﬁmp for this base points correspond to tempered

vertices 7,0 € %P Now, {1} # yAy~1 C yAlemp~~—1 AP and yAbemPy L g
also a fundamental group of G!*™P with the base point obtained by conjugating the
base point under consideration above by ~. This correponding to a tempered vertex
07 € I'**mP_ Hence, for the tempered vertices v and v/ , the associated fundamental
group has nontrivial intersection.

By replacing Htgemp by an open covering, we may assume that each irreducible
component has genus > 2, any edge of G abuts to two distinct vertices, and that, for
any two (not necessarily distinct) vertices w, w’, the set of edges e in G such that e abuts
to a vertex w” if and only if w” € {w,w’} is either empty of of cardinality > 2. In the
case where ¥ = {2}, then by replacing Htgemp by an open covering, we may assume that
the last condition “cardinality > 2”7 is strongthen ot the condition “even cardinality”.

If ¥7 is not equal to v’ nor 7 is adjacent to v/ , then we can construct the covering
over X, (here X, is the irreducible component corresponding to v), such that the
ramification indices at the nodes and cusps of X, are all equal (Note that such a covering
exists by the assumed condition on G in the last paragraph), then we extend this covering
over the irreducible components which adjacent to X, finally we extend the covering to
a split covering over the rest of X (cf. also [AbsToplI, Proposition 1.3 (iv)] or [NodNon,
Proposition 3.9 (i)]). This implies that there exist open subgroups J C Atgemp which
contain A'S™ and determine arbitrarily small neighbourhoods yAf™P~y=1 1 J of {1}.
This is a contradiction. Therefore, v7 is equal to v/ , or v” is adjacent to v'. In particular,
v7 is tempered since v is tempered. Hence, both of v and ©v7 are tempered. Thus, we
have v € Atgemp, as desired. O

Corollary 6.8.  ([IUTchI, Proposition 2.2]) Let AZ™" and AY™ be as in Lemma 6.4.
(1) Ag™ C Ag is commensurably terminal, and

(2) AP C Ag is commensurably terminal. In particular, AF™P C AG™P is also
commensurably terminal as well.

Proof. (1): Let v € Ag be an element such that Af;mp ﬂ'yAtgempfy_l is finite index
in Atgemp. Let A, C Atgemp be a verticial subgroup, and write A := A, N fyAtgemp’y_l C
A, C Atgemp. Since [A, : A] = [Atgemp : Atgemp N fyAtgemp’y_l] < 00, the subgroup A is
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open in the compact subgroup A,, so, it is a nontrivial compact subgroup of Atgemp.
Now, v 'Ay = ’y*lAU’yﬂAtgemp C Atgemp. Since A,y 1Ay C Atgemp and A is a nontrivial
compact subgroup, we have vy~ ! ¢ Atgemp by Proposition 6.7. Thus v € Atgemp, as
desired.

(2): We have AY™ C CAtgenlp(A;jmp) C Cag(AF™) C Cag(Ay) by defini-
tion. By Lemma 6.4 (1), we have Ca,(Az) = Ay. Thus, we have Ca, (AYN"™P) =
Ca,, (A%™P) combining these. On the other hand, by (1) for A%™P, we have Ca,, (AY™P)
AY™P. By combining these, we have AST™ C Oag (AY™P) = Op,, (AS™P) = AY™P as
desired. U

Corollary 6.9. ([IUTchI, Corollary 2.3]) Let Ax, Atgemp, Agjmp, H, Ag, Ay
be as in Lemma 6.4. Write At;f%p = AP X ptem AP (C AS™), and Axg =
AX X Ag AH(C Ax)

(1) Ag??;ﬂp C Aggmp (resp. Axm C Ax ) is commensurably terminal.
(2) The closure of Ag?%p in Ax is equal to Ax .
(3) We have Ax .z NAY™Y = At)?f%p(c Ax).

(4) Let I, € AE™ (resp. I, C Ax) be a cusp x of X. Write T for the cusp in the
stable model corresponding to x. Then I, lies in a A™P-(resp. Ax-)conjugate of
At)?fﬁp (resp. Axm) if and only if T meets an irreducible component of the special
fiber of the stable model which is contained in H.

(5) Suppose that p ¢ ¥, and there is a prime number | € ¥ U {p}. Then Axm is slim.
In particular, we can define

out out

H‘;?’r%p = Ag?v’r%p X GK, HX,]HI = AX,]HI X GK
by the natural outer actions of Gx on Agﬁfﬁp and Ax m respectively.

(6) Suppose that p & X, and there is a prime number | ¢ ¥ U {p}. HE?EIP C Hg?mp and
IIxm C IIx are commensurably terminal.

Proof. (1) follows from Lemma 6.4 (1) and Corollary 6.8 (2). Next, (2) and (3) are
trivial. (4) follows by noting that an inertia subgroup of a cusp is contained in precisely
one verticial subgroup. We can show this, (possibly after replacing G by a finite étale
covering) for any vertex v which is not abuted by the open edge e corresponding to
the inertia subgroup, by constructing a covering which is trivial over G, and nontrivial
over G. ([CombGC, Proposition 1.5 (i)]). (6) follows from (5) and (1). We show (5)
(The following proof is a variant of the proof of Proposition 2.7 (2a)). Let J C Ax be



A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 119

an open normal subgroup, and write Jy := J N Axy. We write J — JZUAL for the
maximal pro-3 U {l} quotient, and Jﬁfu{l} = Im(Jg — J™Y{). Suppose a € Axpy
commutes with Jy. Let v be a vertex of the dual graph of the geometric special fiber of a
stable model X; of the covering X ; of X4 corresponding to J. We write J, C J for the
decomposition group of v, (which is well-defined up to conjugation in J), and we write
Tt = Im(J, — J¥U{), First, we show a claim that Joo A Jgu{l} is infinite and
non-abelian. Note that J, N Jy, hence also JUE Uit q J§ U{l}, surjects onto the maxmal
pro-l quotient J! of J,, since the image of the homomorphism J, C J C Ay — Ag
is pro-%, and we have ker(J, C J C Ay — Ag) C J, N Jy, and | ¢ ¥. Now, J! is
the pro-l completion of the fundamental group of hyperbolic Riemann surface, hence
is infinite and non-abelian. Therefore, the claim is proved. Next, we show (5) from
the claim. We consider various A x-conjugates of JUEU{Z} N Jﬁfu{l} in J¥U, Then
by Proposition 6.6, it follows that « fixes v, since @ commutes with JUEU{Z} N Jgu{l}.
Moreover, since the conjugation by a on J!(« JUEU{Z} N Jﬁu{l}) is trivial, it follows
that a not only fixes v, but also acts trivially on the irreducible component of the
special fiber of X; corresponding to v (Note that any nontrivial automorphism of an
irreducible component of the special fiber induces a nontrivial outer automorphism of
the tame pro-/ fundamental group of the open subscheme of this irreducible component
given by taking the complement of the nodes and cusps). Then « acts on (J>V{H)2b a5
a unipotent automorphism of finite order, since v is arbitrary, hence « acts trivially on
(J¥U{ab - Then we have a = 1, as desired since J is arbitrary. O

Corollary 6.10.  ([IUTchI, Proposition 2.4 (i), (iii)]) We continue to use the
same notation as above. We assume thatp & ¥ (which implies that Ag?mp —» Ag?)’temp &~
A(gE),temp _ Agemp and Ax —» Ag?) ~ A(QE) — Ag)

(1) Let A C Agfvmp be a nontrivial pro-3 compact group, v € llx an element such that
YAy~ € AP, Then we have v € ™Y,

(2) ([A1, Corollary 6.2.2]) A™ C Ax (resp. T'¢™ C My ) is commensurably termi-

nal.

Remark 6.10.1. By Corollary 6.10 (2) and Theorem B.1, we can show a tempered
version of Theorem B.1:

~ d i bgp. of fin. ind t t t
HOIIl(Ii(Om(X, Y) B HomGeII;se in an open subgp. of fin. in eX(H;mp’ H;mp)/Inn(A;mp)

(For a homomorphism, up to inner automorphisms of A;,emp , in the right-hand side,
consider the induced homomorphism on the profinite completions. Then it comes from
a morphism in the left-hand side by Theorem B.1, and we can reduce the ambigu-
ity of inner automorphisms of the profinite completion of Ay™ to the one of inner
automorphisms of AF™P by Corollary 6.10 (2)). cf. also [SemiAnbd, Theorem 6.4].
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Proof. (1): Let 7 € Y™ — Gg be a lift of the image of v € MIx — Gg. By
replacing v by v(7)~! € Ax, we may assume that v € Ax. For an open characteristic
sugroup N C AE?mp, we write N for the closure of N in A x, and we write Gy for the
(pro-X) semi-graph of anabelioids determined by the stable model of the covering of
X x g K corresponding to N. By the isomorphisms (6.1) and (6.2) in Remark 6.3.1,
it suffices to show that for any open characteristic subgroup N C Ag?mp, the image of
v € Ax = Ax /ker(N — Ag, ) comes from AS™P /ker(N — Age]flp) < Ax /ker(N —»
Ag,). Let N be such an open characteristic subgroup of Aggmp. Since N is of finite
index in A¥™P, we have AP /N = Ax/N. We take a lift 5 € AP AP /N =
AX/]V of the image v € Ax — AX/]V. By replacing v by v(7)7! € N, we may
assume that y € N. Note that Ay := ANN(C N c A?™P) is a nontrivial open
compact subgroup, since NN is of finite index in Ag?mp. Since Ay is a pro-X subgroup in
AS™P it is sent isomorphically to the image by A'S™ — A(Xz)’temp. Hence, the image
An C Atgemp of Ay by Ag?mp —» Ag?) temp o A(gz)’temp = Atgemp is also nontrivial open
compact subgroup (Here we need the assumption p ¢ ¥. If p € ¥, then we only have

a surjection Ag(z)7temp N Ag),temp

, and the image of Ay might be trivial). Note that
Ay is in Agi® = Im(N € AY™ — AG™P). Consider the following diagram, where

the horizontal sequences are exact:

1 —— AGMP —— AP /ker(N — AGTP) —— AY™P /N —— 1

T

Ax [ker(N — AF™) Ax/N—>1

1—— Ag,

Since ~ is in N, the image 7 of v € Ax — Ax/ker(N — Ag,) lands in Ag,. Since
An(C Af;;np) is a nontrivial open compact subgroup, and FJAyy ! C AtgeNmp by assump-
tion, we conclude 7 € AtgeNmp by Proposition 6.7, as desired. (2) follows from (1) by the
same way as in Corollary 6.8 (1). O

The following theorem is technically important for inter-universal Teichmiiller the-
ory :

Theorem 6.11.  (Profinite Conjugates vs. Tempered Conjugates, [[UTchl, Corol-
lary 2.5]) We continue to use the same notation as above. We assume thatp & . Then

(1) Any inertia subgroup in Ilx of a cusp of X is contained in Ht;mp if and only if it
is an inertia subgroup in ™ of a cusp of X, and

(2) A Tlx-conjugete of TI¢™ contains an inertia subgroup in I of a cusp of X if

e, t
and only if it is equal to II™P.
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Remark 6.11.1.  In inter-universal Teichmiiller theory,

(1) we need to use tempered fundamental groups, because the theory of the étale theta

function (cf. Section 7) plays a crucial role, and

(2) we also need to use profinite fundamental groups, because we need hyperbolic or-
bicurve over a number field for the purpose of putting “labels” for each places in
a consistent manner (cf. Proposition 10.19 and Proposition 10.33). Note also that
tempered fundamental groups are available only over non-Archimedean local fields,
and we need to use profinite fundamental groups for hyperbolic orbicurve over a
number field.

Then in this way, the “Profinite Conjugates vs. Tempered Conjugates” situation as in
Theorem 6.11 naturally arises (cf. Lemma 11.9). The theorem says that the profinite
conjugacy indeterminacy s reduced to the harmless tempered conjugacy indeterminacy.

Proof. Let I, (= Z) be an inertia subgroup of a cusp x. By applying Corollary 6.10

to the unique pro-X subgroup of I, it follows that a Il x-conjugate of I, is contained

in TI%¢™P if and only if it is a IT%"P-conjugate of I, and that a ITx-conjugate of IT™P
containes I,, if and only if it is equal to TT™P O

Corollary 6.12. Let X be a smooth hyperbolic log-curve over K, an algebraic
closure K of K. Then we can group-theoretically reconstruct the inertia subgroups and
the decomposition groups of cusps in TP := 7{""P(X).

Remark 6.12.1. By combining Corollary 6.12 with Proposition 6.6, we can group-
theoretically reconstruct the dual semi-graph of the special fiber (cf. also Remark 6.6.1).

Proof. By Lemma 6.2 (with Remark 6.2.1) we have a group-theoretic reconstruc-
tion of the quotient Hg?mp — Gk from Ht)?mp. We write Ax and IIx for the profinite
completions of A%™ and TI'¢™P respectively. By using the injectivity of A%™ < Ax
and Ht)?mp — IIx (i.e., residual finiteness (cf. also Proposition C.5)), we can reconstruct
inertia subgroups I of cusps by using Corollary 2.9, Remark 2.9.2, and Theorem 6.11
(Note that the reconstruction of the inertia subgroups in Ax has A x-conjugacy inde-
terminacy; however, by using Theorem 6.11, this indeterminacy is reduced to AtXemp—
conjugacy indeterminacy, and it is harmless). Then we can group-theoretically recon-
struct the decomposition groups of cusps, by taking the normaliser Nnggrrlp(I ), since I

is normally terminal in A%™ by Lemma 6.4 (4). O

Remark 6.12.2.  (a little bit sketchy here, cf. [AbsAnab, Lemma 2.5], [AbsTopIII,
Theorem 1.10 (c)]) By using the reconstruction of the dual semi-graph of the special
fiber (Remark 6.12.1), we can reconstruct
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(1)
(2)
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a positive rational structure on H*(Ax, u5(Gk))Y := Hom(H?(Ax, p5(Gk)), Z),
hence, a cyclotomic rigidity isomorphism:
(Cyc. Rig. via Pos. Rat. Str.) s (Gr) = pz(x)

(We shall refer to this as the cyclotomic rigidity isomorphism via positive
rational structure and LCFT.)

as follows (cf. also Remark 3.19.1):

(1)

By taking finite étale covering of X, it is easy to see that we may assume that
the normalisation of each irreducible component of the special fiber of the sta-
ble model X of X has genus > 2, and that the dual semi-graph I'x of the spe-
cial fiber is non-contractible (cf. [profGC, Lemma 2.9, the first two paragraphs of
the proof o Theorem 9.2]). By Remark 6.12.1, we can group-theoretically recon-
struct the quotient Af,?mp —» Aggmb corresponding to the coverings of graphs (Note
that, in [AbsAnab], we reconstruct the dual semi-graph of the special fiber from
profinite fundamental group, i.e., without using tempered structure, via the recon-
struction algorithms in [profGC]|. cf. also Remark 6.6.1). We write Ax for the
profinite completion of At;mp, and write V := A3%". Note that the abelianisation
yeomb . — (AGembab o SIS 7y (oL ) is a free Z-module. By using a theorem
of Raynaud (cf. [AbsAnab, Lemma 2.4], [Tam, Lemma 1.9], [Ray, Théoreme 4.3.1]),
after replacing X by a finite étale covering (whose degree depends only on p and
the genus of X), and K by a finite unramified extension, we may assume that the
“new parts” of the Jacobians of the irreducible components of the special fiber are
all ordinary, hence we obtain a G g-equivariant quotient V' — V™V such that we

have an exact sequence
0 — VIl VROV = VIV @5 7, — V0,

where V¢ is an unramified G g-module, and V™! is the Cartier dual of an unram-
ified Gx-module, and that V"V — Vzcomb = Veemb @ 7.(£ 0). We write (—)_
(like VZr;eW, Vzcomb) for the tensor product in this proof. Then the restriction of the

non-degenerate group-theoretic cup product
VY @3 VY @5 pz(Gr) = M == H*(A, 13 (Gx)) (2 Z),
where (=) := Hom(—,Z), to (V%)Y

(V)Y @z (V') @3 uz(Gx) — M (2 2)
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is still non-degenerate since it arises from the restriction of the polarisation given
by the theta divisor on the Jacobian of X to the “new part” of X (i.e., it gives us

an ample divisor). Then we obtain an inclusion
(VZgomb)v®Zuz(GK)®ZMv SN (Vnew)\/@ZHZ(GK)@ZMV SN ker(vnew s Vzcomb) C ‘/new7
where the second last inclusion comes from pi5(G )% = 0.

By the Riemann hypothesis for abelian varieties over finite fields, the (ker(V¢ —
V™) @2, Qp) 4 = ((ker(VE — Viemb) @z, Qp)aye = 0, where we write (=),
for the G k-coinvariant quotient (Note that ker(V¢" — Vzc;’mb) arises from the p-
divisible group of an abelian variety over the residue field). Thus, the surjection
Vét , Jcomb ®5 Zyp has a unique Gk-splitting VZC;)mb — Vét®Qp. Similarly, by
taking Cartier duals, the injection (Vzcomb)v ®3 piz(Gr) @ MY &5 Z,, — V™ also
has a unique Gg-splitting V™4t — (Vzcomb)v ®z pz(Gr) @ MY ®5 Q,. By these
splittings, the G k-action on V"V ®y  gives us a p-adic extension class

nz, € (V5o™") )2 oMY@H (K, 15(Gx))/Hi (K, 15(Gx)) = (Vg™)")P*@M Y :

0 Vmult Vélew Vét 0
P : P P v
, »
(Végmb)\/ R ,UJZ(GK) R M\/ VQ?I?mb.

Next, ker(VZ — Vch’mb) is an unramified G g-module, since it arises from [(# p)-

divisible group of a semi-abelian variety over the residue field, where we write 7 =
I, 2p 21 Again by the Riemann hypothesis for abelian varieties over finite fields,
the injection (Viclomb)v ® pz(Gr) @ MY < ker(VZeV — Vicf’mb) of unramified G k-
modules splits uniquely over Q. Then we can construct a prime-to-p-adic extension
class

g € (V5™0) )20 MY @ H (K, 13(Gx))/Hi (K, 17(Gx))2Q = (V5™)") oM 2Q

0 ——m— ker(VAneW —» V/\comb) o Yhew > J/comb 0

Z'®Q Z'®Q Z'®Q Z'®Q
p
(V5m)Y @ pg(Gr) @ MY,

7Z'®Q
Then combining p-adic extension class and prime-to-p-adic extension class, we ob-
tain an extension class

g € (V")) ®* @MY@ H (K, 17(Gx)) [ H} (K, 17(Gx)@Q = (V")) *2e MY @Q.
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Therefore, we obtain a bilinear form
comb\®2
(V5om2)®2 = MY @5 Q,

and the image of (V/°mP)®2 (Viomb)®2 gives us a positive rational structure
(i.e., Qso-structure) on M"Y ®5 Q (cf. [AbsAnab, Lemma 2.5]).

(2) By the group-theoretically reconstructed homomorphisms
HY (G, pi5(Gr)) = Hom(HY (G, Z),Z) = G2 — G52 /im(Ix — G2) = 7
in the proof of Corollary 3.19 (2), we obtain a natural surjection

HY(Ggpz(x)) - Hom(uz(Gr), ps(1x)) = H*(Ax, p15(Gk )"

(Recall the definition of 5 (Ilx)). Then by taking the unique topological genera-
tor of Hom(u5(G k), pz(I1x)) which is contained in the positive rational structue

of H*(Ax, uz(GK))Y, we obtain the cyclotomic rigidity isomorphism ps(Gg) —
piz(ILx ).

It seems important to give a remark that we use the wvalue group portion (i.e., we
use O, not O*) in the construction of the above surjection H'(Gg,pz(Gk)) =
Hom(Hl(GK,Z),Z) > G G /Im(Ix — G3P) = Z, hence, in the construction
of the cyclotomic rigidity via positive rational structure and LCF'T as well. In inter-
universal Teichmiiller theory, not only the existence of reconstruction algorithms, but
also the contents of reconstruction algorithms are important, and whether or not we
use the value group portion in the algorithm is crucial for the constructions in the fi-
nal multiradial algorithm in inter-universal Teichmiiller theory. cf. also Remark 9.6.2,

Remark 11.4.1, Propositin 11.5, and Remark 11.11.1.

87. Etale Theta Functions — Three Fundamental Rigidities.

In this sectin, we introduce another (probably the most) important ingredient of
inter-universal Teichmiiller theory, that is, the theory of the étale theta functions. In
Section 7.1, we introduce some varieties related to the étale theta function. In Sec-
tion 7.4, we introduce the notion of mono-theta environment, which plays important

roles in inter-universal Teichmiiller theory.

§7.1. Theta-related Varieties.

We introduce some varieties and study them in this subsection. Let K be a finite
extension of Q,, and K an algebraic closure of K. Write Gx := Gal(K/K). Let
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X — SpfOg be a stable curve of type (1,1) such that the special fiber is singular
and geometrically irreducible, the node is rational, and the Raynaud generic fiber X
(which is a rigid-analytic space) is smooth. For the varieties and rigid-analytic spaces
in this Section, we also call marked points cusps, we always write log-structure on
them, and we always consider the fundamental groups for the log-schemes and log-
rigid-analytic spaces. We write TI%™P, A¥™ for the tempered fundamental group of
X (with log-structure on the marked point) for some basepoint. We have an exact
sequence 1 — Ax — IIx — Gg — 1. Write Iy := (H;mp)/\, Ax = (Ag‘;mp)/\ to be
the profinite completions of TT™P, A'Y™ respectively. We have the natural surjection
AS™P — Z corresponding to the universal graph-covering of the dual-graph of the
configuration of the irreducible components of X. We write Z for this quotient for
the purpose of distinguish it from other Z’s. We also write Ax — Z for the profinite
completion of AY™P — Z.

Write AQ := Ax/[Ax, [Ax,Ax]], and we shall refer to it as the theta quotient
of Ax. We also write Ag := \* A% (= Z(1)), and ASY := A%, We have the following
exact sequences:

1= A = AS - AY = 1,

15 72(1) =AY 5 Z 1.

We write (A%™P)® and (A%™P)! for the image of A™P via the surjections Ax — A

and Ax — (A —)AS! respectively:

Ax A9 A

At)?mp (At;mp ) C) (A‘;?mp ) ell .

We write (IT%™P)® and (IT%™P)! for the push-out of I "> via the surjections A" —»
(AS™)O and AE™P — (AP —)(AK™P)°! respectively:

[ o ()0 e (110

I

AR e (AP)E o (AT
We have the following exact sequences:
1= Ag — (AX™)® — (AP 1,

1— Z(1) = (Al 7, 1,
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Let Y — X (resp. 2 — X) be the infinite étale covering correspoinding to the
kernel TI}"™P of TI™P — Z. We have Gal(Y/X) = Z. Here, 9) is an infinite chain
of copies of the projective line with a marked point # 0,00 (which we call a cusp),
joined at 0 and oo, and each of these points “0” and “c0”is a node in ). We write
(AY™PYO(AY™PYell (resp. (T ™P)®, (IT}7™P)e!) for the image of AY™P (resp. TI}™P)
via the surjections AF™ — (A™)® and AL — ((AFP)® —)(AE™P)! (resp.
TP — (T™P)© and T™P — (M5MP)© —) (™)) respectively:

Aggmp S5 (At;mp)@ S5 (Ag?mp)ell Hf;;mp S5 (Hggmp)G (Hg?mp)ell
AT o (AP o (AR, T ()0 o (iR

We also have a natural exact sequence
1= Ag — (AF™)® — (AP™P)ell 1.

Note that (A'™P)ell = Z(1) and that (AL™P)® (=2 Z(1)®2) is abelian.

Let gqx € Og be the g-parameter of X. For an integer N > 1, set Ky :=
K(un, q}(/N) C K. Any decomposition group of a cusp of Y gives us a section Gx —
(TT5™P)e!l of the natural surjection (IT"™P)°! — G (Note that the inertia subgroup
of cusps are killed in the quotient (—)°!). This section is well-defined up to conju-
gate by (AY™). The composite Gy — Gx — (TIy™P)l — (™)l /N (AY™P)ell
is injective by the definition of K, and the image is stable under the conjugate by
TP, since G,y acts trivially on 1 — Z/NZ(1) — (AF™)N/N(AY™)ll 5 7 — 1
(whose extension class is given by q}(/N), by the definition of K. Thus, the image
Gry = (™) /N(AL™P)!l determines a Galois covering Yy — Y. We have natu-

ral exact sequences:
1— Iy — ™ — Gal(Yy/Y) — 1,

1= (A" @ Z/NZ (=2 Z/NZ(1)) — Gal(Yy/Y) — Gal(Ky/K) — 1.

We write (At)f;]np ), (At}ffvnp )€l (resp. (Hgf}jlp)@, (Htlf;np)e“) for the image of Atlf;np (resp.
Hgf;np) via the surjections At;mp —» (A;emp ) and Ag,emp —» ((Agfmp)@ —»)(Agfmp)e”
(resp. TIY™P — (TIy™P)© and ™ — ((TIE™P)© —) (M3 ™P)e!) respectively:

AR e (ARTT)O o (AT T e () e (I

R

At;;np (A‘$;np)@ s (A‘_;f;np)ell’ H’;f;np e (Ht;;np)e e (Ht}fbf;np)ell.
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We also have a natural exact sequence
1= Ao ®Z/NZ (= Z/NZ(1)) — (L") /N(AF™P)® — Gk — 1.

Let Yn — 2 be the normalisation of Q) in Yy, i.e., write ) and Yy as the formal
scheme and the rigid-analytic space associated to Og-algebra A and K-algebra By
respectively, and take the normalisation Ay of A in By, then 9 = Spf Ayx. Here, Yn
is also an infinite chain of copies of the projective line with N marked points # 0, co
(which we call cusps), joined at 0 and oo, and each of these points “0” and “c0”is a
node in ). The covering Yn — 2) is the covering of N-th power map on the each copy
of G,, obtained by removing the nodes, and the cusps correspond to “1”, since we take
a section G — (Hgfmp)e“ corresponding to a cusp in the construction of Y. Note also
that if N is divisible by p, then ) is not a stable model over Spf O, .

We choose some irreducible component of ) as a “basepoint”, then by the natural
action of Z = Gal(Y/X) on 2), the projective lines in ) are labelled by elements of Z.
The isomorphism class of a line bundle on ) is completely determined by the degree
of the restriction of the line bundle to each of these copies of the projective line. Thus,
these degrees give us an isomorphism

Pic(YPn) = ZE,

i.e., the abelian group of the functions Z — Z. In the following, we consider Cartier
divisors on )y, i.e., invertible sheaves for the structure sheaf Oy, of Y. Note that we
can also consider an irreducible component of )y as a Q-Cartier divisor of ) (cf. also
the proof of [EtTh, Proposition 3.2 (i)]) although it has codimension 0 as underlying
topological space in the formal scheme 2)5. We write £y for the line bundle on 2N
correspoinding to the function Z — Z : a — 1 for any a € Z, i.e., it has degree 1 on any
irreducible component. Note also that we have I'(Yn, Oy, ) = Ok, . In this section,
we naturally identify a line bundle as a locally free sheaf with a geometric object (i.e.,
a (log-)(formal) scheme) defined by it.

Write Jy = Kn(a'/N | a € Ky) C K, which is a finite Galois extension of Ky,
since K /(K )" is finite. Two splitting of the exact sequence

1= Ae ® Z/NZ — (I"P)° /N(AF™P)® = Gk — 1

determines an element of H' (G, , Ae®Z/NZ). By the definition of Jy, the restriction
of this element to G j, is trivial. Thus, the splittings coincide over G, , and the image
Gy = (IIY"P)O /N (AF™P) is stable under the conjugate by II'¢™. Hence, the image
Gjy — (Hgf;np)@ JN(AY™)® determines a finite Galois covering Zy — Y. We have

the natural exact sequences

1— 0P — Iy — Gal(Zy/Yy) — 1,



128 GO YAMASHITA

We write (A?}TP)@, (Atzejf?p)e“ (resp. (HtZeJIVnp)Q, (theﬁlp)eu) for the image of Atzeﬁlp (resp.
IT;""P) via the surjections AY™ — (AFTP)® and AFMP — ((AFIP)O —)(AFIP)el
(resp. IIYIP — (IIFP)® and I — ((IIY"P)© —) (ITFP)ell) respectively:

Yn
AR e (AYT)O e (AT e (IO e (1T
AtZe]Sﬁp S5 (AtZeJrVnp)® S (AtZe]rvnp)ell’ HtZeernp s (HtZeEﬁp)G . (HtZe]rvnp)ell'

Let 3y — 2N be the normalisation of ) in Zy in the same sense as in the definition of
) n. Note that the irreducible components of 3 are not isomorphic to the projective
line in general.

A section s; € I'(9), £1) whose zero locus is the cusps is well-defined up to an
O3 -multiple, since we have T'(9), Oy) = Of. Fix an isomorphism £§" = £y, and
we identify them. A natural action of Gal(Y/X) (= Z) on £, is uniquely determined
by the condition that it preserves s;. This induces a natural action of Gal(Yyx/X) on

21|Q.JN'
Lemma 7.1.  ([EtTh, Proposition 1.1])

(1) The section s1|yy € TN, Lilyy) = TN, £IV) has an N-th root sy € T(3n, £n35x)
over 3n.

(2) There is a unique action of Hg?mp on the line bundle £n oy Oy over YN Xoy

Oy which is compatible with the section sy : In — £N ®0y,, Oy . Furthermore,
this action factors through II™ — TP /I = Gal(Zy /X)), and the action of
Ag?mp/AtZe;np on £N @0y, Oy is faithful.

Proof. Write (Yn)Jy := YN Xk, JN, and Gy to be the group of automorphisms
of £n|(vy),, Which is lying over the Jy-automorphisms of (Yx ), induced by elements
of Aggmp/A;inp C Gal(Yn/X) and whose N-th tensor power fixes the s1|(yy), . Then
by definition, we have a natural exact sequence

1= pn(Jn) = Gy = AYTP /AP — 1.
We claim that
Hy = ker(Gy — AFTP/AFTP — AP /AT 2 7)

is an abelian group killed by N, where the above two surjections are natural ones, and
the kernels are uy(Jy) and (AX™P)N @ Z/NZ (= Z/NZ(1)) respectively. Proof of



A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 129

the claim (This immediate follows from the structure of the theta group (=Heisenberg
group); however, we include a proof here): Note that we have a natural commutative

diagram
1 1
1 —— un(Jn) Hn (AY™)ell @ Z/NZ (=2 Z/NZ(1)) — 1
l_
1 —— un(JN) gn AP /AT 1
AR A = A A (),

1 1

whose rows and columns are exact. Let ( be a primitive N-th root of unity. The function
whose restriction to every irreducible component minus nodes G,, = Spf Ok|[U]] of
DN is equal f(U) := g—:é represents an element of A which maps to a generator of
AP At;;lp, since it changes the pole divisor from 1 to . Then the claim follows from

the identity HogjgN—l f(CI0) = g:é g_‘ci UUQ%]L = 1. The claim is shown.
Let Ry be the tautological Z/NZ(1)-torsor Ry — Yy obtained by taking an
N-th root of sy, i.e., the finite 9 ny-formal scheme Spf <@0§j§N—1£§3(_])>7 where the

)

algebra structure is defined by the multiplication 2%(_1\[ — Og, by si]ly,. Then
Gn naturally acts on (Ry)sy = RN X0k, JIN by the definition of Gy. Since s1|yy
has zero of order 1 at each cusp, (Ry)s, is connected and Galois over X ;, 1= X xg
Jn, and Gy 5 Gal((Rn)sy/Xsy). Since (i) AY™P/AFTP acts trivially on gy (Jn),
and (ii) Hy is killed by N by the above claim, we have a morphism 35 X¢ In K —
RN X0y, Oy over Yn Xo,, Oy blthe deﬁnitions_of A = Ax/[Ax,[Ax, Ax]|
and Zy, i.e., geometrically, 3n X0, K(— YN X0, K) has the universality having
properties (i) and (ii) (Note that the domain of the morphism is 35 X0, K, not 3n
since we are considering A(_y, not II_)). Since we used the open immersion Gj, —
(II{P)© /N (AF™P)O, whose image is stable under conjugate by II'¢™P, to define the
morphism 3y — Yy, and s1 |y, is defined over K, the above morphism 35 X In K —
RN X0 K O, factors through 3y, and induces an isomorphism 3y 5 Ry xo K O, by
considering the degrees over Yn X0, Ojy on both sides (i.e., this isomorphism means
that the covering determined by Ag ® Z/NZ coincides with the covering determined by

an N-th root of s1]y, ). This proves the claim (1) of the lemma.
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Next, we show the claim (2) of the lemma. We have a unique action of Hgﬁmp on
LN B0k, Oyj, over Yn X Oy O, which is compatible with the section sy : 3y —
LN ®0g,, Oy, since the action of IM™P (= Gal(Yy /X)) on €4y, = £5Y preserves
s1lyy, and the action of TI'¢™ on Yy preserves the isomorphism class of £y. This
action factors through TT'¢™P/ HtZe;Vnp, since sy is defined over Zy. Finally, the action of
Ht)?mp / thejvnp is faithful since s; has zeroes of order 1 at the cusps of Yy, and the action
of AP/ Agf;vnp on Yy is tautologically faithful. O

We set

KN Z:KQN, Jn IZKN(CLI/N’CLEKN) CK,
Dy = Van X0z Ol Yy i=Yan Xz Iy, Ly = Enlg, & 5% X0 Oy

(The symbol (—) roughly expresses “double covering”. Note that we need to consider
double coverings of the rigid analytic spaces under consideration to consider a theta
function below.) Let Z ~ be the composite of the coverings YN — Yy and Zy — Yy,
and 3 ~ the normalisation of 35 in Zx in the same sense as in the definition of DN
Write also

Yi=Y1=Yy 9:=91=9, K:i=K =J =K.

Since II™ acts compatibly on 9 and 9y, and on Ly ®0y, OJy, and the natural
commutative diagram

QN_>£N

L

Dn — DN

is cartesian, we have a natural action of II%™ on £, which factors through IT™/ thglrvnp_
Next, we choose an orientation on the dual graph of the configuration of the irre-

ducible components of ). Such an orientation gives us an isomorphism Z = Z. We give
a label € Z for each irreducible component of ). This choice of labels also determines a
label € Z for each irreducible component of )y, 2) ~- Recall that we can also consider
the irreducible component (@ ~); of 9) v labelled j as a Q-Cartier divisor of 9y (cf.
also the proof of [EtTh, Proposition 3.2 (i)]) although it has codimension 0 as underly-
ing topological space in the formal scheme 9) (Note that (2) ~); is Cartier, since the
completion of Y at each node is isomorphic to Spf O Ll v]]/ (uo — q;(/QN)). Write
Dy = ZjEZ j2(QjN)j (i.e., the divisor defined by the summation of “qgs/ZN = 0" on
the irreducible component labelled j with respect to j € Z). We claim that

(7.2) Oy, (Dn) = Ex (2 L5% ®o,  Ojy)-
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Proof of the claim: Since Pic(9y) = Z%, it suffices to show that Dy.(Yn); = 2 for
any i € Z, where we write D . (2] ~); for the intersection product of ©y and (2) N)iy
ie., t}'1.e degree of Oy (DN)l(,),- We have 0 = Dn-(Dn)i = Ziez(@N)j.(QjN)i =
2+ ((Yn)i)? by the configuration of the irreducible components of 2) y (i.e., an infinite
chain of copies of the projective line joined at 0 and co). Thus, we obtain ((Q)x);)% = —2.

Then we have @N.(@N)j = Zjezjz(@N)j.(@N)i =(j—1)2-242+(j +1)? = 2. This
proves the claim.
By the claim, there exists a section

N3(~‘I)N_>2Na

well-defined up to an O; -multiple, whose zero locus is equal to ® . We shall refer to
N

7n as a theta trivialisation. Note that the action of Ht)fmp on Qj N, Iy N preserves Ty
up to an O>< —multiple since the action of II}"™" on ) n fixes Dy .
Let M > 1 be an integer which divides N. Then we have natural morphisms

DN = Du — Y, @N — @M — ), 38 — A3u — ), and natural isomorphisms
Lulyy = E%(N/M)a Sulyy = S%W/M). By the definition of Jy(= Koy (a'/N | a €

Ksn)), we also have a natural diagram

N

@N%@Ma

which is commutative up to an Of-;. -multiple at f}N, and an Of-;. -multiple at fIM,
N M

since 7y and Ty are defined over 2oy and Q)a2ps respectively (Recall that @ N =
Dan X0, Oy, )- By the relation O(~U) = —O(U) given in Lemma 7.4 (2), (3) below
(Note that we have no circular argument here), we can choose 71 so that the natural

action of Htemp on £, preserves +7;. In summary, by the definition of Jy, we have the
following:
e , « : N/M
e By modifying 7n’s by O jN—multlples, we can assume that 7 = T for any

positive integers N and M such that M | N.

temp

e In particular, we have a compatible system of actions of H on {Q) NIN>1,

{EN}N21 which preserve {7n}n>1.

SMP on 9y, £ differs from the action determined

e Each of the above actions of IL;
by the action of IIx™ on Y, SN ®0y, Oy in Lemma 7.1 (2) by an element of

un (Jn).
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Definition 7.2. We take 7n’s as above. By taking the difference of the compat-
ible system of the action of H';mp on {2) NIN>1, {SN} ~N>1 in Lemma 7.1 determined
by {sn}n>1 and the compatible system of the action of H;?mp on {@N}Nzl, {féN}N21
in the above determined by {7n}n>1 (Note also that the former actions, i.e., the one
determined by {sy}n>1 in Lemma 7.1 come from the actions of Hf;mp; however, the
latter actions, i.e., the one determined by {7x}n>1 in the above do not come from the

actions of II'¢"P), we obtain a cohomology class

ii® € H'(IIZ™, Ae),

via the isomorphism uy(Jy) = Z/NZ(1) = Ag ® Z/NZ (Note that we are currently
studying in a scheme theory here, and that the natural isomorphism p N(J N) 2 A ®
Z/NZ comes from the scheme theory (cf. also Remark 3.15.1).

Remark 7.2.1.  (cf. also [EtTh, Proposition 1.3])

(1) Note that #i® arises from a cohomology class in %in
Z/NZ), and that the restriction

1 temp temp
v (IL;; /H'Z'N Re @

lim HY (I /T, Ao @ Z/NZ) — lm HY(AG /ALY, Ao @ Z/NZ)

= jl\%anom(Angmp/Atg:p, Ao ® Z/NZ

sends 7 to the system of the natural isomorphisms {Agfmp /At-Z(?mp 5 Ag ®
N N
Z/NZ}N>1.

(2) Note also that ss : 2) — £, is well-defined up to an O;(—multiple, SoN 1 3N — £n
is an N-th root of so, 71 : ) — £1 is well-defined up to an O;;—multiple, and
™~ : 9N — Lx is an N-th root of 7. Thus, 7j® € Hl(Ht.Yemp, Ag) is well-defined
up to an O;.(—multiple. Hence, the set of cohomology classes

0% -ii® c H'(IIE™, Ae)

is independent of the choices of sy’s and 7n’s, where OI-X.( acts on H 1(H§§mp, Ag)
via the composite of the Kummer map O;z — H'(G,Ag) and the natural homo-
morphism H!(Gj,Ag) — H' (Ht.y.(fmp, Ag). We shall refer to any element in the set
(033 -1i® as the étale theta class.

§7.2. The Etale Theta Function.

~

Let (G,, &)U C 2 be the irreducible component labelled 0 € Z minus nodes. We
take the unique cusp of 4 as the origin. The group structure of the underlying elliptic
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curve X, determines a group structure on i{. By the orientation on the dual graph of
the configuration of the irreducible components of ), we have a unique isomorphism
4= G,, over Og. This gives us a multiplicative coordinate U € I'(U, O ). This has a
square root U € I'(4, (9;) on §I := $l xg 9 (Note that the theta function lives in the
double covering. cf. also Lemma 7.4 below).

We recall the section associated with a tangential basepoint. (cf. also [AbsSect,
Definition 4.1 (iii), and the terminology before Definition 4.1]): For a cusp y € Y (L)
with a finite extension L of K, let D, C II; be a cuspidal decomposition group of y
(which is well-defined up to conjugates). We have an exact sequence

1—I,(2Z(1)) » D, — G — 1,

and the set Sect(D, — G,) of splittings of this short exact sequnece up to conjugates by
I, is a torsor over H(Gp, Z(1)) = (L*)" by the usual way (the difference of two sections
gives us a 1-cocycle, and the conjugates by I, yield 1-coboundaries), where (L*)" is the
profinite completion of L. We write w,, for the cotangent space to Y at y. For a non-zero
element 6 € w,, take a system of N-th roots (N > 1) of any local coordinate ¢ € my.
with dt|, = 6, then, this system gives us a Z(1) (2 I,))-torsor (Y@(tl/N))Nzl — Y|;\
over the formal completion of ¥ at y. This Z(1) (22 I,))-covering (Y@(tl/N))Nzl — le/;\
corresponding to the kernel of a surjection D, — I, (= Z(1)), hence it gives us a section
of the above short exact sequence. This is called the (conjugacy class of ) section
associated with the tangential basepoint 6. In this manner, the structure group
(L*)™ of the (L*)"-torsor Sect(D, — G|,) is canonically reduced to L™, and the L*-
torsor obtained in this way is canonically identified with the L*-torsor of the non-zero
elements of w,. Furthermore, noting also that Y comes from the stable model iﬁ, which
gives us the canonical Or-submodule @, ( C w,) of w,, the structure group (L*)" of the
(L*)"-torsor Sect(D, — G,) is canonically reduced to O, and the O -torsor obtained
in this way is canonically identified with the O -torsor of the generators of @,.

Definition 7.3.  We shall refer to this canonical reduction of the (L*)"-torsor
Sect(D, — G1) to the canonical OF -torsor as the canonical integral structure of
D,, and we say that a section s in Sect(D, — Gp,) is compatible with the canonical
integral structure of D,, if s comes from a section of the canonical O -torsor. We
shall refer to the L*-torsor obtained by the push-out of the canonical Of-torsor via
O} — L* as the canonical discrete structure of D,. We write 7/ for the maximal
prime-to-p quotient of Z, and write (O))’ := Im(O} — (L*)®Z'). We shall refer to the
(OF)'-torsor obtained by the push-out of the canonical Of-torsor via O — (OF)" as
the canonical tame integral structure of D, (cf. [AbsSect, Definition 4.1 (ii), (iii)]).
We also shall refer to a reduction of the (L*)"-torsor Sect(D, — Gp) to a {£1}-torsor
(resp. pgi-torsor) as {£1}-structure of D, (resp. po-structure of D,). When a {£1}-
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structure (resp. pg-structure) of D, is given, we say that a section s in Sect(D, — Gp)
is compatible with the {£1}-structure of D,, (resp. the py-structure of D, if
s comes from a section of the {41}-torsor (resp. the pg-torsor).

Lemma 7.4. ([EtTh, Proposition 1.4]) Write

1

_ q)—(* Z 5 U2n—|—l e F(ﬂ O )

Note that @(U) extends uniquely to a meromorphic function on @ (cf. a classical com-
plex theta function

1\” , 1 1 1 o 1 (ntl)? onit
01.1(7,2) Zexp <m7’ <n+ 2) + 271 (z+§) (n+ 5)) = ;Z(—l) qz( 5) U ,

neZ nez

1 +%)2 n(nt1)

‘ . ) _1
where q == €*™7, and U := €™%) and that q° q5- " =qy °

15 1 K.
(1) ©(U) has zeroes of order 1 at the cusps of 9), and there is no other zeroes. O(U)
has poles of order j? on the irreducible component labelled j, and there is no other

poles, i.e., the diisor of poles of ©(U) is equal to D;.
(2) For a € Z, we have
8(1) = -6, S(-0) - -B(D)

6 (420) = (~1)7q5 % T-26(0).

(3) The classes OI-X.( -ii® are precisely the Kummer classes associated to an O;.(—multiple
of the regular function ©(U) on the Raynaud generic fiber Y. In particular, for a
non-cuspidal point y € Y(L) with a finite extension L of K, the restriction of the
classes

O% ii°ly € H'(G1. Ne) = H'(G1, Z(1)) = (L*)"

lies in L* C (L*)", and are equal to Og . @(y) (Note that we are currently studying

in a scheme theory here, and that the natural isomorphism Ag = 2(1) comes from
the scheme theory (cf. also Remark 3.15.1).

(4) For a cusp y € Y(L) with a finite extension L of K, we have a similar statement
as in (3) by modifying as below: Let D, C Ily be a cuspidal decomposition group of
y (which is well-defined up to conjugates). Let s : G, — D, be a section which is
compatible with the canonical integral structure of D,,. Let s comes from a generator

0 Wy. Then the restriction of the classes

0% +ii®lsc,) € HY(GL, Ae) = HY(Gy, Z(1)) = (L*)",
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via G < D, C H;emp, lies in L C (L*)", and are equal to OI.X-( ~ %(y), where
dT?(y) is the value at y of the first derivative of @(U) at y by 9. In particular, the
set of the Tstm’ction of the classes O;z -1'7'®|5(GL) 1s independent of the choice of the
generator § € W, (hence, the choice of the section s which is compatible with the

canonical integral structure of D, ).

We also shall refer to the classes in O;{ -7i© as the étale theta functions in light
of the above relationship of the values of the theta function and the restrictions of these
classes to GG, via points.

Proof. (2):

1

.o _1 n A(ntd)? . o _1 g A(n=141)% o
SO = x* (-1 et = g E S g e
neZ ne”

_1 n A(nt+d)? o T
= gt S (g e iy,

(1): Firstly, note that q)%(U is the canonical coordinate of the irreducible component
labelled a, and that the last equality of (2) gives us the translation formula for changing
the irreducible components. The description of the divisor of poles comes from this
translation formula and ©(U7) e T'(4l, O;) (e, O(U) is a regular function on {l). Next,
by putting U = +1 in the first equality of (1), we obtain ©(£1) = 0. Then by the last

equality of (2) again, it suffices to show that ©(U) has simple zeroes at U = +1 on L.
By taking modulo the maximal ideal of O}, we have ©(U) = U — U~'. This shows the
claim.

(3) is a consequence of the construction of the classes O - ii® and (1).

(4): For a generator 6 € Wy, the corresponding section s € Sect(D, — Gp) de-
scribed before this lemma is as follows: Let ¢ € mg , be a system of N-th roots (N > 1)

~Y

of any local coordinate with dt|, = §, then, this system gives us a Z(1) (= I,))-torsor
(Qj]g(tl/N))NZl —» le/y\ over the formal completion of 9) at y. This Z(1) (2 I,)-covering
(Eij@(tl/N))NZl —» 2)@ corresponding to the kernel of a surjection D, — I, (= Z(1)),
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hence a section s € Sect(D, — Gr). For g € Gy, take any lift g € D, (Ht.;mp)
of G, then the above description says that s(g) = ('g(tl/N)/tl/N)]}lZl - g, where
(GUNY I N Y ysq € Z(1) = I, (Note that the right-hand side does not depend on

the choice of a lift §). The Kummer class of © := O(U) is given by Ht.Yemp > h —
(W(OYN)/OYN) s € Z(l) Hence, the restriction to G, via G, > D, C H;,emp is
given by G, 3 g = ((g(t"/N) /M) "1g(OYN) /0N ) Ny = (G((O/)VN) /(©/) V) N>t €

Z(1). Since ©(U) has a simple zero at y, we have (§((©/t)"/N)/(©/)Y/N)ys1 =

X\ ~

(g((dé/@\)l/N)/(d@/é\)l/N)Nzl, where d@/§ is the first derivative % at y by 6. Then

GL 29+ (g((d(:)/@\)l/N)/(d(:)/é\)l/N)Nzl € Z(l) is the Kummer class of the value
P (y) at y. m

If an automorphism ¢y of Hgfmp is lying over the action of “—1” on the underlying

elliptic curve of X which fixes the irreducible component of ) labelled 0, then we shall

. . . t
refer to 1y as an inversion automorphism of II;;,™".

Lemma 7.5.  ([EtTh, Proposition 1.5])

(1) Both of the Leray-Serre spectral sequences

By = HY((AF™)", H' (Do, Ao)) = HT((AF™)°, Ae),
By = H*(Gy, H'(AF™)%, Ae)) = H (L)%, Ae)

associated to the filtration of closed subgroups
temp\© temp\©
Ap C (A™)" C (IL;™)

degenerate at Eo, and this determines a filtration 0 C Fil> ¢ Fil' ¢ Fil® =

Hl((H‘;fmp)@,A@) on Hl((H‘;fmp)e,A@) such that we have

Fil’/Fil' = Hom(Ae, Ag) = Z,
Fil' /Fil* = Hom((AY"™")®/Ae, Ae) = Z - log(U)),
Fil> = H (G, Ae) 3 HY(G, Z(1)) = (K*).
Here, we write log(U) for the standard isomorphism (A;-emp)@/A@ = (At.;mp)e“ =
2(1) = Ao (given in a scheme theory).
(2) Any theta class ii® € Hl(HEfmp, Ag) arises from a unique class ii® € Hl((Hgfmp)@, Ag)
(Here, we use the same symbol 7i® by abuse of the notation) which maps to the

identity homomorphism in the quotient Fil°/Fil' = Hom(Ae,Ag) (i.e., maps to
1 € Z = Hom(Ag,Ag)). We consider O ij® C Hl((H;fmp)@, Ag) additively, and



A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 137

write i1 + log(O%) for it. Then a € 7 = Z = II'Y™P /IIS™ acts on 7 + log(O%)
n i X Y K

as
.o 2

i© + log(O}) = ii® — 2alog(U) — % log(qx) +1og(O}).

p

.. . . . t
In a similar way, for any inversion automorphism vy of I, we have

vy (i1° +log(0%)) = ij® +log(0%)

ty (log(U) +1og(0})) = —log(U) + log(O ).

Proof. (1): Since Ag = Z(1) and (A?mp)e” =~ 7(1) and Z(1) has cohomological
dimension 1, the first spectral sequence degenerates at Fo, and this gives us a short

exact sequence
0— H'((AF™), Ae) = H'((AY™), Ao) — H' (Ae, Ae) — 0.

This is equal to

0— Z-log(U) = H'((AY™)°, Ag) = Z — 0.
On the other hand, the second spectral sequence gives us an exact sequnece
0= H'(Gj,Ae) = H'((TIF™)°, Ae) — H'((AL™)®, Ae)“% — H* (G, Ae) — 0.
Then by Remark 7.2.1 (1), the composite

H'((I™)°, Ag) — H' ((AY™)9, Ae) i
C H'((AF™)%, Ae) = H' (Ao, Ae) = Z

maps the Kummer class of ©(U7) to 1 (Recall also the definition of Zy and the short
exact sequence (7.1)). Hence, the second spectral sequence degenerates at Es, and we
have the description of the graded quotients of the filtration on H 1((H§fmp)®, Ag).
(2): The first assertion holds by definition. Next, note that the subgroup (Az}emp)eu C
(ALE™PYell corresponds to the subgroup 2Z(1) C Z(1) x Z =2 (A%™P)e!l by the theory of
Tate curves, where Z(1) C (AS™P)ell corresponds to the system of N (> 1)-th roots of
the canonical coordinate U of the Tate curve associated to X, and 2Z(1) (Aifmp)e“
corresponds to the system of N (> 1)-th roots of the canonical coordinate U introduced
before (In this sense, the usage of the symbol log(U) Hom((A;}mp)eH,A@) is justi-
fied). Then the description of the action of a € Z = Z follows from the last equality
of Lemma 7.4 (2), and the first description of the action of an inversion automorphism
follows from the first equality of Lemma 7.4 (2). The second description of the action
of an inversion automorphism immediately follows from the definition. O

The following proposition says that the étale thete function has an anabelian rigid-
ity, i.e., it is preserved under the changes of scheme theory.
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Proposition 7.6.  (Anabelian Rigidity of the Etale Theta Function, [EtTh, The-
orem 1.6]) Let X (resp. TX ) be a smooth log-curve of type (1,1) over a finite extension
K (resp. TK) of Q, such that X (resp. X ) has stable reduction over O (resp O+ ),
and that the special fiber is singular, geometrically irreducible, the node is rational. We
use similar notation for objects associated to YX to the notation which was used for
objects associated to X. Let

v Htemp X Htemp

be any isomorphism of abstract topological groups. Then we have the following:
tempy _ yytemp

(1) ’Y(HY )—Hn"/ .

(2) 7 induces an isomorphism Ae — TAg, which is compatible with the surjections

HY Gy, Ae) S HY G, Z(1) 3 (K - Z
HY (G, TA0) 3 HYG, ,2(1)) S (K" - Z

determined the valuations on K and TK respectively. In other words, v induces
an isomorphism H' (G, Ae) = H' (G, -, TAg) which preserves both the kernel of
these surjections and the element 1 € Z in the quotients.

(3) The isomorphism vy* Hl(Htemp, Ag) = Hl(H:;mp, fAe) induced by v sends O -ij®
to some 17 = Htemp/H P_conjugate of O]‘Xj{' - 1i® (This indeterminacy of TZ-
congugate inevitably arises from the choice of the irreducible component labelled 0).

Remark 7.6.1.  ([EtTh, Remark 1.10.3 (i)]) The étale theta function lives in a
cohomology group of the theta quotient (IT%™")®, not whole of T's™P. However, when
we study anabelian properties of the étale theta function as in Proposition 7.6, the theta
quotient (IT%™P)® is insufficient, and we need whole of TP,

Remark 7.6.2.  ([ITUTchIIL, Remark 2.1.2]) Related with Remark 7.6.1, then, how
about considering Hg(artial temp . X Z instead of Hg?mp? (Here, we write ITx for

the profinite fundamental group, and Ilx — Z is the profinite completion of the nat-
ural surjection %™ —» Z.) The answer is that it does not work in inter-universal

Teichmiiller theory since we have Ny (II32*181 temp)y pppartial temp X% 77 (O the other
hand, Ny, (IT™P) = ™ by Cororally 6.10 (2)). The profinite conjugacy indetermi-

artial te
nacy on IT{" mp

gives rise to Z translation indeterminacies on the coordinates of the
evaluation points (cf. Definition 10.17). On the other hand, for TI¢™”, we can reduce
the Z-translation indeterminacies to Z-translation indeterminacies by Theorem 6.11 (cf.

also Lemma 11.9).

Remark 7.6.3.  The statements in Proposition 7.6 are bi-anabelian ones (cf. Re-
mark 3.4.4). However, we can reconstruct the 'Z-conjugate class of the theta classes
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Orxjg - 14} in Proposition 7.6 (3) in a mono-anabelian manner, by considering the de-
scriptions of the zero-divisor and the pole-divisor of the theta function.

Proof. (1): Firstly, v sends A%$™ to A?e;p, by Lemma 6.2. Next, note that ~y
sends Ay™P to A?eymp by the discreteness (which is a group-theoretic property) of Z and
TZ. Finally, v sends the cuspidal decomposition groups to the cuspidal decomposition
groups by Corollary 6.12. Hence, 7 sends 1l to II;5, since the double covermgs Y »Y
and 'Y — 1Y are the double covering characterised as the 2-power map 2] : G — Gy
on each irreducible component, where the origin of the target is given by the cusps.

(2): We proved that y(A%Y™) = TAY™. Then v(Ag) = TAg holds, since Ag
(resp. TAg) is group-theoretically defined from A'™ (resp. TA'™P). The rest of the
claim follows from Corollary 6.12 and Proposition 2.1 (5), (6).

(3): After taking some Iy "P/IIy™P 2= Z-conjugate, we may assume that 7y :
H;fmp — Htemp is compatible with suitable inversion automorphisms ¢y and Tty by The-
orem B.1 (cf. [SemiAnbd, Theorem 6.8 (ii)], [AbsSect, Theorem 2.3]). Next, note that
tautologically sends 1 € Z = Hom(Ae,Ag) = Fil’/Fil' to 1 € 7 = Hom(TAg, TAg) =
TFil° /TFil'. On the other hand, #® (resp. 'ij®) is sent to 1 € Z = Hom(Ag, Ag) =
Fil’/Fil' (resp. 1 € Z = Hom(1Ae,Ag) = Fil°/TFil'), and fixed by 1y (resp. Tiy)
up to an OX -multiple (resp. an O ;--multiple) by Lemma 7.5 (2). This determines
ii® (resp. Tn ) up to a (K*)" —multlple (resp. a (TK*)"-multiple). Hence, it is suf-
ficient to reduce this (K *)"-indeterminacy (resp. (K *)’-indeterminacy) to an OI.X-{—
indeterminacy (resp. an O mdetermmacy) This is done by evaluating the class 7©
(resp. T1®) at a cusp y of the irreducible component labelled 0 (Note that “labelled 0”
is group-theoretically characterised as “fixed by inversion isomorphism ¢y (resp. Tty)”),
if we show that « preserves the canonical integral structure of D,,.

(cf. also [SemiAnbd, Corollary 6.11] and [AbsSect, Theorem 4.10, Corollary 4.11] for
the rest of the proof). To show the preservation of the canonical integral structure of D,
by 7, we may restrict the fundamental group of the irreducible component labelled 0 by
Proposition 6.6 and Corollary 6.12 (cf. also Remark 6.12.1). The irreducible component
minus nodes {1 is isomorphic to G,, with marked points (=cusps) {1} C G,,. Then the

Aﬁime'm'p of the geometric fudamental group of the generic fiber is

ime-to-p
Aprlme
Uy

prime-to-p-quotient
isomorphic to the prime-to-p-quotient of the one of the special fiber, where
we write k for the residue field of K. This shows that the reduction of the structure

group of (K*)"-torsor Sect(D, — G ) to (07) =Im(O} — K* ®7'), which is
determined the canonical integral strucure (i.e., the canonical tame integral structure),
is group-theoretically preserved as follows (cf. [AbsSect, Proposition 4.4 (i)]): The outer

action G — Out(Aﬂr;me'tO'p ) canonically factors through G — Out(Aﬁime'to_p ), and

the geometrically prime-to-p-quotient Hg:ime'to'p ) of the arithmetic fundamental group
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. out
of the special fiber is group-theoretically constructed as Aﬂzme'to'p X Gj by using

Gy — Out(Aﬁime_to_p ). Then the decomposition group D;, in the geometrically prime-
to-p-quotient of the arithmetic fundamental group of the integral model fits in a short
exact sequence 1 — (I, ::)Iy®2’ — Dy, — Gj, — 1, where [, is an inertia subgroup at y.
The set of the splitting of this short exact sequence forms a torsor over H*(Gj;, I;,) = k.
These splittings can be regarded as elements of H'(D;,I;) whose restriction to I, is
equal to the identity element in Hl(Ié, I}) = Hom(I}, I,)). Thus, the pull-back to D, of
any such element of H'! (D, 1)) gives us the reduction of the structure group to (O;;)’
determined by the canonical integral structure.

Then it suffices to show that the reduction of the structure group of (K*)"-torsor
Sect(D, —» G ) to K*, which is determined the canonical integral strucure (i.e., the
canonical discrete structure), is group-theoretically preserved since the restriction of the
projection Z —» Z' to Z C Z is injective (cf. [AbsSect, Proposition 4.4 (ii)]).

Finally, we show that the canonical discrete structure of (K*)"-torsor Sect(D, —
G ;) is group-theoretically preserved. Let U be the canonical cooridnate of Gy, jo- For
y = +1, we consider the unit U F1 € T'(G, z \ {1}, Og,, ;\{+1}), Which is invertible
at 0, fails to be invertible at y, and has a zero of order 1 at y. We consider the exact
sequence

1 — (K>)" = H'(Tp1\f0,4}, 13 () = Z B Z
constructed in Lemma 3.15 (5). The image of the Kummer class x(TF1) € H' (Ip1\ (0,4}, 5 (Ix))
in Z®7Z (ie., (1,0)) determines the set (K*)" - k(U F 1). The restriction of (K*)" -
k(U F 1) to D, is the (K*)"-torsor Sect(D, — G}), since the zero of order of
k(U F1) at y is 1. On the other hand, x(U F 1) is invertible at 0. Thus, the sub-
set K* - k(U F1) ¢ (KX)" - k(U F 1) is characterised as the set of elements of
(K*) - k(U F 1) whose restriction to the decomposition group Dy at 0 (which lies
in (K*)" 2 HY(G,puz(Mx)) € HY(Do, uz(Ilx)) since x(U F 1) is invertible at 0) in
fact lies in K* C (K*)". Thus, we are done by Corollary 6.12 (or Corollary 2.9) (cf.
the proof of [AbsSect, the proof of Theorem 4.10 (i)]). O

From now on, we assume that
(1) K =K,

(2) the hyperbolic curve X minus the marked points admits a K-core X — C :=
X//{£1}, where the quotient is taken in the sense of stacks, by the natural action
of {£1} determined by the multiplication-by-2 map of the underlying elliptic curve
of X (Note that this excludes four exceptional j-invariants by Lemma C.3, and

(3) V-1€K.
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We write X — X for the Galois covering of degree 4 determined by the multiplication-
by-2 map of the underlying elliptic curve of X (i.e., G'8/¢% — G!i&/¢% sending the
coordinate U of the G2 in the codomain to U2, where U is the coordinate of the G,,"8
in the domain). We write ¥ — X for its natural integral model. Note that X — C is
Galois with Gal(X/C) = (Z/2Z)%3.

Choose a square root /—1 € K of —1. Note that the 4-torsion points of the
underlying elliptic curve of X are U = \/_ \/q_X C K for 0 < i,j < 3, and that,
in the irreducible components of X, the 4-torsion points avoiding nodes are 4+/—1.
We write 7 for the 4-torsion point determined by v/—1 € K. For an étale theta class
i® € Hl(Htemp Ag), we write

,’7@ X o CH (Htemp A )
for the ™/ Hgfmp >~ 7, x pg-orbit of 7j®.

Definition 7.7.  (cf. [EtTh, Definition 1.9])

(1) We shall refer to each of two sets of values of £ H2
779 qu2|T @Zx;m’ L C KX
4G ZX/,LQ

as a standard set of values of 7}

(2) There are two values in K* of maximal valuations of some standard set of values

of jjOZxr (Note that (qiv—T) = (~1)%qx * (V=1)"2#6(v/=1) by the third
equality of Lemma 7.4 (2), and ©(—¢ \/ 1) = —@(qX\/ 1) by the second equality

5G] VAN

of Lemma 7.4 (2)). If they are equal to 1, then we say that is of standard

type.

Remark 7.7.1.  Double coverings X — X and C' — C' are introduced in [EtTh],
and they are used to formulate the definitions of a standard set of values and an étale
theta class of standard type, ([EtTh, Definition 1.9]), the definition of log-orbicurve of
type (1,Z/1Z), (1,(Z/1Z)®), (1,Z/1Z)+, (1,(Z/I1Z)®)+ ([EtTh, Definition 2.5]), and the
constant multiple rigidity of the étale theta function ([EtTh, Theorem 1.10]). How-
ever, we avoid them in this survey, since they are not directly used in inter-universal
Teichmiiller theory, and it is enough to formulate the above things by modifying in a

suitable manner.

Lemma 7.8. (cf. [EtTh, Proposition 1.8]) Let C = X//{%1} (resp. TC =
TX//{£1}) be a smooth log-orbicurve over a finite extension K (resp. 1K) of Q, such
that /—1 € K (resp. /—1 € TK). We use the notation T(—) for the associated objects
with 1C. Let v : 5™ 5 H:ecmp be an isomorphism of topological groups. Then ~y
induces isomorphisms ™ = H'je)?np, H;?_mp = H?Z?np, and H;fmp = H:;.mp.
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Proof. (cf. also the proof of Proposition 7.6 (1)). By Lemma 6.2, the isomor-
phism v induces an isomorphism ya, : AG™ 5 A'Tzecmp. Since AX™P € AG™P (resp.
A'ji?’p C Atemp) is characterised as the open subgroup of index 2 whose profinite
completion is torsion-free i.e., corresponds to the geometric fundamental group of a
scheme, not a non-scheme-like stack (cf. also [AbsTopl, Lemma 4.1 (iv)]), 7a. in-
duces an isomorphism ya, : AP 5 AP, Then ya, induces an isomorphism
Vagu (AgmPyell & (Atemp)en since (AY™P)e! (resp. (AYFP)e!) is group-theoretically
constructed from AS™P (resp. AP, By the discreteness of Gal(Y/X) = Z (resp.
Gal(TY/ TX) = 7Z), the isomorphism Vacu induces an isomorphism 7z : AP AP (=
Z) 5 AFEP/AYSP(22 TZ). Thus, by considering the kernel of the action of ILS™P
(resp. ngcmp) on Ag?mp JAYTP (resp. AP /AYSTP), the isomorphisms v and vz in-
P 5 ISP,

duce an isomorphism v, : Since 7y, preserves the cuspical de-

composition groups by Corollary 6.12, it induces isomorphisms H;?mp 5 H:e.r.“p , and

temp ~ temp
I = IS 0

Proposition 7.9.  (Constant Multiple Rigidity of the Etale Theta Function, cf.
[EtTh, Theorem 1.10]) Let C = X//{£1} (resp. TC = TX//{£1}) be a smooth log-
orbicurve over a finite extension K (resp. TK ) of Q, such that /=1 € K (resp. v/—1 €
TK). We assume that C is a K-core. We use the notation T(—) for the associated objects
with TC. Let v : TIE™ 5 Htemp be an isomorphism of topological groups. Note that the

~

isomorphism v induces an zsomorphzsm e 5 Htemp by Lemma 7.8. Assume that
v maps the subset 1j©LXH2 C Hl(Htemp Ag) to the subset 15j9-Lxn2 c H(IT; temp ,TAg)
(cf. Proposition 7.6 (3)). Then we have the following:

(1) The isomorphism ~ preserves the property that ii®L*H2 is of standard type, i.e.,
HOLXE2 s of standard type if and only if THSLXF2 s of standard type. This property

uniquely determines this collection of classes.

(2) Note that v induces an isomorphism K* = TK* where K* (resp. TK*) is re-
garded a subset of (K*)" = HY(G,Ae) C HYIS™, Ag)) (resp. (TKX)N =
HY(Gig,TAg) C Hl(Htemp TAg))). Then v maps the standard sets of values of
HOLXE2 to the standard sets of values of THOLxH2,

(3) Assume that i©L*H2 (hence, Tii®LXF2 as well by the claim (1)) is of standard type,
and that the residue characteristic of K (hence, TK as well) is > 2. Then ijL*#2
(resp. Tii®Lx12 ) determines a {41}-structure (cf. Definition 7.8) on (K*)"-torsor
(resp. (TK>)"-torsor) at the unique cusp of C' (resp. 1C) which is compatible with
the canonical integral structure, and it is preserved by .

Remark 7.9.1.  The statements in Proposition 7.9 are bi-anabelian ones (cf. Re-
mark 3.4.4). However, we can reconstruct the set 5®£X#2 in Proposition 7.9 (2) and
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(3) in a mono-anabelian manner, by a similar way as Remark 7.6.3.

Proof. The claims (1) and (3) follows from the claim (2). We show the claim
(2). Since 7 induces an isomorphism from the dual graph of 2) to the dual graph of
) (Proposition 6.6), by the elliptic cuspidalisation (Theorem 3.7), the isomorphism
~ maps the decomposition group of the points of Y lying over 7 to the decomposition

group of the points of 'Y lying over 7%!. The claim (2) follows from this. O

§7.3. [l-th Root of the Etale Theta Function.

First, we introduce some log-curves, which are related with [-th root of the étale
theta function. Let X be a smooth log-curve of type (1,1) over a field K of charac-
teristic 0 (As before, we always write the log-structure associated to the cusp on X,
and consider the log-fundamental group). Note also that we are working in a field of
characteristic 0, not in a finite extension of @, as in the previous subsections.

Assumption (0): We assume that X admits K-core.

We have a short exact sequence 1 - Ax — Ilx — Gg — 1, where IIx and Ax
are the arithmetic fundamental group and the geometric fundamental group (with re-
spect to some basepoints) respectively, and Gx = Gal(K/K). Write AS! := A% =
Ax/[Ax,Ax], A()a( = Ax/[Ax,[Ax,Ax]], and Ag = IHl{/\2A§él — A?(} Then
we have a natural exact sequence 1 — Ag — A — AY — 1. Write also IS =
HX/ker(AX - A?()

Let [ > 2 be a prime number. Note that the subgroup of AQ generated by I-th
powers of elements of A§ is normal (Here we use [ # 2). We write A — Ax for
the quotient of AS by this normal subgroup. Write Ag = Im{Ag — Ax}, Ze)? =
Ax/Re, Ty := Iy /ker(Ax — Ax), and Iy := Ix/Ae. Note that Ae 2 (Z/IZ)(1)
and Zi? is a free Z/lZ-module of rank 2.

Let x be the unique cusp of X, and we write I, C D, for the inertia subgroup
and the decomposition subgroup at x respectively. Then we have a natural injective
homomorphism D, — II§ such that the restriction to I, gives us an isomorphism
I, 5 Ag(C TIQ). Write also D, := Im{D, — Ix}. Then we have a short exact

sequence

1> Ae - D, — Gg — 1.

Assumption (1): We choose a quotient ﬁil — (@ onto a free Z/lZ-module of rank 1 such

.. ——ell 11 . . . ..
that the restriction A; — @ to ZQX remains surjective, and the restriction D, — @ to
D, is trivial.
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We write

X —»X

for the corresponding covering (Note that every cusp of X is K-rational, since the
restriction D, — Q to D, is trivial) with Gal(X/X) = Q, and we write I1x C Ilx,
Z& C Ax, and Zzl - Zi? for the corresponding open subgroups. We write ¢x (resp.
tx) for the automorphism of X (resp. X) given by the multiplication by —1 on the
underlying elliptic curve, where the origin is given by the unique cusp of X (resp. a
choice of a cusp of X). Write C := X//1x, C := X //ux (Here, //’s mean the quotients
in the sense of stacks). We shall refer to a cusp of C, which arises from the zero (resp.
a non-zero) element of @), as the zero cusp (resp. a non-zero cusp) of C. We shall
refer to tx and tx as inversion automorphisms. We also shall refer to the unique
cusp of X over the zero cusp of C as the zero cusp of X. This X (resp. C) is the
main actor for the global additive (B) portion (resp. global multiplicative () portion)

in inter-universal Teichmiiller theory.

Definition 7.10.  ([EtTh, Definition 2.1]) A smooth log-orbicurve over K is
called of type (1,l-tors) (resp. of type (1,l-tors)L) if it is isomorphic to X (resp.
() for some choice of ﬁi — @ (satisfying Assumption (0), (1)).

Note that X — X is Galois with Gal(X/X) = Q; however, C — C' is not Galois,
since tx acts on @ by the multiplication by —1, and any generator of Gal(X/X) does
not descend to an automorphism of C' over C' (Here we use [ # 2. cf. [EtTh, Remark
2.1.1]). We write A¢c C ¢ (resp. Ag C Ilg) for the geometric fundamental group
and the arithmetic fundamental group of C (resp. C) respectively. Write also Ilg :=
e /ker(Ilx — Ix), (resp. g := Ilg/ker(Ilx — Ilx),) Ac = Ac/ker(Ax — Ax),

—ell ——ell

(resp. Ac = Ag/ker(Ax — Ax),), and A; := Ac/ker(Ax — Ay ).

Assumption (2): We choose €,, € A¢ an element which lifts the nontrivial element of
Gal(X/C) = 7/27Z.

We consider the conjugate action of €, on A x, which is a free Z/lZ-module of rank 2.

_ —ell —
Then the eigenspace of Ax with eigenvalue —1 (resp. +1) is equal to A; (resp. Ag).
Hence, we obtain a direct product decomposition

—ell —

Ax

I

([EtTh, Proposition 2.2 (i)]) which is compatible with the conjugate action of ILx (since
the conjugate action of €,, commutes with the conjugate action of Iy). We write
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—ell — e —~ —ell . .
S, : A; — Ax for the splitting of Ax — Ae& given by the above direct product
decomposition. Then the normal subgroup Im(s,) C Iy induces an isomorphism

D, = Tlx/Im(s,)

over G.

Assumption (3): We choose any element s4®) of the H' (G, Ag) (=2 K* /(K *)!)-torsor
Sect(D, —» G ), where we write Sect(D, — G ) for the set of sections of the surjection
ﬁw - GK.

Then we obtain a quotient Ily — IIx — Ix/Im(s,) = D, - D,/s*®)(Gk) = Ae.
This quotient gives us a covering
XX

with Gal(X/X) = Aeg. We write Ax C Ay, Iy C Iy for the open subgroups
determined by X. Note that the composition Ax — Ax —» Zzl is an isomorphism,
and that Ay = Im(s,), Ax = Ax - Ae. Sinc;Gal(é/X) = Ax/Ax = Ag, and
I, = Ag —»Z@, the covering X — X is totally ramified at the cusps (Notgalso that the
irreducible components of the special fiber of the stable model of X are isomorprhic to
P!: however, the irreducible components of the special fiber of the stable model of X are
not isomorphic to P!). Note also that the image of ¢, x in Ac /Zé is characterised as the
unique coset of Ag/Ax which lifts the nontrivial element of Ac/Ax and normalises
the subgroup ZX C Ag, since the eigenspace of Z& /ZX >~ Ag with eigenvalue 1 is
equal to Ag ([EtTh, Proposition 2.2 (ii)]). We omit the construction of “C” (cf. [EtTh,
Proposition 2.2 (iii)]), since we do not use it. This X plays the central role in the
theory of mono-theta environment, and it also plays the central role in inter-universal
Teichmiiller theory for places in yhad,

Definition 7.11.  ([EtTh, Definition 2.3]) A smooth log-orbicurve over K is
called of type (1,l-tors®) if it is isomorphic to X (which is constructed under As-
sumptions (0), (1), (2), and (3)).

The underlines in the notation of X and C indicate “extracting a copy of Z/IZ”,
and the double underlines in the notation of X and C indicate “extracting two copy of
Z/1Z” ([EtTh, Remark 2.3.1]).

Lemma 7.12.  (cf. [EtTh, Proposition 2.4]) Let X (resp. TX) be a smooth log-
curve of type (1,1-tors®) over a finite extension K (resp. TK) of Q,. We use the
notation T(—) for the associated objects with TX. Assume that X (resp. 1X) has sta-
ble reduction over Ok (resp. Oig) whose special fiber is singular and geometrically
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irreducible, and the nmode is rational. Let ~y : Hti’mp = H?e)r(np be an isomorphism of

topological groups. Then ~y induces isomorphisms TP = H?ecmp, Htcjmp = H:egmp

temp ~ temp temp ~ temp temp ~ temp
I S ILEP, ™ S IEYP, and TTE™ S TS

Proof. By Lemma 6.2, v induces an isomorphism AEmp — A?};ﬂp. By the K-

.. . . . . . t ~ t . .
coricity, the isomorphism ~ induces an isomorphism IT5™" = II' 7P, which induces an

isomorphism A™P = Aﬁgmp. Then by the same way as in Lemma 7.8, this induces
isomorphisms A™P 5 Aﬁe;p, e 5 H?e;p, and H;fmp = Hﬁ?fmp . Note that Ax
(resp. A+x) and Ag (resp. TAg) are group-theoretically constructed from Aggmp (resp.
A?ir(np), and that we can group-theoretically reconstruct Zé - Ag?mp (resp. Ay x C
AYPP) by the image of AF™ (resp. A{%P). Hence, the above isomorphisms induce
an isomorphism Z& 5 ZTX’ since Z& = K& - Ao (resp. ZT& = ZT& . TZ@). This
isomorphism induces an isomorphism Atgnp = A'&np, since Az’mp (reps. A?e&mp) is
the inverse image of Ay C A¥™ (resp. Ay C A?re;(np) under the natural quotient

~

tem N tem N . : tem temp
AY™ = Ax (resp. AYY" — Aix). The isomorphism AF™ — Ay induces

temp temp

. : . t t .
an isomprhism IIY™P = ILSP, since Y™ (resp. ILY™) is reconstructed as the

t t
outer semi-direct product Ax e K (resp. Aix S Gik), where the homomorphism
Gk — Out(Ax) (resp. Gig — Out(A:x)) is given by the above constructions induced
by the action of G (resp. Gig). O

Remark 7.12.1.  ([EtTh, Remark 2.6.1]) Suppose p; C K. By Lemma 7.12, we
obtain

Autg(X) = x {£1}, Autg(X)=Z/IZ x {£1}, Autg(C) = {1},

where x is given by the natural multiplicative action of {1} on Z/IZ (Note that C — C
is not Galois, as already remarked after Definition 7.10 (cf. [EtTh, Remark 2.1.1})).

Now, we return to the situation where K is a finite extension of Q.

Definition 7.13.  ([EtTh, Definition 2.5]) Assume that the residue characteris-
tic of K is odd, and that K = K. We also make the following two assumptions:

—ell
Assumption (4): We assume that the quotient H; — (@ factors through the natural

quotient IIx —» 7 determined by the quotient Ht)?mp —» 7 discussed when we defined Y.

Assumption (5): We assume that the choice of an element of Sect(D, — Gx) in As-
sumption (3) is compatible with the {#£1}-structure (cf. Definition 7.3) of Proposition 7.9

(3).
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A smooth log-orbicurve over K is called of type (1, Z/IZ) (resp. of type (1, (Z/1Z)®),
resp. of type (1,Z/lZ)+ ), if it is isomorphic to X (resp. X, resp. C) (which is con-
structed under the Assumptions (0), (1), (2), (3), (4), and (5)).

Note also that the definitions of smooth log-(orbi)curves of type (1,I-tors), of type
(1,1-tors)4, and of type (1,I-tors®) are made over any field of characteristic 0, and that
the definitions of smooth log-(orbi)curves of type (1,Z/IZ), of type (1,Z/IZ)+ and of
type (1,(Z/1Z)®) are made only over finite extensions of Q.

Let ¥ — X (resp. g — X) be the composite of the covering ¥ — X (resp.
Y - X) with X — X. Note that the coverings g — Y and Y — Y are of degree [.

We have the following diagram

/ wﬂZ)
Ao (222/17) .

M2

[I~<:

g Y - Y
le VA 2Z
X Ao (=2/1Z) X Q(=22/17) ¥ ext of Z/27 5
_ by pa2

L{:&:l} {£1}

C non-Galois C :

- deg=lI

and note that the irreducible components and cusps in the special fibers of X, X, X,
X, Y, Y, Y, and g are described as follows (Note that X — X and Y — Y are totally
ramified at each cusp):

e X: 1 irreducible component (whose noramalisation = P') and 1 cusp on it.

e X: 2 irreducible components (= P') and 2 cusps on each,

e X: [ irreducible components (= P!) and 1 cusp on each,

e X: | irreducible components (% P') and 1 cusp on each,

e Y: the irreducible components (=2 P!) are parametrised by Z, and 1 cusp on each,
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e Y: the irreducible components (=2 P!) are parametrised by Z, and 2 cusps on each,
e Y: the irreducible components (¢ P1) are parametrised by [Z, and 1 cusp on each,
° g the irreducible components (% P!) are parametrised by [Z, and 2 cusps on each.

We have introduced the needed log-curves. Now, we consider the étale theta
functions. By Assumption (4), the covering Y — X factors through X. Hence,
the class 7 € Hl(Hg-/emp,A@), which is well-defined up to an Oj-multiple, and its

™/ Hg.,emp =~ 7 x uo-orbit can be regarded as objects associated to Htimp.

We recall that the element 7 € H 1(H§fmp, Ao ® Z/IZ) arises froma an element
i® € Hl((H;fmp)e, Ao ® Z/IZ) by the first claim of Lemma 7.5 (2), where we use the
same symbol 7 by abuse of notation. The natural map D, — H‘;fmp — (H%fmp)@
induces a homomorphism Hl((H$mp)@, Ao ® ZJIZ) — HY(D,,Ae ® Z/IZ), and the
image of 7j® € Hl((Ht.Yemp)@, Ao ®Z/IZ) in H'(D,, Ae ® Z/IZ) comes from an element
ii® € HY(D,, Ao ®Z/IZ), where we use the same symbol 7i® by abuse of notation again,
via the natural map H'(D,,Ae ®Z/IZ) — HY(D,, Ae ®7Z/IZ), since we have an exact

sequence
0 — H'(Dy, Mg ® Z/IZ) = H'(Dy, Ao @ ZJIZ) — H'(1Ae, Ao ® Z/IZ),

and the image of #® in H'(IAe,Ae ® Z/IZ) = Hom(lAe, Ae ® Z/I7) vanishes by
the first claim of Lemma 7.5 (2). On the other hand, for any element s € Sect(D, —»
Gx), the map D, > g + g(s(g))~! gives us a 1-cocycle, hence a cohomology class in
HY(D,, Ao ®Z/IZ), where we write g for the image of g via the natural map D, — G.
In this way, we obtain a map Sect(D, — Gx) — H'(D,, Ao ®Z/I7Z). (cf. the following
diagram:

0—— HY(D,, Ao ® Z/I1Z) —— H'(Dy, Ao ® Z,)IZ) —— Hom(IAe, Ao ® Z/IZ)

| |

Sect(D, — Gx) HY((TI"™P)°, Ae @ Z/17),
where the horizontal sequence is exact.) We also have a natural exact sequence
0— H' (Gg,Ao ®Z/)IZ) — H (D,, Ao ® ZJI7) — H' (Ao ® Z/17, Ae ® 7.)IZ).

The image of ij® € H'(D,, Ae ® Z/IZ) in H'(Ag ® Z/IZ, Ag ® Z/IZ) = Hom(Ag ©
2], Ao ® Z/IZ) is the identity homomorphism by the first claim of Lemma 7.5 (2)
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again. The image Im(s) € H'(D,, Ae ® Z/IZ) of any element s € Sect(D, —» Gx) via
the above map Sect(D, — Gx) — H*(D,, Ao ®Z/IZ) in HY (Ao RZ/IZ, Ao RZL/IZ) =
Hom(Ae®Z/IZ, Ao ®Z/IZ) is also the identity homomorphism by the calculation Ag®
ZJZ > g g(s(g)) "t = g(s(1))7! = g-17! = g. Hence, any element in Im{Sect(D,, —
Gr) — HY(D,,Ao®Z/I1Z)} differs from i® € HY(D,, Ao ®Z/IZ) by an H* (G, Ae®
7J17) = K* /(K*)!-mutiple. Now, we consider the element s2®) € Sect(D, — Gk)
which is chosen in Assumption (3), and we write Im(s*®) ¢ H'(D,,Ae ® Z/I7)
for its image in H'(D,,Ae ® Z/IZ). By the above discussions, we can modify 7© €
HY(D,,Ae ® Z/IZ) by a K*-multiple, which is well-defined up to a (K*)!-multiple,
to make it coincide with Im(s*®) € H'(D,,Ae ® Z/IZ). Note that stronger claim
also holds, i.e., we can modify 7° by an O j--multiple, which is well-defined up to an
(O%)!-multiple, to make it coincide with Im(s4®)), since s4®) € Sect(D, — Gg), is
compatible with the canonical integral structure of D, by Assumption (5) (Note that

now we do not assume that 7©%x#2

is of standard type; however, the assumption that
s23) is compatible with the {#1}-structure in the case where 7©£%#2 is of standard
type implies that s*(3) is compatible with the canonical integral structure of D, even
we do not assume that 7}©Z*#2 is of standard type). As a conclusion, by modifying
i® € Hl((Hgfmp)@,A@ ® Z/IZ) by an Oj-multiple, which is well-defined up to an
(O%)!-multiple, we can and we shall assume that j® = Im(s2(®)) € HY(D,, Ao ®Z/IZ),
and we obtain an element #® € H 1(H§fmp, Ag ® Z/IZ), which is well-defined up to an
(O%)!-multiple (not an Oj-multiple), i.e., by the choice of X, the indeterminacy on
the ratio of s; and 7; in the definition of 7® disappeared. In the above construction,
an element Sect(D, — G) can be considered as “modulo | tangential basepoint” at
the cusp z, the theta function © has a simple zero at the cusps (i.e., it is a uniformiser
at the cusps), and we made choices in such a way that 7© = Im(s*(3)) holds. Hence,
the covering X — X can be regarded as a covering of “taking a [-th root of the theta
function”.
Note that we have the following diagram

H'(s*G)(Gk), Ao ® Z/IZ)

HY(D,, Ao ® Z)I7)

0 —— H'(D./s*3)(Gk), Ao ® Z/IZ) — H(IIZ™, Ao © Z/17) — Hl(Htimp, Ao ® Z/17)
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where the horizontal sequence and the vertical sequence are exact. Now, the image of
i® = Im(s2®) € HY(D,, Ao ®Z/IZ) in H'(s*®) (G ), Ao ®7Z/IZ) vanishes by the cal-
culation s2G3)(G) 3 s2B)(g) = s4G) () (s2B) (s8B) (9))) 7! = 4B (9)(s2B) ()"t =1
and the above vertical sequence. Thus, 7® = Im(s*(®)) comes from an element of
H'(D,/s*®)(Gk), Ao ®Z/IZ). Therefore, the image of i € H'(II gfmp A ®Z/IZ) in
H! (Htemp Ae®7Z/17) vanishes since it arises from the element of H' (D, /s*®)(Gk), Ae®

Z/ lZ) and the above horizontal sequence. As a conclusion, the image of 7j® € H1 (Hgfmp, Ap)
in H 1(Hteml@ Ag) arises from an element 77 €eH 1(Htemp [Ag), which is well-defined

up to OX In some sense, ﬁ@ can be considered as an “I-th root of the étale theta
function”. We write ZQ’ZZX”‘Q for the Hgmp/ﬂﬁmp >~ (IZ X pg)-orbits of Q@.

Definition 7.14.  ([EtTh, Definition 2.7]) We shall refer to ﬁg’lzx“z as of stan-

:© WX g

dard type, if 7 is of standard type.

By combining Proposition 7.9 Lemma 7.12, and definitions, we obtain the following:

Corollary 7.15. (Constant Multiple Rigidity of [-th Roots of the Etale Theta
Function, cf. [EtTh, Corollary 2.8]) Let X (resp. 'X) be a smooth log-curve of type
(1,(Z/1Z)®) over a finite extension K (resp. TK) of Q,. We use the notation T(—) for
the associated objects with TX Let vy : Htemp — Htemp be an isomorphism of topological
groups.

-0,1Z X 2

(1) The isomorphism «y preserves the property that i 1s of standard type. More-

over, this property determines this collection of classes up to a wi-multiple.

(2) Assume that the cusps of X are rational over K, the residue characteristic of K
is prime to I, and that p; C K. Then the {£1}-structure of Proposition 7.9 (3)
determinesa po;-structure (cf. Definition 7.3) at the decomposition groups of the
cusps of X. Moreover, this pg-structure is compatible with the canonical integral
structure (cf. Definition 7.3) at the decomposition groups of the cusps of X, and is
preserved by 7.

Remark 7.15.1.  The statements in Corollary 7.15 are bi-anabelian ones (cf. Re-
mark 3.4.4). However, we can reconstruct the set ﬁ@’@x’” in Corollary 7.15 (1) in a
mono-anabelian manner, by a similar way as Remark 7.6.3 and Remark 7.9.1.

Lemma 7.16.  ([EtTh, Corollary 2.9]) Assume that u; C K. We make a la-
belling on the cusps of X, which is induced by the labelling of the irreducible components
of Y by Z. Then this determines a bijection

{ Cusps of X} /Autg(X) = |F|
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(cf. Section 0.2 for |F)|), and this bijection is preserved by any isomorphism -y : Hgmp =

H;mp of topological groups.

Proof. The first claim is trivial (cf. also Remark 7.12.1). The second claim follows
from Remark 6.12.1. O

§7.4. Three Fundamental Rigidities of Mono-theta Environments.

In this subsection, we introduce the notion of mono-theta environment, and show
important three rigidities of mono-theta environment, that is, the constant multiple
rigidity, the cyclotomic rigidity, and the discrete rigidity.

Definition 7.17. For an integer N > 1, we put

HHN7K = un A GK.

For a topological group II with a surjective continuous homomorphism II - G, we
put
U[pn] =1 Xay My ke, Alpn] = ker ([un] - Gr) = A X py,

where A := ker(Il — Gg), and we shall refer to II[uy] as cyclotomic envelope of
IT - Gg. We also write

i (T[] = ker (] — I0).

and we shall refer to un(II[uyn]) as the (mod N) cyclotome of the cyclotomic
envelope II[uy]. Note that we have a tautological section Gx — I, x of Il xk —
Gk, and that it determines a section

sHE T — ],

and we shall refer to it as a mod N tautological section. For any object with
II[pn]-conjugate action, we shall refer to a py-orbit as a py-conjugacy class.

7

Here, the px in I[uy] plays a roll of “un” which comes from line bundles.

Lemma 7.18.  ([EtTh, Proposition 2.11]) Let IT — Gx (resp. 'II — Gix ) be
an open subgroup of the tempered or profinite fundamental group of hyperbolic orbicurve
over a finite extension K (resp. TK) of Qp, and write A := ker(Il - Gg) (resp.
TA == ker(TIT - Gig) ).

(1) The kernel of the natural surjection Alun] — A (resp. TAlun] — TA) is equal to the
center of Alun] (resp. TAlun]). In particular, any isomorphism Alun] = TA[un]
is compatible with the surjections Alun] — A, TAlun] — TA.
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(2) The kernel of the natural surjection I[uy] — II (resp. "H[uxn] — TI1) is equal to the
union of the center of the open subgroups of [un] (resp. "M[uyn]). In particular,
any isomorphism U[ux] = TM[uy] is compatible with the surjections M[uy] — 11,
MI{pn] — ML

Proof. Lemma follows from the temp-slimness (Lemma 6.4 (5)) or the slimness
(Proposition 2.7 (2a), (2b)) of A, TA, I, T1L. O

Proposition 7.19.  ([EtTh, Proposition 2.12))

(1) We have an inclusion
ker <(At£mp)® s (Atgmp)ell> — ZA@ C [(At&emp)@7 (Atgmp)@} )
(2) We have an equality
(@ (A5 ]] (126 ] = 0 (578 s, < 10 = (AF™)%0n] )

(€ tA0)lun] € (AF™)®[un])

where we write s?lAgtemp)@hA@ for the restriction of the mod N tautological section
é
1 t t t
et (AE)0 =5 (AF™)un] t0 186 (C (AF™)°).

Proof. The inclusion of (1) follows from the structure of the theta group (=Heisen-
berg group) (A%™)®. The equality of (2) follows from (1). O

Remark 7.19.1.  (cf. [EtTh, Remark2.12.1]) As a conclusion of Proposition 7.19

alg
(Ai;n;p)@

‘ZA@)’ — i.e., the splitting [Ag X uxy —, can be group-
theoretically reconstructed, and the cyclotomic rigidity of mono-theta environment (cf.

the subgroup Im (s

Theorem 7.23 (1)), which plays an important role in inter-universal Teichmiiller theory,
comes from this fact. Note that the inclusion of Proposition 7.19 (1) does not hold if we
use X instead of X, i.e., ker ((Atgmp)@ — (Atgmp)dl) =Ag ¢ [(Atgnp)@, (Atgmp)@ :

We write s for the composite

alg
S
mrtemp

LI = TP ] s T ],

and we shall refer to it as a mod N algebraic section. Let 7 : H;fmp — [Ap ®

Z/NZ = upn denote the composite of the reduction modulo N of any clement (ie., a
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1-cocycle) of the collection of classes ﬁ@’lzx’” CH 1(Ht.Yemp, [Ag), and the isomorphism

IAe ® Z/NZ = pi, which comes from a scheme theory (cf. Remark 3.15.1). We put

s ::77—1. alg | Htemp%Htemp[uN]‘

Y

I<:®

and shall refer to s? as a mod N theta section. Note that s is a homomorphism,

since 59 (gh) = n(gh) s (gh) = (g(n(h))n(9) " 53 (9)s3* (h) = (sL5(a)n(h)s35(9) " n(9)) " s55 (g

~1 alg —1alg Py _ O(,) O o 1 -
n(g)~ sy (g9)n(h) Sy (h) = si(g)si-,(g). Note also that the natural outer action

|-<

Gal(Y/X) = Ig™ /Ty™ 2 ™[] /T[] < Out(Iy™ [un])

of Gal(Y./X) on Htxemp [N fixes Im(s?;g : H‘;fmp — H;mp [un]) up to a conjugate by uy,

alg

since the mod N algebraic section 528 extends to a mod N tautological section S ptemp
X

Y

Htemp — Htemp[,uN]. Hence, s up to Ht Plpn]-conjugates is independent of the

choice of an element of 77@ Zxps Hl(Htemp [Ao) (Recall that Htemp — Gal(Y/X) =

IZ x psz). Note also that conjugates by pn corresponds to modlfylng a l-cocycle by
1-coboundaries.
Note that we have a natural outer action

KX — KX J(KX)Y 5 HY Gk, ) — H' (TP, ) — Out(Iy™ ),

where the isomorphism is the Kummer map, and the last homomorphism is given by
sending a 1l-cocycle s to an outer homomorphism sHltgemp (9)a — s(g)s;ltgemp (9)a (g €

alg

Htemp, a € uy) (Note that the last homomorphism is well- defined, since sHtemp (g)asglimp (¢")d (=
Y

;ltgemp (99')s Eltgemp (¢") " Y(a)d) for g,¢" € Hzmp, a,a’ € py is sent to

1 — 1 — 1
5(99')Sptens (99)) 85y (67) 1 (@)a” = 9(5(9))5(9) 8yt (99" )Sns (9) a5y ()

Y

1 1 1 1
= 8(9)9(8(9’))8%%:;;) (9)as]iem (97)a" = 5(9)5 tems (9)5(9 Jas ptems (9')a

/

by s, and since for a 1-coboundary s(g) = b=1g(b) (b € uy) is sent to

1 1 1 1 1 ~1_al
S8 ()0 5(0)5 e (9)0 = b1 G(0)5 e (9 = 5151y (01557 (9) 15 E e (9)c
Y Y Iy Iy X X
1 al ~1_al
=p ! ;tgxemp( g)ba =b 1s;§jn,p(g)ab,
which is an inner automorphism). Note also any element Im(K*) := Im(K* —

Out(ITy™P[un])) lifts to an element of Aut(ITy"™P[uy]) which induces the identity au-
tomorphlsms of both the quotient Ty [uy] — Ht;mp and the kernel of this quotient.
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ACNYVAL

In this natural outer action of K*, an Oj-multiple on 7 corresponds to an

X : ©
O -conjugate of sg

Definition 7.20.  (Mono-theta Environment, [EtTh, Definition 2.13]) We write

Dy i= (Im(K*), Gal(X/X)) € Out(IT"?[un])

for the subgroup of Out(HtXemp[/LN]) generated by Im(K*) and Gal(Y/X) (= 1Z).

(1) We shall refer to the following collection of data as a mod N model mono-theta
environment:

g

e the topological group Htim LN,

e the subgroup Dy (C Out(Htimp [un])), and

e the puy-conjugacy class of subgroups in Hz’mp [en] determined by the image of

the theta section s?,.

(2) We shall refer to any collection M = (II, Dy, s9) of the following data as a mod N
mono-theta environment:

e a topological group II,
e a subgroup Dy (C Out(II)), and
e a collection of subgroups s of II,

such that there exists an isomorphism IT = Htimp [n] of topological groups which
maps D C Out(Il) to Dy, and s§ to the uy-conjugacy class of subgroups in

H;mp [un] determined by the image of the theta section ).

(3) For two mod N mono-theta environments M = (II, Dy, sf}), TM = (I, Diyy, s,
we define an isomorphism of mod N mono-theta environments M = M

to be an isomorphism of topological groups II = TII which maps D to Dip,

©
I

theta environment "M with M | N, we define a homomorphism of mono-theta

and s9 to s For a mod N mono-theta environment M and a mod M mono-
environments M — M to be an isomorphism Mj; = "M, where we write M,
for the mod M mono-theta environment induced by M.

Remark 7.20.1.  We can also consider a mod N bi-theta environment B =
(I1, Dy, 58, s%lg), which is a mod N mono-theta environment (I, Dy, s§) with a datum
s%lg corresponding to the pn-conjugacy class of the image of mod N algebraic section

s?}lg (cf. [EtTh, Definition 2.13 (iii)]). As shown below in Theorem 7.23, three impor-
tant rigidities (the cyclotomic reigidity, the discrete rigidity, and the constant multiple
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rigidity) hold for mono-theta environments. On the other hand, the cyclotomic rigidity,
and the constant multiple rigidity trivially holds for bi-theta environments; however, the
discrete rigidity does not hold for them (cf. also Remark 7.23.1). We omit the details
of bi-theta environments, since we will not use bi-theta environments in inter-universal

Teichmiiller theory.

Lemma 7.21.  ([EtTh, Proposition 2.14])

(1) We have the following group-theoretic chracterisation of the image of the tautological
section of (I1Ae)[un] — lAe as the following subgroup of (A;?mp)@[ugv]:

(186)luv] (N {H(@a™" € (AF™)Ofun] | a € (AF™)®luy], 7 € Aut(UF™ [un]) such that ()},

where

(%) : the image of v in Out( tzemp[ ~]) belongs to Dy,
and ~y induces the identity on the quotient Htemp [un] — ™ = G

(2) Let te H'.;,emp — Htemp [un] be a section obtained as a conjugate of 53 relative to the

actions of K* and ZZ Write § := (s Y) 1t@, which is a 1-cocycle of Htemp valued in

pn. We write &5 € Aut(ILS ISPy ]) for the automorphism given by sntemp (9)a —
= Y

5(g)snltgemp( Ja (g € Htfsmp, a € pn), which induces the identity homomorphisms

Y

on both the quotient Htemp[uN] —» Htemp and the kernel of this quotient. Then

Gy extends to an automorphism as € Aut( temp[

un)|), which induces the identity
homomorphisms on both the quotient II mp[uN] — TIy™P and the kernel of this

quotient. The conjugate by as maps s@ to te, and prgserves the subgroup Dy C
Out(ITy™* [u]).

(8) Let Ml = (Htxemp [un], Dy, sg) be the mod N model mono-theta environment. Then

every automorphism of M induces an automorphism of Htemp by Lemma 7.18 (2),

hence an automorphism of Htemp = Aut(II temp) 0 Im(Dy — Out(Il temp)) =
Aut(Htemp) X Out (i) Im(Dy — Out(Htemp)). It also induces an automorphism

of the set of cusps on Relative to the labellmg by Z on these cusps, this induces
an automorphism of Z given by (IZ) x {£1}. This assignment gives us a surjective

homomorphism

Aut(M) — (1Z) x {£1}.
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Proof. (1): Let v € Aut((H?mp)[uN]) be a lift of an element in Im(K*) C Dy (C
Out((H?mp)[ﬂN])) such that ~ satisfies (*). Then v can be written as v = 172, where
m € In;(Htemp[uN]) Y2 € Aut(Htemp[uN]) the image of 75 in Out(Htemp[,uN]) is in
Im{K* — H'(Gx, py) = Hl(Htemp, UN) — Out(Htemp [un])}, and the automorphism
induced by 75 of the quotient HZ Plun] — HZ and the automorphism of its kernel (=

temp

fn) are trivial. Since the composite H' (G, uy) — HY(IIg™, un) — Hl(Atemp,uN)
is trivial, the composite H! (Gx, un) — Hl(HtXemp, UN) — Hl(Atemp, UN) — Out(Atemp (un])

is trivial as well. Hence, the automorphism induced by ~2 of Ate Plun] is an inner au-
tomorphism. On the other hand, the automorphism induced by v1 of G is trivial
since the automorphism induced by 2 of G is trivial, and the condition (*). Then

the center-freeness of G (cf. Proposition 2.7 (1c)) implies that vy, € Inn(Hg'fmp lun])

is in Inn(AtXemp [un]). Hence, the automorphism induced by v = 412 of AZ Plun] is
also an inner automorphism. Since (A;mp) [un] (= 1Z % Z(l) X py) is abelian, the

inner automorphism induced by ~ of (Atxemp) [un] is trivial. Then (1) follows from
Proposition 7.19 (2). -
(2): By definition, the conjugate by (s maps s@ to t-@ Since the outer action of

Gal(Y/X) = IZ on Atemp [un] fixes s & up to un- conjugacy, the cohomology class of
§in H 1(Htemp, pN) is in the submodule generated by the Kummer classes of K* and

(1/0)21 log(U) — 21log(17) by the first displayed formula of Lemma 7.5 (2) (cf. Lemma 7.5
(1) for the cohomology class log(U )). Here, note that the cohomology class of ¢ is in
Fil' since both of (s alg) s and sag t@ maps to 1 in Fil°/Fil' = Hom(IAe,lAe) by

Lemma 7.5 (2). Note also that “1/ I” comes from that we are working with [-th roots
of the theta functions ne LXH2 (cf, the proof of Lemma 7.5 (2)), and that “I” comes

temp

from [Z. Thus, § descends to a 1- cocycle of Iy valued in pn since the coordinate

(™

U? descends to Y. Hence, d; extends to an automorphlsm as € Aut in]), which

induces identity automorphisms on both the quotient Htemp[ N] — Ht;mp and the kernel

( temp[

of this quotient. The conjugate by a; preserves Dy C Out pN]), since the action

of Gal(Y/X) maps 2log(U) to a K *-multiple of 2log(U).
(3) comes from (2). O

Corollary 7.22.  (Group-Theoretic Reconstruction of Mono-theta Environment,
[EtTh, Corollary 2.18]) Let N > 1 be an integer, | a prime number and X a smooth
log-curve of type (1,(Z/1Z)®) over a finite extension K of Q,. We assume that | and p
are odd, and K = K. Let My be the resulting mod N model mono-theta environment,

O,1Z X iz

which is independent of the choice of a member ofn , up to isomorphism over the
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identity of Htxemp by Lemma 7.21 (2).

(1) Let Tﬂtgnp be a topological group which is isomorphic to Htimp. Then there exists
a group-theoretic algorithm for constructing B

e subquotients

THtimp, THtZemp7 TGK, T(ZA@), T(Atéemp>®, T(I—It&emp)é)7 T(Atimp)@’ T(H‘gfmp)@

ofTHtKemp, and
e a collection of subgroups ofTHtgmp for each element of (Z/IZ)/{+£1},

such that any isomorphism TII™ 5 TT™ maps

e the above subquotients to the subquotients

Htimp? Ht'x'emp? Gk,lAe, (Azmp)®> (Htimp)@, (Atxemp)@, (Htxemp)e

of Htgnp respectively, and

e the above collection of subgroups to the collection of cuspidal decomposition
groups of TI'¢™ determined by the label in (Z/1Z)/{%1},

in a functorial manner with respect to isomorphisms of topological groups (and no

. , t
need of any reference isomorphism to I ).

(2) I +— M)
There exists a group-theoretic algorithm for constructing a mod N mono-theta en-
vironment TM = (TTL, Dsyy, 8T®H>, where

=P <6, ((T(1Ae) ® Z/NZ) % 'G)

up to isomorphism in a functorial manner with respect to isomorphisms of topolog-
ical groups (and no need of any reference isomorphism to My ). (cf. also [EtTh,
Corollary 2.18 (ii)] for a stronger form,). B

(3) M+ 1I)":
Let ™M = ('TI, Diyy, S?H) be a mod N mono-theta environment which is isomorphic
to Miy. Then there exists a group-theoretic algorithm for constructing a quotient
I — THg,emp, such that any isomorphism TM 5 My maps this quotient to the
quotient Thy™P[un] — TIy™ in a functorial manner with respect to isomorphisms
of mono-theta environments (and no need of any reference isomorphism to My ).

Furthermore, any isomorphism "M = My induces an isomorphism from

Tﬂtgnp = AUt(THt—fmp) X Out(tieme) Im(Diyg — Out(THtimP))
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to Htgnp, where we set the topology of THtKemp as the topology determined by taking

THthmp :> Aut(THthmp) XOut(Tl'I;“’p) {1} - Tnzmp

to be an open subgroup. Finally, if we apply the algorithm of (2) to Tﬂzmp, then
the resulting mono-theta environment is isomorphic to the original TM, via an iso-

morphism which induces the identity on TTTE™P.

(4) Let "M = (I, Dipy, 55;), and *M = (*1I, Dsyq, s§;) be mod N mono-theta environ-
ments. Let TII™ and *TI™ be the topological groups constructed in (3) from
™ and M res;ectively. Then the functoriality of the algorithm in (3) gives us a
natural map

Tsom*~ o™ (TM, M) — Isom(THtXemp, thXemp),

which is surjective with fibers of cardinality 1 (resp. 2) if N is odd (resp. even),
where we write Isom"~ Y for the set of pn-conjugacy classes of isomorphisms.
In particular, for any positive integer M with M | N, we have a natural ho-
momorphism Aut’N M (TM) — Aut’™ (M), where we write TMy; for the
mod M mono-theta environment induced by "M such that the kernel and coker-
nel have the same cardinality (< 2) as the kernel and cokernel of the homomor-
phism Hom(Z/2Z,7/N7Z) — Hom(Z/2Z,7./MZ) induced by the natural surjection
Z/NZ — Z]MZ, respectively.

Proof. (1): We can group-theoretically reconstruct a quotient Tﬂggmp — TG g by
Lemma 6.2, other subquotients by Lemma 7.8, Lemma 7.12 and the definitions, and the
labels of cuspidal decomposition groups by Lemma 7.16.

(2) follows from the definitions (Note that we can reconstruct the set Tﬁ@’lzxw of
theta classes by Remark 7.15.1, thus, the theta section s§}; as well (cf. the construction
of the theta section s}-@} before Definition 7.20)).

(3): We can grou;—theoretically reconstruct a quotient T — TTI\"™P by Lemma 7.18
(2). The reconstruction of TTI%™ comes from the definitions and the temp-slimness of

FI™ (Lemma 6.4 (5)). The last claim of (3) follows from the definitions and the
description of the algorithm in (2).

(4): The surjectivity of the map comes from the last claim of (3). The fiber of
this map is a ker(Aut"¥ ™ (TM) — Aut(TTI%¢™P))-torsor. By Theorem 7.23 (1) below
(Note that there is no circular argument), the natural isomorphism T(IAg) ® Z/NZ =

nn (T(1Ae[pn])) is preserved by automorphisms of TM. Note that ker(Aut/~ ™ (fM) —
Aut(TTI¢™P)) consists of automorphisms acting as the identity on TTI}"™P hence, on
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ker(1II — Tﬂﬁmp ) by the above natural isomorphism. Thus, we have
ker(Aut> ™ (TM) — Aut(TTI%™)) = Hom(TTI™ /TTIE™, Ker(TT1 — FIIE™)),

where TTI,"P/ THt.Yemp >~ yy and ker(TTT — TII™P)) =y, The cardinality of this group

is 1 (resp. 2) is N is odd (resp. even). The last claim follows from this description. [J

Theorem 7.23.  (Three Rigidities of Mono-theta Environments, [EtTh, Corol-
lary 2.19]) Let N > 1 be an integer, I a prime number and X a smooth log-curve of
type (1,(Z/1Z)®) over a finite extension K of Q,. We assume that | and p are odd,
and K = K. Let My be the resulting mod N model mono-theta environment (which is

independent of the choice of a member ofﬁ@’@x"2

ofﬂgmp by Lemma 7.21 (2)).

, up to isomorphism over the identity

(1) (Cyclotomic Rigidity) Let "M = (TII, Dy, s§;) be a mod N mono-theta envi-
ronment which is isomorphic to My. We write Tﬂtgnp for the topological group
obtained by applying Corollary 7.22 (3). Then there exists a group-theoretic algo-
rithm for constructing subquotients

"(1Ae[un]) € T((AY™)®lun]) € T(AE™) [un])

of TII such that any isomorphism "M = My maps these subquotients to the sub-
quotients

lAp[pN] C (Atimp)(a[ﬂzv] C (Hifmp)g[uzv]

of H;mp [un], in a functorial manner with respect to isomorphisms of mono-theta
environments (no need of any reference isomorphism to My ). Moreover, there exists
a group-theoretic algorithm for constructing two splittings of the natural surjection

flAe[un]) = T(1Ae)

such that any isomorphism "M 5 My maps these two splittings to the two splittings
of the surjection

lAelun] — lAe

determined by the mod N algebraic section s?}lg and the mod N theta section s?,.

in a functorial manner with respect to isomo?phisms of mono-theta environments
(no need of any reference isomorphism to M). Hence, in particular, by taking
the difference of these two splittings, there exists a group-theoretic algorithm for
constructing an isomorphism of cyclotomes

(Cyc. Rig. Mono-th.) M1Ae) ® Z/NZ = un(T(1A6[1N]))
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such that any isomorphism "Ml = My maps this isomorphism of the cyclotomes to
the natural isomorphism of cyclotomes

1Ae @ Z/NZ = pun(l1Ae[un])

in a functorial manner with respect to isomorphisms of mono-theta environments

(no need of any reference isomorphism to My ).

(2) (Discrete Rigidity) Any projective system (TMy)n>1 of mono-theta environ-
ments is isomorphic to the natural projective system of the model mono-theta envi-
ronments (My)n>1-

(3) (Constant Multiple Rigidity) Assume that ﬁ@’lzx“z is of standard type. Let

(TMN)Nzl be a projective system of mono-theta environments. Then there exists a
group-theoretic algorithm for constructing a collection of classes of H' (THt-}fmp, f(1Ag))

such that any isomorphism (TMN)N21 = (Mpy)n>1 to the projective sys;emS of the
model mono-theta environments maps the above collection of classes to the collec-
tion of classes of H' (Ht-Yemp, [Ag) given by some multiple of the collection of classes

Q@’@X"Q by an element of p; in a functorial manner with respect to isomorphisms

of projective systems of mono-theta environments (no need of any reference isomor-

phism to (My)n>1).

We shall refer to (IAg) ® Z/NZ as the (mod N) internal cyclotome of the
mono-theta environment M, and uy(T(IAe[n])) the (mod N) external cyclo-
tome of the mono-theta environment M. We shall refer to the above isomor-
phism (Cyc. Rig. Mono-th.) as the cyclotomic rigidity of mono-theta environ-
ment.

lg

Proof. (1): Firstly, note that the restrictions of the algebraic section s?., and

the theta section sg to ker{HtXemp — (Hzmp)g} coincide by Remark 7.2.1 (1). ‘Hence,

ter;}) temp

we can reconstructiker{T(HX [un]) = T(A"P)®[un])} as the subset of (any puy-

conjugacy class of) 59, whose elements projegt to ker{T(I[y™P) — T((ITE™P)®)}, via

the projection (L™ [u]) — (L"), where (IIF™P[uy]) — T(IIE™P), T(IIE™P),

and T(ITE™P) — T((IIE™P)© are reconstructed by Lemma 7.18 (2),7C0r011ary77.22
(3) and Corollary 7.22 (1) respectively. We can also reconstruct the subquotients
T(1Aelun]) C T((Aﬁmp)@[ﬂj\]]) C T((Htxemp)@[uN]) as the inverse images of T(IAg) C
T((Atxemp)@) C T((ﬁﬁmp)@), which are reconstructed by Corollary 7.22 (1) (3), via
the quotient T((I_Itxer@)@[,u]\]]) - T((l_Ig,jrnl:))@). We can reconstruct the splitting of
the natural surjection T(1Ae[un]) — T7(ZA@) given by the theta section directly as
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S?H. On the other hand, we can reconstruct the splitting of the natural surjection

T(1Ae[un]) — T(IAe) given by the algebraic section by the algorithm of Lemma 7.21
(1).

(2) follows from Corollary 7.22 (4), since R! lim Hom(Z/2Z,7Z/NZ) = 0 and
R fm  pun = 0. cf. also Remark 7.23.1 (2).

(3) follows from Lemma 7.21 (3), Corollary 7.15, the cyclotomic rigidity (1), and
the discrete rigidity (2). O

Remark 7.23.1.  In this remark, we compare rigidity properties of mono-theta
environments and bi-theta environments (cf. Remark 7.20.1 for bi-theta environments).

(1) (Cyclotomic Rigidity) The proof of the cyclotimic rigidity for mono-theta environ-
ments comes from the reconstruction of the image of the algebraic section, and
this reconstruction comes from the quadratic structure of theta group (=Heisenberg
group) (cf. Remark 7.19.1). On the other hand, for a bi-theta environment, the
image of the algebraic section is included as a datum of a bi-theta environment,
hence, the cyclotomic rigidity trivially holds for bi-theta environment.

(2) (Constant Multiple Rigidity) The proof of the constant multiple rigidity for mono-
theta environments comes from the elliptic cuspidalisation (cf. Proposition 7.9).
On the other hand, for a bi-theta environment, the image of the algebraic section is
included as a datum of a bi-theta environment. This means that the ratio (i.e., the
étale theta class) determined by the given data of theta section and algebraic section
is independent of the simultaneous constant multiplications on theta section and
algebraic section, hence, the constant multiple rigidity trivially holds for bi-theta

environment.

(3) (Discrete Rigidity) A mono-theta environment does not include a datum of algebraic
section, it includes only a datum of theta section. By this reason, a mono-theta
environment has “shifting automorphisms” és in Lemma 7.21 (2) (which comes
from the “less-than-or-equal-to-quadratic” structure of theta group (=Heisenberg
group)). This means that there is no “basepoint” relative to the [Z action on Y,
i.e., no distinguished irreducible component of the special fiber. If we work with a
projective system of mono-theta environments, then by the compatibility of mod
N theta sections, where N runs through the positive integers, the mod N theta
classes determine a single “discrete” [Z-torsor in the projective limit. The “shift-
ing automorphisms” gives us a [Z-indeterminacy, which is independent of N (cf.
Lemma 7.21 (3)), and to find a common basepoint for the IZ/NIZ-torsor in the
projective system is the same thing to trivialise a l'&nN IZ/1Z(= 0)-torsor, which
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remains discrete. This is the reason that the discrete rigidity holds for mono-theta
environments. On the other hand, a bi-theta environment includes a datum of alge-
braic section as well. The basepoint indeterminacy is roughly NIZ-indeterminacy
(i.e., the surjectivity of Lemma 7.21 (3) does not hold for bi-theta environments. for
the precise statement, see [EtTh, Proposition 2.14 (iii)]), which depends on N, and
to find a common basepoint for the [Z/NIiZ-torsor in the projective system is the
same thing to trivialise a l&n N IZ/NIZ(= lZ)—torsor, which does not remain discrete

(it is profinite). Hence, the discrete rigidity does not hold for bi-theta environments.

Note also that a short exact sequence of the projective systems
0— NIZ —1Z —1Z/NIZ —0 (resp. 0 > IZ —1Z —1ZJIZ — 0 )

with respect to N > 1, which corresponds to bi-theta environments (resp. mono-

theta environments), induces an exact sequence

0 = lim NIZ (= 0) = IZ — IZ — R' lim NIZ(= IZ/1Z) = 0
N N

(vesp. 0 —=1Z —1Z — 0 — R'limiZ(=0) ),
N

and that R! fm  NIZ = IZ/1Z (vesp. R* hm 7 = 0) exactly corresponds to the
non-discreteness (resp. discreteness) phenomenon of bi-theta environment (resp.
mono-theta environment). cf. also [EtTh, Remark 2.16.1].

The following diagram is a summary of this remark (cf. also [EtTh, Introduction)):

cycl. rig. disc. rig. const. mult. rig.
mono-theta env. delicately OK OK delicately OK
(structure of theta group) (elliptic cuspidalisation)
bi-theta env. trivially OK Fails trivially OK

Remark 7.23.2.  If we consider N-th power ON (N > 1) of the theta function ©

instead of the first power ©! = O, then the cyclotomic rigidity of Theorem 7.23 (1) does

not hold since it comes from the quadratic structure of the theta group (=Heisenberg

group) (cf. Remark 7.19.1). The cyclotomic rigidity of the mono-theta environment




A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 163

is one of the most important tools in inter-universal Teichmiiller theory, hence, if we
use ON (N > 1) instead of O, then inter-universal Teichmiiller theory does not work.
If it worked, then it would give us a sharper Diophantine inequality, which would be
a contradiction with the results in analytic number theory (cf. [Mass2]). cf. also Re-
mark 11.10.1 (the principle of Galois evaluation) and Remark 13.13.3 (2) (N-th power
does not work).

Remark 7.23.3.  The cyclotomic rigidity rigidifies the Z* 2 Aut (2(1))—indeterminacy
of an object which is isomorphic to “Z(1)”, hence rigidifies the induced Z* = Aut(Z(1))-

indeterminacy of H!(—, “Z(1)”). As for the cohomology class log() of the theta func-

tion ©, it ridigifies s log(®). The constant multiple rigidity rigidifies log(©) + Z.
Hence, the cyclotomic rigidity and the constant multiple rigidity rigidify the indeter-
minacy 7x log(©) + 7 of the affine transformation type. The discrete rigidity rigidifies
7 =~ Hom(“Z(1)", “Z(1)”). Here the second “Z(1)” is a coefficient cyclotome, and it is
subject to ZX Aut(Z(l))—indeterminacy which is rigidified by the cyclotomic rigidity.
The first “2(1)” is a cyclotome which arises as a subquotient of a (tempered) funda-
mental group. Hence, three rigidities of mono-theta environments in Theorem 7.23

correspond to the structure of the theta group (=Heisenberg group) (A'S™?)®:

cyclotomic rigidity constant multiple rigidity
0 discrete rigidity

cf. also the filtration of Lemma 7.5 (1).

§7.5. Some Analogous Objects at Good Places.

In inter-unversal Teichiller theory, X is the main actor for places in VP24 Tn this
subsection, for the later use, we introduce a counterpart & of X for places in v&°°d and
related objects (However, the theory for the places in VP2 is more important than the
one for the places in V&°°%).

Let X be a hyperbolic curve of type (1,1) over a field K of characteristic 0, C
a hyperbolic orbicurve of type (1, l-tors)s (cf. Definition 7.10) whose K-core C is also
the K-core of X. Then C determines a hyperbolic orbicurve X := C x¢o X of type
(1,l-tors). Let tx be the nontrivial element in Gal(X/C)(= Z/2Z). We write Gk for
the absolute Galois group of K for an algebraic closure K. Let [ > 5 be a prime number.

Assumption We assume that Gk acts trivially on A3 ® (Z/IZ).
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(In inter-universal Teichmiiller theory, we will use for K = Fi,0qa(Er, ,[l]) later.) We
write € for the unique zero-cusp of X. We choose a non-zero cusp € and let ¢ and
€ be the cusps of X over ¢, and let Ax — A ® (Z/IZ) - A, be the quotient of
A% ® (Z/1Z) by the images of the inertia Subgroaps of all non-zero cusps except ¢’ and
¢ of X. Then we have the natural exact sequence

0 —>I§/ X IE” — A§—> AE® (Z/ZZ) —)0,

with the natural actions of Gx and Gal(X/C)(= Z/2Z), where E is the genus one
compactification of X, and I/, I~ are the images in A, of the inertia subgroups of
the cusps €, € respectively (we have non-canonically I, = I.» = Z/IZ). Note that tx
induces an isomorphism I, = I, and that tx acts on Ag®(Z/IZ) via the multiplication
by —1. Since [ is odd, the action of tx on A, induces a decomposition

Ac S AT x AL,

where 1x acts on A} and A_ by +1 and —1 respectively. Note that the natural
composites I, — A, — A; and Ior — A, — A; are isomorphisms. We define
(ILx —)Jx by pushing the short exact sequences 1 - Ay — IIx — Gxg — 1 and by
Ax - A — AT:

1 AX H& GK 1
1 AF Jx Gk 1

Next, we consider the cusps “2¢’” and “2¢”” of X corresponding to the points of
E obtained by multiplying ¢ and €’ by 2 respectively, relative to the group law of
the elliptic curve determined by the pair (X,e?). These cusps are not over the cusp
€ in C, since 2 Z +1 (mod ) by | > 5. Hence, the decomposition groups of “2¢’”
and “2€”” give us sections o : Gg — Jx of the natural surjection Jy — Gg. The
element tx € Gal(X/C), which interchange I and I, acts trivially on Al (Note also
I = A, «— I.), hence, these two sections to Jx coincides. This section is only
determined by “2€¢’” (or “2¢””) up to an inner automorphism of Jx given by an element
Ag'; however, since the natural outer action of Gx on A; is trivial by Assumption, it
follows that the section completely determined by “2¢’” (or “2¢””) and the image of the
section is normal in Jx. By taking the quotient by this image, we obtain a surjection
(Ilx —)Jx - Af. Let

X ¥

be the corresponding covering with Gal(&/&) = AN=17Z/1Z).

Definition 7.24.  ([IUTchI, Definition 1.1]) An orbicurve over K is called of
type (1, l—tor§) if it is isomorphic to g over K for some [ and e.
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The arrow — in the notation 5 indicates a direction or an order on the {41}-orbits
(i.e., the cusps of C) of @ (in Assumption (1) before Definition 7.10) is determined by €
(Remark [IUTchl, Remark 1.1.1]). We omit the construction of (0 (cf. [[UTchI, §1]),
since we do not use it. This g is the main actor for places in V8°°d in inter-universal
Teichmiiller theory :

local VP24 | local V&°°? | global B | global X

X Ck

—v

main actor X &
v

Lemma 7.25. ([IUTchl, Corollary 1.2]) We assume that K is an NF or an
MLEF. Then from II X there exists a group-theoretic algorithm to reconstruct Ilx and
IIo (as subgroups of Aut(&) ) together with the conjugacy classes of the decomposition
group(s) determined by the set(s) of cusps {€,€"} and {e} respectively, in a functorial

manner with respect to isomorphisms of topological groups.

cf. also Lemma 7.8, Lemma 7.12 ([EtTh, Proposition 1.8, Proposition 2.4]).

Proof. First, since II X IIx and IIo are slim by Proposition 2.7 (2b), these are
naturally embedded into Aut(II X ) by conjugate actions. By the K-coricity of C, we
can also group-theoretically reconstruct (II X C) e (C Aut(II if))) By Proposition 2.2
or Corollary 2.4, we can group-theoretically reconstruct the subgroups A g C Hg and
A x C IT X (In particular, we can reconstruct ! by the formula [Ac : A 5}] = 20?).
We can reconstruct Ay as a unique torsion-free subgroup of A of index 2. Then we
can reconstruct Iy (C o) as x = H - H)_fy where H := ker(Ax — AY ® (Z/IZ)).

', and ¢’ in IIx can be

The conjugacy classes of the decomposition groups of €, €
reconstructed as the decomposition groups of cusps (Corollary 2.9 and Remark 2.9.2)
whose image in IIx /II X is nontrivial. Then we can reconstruct the subgroup Ilg C Il¢
by constructing a splitting of the natural surjection Il /Ilx — Ilo/IIx determined by
IIo/Ilx, where the splitting is characterised (since [ 1 3) as the unique splitting (whose
image C IIo/Ilx) stabilising (via the outer action on Ilx) the collection of conjugacy
classes of the decomposition groups in Ilx of €°, €/, and ¢ (Note that if an ivolution
of X fixed € and interchanged €’ and €”’, then we would have 2 = —1 (mod 1), i.e.,
['| 3). Finally, the decomposition groups of ¢ and €” in IIx can be reconstructed as the
decomposition group of cusps (Corollary 2.9 and Remark 2.9.2) whose image in IIx /II X
is nontrivial, and is not fixed, up to conjugacy, by the outer action of Ilo/Ilx (= Z/27Z)

on Ilx. 0
Remark 7.25.1.  ([IUTchI, Remark 1.2.1]) By Lemma 7.25, we have

Autg (X) = Gal(X/C) (= Z/21Z)
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(cf. Remark 7.12.1).

§ 8. Frobenioids.

Roughly speaking, we have the following proportional formula:

Anabelioid (=Galois category) : Frobenioid = coverings : line bundles over coverings,

that is, the theory of Galois categories is a categorical formulation of coverings (i.e., it
is formulated in terms of category, and geometric terms never appear), and the theory
of Frobenioids is a categorical formulation of line bundles over coverings (i.e., it is for-
mulated in terms of category, and geometric terms never appear). In [FrdI| and [FrdII],
Mochizuki developed a general theory of Frobenioids; however, in this survey, we mainly
forcus on model Frobenioids, which mainly used in inter-universal Teichmiiller theory.
The main theorems of the theory of Frobenioids are category-theoretic reconstruction
algorithms of related objects (e.g., the base categories, the divisor monoids, and so on)
under certain conditions; however, we avoid these theorems by including the objects,
which we want to reconstruct, as input data, as suggested in [[UTchl, Remark 3.2.1

(ii)].
§8.1. Elementary Frobenioids and Model Frobenioids.

For a category D, we shall refer to a contravariant functor ® : D — Mon to the
category of commutative monoids 9on as a monoid on D (In [Frdl, Definition 1.1], we
write some conditions on ®. However, this has no problem for our objects used in inter-
universal Teichmiiller theory.) If any element in ®(A) is invertible for any A € Ob(D),
then we shall refer to ® as group-like.

Definition 8.1.  (Elementary Frobenioid, [Frdl, Definition 1.1 (iii)]) Let ® be a
monoid on a category D. We consider the following category Fg:

(1) Ob(Fs) = Ob(D).
(2) For A, B € Ob(D), we put
Homg, (4, B) := {¢ = (Base(¢), Div(¢), degr,(¢)) € Homp(A, B) x ®(A) x N>1}.

We define the composition of ¢ = (Base(¢), Div(¢),degp,(¢)) : A — B and ¢ =
(Base(%)), Div(¢)), degp,(n)) : B — C as

o := (Base(¢)oBase(), ®(Base(¢))(Div(4))+degr, () Div(¢), degp, () degr, (¢)) : A = C.
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We shall refer to Fg as an elementary Frobenioid associated to ®. Note that
we have a natural functor F3 — D, which sends A € Ob(Fg) to A € Ob(D), and
¢ = (Base(¢), Div(¢), degp.(¢)) to Base(¢). We shall refer to D as the base category
of Fq;.

For a category C and an elementary Frobenioid Fg, we shall refer to a covariant
functor C — Fg as a pre-Frobenioid structure on C (In [Frdl, Definition 1.1 (iv)],
we need conditions on ®, D, and C for the general theory of Frobenioids). We shall
refer to a category C with a pre-Frobenioid structure as a pre-Frobenioid. For a
pre-Frobenioid C, we have a natural functor C — D by the composing with Fg — D.
In a similar way, we obtain operations Base(—), Div(—), degp,(—) on C from the ones
on Fg by composing with Fe — D. We often use the same notation on C as well, by
abuse of notation. We also shall refer to ® and D as the divisor monoid and the base
category of the pre-Frobenioid C respectively. We write

O™ (A) :={¢ € Autc(A) | Base(¢) = id, degp,(¢) = 1} C Aute(A),

and
O% (A) := {¢ € Endc(A) | Base(¢) = id, degp,(¢) = 1} C Endc(A)

for A € Ob(C). We also write un(A) := {a € O*(A) | a®¥ =1} for N > 1.

Definition 8.2.  ([IUTchl, Example 3.2 (v)]) When we are given a splitting spl :
O% /O* — O (resp. a uy-orbit of a splitting spl : O /O* — O for fixed N) of
O% — O%/O*, i.e., functorial splittings (resp. functorial py-orbit of splittings) of
O%(A) - O%(A)/O*(A) with respect to A € Ob(C) and morphisms with degg, = 1,
then we shall refer to the pair (C,spl) as a split pre-Frobenioid (resp. a pn-split
pre-Frobenioid).

If a pre-Frobenioid satisfies certain technical conditions, then we call it a Frobe-
nioid (cf. [Frdl, Definition 1.3]). (Elementary Frobenioids are, in fact, Frobenioids
([FrdI, Proposition 1.5]).) In this survey, we do not recall the definition nor use the
general theory of Frobenioids, and we mainly focus on model Frobenioids.

Definition 8.3.  (Model Frobenioid, [FrdIl, Theorem 5.2]) Let ® : D — 9ton
be a monoid on a category D. Let B : D — 9lon be a group-like monoid on D, and
Divg : B — ®2P a homomorphism. We write ®P*at .= Im(Divg) C ®&P. We consider
the following category C:

(1) The objects of C are pairs A = (Ap, a), where Ap € Ob(D), and o € ®(Ap)&P. We
write Base(A) := Ap, ®(A) := ®(Ap), and B(A) := B(Ap).
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(2) For A= (Ap,a),B = (Bp, ) € Ob(C), we put

Home (A, B) := ¢ = (Base(¢), Div(¢), degp,(¢), ug) € Homp(Ap, Bp) x ®(A) x N>1 x B(A)
P such that degp, (¢)a + Div(¢) = ®(Base())(8) + Divp(ug) :

We define the composition of ¢ = (Base(¢), Div(¢), degp,(¢),uy) : A — B and
¢ = (Base(), Div(¢), degp, (), uy) : B — C as

bosi (Basew) o Base(6), (Base(9)) (Div(1)) + degprw)mvw),) |
deg, (1) deg,(6). B(Base(6)) () + deg, (1)1

We equip C with a pre-Frobenioid structure C — Fg by sending (Ap,a) € Ob(C) to
Ap € Ob(Fg) and (Base(¢), Div(¢), degp.(¢), ug) to (Base(¢), Div(¢),degg,.(¢)). We
shall refer to the category C as the model Frobenioid defined by the divisor monoid
® and the rational function monoid B (Under some conditions, the model Frobenioid
is in fact a Frobenioid).

The main theorems of the theory of Frobenioids are category-theoretic reconstruc-
tion algorithms of related objects (e.g., the base categories, the divisor monoids, and
so on), under certain conditions. However, in this survey, we consider isomorphisms
between pre-Frobenioids not to be just category equivalences, but to be category equiv-
alences including pre-Frobenioid structures, i.e., for pre-Frobenioids F, F’ with pre-
Frobenioid structures F — Fg, 7' — Fg/, where Fg,Fg are defined by D — &,
D' — @' respectively, an isomorphism of pre-Frobenioids from F to F’ consists of
isomorphism classes (cf. also Definition 6.1 (5)) of equivalences 7' = F, D' = D of
categories, and a natural transformation ® — ®|p, (where ®|p/ is the restriction of ®
via D’ = D), such that it gives rise to an equivalence Fg — Fg of categories, and the
diagram

F—=sF

|

For —— Fo

is 1-commutative (i.e., one way of the composite of functors is isomorphic to the other
way of the composite of functors) (cf. also [[UTchI, Remark 3.2.1 (ii)]).

Definition 8.4.

(1) (Trivial Line Bundle) For a model Frobenioid F with base category D, we write
O, for the trivial line bundle over A € Ob(D), i.e., the object determine by
(A,0) € Ob(D) x ®(A)eP (These objects are called “Frobenius-trivial objects” in
the terminology of [FrdI]|, which can category-theoretically be reconstructed only

from F under some conditions).
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(Birationalisation, “Zso ~» Z”) Let C be a model Frebenioid. Let CP be the
category whose objects are the same as in C, and whose morphisms are given by

Homgbirat (A, B) := lim Home (A’ B).
¢:A’— A, Base(¢) :isom, degp,(¢)=1

(For general Frobenioids, the definition of the birationalisation is a little more com-

plicated. cf. [Frdl, Proposition 4.4]). We shall refer to C*"** as the birationalisa-
tion of the model Frobenioid C. We have a natural functor C — CPrat,

(Realification, “Z>¢ ~» R>¢”) Let C be a model Frobenioid whose divisor monoid is
® and whose rational function monoid is B. Then let C® be the model Frobenioid
obtained by replacing the divisor monoid ® by ®F := & ®z-, R>0, and the rational
function monoid B by B¥ := R - Im(B — ®&P) C (®%)8P (We need some conditions
on C, if we want to include more model Frobenioids which we do not treat in this
survey. cf. [Frdl, Definition 2.4 (i), Proposition 5.2]). We shall refer to C¥ as the
realification of the model Frobenioid C. We have a natural functor C — C~.

Definition 8.5.  (x-, xp-Kummer structure on pre-Frobenioid, [[UTchII, Ex-

ample 1.8 (iv), Definition 4.9 (i)])

(1)

Let G be a toplogical group isomorphic to the absolute Galois group of an MLF.
Then we can group-theoretically reconstruct an ind-topological monoid G ~ O% (G)
with G-action, by Proposition 5.2 (Step 1). Write O*(G) := (O (G))*, O*(G) :=
(O%(@))tors and O*H(G) := O*(G)/O"(G) (We use the notation O**(—), not
O*(—)/O*(—), because we want to consider the object O*(—)/O"(—) as an ab-
stract ind-topological module, i.e., without being equipped with the quotient struc-
ture O /O"). Write

Isomet(G) = {G—equivariant isomorphism O**(G) = O**(G) preserving
the integral str. Im(O”(G)" — O**(G)™) for any open H C G} .

We shall refer to the compact topological group Isomet(G) as the group of G-
isometries of O**(G). If there is no confusion, we write just Isomet for Isomet(G).

Let C be a pre-Frobenioid with base category D. We assume that D is equivalent
to the category of connected finite étale coverings of the spectrum of an MLF or
a CAF. Let A, be a universal covering pro-object of D. Write G := Aut(A),
hence, G is isomorphic to the absolute Galois group of an MLF or a CAF. Then
we have a natural action G ~ O (A). For N > 1, we put

v (Ase) = {a € 0% (As) | aY =1} C 0"(As) = 0% (Ao )tors € OF(As),
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and
0" (Ax) = O™V (Ax) = 0" (Ax)/1in(Ass) = O (Ax) = 07 (Ax)/O"(Ax).

These are equipped with natural G-actions. We assume that G is nontrivial (i.e.,
arising from an MLF). A X-Kummer structure (resp. Xpu-Kummer struc-
ture) on C is a Z*-orbit (resp. an Isomet-orbit)

poly poly

KX 1 0%(G) = 0%(Ax) (resp. £ : O*M(G) = 0"(Ax) )

of isomorphisms of ind-topological G-modules. Note that the definition of a x-
(resp. X pu-) Kummer structure is independent of the choice of A,. Note also that
any x-Kummer structure on C is unique, since ker(Aut(G ~ O*(G)) - Aut(G)) =
7" (= Aut(0*(@))) (cf. [[UTchII, Remark 1.11.1 (i) (b)]). We shall refer to a pre-
Frobenioid equipped with a x-Kummer structure (resp. Xxp-Kummer structure)
as a X-Kummer pre-Frobenioid (resp. Xpu-Kummer pre-Frobenioid). We
shall refer to a split pre-Frobenioid equipped with a xX-Kummer structure (resp.
X p-Kummer structure) as a split- x-Kummer pre-Frobenioid (resp. split-X p-
Kummer pre-Frobenioid).

Remark 8.5.1.  ([IUTchII, Remark 1.8.1]) In the situation of Definition 8.5 (1),
no automorphism of O*#(G) induced by an element of Aut(G) is equal to an auto-
morphism of O*#(G) induced by an element of Isomet(G) which has nontrivial im-
age in Z; (Here p is the residual characteristic of the MLF under consideration),
since the composite with the p-adic logarithm of the cyclotomic character of G (which
can be group-theoretically reconstructed by Proposition 2.1 (6)) determines a natural
Aut(G) x Isomet(G)-equivariant surjection O**(G) — Q,, where Aut(G) trivially acts
on @, and Isomet(G) acts on Q, via the natural surjection 7% —» /i

§ 8.2. Examples.

Example 8.6. (Geometric Frobenioid, [Frdl, Example 6.1]) Let V' be a proper
normal geometrically integral variety over a field k, k(V') the function field of V, and
k(V)~ a (possibly inifinite) Galois extension. Write G := Gal(k(V)~/k(V)), and let
Dy(v) be a set of Q-Cartier prime divisors on V. The connected objects Ob(B(G))
(cf. Section 0.2) of the Galois category (or connected anabelioid) B(G) can be thought
of as schemes Spec L, where L C k(V)™ is a finite extension of k(V). We write V,
for the normalisation of V in L, and we write D, for the set of prime divisors of Vi,
which maps into (possibly subvarieties of codimension > 1 of) prime divisors of Dy v
We assume that any prime divisor of Dy, is Q-Cartier for any Spec L € Ob(B(G)?).
We write ®(L) C Z>o[Dy] for the monoid of effective Cartier divisors D on Vi, such
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that every prime divisor in the support of D is in Dy, and B(L) C L* for the group of
rational functions f on V7, such that every prime divisor, at which f has a zero or a pole,
is in Dy,. Note that we have a natural homomorphism B(L) — ®(L)8 which sends f to
(f)o — (f)oo (Here, we write (f)o and (f)oo for the zero-divisor and the pole-divisor of
f respectively). This is functrial with respect to L. The data (B(G)°, ®(—),B(-),B —
®eP) determines a model Frobenioid Cy,j(v)~ b, -

An object of Cy,k(v)~ by, which is sent to Spec L € Ob(B(G)°), can be thought of
as a line bundle £ on V7, which is representable by a Cartier divisor D with support
in Dy,. For such line bundles £ on Spec L and M on Spec M (L, M C k(V)~ are finite
extensions of £(V')), a morphism £ — M in Cy ;(v)~ p, can be thought of as consisting
of a morphism Spec L — Spec M over Speck(V'), an element d € N>, and a morphism
of line bundles £®¢ — M|y, on Vi whose zero locus is a Cartier divisor supported in
Dy,.

Example 8.7. (p-adic Frobenioid, [Frdll, Example 1.1], [IUTchI, Example 3.3])
Let K, be a finite extension of Q,, (In inter-universal Teichmiiller theory, we use v €
yeeod nymer), Write

D, := 3(50)0, and D) :=B(K,)",

where gv is a hyperbolic curve of type (1, l—tg) (cf. Definition 7.24). By pulling back
finite étale coverings via the structure morphism gv — Spec K, we regard Dg as a
full subcategory of D,. We also have a left-adjoint D, — DZ to this functor, which is
obtained by sending a Hi()v—set E to the G ,-set E/ker(Hi()v — Gg,) = ker(Hi(}U —
Gk, )-orbits of E ([Frdll, Definition 1.3 (ii)]). Then

®c, : Spec L+ ord(OF P! := (O /Of)P*

(cf. Section 0.2 for the perfection (—)P!) gives us a monoid on DZ . By composing the
above D, — DZ , it gives us a monoid ®¢, on D,. Also,

Per : Spec L — ord(ZZ) (C ord(O,%)pf)

(cf. Section 0.2 for the perfection (—)Pf) gives us a submonoid e C Pc, on D}.
These monoids ®¢, on D, and Pc- on DZ determine pre-Frobenioids (In fact, these are
Frobenioid) -

Cy CCy

whose base categories are Dg and D, respectively. These are called p,-adic Frobe-
nioids. These pre-Frobenioid can be regarded as model Frobenioids whose rational
function monoids B are given by Ob(DZ) S SpecL — L* € Mon, and L™ > [ —
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(f)o = (f)eo := image of f € ®¢r- (L) C D¢, (L) ([Frdll, Example 1.1]). Note that the
element p, € Z;, gives us a splitting splg : O% /O* < O hence a split pre-Frobenioid

.7:'2_ = (6'2_7 splZ).

We also write

F =0,

:Q —_

for later use.

Example 8.8. (Tempered Frobenioid, [EtTh, Definition 3.3, Example 3.9, the
beginning of §5], IUTchI, Example 3.2]) Let X := X, — X, =Xy, beahyperbolic
curve of type (1,l-tors®) and a hyperbolic curve of type (1,Z/17) respectively (Defini-
tion 7.13, Definition 7.11) over a finite extension K, of Q,, (As before, we always write
the log-structure associated to the cusps, and consider the log-fundamental groups).
Write

D, :=B"""(X )°, D, :=B(K,)",
and Dy := B**™P(X ) (cf. Section 0.2 for (—)°. Note also that we have 7 (D,) = IIx™P,

and 71 (D)) = Gk, (cf. Definition 6.1 (4))). We have a natural functor D, — D, which
sends Y — év to the composite Y — év — X,

For a tempered covering Z — X v and its stable formal model 3 over Oy, where L
is a finite extension of K, let 3. — 3 be the universal combinatorial covering (i.e., the
covering determined by the universal covering of the dual graph of the special fiber of
3), and Z, the Raynaud generic fiber of 3.

Definition 8.9.  ([EtTh, Definition 3.1], [[UTchl, Remark 3.2.4]) We write Div (3)
for the monoid of the effective Cartier divisors whose support lie in the union of the
special fiber and the cusps of 3,,. We shall refer to such a divisor as an effective
Cartier log-divisor on 3. Also, we write Mero(3,) for the group of meromorphic
functions f on 3., such that, for any N > 1,f admits an N-th root over some tempered
covering of Z. We shall refer to such a function as a log-meromorphic function on

Joo-

Definition 8.10. ([EtTh, Definition 3.3, Example 3.9, the beginning of §5],
[[UTchl, Example 3.2])

(1) Let A be a tempered group (Definition 6.1). We shall refer to a filtration {A;}ier,
(where I is countable) of A by characteristic open subgroups of finite index as a
tempred filter, if the following conditions are satisfied:

(a) We have (,c; &; = A.
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(b) Every A; admits an open characteristic subgroup A® such that A;/A° is
free, and, for any open normal subgroup H C A; with free A;/H, we have
A® C H.

(c) For each open subgroup H C A, there exists unique A$® C H, and, A C H
implies A7® C Af> for every i € I.

Let {A;}icr be a tempered filter of A™P. Assume that, for any i € I, the covering
detemined by A; has a stable model 3720ver a ring of integers of a finite extension of
K, and all of the nodes and the irreducible components of the special fiber of 3; are
rational (we say that 3; has split stable reduction). For any connected tempered
covering Y — X, which corresponds to an open subgroup H C Ag?inp, we put

DoY) := lim Divy(300) 2 Z=/Y) " By(Y):= lim Mero(3s) 2 Z=/Y),
— —
Afo CH A;?OcH
These determine functors ®q : Dy — Mon, By : Dy — NMon. We also have a natural
functor By — @5, by taking f — (f)o — (f)oo- We write BE™* C B, for the
subfunctor defined by the constant log-meromorphic functions, and ®§"s* C @EP
for the image of BE°™* in ®FP.

We write D! € Dy for the full subcategory of tempered coverings which are un-
ramified over the cusps of X (i.e., tempered coverings of the underlying elliptic
curve E, of X, ). We have a left adjoint Dy — D!, which is obtained by sending
a sz-sgt E to the g -set E/ker(Ilx — Ilg ) := ker(llx — Ig )-orbits of £
([FrdIL, Definition 1.3 (ii)]). For Y € Ob(D,), we write YU for the image of Y by

the composite D, — Dy — DE!. We put, for Y € Ob(D,),
pf
O(Y) = (hg Div. (300) 212/ Ye”>> C @y (the image of Y in Dg)P,
Zoo

where Z., range over the connected tempered covering Z,, — Y*°! in DE! such
that the composite Zo, — YUl
combinatorial covering 3., of the stable model 3 of some finite étale covering Z —

— X, arises as the generic fiber of the universal

X, in D! with split stable reduction over the ring of integers of a finite extension

of K, (We use this ®, not ®, to consider only divisors related with the theta
function). We write (—)|p, for the restriction, via D, — Dy, of a functor whose
domain is Dy. We also write <I>]§ = ®p ®z., R>0 and PR .= @ ®zso R>0. Write

B .= BO‘DE X((I)R)gp q)gp, (I)COHSt = (R . (I)SonSt)|DE X(@R)gp b C @R,
and

Bconst = Bgons‘c|D£ % (@%)sp PP (q)const)gp — (R X (I)(CJonst)|D£ X (@) Pser C (@R)gp.
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The data (D,, ®,B,B — ®8P) and (D,, Peonst Beonst Beonst _, (peonst)ep) deter-

mine model Frobenioids
F ., and C,(= Frmefid)

respectively (In fact, these are Frobenioids). We have a natural inclusion C, C E .
We shall refer to £ ! tempered Frobenioid and C, as its base-field-theoretic
hull. Note that C, is also a p,-adic Frobenioid.

(4) We write © € OX(O?)T“) for the reciprocal (i.e., 1/(—)) of the I-th root of the

normalised theta functién, which is well-defined up to pg; and the action of the
group of automorphisms (Z C Aut(Oy ) (Note that we use the notation Q in
Section 8.3. This is not the reciprocal (i.Ee., not 1/(—)) one). We also write g, for
the g-parameter of the elliptic curve E, over K,. We consider ¢, as an element

¢ € O%(Ox ) (=2 O% ). We assume that any 2/-torsion point of E, is rational over
K,. Then ¢, admits a 2I-root in O”(Ox ) (= OF,). Then we have

0,(vV—aw) =q =q/" €O0”(0x ),

U =1

(which is well-defined up to jg;), since ©(y/—q) = —q_l/Q\/—1_2é(\/—1) = q /2

(in the notation of Lemma 7.4) by the formula ©(q'/2U) = —¢~'/2020(U) in
Lemma 7.4. The image of ¢ determines a constant section, for which we write
=v

loge (g ) of the monoid ®¢, of C,. The submonoid

=v

Der 1= N10g¢(gv)|pz C ¢, |pr

gives us a p,-adic Frobenioid

C'Q_ (C Cv — (;v)base-ﬁeld C ;v)

whose base category is Di,. The element ¢ € K, determines a 9 (—)-orbit spl’ of
v 4 z v

the splittings of O® — O /O* on Cg. Hence,
}"5 = (Cg,splg)
is a por-split pre-Frobenioid.

Remark 8.10.1.  We can category-theoretically reconstruct the base-field-theoretic
hull €, from F  ([EtTh, Corollary 3.8]). However, in this survey, we include the base-
field-theoretic hull in the deta of the tempered Frobenioid, i.e., we shall refer to a pair

F = (£ o Cy) as a tempered Frobenioid, by abuse of language /notation, in this survey.
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Example 8.11.  (Archimedean Frobenioid, [FrdIl, Example 3.3], [IUTchI, Ex-
ample 3.4]) This example is not a model Frobenioid (In fact, it is not of isotropic type,
which any model Frobenioids should be). Let K, be a complex Archimedean local field
(In inter-universal Teichmiiller theory, we use v € V*“). We define a category

Co

as follows: The objects of C, are pairs (V,A) of a one-dimensional K,-vector space
V, and a subset A = B x C C V 2 Ok x ord(K)) (Here we write ord(K,) :=
K /Og. . cf. Section 0.2 for O, ), where BcC O (= 8') is a connected open subset,
and C' C ord(K) = Ryg is an interval of the form (0, )] with A € Ry (We shall
refer to A as an angular region). The morphisms ¢ from (V,A) to (V’,A’) in C,
consist of an element degg, (#) € N>; and an isomorphism V®deer () 5 V7 of K, -
vector spaces which sends A®Ier:(9) into A’. We write Div(¢) := log(a) € Rsq for the
largest o € Rsq such that a - Im(A®d#r:(?)) c A’. Let {Spec K,} be the category of
connected finite étale coverings of Spec K, (Thus, there is only one object, and only
one morphism), and ® : {Spec K, } — Mon the functor defined by sending Spec K, (the
unique object) to ord(O% ) = (0,1] _’gg R>p. Write also Base(V,A) := Spec K, for
(V,A) € Ob(C,). Then the triple (Base(—), ®(—), degp (—)) gives us a pre-Frobenioid
structure C, — Fg on C, (In fact, this is a Frobenioid). We shall refer to C, as an
Archimedean Frobenioid (cf. the Archimedean portion of arithmetic line bundles).
Note also that we have a natural isomorphism O (C,) = OIDQ of topological monoids

(We can regarad C, as a Frobenioid-theoretic representation of the topological monoid
o% ).

Let X be a hyperbolic curve of type (1, l—tﬁ) (cf. Definition 7.24) over K, and
we write &7 for the Aut-holomorphic space (cf. Section 4) determined by & , and put

D, = XU.

Note also that we have a natural isomorphism
K, 3 AP:
of topological fields (cf. (Step 9) in Proposition 4.5), which determines an inclusion
Ky 2 OF(Cy) — APz

of topological monoids. This gives us a Kummer structure (cf. Definition 4.6) on D,.
Write
;,U i= (Cy, Dy, ),
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just as a triple. We define an isomorphism F o1 = v o of triples in an obvious manner.
Next, we consider the mono-analyticisation. Write
ch=0,.

v

Note also that APx naturally determines a split monoid (cf. Definition 4.7) by trans-

porting the natural splitting of K, via the isomorphism K, — AP= of topological fields.
This gives us a splitting Spl; on C; , hence, a split-Frobenioid (C£ ,Spl; ), as well as a
split monoid

D) .= (0% (Clz_)’ splZ).

We put
.7:5 = (Cg,Dg,splZ),

just as a triple. We define an isomorphism FJ ; = F , of triples in an obvious manner.

Example 8.12.  (Global Realified Frobenioid, [Frdl, Example 6.3|, [[UTchl, Ex-
ample 3.5]) Let Fioa be a number field. Let {Spec Fi0q} be the category of connected
finite étale coverings of Spec Fi0q (Thus, there is only one object, and only one mor-
phism). Write

bor (Fnod)i= P ordOF)®z.,Rz0® P ord(0OF),
VEV(Foa)mon VEV(Finoa)?*e

where ord(OF) := OY /O (cf. Section 0.2 for O, and OF, v € V(F04)*"¢). We shall
refer to an element of ®(Fioq) (resp. P(Finod)®P) as an effective arithmetic divisor
(resp. an arithmetic divisor). Note that ord(OF) = Zsg for v € V(Fj0q)"°", and
ord(O%) 2 R for v € V(Fypoa)*¢. We have a natural homomorphism

B(Fmod) = meod — (D(Fmod)gp.
Then the data ({Spec Finoa}, @cr- ,B) determines a model Frobenioid

CH—

mod*

(In fact, it is a Frobenioid.) We shall refer to it as a global realified Frobenioid.
We have a natural bijection

Prime(CIF ) = Vinod

mod

(by abuse of notation, we write Prime(C ;) := Prime(®qr (Spec Finoa))), where
Prime(—) is defined as follows:
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Definition 8.13. Let M be a commutative monoid such that 0 is the only in-
vertible element in M, the natural homomorphism M — M&#P is injective, and any
a € M®P with na € M for some n € N> is in the image of M — M8P. We define the
set Prime(M) of primes of M as follows ([Frdl, §0]):

(1) For a,b € M, we write a < b, if there is ¢ € M such that a + ¢ = b.
(2) For a,b € M, we write a < b, if there is n € N>, such that a < nb.
(3) For 0 # a € M, we say that a is primary, if a < b holds for any M > b < a, b # 0.

(4) The relation a < b is an equivalence relation among the set of primary elements in
M, and we shall refer to an equivalence class as a prime of M (this definition is
different from a usual definition of primes of a monoid). We write Prime(M) for
the set of primes of M.

Note that p, determines an element

log;od@v) € Por

mod’

for v € Vyoq = Prime(C 1), where we write @ (= Rxq) for the v-portion of

§8.3. From Tempered Frobenioids to Mono-theta Environments.

Let £ ) be the tempered Frobenioid constructed in Example 8.8. Recall that it has
a base category D, with m(D,) = H%emp(:: I,). We write Oy for the object in F

corresponding to the trivial line bundle on g (ie., Oy = (g, 0) € Ob(D,) x ®(Y). cf.

Definition 8.4 (1)). Let Yin, 3iv. SZN, £in, and £, as in Section 7.1. We can interpret
the pull-backs to 31 N of

(1) the algebraic section s;y € I' (3;n, £in]3,,) Of Lemma 7.1, and

(2) the theta trivialisation 7y € T (leN, i‘,lN> after Lemma 7.1.

as morphisms
S]r\lf’ Sjl_\lf : 0311\7 - SZN|31N
in £ respectively. For Ae Ob(;v), we write APt for the image of A in the bira-

tionalisation  — (£ U)bi“’“t (Deﬁni?oion 8.4 (2)). Then by definition, we have

sNo(sg) " =6"" c0x (of)
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for an N-th root of Q, where Q := @'/ is a I-th root of the theta function © ([EtTh,
Proposition 5.2 (i)]), as in Section 7.1 (cf. also the claim (7.2)). We write H(3;n) (C
Autpi(s'l ~)) for the image of Hte P under the surjective outer homomorphism 1_[te P,

Autp, (3uv), and H(Os, ) (C Aut£ (05,.)/0%(Os, ) (resp. H(21N|31N)(C Aut]: (&ng /0% (4
) the inverse image of H(3;x) of the natural injection Auti (03,.)/0* (03, ) =

Autp, (3;n) (resp. AUtJ:TE(élNBm)/OX(31N|31N) — AU-tDEC);lN))-

Ht;mp — Autp, (3in) <—)Autf (03,,)/0% (03, ) (resp. AUtgv(élNBm)/Ox(QZN|3ZN) )

| J

e o f () - H(O3,) (resp. H(Eunls,,))

Note that we have natural isomorphisms H (O3, ) = H(3n) = H(E1N|31N). Choose a
section of Autz (O, ) — Autpg(gl ~ ), which gives us a homomorphism

81]3\1“[1\/ : H(O31N) — Aut£Q<03lN>.

Then by taking the group actions of H(Q1N|31N) on sy, and s (cf. the actions of Hgfmp
on sy and 7y in Section 7.1), we have unique groups homomorphisms

S]I_Iv-gpjsjuv-gp : H(EINELN) — Autév (E1N|31N),

which make diagrams

S% o 5]\‘\; .
O3,y — unls O3,y — &unls
(Strlv 'SlN)(h)l lsl’—\\f_gp(h) (Strlv SZN)(h)l lsj\—\’]‘gp(h)
8]‘—\‘] . s]‘{] .
0311\7 2lN|3lN’ 031N 2lN|3lN’

commutative for any h € H(&y]| 5 ), where s%V| € x is the composite of s%Y with
the natural isomorphism H(E1N|31N) = !—I(Ogm). Then the difference s\ o (s |]_Ivgp) !
gives us a l-cocycle H(&in|5, ) — pun(Linl,, ), whose cohomology class in

H'(H (v 3,0 v (Eivl3,,0) (€ HY AT, iy (Lawls, )

is, by construction, equal to the (mod N) Kummer class of an I[-th root Q of the
theta function, and also equal to the ﬁ@ modulo N constructed before Definition 7.14
under the natural isomorphisms IAg®(Z/NZ) = l'“lN(’élN‘ém) o /J,N(élN‘slN) ([EtTh,
Proposition 5.2 (iii)]). (cf. also Remark 7.2.1.)
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Note that the subquotients ™ — (IIY™)€, IAg C (II{™)® in Section 7.1

determine subquotients Autp, () — Aut%U(S), (lAe)s C Aut%v(S) for S € Ob(D,).
As in Remark 7.6.3, Remark 7.9.1, and Remark 7.15.1, by consicfering the zero-divisor
and the pole-divisor (as seen in this subsection too) of the normalised theta function
é(\/—_l)*lé, we can category-theoretically reconstruct the [Z x ps-orbit of the theta
classes of standard type with py(—)-coefficient ([EtTh, Theorem 5.7]). As in the case of
the cyclotomic rigidity on mono-theta environment (Theorem 7.23 (1)), by considering
the difference of two splittings of the surjection (IAg)s[un(S)] — (lAe)s, we can
category-theoretically reconstruct the cyclotomic rigidity isomorphism

(Cyc. Rig. Frd) (lAe)s ® Z/NZ = pun(S) (= lun(S))

for an object S of £ such that yun(S) = Z/INZ, and (lAe)s ® Z/NZ = Z/NZ
as abstract groups ([EtTh, Theorem 5.6]). We shall refer to this isomorphism as the
cyclotomic rigidity in tempered Frobenioid.

Write (H(3;n) C) Im(I1y™P) (C Autp, (31x)) to be the image of ITy"™P (Note that

we used Hgfmp in the definition of H(3;y)) under the natural surjective outer homo-

morphism H;mp —» AUtDE(glN ), and

EN = 8%—gp<1m(1—[t£mp)) : ,LLN('SZN’&N) - Aut£E<£lN‘3lN>

Write also
I . temp
EN «— EN XIm(Ht;mp) Hg 9

where the homomorphism H;mp — Tm(I$™P) is well-defined up to Ht&emp—conjugate.

temp

Then the natural inclusions MN(EZN|3IN) — En and Im(IIy,™") — Ey induce an
isomorphism of topological groups B

EN & Htimp [un].

We write (K )YV C OX((31N|3W)birat) for the subgroup of elements whose N-
th power is in the image of the natural inclusion K — O* (L1 3ZN)birat), and we
write (OIX(E)UN = (K)YNn OX(SZN|31N).”Then the set of elements of O (£;n]5 )
which normalise the subgroup Ex C Autz (£in]3,, ) is equal to the set of elements on
which IT{™P acts by multiplication by an element of iy (£x] 5. ), and it is equal to
(O[X(E)l/N. Hence, we have a natural outer action of (O;(E)l/N/HN(ElNBZN) = Ok, on
Ex, and it extends to an outer action of (K;)l/N/uN(leSlN) = K on Ey ([EtTh,
Lemma 5.8]). On the other hand, by composing the natural outer homomorphism
II¢™ — Autp, (3;3) with sy, we obtain a natural outer action IZ = TI'%¢™P /TP —

v = =



180 GO YAMASHITA

Out(Ey). We write Dy := (Im(K\),IZ) C Out(EY) for the subgroup generated by
these outer actions of K and IZ.
We also note that sy : H(f)lN\gm) — Autg (QZN]?;ZN) factors through E, and

. - t . . .
we write syl : H.X.emp — EX for the homomorphism induced by by taking (—) Xt (rrigme)

1™ to the homomorphism H(QZNIBIN) — Ey. We write s% for the ’UJN(EZNBIN) i

co?ljugacy classes of the subgroup given by the image of the homomorphism s,

Then the triple

M(Z ) = (EN, Dx, s2)
reconstructs a (mod N) mono-theta environment (We omitted the details here to verify
that this is indeed a “category-theoretic” reconstruction algorithms. In fact, in inter-
universal Teichmiiller theory, for holomorphic Frobenioid-theoretic objects, we can use
“copies” of the model object (category), instead of categories which are equivalent to
the model object (category), and we can avoid “category-theoretic reconstruction algo-

rithms” cf. also [IUTchl, Remark 3.2.1 (ii)]). Hence, we obtain:

Theorem 8.14. (“F — M”, [EtTh, Theorem 5.10], [IUTchII, Proposition 1.2
(ii)]) We have a category-theoretic algorithm to reconstruct a (mod N) mono-theta en-

vironment M(Z ) from a tempered Frobenioid E .

Corollary 7.22 (2) reconstructs a mono-theta environment from a topological group
(“II — M”) and Theorem 8.14 reconstructs a mono-theta environment from a tempered
Frobenioid (“F — M”). We relate group-theoretic constructions (étale-like objects)
and Frobenioid-theoretic constructions (Frobenius-like objects) by transforming them
into mono-theta environments (and by using Kummer theory, which is available by the
cyclotomic rigidity of mono-theta environment), in inter-universal Teichmiiller theory,
especially, in the construction of Hodge-Arakelov-theoretic evaluation maps:

M, — ™ «—1E .

cf. Section 11.2.
89. Preliminaries on the NF Counterpart of Theta Evaluation.

§9.1. Pseudo-Monoids of k-Coric Functions.

Definition 9.1.  ([IUTchI, §0])

(1) A topological space P with a continuous map Px P O S — P is called a topological
pseudo-monoid if there exists a topological abelian group M (we write its group
operation multiplicatively) and an embedding ¢ : P < M of topological spaces such
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that S = {(a,b) € P x P | t(a)-t(b) € t(P) C M} and the restriction of the group
operation M x M — M to S gives us the given map S — P.

(2) If M is equipped with the discrete topology, we shall refer to P simply as a pseudo-

monoid.

(3) A pseudo-monoid is called divisible if there exist M and ¢ as above such that, for
any n > 1 and a € M, there exists b € M with " = a, and if, for any n > 1 and
a € M,ac(P)if and only if a™ € «(P).

(4) A pseudo-monoid is called cyclotomic if there exist M and ¢ as above such that,
the subgroup pp C M of torsion elements of M is isomorphic to Q/Z, and if
pns C L(P), par - t(P) C o(P) hold.

(5) For a cyclotomic pseudo-monoid P, write usz(P) := Hom(Q/Z, P) and shall refer
to it as the cyclotome of a cycltomic pseudo-monoid P.

Definition 9.2.  ([IUTchl, Remark 3.1.7]) Let F,,q be a number field, and
= (Fr_., \ {0})//{£1} a semi-elliptic orbicurve (cf. Section 3.1) over Fp,oq
which is an Foq-core (Here, the model Ep__

Cr,

mod

4 over Fi,q is not unique in general). Let

L be Fi0q or (Fined)w for some place v of F0q4, and write Cp, := Cp, L and we

mod ><F}nod
write |C'| for the coarse scheme of the algebraic stack C, (which is isomorphic to the
affine line over L), and |CL| the canonical smooth compactification of |CL|. We write
L¢ for the function field of Cp, and take an algebraic closure Lo of Lo. Let L be the

algebraic closure of L in Lo. We put

Fiod if L = Fioq or L = (Fip0d) for v:non-Archimedean,

(Finod)v if L = (Fiod)w for v: Archimedean,

and
—X

L if L = Fuoa,

T ox i
T 1 :(Fmod)'v-

(1) A closed point of the proper smooth curve determined by some finite subextension
of Lo C L¢ is called a critical point if it maps to a closed point of |Cf| which
arises from one of the 2-torsion points of Er

mod *

(2) A critical point is called a strictly critical point if it does not map to the closed
point of |C| which arises from the unique cusp of Cf..

(3) A rational function f € Lo on L¢ is called k-coric (x stands for “Kummer”) if the
following conditions hold:
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(a) If f & L, then f has precisely one pole (of any order) and at least two distinct

zeroes over L.

(b) The divisor (f)o of zeroes and the divisor (f)s of poles are defined over a
finite extension of L® and avoid the critical points.

(c) The values of f at any strictly critical point of |C}| are roots of unity.

(4) A rational function f € L¢ is called o k-coric, if there is a positive integer n > 1
such that f™ is k-coric.

(5) A rational function f € L¢ is called % X-coric, if there is an element ¢ € Uz such
that ¢ - f is oo k-coric.

Remark 9.2.1.
(1) A rational function f € L¢ is k-coric if and only if f is o k-coric

(2) An o kX-coric function f € L¢ is o k-coric if and only if the value at some strictly
critical point of the proper smooth curve determined by some finite subextension
of Lo C L¢ containing f is a root of unity.

(3) The set of k-coric functions (C L¢) forms a pseudo-monoid. The set of . k-coric
functions (C L¢) and the set of .k x-coric functions (C L¢) form divisible cyclo-
tomic pseudo-monoids.

8§9.2. Cyclotomic Rigidity via k-Coric Functions.

Let F' be a number field, [ > 5 a prime number, X = Er \ {O} a once-punctured
elliptic curve, and Fy,0q(C F) the field of moduli of Xp. Write Cr := Xp//{+1},
and K := F(Ep[l]). Let Cx be a smooth log-orbicurve of type (1,l-tors)s (cf. Def-
inition 7.10) with K-core given by Cx := Cr xp K. Note that C'r admits a unique
(up to unique isomorphism) model Cg__, over Fyq, by the definition of Fi0q and
K-coricity of Ck. Note that C'j determines an orbicurve X - of type (1,[-tors) (cf.
Definition 7.10).

Let TD® be a category, which is equivalent to D® := B(C)°. We have an isomor-
phism T1I® := 7 (TD®) = [I¢,_ (cf. Definition 6.1 (4) for 71((—)°)), well-defined up to

inner automorphism.

Lemma 9.3.  ([IUTchI, Remark 3.1.2] (i)) From "D®, we can group-theoretically
reconstruct a profinite group TI®F(C TII®) corresponding to Oy, .

Proof. First, we can group-theoretically reconstruct an isomorph TA® of Ac,
from TII®, by Proposition 2.2 (1). Next, we can group-theoretically reconstruct an
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isomorph TA®+ of A x,. from TA® as the unique torsion-free subgroup of TA® of index 2.
Thirdly, we can group-theoretically reconstruct the decomposition subgroups of the non-
zero cusps in TA®* by Remark 2.9.2 (Here, non-zero cusps can be group-theoretically
grasped as the cusps whose inertia subgroups are contained in TA@i). Finally, we
can group-theoretically reconstruct an isomorph TII®% of II X, as the subgroup of 1@
generated by any of these decomposition groups and TA®=. O

Definition 9.4.  ([IUTchI, Remark 3.1.2] (ii)) From TI®(= 7, (TD®)), instead
of reconstructing an isomorph of the function field of O directly from '1I® by Theo-
rem 3.17, we apply Theorem 3.17 to TII®* via Lemma 9.3 to reconstruct an isomorph
of the function field of X ;- with TTI1® /TTI®*-action. We shall refer to this procedure as
the ©-approach. We also write ug (TT1®) to be the cyclotome defined in Definition 3.13
which we think of as being applied via ©-approach.

Later, we may also use ©-approach not only to Il , but also HC L1 X and II X

(cf. Section 10.1 for these objects). We will always apply Theorem 3.17 to these obJects
via ©-approach (As for IIx (resp. H)_() ), see also Lemma 7.12 (resp. Lemma 7.25)).

Remark 9.4.1.  ([IUTchI, Remark 3.1.2] (iii)) The extension
1 Ag = A = AY —
in Section 7.1 gives us an extension class in
HY(AY, Ag) = H?(AY, Z) ® Ao =2 Hom(u5(I1x ), Ae),
which determines an tautological isomorphism
p7(Ix) = Ae.
This also gives us
(Cyc. Rig. Ori. &Theta) ps(lx) = lAe.

As already seen in Section 7, the cyclotome [Ag plays a central role in the theory of the
étale theta function. In inter-universal Teichmiiller theory, we need to use the above
tautological isormophism in the construction of Hodge-Arakelov-theoretic evaluation
map (cf. Section 11).

By applying Theorem 3.17 to 'TI® (= 71 (TD®)), via the ©-approach (Definition 9.4),
we can group-theoretically reconstruct an isomorph

M® ('D®)
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of the field F with TT1®-action. We also write M®(1D®) := M®(TD@)X, which is
an isomorph of F*. We can also group-theoretically reconstruct a profinite group
MI®(> TI®) corresponding to e, . by a similar way (“Loc”) as in (Step 2) of
the proof of Theorem 3.7 (We considered “II’s over G’s” in (Step 2) of the proof of
Theorem 3.7; however, in this case, we consider “II’s without surjections to G’s”).

Hence, we obtain a morphism
PO _ Ip® . B(THGB)O,

which corresponding to C'jr — Cr.__.. Then the action of TII® on M® (TII®) naturally
extends to an action of TTI®. In a similar way, by using Theorem 3.17 (especially Belyi
cuspidalisations), we can group-theoretically reconstruct from TII® an isomorph

(TH®)rat (— TH@))

of the absolute Galois group of the function field of Cr

mod

in a functorial manner. By
using elliptic cuspidalisations as well, we can also group-theoretically reconstruct from
'TI® isomorphs

M2 ('D®), M2, ('D?), M?,, ("D?)
of the pseudo-monoids of k-, k-, and o kX- coric rational functions associated with

Cr.,.., with natural (TTI®)**actions (Note that we can group-theoretically reconstruct
evaluations at strictly critical points).

Example 9.5. (Global non-Realified Frobenioid, [IUTchl, Example 5.1 (i), (iii)])
By using the field structure on M® ("D®), we can group-theoretically reconstruct the
set
V(D®)

of valuations on M" (TD®) with TTI®-action, which corresponds to V(F). Note also that
the set
WVpnod 1= V(1DO)/TI®, (resp. V(ID®) := T(1DO)/TI® )

of THI®-orbits (resp. TTI®-orbits) of V(TD®) reconstructs Vy,0q (resp. V(K)), and that
we have a natural bijection

Prime(TF2 1) = "WVy0a
(cf. Definition 8.13 for Prime(—)). Thus, we can also reconstruct the monoid
¢ ("D%)(-)

on "D® | which associates to A € Ob(TD?®) the monoid ®®(TD®)(A) of stack-theoretic
arithmetic divisors on M®(TD@)A (C M@)(TD@)) (i.e., we are considering the coverings
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over the stack-theoretic quotient (SpecOk)//Gal(K/Fnod)(= SpecOp. ,)) with the
natural homomorphism M®(TD©)A — ®®(TD®)(A)eP of monoids. Then these data
(1D, ¢ (1D®), M” (D) () — & (1D®)(—)2P) determine a model Frobenioid

f@(T'D@)

whose base category is TD®. We shall refer to this as a global non-realified Frobe-
nioid.

Let T7® be a pre-Frobenioid, which is isomorphic to F®(fD®). Suppose that we
are given a morphism "D® — Base(TF®) which is abstractly equivalent (cf. Section 0.2)
to the natural morphism "D® — TD®. We identify Base(F®) with 'D® (Note that this
identification is uniquely determined by the F,oq-coricity of Cr, ., and Theorem 3.17).

We write
tre . T-7:®|TD© (_> TJ:@)

for the restriction of TF® to "D® via the natural TD® — TD®. We also shall refer to
this as a global non-realified Frobenioid. We also write

TFS 4= TF®|terminal object in 1D®  (C Tf@)

mod *

for the restriction of TF® to the full subcategory consisting of the terminal object in
TD® (which corresponds to Cr._ ). We also shall refer to this as a global non-realified
Frobenioid. Note that the base category of TF,q has only one object and only one
morphism. We can regard T]—"ffo q as the Frobenioid of (stack-theoretic) arithmetic line
bundles over (Spec Ok)//Gal(K/Fod) (= Spec Finod). In inter-universal Teichmiiller
theory, we use the global non-realified Frobenioid for converting X-line bundles into
FB-line bundles and vice versa (cf. Section 9.3 and Corollary 13.13).

Definition 9.6.  (o.k-Coric and o,k x-Coric Structures, and Cyclotomic Rigidity
via Qso NZ* = {1})

(1) (Global case, [IUTchl, Example 5.1 (ii), (iv), (v)]) We consider O*(O4) (which
is isomorphic to the multiplicative group of non-zero elements of a finite Galois
extension of Fy,.q), varying Galois objects A € Ob(TD®) (Here 04 is a trivial line
bundle on A. cf. Definition 8.4 (1)). Then we obtain a pair

HI® A TO®x

well-defined up to inner automorphisms of the pair arising from conjugation by TII®.
For each p € Prime(®:re(O4)), where we write @t re for the divisor monoid of
T F® . we obtain a submonoid

foy ctox(oy™),
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by taking the inverse image of pU {0} C @i 7o (O4) via the natural homomorphism
O* (Ohrat) — &4 76 (04)8P (i.e., the submonoid of integral elements of O (Ohirat)
with respect to p). Note that the natural action of Autire(O4) on O*(Ohirat)
permutes the OF’s. For each po € Prime(®+ s (O4,)), where Ag € Ob(TD®) is the
terminal object, we obtain a closed subgroup

i, c 'I®

(well-defined up to conjugation) by varying Galois objects A € Ob(TD®), and by
considering the elements of Auti re (04) which fix the submonoid TOpD for system
of p’s lying over pg (i.e., a decomposition group for some v € V(F},0q)). Note that
po is non-Archimedean if and only if the p-cohomological dimension of THpo is equal
to 241 = 3 for inifinitely many prime numbers p (Here, 2 comes from the absolute
Galois group of a local field, and 1 comes from “A-portion (or geometric portion)” of
f11®). By taking the completion of TOpD with respect to the corresponding valuation,
varying Galois objects A € Ob(TD®), and considering a system of p’s lying over po,
we also obtain a pair
M, ~ Téﬁbo

of a toplogical group acting on an ind-topological monoid, which is well-defined up
to the inner automorphisms of the pair arising from conjugation by "Il (since 1L,
is commensurably terminal in TTI® (Proposition 2.7)).

We write
(TH®)rat ~ TV®

for the above pair (TII®)™t ~ fO®x, Suppose that we are given isomorphs

K KX

(TH@))rat ~ TM® (TH@))rat ~ TM®

(Note that these are Frobenius-like object) of
(m®)= A M2, (D) ('I®)™ A M2, (D)

respectively (Note that these are étale-like object) as cyclotomic pseudo-monoids
with a continuous action of (TII®)". We shall refer to such a pair as an . k-coric

structure, and an ok X-coric structure on ' F® respectively.

We recall that the étale-like objects M® , (TD®), and M?,  (TD®) are constructed
as subsets of o H!((TTI®)rat, H'Z@(TH@)) = @Hc(m@m open H'Y(H, ,ug(TH@)):
M?,.("D®) (resp. M2, (D) ) C o H'((TI®)™, 13 (TT1)).

On the other hand, by taking Kummer classes, we also have natural injections

M2, C oo (%)™, uz("M2,)), ™M, C oH N ((TI®)™, up (M2, )),

0ok X
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where o H!((TII®)rat, ) .= 1i_rr>1HC(TH®)rat open H'Y(H,-). (The injectivity follows
from the corresponding injectivity for M® ("D®) and M? . ("D®) respectively.)
Recall that the isomorphisms between two cyclotomes form a ix—torsor, and that
k~coric functions distinguish zeroes and poles (since it has precisely one pole (of any
order) and at least two zeroes). Hence, by (Q ® Z D)Qso N Z* = {1}, there exist
unique isomorphisms

(Cyc. Rig. NF1) pg (®) 5z (TME2,), 42 (TT19) 5 pug ("M

X))

characterised as the ones which induce Kummer isomorphisms

Kum Kum

M2, 5 MS,(1D°), TMC,, > M, (1D°)

oo K X

respectively. In a similar manner, for the isomorph TI® ~ TM® of TII® ~ O®*,

there exists a unique isomorphism
(Cyc. Rig. NF2) N;(TH@) ~ MZ(TM@B)

characterised as the one which induces a Kummer isomorphism

Kum

TM® AN M@(T@@)

between the direct limits of cohomology modules described in (Step 4) of Theo-
rem 3.17, in a fashion which is compatible with the integral submonoids “O)'f 7. We
shall refer to the isomorphism (Cyc.Rig. NF2) as the cyclotmoic rigidity via
Qw0 N Z* = {1} (cf. [[UTchIL, Example 5.1 (v)]). By the above discussions, it
follows that TF® always admits an . k-coric and an .,k Xx-coric structures, which
are unique up to uniquely determined isomorphisms of pseudo-monoids with con-
tinuous actions of (TTI®)™' respectively. Thus, we regard TF® as being equipped
with these uniquely determined ., x-coric and o,k X-coric structures without notice.
We also put

T® \rat Trr®\rat
('D®) = (M (D)™, M o= (M),

mo

Mré?lod
M2(1D®) = (M2, (Do), IME = (M2,
where we write (—)(TH®)rat for the (T11®)*t-invariant part.

(Local non-Archimedean case, [[UTchI, Definition 5.2 (v), (vi)]) For v € V" let
D, be a category equivalent to B*mP(X U)O (resp. B(& )?) over a finite extension

Ky of Qp,, where X = (resp. X ) is a hyperbolic orbicurve of type (1, (Z/IZ)®)
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(Definition 7.13) (resp. of type (1,(-tors) (Definition 7.24)) such that the field of
moduli of the hyperbolic curve “X” of type (1,1) in the start of the definition of
hyperbolic orbicurve of type (1, (Z/I1Z)®) (resp. of type (1, l—‘ﬂ;)) is a number field
Fioq- By Corollary 3.19, we can group-theoretically reconstruct an isomorph

I, ~ M, ("D,)

of Htemp ~ OD (resp HX ~ O;_ ) from TH = 7T1(TDQ>.

Let v € Viyea = V(Finoa) be the valuation lying under v. From THE, we can
group-theoretically reconstruct a profinite group 'II, corresponding to C(Fuoa)e DY

a similar way (“Loc”) as in (Step 2) of the proof of Theorem 3.7. We write
TDU

for B('I,)". We have a natural morphism D, — D, (This corresponds to
X = C(Foa), (resp. X — C(Fuoa),)). In a similar way, by using Theorem 3.17

(especially Belyi cuspidalisations), we can group-theoretically reconstruct from TIT,

an isomorph

(THv>rat (_» THU)

of the absolute Galois group of the function field of Cg, ), in a functorial manner.
By using elliptic cuspidalisations as well, we can also group-theoretically recon-

struct, from THQ, isomorphs
MK/U(TDQ)’ MOOK'U(TDE)7 MOONXU(TDQ)

of the pseudo-monoids of k-, k-, and . kX- coric rational functions associated
with C(f,,.,), with natural (TIL,)™"-actions (Note that we can group-theoretically
reconstruct evaluations at strictly critical points).

Let T]—" be a pre-Frobenioid isomorphic to the p,-adic Frobenioid C, (]-" )base-field

in Example 8.8 (resp. to the p,-adic Frobenioid C, in Example 8.7) Whose base
category is equal to TDE . We write

(TH )rat TMU

for an isomorph of ('II,)™" ~ M, (TD,) determined by F,. Suppose that we are

given isomorphs
(THv)rat r TMOOK/U7 (THv)rat ~ TMOO/{X'U

(Note that these are Frobenius-like object) of

(THv)rat mMooK/U(TDQ)7 (TH )rat MWHXU(TDQ)



A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 189

(Note that these are étale-like objects) as cyclotomic pseudo-monoids with a con-

rat

tinuous action of (TIL,)™¢. We shall refer to such pairs as an o, k-coric structure,

and an o,k X-coric structure on 'F, respectively.

We recall that the étale-like objects M__ ., (TDQ), MOOK,XU<TD£) is constructed as

subsets of OOHl((THU)ratJ Mg (THE)) = @'HC(THv)rat : open Hl (H7 MS(THQD

Moorw(TDQ) (resp. Mmﬂxv(TDg) ) C ooHl((THv>rataH§(TH2))-
On the other hand, by taking Kummer classes, we also have natural injections
TMOOK/U C ooHl((THv)rat»ﬂZ(TMooﬁv))7 TMimx C ooHl((THv)rataNZ(TMooﬂxv»-

(The injectivity follows from the corresponding injectivity for M__ ., ("D,) and M_ .5, ("D,)
respectively.) Recall that the isomorphisms between two cyclotomes form a 7%-
torsor, and that x-coric functions distinguish zeroes and poles (since it has precisely
one pole (of any order) and at least two zeroes). Hence, by (Q®Z 2)QsoNZ* = {1},

there exist unique isomorphisms
(Cyc. Rig. NF3) pS (M) = iz (M), 18 (L) = pi5 ("M o)

characterised as the ones which induce Kummer isomorphisms
Kum Kum
TMOOMJ — MOOKU(TDg)a TMooan — MOOKXU(TDQ)
respectively. In a similar manner, for the isomorph IL, ~ TM, of T, ~ M, ("D,),

there exists a unique isomorphism
(Cyc. Rig. NF4) “(Za UHE) ~ /’LZ(TM’U)

characterised as the one which induces a Kummer isomorphism

Kum

™M, = M, ("D,)

between the direct limits of cohomology modules described in (Step 4) of Theo-
rem 3.17. We also shall refer to the isomorphism (Cyc. Rig. NF4) as the cyclotmoic
rigidity via QsoNZ* = {1} (cf. [[UTchL, Definition 5.2 (vi)]). By the above dis-
cussions, it follows that T.7-"2 always admits an . k-coric and o,k X-coric structures,
which are unique up to uniquely determined isomorphisms of pseudo-monoids with
continuous actions of (II,)"" respectively. Thus, we regard TF, as being equipped
with these uniquely determined . k-coric and o,k Xx-coric structures without notice.
We also put

T rat T rat
I\\/JLW(TDE) = (MNHU(TDQ))( ) ) TMM} = (TMOOM)( ) )

where we write (—)(T)™ for the (II,)"-invariant part.
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(3) (Local Archimedean case, [[UTchl, Definition 5.2 (vii), (viii)]) For v € V¥, let 1D,
be an Aut-holomorphic orbispace isomorphic to the Aut-holomorphic orbispace §

associated to g
K%

tion 7.24) such that the field of moduli of the hyperbolic curve “X” of type (1,1)
in the start of the definition of hyperbolic orbicurve of type (1, l—tgrg) is a number
field Fiuoq-

, where X is a hyperbolic orbicurve of type (1,l—t_o_r§) (Defini-

Let v € Vioa = V(Fiod) be the valuation lying under v. By Proposition 4.5, we
can algorithmically reconstruct an isomorph

T'DU

of the Aut-holomorphic orbispace C, associated with C(p, ), from ID,. We have
a natural morphism "D, — "D, (This corresponds to X = C(Froa).- Note that
- v

we have a natural isomorphism Aut("D,) = Gal(K,/(Fmod)v) (C Z/2Z), since C
is a K-core. Write
DR (1D, \ 5) (- 1D,),

where we choose a projective system of (1D, \ £)’s which arise as universal covering
spaces of D, with ¥ O {strictly critical points}, #¥ < oo (cf. Definition 9.2 for
strictly critical points). Note that "Dt is well-defined up to deck transformations
over 'D,. We write

M, ("D,) c A™Px

for the topological submonoid of non-zero elements with norm < 1 (which is an
isomorph of OF) in the topological field A'Px (cf. Proposition 4.5 for A'Px). By
using elliptic cuspidalisations, we can also algorithmically reconstruct, from TD,,

isomorphs
va(TDg)v Moomv(TDQ)» MOOK/X’U(TDE) (C HomCO—hol(T,D;atvMv(TDQ)gp))

of the pseudo-monoids of k-, k-, and . kXx- coric rational functions associated
with C(g,. ), as sets of morphisms of Aut-holomorphic orbispaces from TDE““ to
M, ("D, )eP (= ATDE) which are compatible with the tautological co-holomorphicisation
(Recall that A2 has a natural Aut-holomorphic structure and a tautological co-
holomorphicisation (cf. Definition 4.1 (5) for co-holomorphicisation)).

Let TF, = (1Cy, 1Dy, Tk, : O (1C,) — A'Pz) be a triple isomorphic to the triple
(Cy, Dy, ky) in Example 8.11, where the second data is equal to the above D,.
Write

™, := O™ (7¢C,).
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Then the Kummer structure Tx, gives us an isomorphism

Kum

Thy: TM, = M,("D,)

of topological monoids, to which we shall refer as a Kummer isomorphism. We
can algorithmically reconstruct the pseudo-monoids

TMoomn TMOOHX'U

of . k-coric and ok X-coric rational functions associated to C, ), as the sets of
maps
fprat s M, ("D, )P H TM8P (disjoint union)
which send strictly critical points to TM&P, otherwise to M, (7D, )&P, such that the
id T »)8P -1 .
composite Dt — M, (TD,)sP [ TM8P )™, M, ("D, )8P is an element
of M__ 0 (TDQ), MWRXU(TDQ) respectively. We shall refer to them as an o k-coric

structure, and an ook X-coric structure on T]—"2 respectively. Note also that
"M, (C TMOO,W) can be reconstructed as the subset of the maps which descend to
some TD2 \ X in the projective limit of TDE“, and are equivariant with the unique

embedding Aut(*D,) < Aut(A'P»). Hence, the Kummer structure T, in TF,
determines tautologically isomorphisms

Kum Kum Kum

My = My (D), Mo == Mo (D), Mo = M i (D)
of pseudo-monoids, to which we also shall refer as Kummer isomorphisms.

Remark 9.6.1.  (Mono-anabelian Transport) The technique of mono-anabelian
transport is one of the main tools of reconstructing an alien ring structure in a scheme
theory from another (after admitting mild indeterminacies). In this occasion, we explain
it.

Let 'II, *II be profinite groups isomorphic to IIx, where X is a hyperbolic orbicurve
of strictly Belyi type over non-Archimedean local field k (resp. isomorphic to Il¢  as
in this section). Then by Corollary 3.19 (resp. by Theorem 3.17 as mentioned in this
subsection), we can group-theoretically construct isomorphs O™ (TII), O™ (*II) (resp.
M® (TII), M® (*I1)) of OZ (resp. F) with TII-, *IT-action from the abstract topological
groups 'II, *IT respectively (These are étale-like objects). Suppose that we are given
isomorphs TO™, *O> (resp. TM®, ¥M®) of O ('), O (*II) (resp. M®(T1I), M® (*II))
respectively (This is a Frobenius-like object), and that an isomorphism I 22 1T of topo-
logical groups. The topological monoids TO> and *O™ (resp. the multiplicative groups
TM® and *M® of fields) are a priori have no relation to each other, since an “isomorph”
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only means an isomorphic object, and an isomorphism is not specified. However, we can
canonically relate them, by using the Kummer theory (cf. the Kummer isomorphism in
Remark 3.19.2), which is available by relating two kinds of cyclotomes (i.e., cyclotomes
arisen from Frobenius-like object and étale-like object) via the cyclotomic rigidity via
LCFT (resp. via QsqNZ* = {1}):

Kurgmer induced by Kurgmer
(I~T0*) = (I~ O0™() = (II~o~(¢m) & (11 ~ TO™)
TII22$T1
Frobenius-like étale-like étale-like Frobenius-like
(resp.
KumNmer induced by Kurfr\l}mer
(I~ ™M®) = (I ~M®(TID)) = (I ~ M®(FIT)) & (I ~ TM®)
EZIN
Frobenius-like étale-like étale-like Frobenius-like).
In short,
et (I~ M) "ot A @)
a priort
mono-anabelian canonically
bl (I~ TM®) = (I~ TM®),

transport

makes ayvailable
=

D lied .
cyclotomic rigidity Kummer theory ""2°" mono-anabelian transport.

This technique is called the mono-anabelian transport.

Remark 9.6.2.  (differences between three cyclotomic rigidities) We already met
three kinds of cyclotomic rigidities: the cyclotomic rigidity via LCFT (Cyc. Rig. LCFT2)
in Remark 3.19.2, of mono-theta environment (Cyc. Rig. Mono-th.) in Theorem 7.23 (1),
and via Qs¢ N Z* = {1} (Cyc. Rig. NF2) in Definition 9.6:

7 (Gr) S pz(M), T(180) ® Z/NZ 5 pn(T(1Ae[un]),  pS (TI®) 5 s (TM®).

In inter-universal Teichmiiller theory, we use these three kinds of cyclotomic rigidities
to three kinds of Kummer theory respectively, and they correspond to three portions of
O-links, i.e.,

(U) we use the cyclotomic rigidity via LCFT (Cyc. Rig. LCFT?2) for the constant monoids
at local places in V8°°4NV™" which is related with the local unit (modulo torsion)
portion of the ©-links,
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we use the cyclotomic rigidity of mono-theta environment (Cyc. Rig. Mono-th.) for
the theta functions and their evaluations at local places in ybad, which is related
with the local value group portion of the ©-links, and

we use the cyclotomic rigidity of via Q¢ N 7x = {1} (Cyc.Rig. NF2) for the non-
realified global Frobenioids, which is related with the global realified portion of the
O-links.

We explain more.

(1)

In Remark 9.6.1, we used TO™ (= O% ) and as examples to explain the technique
of mono-anabelian transport. However, in inter-universal Teichmiiller theory, the
mono-anabelian transport using the cyclotomic rigidity via LCFT is useless in the
important situation i.e., at local places in VP* (However, we use it in the less
important situation i.e., at local places in V&°°d N V™") because the cyclotomic
rigidity via LCFT uses essentially the value group portion in the construction, and,
at places in V°*! in inter-universal Teichmiiller theory, we deform the value group
portion in ©-links! Since the value group portion is not shared under ©-links, if
we use the cyclotomic rigidity via LCF'T for the Kummer theory for theta func-
tions/theta values at places in vPad in a Hodge theatre, then the algorithm is only
valid with in the same Hodge theatre, and we cannot see it from another Hodge
theatre (i.e., the algorithm is uniradial. (cf. Remark 11.4.1, Proposition 11.15
(2), and Remark 11.17.2 (2)). Therefore, the cyclotomic rigidity via LCFT is not
suitable at local places in VP24, which deforms the value group portion.

Instead, we use the cyclotomic rigidity via LCFT at local places in V8°°4 0 ymor,
In this case too, only the unit portion is shared in ©-links, and the value group
portion is not shared (even though the value group portion is not deformed in
the case of V&°°4 N V™" thus, we ultimately admit 7 -indeterminacy to make
an algorithm multiradial (cf. Definition 11.1 (2), Example 11.2, and §A.4. cf.
also Remark 11.4.1, and Proposition 11.5). Mono-analytic containers, or local log-
volumes in algorithms have no effect by this zx—indeterminacy.

In VP24 we use the cyclotomic rigidity of mono-theta environment for the Kummer
theory of theta functions (cf. Proposition 11.14, and Theorem 12.7). The cyclotomic
rigidity of mono-theta environment only uses p-portion, and does not use the value
group portion! Hence, the Kummer theory using the cyclotomic rigidity of mono-
theta environment in a Hodge theatre does not harm/affect the ones in other Hodge
theatres. Therefore, these things make algorithms using the cyclotomic rigidity of
mono-theta environment multiradial (cf. also Remark 11.4.1).
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In Remark 9.6.1, we used "M® (= FX) and as examples to explain the technique
of mono-anabelian transport. However, in inter-universal Teichmiiller theory, we
cannot transport TM® (=2 FX) by the technique of the mono-anabelian transport
by the following reason (cf. also [IUTchII, Remark 4.7.6]): In inter-universal Te-
ichmiiller theory, we consider Ilc, as an abstract topological group. This means
that the subgroups Il¢, , llx = are only well-defined up to ¢, -conjugacy, i.e., the
subgroups Il¢, llx  are only well-defined up to automorphisms arising from their
normalisers in Il¢, . Therefore, we need to consider these groups Ilg, , llx  as be-
ing subject to indeterminacies of F}*-poly-actions (cf. Definition 10.16). However,
F¥ nontrivially acts on TM®(= F ). Therefore, TM® (= F ") is inevitablyy subject
to F¥*-indeterminacies. Instead of TM®(= F ), we can transport the TTI®-invariant
part TMuoq = (TM®)'1® (= X

e d), since IFI* trivially poly-acts on it, and there is

no F;*-indeterminacies (cf. also Remark 11.22.1).

Another important difference is as follows: The cyclotomic rigidity via LCFT and
of mono-theta environment are compatible with the profinite topology, i.e., it is the
projective limit of the “mod N” levels. On the other hand, the cyclotomic rigidity
via Qso NZX = {1} is not compatible with the profinite topology, i.e., it has no
such “mod N7 levels. In the Kummer tower (l;; =) lgl(kx — kX — --), we
have the field structures on each finite levels k*(U{0}); however, we have no field
structure on the limit level £%. On the other hand, the logarithm «}" %” needs
field structure. Hence, we need to work in “mod N7 levels to construct log-links,
and the Kummer theory using the cyclotomic rigidity via Qso N Z* = {1} is not
compatible with the log-links. Therefore, we cannot transport global non-realified
Frobenioids under log-links. On the realified Frobenioids, we have the compatibility
of the log-volumes with log-links (i.e., the formulae (5.1) and (5.2) in Proposition 5.2
and Proposition 5.4 respectively). (Note that N-th power maps are not compatible
with addtions, hence, we caanot work in a single scheme-theoretic basepoint over
both the domain and the codomain of Kummer N-th power map. This means that
we should work with different scheme-theoretic basepoints over both the domain
and the codomain of Kummer N-th power map, hence the “isomorphism class
compatibility” i.e., the compatibility with the convention that various objects of
the tempered Frobenioids are known only up to isomorphism, is crucial here (cf.
[IUTchII, Remark 3.6.4 (i)], [[UTchIII, Remark 2.1.1 (ii)]) (This is also related to
Remark 13.13.3 (2b))).
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Cyclotomic rigidity via LCFT of mono-theta env. | via Q<o N 7% = {1}

Related Component units value group global realified
of ©-links modulo torsion (theta values) component
Radiality uniradial or multiradial multiradial

multiradial up to 7% -indet.

Compatibility with compatible compatible incompatible

profinite top.

§9.3. [KX-Line Bundles and H-Line Bundles.

We continue to use the notation in the previous section. Moreover, we assume that
we are given a subset V C V(K) such that the natural surjection V(K) — V(Fi04q)
induces a bijection V= V(F,0q) (Note that, as we will see in the following definitions,

we are regarding V as an “analytic section” of the morphism Spec Oxg — SpecOp,__,).
Write V" := VN V(K)"™ and V¥ := VN V(K)?e.

Definition 9.7.  ([[TUTchIII, Example 3.6]) We write F©_, (i.e., without “I”)
for the global non-realified Frobenioid which is constructed by the model D(Cx)° (i.e.,
without “).

(1) (R-line bundle) A K-line bundle on (Spec O )//Gal(K/Finoa) is a data L% =
(Ta {tg}gey), where

(a) T is an F*_,-torsor, and

(b) t, is a trivialisation of the torsor T, := T Rpx (K /O[X(E) for each v € V,

where F; ; — KX /O is the natural group homomorphism,

satisfying the condition that there is an element ¢ € 1" such that ¢, is equal to the
trivialisation determined by ¢ for all but finitely many v € V. We can define a
tensor product (L¥)®" of a X-line bundle £¥ for n € Z in an obvious manner.

(2) (morphism of K-line bundles) Let L8 = (T1, {t1.4}vev), LY = (Tb, {ta.n}vey) be
X-line bundles. An elementary morphism £¥ — £ of X-line bundles is
an isomorphism 7; = T of meod—torsors which sends the trivialisation ¢;, to
an element of the O?(v—orbit of ty, (i-e., the morphism is integral at v) for each
veV. A morphismiof X-line bundles from LY to Eég is a pair of a positive
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integer n € Z-o and an elementary morphism (£¥)®" — LY. We can define
a composite of morphisms in an obvious manner. Then the X-line bundles on
(Spec Ok )//Gal(K/Fi04) and the morphisms between them form a category (in
fact, a Frobenioid)
@
Fnob-

We have a natural isomorphism
® ®
Friod — Fion

of (pre-)Frobenioids, which induces the identity morphism FX_, — F* . on ®((—)Prat).
Note that the category .FMOD is defined by using only the multiplicative (X ) struc-
ture.

(B-line bundle) A H-line bundle on (Spec Ok)//Gal(K/Fyoq) is a data L% =
{Jy}vev, where J, C K, is a fractional ideal for each v € V (i.e., a finitely generated
non-zero Ok -submodule of K, for v € V"*", and a positive real multiple of O,
for v € V¥ (cf. Section 0.2 for O, )) such that J, = O, for finitely many v € V.
We can define a tensor product (LF)®" of a B-line bundle £ for n € Z in an

obvious manner.

(morphism of B-line bundles) Let £F = {J; ,}vev, L = {J2.,}vev be B-line bun-
dles. An elementary morphism ﬁE — CEE of H-line bundles is an element
f e F> suchthat f-J;, C Jo, (ie., [ is integral at v) for each v € V. A mor-
phism of H-line bundles from 5?3 to /52 is a pair of a positive integer n € Z~y and
an elementary morphism (LP)®" — £B. We can define a composite of morphisms
in an obvious manner. Then the H-line bundles on (Spec Ok)//Gal(K/Fypoa) and
the morphisms between them form a category (in fact, a Frobenioid)

f®

moo*

We have a natural isomorphism

Jr@ ]:®

moo

of (pre-)Frobenioids, which induces the identity morphism FX_; — F.*_, on ®((—)Pirat),
Note that the category Fio,, is defined by using both of the multiplicative (X) and

the additive (B) structures.

Hence, by combining the isomorphisms, we have a natural isomorphism

(Convert) Finoo —+ Frton

of (pre-)Frobenioids, which induces the identity morphism FX_, — F.X_, on ®((—)Pirat),
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§10. Hodge Theatres.

In this section, we construct Hodge theatres after fixing an initial ©-data (Sec-
tion 10.1). More precisely, we construct O@T°'NF-Hodge theatres (In this survey, we
shall refer to them as WH-Hodge theatres). We can consider Z/IZ as a finite approxima-
tion of Z for | >> 0 (Note also that we take [ >> 0 approximately of order of a value of
height function. cf. Section ). Then we can consider F;* and IF;“[ as a “multiplicative
finite approximation” and an “additive finite approximation” of Z respectively. More-
over, it is important that two operations (multiplication and addition) are separated in
“these finite approximations” (cf. Remark 10.29.2). Like Z/IZ is a finite approximation
of Z (Recall that Z = Gal(9)/X)), a Hodge theatre, which consists of various data in-
volved by X v &v, (i and so on, can be seen as a finite approximation of upper half
plane.

Before preceeding to the detailed constructions, we briefly explain the structure
of a ©F°'NF-Hodge theatre (or XH-Hodge theatre). A ©*°!NF-Hodge theatre (or a
XEB-Hodge theatre) will be obtained by “gluing” (Section 10.6)

e a ONF-Hodge theatre, which has a F}*-symmetry, is related to a number field, of
arithmetic nature, and is used to Kummer theory for NF (In this survey, we shall
refer to it as a X-Hodge theatre, Section 10.4) and

o a ©*°"_Hodge theatre, which has a Ffi—symmetry, is related to an elliptic curve,
of geometric nature, and is used to Kummer theory for © (In this survey, we shall
refer to it as a H-Hodge theatre, Section 10.5).

Separating the multiplicative (K) symmetry and the additive (H) symmetry is also
important (cf. [[TUTchII, Remark 4.7.3, Remark 4.7.6]).

ONF-Hodge theatre | F;*-symmetry (K) | arithmetic nature | Kummer theory for NF

O*°_Hodge theatre Ffi—symmetry (HB) | geometric nature | Kummer theory for ©

As for the analogy with upper half plane, the multiplicative symmetry (resp. the ad-
ditive symmetry) corresponds to supersingular points of the reduction modulo p of mod-
ular curves (resp. the cusps of the modular curves). cf. the following tables ([IUTchI,
Fig. 6.4]):
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X-symmetry

Basepoint

(cf. Remark 10.29.1)

Functions

(cf. Corollary 11.23)

upper half plane | z —

z cos(t)—sin(t)

Z cos(t)+sin(t)

zsin(t)+cos(t)”’

Z sin(t)—cos(t)

supersingular pts.

— z—i
rat. fet. w = pow

Hodge theatre

Ff—symm.

* Bor
F ~V

elements of Fi0q

H-symmetry

(cf. Remark 10.29.1)

Basepoint

(cf. Corollary 11.21)

Functions

upper half plane

Z2—=z+a, 22— —Z+a

cusp

trans. fct. ¢ = e

271

Hodge theatre

]Ffi—symm.

v theta values {qj2}1<j<p:e
:g - =

Coric symmetry (cf. Proposition 10.34 (3))

upper half plane

2z, —Z

Hodge theatre

{£1}

These three kinds of Hodge theatres have base-Hodge theatres (like Frobenioids)
respectively, i.e., a ©T!NF-Hodge theatre (or a XE-Hodge theatre) has a base-OT°!!NF-
Hodge theatre (or D-O%°"NF-Hodge theatre, or D-XH-Hodge theatre), which is obtained

by “gluing”

e a base-ONF-Hodge theatre (or D-ONF-Hodge theatre, or D-X-Hodge theatre) and

e a base-OF"-Hodge theatre (or D-O%°-Hodge theatre, or D-H-Hodge theatre).

A D-ONF-Hodge theatre (or D-X-Hodge theatre) consists

e of three portions
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— (local object) a holomorphic base-(or D-)prime-strip 1®~ = {1Ds , },ev, where
D , is a category equivalent to B(g )0 for v € V& N Y™ or a category
- v

equivalent to B*™P(X U)O for v € V°* or an Aut-holomorphic orbispace iso-

morphic to X for v € V* (Section 10.3),

— (local object) a capsule 1®; = {TD;},c; of D-prime-strips indexed by J (=
F*) (cf. Section 0.2 for the term “capsule”), and

— (global object) a category TD® equivalent to B(Cf)°,

e and of two base-bridges
— a base-(or D-)O-bridge Tgbg, which connects the capsule 7® ; of D-prime-strips
to the D-prime-strip D+, and
— a base-(or D-)NF-bridge T¢}F, which connects the capsule "D ; of D-prime-
strips to the global object TD®.

Here, for a holomorphic base-(or D-)prime-strip 7D = {ID,},cv, we can associate its
mono-analyticisation (cf. Section 3.5) T = {1D]},ev, which is a mono-analytic base-
(or D" - )prime-strip.

On the other hand, a D-©%*°"Hodge theatre (or D-B-Hodge theatre) similarly
consists

e of three portions

— (local object) a D-prime-strip 1D, = {ID, , },ev,

— (local object) a capsule "®7 = {ID;};er of D-prime-strips indexed by T (=
F;), and

— (global object) a category TD®* equivalent to B(X x)°,

e and of two base-bridges

— a base-(or D-)OF -bridge Tgbgi, which connects the capsule "®1 of D-prime-
strips to the D-prime-strip T®, , and

— a base-(or D-)O-bridge Td)ien, which connects the capsule "7 of D-prime-
strips to the global object TD®*.

Hence, the structure of a D-O**!NF-Hodge theatre (or D-X@-Hodge theatre) is as fol-
lows (For the torsor structures, Aut, and gluing see Proposition 10.20, Proposition 10.34,
Lemma 10.38, and Definition 10.39):
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D-OFINF-HT

(Aut = {£1}) D-OFULHT 1D o gluing (>={0-}) ~ 1D,  D-ONF-HT (Aut = {1}

D-0F bridge 1¢2" | ({£1}x{£1}¥ -torsor) (rigid) | T¢©  D-©-bridge

luin = + .
B-Symm.| (teT(2F)) 1Dp gluing (J=(T\{O)/{£1}) 1D, (j € J(2FF)) |K-Symm.

D-0°"_bridge T¢>@eu (]Fli—torsor) (F-torsor) Td)iF D-NF-bridge

Geometric (X x ~) fpo+ fpe (e~ Ck) Arithmetic

We can also draw a picture as follows (cf. [ITUTchl, Fig. 6.5]):

D, =/* L 0. = /*
69" 5%
J=(T\{0})/{*1} T :
(£}~ D= /Z - /55T [ = Dy=/1/% ik
¢iell ¢§F
ot +— o+ 0 % % ® 0
B I fb D= =B(Xk) L mi{_ﬁ D® =B(Ck)",

where /’s express prime-strips.

These are base Hodge theatres, and the structure of the total space of Hodge
theatres is as follows: A ©NF-Hodge theatre (or K-Hodge theatre) consists

e of five portions

— (local and global realified object) a ©-Hodge theatre THT® = ({T]: Yoev, TF 1)

which consists of
 (local object) a pre-Frobenioid T; , isomorphic to the p,-adic Frobenioid
F. (Example 8.7) for v € V&°°d FW_;DOH, or a pre-Frobenioid isomorphic to
the tempered Frobenioid £ for v € yPad (Example 8.8), or a triple T]:-" L=
(TC,, "Dy, Tky), isomorphi; to the triple F = (Cy; Dy, ky) (Example 831)
of the Archimedean Frobenioid C,, the Aut-holomorphic orbispace D, =
§U and its Kummer structure &, : O%(C,) — AP for v € V¥ and
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% (global realified object with localisations) a quadruple
TS'r;Od = (fcr Prime(TC]'(;Od) 5V, {ng}yey, {TPZ}gey) of a pre-Frobenioid

mod’

isomorphic to the global realified Frobenioid C" _, (Example 8.12), a bijec-

mod
tion Prime(TC" ) = V, a mono-analytic Frobenioid-(or F"-)prime-strip
{TF Yvev (cf. below), and global-to-local homomorphisms {fp] }yev.
— (local object) a holomorphic Frobenioid-(or F-)prime-strip 1§~ = {TFx , }vev,
where T 7. , is equalto the TF,’s in the above ©-Hodge theatre THT®.
— (local object) a capsule '§; = {1§;}jcs of F-prime-strips indexed by J (=2 F})
(cf. Section 0.2 for the term “capsule”),
— (global object) a pre-Frobenioid TF® isomorphic to the global non-realified
Frobenioid F©("D®) (Example 9.5), and

— (global object) a pre-Frobenioid TF® isomorphic to the global non-realified
Frobenioid F®(1D®) (Example 9.5).
e and of two bridges
— a O-bridge Tz/)g, which connects the capsule 7§ of prime-strips to the prime-
strip T§~, and to the ©-Hodge theatre T§- --» "HT®, and

— an NF-bridge Ty)XF, which connects the capsule T§; of prime-strips to the

X

global objects TF® --» TF®,

and these objects are “lying over” the corresponding base objects.

Here, for a holomorphic Frobenioid-(or JF-)prime-strip 1§ = {1 F,},ev, we can
algorithmically associate its mono-analyticisation (cf. Section 3.5) 1§~ = {U—“EF toev,
which is a mono-analytic Frobenioid-(or F' -)prime-strip.

On the other hand, a ©F°"-Hodge theatre (or B-Hodge theatre) similarly consists

e of three portions

— (local object) an F-prime-strip §.. = {TFe . }uev,

— (local object) a capsule "7 = {1F; }ier of F-prime-strips indexed by T (= F;),
and

— (global object) the same global object TD®* as in the D-B-Hodge theatre,
e and of two bridges

— a ©T-bridge ngi , which connects the capsule T§7 of prime-strips to the prime-
strip 7§, and

— a ©%l-bridge 19" is equal to the D-O¢!-bridge f¢Q",
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and these objects are “lying over” the corresponding base objects.

Hence, the structure of a ©T°'"NF-Hodge theatre (or XH-Hodge theatre) is as
follows (For the torsor structures, Aut, and gluing, see Lemma 10.25, Lemma 10.37,
Lemma 10.38, and Definition 10.39):

OFINF-HT 7
A
F-prime-strip
luin ={0, E
(Aut = {+1}) @y 15 . 2 CTOTN s ONFHT (Aut = {1})
©F bridge 197 | ({£1}x{£1}¥torsor) (rigid) | T4©  ©-bridge
luing (J=(T\{0 +1 .
B-Symm.| (te T(2F)) §r . gluing (J=(TA{O)/{£1)) 1§, (jeJ(2FF)) [K-Symm.
(T¢2611:T®T_>Tp©i) ©°bridge Twien (IF‘li-torsor) (F*-torsor) Tz/)QF NF-bridge
Geometric tpe+ TFe Arithmetic
PO _tp®
Y
Kummer for © TF® Kummer for NF

§10.1. Imnitial ®-Data.

Definition 10.1. We shall refer to a collection of data

(F/Fu XF7 la QKa Y7 Vbad E)

mod>
as an initial ®-data, if it satisfies the following conditions:

(1) F is a number field such that /=1 € F, and F is an algebraic closure of F. We
write G = Gal(F/F).

(2) X is a once-punctured elliptic curve over F', which admits stable reduction over
all v € V(F)™". We write Fr(D Xp) for the elliptic curve over F' obtaine by the
smooth compactification of Xp. We also write Cp := Xp//{£1}, where we write
“//” for the stack-theoretic quotient, and —1 is the F-involution determined by
the multiplication by —1 on Ep. Let Fy0q be the field of moduli (i.e., the field
generated by the j-invariant of Er over Q). We assume that F is Galois over F,oq
of degree prime to [, and that 2 - 3-torsion points of Er are rational over F.
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Vbhad  C V0a = V(Fipod) is a non-empty subset of Vom, \ {y € vron | o | 2}
such that X has bad (multiplicative in this case by the condition above) reduction
at the places of V(F) lying over VP24 . Write V&° (f = Vimoa \ VP24, (Note that
X may have bad reduction at some places V(F') lying over V&>° ; ), V(F)bad .=
Vhad ey L V(F), and V(F)8o0d = fo;; Xv, .4 V(F). We also write IIx, :=

7T1(XF) C HCF = 7T1(CF), and AXF = 7Tl(XF XF F) C ACF = 7T1(CF XF F)

[ is a prime number > 5 such that the image of the outer homomorphism Gp —
GL2(F;) determined by the I-torsion points of Er contains the subgroup SLy(IF;) C
GLy(F;). Write K := F(FEp[l]), which corresponds to the kernel of the above
homomorphism (Thus, since 3-torsion points of Er are rational, K is Galois over
Fioa by Lemma 1.7 (4). We also assume that [ is not divisible by any place in
Vbhad “and that [ does not divide the order (normalised as being 1 for a uniformiser)

mod’
of the g-parameters of Er at places in V(F)bad,

C is a hyperbolic orbicurve of type (1,l-tors)y (cf. Definition 7.10) over K with
K-core given by Ck := Cp Xp K (Thus, Cj is determined, up to K-isomorphism,
by Cr by the above (4)). Let X, be a hyperbolic curve of type (1,I-tors) (cf.
Definition 7.10) over K determined, up to K-isomorphism, by C . Recall that we
have uniquely determined open subgroup Ax C A¢ corresponding to the hyperbolic
curve X of type (1, I-tors®) (cf. Definition 7.11), which is a finite étale covering of
Cw = Cp xp F (cf. the argument after Assumption (2) in Section 7.3, where the
decomposition Ay & Aig x Ag does not depend on the choice of €, ).

V C V(K) is a subset such that the composite V C V(K) — Vy,0q is a bijection,
i.e., Vis a section of the surjection V(K) — V,0q. Write V' := V 0 V(K)o
Ve = VNV(K)2e, v&ood .= VN V(K)e°d and V** .= VNV(K)P24. For a place
v eV, write (=), := (—)p xp K, or (=), := (—)x Xk K, for the base change of
a hyperbolic orbicurve over F and K respectively. For v € VP4 we assume that
the hyperbolic orbicurve C, is of type (1,Z/IZ)+ (cf. Definition 7.13) (Note that
we have “K = K” since 2-torsion points of Ep are rational). For a place v € V,
it follows that X = XFFQ admits a natural model X , over K, , which is hyperbolic

curve of type (1,(Z/1Z)®) (cf. Definition 7.13), where v is a place of F lying over
v (Roughly speaking, X , is defined by taking “l-root of the theta function”). For

. oyt
v € VP we write T1,, := IT™P.

v

€ is a non-zero cusp of the hyperbolic orbicurve C-. For v € V, we write ¢, for the
cusp of U, determined by e. If v € VP2 e assume that €, is the cusp, which arises
from the canonical generator (up to sign) of Z via the surjection ITx — Z determined
by the natural surjection ™ — Z (cf. Section 7.1 and Definition 7.13). Thus, the
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data (Xg := Xp xp K,C g, €) determines a hyperbolic curve X . of type (1, l—@r_§)
(cf. Definition 7.24). For v € V8°°, we write II, := IS

Note that C'j and € can be regarded as “a global multiplicative subspace and a
canonical generator up to {£1}”, which was one of main interests in Hodge-Arakelov
theory (cf. Appendix A). At first glance, they do not seem to be a global multiplicative
subspace and a canonical generator up to {#1}; however, by going outside the scheme
theory (Recall we cannot obtain (with finitely many exceptions) a global multiplicative
subspace within a scheme theory), and using mono-anabelian reconstruction algorithms,
they behave as though they are a global multiplicative subspace and a canonical gener-
ator up to {£1}.

From now on, we take an initial ©-data (F/F, X, [, Cy, V, VP24 '¢) "and fix it until
the end of Section 13.

§10.2. Model Objects.

From now on, we often use the convention (cf. [[UTchl, §0]) that, for categories C, D,
we call any isomorphism class of equivalences C — D of categories an isomorphism
C — D (Note that this termniology differs from the standard terminology of category
theory).

Definition 10.2. (Local Model Objects, [IUTchI, Example 3.2, Example 3.3,
Example 3.4]) For the fixed initial ©-data, we define model objects (i.e., without “”)
as follows:

(1) (D :holomorphic, base) We write D, for the category B*™P(X U)O of connected
objects of the connected temperoid B*™P (X ,) forv e VP24, the category B(& )0

of connected objects of the connected anabelioid B(g ) for v € V&°I N Y™°" and
the Aut-holomorphic orbispace § associated with gifor v € V¥ (cf. Section 4).

(2) (DL :mono-analytic, base) We write D) for the category B(K,)" of connected
objects of the connected anabelioid B(K,) for v € V" and the split monoid

(OD(CD, spIZ) in Example 8.11. We also write G, := m; (DZ) for v € V"

(3) (Cy :holomorphic, Frobenioid-theoretic) We write C, for the base-field-theoretic hull
(E )Pase-field (with base category D) of the tempered Frobenioid F , in Example 8.8

= v
for v € V**, the p,-adic Frobenioid C, (with base category D,) in Example 8.7 for
v € V8ol N y™n and the Archimedean Frobenioid Cy (whose base category has
only one object Spec K, and only one morphism) in Example 8.11 for v € V**.
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(4) (£, :holomorphic, Frobenioid-theoretic) We write £ for the tempered Frobenioid
vl Ui(with base category D,) in Example 8.8 for v Gi\_fbad, the p,-adic Frobenioid
C; (with base category D,) in Example 8.7 for v € V&° 0 V" and the triple
(Cy, Dy, ky) of the Archimedean Frobenioid, the Aut-holomorphic orbispace, and
the Kummer structure r, : O”(C,) < AP> in Example 8.11 for v € V*™.

(5) (C! :mono-analytic, Frobenioid-theoretic) We write C), for the p,-adic Frobenioid
Cl'ji(with base category D! ) in Example 8.8 for v € ybgd, the p,-adic Frobenioid C}]
(\;/ith base category Dg ) in Example 8.7 for v € V&°°4 N V™" and the Archimedean
Frobenioid C, (whose base category has only one object Spec K, and only one
morphism) in Example 8.11 for v € V*°.

(6) (.7-"'2_ : mono-analytic, Frobenioid-theoretic) We write .7-"£ for the p9;-split pre-Frobenioid
(CEF ,splZ) (with base category DZ ) in Example 8.8 for v € V"™ the split pre-
Frobenioid (CEF , SplZ) (with base category DZ ) in Example 8.7 for v € V&°°d nyron,
and the triple (C, D, ,splZ), where (CJ ,splZ) is the split Archimedean Frobe-

nioid, and D = (O™ (C} ),splg ) is the split monoid (as above) in Example 8.11
for v € V&,

v

cf. the following table (We use D,’s (resp. D.’s, resp. F.’s) with v € V for
D-prime-strips (resp. D" -prime-strips, ]—""—prime—st;ips) later (CfT Definition 10.9 (1)
(2)). However, we use Cy (not £ ) with v € V*" and £ with v € V™ for F-prime-
strips (cf. Definition 10.9 (3)), and F s withv € V for ©-Hodge theatres later (cf.
Definition 10.7)): -

vP2d (Example 8.8) yeeod nyrer (Example 8.7) V¢ (Example 8.11)

Bemn(x )0 (IL,) B(X,) (L) H

BK,® (Gy) B, (Gy) (07 (Ch), L)
(;ﬂ)base‘ﬁdd (IT, ~ (Ol%)pf) I, ~ (O%)pf Arch. Fr’d C, («ang. region)
temp. Fr’d ;2 (e~O-fct.) equal to C, (Cy, Dy, k)
Gy O}% . glj Gy O}% - p} equal to C,
(Clg_’ spIZ) (CE, SplZ) (Cg, DZ, splZ)
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We continue to define model objects.

Definition 10.3.  (Model Global Objects, [IUTchI, Definition 4.1 (v), Definition
6.1 (v)]) We put
D@ = B(Ck)’, D% :=B(Xy)".

Isomorphs of the global objects will be used in Proposition 10.19 and Proposi-
tion 10.33 to write “labels” on each local objects in a consistent manner (cf. also Re-
mark 6.11.1). We will use D® for (D-)X-Hodge theatre (Section 10.4), and D®* for
(D-)HE-Hodge theatre (Section 10.5).

Definition 10.4. (Model Global Realified Frobenioid with Localisations, [[UTchI,
Example 3.5]) Let C'*_, be the global realified Frobenioid in Example 8.12. Note that

we have the natural bijection Prime(C" |

) = Vinod, and an element log’, ,(p,) € Do
for each v € Vy,0q. For v € V04, we write v € V for the corresponding element under
the bijection V = V,,0q. For each v € V, we also have the (pre-)Frobenioid Cg (cf.
Definition 10.2 (5)). We write C/'® for the realification of C!, (Definition 8.4 (3)) for
v € V*" and C, itself for v € yz‘“. We write logg(py) € CIDECQZ for the element deter-
mined by p,, where we write @55 for the divisor monoid of CE R We have the natural

restriction functor
I FR
Cruod — Cg

for each v € V. This is determined, up to isomorphism, by the isomorphism

gl. to loc. 1

Kg: (Fmod)v

~

v — @E; log;lod(pv) = [

] logg (Pw)

of topological monoids (For the assignment, consider the volume interpretations of the
arithmetic divisors, i.e., log, #(OF,.4),/Pv) = [KE:(F—lmd)U]long#(OKl/pE)). Recall
also the point of view of regarding V(C V(K)) as an “analytic section” of Spec Og —
(The left-hand side ®

mod’

Spec O

mod

» 18 an object on (Fy,04)y, and the right-hand side
@G, is an object on K,). We write 3t 4 for the quadruple

Slrlr_lod = (Clrl_lod7 Prime(clrl_lod) :> y? {‘F}Q_}Eey7 {pﬂ}QGY)

of the global realified Frobenioid, the bijection of primes, the model objects .7-"£ ’s in
Definition 10.2 (6), and the localisation homomorphisms. We define an isomorphism

- ~ Ik : :
Tmod,1 — Omoa,2 Of quadruples in an obvious manner.

Isomorphs of the global realified Frobenioids are used to consider log-volume func-

tions.
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Definition 10.5. (O-version, [I[UTchl, Example 3.2 (v), Example 3.3 (ii), Ex-
ample 3.4 (iii), Example 3.5 (ii)])

(1) (VP*) Let v € V"*. We write DY (C D,) for the category whose objects are
A® = A x gu for A € Ob(DZ ), where x is the product in D,, and morphisms are
morphisms over zv in D, (Note also that zv € Ob(D,) is defined over K, ). Taking

“(—) x zv” induces an equivalenc D; = DS of categories. The assignment
Ob(Dy) 3 A = 0% (O4e) - (8]0,0) C O (ORE™)

determines a monoid OZ(—) on DY (cf. Example 8.8 for © € O*(OY*"), and

O(_) for Definition 8.4 (1)). Under the above equivalence D = DS of cz;tegories,
we have natural isomorphism OF, (—) = OZLs(—). These are compatible with the

assignment

g£|OA = QQ|OA®

and a natural isomorphism O*(04) = O*(O4e) induced by the projection A® =
A x zv — A (cf. Example 8.8 for ¢ € O%(Ox )). Hence, the monoid Oge(—)

determines a p,-adic Frobenioid

Cv@ (C ;Eirat)

whose base category is D,fj . Note also QU determines a pg;(—)-orbit of splittings

spl;9 of CS. We have a natural equivalence CE = CS of categories, which sends
splz to spl(z, hence, we have an isomorphism

]:'2_(: (Cg,splZ)) 5 ]-f = (CS,SplS)
of pos-split pre-Frobenioids.

(2) (V&°°d N V™) Let v € V8°°4 N V™ . Recall that the divisor monoid of Cg is of
the form O (=) = Og. (=) x Nlog(p,), where we write log(p,) for the element p,
considered additively. We put

Oz(j(—) = Oé(}_)(—) x Nlog(py)log(0),

where log(p,)log(©) is just a formal symbol. We have a natural isomorphism
0% (=) = OZ6(—). Then the monoid OF, (—) determines a p,-adic Frobenioid

o
).

C@
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whose base category is DS := D! . Note also that log(p,)log(©) determines a

splitting splg of CO. We have a natural equivalence C£ = CS of categories, which

sends splz to Splg, hence, we have an isomorphism
]:L:(: (C'E_,SplZ)) 5 ]:2@ = (Cg,spl(:)
of split pre-Frobenioids.

(V*) Let v € V**°. Recall that the image ®¢r- of splz of the split monoid (OZ,, Splg )
is isomorphic to R>q. We write log(p,) € ®er for the element p, considered addi-
tively (cf. Section 0.2 for p, with Archimedean v). We put

Peo := Rx>qlog(py)l0g(O),

where log(p,)log(©) is just a formal symbol. We also write O/ := (Og-)*, and

oo = Op. Then we obtain a split pre-Frobenioid

(€2, splY),

such that O (CY) = Ofe X ®co. We have a natural equivalence Cj = Co of

categories, which sends S;)l; to splg, hence, we have an isomorphism (C£ , splg ) =
(CS , spl(z) of split pre-Frobenioids, and an isomorphism

Fo(=(C,DL,sply)) & FO = (C2, D, sply)
of triples, where we write DS = DZ .

(Global Realified with Localisations) Let C! . be the global realified Frobenioid

mod

considered in Definition 10.4. For each v € V04, we write v for the corresponding
element under the bijection V5 V,,0q4. Write

q)cw = (I)CIHF]Od . log(@),

theta b

where log(©) is just a formal symbol. This monoid q)cltkh . determines a global

realified Frobenioid
C‘lclileta

I-
theta

Prime(C&eta) 5 Viod. For each v € V04, the element logr';od(pv) € ch‘;od’v C

with a natural equivalence Cf , = C of categories and a natural bijection

P determines an element log™ . 4(pw) log(©) € ®c-  , C P . Asin the case

theta’ theta
I+

where C; 4, We have the natural restriction functor

I+ OR
Ctheta — Cg
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for each v € V. This is determined, up to isomorphism, by the isomorphism

gl. to loc. Wlmod)v] lOg@ (p’U) ]_Og(g) v E ygood’

~

: q)C‘tEeta,v — q)HCi@ 1Og'r_nod (pv) log(g) = l?)g<I> (Pw) logg (QE)
: [Ky:(Fmod)o] logg (gv)

of topological monoids, where we write logg (p,) log(©) € ®5e for the element de-

termined by logg (p,) for v € V&°4 and log, (©,); logg(py), and we write logg (¢ )

for the element determined by Qv, Dy, and g respectively for v € ybad (Note that
=y S

logy(©,) is not a formal symbol). Note that for any v € V, the localisation homo-

morphisms p, and p(; are compatible with the natural equivalences C'r;Od = C't;eta,

and C'g_ = CS:

“mod—theta”

1Og'r_nod (pv) I 10g'r_nod (pv) log(@)

] -

mlogq)(pg) = [KL;(ﬁmod)v] logg (pu) log(©)

for v € V&°°4, and

“mod—theta”
lOg']r_nod (pv) I = logll;lod (pv) 10g (Q)
Pvl Ip?
S S : logg (py) 182(8,)
[Kg:(Fmod)v] ].Og@(pﬂ) 1:}__)@77 [Kg3(Fmocl)v] log@(gv)

for v € V"*. We write Feta for the quadruple

Slti_heta = (Cgileta’ Prime<c‘|c'ileta) :> y’ {fg@}y€y7 {pS}QGY)

of the global realified Frobenioid, the bijection of primes, the ©-version of model
objects F’s in (1), (2), and (3), and the localisation homomorphisms.

Note that we have group-theoretic or category-theoretic reconstruction algorithms

such as reconstructing D} from D,. We summarise these as follows ([[UTchl, Example
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3.2 (vi), Example 3.3 (iii)]):

except
£’U I Cﬂ I Varc v
up to l[Z-indet. - - -
on g for yeybad ‘FE f C2 f Dﬁ
Fo CO DO

(Note also the remark given just before Theorem 8.14.)

Definition 10.6.  (D-version or “log-shell version”, [IUTchl, Example 3.5 (ii),
(iii)]) We write
DI

mod
for a copy of CI .. Let Ppr Prime(D! 1) = Vinod, loghoq(py) € Ppr o C Ppr
be the corresponding objects under the tautological equivalence C'r;() q— D'r;O q- For each

v € Vinod, we write v for the corresponding element under the bijection V = Vi04.
For v € V"°" | we can group-theoretically reconstruct from DZ

(REO)Q i= Ruon(Gy) (&2 Rxo)

and Frobenius element F(G,) € (REO)2 by (Step 3) in Proposition 5.2 (Recall that
G, = m1(D})). Write also

logg(pg) = e,F(Gy) € (Rgo)ga

where we write e, for the absolute ramification index of K,.
For v € V*° we can also group-theoretically reconstruct from the split monoid
DZ = (OEWSPID
* (RS0)y = Rure(D}) (= Rxo)
and Frobenius element F(DY) € (REO)2 by (Step 4) in Proposition 5.4. Write also

F(D})
logg(pg) = 27; S (Rgo)w

where 27 € R* is the length of the perimeter of the unit circle (Note that (]REO)E has
a natural R*-module structure).

Hence, for any v € V, we obtain a uniquely determined isomorphism

gl. to loc. 1

pf : Q)Dl;od’v ; (REO)E loggod(p’v) = [I(2 . (Fmod)v

| logg (pv)
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of topological monoids.
We write i for the quadruple

S : ( mod? Prlme(Dmod) :> y? {D£}2€y7 {PE}QGY)

of the global realified Frobenioid, the bijection of primes, the D" -version of model objects
DZ ’s, and the localisation homomorphisms.

§10.3. ©-Hodge Theatres and Prime-strips.

Definition 10.7.  (©-Hodge theatre, [[UTchl, Definition 3.6]) A ®-Hodge the-
atre is a collection
"HT® = ({'£, bvev. "Smoa);

where

(1) (local object) T;@ is a pre-Frobenioid (resp. a triple (C,, D, Tk,)) isomorphic to
the model £ (resp. isomorphic to the model triple F , = (Cy, Dy, ky)) in Defini-
tion 10.2 (4) for v € V™" (resp. for v € V*°). We WriteiTDg, TDZ, TDS, T]—"g, T}"f
(resp. TD; , TDS, T]—"; ,T]-"Q@) for the objects algorithmically reconstructed from T£ )

corresponding to the model objects (i.e., the objects without T).

2) (global realified object with localisations) " . is a quadruple
mod

(Tcr';od7 Prime(TCl;od) g Y, {T]:'g_}yeyv {TIOQ}QGY)7

where TC! | is a category equivalent to the model C._ in Definition 10.4, Prime(TC _,) &

V is a bijection of sets, T.7-"£ is the reconstructed object from the above local data

gl. to loc.
T]—" and Tp, : (I)TCH— , — OF cx is an isomorphism of topological monoids (Here

TCE is the reconstructed object from the above local data T]—" ) such that there ex-
ists an isomorphism of quadruples TS'F od = 3';10(1 We write %’theta, '{) for the

algorithmically reconstructed object from TSmO q corresponding to the model objects
(i.e., the objects without ).

Definition 10.8.  (©-link, [[UTchI, Corollary 3.7 (i)]) Let THT® = ({T}— Yoev, T8 ),

HTe = ({i]-' Yoev, FF 1) be ©-Hodge theatres (with respect to the fixed initial ©-
data). We shall refer to the full poly-isomorphism (cf. Section 0.2)

full poly

~

I+
3’theta } T‘Smod

as the ®-link from "HT to *HT (Note that the full poly-isomorphism is non-empty),

and we write it as

e 25 T,
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and we shall refer to this diagram as the Frobenius-picture of ®-Hodge theatres
([IUTchI, Corollary 3.8]). Note that the essential meaning of the above link is

« gil ~ qN ”

=v
for v € VP24,

Remark 10.8.1.  ([IUTchI, Corollary 3.7 (ii), (iii)])

(1) (Preservation of D7) For each v € V, we have a natural composite full poly-

isomorphism
full poly

D, 51Dy = Dy,

where the first isomorphism is the natural one (Recall that it is tautological for
v € V8°°4 and that it is induced by (—) xzv forv € ybad), and the second full poly-
isomorphism is the full poly-isomorphism of the ©-link. Hence, the mono-analytic
base ‘”Dg " is preserved (or “shared”) under the O-link (i.e., DZ is horizontally coric).
Note that the holomorphic base “D,” is not shared under the ©-link (i.e., ©-link
shares the underlying mono-analytic base structures, but not the arithmetically
holomorphic base structures).

(2) (Preservation of O*) For each v € V, we have a natural composite full poly-

isomorphism
full poly
TXCT'; :> OTXCS) ; ixcl'77

where the first isomorphism is the natural one (Recall that it is tautological for
v e V&°°4 and that it is induced by (—) x zv for v € V"), and the second full
poly-isomorphism is induced by the full poly-isomorphism of the ©-link. Hence,
“Oé} 7 is preserved (or “shared”) under the ©-link (i.e., Oé} is horizontally coric).
Note also that the value group portion is not shared under the ©-link.

We can visualise the “shared” and “non-shared” relation as follows:

TDQ - — > (TDZ mOch> o~ (iDz mO;ck) < - iDQ

We shall refer to this diagram as the étale-picture of ®-Hodge theatres ([IUTchI,
Corollary 3.9]). Note that, there is the notion of the order in the Frobenius-picture (i.e.,
T(—) is on the left, and ¥(—) is on the right), on the other hand, there is no such an
order and it has a permutation symmetry in the étale-picture (cf. also the last table in
Section 4.3).
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This ©-link is the primitive one. We will update the ©-link to ©*#-link, © X/ -link

gau

Corollary 11.24), and Oy §p-link (resp. O %-link) (cf. Definition 13.9 (2)) in inter-

universal Teichmiiller theory :

O-link

©X! Jink 5A™ @X/ link (resp. ©-link).

“Hodge-Arakelov-theoretic eval.”
o~ gau lgp

“theta fct.——theta values”

and OX—O* /pu

Definition 10.9.  ([IUTchI, Definition 4.1 (i), (iii), (iv) Definition 5.2 (i), (ii),

(iif), (iv)])

(1)

(D : holomorphic, base) A holomorphic base-prime-strip, or D-prime-strip is
a collection
ol {TDQ}QEY

of data such that D, is a category equivalent to the model D, in Definition 10.2
(1) for v € V™ and TD, is an Aut-holomorphic orbispace isomorphic to the model
D, in Definition 10.2 (1). A morphism of D-prime-strips is a collection of
morphisms indexed by V between each component.

(D" : mono-analytic, base) A mono-analytic base-prime-strip, or D" -prime-
strip is a collection
D" = {"D} }rev

of data such that TDZ is a category equivalent to the model Dlg_ in Definition 10.2
(2) for v € V™" and TDZ is a split monoid isomorphic to the model Dg in Defi-

nition 10.2 (2). A morphism of D" -prime-strips is a collection of morphisms
indexed by V between each component.

(F : holomorphic, Frobenioid-theoretic) A holomorphic Frobenioid-prime-strip,
or F-prime-strip is a collection

TS = {TFQ}QGY

of data such that T7, is a pre-Frobenioid isomorphic to the model C, (not F L) in
Definition 10.2 (3) for v € V*** and ' F, = (7C,,D,, Tk,) is a triple of a cateéory,
an Aut-holomorphic orbispace, and a Kummer structure, which is isomorphic to
the model £ in Definition 10.2 (3). An isomorphism of F-prime-strips is a
collection of isomorphisms indexed by V between each component.
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(4) (F" :mono-analytic, Frobenioid-theoretic) A mono-analytic Frobenioid-prime-
strip, or F'-prime-strip is a collection

3" = {17 boev

of data such that T]—"E is a pg-split pre-Frobenioid (resp. split pre-Frobenioid)

v

isomorphic to the model .7-"£ in Definition 10.2 (6) for v € V** (resp. v € V&°°I N
vrom)) and T]—"g = (TC'E_, TDZ, Tsplg) is a triple of a category, a split monoid, and a
splitting of TC,, which is isomorphic to the model F! in Definition 10.2 (6). An
isomorphism of F"™-prime-strips is a collection ofisomorphisms indexed by V

between each component.

(5) (F' :global realified with localisations) A global realified mono-analytic Frobenioid-
prime-strip, or F'"-prime-strip is a quadruple

I3 = (7c", Prime('C") 5V, 18", {Tputuev),

where TC" is a pre-Frobenioid isomorphic to the model C" 4 in Definition 10.4,
gl. to loc.

~

Prime(TC'") = V is a bijection of sets, T is an F"-prime-strip, and p, : Picr, —>
<I>]§CF is an isomorphism of topological monoids (Here, TC'Q_ is the object recon-

I+
mod

structed from T}',L: ), such that the quadruple T§'" is isomorphic to the model §
in Definition 10.4. An isomorphism of F'"-prime-strips is an isomorphism of
quadruples.

(6) Let Autp(—), Isomp(—, —) (resp. Autp-(—), Isompr (—, —) resp. Autxz(—), Isomz(—, —)
resp. Autz-(—), Isomz-(—,—) resp. Autzr(—), Isomzr(—,—)) be the group of
automorphisms of a D-(resp. D'-, resp. F-, resp. F' -, resp. F'-)prime-strip,
and the set of isomorphisms between D-(resp. D'-, resp. F-, resp. JF' -, resp.
F'"-)prime-strips.

Remark 10.9.1.  We use global realified prime-strips with localisations for calcu-
lating (group-theoretically reconstructed) local log-volumes (cf. Section 5) with the global
product formula. Another necessity of global realified prime-strips with localisations is
as follows: If we were working only with the various local Frobenioids for v € V (which
are directly related to computations of the log-volumes), then we could not distinguish,
for example, py'Ok, from Ok, with m € Z for v € V""", since the isomorphism of
these Frobenioids arising from (the updated version of) ©-link preserves only the iso-
morphism classes of objects of these Frobenioids. By using global realified prime-strips
with localisations, we can distinguish them (cf. [[UTchIII, (xii) of the proof of Corollary

3.12)).
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Note that we can algorithmically associate D" -prime-strip "®" to any D-prime-

strip 7D and so on. We summarise this as follows (cf. also [[UTchl, Remark 5.2.1 (i),

(iD)]):

(1)

(2)

(3)

(4)

(5)

THT® 15 D
Tslk | Tgk | T@F_

Lemma 10.10.  ([IUTchI, Corollary 5.3, Corollary 5.6 (i)])

Let LF® 2F® (resp. 1F®, 2F®) be pre-Frobenioids isomorphic to the global non-
realifed Frobenioid TF® (resp. TF®) in Evample 9.5 , then the natural map

Isom(* F® 2F®) — Isom(Base(' F®), Base(*F®))
(resp. Tsom(1F®,2F) - Tsom(Base(' F°), Base(:F®)) )
1s bijective.

For F-prime-strips '§, 2§, whose associated D-prime-strips are '®, 2® respectively,

the natural map
Isomz(1F,%%) — Isomp(1D,2%D)

s bijective.

For F"-prime-strips '§, 2§, whose associated D" -prime-strips are 17, 20"

respectively, the natural map
Isomz (13, 2%57) — Isompr (107, 2D")
1s bijective.

Forv € ybad, let év be the tempered Frobenioid in Example 8.8, whose base category
is D, then the natural map

Aut(Z ) = Aut(Dy)

is bijective.

For Th-Hodge theatres *HT®, 2HT®, whose associated D-prime-strips are 'O,
2®< respectively, the natural map

Isom(!HT®,2HT®) = Isomp (1D, 2D-)

1$ bijective.
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Proof. (1) follows from the category-theoretic construction of the isomorphism
M®(TD®) 5 TM® in Example 9.5. (2) follows from the mono-anabelian reconstruction
algorithms via Belyi cuspidalisation (Corollary 3.19), and the Kummer isomorphism
in Remak 3.19.2) for v € V", and the definition of the Kummer structure for Aut-
holomorphis orbispaces (Definition 4.6) for v € V*°. (3) follows from Proposition 5.2
and Proposition 5.4. We show (4). By Theorem 3.17, automorphisms of D, arises from
automorphisms of X " thus, the surjectivity of (4) holds. To show the injectivity of
(4), let a be in the kernel. Then it suffices to show that a induces the identity on the
rational functions and divisor monoids of £ . By the category-theoretic reconstruction
of cyclotomic rigidity (cf. isomorphism (Cyc. Rig. Frd)) and the naturality of Kummer
map, (which is injective), it follows that « induces the identity on the rational functions
of £ . Since o preserves the base-field-theoretic hull, o also preserves the non-cuspidal
portion of the divisor of the Frobenioid-theoretic theta function and its conjugate (these
are preserved by « since we already show that o preserves the rational function monoid
of £ U), hence « induces the identity on the non-cuspidal elements of the divisor monoid
of ]:-"; Similary, since any divisor of degree 0 on an elliptic curve supported on the
torsion points admits a positive multiple which is principal, it follows that « induces
the identityo on the cuspidal elements of the divisor monoid of £ , as well. by considering
the cuspidal portions of divisor of a suitable rational functions (these are preserved by
a since we already show that o preserves the rational function monoid of £ ). (Note
that we can simplify the proof by suitably adding J , more data, and considering the
isomorphisms preserving these data. cf. also the remark given just before Theorem 8.14
and [IUTchl, Remark 3.2.1 (ii)]). (5) follows from (4). O

Remark 10.10.1.  ([IUTchI, Remark 5.3.1]) Let 1§, 2§ be F-prime-strips, whose
associated D-prime-strips are '@, 2D respectively. Let

¢: D =D

be a morphism of D-prime-strips, which is not necessarily an isomorphism, such that all
of the v(€ ngOd)—components are isomorphisms, and the induced morphism ¢" : 1©"F —
2®" on the associated D" -prime-strips is also an isomorphism. Then ¢ uniquely lifts to

an “arrow”
1 2
Qp . S — 37

which we say that v is lying over ¢, as follows: By pulling-back (or making categorical
fiber products) of the (pre-)Frobenioids in 2§ via the various v(€ V)-components of ¢,
we obtain the pulled-back F-prime-strip ¢*(2F) whose associated D-prime-strip is tau-
tologically equal to '®. Then this tautological equality uniquely lifts to an isomorphism
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15 5 ¢*(?%) by Lemma 10.10 (2):

pull back

Iz s ¢*(23> S22

N

19 % L 2g

Definition 10.11.  ([IUTchl, Definition 4.1 (v), (vi), Definition 6.1 (vii)]) Let

D@ (resp. "DO%) is a category equivalent to the model global object D® (resp. DOF)
in Definition 10.3.

(1) Recall that, from "D® (resp. TD®*), we can group-theoretically reconstruct a set
V(ID®) (resp. V(ID®F)) of valuations corresponding to V(K ) by Example 9.5 (resp.
in a slimilar way as in Example 9.5, i.e., firstly group-theoretically reconstructing
an isomorph of the field F from m;("D®*) by Theorem 3.17 via the ©-approach
(Definition 9.4), secondly group-theoretically reconstructing an isomorph V(ID®%)
of V(F) with 71 (1D®%)-action, by the valuations on the field, and finally consider
the set of 7 (TD®%)-orbits of V(TDO%)).

For w € V(TD®)¢ (resp. w € V(ID®*)31¢) by Proposition 4.8 and Lemma 4.9, we
can group-theoretically reconstruct, from "D® (resp. "D®%), an Aut-holomorphic
orbispace

C("D®w) (resp. X("DF, w) )
corresponding to C,, (resp. X, ). For an Aut-holomorphic orbispace U, a mor-
phism N N

U — ™D® (resp. U — DO )

is a morphism of Aut-holomorphic orbispaces U — C(TD®, w) (resp. U — X(TD®*, w))
for some w € V(ID®)2r¢ (vesp. w € V(IDOF)are),

(2) For a D-prime-strip '® = {TD,},cv, a poly-morphism
fp P fpo (resp. 1D poly tpo+ )

is a collection of poly-morphisms {ID, poly DO} ey (resp. {1D, poly DOEY o)
indexed by v € V (cf. Definition 6.1 (5) for v € V**" and the above definition in
(1) for v € V*).

(3) For a capsule “D = {*D}.cp of D-prime-strips and a D-prime-strip 1D, a poly-

morphism
Eg PN tpo (resp. ¥® poly fpOE  resp. D POl 1 )

is a collection of poly-morphisms {°® poly DO cp (resp. {¢® poly DO+,
resp. {¢® poly "D}ecr).
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Definition 10.12.  ([IUTchII, Definition 4.9 (ii), (iii), (iv), (v), (vi), (vii), (viii)])
Let 1§~ = {i]-"£ }yev be an F'-prime-strip with associated D" -prime-strip D" =
{1175 }QEY-

(1) Recall that *F! is a ug-split pre-Frobenioid (resp. a split pre-Frobenioid, resp. a
triple (*CJ, iDE, isplZ)) for v € VP (resp. v € V&°4 N V™" resp. v € V7). Let
A be a universal covering pro-object of *DE, and write *G := Aut(*Au) (hence,
'@ is a profinite group isomorphic to G,). For v € VP (resp. v e V8ol nymon),
we write

0+ (*Ax) (€ 0% (*Ax))

for the submonoid generated by pg(*As) and the image of the splittings on *F!

v

(resp. the submonoid determined by the image of the splittings on 1]:5 ), and puti
O% (FAx) = O (FAso) [z (FAse) (vesp. O™ (FAx) := OF(FAx) ),
and
O P (tAy) := 0" (FAs ) xO*H(FAL) (resp. O *H(FAy) i= O% (FAL)xO* P (FAL) ).

These are equipped with natural *G-actions.

Next, for v € V™", we can group-theoretically reconstruct, from @, ind-topological
modules *G ~ O*(*G), *G ~ O**(*G) with G-action, by Proposition 5.2 (Step 1)
(cf. Definition 8.5 (1)). Then by Definition 8.5 (2), there exists a unique Z*-orbit
of isomorphisms

poly

X 0*@) 5 0% (FAL)

of ind-topological modules with *G-actions. Moreover, ilizx induces an Isomet-orbit

poly

bhxn o*rt@) 5 O*M(FAL)

of isomorphisms.

For v € V", the rational function monoid determined by O™ *#(*A_,)8P with *G-
action and the divisor monoid of i]:£ determine a model Frobenioid with a splitting.
The Isomet-orbit of isomorphisms i/ﬁzx“ determines a X p-Kummer structure (Def-
inition 8.5 (2)) on this model Frobenioid. For v € V"" (resp. v € V¥), we write

if£>><ﬂ

for the resulting split-x y-Kummer pre-Frobenioid (resp. the collection of data ob-
tained by replacing the split pre-Frobenioid *C, in i]—"; = (¢C£ , iDZ , iSplZ ) by the
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inductive system, indexed by the multiplicative monoid N>, of split pre-Frobenioids
obtained from iCE by taking the quotients by the N-torsions for N € N>;. Thus,
the units of the split pre-Frobenioids of this inductive system give rise to an in-
ductive system - -+ — O*FN(Ay) — -+ — O*PNM(A ) — ---, and a system of
compatible surjections {(iDZ)>< — O"HN (A )}Nens, (which can be regard as a
kind of Kummer structure on if£ > 1) for the split monoid iDZ ), and, by abuse of
notation,

i]:;

for the split- x-Kummer pre-Frobenioid determined by the split pre-Frobenioid i]i',:
with the x-Kummer structure determined by ifizx.

Write
iSI—PXu - {i]_—l—bxu}vev
: v vEV-

We also write

B = P ey (resp, 15 = (LE ey )

for the collection of data obtained by replacing the various split pre-Frobenioids
of ¥F" (resp. *F™*#) by the split Frobenioid with trivial splittings obtained
by considering the subcategories determined by morphisms ¢ with Div(¢) = 0
(i.e., the “units” for v € V™") in the pre-Frobenioid structure. Note that *F >
(resp. *F %1 is a split-x-Kummer pre-Frobenioid (resp. a split-x u-Kummer pre-
Frobenioia) .

An F"X-prime-strip (resp. an F' XH-prime-strip, resp. an F"»*XH_prime-
strip) is a collection

*g}—x _ {*ng}yey (resp. *gl—xu _ {*F£XM}£€Y7 resp. *S'_>XM — {*J_jg—’x“}yey )

of data such that *F > (vesp. *F. *H resp. *JF»**) is isomorphic to *F
(resp. ¥FIXH resp. 1?5”“) for each v € V. An isomorphism of F"*-prime-
strips (rgsp. T"X-priime-strips, resp. F' X-prime-strips) is a collection of
isomorphisms indexed by V between each component.

An F"™X#_prime-strip is a quadruple
*Sll-bxu — (*C”_, Prime(*cll-) :> y7 *S'_’XM, {*pg}QEY)

where *C" is a pre-Frobenioid isomorphic to the model C! _, in Definition 10.4,

Prime(*C") = V is a bijection of sets, *F">*# is an F"»*H-prime-strip, and *p, :
gl. to loc.

~

Q.or, — CID]}?CF is an isomorphism of topological monoids (Here, *C£ is the
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object reconstructed from *.7-"£ »x#) such that the quadruple *F" is isomorphic to
the model S‘god in Definition 10.4. An isomorphism of F'">XK_prime-strips is
a collection of isomorphisms indexed by V between each component.

(5) Let Aut zrx (—), Isom z+-x (—, —) (resp. Aut z-xu(—), Isom z+x, (—, —) resp. Aut zrexu(—),
Isom zrpxu(—, —) resp. Aut zrexu(—), ISom zrexu(—, —)) be the group of automor-
phisms of an F~*-(resp. F' *H-, resp. F'®XH- resp. F'»*H.)prime-strip, and
the set of isomorphisms between F©*-(resp. F'*#-, resp. F'»*H- resp. F''»XH_

)prime-strips.

Remark 10.12.1.  In the definition of i;g»w for v € V** in Definition 10.12, we
consider an inductive system. We use this as follows: For the crucial non-interference
property for v € V*" we use the fact that the p,-adic logarithm kills the torsion
u(—=) € O*(—). However, for v € V¥ the Archimedean logarithm does not kill the
torsion. Instead, in the notation of Section 5.2, we replace a part of log-link by k£~ —
(0% )8 — (O%)8P /un (k) and consider k™ as being reconstructed from (O} )8P/un (k),
not from (O} )P, and write weight N on the corrsponding log-volume. Then there is no
problem. cf. also Definition 12.1 (2), (4), Proposition 12.2 (2) (cf. [IUTchIII, Remark
1.2.1]), Proposition 13.7, and Proposition 13.11.

Definition 10.13.  ([IUTchIII, Definition 2.4])

(1) Let
B = {17, ey
be an F'-prime-strip. Then by Definition 10.12 (1), for each w € VP24 the splittings
of the pg-split-Frobenioid i]—"& determine submonoids O+(—) C O™ (—) and quo-
tient monoids O+(—=) — O™ (=) = O+(—)/O#(—). Similarly, for each w € V&°°9,
the splitting of the split Frobenioid *F}, determines a submonoid O+(—) C O (—).
In this case, we write O® (=) := O+(—). We write

B = A heer, 8 = (PR ey

for the collection of data obtained by replacing the pg-split/split Frobenioid por-
tion of each i]—"g by the pre-Frobenioids determined by the subquotient monoids
O+(—) c O%(—) and O™ (—), respectively.

(2) An F"t-prime-strip (resp. an F">-prime-strip) is a collection
F = {F, ey (vesp. "FY = {"F, " hoev )

of data such that *.FQL (resp. *}"5’) is isomorphic to 1]_—5¢ (resp. i}"g’) for each
v € V. An isomorphism of F"1-prime-strips (resp. F~»-prime-strips) is a

collection of isomorphisms indexed by V between each component.
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(3) An F'*L_prime-strip (resp. F'"»-prime-strip) is a quadruple

F = ("C", Prime(*C") 3V, *F, {Fpu}eev)

(resp. x> = (*C‘F, Prime(*C'F) 3V, 5, {*pu}vev) )

where *C'" is a pre-Frobenioid isomorphic to the model C;Od in Definition 10.4,

Prime(*C"™) = V is a bijection of sets, *§ + (resp. *F ™) is an F"*-prime-strip
gl. to loc.

(resp. F"»-prime-strip), and *p, : P.cr, — (I)gck is an isomorphism of topo-

logical monoids (Here, *C£ is the object reconstructed from *.7-"1'}: L (resp. *.7-"'2_ ™)),

such that the quadruple *§"+ (resp. *§"™) is isomorphic to the model § _, in Def-

inition 10.4. An isomorphism of F'"1-prime-strips (resp. F'"-prime-strips)

is a collection of isomorphisms indexed by V between each component.

§10.4. The Multiplicative Symmetry X: &NF-Hodge Theatres and NF-,

©®-Bridges.

We begin constructing the multiplicative portion of full Hodge theatres.

Definition 10.14.  ([IUTchI, Definition 4.1 (i), (ii), (v)]) Let "® = {1D, },ev be

a D-prime-strip.

(1)

For v € V"™ (resp. v € V&°4 N V™™) we can group-theoretically reconstruct
in a functorial manner, from 7 ("D, ), a tempered group (resp. a profinite group)
(D m1(TD,)) corresponding to C, by Lemma 7.12 (resp. by Lemma 7.25). We write

T'Dv

for its B(—)?. We have a natural morphism D, — "D, (This corresponds to
X — C, (resp. gv — C,)). Similarly, for v € ya“,}ve can algorithmically
reconstruct, in a functorial manner, from TDE, an Aut-holomorphic orbispace TQU
corresponding to C, by translating Lemma 7.25 into the theory of Aut—holomorphig
spaces (since gfu admits a K,-core) with a natural morphism D, — TQQ. Write

TQ = {TQQ}EGY‘

Recall that we can algorithmically reconstruct the set of conjugacy classes of cuspi-
dal decomposition groups of m (1D,) or m(1D,) by Corollary 6.12 for v € yPad by
Corollary 2.9 for v € V&°°4 V™" and by considering mo(—) of a cofinal collection
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of the complements of compact subsets of the underlying topological space of 1D,
or TQE for v € V*™°. We say them the set of cusps of D, or TQE.

For v € V, a label class of cusps of 1'1)2 is the set of cusps of TDE lying over
a single non-zero cusp of "D, (Note that each label class of cusps consists of two
cusps). We write -

LabCusp("D,)

for the set of label classes of cusps of TD,. Note that LabCusp(D,) has a natural
F;*-torsor structure (which comes from the action of F; on @ in the definition of X
in Section 7.1). Note also that, for any v € V, we can algorithmically reconstruct a

canonical element
Tnv € LabCusp('D,)

corresponding to €, in the initial ©-data, by Lemma 7.16 for v € VP24 Lemma 7.25
for v € V&°°4 N V"1 and a translation of Lemma 7.25 into the theory of Aut-
holomorphic spaces for v € V#.

(Note that, if we used "D, (i.e., “C,”) instead of ID, (i.e., ‘X ”) for v € V&I N
= = = v
V"*", then we could not reconstruct TQU. In fact, we could make the action of

the automorphism group of TQE on LabCusp transitive for some v € Y&°°d 0 yron,
by using Chebotarev density theorem (i.e., by making a decomposition group in
Gal(K/F) — GL2(F;) to be the subgroup of diagonal matrices with determinant
1). cf. IUTchl, Remark 4.2.1].)

Let TD® is a category equivalent to the model global object D® in Definition 10.3.
Then by Remark 2.9.2, similarly we can define the set of cusps of "D® and the
set of label classes of cusps

LabCusp(1D®),
which has a natural F}*-torsor structure.
From the definitions, we immediately obtain the following proposition:

Proposition 10.15.  ([IUTchI, Proposition 4.2]) Let "D = {ID,},ev be a D-

prime-strip. Then for any v,w € V, there exist unique bijections

LabCusp("D,) = LabCusp('D,,)

which are compatible with the IFZ* -torsor structures and send the canonical element Tﬂv

to the canonical element Tﬂw' By these identifications, we can write

LabCusp("D)
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for them. Note that it has a canonical element which comes from Tﬂv ’s. The Ff—torsor
structure and the canonical element give us a natural bijection B

LabCusp(1D) = F}*.
Definition 10.16.  (Model D-NF-Bridge, [ITUTchl, Example 4.3]) We write
Aut (Cr) C Aut(Cg) = Out(llg, ) = Aut(D?)

for the subgroup of elements which fix the cusp € (The firs isomorphisms follows from
Theorem 3.17). By Theorem 3.7, we can group-theoretically reconstruct A x from Il¢g .
We obtain a natural homomorphism

Out(Ilc, ) — Aut(AY @ Fy)/{£1},

since inner automorphisms of II¢  act by multiplication by +1 on E7[l]. By choosing
a suitable basis of A% ® F;, which induces an isomorphism Aut(A% ® F;)/{£1} =
GLo(F;)/{+£1}, the images of Aut.(C ) and Aut(Cy) are identified with the following

subgroups
{ (; ;) } = { (; :) } C Im(Gp,,,) (D SLa(F;)/{*1})

of GLy(F;)/{%1}, where Im(Gp, ,) C GLo(FF;)/{£1} is the image of the natural action
of Gp,,., := Gal(F/Fupoa) on Ex[l]. Write also

VE = Aut (Cp) -V C VB = Aut(Cp) -V C V(K).
Hence, we have a natural isomorphism
Aut(Cr) /At (C) = FF,

thus, VB is the F*-orbit of Y+, By the above discussions, from 7 (D?®), we can

group-theoretically reconstruct
Aut (D®) C Aut(D®)

corresponding to Aut.(Cy) C Aut(Cg) (cf. also Definition 10.11 (1), (2)).
For v € vbad (resp. v € VEood N yROn resp. v € V), We write

¢ay + Dy — D

for the natural morphism correponding to X , C, — Cy (resp. & —C, = Cg,
4, v v v

resp. a tautological morphism D, = X — C, = C(D®,v)) (cf. Definition 10.11 (1)).
Write a
SNF = Aut(D®) 0 ¢} 0 Aut(D,) : D, B2 DO,
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Let ©; = {Dy, }vev be a copy of the tautological D-prime-strip {Dy }vev for each
j € Fj* (Here, we write v; for the pair (j,v)). Write

ol
1= {6 Juev : D1 7 D

cf. Definition 10.11 (2)). Since ¢F is stable under the action of Aut.(D®), we obtain
1 3
a poly-morphism

(ﬁ?lF := (action of j) o #Y'F : D, poly D,

by post-composing a lift of j € F} = Aut(D®)/Aut.(D®) to Aut(D®). Hence, we
obtain a poly-morphism

ol
QF = {%NF}JG]FL* P Dy = {gj}jeIFfé = D®

from a capsule of D-prime-strip to the global object D® (cf. Definition 10.11 (3)). This
is called the model base-(or D-)NF-bridge. Note that ¢} is equivariant with the
natural poly-action (cf. Section 0.2) of Fl* on D® and the natural permutation poly-
action of F;* (via capsule-full poly-automorphisms (cf. Section 0.2)) on the components
of the cupsule D 4. In particular, we obtain a poly-action of ]Fl* on (Dy,D?, (bliF)

Definition 10.17.  (Model D-0-Bridge, [IUTchI, Example 4.4]) Let v € V"9,
Recall that we have a natural bijection between the set of cusps of C, and |F;| by
Lemma 7.16. Thus, we can write labels (€ |F;|) on the collections of cusps of Xy X
by considering fibers over C,. We write B

H— € &Q<KE)

for the unique torsion point of order 2 such that the closures of the cusp labelled 0 € |F|
and p_ in the stable model of X, over Ok, intersect the same irreducible component
of the special fiber (i.e., “~1” in G /g% ). We shall refer to the points obtained by
translating the cusps labelled by j € |EE| by p_ with respect to the group scheme
structure of E, (D X,) (Recall that the origin of E, is the cusp labelled by 0 € |F;|) as
the evaluation poinq:s of X, labelled by j. Note that the value of QU in Example 8.8

at a point of gv lying over an evaluation point labelled by j € |F;| is in the for-orbit of

2
J
- JEZ such that j=j in |F,]

j —3*/2 —j*/2

by calculation © (\/ —qi) = (—1)=qu \/—1_22@)(\/—1) = ¢~ in the notation

of Lemma 7.4 (cf. the formula @(ql/ZU) = (—l)iq_l/QU_Q(:)(U) in Lemma 7.4). In
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particular, the points of X ) lying over evaluation points of X, are all defined over
Ky, by the definition of X v7—> X, (Note that the image of a point in the domain of

. (covering map,®) ..
< Y x Al is rational over K,, then the point is rational over K,. cf.

also Assumption (5) of Definition 7.13). We shall refer to the points in X(K,) lying
over the evaluation points of X, (labelled by j € |F;|) as the evaluation points of
X  (labelled by j € [Fi[). We also shall refer to the sections Gy — I (=IIx ) given
by the evaluation points (labelled by j € |F;|) as the evaluation section of Hz — Gy
(labelled by j € |F;|). Note that, by using Theorem 3.7 (elliptic cuspidalisation) and
Remark 6.12.1 (together with Lemma 7.16, Lemma 7.12), we can group-theoretically
reconstruct the evaluation sections from (an isomorph of) IL,.

Let ®~ = {D> 4 }wey be a copy of the tautological D-prime-strip {Dy, fwev. Write

0y =Aut(Ds ) o (B*P(IL,)" " B(K,)* “ES Bem(IL)) o Aut(D,)
J - - - abelled by j - -

: D, PN D, .

Note that the homomorphism 71(Dy,) — m1(D>,,) induced by any constituent of the
poly-morphism %@j (which is well-defined up to inner automorphisms) is compatible with
the respective outer actions on 77°°(Dy,) and f*(Ds ) (Here we write 77 for the
geometric portion of 71, which can be group-theoretically reconstructed by Lemma 6.2)
for some outer isomorphism 77°°(Dy, ) = 78°°(Ds ) (which is determined up to finite
ambiguity by Remark 6.10.1). We say this fact, in short, as gbgj is compatible with the
outer actions on the respective geometric tempered fundamental groups.

Let v € V&°°d. Write
full poly

¢y Dy S Dsy

Yy

to be the full poly-isomorphism for each j € F},
ol
65 = {dy, bvev : D; =5 D>,

and

ol
0% = {05} jerr + Dx 7 D>

This is called the model base-(or D-)®-bridge (Note that this is not a poly-isomorphism).
Note that ® 4 has a natural permutation poly-action by Fl*, and that, on the other hand,

the labels € |F;| (or € LabCusp(®+)) determined by the evaluation sections correspond-

ing to a given j € F}" are fixed by any automorphisms of D- .

Definition 10.18. (D-NF-Bridge, D-O-Bridge, and D-X-Hodge Theatre, [[UTchI,
Definition 4.6])
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A base-(or D-)NF-bridge is a poly-morphism
QNF i PN fpo

where TD® is a category equivalent to the model global object D®, and T® ; is a cup-
sule of D-prime-strips indexed by a finite set J, such that there exist isomorphisms
D® 5 1D® D, = T, conjugation by which sends ¢}* — T¢3F. An isomor-
phism of D-NF-bridges (Tgbl;F to, PO TD@) (iquF 9, PN ip@) is a

capsule-full poly

~

pair of a capsule-full poly-isomorphism "D ; — ' and an Aut (TD?)-
poly
orbit (or, equivalently, an Aut.(*D®)-orbit) TD® 5 #D® of isomorphisms, which

are compatible with T¢NF, #¢YF. We define compositions of them in an obvious

manner.
A base-(or D-)®-bridge is a poly-morphism
fp© . 1o, 2N tp

where T®< is a D-prime-strip, and ®; is a cupsule of D-prime-strips indexed
by a finite set J, such that there exist isomorphisms ®~ = T®., D, 5 1D,
conjugation by which sends gbg — T¢§. An isomorphism of D-O-bridges
(Hﬁg iy poly T@>) = <i¢§ 1Dy poly i®>> is a pair of a capsule-full poly-

capsule-full poly full poly

~ ~

isomorphism — '©; and the full-poly isomorphism "D 5
19, which are compatible with ngbg, *qbi. We define compositions of them in an

obvious manner.

A base-(or D-)©ONF-Hodge theatre (or a D-X-Hodge theatre) is a collection
fy 7P — <TD@ s D, = RERP )

where T¢§F is a D-NF-bridge, and Tgbg is a D-O-bridge, such that there exist iso-
morphisms D® 5 D9 D, 5 1®; ©. 5 T®., conjugation by which sends
PN — TeNF 99 — 1962, An isomorphism of D-X-Hodge theatres is a pair
of isomorphisms of D-NF-bridges and D-O-bridges such that they induce the same
bijection between the index sets of the respective capsules of D-prime-strips. We

define compositions of them in an obvious manner.

Proposition 10.19.  (Transport of Label Classes of Cusps via Base-Bridges,
t pNF

[TUTchI, Proposition 4.7]) Let 1HTP® = (iDp® = TQJ % 1o -) be a D-R-Hodge
theatre.
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(1) The structure of D-O-bridge 1¢Q at v € VP2 involving the evaluation sections
determines a bijection
x : JSTFE.

(2) For j € J, v € V' (resp. v € V¥), we consider the various outer homomor-
phisms ﬂl(TDyj) — w1 (TD®) induced by the (v, j)-portion TqSyNjF : TDyj — D@ of
the D-NF-bridge TgbliF By considering cuspidal inertia subgroups of w1 (TD®) whose
unique subgroup of index | is contained in the image of this homomorphism (resp.
the closures in 7, (TD®) of the images of cuspidal inertia subgroups of Wl(TDEj)
(cf. Definition 10.14 (2) for the group-theoretic reconstruction of cuspidal inertia

subgroups for v € V*°)  these homomorphisms induce a natural isomorphism
LabCusp(fD®) = LabCusp(TDyj)

of B[ -torsors. These isomorphisms are compatible with the isomorphism LabCusp(Tng) =
LabCusp(TDMj) of F}*-torsors in Proposition 10.15 when we vary v € V. Hence,
we obtaine a natural isomorphism

LabCusp(fD®) = LabCusp(T’Dj)

of F}*-torsors.
Neat, for each j € J, the various v(€ Y )-portions of the j-portion T(bj@ 1D, - 1D
of the D-O-bridge 1¢Q determine an isomorphism

LabCusp("®,) = LabCusp('D-.)

of B} -torsors. Therefore, for each j € J, by composing isomorphisms of B} -torsors
obtained via T¢?IF, Tgbj@, we get an isomorphism

ngﬁ;fc : LabCusp("D®) 5 LabCusp(TD-)
of F[ -torsors, such that TQ%‘C is obtained from T¢LC by the action by Tx(j) € F¥.

(3) By considering the canonical elements Tﬂv € LabCusp(1D,) for v’s, we obtain a
unique element B
[Te] € LabCusp(TD®)

such that, for each j € J, the natural bijection LabCusp(T®~) = IFZ* in Proposi-
tion 10.15 sends T¢5C([Te]) = 16 (1x(7) - ['e]) = TX(j). In particular, the element
[Te] determines an isomorphism

¢y : LabCusp("D®) 5 J (5 FfF)

of IFl*—torsors.
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Remark 10.19.1.  (cf. [IUTchl, Remark 4.5.1]) We consider the group-theoretic
algorithm in Proposition 10.19 (2) for v € V. Here, the morphism m (TDQJ,) — 1 (1D9)
is only known up to 1 (TD®)-conjugacy, and a cuspidal inertia subgroup labelled by an
element € LabCusp(TD®) is also well-defined up to m;("D®)-conjugacy. We have no
natural way to synchronise these indeterminacies. Let J be the unique open subgroup of
index [ of a cuspidal inertia subgroup. A nontrivial fact is that, if we use Theorem 6.11,
then we can factorise J < 7, (FD®) up to 7 (fD®)-conjugacy into J — m; (TDQJ,) up to
(1D, ,)-conjugacy and Wl(TDyj) — m1("D®) up to 71 ("D?)-conjugacy (i.e., factorise

out out out

J < wl(TD@) as J — Wl(TDEj) — m(TD?®)). This can be regarded as a partial

synchronisation of the indeterminacies.

Proof. 'The proposition immediately follows from the described algorithms. O
The following proposition follows from the definitions:

Proposition 10.20.  (Properties of D-NF-Brideges, D-0-Bridges, D-X-Hodge
theatres, [IUTchI, Proposition 4.8])

(1) For D-NF-bridges T¢XF, o3, the set Isom(T¢XF, #oXY) is an F*-torsor.
(2) For D-O©-bridges 169, *¢2, we have #Isom(T¢JF, #oIF) = 1.

(3) For D-RK-Hodge theatres THTP™, I HTP™  we have #Tsom(TH TP 1y7PH) =
1.

(4) For a D-NF-bridge Tgbl;iF and a D-O-bridge Tqbg, the set
capsule-full poly
{capsule-full poly-isom. ©; =510, by which T¢NF T¢@ form a D-X -Hodge theatre}

is an ] -torsor.

(5) For a D-NF-bridge T¢ , we have a functorial algorithm to construct, up to F; -
indeterminacy, a D-X-Hodge theatre whose D-NF-bridge is Tgbl;iF.

Definition 10.21.  ([IUTchI, Corollary 4.12]) Let "HTP® i3 7P¥ pe D-K-
Hodge theatres. the base-(or D-)®NF-link (or D-X-link)

fyrPR 2, iy PE

is the full poly-isomorphism
full poly

~

ot = oY

between the mono-analyticisations of the codomains of the D-O-bridges.
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Remark 10.21.1.  In D-X-link, the D" -prime-strips are shared, but not the arith-
metically holomorphic structures. We can visualise the “shared” and “non-shared”
relation as follows:

fHTPR| - — > |ID] > iph |« — | iy7PH

We shall refer to this diagram as the étale-picture of D-X-Hodge theatres. Note

that we have a permutation symmetry in the étale-picture.

We constructed D-X-Hodge theatres. These are base objects. Now, we begin

constructing the total spaces, i.e., X-Hodge theatres, by putting Frobenioids on them.
qul;iF qug

We start with the following situation: Let THTP™ = (fp® & 1p; % 1D.)

be a D-X-Hodge theatre (with respect to the fixed initial ©-data). Let THT® =

({Tév}yey, i3 ) be a ©-Hodge theatre, whose associseted D-prime strip is equal to

mod
"D+ in the given D-X-Hodge theatre. We write T§~ for the F-prime-strip tautologically
associated to (the {Tiv}yey -portion of) the ©-Hodge theatre "HT®. Note that 1D

can ben identified with the D-prime-strip associated to T§~:

THTO — = 15

I

fHTPH 1D,

Definition 10.22.  ([IUTchI, Example 5.4 (iii), (iv)]) Let TF® be a pre-Frobenioid
isomorphic to F®(TD®) as in Example 9.5, where "D® is the data in the given D-X-
Hodge theatre THTP®. We write TF® := 1 F®|; po, and TF® 4= T7®|ierminal object in 1D®
as in Example 9.5.

(1) For § € LabCusp(D®), a §-valuation € V(ID®) is a valuation which lies in
the “image” (in the obvious sense) via TgbI;iF of the unique D-prime-strip TCDj of
the capsule 7D ; such that the bijection LabCusp("D®) = LabCusp(1®;) induced
by Tq%-\IF sends d to the element of LabCusp("®;) = F (cf. Proposition 10.15)
labelled by 1 € F;* (Note that, if we allow ourselves to use the model object D®,
then a d-valuation € V(1D®) is an element, which is sent to an elemento of VX"
V(K) under the bijection LabCusp(D®) = LabCusp(D®) induced by a unique
Aut ("D®)-orbit of isomorphisms "D® = D® sending § — [¢] € LabCusp(D®)).

(2) For § € LabCusp(D®), by localising at each of the J-valuations € V(TD®), from
TF® (or, from ((TI®)at ~ TM®) = (7,(1D®) ~ O®*) in Definition 9.6), we can
construct an F-prime-strip

tF@ B
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which is well-defined up to isomorphism (Note that the natural projection yEum
Vimod is not injective, hence, it is necessary to think that TF|s is well-defined only
up to isomorphism, since there is no canonical choice of an element of a fiber of the
natural projection yEum Vimod) as follows: For a non-Archimedean J-valuation
v, it is the p,-adic Frobenioid associated to the restrictions to “the open subgroup”
of TTI,, Ny (TD®) determined by 6 € LabCusp("D®) (i.e., corresponding to “X” or
“g”) (cf. Definition 9.6 for TII,,). Here, if v lies over an element of V224, "then we
have to replace the above “open subgroup” by its tempered analogue, which can
be done by reconstructing, from the open subgroup of II,, N 71 (TD?), the semi-
graph of anabelioids by Remark 6.12.1 (cf. also [SemiAnbd, Theorem 6.6]). For an
Archimedean §-valuation v, this follows from Proposition 4.8, Lemma 4.9, and the

isomorphism M®(TD®) = T™M® in Example 9.5.
For an F-prime-strip *§ whose associated D-prime-strip is *®, a poly-morphism

1 5 ﬂ tr®
full poly
is a full poly-isomorphism *§ -~ TF®|; for some 6§ € LabCusp(TD®) (Note that
the fact that TF®|s is well-defined only up to isomorphism is harmless here). We
regard such a poly-morphism *§ Pl t 7o i lying over an induced poly-morphism
tp PN ipe. Note also that such a poly-morphism ¥F POt o i compatible
with the local and global o k-coric structures (cf. Definition 9.6) in the following
sense: The restriction of associated Kummer classes determines a collection of poly-
morphisms of pseudo-monoids

{2y A M2 B My € Mo |
= veY

indexed by V, where the left-hand side (TTI®)*t ~ TI\\/JI?o .. 1s well-defined up to au-
tomorphisms induced by the inner automorphisms of (TII®)"* and the right-hand
side iMoo,.w - jFMOO,{XU is well-defined up to automorphisms induced by the au-
tomorphisms of the F-prime strip *§. For v € V"°", the above poly-morphism is
equivariant with respect to the homomorphisms (*IT,)** — (TII®)*t (cf. Defini-
tion 9.6 (2) for (*II,)"") induced by the given poly-morphism *§ POl t Fo,

For a capsule £F = {¢F} of F-prime-strips, whose associated capsule of D-prime-
strips is F®, and an F-prime-strip '§ whose associated D-prime-strip is D, a
poly-morphism

By PUWAFO (resp. Py R 1)
is a collection of poly-morphisms {°F poly TF®}er (resp. {¢F poly "%}eer). We
consider a poly-morphism *g poly TF® (resp. FF poly %) as lying over the induced
poly-morphism £® Pl tp® (resp. D poly D).
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We return to the situation of

[T

I

Definition 10.23. (Model ©-Bridge, Model NF-Bridge, Diagonal F-Objects,
Localisation Functors, [IUTchI, Example 5.4 (ii), (v), (i), (vi), Example 5.1 (vii)]) For
jed, let TSj = {T}"yj }jes be an F-prime-strip whose associated D-prime-strip is equal
to 1D;. We also write 1§ := {1,};es (i-e., a capsule indexed by j € J).

Let TF® be a pre-Frobenioid isomorphic to F®(1D®) as in Example 9.5, where
fD® is the data in the given D-X-Hodge theatre THTP®. We write TF® := 1 F®|; po,
and TF2 = TF®| minal object in 1D®, s in Example 9.5.

(1) For j € J, we write
ol
fyo ¢ 1, P g

for the poly-morphism (cf. Definition 10.22 (4)) uniquely determined by ¢, by
Remark 10.10.1. Write

ng = {ij'@}je[gl* : TS”VJ ﬂ TS>~

We regard WJS as lying over Tgbg. We shall refer to WJS as the model ©-bridge.
cf. also the following diagram:

To9, 163

(2) For 57 € J, we write
NF pol ®
Td,j . Tsrj {1t r

for the poly-morphism (cf. Definition 10.22 (3)) uniquely determined by ¢, by
Lemma 10.10 (2). Write

ol
Twa:l\eIF = {Tw}\IF}jeFfé 15, =S T
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We regard ngF as lying over TqﬁiF. We shall refer to WQF as the model NF-
bridge. cf. also the following diagram:

ng,TgJ T Fe

I l

T@j, T@J <~ T'HTD_g  E— Do,

\_/

NF NF
TN, Tl

(3) Let also 1§y = {T}—Ew }v,y€v,,, be an F-prime-strip. We write 1D for the
associated D-prime-strip to T& 5. We write V; := {v;},ey. We have a natural
bijection V SV:w ; + v. These bijections determine the diagonal subset

VipyCV,:= Hyj'a
jeJ
which admits a natural bijection y< J) = V. Hence, we obtain a natural bijection

We have the full poly-isomorphism

full poly

T = 13
and the “diagonal arrow”
S — 15,

full poly

~

which is the collection of the full poly-isomorphisms T& 5 TS]- indexed by
jJ € J. We regard ng (resp. T3’< 7)) as a copy of T¥. “situated on” the constituent
labelled by j € J (resp. “situated in a diagonal fashion on” all the consitutents) of
the capsule 7D ;.

We have natural bijections
Vi =V, 5 Prime(TF2 ) = Vinoa
for 7 € J. Write

TFEy = {1 Faoas Yy = Prime('F5 )1,

T]:J@ = {TF®

mod’

\2 5 Prime(T]:fod)}
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for j € J. We regard T}"j@) (resp. .7-"<J>) as a copy of T]:Eod “situated on” the
constituent labelled by j € J (resp. “situated in a diagonal fashion on” all the
consitutents) of the capsule "®;. When we write TF® ) for the underlying cate-
gory (i.e., T.7-"5?0(1) of T.7-"8> by abuse of notation, we have a natural embedding of
categories

T s TF® . T ®

Foy = 17 =117

jeJ

Note that we do not regard the category T]—" ® as being a (pre-)Frobenioid. We write
T]—" oR T]:?]ﬂf for the realifications (Definition 8.4) of T]:<€f>]> Tff’?]) respectively, and

@R . ®R
write TF§ ngJT]:j .

Since T}"EO q is defined by the restriction to the terminal object of "D any poly-
morphism TF POl t Fo (resp. 1§, poly TF®) (cf. Definition 10.22 (3)) induces,
via restriction (in the obvious sense), the same isomorphism class

gl. to loc. 1
F

CASH

(T}“@ _)Jr]_“® S )T}"god L>T]:<®>

(resp. (FF® = TF® o) 1FS S TFp S 100 1, )

arc

of restriction functors, for each vy € y<J> (resp. v; € yj) (Here, for vy € Yo
(resp. v; € V§™), we write TF, v, (resp. T.7-"%) for the category component of
the triple, by abuse of notation), i.e., it is independent of the choice (among its
F}*-conjugates) of the poly-morphism TF 5y — TF® (resp. TF; — TF®). cf. also
Remark 11.22.1 and Remark 9.6.2 (4) (in the second numeration). We write

(FFO - TF® o) FS = TFE, B 10 15

m (J)

~ 1. loc.
(resp. (TFO 5 1F® o)iFe T iFe & 000 g, )

for the collection of the above isomorphism classes of restriction functors, as v
(resp. v;) ranges over the elements of V, ;y (resp. V). By combining j € J, we also
obtain a natural isomorphism classes

Tff]’@ gl.tigoc. T;S,J

of restriction functors. We also obtain their natural realifications

TJT'??]I;R gl. to loc. TSR TF®R gl. to loc. Ts, ]LJT_.J@R gl.ti;oc. TSE@
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Definition 10.24. (NF-Bridge, ©-Bridge, X-Hodge Theatre, [IUTchI, Defini-

tion 5.5))

(1)

an NF-bridge is a collection
inF
(igj * o tre __, ij:@)

as follows:

(a) 5 = {}3;},es is a capsule of F-prime-strip indexed by J. We write D ; =
{#D,} ;e for the associated capsule of D-prime-strips.

(b) *F®, 1 F® are pre-Frobenioids isomorphic toy *F®, *F® in the definition of
the model NF-bridge (Definition 10.23), respectively. We write *D®, #D® for
the base categories of * F®, ¥ F® respectively.

(c) The arrow --» consists of a morphism *D® — *D®  which is abstractly equiv-
alent (cf. Section 0.2) to the morphism "D® — TD® definition of the model
NF-bridge (Definition 10.23), and an isomorphism *F® 5 *F®|;pe.

(d) *XF is a poly-morphism which is a unique lift of a poly-morphism *¢JF :
9, PN D@ guch that i(bI;iF forms a D-NF-bridge.

Note that we can associate an D-NF-bridge *¢NF to any NF-bridge *{F. An
isomorphism of NF-bridges

leF QwNF
(1&,1 —= 1F® - 1f®) = (2&,2 e 2]—"®)

is a triple

capsule-full poly poly

~

1 2 1 ~ 2 1 ~ 2
S — STy FO = .7:@, F® = 27®

capsule-full poly poly
of a capsule-full poly-isomorphism 1§, — 257, (We write '1©,; —
poly
29, for the induced poly-isomorphism), a poly-isomorphism 1 F® =5 2F® (We
poly poly
write 1D® =3 2D® for the induced poly-isomorphism) such that the pair '©; —
poly

~

29, and 'D® = 2D® forms a morphism of the associated D-NF-bridges, and
an isomoprhism 1F® — 2F®gsuch that this triple is compatible (in the obvious
sense) with 1¢§F, 2 QF, and the respective --+’s. Note that we can associate an

isomorphism of D-NF-bridges to any isomorphism of NF-bridges.
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(2) A ©-bridge is a collection
i R )
SJ — $> -——> HT

as follows:

(a) ¥§; = {#3;},ecs is a capsule of F-prime-strips indexed by J We write D ; =
{#D,} e, for the associated capsule of D-prime-strips.

(b) ¥HT® is a ©-Hodge theatre.

(c) 3~ is the F-prime-strip tautologically associated to 'HT®. We use the nota-
tion --» to write this relationship between ¥F~ and ¥H7®. We write D- for
the D-prime-strip associated to ¥Fs.

(d) ¥ = {ij@ }jeF;:e is the collection of poly-morphisms izﬂj@ 15 poly Iz
determined by a D-O-bridge ¢9 = {igb? }jeﬂ,i;e by Remark 10.10.1.

Note that we can associate an D-O-bridge ¢ to any ©-bridge 1. An isomor-
phism of ®-bridges

(1&]1 g iHT@) - (2&;2 o 27{7'6)

is a triple
capsule-full poly full poly
Fn T W 8 T B, THTO T
capsule-full poly
of a capsule-full poly-isomorphism 1§ ;, = 25 7, the full poly-isomorphism
poly

LFe@ =5 2F7© and an isomoprhism 'F® =3 2F® of HT-Hodge theatres, such that
this triple is compatible (in the obvious sense) with 11&2, ng, and the respective
--+’s. Note that we can associate an isomorphism of D-O-bridges to any isomor-
phism of ©-bridges.

(3) A ©®©NF-Hodge theatre (or X-Hodge theatre) is a collection

W g

iHng(iJ-@ - FFpe XAz, X i Lo 17{7_@),

£NF £0
where (i]-'@ - tFO <¢—9€ i&]) forms an NF-bridge, and (i&J k L SN i”;‘-[7’@)

forms a ©-bridge, such that the associated D-NF-bridge iqﬁiF and the associated
D-O-bridge ¢ form a D-K-Hodge theatre. An isomorphism of X-Hodge the-
atres is a pair of a morphism of NF-bridge and a morphism of ©-bridge, which
induce the same bijection between the index sets of the respective capsules of F-

prime-strips. We define compositions of them in an obvious manner.
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Lemma 10.25.  (Properties of NF-Brideges, ©-Bridges, X-Hodge theatres, [[UTchI,
Corollary 5.6))

(1) For NF-bridges "X¥, 298¥ (resp. ©-bridges 1@[152, zwg, resp. X-Hodge theatres
17—[7&, 27—[7&) whose associated D-NF-bridges (resp. D-O-bridges, resp. D-K-
Hodge theatres) are 1¢LF, 268 (resp. 109, 262, resp. 1y 7PH, QHTDM) respec-
tively, the natural map

Isom(lzpNF 2 F) — Isom( ngF 2 NF)
(resp. Isom(lw 2@[1*) —>Isom( ¢5® 2 2),

resp. Isom(*HT™ 2HTY) - Isom(*HTP® 2HTPH) )
s bijective.
(2) For an NF-bridge ing and a O-bridge ing, the set
{ capsule-full poly

capsule-full poly-isom. *F; — *F; by which i@bgF, i¢§ form a X-Hodge theatre}

is an ] -torsor.

Proof. By using Lemma 10.10 (5), the claim (1) (resp. (2)) follows from Lemma 10.10
(1) (resp. (2)). O

§10.5. The Additive Symmetry B: @*°!l_Hodge Theatres and @¢!-,
©*-Bridges.
We begin constructing the additive portion of full Hodge theatres.

Definition 10.26.  ([IUTchl, Definition 6.1 (i)]) We shall refer to an element of
Ffi as positive (resp. negative) if it is sent to +1 (resp. —1) by the natural surjction
FX*E - {+1}.

(1) An ]Fli-group is a set £ with a {£1}-orbit of bijections £ = F;,. Hence, any
F li-group has a natural F;-module structure.

9) An FE-torsor is a set T with an F**-orbit of bijections T = F; (Here, Ff 5 (A, +1
l l l
is actingg on z € F; via z — 4z + A). For an ]Fli—torsor T, take an bijection
f:T 5 Fy in the given Ffi—orbit, then we obtain a subgroup

Aut (T) (resp. Auto(T) )

of Aut(ges)(1) by transporting the subgroup F; = {z +— z + Afor A € F;} C
Aut (gets) (F7) (resp. Ff* = {2 = 424+ Afor A € F;} C Aut(gets) (F7)) via f.
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Note that this subgroup is independent of the choice of f in its lei—orbit. More-
over, any element of Auti(7") is independent of the choice of f in its [F;-orbit,
hence, if we consider f up to Ffi—orbit, then it gives us a {£1}-orbit of bijections
Aut, (T) = Fy, i.e., Aut, (T) has a natural ]Fli—group structure. We shall refer to
Aut (T) as the Fli—group of positive automorphisms of T'. Note that we have
[Auty (T); Aut, (T)] = 2.

The following is an additive counterpart of Definition 10.14

Definition 10.27.  ([IUTchI, Definition 6.1 (ii), (iii), (vi)]) Let ® = {TD,},ev

be a D-prime-strip.

(1) For v € yhad (resp. v € yeood n V™), we can group-theoretically reconstruct

in a functorial manner, from 71 (TD,), a tempered group (resp. a profinite group)
(D m(1Dy)) corresponding to X, by Lemma 7.12 (resp. by Lemma 7.25). We write

Tzf;

for its B(—)°. We have a natural morphism D, — YD (This corresponds to
éﬂ — X, (resp. év — X,)). Similarly, for v € ya“fwe can algorithmically
reconstruct, in a functorial manner, from D, an Aut-holomorphic orbispace TQvi
corresponding to X, by translating Lemma 7.25 into the theory of Aut—holomorphi::
spaces (since gv admits a K ,-core) with a natural morphism TD2 — TQ; Write

Tgi = {ngi}yey

Recall that we can algorithmically reconstruct the set of conjugacy classes of cuspi-
dal decomposition groups of 71 (1D,) or 7, (1DE) by Corollary 6.12 for v € V"I, by
Corollary 2.9 for v € V&°°d N V™" and by cor;sidering 7o(—) of a cofinal collection
of the complements of compact subsets of the underlying topological space of TDE
or TQEi for v € V*°. We say them the set of cusps of D, or TQf.

For v € V, a £-label class of cusps of TD2 is the set of cusps of TD2 lying over
a single (not necessarily non-zero) cusp of TQ;;. We write

LabCusp™ (1D,)

for the set of £-label classes of cusps of TD,. Note that LabCusp(D,) has a natural
[F;*-action. Note also that, for any v € V, we can algorithmically reconstruct a zero
element

Tﬂg € LabCusp™ (TD,),
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and a canonical element
Tﬂf e LabCusp® ('D,)

which is well-defined up to multiplication by +1, such that we have TQ;—L — Tﬁv
under the natural bijection a a

{LabCuspi(TDg) \ {ng}} /{£1} 5 LabCusp('D,).
Hence, we have a natural bijection
LabCusp™ ('D,) = Fy,

which is well-defined up to multiplication by £1, and compatible with the bijection
LabCusp(1D,) = F/ in Proposition 10.15, i.e., LabCuspi(TDg) has a natural Fli—
group structure. This structure IFli—group gives us a natural surjection

Aut("D,) - {#1}
by considering the induced automorphism of LaLbCuspi (1D,). We write
Aut, ("D,) C Aut("D,)

for the kernel of the above surjection, and we shall refer to it as the subgroup
of positive automorphisms Write Aut_("D,) := Aut("D,) \ Auty ("D, ),and we
shall refer to it as the set of negative automorphisms. Similarly, for o € {£1}Y,

we write
Auty (TD) € Auty (TD) (resp. Auto (D) c Auty (D) )

for the subgroup of automorphisms such that any v(€ V)-component is positive
(resp. v(€ V)-component is positive if a(v) = +1 and negetive if a(v) = —1),
and we shall refer to it as the subgroup of positive automorphisms (resp. the
subgroup of a-signed automorphisms).

Let "D®% is a category equivalent to the model global object D®* in Definition 10.3.
Then by Remark 2.9.2, similarly we can define the set of cusps of "D®% and the
set of +-label classes of cusps

LabCusp™ (fD®%),
which can be identified with the set of cusps of TD®*.

Definition 10.28.  ([IUTchI, Definition 6.1 (iv)]) Let T® = {TD,},ev, D =
+-full poly

~
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+-full poly
D, (resp. ™® = D) is a poly-isomorphism obtained as the Aut, ("D,)-orbit

(resp. Auty (TD)-orbit) (or equivalently, Aut, (¥D,)-orbit (resp. Auty (*D)-orbit)) of

an isomorphism TD2 = J;DE (resp. 7 5 D). If 7D = #D, then there are precisely two
+-full poly

~

+-full poly-isomorphisms D, —+ D, (resp. the set of +-full poly-isomorphisms
D, = D, has a natural bijection with {+1}¥). We shall refer to the +-full poly-
isomorphism determined by the identity automorphism as positive, and the other one
negative (resp. the +-full poly-isomorphism corresponding to a € {1}¥ an a-signed
+-full poly-automorphism). A capsule-+-full poly-morphism between capsules
of D-prime-strips

capsule-+-full poly

~

{T:Dt}teT — {igt’}t’eT’

+-full poly

is a collection of 4+-full poly-isomorphisms '®, — iQL(t), relative to some injection
LT =T,

Definition 10.29.  ([IUTchI, Definition 6.1 (v)]) As in Definition 10.16, we can
group-theoretically construct, from the model global object D@+ in Definition 10.3, the

outer homomorphism
(Aut(X ) =) Aut(DOF) — GLo(Fy) /{£1}

determined by E[l], by considering the Galois action on A3 ®F; (The first isomorphism
follows from Theorem 3.17). Note that the image of the above outer homomorphism

contains the Borel subgroup { <; i) } of SLo(F;)/{£1} since the covering X - - X

corresponds to the rank one quotient A%}’ ®F; — Q. This rank one quotient determines
a natural surjective homomorphism

Aut(D®F) — Ff,

which can be reconstructed group-theoretically from D®*. We write Auty(D®F) C
Aut(DO%F) 5 Aut(X ) for the kernel of the above homomorphism. Note that the sub-
group Auty (D®F) C Aut(D®*) 5 Aut(X ) contains Autx (X ), and acts transitively
on the cusps of X ;. Next, we write Auteusy(D®F) C Aut(DOF) for the subgroup of
automorphisms which fix the cusps of X ;- (Note that we can group-theoretically recon-
struct this subgroup by Remark 2.9.2). Then we obtain natural outer isomorphisms

Autp (X ) = Auty (DOF)/Aut sy (DOF) 5 F1E,

where the second isomorphism depends on the choice of the cusp € of C. cf. also the
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following diagram:

Aut(X ) —— Aut(DOF) ——Ff

Ff e (g @ ) CSLa(F)/{£1}

Autg (X o) —— Aut;('D@i) —

If we write Aut, (D®F) C Auty(D®F) for the unique subgroup of index 2 containing
Auteysp (D®%), then the cusp € determines a natural ]Fli-group structure on the subgroup

Auty (D) /Attteysp (DOF) € Auts(DOF)/Autensy (DOF)

(corresponding to Gal(X z/Xx) C Autx (X)), and a natural Ff-torsor structure on
LabCusp® (D®%). Write also

VE = Auty (DOF) - V = Auteys,(DOF) -V € V(K).

Note also that the subgoup Auty(D®F) C Aut(D®F) = Aut(X ) can be identified
with the subgroup of Aut(X ;) which stabilises V*, and also that we can easily show
that V¥ = V=" (Definition 10.16) (cf. [[UTchI, Remark 6.1.1]).

Remark 10.29.1.  Note that Ffi—symmetry permutes the cusps of X without
permuting V* (C V(K)), and is of geometric nature, which is suited to construct Hodge-
Arakelov-theoretic evaluation map (Section 11).

On the other hand, F}* is a subquotient of Gal(K/F') and F; -symmetry permutes
various F}*-translates of VE = VI ¢ VB (¢ V(K)), and is of arithmetic nature (cf.
[IUTchl, Remark 6.12.6 (i)]), which is suite to the situation where we have to consider
descend from K to Fj,0q. Such a situation induces global Galois permutations of various
copies of G, (v € V"") associated to distinct labels € F;* which are only well-defined
up to conjugacy indeterminacies, hence, F;*-symmetry is ill-suited to construct Hodge-
Arakelov-theoretic evaluation map.

Remark 10.29.2.  (cf. [IUTchII, Remark 4.7.6]) One of the important differences
of F;-symmetry and Fﬁi—symmetry is that F;*-symmetry does not permute the label 0
with the other labels, on the other hand, fi—symmetry does.

We need to permute the label 0 with the other labels in F fi—symmetry to perform
the conjugate synchronisation (cf. Corollary 11.16 (1)), which is used to construct “di-
agonal objects” or “horizontally coric objects” (cf. Corollary 11.16, Corollary 11.17, and
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Corollary 11.24) or “mono-analytic cores” (In this sense, label 0 is closely related to the
units and additive symmetry. cf. [[UTchll, Remark 4.7.3]),

On the other hand, we need to separate the label 0 from the other labels in IFZ*—
symmetry, since the simultaneous excutions of the final multiradial algorithms on objects
i each non-zero labels are compatible with each other by separating from mono-analytic
cores (objects in the label 0), i.e., the algorithm is multiradial (cf. Section 11.1, and
§A.4), and we perform Kummer theory for NF (Corollary 11.23) with F;*-symmetry
(since F/*-symmetry is of arithmetic nature, and suited to the situation involved Galois
group Gal(K/Fp,04)) in the NF portion of the final multiradial algorithm. Note also
that the value group portion of the final multiradial algorithm, which involves theta
values arising from non-zero labels, need to be separated from 0-labelled objects (i.e.,
mono-analytic cores, or units). In this sense, the non-zero labels are closely related to

the value groups and multiplicative symmetry.

Definition 10.30.  (Model D-©*-Bridge, [ITUTchI, Example 6.2]) In this defini-
tion, we regard F; as an Fli-group. Let ®y = {Dx 4 }vev, D¢ = {Dy, }uev be copies of
the tautological D-prime-strip {D, },ev for each t € F; (Here, we write v, for the pair
(t,v)). For each t € Iy, let

N +-full poly N +-full poly
qsg : Dy, — Dey, ¢f 1Dy, —3 Dy
be the positive +-full poly-isomorphisms respectively, with respect to the identifications
with the tautological D-prime-strip {D, }yev. Then we put

+ + ol
2 = {d)? }te]Fl P Dy = {’Dt}tem s Dy .

We shall refer to qﬁi as model base-(or D-)@%-bridge.
We have a natural poly-automorphism —1p, of order 2 on the triple (91,9, ¢2i)

as follows: The poly-automorphism —1y, acts on [F; as multiplication by —1, and induces
poly +-full poly

~

the poly-morphisms ®; — ®_; (t € F}) and ®, — D, determined by the +-
full poly-automorphism whose sign at every v € V is negative, with respect to the
identifications with the tautological D-prime-strip {D,}yev. This —1p, is compatible
with ¢gi in the obvious sense. Similarly, each a € {41}¥ determines a nftural poly-
(C]

automorphism a®” of order 1 or 2 as follows: The poly-automorphism o acts on F,

as the identity and the a-signed +-full poly-automorphism on ©; (¢ € F;) and ®.. This
(__)i . . . @i . .
o is compatible with ¢3  in the obvious sense.
Definition 10.31. (Model D-©°!-Bridge, [IUTchl, Example 6.3]) In this defi-
nition, we regard [; as an ]Fli-torsor. Let ®; = {D,, }vev be a copy of the tautological
D-prime-strip {D, }yev for each t € F;, and write ® 1 := {®;}+er, as in Definition 10.30.
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Let D®* be the model global object in Definition 10.3. In the following, fix an isomor-
phism LabCusp™(D®*) 5 F, of Fif-torsor (cf. Definition 10.29). This identification
induces an isomorphism Auty(DOF/Autens,(D2F) = F'* of groups For v € V>
(resp. v € VE°I NV resp. v € V™), we write

ell
oy @ Dy — DF

°v

for the natural morphism correpsonding to X , X, = Xy (resp. g =X, > Xg,

resp. a tautological morphism D, = § — X, = X(D®*,v) (cf. also Definition 10.11
v v v

(1), (2)).
Write

(ZSS:H = Autcusp (D@i> o ¢E~)’;H o Aut+ (,DQO) . DBO w 'D@:t,

and

@ell @ell pol +
Since qﬁ?eu is stable under the action of Auteysp (D®%), we obtain a poly-morphism

?eu := (action of ) o (?eu D Dy poly DO,
by post-composing a lift of t € F; = Aut (DOF)/Auteysp (DOF) (C F)*F = Auty (DOF)
/Auteusp (D9F)) to Auty (D9F). Hence, we obtain a poly-morphism

ell ell ol
09 = {0 Yier, : Dy 23 DOE

from a capsule of D-prime-strip to the global object D®* (cf. Definition 10.11 (3)). This
is called the model base-(or D-)@¢°!-bridge.
Note that each v € Ffi gives us a natural poly-automorphism v4 of ® as follows:

The automorphism ~4 acts on [F; via the usual action of Ffi on F;, and induces the
+-full poly
+-full poly-isomorphism ®; — D) whose sign at every v € V is equal to the

sign of 7. In this way, we obtain a natural poly-action of Ff‘i on ®y. On the other
hand, the isomorphism Auts (DOF)/Autens,(DOF) =5 F*F determines a natural poly-
action of IF;HE on D®*. Note that gbgen is equivariant with respect to these natural
poly-actions of Ffi on ©4 and D®*. Hence, we obtain a natural poly-action of Ffi
on (Di,D@i,gbgeH).

Definition 10.32.  (D-O*-Bridge, D-0°"-Bridge, D-B-Hodge Theatre, [[UTchI,
Definition 6.4])

(1) A base-(or D-)@*-bridge is a poly-morphism

'69" : tor B 1o, ,
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where T®. is a D-prime-strip, and "®r is a cupsule of D-prime-strips indexed
by an ]Fli—group T, such that there exist isomorphisms ©,. = D, D4 = 1D,
whose induced morphism F; = T on the index sets is an isomorphism of IFli—
groups, and conjugation by which sends qﬁii — Td)ii. An isomorphism of D-
O©*-bridges <T¢$i 1D poly T©>> = (i¢2i D poly i®>> is a pair of a
capsule-+full poly
capsule-+-full poly-isomorphism T®7 — D¢ whose induced morphism 7= T”
on the index sets is an isomorphism of Fli—groups, and a +-full-poly isomorphism
+-full poly

~

oM — 19, , which are compatible with quﬁgi, igbgi . We define compositions

of them in an obvious manner.
(2) A base-(or D-)®°!"-bridge is a poly-morphism
9" .t PN tpet

where "D®* is a category equivalent to the model global object D®*, and T®p

is a cupsule of D-prime-strips indexed by an Fli—torsor T, such that there exist

isomorphisms D®* 5 DO+ o, 5 19, whose induced morphism F; = T on

the index sets is an isomorphism of Fi—torsors and conjugation by which sends

d)een — Tgbi An isomorphism of D-@°!-bridges (%991] "D poly Tl)@i) =
capsule-+-full poly

(igb@eu D5 poly JtD@i) is a pair of a capsule-+-full poly-isomorphism ®7 5 D4

whose induced morphism T = T’ on the index sets is an isomorphism of IE'Z -

torsors, and an Auteusp(TD®%F)-orbit (or, equivalently, an Aute,s,(FD®F)-orbit)
poly
tpet 5 IpPOE of jsomorphisms, which are compatible with Tgbien, iqﬁeeu.

define compositions of them in an obvious manner.

(3) A base-(or D-)@*°_Hodge theatre (or a D-B-Hodge theatre) is a collection
T¢ ¢®e11
THT'D—EE _ 1‘@ i T@T i> Jf’D@:I: ,

where 7' is an IE?li—glroup7 Tgbgeu is a D-0°!-bridge, and Tgbgi is a D-©*-bridge, such
that there exist isomorphisms D@+ 5 DO+ ., 5 19, ©. 5 7D, | conjugation
by which sends gbeel qb@e“ gbgi — Tgbgi. An isomorphism of D-H-Hodge
theatres is a pair of isomorphisms of D-0°"-bridges and D-O%-bridges such that
they induce the same poly-isomorphism of the respective capsules of D-prime-strips.
We define compositions of them in an obvious manner.

The following proposition is an additive analogue of Proposition 10.33, and follows
by the same manner as Proposition 10.33:
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Proposition 10.33.  (Transport of £-Label Classes of Cusps via Base-Bridges,
.rd)oell

L 92"
[TUTchI, Proposition 6.5]) Let tHTPB = (1D, 1D, — 1DO%) be a D-B-Hodge
theatre.

(1)

(2)

The D-0°-bridge Tgbgeu induces an isomorphism
ngen : LabCuSpi(TDgt) = LabCusp™ (fD®%)

of Fli—torsors of *-label classes of cusps for each v € V, t € T. Moreover, the
composite

nge“ = ( Ceen) (ng“) : LabCuSpi(TDyt) 5 LabCuSpi(TD%)

Uy Wy

is an isomorphism of Fi-groups for w € V. By these identifications Tﬁee” of
F -groups LabCusp (TD%) when we vary v € V, we can write

LabCusp™ (fD,)
for them, and we can write the above isomorphism as an isomorphism
Tgee” LabCusp™ (1D,) 5 LabCusp® (fD®%)
of Fli—torsors.
The D-O7 -bridge Tgbgi induces an isomorphism
ng@f : LabCuspi(TDyt) = LabCuspi(T®>,y)

of ]Fli—groups of +-label classes of cusps for each v € V, t € T. Moreover, the
composites

ell + ~
TgHw = (ngo) Te w0 (1¢7) ™"+ LabCusp™ ("D, ) = LabCusp™ ("D ),

VW

1607, L = (1¢9) o 1e® , o (1¢®7) : LabCusp*(1D,,) % LabCusp™® ("D,,)

(Here we write O for the zero element of the Fi -group T') are isomorphisms of
@611

]Fi -groups for w € V, and we also have va o, = vat,wt By these identifications

T§>,y,w of Ff—gmups LabCusp™ (1Dy. ) when we vary v € V, we can write
LabCusp™ (TD,.)

for them, and the various T(gi s, and TCy@:H 's determine a single (well-defined)
1somorphism
TQ@eH : LabCusp™® (f©,) = LabCusp® (D,.)

of IFli -groups.
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(8) We have a natural isomorphism
f¢L : LabCusp™ (Do) S 1

ofIFli—torsors, by considering the inverse of the map T >t — TQ@ell(O) € LabCusp® (fDo%),
where we write 0 for the zero element of the ]F‘ljE -group LabCuspi(T@t). Moreover,

the composite
(™) o (1¢P™) o (1¢P7) o (T¢97) : LabCusp* (1Dg) 5 LabCusp* (1Dy)
is equal to the action of (TC(?QH)_l((TCi)_l(t)).
(4) For a € Auty (TDOF)/Auteys, (TDOF), if we replece T(;Si)eu by o Tgbge“, then the

resulting "fCt@eu 718 related to the original TC?e” by post-composing with the image

of a via the natural bijection
Auty ("DOF) / Attt ensp (1D®F) 5 Auty (LabCusp™ (1D9%)) (22 F)* )
(cf. also Definition 10.29).

The following is an additive analogue of Proposition 10.20, and it follows from the

definitions:

Proposition 10.34.  (Properties of D-O*-Brideges, D-0°"-Bridges, D-B-Hodge
theatres, [IUTchl, Proposition 6.6])
(1) For D-©%-bridges T(bgi, i¢$i , the set Isom(Tqﬁi , i(bgi) is a {£1} x{£1}¥ -torsor,
where the first factor {£1} (resp. the second factor {1}¥) corresponds to the poly-
automorphism —1g, (resp. a@i) in Definition 10.30.

(2) For D-0°"-bridges Tgbgeu, iqbge“, the set Tsom(TgpNF, ¥oNF) is an Ffi-torsor, and
we have a natural isomorphism Isom(TgRF, FoIF) = IsomFli_torsors(T, T') of F)'*-

torsors.
(3) For D-HB-Hodge theatres THTD'EE, iHTD'EE, the set Isom(THTDE,i'HTDE) 18

an {£1}-torsor, and we have a natural isomorphism Isom(THTPS 137P-5)
(T, T") of {£1}-torsors.

I

ISOm]Fl:t -groups

(4) For a D-©%-bridge W)gi and a D-©"-bridge T¢§°“, the set

capsule-+-full poly N .
capsule—+-full poly-isom. TOp — "D by which Tgbg ,Tqbi form a D-H-Hodge theatre

is an Ffi x {£1}Y -torsor, where the first factor Ffi (resp. the subgroup {£1} X
{£1}Y) corresponds to the F)'= in (2) (resp. to the {£1}x{+1}¥ in (1)). Moreover,
the first factor can be regarded as corresponding to the structure group of the F fi—

/
torsor ISOHI]Fli torsors (LT
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(5) For a D-©°-bridge T¢$e“, we have a functorial algorithm to conitruct, up to ]Ffi—
indeterminacy, a D-B-Hodge theatre whose D-0©°"-bridge is T(bge .

Definition 10.35.  ([[UTchI, Corollary 6.10]) Let tH7P® tx7PHE pe D-m-
Hodge theatres. the base-(or D-)@%°!-link (or D-H-link)

fugPE 2y iy PE

is the full poly-isomorphism
full poly

~

DT = iph

between the mono-analyticisations of the D-prime-strips constructed in Lemma 10.38
in the next subsection.

Remark 10.35.1.  In D-B-link, the D" -prime-strips are shared, but not the arith-
metically holomorphic structures. We can visualise the “shared” and “non-shared”
relation as follows:

fHTPE |- - > | D] =ik |« — | iy7PH

We shall refer to this diagram as the étale-picture of D-H-Hodge theatres. Note

that we have a permutation symmetry in the étale-picture.

Definition 10.36. (©+-Bridge, ©°!-Bridge, B-Hodge Theatre, [[UTchI, Deifi-
nition 6.11])

(1) A ©%-bridge is a poly-morphism
+ ol
T2 Tgr PR

where TF, is an F-prime-strip, and T§r is a cupsule of F-prime-strips indexed by an

]Fli-group T, which lifts (cf. Lemma 10.10 (2)) a D-©*-bridge Td)gi 1D poly D, .

An isomorphism of @i-bridges <T¢$i 1% lﬂﬁ TS>) = (iwgi R T ﬂ ¢S>)
poly poly

is a pair of poly-isomorphisms '§r — *Fr and 7§, — ¥F., which lifts a mor-

phism between the associated D-O*-bridges Tgbgi, 1¢gi. We define compositions

of them in an obvious manner.

(2) A ©°l-bridge
Ty 15y 2N Tpot,
where "D®* is a category equivalent to the model global object D®* in Defini-
tion 10.3, and T§r is a capsule of F-prime-strips indexed by an ]Fli-torsor T, is a
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D-0°"_bridge T(b@e” "D poly "DO% where T® is the associated capsule of D-
prime-strips to T§z. An isomorphism of @e”-bridges (sz@eu 1% ﬂ TD©i> 5

poly poly
e 1
<i¢@ ! e 22X iD@i> is a pair of poly-isomorphisms t§r — *§7 and DO+ =

1DO% which determines a morphism between the associated D-©°!-bridges Tgb@en,
igb@e“ We define compositions of them in an obvious manner.

(3) A @*°_Hodge theatre (or a B-Hodge theatre) is a collection
o R T
HT™ = S>. §r — 'D

where Twi)i is a ©*-bridge, and Tzﬁgeu is a ©°-bridge, such that the associated
D-O*-bridge Tﬁi and the associated D-0°"-bridge ngsge“ form a D-H-Hodge the-
atre. An isomorphism of H-Hodge theatres is a pair of a morphism of ©*-
bridge and a morphism of ©°!-bridge, which induce the same bijection between the
respective capsules of F-prime-strips. We define compositions of them in an obvious
manner.

The following lemma follows from the definitions:

Lemma 10.37.  (Properties of ©*-Brideges, ©°!-Bridges, B-Hodge theatres,
[IUTchI, Corollary 6.12])

(1) For ©%-bridges 1¢gi, Q@ZJEi (resp. ©°-bridges 11/)2011, Q@Dicn, resp. B-Hodge the-
atres YHTE, 27—[TEE) whose associated D-OF -bridges (resp. D-0V-bridges, resp.
D-H-Hodge theatres) are 1¢2i, Qqﬁi (resp. 1¢$en, 2¢ien, resp. 'HTPE, QHTD'EE)
respectively, the natural map

lsom("49,%p") — Isom (62", 269"
(resp. Isom(libjE ;/Jeel ) — Isom( qb@en, 2 2911)’
resp. Isom(*HTE,2HTE) = Isom(*HTPE 2y7PE) )
s bijective.
(2) For a ©*-bridge w(f and a ©°-bridge iwge“, the set

capsule-+-full poly ot N
{capsule—+—full poly-isom. *Fr — *Fp by which izbi ,11/1@ form a H-Hodge theatre}

s an ]Ffi x {£1}¥ -torsor. Moreover, the first factor can be regarded as correspond-
ing to the structure group of the Ff‘i—torsor ISOIH]Fli sorsors (LT
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§10.6. O=°INF-Hodge Theatres — An Arithmetic Analogue of the
Upper Half Plane.

In this subsection, we combine the multiplicative portion of Hodge theatre and the
additive portion of Hodge theature to obtain full Hodge theatre.

Lemma 10.38.  (From (D-)©*-Bridge To (D-)©-Bridge, [[UTchl, Definition 6.4
(i), Proposition 6.7, Definition 6.11 (i), Remark 6.12 (i)]) Let T(bgi D poly D, (resp.
ngi 1% poly '3, ) be a D-OF-bridge (resp. ©F-bridge). We write

T@|T| (Tesp. TS\T| )

for the T -capsule (cf. Section 0.2 for I*) of D-prime-strips (resp. JF-prime-strips)
obtained from l-capsule T (resp. TFr) of D-prime-strips (resp. F-prime-strips) by
forming the quotient |T| of the index set T by {x1}, and identifying the components of
the cupsule T®r (resp. TFr) in the same fibers of T — |T| via the components of the
poly-morphism Tqﬁgi = {Tqﬁ?i Her (resp. ngi = {Tz/Jt@i tier) (Hence, each component
ofT©|T| (resp. TS|T|) is only well-defined up to a positive automorphism). We also write

"D (resp. "Fr= )

for the I* -capsule determined by the subset T* :=|T|\ {0} of non-zero elements of |T)|.

We identify "o (resp. §o) with 1©. (resp. 1. ) via Tqbg)i (resp. T¢0®i), and
we write 1®~ (resp. 1§~ ) for the resulting D-prime-strip (resp. F-prime-strip) (i.e.,
>= {0,>=}). For v € V&°4 we replace the +-full poly-morphism at v-component of
Tqbgi (resp. ngi) by the full poly-morphism. For v € YV we replace the +-full
poly-morphism at v-component ongzﬁgi (resp. ngi) by the poly-morphism determined
by (group-theoretically reconstructed) evaluation section as in Definition 10.17 (resp. by
the poly-morphism lying over (cf. Definition 10.23 (1), (2), and Remark 10.10.1) the
poly-morphism determined by (group-theoretically reconstructed) evaluation section as
in Definition 10.17). Then we algorithmically obtain a D-O-bridge (resp. a potion of
©-bridge)

ol ol
16 1D 231D, (resp. T : T 25 T3 )

in a functorial manner. cf. also the following:

TQO; TQF = Jr33>7 T‘SO; TS> = T3>7
D, 10, (t#£0) — Dy, 1§, T t#0 — Ty
"Drlmgpy —  Drs, Brimgy — 8=,

where we write |t| for the image of t € T under the surjection T — |T|.
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Definition 10.39.  ([IUTchI, Remark 6.12.2]) Let {7 22 1§, be a ©%-bridge,
whose associated D-OF-bridge is T®7 poly "®, . Then we have a group-theoretically
functorial algorithm for constructing a D-O-bridge D s« poly TD. from the D-O%*-
bridge T®7 poly D, by Lemma 10.38. Suppose that this D-O-bridge D x poly D
arises as the D-O-bridge associated to a ©-bridge 3 poly D, - 'HT®, where
J=T%*:

3 2 g, 13, XD, - YT

I |

Lol T, N, S Lo O 1 N

Then the poly-morphism 3 poly iF< lying over T®px poly D is completely de-
termined (cf. Definition 10.23 (1), (2), and Remark 10.10.1). Hence, we can regard
this portion *F; poly iZ. of the ©-bridge as having been constructed via the func-
torial algorithm of Lemma 10.38. Moreover, by Lemma 10.25 (1), the isomorphisms
between O-bridges have a natural bijection with the the isomorphisms between the
“4% poly 1% "-portion of ©-bridges.

In this situation, we say that the ©-bridge poly Dy - yT® (resp. D-O-
bridge D« poly D) is glued to the OF-bridge 'Fr poly %, (resp. D-OF-bridge
D poly f®, ) via the functorial algorithm in Lemma 10.38. Note that, by Proposi-
tion 10.20 (2) and Lemma 10.25 (1), the gluing isomorphism is unique.

Definition 10.40. (D-XHB-Hodge Theatre, XEB-Hodge Theatre, [[UTchI, Defi-

nition 6.13])

(1) A base-(or D-)OTINF-Hodge theatre 'HTP™X® is a tripe of a D-K-Hodge
theatre THT P, a D-B-Hodge theatre "% 7 P2, and the (necessarily unique) gluing
isomorphism between THT P and TH7P™. We define an isomorphism of D- X
H-Hodge theatres in an obvious manner.

(2) A ©F°INF-Hodge theatre TH7T™® is a tripe of a X-Hodge theatre THT™, a
H-Hodge theatre THTEE, and the (necessarily unique) gluing isomorphism between
t1 7™ and "HT®. We define an isomorphism of XtH-Hodge theatres in an

obvious manner.

§11. Hodge-Arakelov-theoretic Evaluation Maps.

§11.1. Radial Environments.

In inter-universal Teichmiiller theory, not only the existence of functorial group-
theoretic algorithms, but also the contents of algorithms are important. In this subsec-
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tion, we introduce important notions of coricity, uniradiality, and multiradiality for the

contents of algorithms.

(1)

(4)

Definition 11.1.  (Radial Environment, [[UTchII, Example 1.7, Example 1.9])

A radial environment is a triple (R,C, ®), where R, C are groupoids (i.e., cate-
gories in which all morphisms are isomorphisms) such that all objects are isomor-
phic, and ® : R — C is an essentially surjective functor (In fact, in our mind, we
expect that R and C are collections of certain “type of mathematical data” (i.e.,
species), and ® is “algorithmically defined” functor (i.e., mutations). In this sur-
vey, we avoid the rigorous formulation of the language of species and mutations (cf.
[[UTchIV, §3]), and we just assume that R,C to be as above, and ® to be a functor.
cf. also Remark 3.4.4 (2)). We shall refer to C as a coric category an object of C
a coric data, R a radial category an object of R a radial data, and ¢ a radial
algorithm.

We shall refer to ® as multiradial, if ® is full. We shall refer to ¢ as uniradial,
if ® is not full. We shall refer to (R,C,®) as multiradial environment (resp.
uniradial environment), if ¢ is multiradial (resp. uniradial).

Note that, if ® is uniradial, then an isomoprhism in C does not come from an
isomorphism in R, which means that an object of R loses a portion of rigidity
by @, i.e., might be subject to an additional indeterminacy (From another point
of view, the liftability of isomorphism, i.e., multiradiality, makes possible doing a
kind of parallel transport from another radial data via the associated coric data. cf.
[IUTchII, Remark 1.7.1}).

Let (R,C,®) be a radial environment. Let "R be another groupoid in which all
objects are isomorphic, T® : "R — C an essentially surjective functor, and WUp :
R — TR a functor. We shall refer to ¥ as multiradially defined) or multiradial
(resp. uniradially defined) or uniradial if ® is multiradial (resp. uniradial) and
if the diagram

R YRR

|

C

is 1-commutative. We shall refer to W as corically defined (or coric), if Uz has
a factorisation Zg o ®, where Zx : C — R is a functor, and if the above diagram

is 1-commutative.

Let (R,C,®) be a radial environment. Let £ be another groupoid in which all
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objects are isomorphic, and =: R — £ a functor. We write

Graph(2)

—_—
—

for the category whose objects are pairs (R,Z(R)) for R € Ob(R), and whose
morphisms are the pairs of morphisms (f : R — R,Z(f) : Z(R) — Z(R’)). We
shall refer to Graph(Z) as the graph of Z. We have a commutative diagram

R-Y=. Graph(Z)

[}
PGraph(E)

C,
of natural functors, where U= : R (R,ZE(R)) and ®grapnz) : (R,E(R)) — ®(R).

Remark 11.1.1.  ([IUTchII, Example 1.7 (iii)]) A crucial fact on the consequence
of the multiradiality is the following: For a radial environment (R,C, ®), we write R X¢R
for the category whose objects are triple (Ry, Rg, ), where Ry, Ry € Ob(R), and « is an
isomorphism ®(R;) = ®(R3), and whose morphisms are morphisms of triples defined

in an obvious manner. Then the switching functor
RxcR—=RxcR : (Ri,Ra,a) = (R, Ry, o 1)

preserves the isomorphism class of objects of R x¢ R, if & is multiradial, since any
object (Ry, Rz, ) in R X¢ R is isomorphic to the object (Ry, R1,id : ®(R1) = ®(Ry)).
This means that, if the radial algorithm is multiradial, then we can switch two radial
data up to isomorphism.

Ultimately, in the final multiradial algorithm, we can “switch”, up to isomor-
phism, the theta values (more precisely, ©-pilot object, up to mild indeterminacies)
“{igi}lgjgl*” on the right-hand side of (the final update of) ©-link to the theta val-

ues (more precisely, ©-pilot object, up to mild indeterminacies) “{qu2}1<]‘<1*” on the
:E -
left-hand side of (the final update of) ©-link, which is isomorphic to ig (more precisely,

g-pilot object, up to mild indeterminacies) by using the ©-link compatibility of the final
multiradial algorithm (Theorem 13.12 (3)):

2 I 2
e Hejax o {1 Y

I

in

=v

Then we cannot distinguish {iqj2}1<j<l>:e from *q wup to mild indeterminacies (i.e.,
=v - =V

(Indet 1), (Indet —), and (Indet ~)), which gives us a upper bound of height function
(cf. also Appendix A).
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Example 11.2.

A classical example is holomorphic structures on R?:

iC

forgetl

R? < 1C,
forget
where R is the category of 1-dimensional C-vector spaces and isomorphisms of C-
vector spaces, C is the category of 2-dimensional R-vector spaces and isomorphisms
of R-vector spaces, and ® sends 1-dimensional C-vector spaces to the underlying
R-vector spaces. Then the radial environment (R,C,®) is uniradial. Note that
the underlying R? is shared (i.e., coric), and that we cannot see one holomorphic
structure TC from another holomorphic structure C.

Next, we replace R by the category of 1-dimensional C-vector spaces 'C equipped
with the GLg(R)-orbit of an isomorphism TC = R? (for a fixed R?). Then the
resulting radial environment (R,C, ®) is tautologically multiradial:

(fC = R? ~ GLy(R))

forgetl

R2 | (fC 5 R? ~ GL2(R)).

forget

Note that the underlying R? is shared (i.e., coric), and that we can describe the
difference between one holomorphic structure TC and another holomorphic structure
iC in terms of the underlying analytic structure R2.

An arithmetic analogue of the above example is as follows: As already explained
in Section 3.5, the absolute Galois group G of an MLF k has an automorphism
which does not come from any automorphism of fields (at least in the case where
the residue characteristic is # 2), and one “dimension” is rigid, and the other
“dimension” is not rigid, hence, we consider G, as a mono-analytic structure. On
the other hand, from the arithmetic fundamental group Ilx of hyperbolic orbicurve
X of strictly Belyi type over k, we can reconstruct the field & (Theorem 3.17),
hence, we consider IIx as an arithmetically holomorphic structure, and the quotient
(ILx —)Gk (group-theoretically reconstructable by Corollary 2.4) as the underlying
mono-analytic structure. For a fixed hyperbolic orbicurve X of strictly Belyi type
over an MLF k, let R be the category of topological groups isomorphic to IIx
and isomorphisms of topological groups, and C the category of topological groups
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isomorphic to G} and isomorphisms of topological groups, and ® be the functor

which sends II to the group-theoretically reconstructed quotien (II —)G. Then the

radial environment (R,C, ®) is uniradial:

1

|

3 3
G =G, 2tG <— 1L

Next, we replace R by the category of topological groups isomorphic to IIx equipped

with the full-poly isomorphism G = G, where (Il —)G is the group-theoretic re-

constructed quotient. Then the resulting radial environment (R,C, ®) is tautologi-

cally multiradial:

full poly

~

(TH —» TG — Gk)

l

full poly full poly fUHEOIY
=~ Gp 2 WG<—(I-Ta 5 Gy).
cf. also the following table (cf. [Pano, Fig. 2.2, Fig. 2.3]):
coric underlying analytic str. R? G
uniradial holomorphic str. C II
full poly
multiradial holomorphic str. described C S5 R2 A GLy(R?) | TI/A = @

in terms of underlying coric str.

In the final multiradial algorithm (Theorem 13.12), which admits mild indetermi-

nacies, we describe the arithmetically holomorphic structure on one side of (the final

update of) O-link from the one on the other side, in terms of shared mono-analytic

structure.

Definition 11.3.

([TUTchII, Definition 1.1, Proposition 1.5 (i), (ii)]) Let M? =

(-« M§, « M§,, + --+), be a projective system of mono-theta environments de-
termined by éﬂ (v € VP*), where M$, = (IIyre , Do sgﬂ% ). For each N, by Corol-
lary 7.22 (3) and Lemma 7.12, we can functorially group-theoretically reconstruct, from
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M$, a commutative diagram

Gy (M)

TN T—

ISP o TP (VIS TP (M) s TT™P (M) 1™ (M2)

s

py (MR = Ae? —= AP™P(MR) = AF™ (MF)——= A" (MF) —— AC™ (MR)

of topological groups, which is an isomorph of

Gy

.

™ ] e TP P TP ™

-

NG AP (] —e ATTPC o AT Ao AT

For each N, by Theorem 7.23 (1), we can also functorially group-theoretically recon-
struct an isomorph (IAg)(M§) of the internal cyclotome and the cyclotomic rigidity
isomorphism

(1Ae)(MR) ® (Z/NZ) = pn (MR).

The transition morphisms of the resulting projective system {- - - + Hgmp (M) «

Htéemp(M%,) < ---} are all isomorphism. We identify these topological groups via

these transition morphisms, and we write H%emp(M*@) for the resulting topological

group. Similarly, we define G, (M?), I (M?), IL¢™ (M?), ISP (M2), AF™P(M?),
A (MD), A (MD), A" (M), (1A6)(M?) from Gy (M?), Iy (MF), Ay™ (M),
Atéemp(l\\/ﬂ%), (1Ag)(MS) respectively. We write p5(M?) := Hm o piy (M), then we ob-
tain a cyclotomic rigidity isomorphism

(180)(M?) = pz (M),

Proposition 11.4.  (Multiradial Mono-theta Cyclotomic Rigidity, [IUTchII, Corol-
lary 1.10]) Let I, be the tempered fundamental group of the local model objects év for
v € V°* in Definition 10.2 (1), and (IL, —)G, the quotient group-theoretically recon-
structed by Lemma 6.2.
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(1) Let C" be the category whose objects are
G~ O**(@Q),

where G is a topological group isomorphic to G,, O**(QG) is the group-theoretically
reconstructed monoid by Proposition 5.2 (Step 1) and Definition 8.5 (1), and whose
morphisms (G ~ O**(Q)) = (G ~ O*¥(G")) are pairs of the isomorphism
G = G’ of topological groups, and an Isomet(G)-multiple of the functorially group-
theoretically reconstructed isomorphism O**(G) = O**(G") from the isomorphism

G= G
(2) Let R® be the category whose objects are triples
(I~ (M) © Q/Z , G~ O¥H(G) , 0y (T~ i3 (MO () © Q/2Z) 2 (G ~ O#(@)ln)

where 11 is a topological group isomorphic to 1L, the topological group (II —)G is
the quotient group-theoretically reconstructed by Lemma 6.2, we write (—)|ix for the
restriction via Il - G, we write pz(M2 (1)) for the external cyclotome (cf. just
after Theorem 7.23) of the projective system of mono-theta environment M (IT)
group-theoretically reconstructed from I1 by Corollary 7.22 (2) (Note that such a
projective system is uniquely determined, up to isomorphism, by the discrete rigidity
(Theorem 7.23 (2))), and o, x, is the composite

poly

piz(M2 (1)) ® Q/Z — O*(II) - O*M(II) = O**(@)

of ind-topological modules equipped with topological group actions, where the first
arrow is given by the composite of the tautological Kummer map for M?(H) and
the inverse of the isomorphism induced by the cyclotomic rigidity isomorphism of
mono-theta environment (cf. the diagrams in Proposition 11.7 (1), (4)), the second

arrow s the natural surjection and the last arrow is the poly-isomorphism induced
full poly

by the full poly-isomorphism II/A = G (Note that the composite of the above
diagram is equal to 0), and whose morphisms are pairs (fu, fa) of the isomorphism
S (T~ ps(ME(I1) ©Q/Z) = (I A~ puz(M2 (1)) Q/Z) of ind-topological mod-
ules equipped with topological group actions induced by an isomorphism II = II' of
topological groups with an Isomet(G)-multiple of the functorially group-theoretically
reconstructed isomorphism pz(M2(II)) ® Q/Z = pz(M2(Il')) ® Q/Z, and the iso-
morphism fo : (G ~ OXH(G)) = (G' ~ O*¥(G")) of ind-topological modules
equipped with topological group actions induced by an isomorphism G = G’ of topo-
logical groups with an Isomet(G)-multiple of the functorially group-theoretically re-
constructed isomorphism O**(G) = O**(G') (Note that these isomorphisms are

. . , . .
automatically compatible o, w0 and o, o, i an obvious sense).

m
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(3) Let ®° : R® — C be the essentially surjective functor, which sends (IL ~ ps(M2(I1))®
Q/Z,G ~ O (GQ),au xu) to G~ O**(G), and (fu, fa) to fa.

(4) Let E® be the category whose objects are the cyclotomic rigidity isomorphisms
of mono-theta environments

(18e)(IT) = 1i7(M2 (1))

reconstructed group-theoretically by Theorem 7.23 (1), where 11 is a topological
group isomorphic to 1I,, the cyclomotmes (IAe)(I1) and ps(MP(I1)) are the in-
ternal and external cyclotomes respectively group-theoretically reconstructed from I1
by Corollary 7.22 (1), and whose morphisms are pair of isomorphisms (1Ag)(IT) =
(1Ae)IT') and pz (MO (1)) = ps(M2(I1')) which are induced functorially group-

theoretically reconstructed from an isomorphism of topological groups II = II'.

(5) Let 22 : R® — &° be the functor, which sends (Il ~ pz(M2(11)) ® Q/Z,G ~
O*H(G), 0, xpu) to the cyclotomic rigidity isomorphisms of mono-theta environ-
ments (1Ae)(I1) = pz(M2(I1)) reconstructed group-theoretically by Theorem 7.23

(1), and (fu, fa) to the isomorphism functorially group-theoretically reconstructed
from I S IT'.

Then the radial environment (R®,C™, ®®) is multiradial, and Y=o is multiradially de-
fined, where V=e the naturally defined functor

\Il:
RO =% Graph(=°)

®® l
q:.Graph(E@)

Cl—

by the construction of the graph of =°.

Proof. By noting that the composition in the definition of «,, x, is 0, and that
full poly

we are considering the full poly-isomorphism II/A =5 @G, not the tautological single
isomorphism IT/A = G, the proposition immediately from the definitions. O

Remark 11.4.1.  Let see the diagram
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by dividing into two portions:

11 T,U
full poly
f/fa = a 0
-
G full polyn' O*#F < 0 iu,

~

in = @

On the left-hand side, by “loosening” (cf. taking GLa(R)-obit in Exapmle 11.2) the
natural single isomorphisms TI/TA = G, *II/*A = G by the full poly-isomorphisms
(This means that the rigidification on the underlying mono-analytic structure G by
the arithmetically holomorphic structure II is resolved), we make the topological group
portion of the functor ® full (i.e., multiradial).

On the right-hand side, the fact that the map p — O** is equal to zero makes the
ind-topological module portion of the functor ® full (i.e., multiradial). This means that
it makes possible to “simultaneously perform” the algorithm of the cyclotomic rigidity
isomorphism of mono-theta environment without making harmfull effects on other radial
data, since the algorithm of the cyclotomic rigidity of mono-theta environment uses
only p-portion (unlike the one via LCFT uses the value group portion as well), and
the p-portion is separated from the relation with the coric data, by the fact that the
homomorphism p — O** is zero.

For the cyclotomic rigidity via LCFT, a similarly defined radial environment is
uniradial, since the cyclotomic rigidity via LCF'T uses the value group portion as well,
and the value group portion is not separated from the coric data, and makes harmfull
effects on other radial data. Even in this case, we replace O¥ (=) by O*(—), and we
admit 2X—indeterminacy on the cyclotomic rigidity, then it is tautologically multiradial
as seen in the following proposition:

Proposition 11.5.  (Multiradial LCFT Cyclotomic Rigidity with Indetermina-
cies, [IUTchII, Corollary 1.11]) Let 11, be the tempered fundamental group of the local
model objects X = for v € VP2 in Definition 10.2 (1), and (I, —)G, the quotient
group-theoretically reconstructed by Lemma 6.2.

(1) Let C™ be the same category as in Proposition 11.4.

(2) Let RVCFT be the category whose objects are triples
(T~ 07() , G~ OP(G) , o )

where 11 is a topological group isomorphic to 1L, the topological group (II —)G
is the quotient group-theoretically reconstructed by Lemma 6.2, O% (I1) is the ind-
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topological monoid determined by the ind-topological field group-theoretically recon-
structed from 11 by Corollary 3.19 and o, «, 15 the following diagram:

7ZX -orbit
poly

(I~ O%(I) = (Il ~ OP(I)) 5 (G~ OP(Q))|n + (G~ OX(@)n — (G~ O ()|

of ind-topological monoids equipped with topological group actions determined by the
full poly

~

Z* -orbit of the poly-morphism determined by the full poly-morphism II/A —
G, where A = ker(Il - G) and the natural homomorphisms, where OFP(II) :=
@Jcﬂzopen(OD(H)gp)J (resp. O®fP(QG) := @ch:wen(OD(G)gp)J}, and whose
morphisms are pairs (fm, fg) of the isomorphism fr : (Il ~ O™ (1)) = (I ~

A~

O% (I1")) of ind-topological monoids equipped with topological group actions induced
by an isomorphism II = TI' of topological groups with an Isomet(G)-multiple of
the functorially group-theoretically reconstructed isomorphism O (II) = O™ (II'),
and the isomorphism fa : (G ~ OFP(G)) 5 (G' ~ OBP(G")) of ind-topological
groups equipped with topological group actions induced by an isomorphism G = G’ of
topological groups with an Isomet(G)-multiple of the functorially group-theoretically
reconstructed isomorphism OBP(G) = OBP(G') (Note that these isomorphisms are

. . , . .
automatically compatible o x, and ag, o, in an obvious sense).

(3) Let ®LCFT . RLCFT s CF be the essentially surjective functor, which sends (II ~
O>(I),G ~ OFP(G),a %) to G ~ OXM(G), and (fu, fa) to the functorially
group-theoretically reconstructed isomorphism (G ~ O**(GQ)) = (G' ~ OXH(G")).

(4) Let EVCFT be the category whose objects are the pairs of the 7% -orbit (= the full
poly-isomorphism, cf. Remark 3.19.2 in the case of O )
poly
17(G) = pz(07(G))
of cyclotomic rigidity isomorphisms via LCFT reconstructed group-theoretically
by Remark 3.19.2 (for M = O*(G)), and the Aut(G)-orbit (which comes from

full poly

~

the full poly-isomorphism II/A — G)

poly

uz(G) = (1Ae)(ID)

of the isomorphism obtained as the composite of the cyclotomic rigidity isomor-
phism via positive rational structure and LCFT ps(G) = ps(I) group-theoretically
reconstructed by Remark 6.12.2 and the cyclotomic rigidity isomorphism s (II) =
(IAg)(II) group-theoretically reconstructed by Remark 9.4.1, where 11 is a topolog-
ical group isomorphic to 1L, the topological group (I —)G is the quotient group-
theoretically reconstructed by Lemma 6.2, and (IAg)(II) is the internal cyclotome
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group-theoretically reconstructed from II by Corollary 7.22 (1), and whose mor-
phisms are triple of isomorphisms pz(G) = pz(G'), pz(0*(G)) = pz(0*(G))
and (I1Ae)(I1) = (1Ae)(II") which are induced functorially group-theoretically re-
constructed from an isomorphism of topological groups I = II'.

(5) Let ZLCFT . RLCFT o eLCFT he the functor, which sends (Il ~ O™ (II),G ~
O@(G),QD,XM) to the pair of group-theoretically reconstructed isomorphisms, and
(fm, fa) to the isomorphism functorially group-theoretically reconstructed from IT =
IT'.

RLCFT, C}—’ @LCFT)

Then the radial environment ( 1s multiradial, and VYzrcrr 15 multi-

radially defined, where Wgrcer the naturally defined functor

YoLCcFT —
RLCFT 5 Graph(:LCFT)

(I)LCFTl
éGraph(ELCFT)

CF

by the construction of the graph of ZFCFT,

Definition 11.6.  ([IUTchII, Remark 1.4.1 (ii)]) Recall that we have hyperbolic
orbicurves X L X, »C, forve ybad, and a rational point

H— € XQ('KE)

(i.e., “=17 in Gf,ilg/qé . cf. Definition 10.17). The unique automorphism ¢x of X
of order 2 lying over tx (cf. Section 7.3 and Section 7.5) corresponds to the unique

AS™P-outer automorphism of II¢™ over G, of order 2. We also write 1y for the

f—rY) —

latter automorphism by abuse of notation. We also have tempered coverings zv —»

Y —»X Y Note that we can group-theoretically reconstruct H;mp, Hzmp from II X, by

—uv

Corollary 7.22 (1) and the description of g — Y. We write H;r{p (IT), TI3"™P(TT) for the

CA

—v

reconstructed ones from a topological group II isomorphic to 11 % s respegtively. Since

K, contains 14, there exist rational points

(n-)y €Y (KL, (no)x € X, (),

such that (p—)y +— (u-)x — p—. Note that tx fixes the Gal(X /X, )-orbit of (u-)x,
since tx fixes p_, hence tx fixes (u_)x, since Aut(X ) = x {£1} by Remark 7.12.1

(Here, tx corresponds to the second factor of j; x {£1} since [ # 2). Then it follows
that there exists an automorphism

5
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of g of order 2 lifting ¢x, which is uniquely determined up to IZ-conjugacy and composi-
tion with an element € Gal(gv /Y ) = o, by the condition that it fixes the Gal(iv /Y )-
orbit of some element (“(—)y” by abuse of nonation) of the Gal(zv [ X )(EIZ X po)-

orbit of (p_);-. We also write vy for the corresponding A;?mp—outer automorphism of
temp e
ty

—v

well. We write ¢y-for the automorphism of Yg induced by ¢y

by abuse of notation. We shall refer to ¢y as an inversion automorphism as

We write
temp
D, C HY

—v

for the decomposition group of (u_)y, which is well-defined up to Agfmp—conjugacy.

Hence, D,,  is determined by ¢y up to At}fvmp—conjugacy. We shall refer to the pairs

(l’i € Aut(zv) ) (,u_)y> , or (/,}", € Aut(Ht.Zemp)/Inn(Agfmp) , Du)

aCl aCl

as a pointed inversion automorphism. Recall that an étale theta function of stan-
dard type is defined by the condition on the restriction to D,, is in pg; (Definition 7.7
and Definition 7.14).

Proposition 11.7.  (Multiradial Constant Multiple Rigidity, [IUTchII, Corol-
lary 1.12]) Let (R®,C", ®®) be the multiradial environment defined in Proposition 11.4.

(1) There is a functorial group-theoretic algorithm to reconstruct, from a topological
group 11 isomorphic to Hz}mp (v € VP2 the following commutative diagram:

O (IT) U O (I) - oo O(ID)C o H (ITE™P (D), (1Ae)(1D))

= glecl. Rig. Mono-Th. in Prop.11.4

O* (M2 (I1)) U O* (M2 (II)) - ool

—env

(M (I1)) = oo H' (L™ (M2 (I1)), 117 (M2 (I1))),

where we put, for a topological group 11 isomorphic to Hggmp (resp. for a projec-

—wv

tive system MO of mono-theta environments determined bj; év), Hgfmp(ﬂ) (resp.

H;emp(M?)) to be the isomorph of Hg.,emp reconstructed from IIS™P(I1) by Defini-

v Y X i
tion 11.6 (resp. from H‘;emp(Mf)) by Definition 11.3 and the descrption of Y — Y ),
and B
oo H (TP (D), (1Ae) (1)) = lim HY (I (ID) i J, (1Ae ) (1)),

- JCII:open, of fin. index -
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o H (ISP (MO), 15 (MO)) = lim HY (I (M) xp1 J, 1 (M9)),
- JCII:open, of fin. index -

and

o 8(IT) (C oo H' (TP (ID), (1A6) (D)) (resp. oo (MY) (C oo H (TP (M), 5 (MY)) )

for the subset of elements for which some positive integer multiple (if we consider
multiplicatively, some positive integer power) is, up to torsion, equal to an element
of the subset

0(10) (C H'(II™P(10), (1Ae)(IT) (resp. 0 (M?) (C H' (I (M), pz (M?)) )

of the pi-orbit of the reciprocal of lZ X ps-orbit ﬁ@’@x’” of an l-th root of the
étale theta function of standard type in Section 7.3 (resp. corresponding to the
wi-orbit of the reciprocal of (IZ X psg)-orbit ﬁ@’lzx‘” of an l-th root of the étale
theta function of standard type in Section 7.3, via the cyclotomic rigidity isomor-
phism (1Ag)(M®P) 5 us(M?) group-theoretically reconstructed by Theorem 7.23
(1), where we write (1Ae)(M®) for the internal cyclotome of the projective system
MO of mono-theta environments group-theoretically reconstructd by Theorem 7.23
(1)) (Note that these can functorially group-theoretically reconstructed by the con-

stant multiple rigidity (Proposition 11.7)), and we define

O™ (M2 (11))
to be the submodule such that the left vertical arrow is an isomorphism. We also
put
0% oof(IT) := OX(I1) - oof(I),  O* (M2 (ID)) := OF (M (IT)) - oo (M (IT)).
(2) There is a functorial group-theoretic algorithm
I = {(,D)}{1),
which construct, from a topological group 11 isomorphic to Hg?mp, a collection

—wv

of pairs (1, D), where v is a At.Yemp(H)(:: Hg/emp(ﬂ) N A)-outer automorphism of

Hg./emp(l_[), and D C H?mp(ﬂ) is a Agfmp(ﬂ)—conjgacy class of closed subgroups
cozrrespondmg to the poz’ited 1nversion a:utomorphisms in Definition 11.6. We shall
refer to each (v, D) as a pointed inversion automorphism as well. For a pointed
inversion automorphism (v, D), and a subset S of an abelian group A, if v acts on

Im(S — A/Ators), then we write S* := {s € S | t(smod Ators) = smod Ators |-
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(3) Let (1, D) be a pointed inversion automorphism reconstructed in (1). Then the re-
striction to the subgroup D C Hgfmp (IT) gives us the following commutative diagram:

{0*8(ID)} —————— 0" (1) (C o H'(IL (1Ae)(I1)))
l %LCycl. Rig. Mono-Th. in Prop.11.4
{0%f,, (MP(ID)) } —— O (M (IT)) (C oo H'(IL, pz(MP(I1)))

where we put

HY(IL, (1Ae)(TD)) := lim H'(J,(1Ae)(IT)),

JCII:open, of fin. index

oo H(IL, 5 (M9 (1)) = liny H(J, (MO (I1))).

JCII:open, of fin. index

Note that the inverse image of the torsion elements via the upper (resp. lower) hori-
zontal arrow in the above commutative diagram is equal to o0(I1)" (resp. f_ (MO (11))*).

In particular, we obtain a functorial algorithm of constructing splittings
O*H(I1) x {8(I)*/O* (1)}, O**(MP(ID)) x {wf,  (M?(ID))*/O* (MY (I1))}
of {0*c0(IN)}*/O*(IT)  (resp. {O% ol (MP(IT))}/OH(MP(II)) ).

(4) For an object (Il ~ puz(MQ(I)) ® Q/Z, G ~ O (G), ayy, xp) of the radial category
RO, we assign

=env

e the projective system MO (II) of mono-theta environments,
o the subsets O (11 )UO>< 0(IT) (C Hl(l_[temp( ), ({Ae)(I1))), and
O™ (M2 (IN)UO* 8 (MP(IT)) (C Hl(Htemp(M@(H)),Mz(M?(H)))) in (1),
(

e the splittings OX“( ) X {cc8(I1)* JO(ID)}, and
O*H(MP(I1)) x {sof, (M2 (IL))*/O* (M2 (II))} in (3), and

e the diagram

=env

poly

pz (M2 (ID)®Q/Z = OM (M (I1)) = O*(II) — O*(II) - O**(Il) = O0**(G),

where the first arrow is induced by the tautological Kummer map for MO (II),
the second arrow is induced by the vertical arrow in (1), the third and the
fourth arrow are the natural injection and surjection respectively (Note that the

composite is equal to 0), and the last arrow is the poly-isomorphism induced
full poly

~

by the full poly-isomorphism II/A  — G.
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Then this assignment determines a functor 2™ : R® — £°. and the natural
functor Uzenw : R® — Graph(Z®Y) is multiradially defined.

Proof. Proposition immediately follows from the described algorithms. O

Remark 11.7.1.  cf. also the following étale-pictures of the étale theta func-

tions:

O | = = > |G ~ O (G) A Isomet(G) |< — —| oo8(HTT)

sl (MO(TI)) | — — > |G ~ O*H(G) ~ Tsomet(G) | < — —| oo (MO (*I1))

=env =env

Note that the object in the center is a mono-analytic object, and the objects in the left
and in the right are holomorphic objects, and that we have a permutation symmetry
in the étale-picture, by the multiradiality of the algorithm in Proposition 11.7 (cf. also
Remark 11.1.1).

Remark 11.7.2.  ([IUTchII, Proposition 2.2 (ii)]) The subset

0'(I1) € B(IT) (resp. (1) C B(1I) )

determines a specific ug;(O(II))-orbit (resp. O*(II)-orbit) within the unique (IZ X po;)-
orbit (resp. each (IZ x u)-orbit) in the set O(I) (resp. o0(II)).

§11.2. Hodge-Arakelov-theoretic Evaluation and Gaussian Monoids at
Bad Places.

In this subsection, we perform Hodge-Arakelov-theoretic evaluation, and construct
Gaussian monoids for v € Vbad (Note that the case for v € VP24 plays a central role).
Recall that Corollary 7.22 (2) reconstructs a mono-theta environment from a topo-
logical group (“IT — M?”) and Theorem 8.14 reconstructs a mono-theta environment
from a tempered Frobenioid (“F +— M”). First, we transport theta classes 0 and the
theta evaluations from a group-theoretic situation to a mono-theta-theoretic situation
via (“II — M”) and the cyclotomic rigidity for mono-theta environments, then, via
(“F — M”), a Frobenioid-theoretic situation can access to the theta evaluation (cf. also
[[TUTchII, Fig. 3.1)):

II't M | F

0, eval —— Qenv? evaleny,
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JF-Theoretic Theta Monoids _Kummer M-Theoretic Theta Monoids

l Galois Evaluation

F-Theoretic Gaussian Monoids <—— M-Theoretic Gaussian Monoids.
(Kummer) ™!, or forget

Note also that, from the view point of the scheme-theoretic Hodge-Arakelov theory

and p-adic Hodge theory (cf. Appendix A), the evaluation maps correspond, in some

sense, to the comparison map, which sends Galois representations to filtered p-modules

in the p-adic Hodge theory.

(1)

Definition 11.8.  ([[UTchII, Remark 2.1.1, Proposition 2.2, Definition 2.3])

For a hyperbolic orbicurve (—), over K,, we write I'_) for the dual graph of the
special fiber of a stable model. Note that each of maps

FX—>FZ I'x
Fy—%ry, F&

induces a bijection on vertices, since the covering X , X, s totally ramified at
the cusps. We write a

FECFK

for the unique connected subgraph of I'x, which is a tree and is stabilised by ¢x
(cf. Section 7.3, Section 7.5, and Definition 11.6), and contains all vertices of I'x.
We write

chlz

for the unique connected subgraph of I'x, which is stabilised by ¢x and con-
tains precisely one vertex and no edges. Hence, if we write labels on I'x by
{=1*,...,-1,0,1,...,0%}, where 0 is fixed by tx, then I'% is obtained by remov-
ing, from I'x, the edge connecting the vertices labelled b; +1*, and IT'S consists
only the vertex labelled by 0. From I', C I'% (C I'x), by taking suitable connected
components of inverse images, we obtain finite connected subgraphs

rycrk crlyx, Iy crfcrly, Iy crfcrly,

which are stabilised by respective inversion automorphisms tx, ty, ¢ty (cf. Sec-

tion 7.3, Section 7.5, and Definition 11.6). Note that each I (’_) maps isomorphically
to I'%.
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Write
Mo := ", C Iy =", < I, (= ")

[ >
X Ty X .T% X,

for ¥ := {l} in the notation of Corollary 6.9 (i.e., H = I'%), Note that we have
Iy C thmp NI, = I3™P. Note also that I,y is well-defined up to II,-conjugacy,
and after fixing IL,)., tl?e%ubgroup II,4 C I, is well-defined up to I, -conjugacy.
Moreover, note that we may assume that 11, I, and ¢y have been chosen so that
some representative of ¢y stabilises I1,o and I,y Finall?, note also that, from II,,
we can functorially grou:p—theoretically reconstruct the data (Ilye C Ilyp C 11, ¢y )
up to II,-conjugacy, by Remark 6.12.1. -

We write
. Atemp + . Atemp cor ,__ A temp + . yytemp cor ,__ yytemp
Ay = AR AT = AP AT = AGTP I = TIPS o= I

(Note also that we can group-theoretically reconstruct these groups from II, by
Lemma 7.12). We also use the notation (—) for the profinite completion in this
subsection. We also put

My = Ny (Tee)  © Iy = Ny (Thp) C 115,
Note that we have
Iye/Mye = I /My = T3 /1L, 55 AT/A, 5 Gal(X, /X,) = Z/1Z,

and
5, NI, = M., 5 NII, = Ty,

since 11, and II,p are normally terminal in II,, by Corollary 6.9 (6).

resp. of ﬁg, resp. of ﬁﬂ:)

~

is the set of II,-conjugacy (resp. Hi—conjugacy, resp. Il,-conjugacy, resp. ﬁgi—

A +-label class of cusps of II, (resp. of Hf,

conjugacy) classes of cuspidal inertia subgroups of II, (resp. of I+, resp. of ﬁg,

v

resp. of II¥) whose commensurators in IIF (resp. in IIF, resp. in IIF, resp. in

ﬁi) determine a single Hgi-conjugacy (resp. Hi—conjugacy, resp. ﬁ:;—conjugacy,

resp. ﬁi—conjugacy) class of subgroups in HEjE (resp. in I, resp. in I resp.

v v

in ﬁ:;) (Note that this is group-theoretic condition. Note also that such a set of
I1,-conjugacy (resp. Hgi—conjugacy7 resp. Il,-conjugacy, resp. H:;—conjugacy) class
is of cardinality 1, since the covering X , X, s totally ramified at cusps (or the

covering X ~— X is trivial).) We write

LabCusp™ (II,) (resp. LabCusp™ (Hi), resp. LabCusp™ (ﬁg), resp. LabCuspi(ﬁQi) )
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o resp. of ﬁg, resp. of
ﬁi) Note that LabCusp™(II,) can be naturally identified with LabCusp® (fD,) in
Definition 10.27 (2) for 7D, := B*™P(I1,)", and admits a group-theoretically recon-

structable natural action of F}*, a group-theoretically reconstructable zero element

for the set of +-label classes of cusps of II, (resp. of I

Tﬁg € LabCuspi(Hg) = LabCusp™ (D, ), and a group-theoretically reconstructable

+-canonical element Tﬁf € LabCusp™(II,) = LabCusp™(D,) well defined up to
multiplication by +1.

(5) An element t € LabCusp™ (Il,) determines a unique vertex of I’} (cf. Corollary 6.9
(4)). We write T'${ € T% for the connected subgraph with no edges whose unique
vertex is the vertex determined by t. Then by a functorial group-theoretic algorithm,
I'% gives us a decomposition group

ITyer C Iy C 11,
well-defined up to IL,,-conjugacy. We also write

ey = Nypx (Tuet).
(Note that we have a natural isomorphism H;t,t /Myer = Gal(X ,/X,) by Corol-
lary 6.9 (6)). B

(6) The images in LabCusp™ (IIF) (resp. LabCuspi(ﬁi}t)) of the F;*-action, the zero
element Tﬂg, and f-canonical element Tﬂvi of LabCusp™ (I,) in the above (4), via

the natural outer injection II, < IIF (resp. IL, < ﬁi) determine a natural ;-
torsor structure (cf. Definition 10.26 (2)) on LabCuspi(Hgi) (resp. LabCuspi(ﬁgi)).
Moreover, the natural action of IS /ITF (resp. ﬁg’r/ﬁi) on II¥ (resp. ﬁj)
preserves this Fli—torosr structure, thus, determines a natural outer isomorphism
II5er /TIE = F'® (resp. ﬁg’r/ﬁi > F2E).

Here, note that, even though II, (resp. ﬁz) is not normal in IIS°" (resp. ﬁgor), the
cuspidal inertia subgroups of I, (resp. ﬁg) are permuted by the conjugatg action
of TI{" (resp. ﬁzor), since, for a cuspidal inertia subgroup I in H:; (resp. ﬁgi), we
have INIL, = I' (resp. I ﬂﬁg = I') (Here, we write multiplicatively in the notation
I'), and IIF (resp. ﬁgi) is normal in ITI5°" (resp. ﬁg’r) ([IUTchII, Remark 2.3.1]).

Lemma 11.9.  ([IUTchIIL, Corollary 2.4]) Let t € LabCusp™ (I1,). Write

Apet = Ay NTlyey, AG,, i= AT NI,

. vet)

Hyhg = Hyot N H’;;Hlp’ Ayit = AQ N Hyhg,

—v

Agp = 8y Ny, Agy i= Ay NIy, Mg =Ty NP A g = Ay N

—u
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Note that we have
[yet : Hyst] = [Ty : Hy&] = [Ayet 1 Apat] = [App - Ayﬁ] =2,

I,

vet

(Il et] = [Hyi> 1Ly ] = [A;t.t tAyet] = [Ayi> cAy] =1

(1) Let I, C 11, be a cuspidal inertia subgroup which belongs to the +-label class t such
that Iy C Ayet (resp. Iy C Ay ). Fory € A% we write (=) for the conjugation

Y(=)y~t by . Then for v € ﬁi, the following are equivalent:

(a) v € Ay (resp. 7 € Agy),
(b) Itwl c I}, (resp. Itw/ c I, ),

vet
(c) 7" C (5, (resp. I C (IL5)7).

vet

(2) In the situation of (1), write 6 :== vy € ﬁgi, then any inclusion
I(S:I’Y’Y/CH’Y :H§ ( I(SZI’Y’Y/CH’Y :H§ )
t t vet vet \TESP. 1y t VP VP
as in (1) completely determines the following data:

(a) a decomposition group D? := Nng(If) c 1%, (resp. D? := Nng(ff) C HZS)’

vet

(b) a decomposition group Di_ C I ., well-defined up to (H;t,)é—conjugacy (or,

B’
equivalently (A;t,)‘s-conjugacy), corresponding to the torsion point pu_ in Def-

wnition 11.6.

(¢) a decomposition group Dg“i C Hg“ (resp. Df’M C Hf)‘), well-defined up to
+

(Hyot

(resp. (Aj,)‘s—conjugacy)), that is, the image of an evaluation section corre-

)9 -congugacy (resp. (H;t,)‘s—conjugacy) (or equivalently, (Aj,t)‘s—conjugacy

sponding to j_-translate of the cusp which gives rise to I?.

Moreover, the construction of the above data is compatible with conjugation by ar-
bitrary 0 € Agi as well as with the natural inclusion 1l,e; C Iy, as we vary the

non-resp’d case and resp’d case.

(3) (F)'®-symmetry) The construction of the data (2a), (2¢) is compatible with conjuga-
tion by arbitrary ¢ € II;°", hence we have a Az"‘"/A;t = H;OT/H;t = Ffi—symmetry

on the construction.

Proof. We show (1). The implications (a) = (b) = (c) are immediately follow
from the definitions. We show the implication (¢) = (a). We may assume vy = 1 without
loss of generality. Then the condition I} C H;t,t C IIF (resp. I C Hyi> C 1)

implies 7/ € Agi by Theorem 6.11 (“profinite conjugates vs. tempered conjugates”). By
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Corollary 6.9 (4), we obtain 7/ € ﬁyi.t (resp. 7 € ﬁyi,), where we write (/—\) for the
closure in ﬁgi (which is equal to the profinite completion, by Corollary 6.9 (2)). Then
we obtain v € ﬁgi,t NAF = Ayi.t (resp. 7' € ﬁit, NAF = A;t,) by Corollary 6.9 (3).
(2) follows from Theorem 3.7 (elliptic cuspidalisation) and Remark 6.12.1 (together
with Lemma 7.16, Lemma 7.12) (cf. also Definition 10.17). (3) follows immediately from

the described algorithms. O
We write
(ZA@)(Hgi>
for the subquotient of II,; determined by the subquotient (IAg)(Il,) of IT, (Note that
the inclusion I,z < II, induces an isomorphism (1Ag)(IL,z) = (IAe)(IL,)). We write

HE - GQ(HQ)v Hgi - GQ(Hyﬁ)

for the quotients determined by the natural surjection II, — G, (Note that we can
functorially group-theoretically reconstruct these quotients by Lemma 6.2 and Defini-
tion 11.8 (2)).

Proposition 11.10.  (II-theoretic Theta Evaluation, [IUTchII, Corollary 2.5,
Corollary 2.6])

(1) Let I} = Itwl - Hg; CIL)y = Hg, be as in Lemma 11.9 (2). Then the restriction
of the " -invariant sets 0" (T1)), «0'(I1)) of Remark 11.7.2 to the subgroup I, C

Hgmp(ﬂg)(c I1,) gives us pg-, p-orbits of elements
0'(IN5) € el () € o H' (I, (1A6) (I )) o=l H' (g % J, (1Ae) (T} )).
CII, : open

The further restriction of the decomposition groups nyﬂf in Lemma 11.9 (2) gives
us -, p-orbits of elements

—_

0(IT;) € () C M (G0 ), (80)(IT ) = Dy H'(Je, (1A6)(ITTy ),
JGcGE(H;‘) :open

conj. by ~
for each t € LabCuspi(HZ) = LabCusp®(Il,). Since the sets Qt(HZ‘),

wgt(ﬂz‘) depend only on the label |t| € |F|, we write

[t .t t] L t
g (HZ‘) .—Q (HZ‘), b (HZS) = OOQ (HZ>)
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(2) If we start with an arbitrary ﬁi—conjugate HZ; of IL,z , and we consider the result-

ing por-, p-orbits Q'“(HZ‘), OOQM(HZ;) arising from an arbitrary Ai—conjugate I?
conj. by vy
of I contained in HZ;, as t runs over LabCusp™ Iy — LabCusp™(Il,), then

we obtain a group-theoretic algorithm to construct the collections of -, p-orbits
{eltl(m )} {Ooglt\(ﬂv )}

which is functorial with respect to the isomorphisms of topological groups 11,, and
compatible with the independent conjugacy actions of Ai on the sets {I;*}

{Ii?ll }»yleﬁgi and {HZ2 }fy efif — { v> oA

ltlelFy] |tl€[Fi|

Y1 Eﬁi,f -

(3) The y-conjugate of the quotient 11,5 — G, (1,5 ) determines subsets

(o H'(Gu(ITy ), (186)(I05)) D) OX(Ig)  C woH'(I, (186) (I175)),

L — L L I L 1
070 (I ) i= OX (I )8 (11T ) © 0% (I ) 1= OX (I ) (1)) © o H(IT, (1Mo
which are compatible with O* (=), O* 0" (—) in Proposition 11.7, respectively, rel-

ative to the first restriction operation in (1). We put

OXH(ITy ) == 0% (I ) /0" (1), ).

(4) In the situation of (1), we take t to be the zero element. Then the set Ht(lTy . ) (resp.

Ht(H7 )) is equal to pgy (resp. w). In particular, by taking quotietn by O“(H7 ),
the restriction to the decomposition group D _ (where t is the zero element) gives
us splittings

O™ (I ) x {oof (115 ) /O (I ) }

of O* 0 (1)) /O (I, ), which are compatible with the splittings of Proposition 11.7
(3), relative to the first restriction operation in (1):

0 e OFH(ITTy) o 0% (I ) JOM(ITTy ) — (I ) ORIy ) — 01

Remark 11.10.1.  (principle of Galois evaluation) Let us consider some “mysteri-
ous evaluation algorithm” which constructs theta values from an abstract theta function,
in general. It is natural to require that this algorithm is compatible with taking Kummer
classes of the “abstract theta function” and the “theta values”, and that this algorithm

;).
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extend to coverings on both input and output data. Then by the natural requirement
of functoriality with respect to the Galois groups on either side, we can conclude that
the “mysterious evaluation algorithm” in fact arises from a section G' — II;. (II) of the
natural surjection II; (II) - G, as in Proposition 11.10. We shall refer to this as the
principle of Galois evaluation. Moreover, from the point of view of Section Conjec-
ture, we expect that this sections arise from geometric points (as in Proposition 11.10).

Remark 11.10.2.  ([IUTchII, Remark 2.6.1, Remark 2.6.2]) It is important that
we perform the evaluation algorithm in Proposition 11.10 (1) by using single base point,
i.e., connected subgraph Fz C I'x, and that the theta values

(M) C HY(Gy(IgY), (1Ae)(Ig))

live in the cohomology of single Galois group G (Il y) with single cyclotome (IAg) (HZ;)
coefficient for various |t| € |F;|, since we want to consider the collection of the theta

values for |t| € |F;|, not as separated objects, but as “connected single object”, by syn-

chronising indeterminacies via Iﬁ‘fi-symmetry, when we construct Gaussian monoids

via Kummer theory (cf. Corollary 11.17).

Remark 11.10.3.  ([IUTchII, Remark 2.5.2]) Write
H@i = H§K7 A@i = AXK‘

Recall that, using the global data A®*(~ ﬁi), we write +-labels on local objects in
a consistent manner (Proposition 10.33), where the labels are defined in the form of
conjugacy classes of I;. Note that A®F (= ﬁgi) is a kind of “ambient container” of
ﬁf—conjugates of both I; and A,;. On the other hand, when we want to vary w,
the topological group I,z is purely local (unlike the label ¢, or conjugacy classes of
I;), and cannot be globalised, hence, we have the independence of the A®* (= ﬁf)-
conjugacy indeterminacies which act on the conjugates of Iy and A, . Moreover, since
the natural surjection ﬁg’r —» ﬁzor / ﬁgi =~ Ffi deos not have a splitting, the Ezor—outer
action of ﬁg’r/ﬁi =~ F'F in Lemma 11.9 (3) induces independent A®F = ﬁi—conjugacy

indeterminacies on the subgroups I for distinct t.

Remark 11.10.4.  ([IUTchII, Remark 2.6.3]) We explain the choice of I'}, C T'y..
Let I C I'y be a finite subgraph. Then

(1) For the purpose of getting single base point as explained in Remark 11.10.2, the
subgraph I should be connected.

(2) For the purpose of getting the crucial splitting in Proposition 11.10 (4), the subgraph
I should contain the vertex of label 0.
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(3) For the purpose of making the final height inequality sharpest (cf. the calculations
in the proof of Lemma 1.10), we want to maximise the value

1 ) ‘2
AT Z ML e, j=j in |F {i },

JEF,

where we identified I'y- with Z. Then we obtain #I” > [*, since the above function
is non-decreasing when #I" grows, and constant for #I" > [*.

(4) For the purpose of globalising the monoids determined by theta values, via global
realified Frobenioids (cf. Section 11.4), such a manner that the product formula
should be satisfied, the set {j € I, j = j in |[F;|} should consist of only one element
for each j € F)*, because the indep;ndent conjugacy indeterminacies explained in
Remark 11.10.3 are incompatible with the product formula, if the set has more than

two elements.
Then the only subgraph satisfying (1), (2), (3), (4) is F;

For a projective system M® = (.- + MY, + MY, < ---) of mono-theta environ-
ments such that Hz’mp(M*@) =~ 11, where M§, = (e , Do, sﬁ% ), put

Myge = lim Mo .
M

Note that we have a natural homomorphism IIyje — Hg’mp(M*@) of topological groups

whose kernel is equal to the external cyclotome u (M®), and whose image correpsonds
to II\™P. We write

v

HM?‘ C HMS)» C Ilye

for the inverse image of Il C Iy C II, 2 II™P(M®) in Iye respectively, and

UZ(M*BS)v (ZA@)(M?ﬁ)a HQS(M?$)7 GQ(M?>)

for the subquotients of Ilyje determined by the subquotient uz(M?) of ITyje and the
subquotients (ZA@)(Htgmp(M*@)), IT,5, and GQ(Htgnp(M*@)) of 11, = Htgmp(M?). Note
that we obtain a cyclotomic rigidity isomorphism of mono-theta environment

(1Ae)(MSy) = iz (MS)

~

by restricting the cyclotomic rigidity isomorphism of mono-theta environment (IAg)(M2) =
117(M?) in Proposition 11.4 to ITje (Definition [ITUTchII, Definition 2.7]).
*b
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Corollary 11.11.  (M-theoretic Theta Evaluation, [IUTchII, Corollary 2.8]) Let

MO be a projective system of mono-theta environments with H;mp(M*@) = II,. We

write

(M2)

for the projective system of mono-theta environments obtained via transport of structure

rom the isomorphism IL, = given by the conjugation by ~y.
fi the i hism 11, — T} by th t b

(1)

(2)

Let I = 1) ¢ 0, C I3, =115, be as in Lemma 11.9 (2). Then by using the

cyclomotic rigidity isomorphisms of mono-theta environment
(1Ae)((M5)T) = pz(MZ)7), (1Ae)(M2)7) = puz((MP)7)

(cf. just before Corollary 11.11), we replace H'(—, (1Ae)(—)) by H'(—, uz(—)) in

Proposition 11.10. Then the (”-invariant subsets §°(I1}) C O(I17), o0 (I7) C

O(I1}) determines .7 -invariant subsets

0 (M))co  ((MP)), b

—en

L (M2)7) €

env —env

S}
(M)7).
The restriction of these subsets to HQ;((M*@‘)V) gives us fior-, p-orbits of elements

0. (M5)7) C ool (M5)Y) C oo H' (I (ME5)7), 17 (M),

—env —env
where oo /' (s (My3)"), ) += limzg oo H' (Mow (M3)7) xq, J,—). The
further restriction to the decomposition groups Dgu— in Lemma 11.9 (2) gives us

Wor-, p-orbits of elements

00, (M3)7) C ool (ME)7) C oo H (Gu((ME)), 1z (ME)7),

—env

where we write o, H! (GQ((M?‘)"Y), —) = h—n;JGCGE((Mf‘)V) open HY(Jg,—), for each

conj. by =y

te LabCuspi(HZ) = LabCusp®(IL,). Since the sets anv((M?‘)V), 0 (M

=env

depend only on the label |t| € |F;|, we write

O (M) =00 (M5)), B (M3)7) == oot (ME)7).

=env =env =env =env *p

If we start with an arbitrary ﬁi-conjugate HQ;((M?‘)W) of I,z (Mf?;), and we

' ((M?;)W); i ((Mf;)v) arising from

. , ol
consider the resulting po;-, p-orbits genv AN

an arbitrary ﬁf—conjugate I? of I contained in HE;((M*@‘)W), as t runs over
;onj. by v
LabCuSpi(HZ) = LabCusp™(Il,), then we obtain a group-theoretic algorithm

to construct the collections of po;-, p-orbits

{QLﬂv((M§‘)7>}|t|eFl| ’ {MQLZV((M?‘)W)}HEW ’

6..
>

)")
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which is functorial with respect to the projective system MO of mono-theta environ-
ments, and compatible with the independent conjugacy actions of Agi on the sets

{I"} ez = {11}, cazx and {TLp (MZ)72)} oz = {Tp (MZ)72)} a2

(3) In the situation of (1), we take t to be the zero element. By using the cyclomotic
rigidity isomorphisms in (1) we replace (IAe)(—) by puz(—) in Proposition 11.10,
then we obtain splittings

O M(MZ)7) % {ool, ((M5)7)/O" (M)}

L Ie) Ie) . . . -
of O%oc.  ((M;)7)/O"(Mg;)Y), which are compatzbli with the splittings of Propo-

sition 11.7 (3) (with respect to any isomorphism MO = MO (IL,)), relative to the

first restriction operation in (1):

label 0

T.\.

0 ——= O*H((M$)7) —— 0%l ((M3)7)/O*((M3;)7) —= ool (M$5)7)/O*((M$)7) — 0.
Remark 11.11.1.  (Theta Evaluation via Base-field-theoretic Cyclotomes, [[UTchII,
Corollary 2.9, Remark2.9.1]) If we use the cyclotomic rigidity isomorphisms

p7(Gu(Ily)) = (1Ae)(ILy), pz(Gy(IT);)) = (1Ae)(IT); )

determined by the composites of the cyclotomic rigidity isomorphism via positive
rational structure and LCFT “45(G) = 5 (I1)” group-theoretically reconstructed
by Remark 6.12.2 and the cyclotomic rigidity isomorphism “u5 (IT) = (IAg)(II)” group-
theoretically reconstructed by Remark 9.4.1 and its restriction to HZ‘ (like Propo-
sition 11.5; however, we allow indeterminacies in Proposition 11.5), instead of using
the cyclomotic rigidity isomorphisms of mono-theta environment (ZA@)((M*@‘)”) =
,uz((I\\/JI?‘)V), (1A0)((M2)7) 5 us((MP)7), then we functorially group-theoretically
obtain the following similar objects with similar compatibility as in Corollary 11.11:
("-invariant subsets

0! (I17) C 6, (I1}), o' (IT}) C w8, (IT}).

The restriction of these subsets to lTy gives us ig;-, p-orbits of elements

where OoHl(HZ‘, —) = hﬂjcﬁ open HY(11Y f —). The further restriction to the

>< ~
o I,
decomposition groups D,‘Z . in Lemma 11.9 (2 ) gives us pig-, p-orbits of elements

QZS(HZ;) - OOQES(HZ;) - ooHl(GQ<H;;)aMZ(GQ<HZ;))>7
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+
where OoHl(GQ(HZ‘), —) = h_r}njccG (7, ) - open H'(Jg,—), for each t € LabCusp™ (II})

conj. by v
= LabCusp™(IL,). Since the sets Qt L5, Ooﬁt (1175 depend only on the label

|t] € |F|, we write

It] — ot |t] . t
0, () =0, (5) ooy (M) = ool (L)),

Hence, the collections of pig;-, pu-orbits

{01;'(117 )}|t|eIFl| { Q]';S'(Hf )}ItIEIle

O™ *(IL]5 s X {oofy (T15) /O (TL5 Jus}

of O><OOQILOS(HZ‘)/O”(HZ;)]OS (Here, we write O™ " (—)ps, O™ (—)ps, O*(—)ps for the ob-
jects corresponding to O*# (=), O* (=), O*(—), respectively, via the cyclotomic rigidity

and splittings

isomorphism):

label O

0—— OXM(HZ‘)bS —_— OXOOQ:DS(HZ‘)/ON(HZ;)IDS —_— WQES(HZS)/OM(HZ$)bS —0.

Note that we use the value group portion in the construction of the cyclotomic rigidity
isomorphism via positive rational structure and LCFT (cf. the final remark in Re-
mark 6.12.2). Therefore, the algorithm in this remark (unlike Corollary 11.11) is only
uniradially defined (cf. Proposition 11.5 and Remark 11.4.1).

On the other hand, the cyclotomic rigidity isomorphism via positive rational struc-
ture and LCFT has an advantage of having the natural surjection

H'(Gy(=), 15(Gu(-))) - Z

n (the proof of) Corollary 3.19 (cf. Remark 6.12.2), and we use this surjection to
construct some constant monoids (cf. Definition 11.12 (2)).

Definition 11.12.  (M-theoretic Theta Monoids, [[UTchII, Proposition 3.1]) Let
M be a projective system of mono-theta environments with Htemp (M®) =~ 11,.

(1) (Split Theta Monoids) We put

env

—env

oy (M) 1= {w (M) = 0 (M) - g (M) (C oo H (I (M), MZ<M@>>>},

T (02 i {0, (02) i O (02 -t (VD) (€ o (1™ (0421500}

env
L
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These are functorially group-theoretically reconstructed collections of submonoids of
oH*! (Ht.zemp(M*@), p7(M?)) equipped with natrural conjugation actions of Hzmp(l\\/ﬂ*@),
together with the splittings up to torsion determined by Corollary 11.11 (3). We
shall refer to each of W (M?), V! (M?) as a mono-theta-theoretic theta

monoid.

(Constant Monoids) By using the cyclotomic rigidity isomorphism via positive ra-
tional structure and LCFT, and taking the inverse image of Z C Z via the surjection

HY(Gy(—), 15(Gy(-))) — Z (cf. Remark 11.11.1) for G,(M®) := G, (II'T™P(M®)),

we obtain a functorial group-theoretic reconstruction

Wens (M) C o H (L™ (MD), 17(MY))

of an isomorph of OD , equipped with a natural conjugate action by Htemp(M@)

We shall refer to \Ilcns(M ) as a mono-theta-theoretic constant monoid.

Definition 11.13.  ([IUTchII, Example 3.2])

(Split Theta Monoids) Recall that, for the tempered Frobenioid £ (cf. Exam-
ple 8.8), the choice of a Frobenioid-theoretic theta function © € O ((’)blrat) (ct.

Example 8.8) among the ugl((’)g’;rat)—multlples of the Autpg(gv)—conjugates of O
determines a monoid Oge (—) onil)é9 (cf. Definition 10.5 (1)) Suppose, for simplic-
ity, the topological group II, arises from a universal covering pro-object A, of
D,. Then for AQ = A, x zv € pro-Ob(DS) (cf. Definition 10.5 (1)), we obtain
submonoids -

‘I’fg,id = Oz@ (A?o) - &—)(A?o)'gihg C oo‘I’fg,id = cxg(A?o)‘QEEO‘Ag)O - OX(O,TEE,ft)-

For the various conjugates ©° of © for a € Autpﬂ(.:Yv), we also similarly obtain
submonoids - - -
\I/].-g—)’a C OO‘IJJ:S),Q - OX(OZ%M).

oo

Write
\Ij]:() == {\I/]:o } 5 Oo\Ij]:(—) a — {OO\IJ]:(—) oz} 5
< a€ll, o ) aell,

where we use the same notation a, by abuse of notation, for the image of o via the
surjection 11, — Autpg(gv). Note that we have a natural conjugation action of 11,

on the above collections of submonoids. Note also that QSZO |ae gives us splittings

up to torsion of the monoids ¥re o, oo ¥ re o (cf. splé9 in Definition 10.5 (1)), which
are compatible with the II,-action. Note that, from F ,» We can reconstruct these
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collections of submonoids with II,-actions together with the splittings up to torsion
up to an indeterminacy arising from the inner automorphismsof II, (cf. Section 8.3.
cf. also the remark given just before Theorem 8.14). We shall refer to each of ¥ re ,,

~Vre o as a Frobenioid-theoretic theta monoid.

(2) (Constant Monoids) Similarly, the pre-Frobenioid structure on C, = (£ U)base‘ﬁeld C
J , gives us a monoid O¢ (=) on D,. We put -

\IICE = OCDE(A(oao)v

which is equipped with a natural II,-action. Note that, from £ ,» We can reconstruct
IT, ~ V¢, , up to an indeterminacy arising from the inner automorphisms of II,,.
We shall refer to U¢, as a Frobenioid-theoretic constant monoid.

Proposition 11.14.  (F-theoretic Theta Monoids, [IUTchII, Proposition 3.3])

Let MO be a projective system of mono-theta environments with H;mp(M?) = II,.

Suppose that MO arises from a tempered Frobenioid Tiv n a @-Hodg;theatre tHTE =
({Téﬂ}yey, TS"r;Od) by Theorem 8.14 (“F — M”):

MY =M ("E).

(1) (Split Theta Monoids) Note that, for an object S of F  such that jun(S) =
ZJINZ, and (I1Ae)s ® Z/NZ = 7Z./NZ as abstract groups, the exterior cyclotome
uz(M?(U:TU)) corresponds to the cyclotome pz(S) = Hm o un(S), where pn(S) C
0*(9) C Aut’rz (S) (c¢f. [{UTchIl, Proposition 1.3 (i)]). Then by the Kummer

maps, we obtain collections of Kummer isomorphisms

Kum Kum
~ ~ .

Uigo o —+ o (MD), ooWize, = oW, (M),

env env

of monoids, which is well-defined up to an inner automorphism and compatible
with both the respective conjugation action of Hzmp(Mf?), and the splittings up
to torsion on the monoids, under a suitable bijection of [Z-torsors between “L” in
Definition 11.8, and the images of “a” via the natural surjection 11, — lZ:

“7s s “Im(a)’s.

(2) (Constant Monoids) Similary, using the correspondence between the exterior cy-
clotome ”Z(M?(Tévw and the cyclotome p5(S) = lim un(S), we obtain Kum-

mer isomorphisms
Kum

~

Wie, = Wens(MY)



A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 277

for constant monoids, where 'C, = (Tév)base'ﬁeld, which is well-defined up to
an inner automorphism, and compatible with the respective conjugation actions of
Htemp(M@)

X *

Proof. Proposition follows from the definitions. O

In the following, we often use the abbreviation ()(—) for a description like both of
(—) and - (—).

Proposition 11.15.  (II-theoretic Theta Monoids, [IUTchII, Proposition 3.4])

Let M® be a projective system of mono-theta environments with TP (M) = TI,.

Suppose that MO arises from a tempered Frobenioid Tév mn a @—Hodgejfheatre t7e =
({Téw}wgy, Tg ) by Theorem 8.14 (“F — M”):

mod
MY =M ("E).

We consider the full poly-isomorphism

full poly

~

M? (L) = MP(TE)

of projective systems of mono-theta environments.

~

(1) (Multiradiality of Split Theta Monoids) Each isomorphism 3 : M (IL,) =
M?(Tév) of projective system of mono-theta environmens induces compatible col-

lections of isomorphisms

8
I, = WP (MO (I0,) & TE™P(MO(TE ) = HE™PMO(TE))
N N ~
B Kum™?!
(00) Teny (MO (IL)) 5 (o) Vene ME(TE ) 5 CONEFSE

which are compatible with the respective splittings up to torsion, and

B
GQ = GE(M? (Hz)) = GQ(M? (Té )) = GQ(M?(Tév))
mn N mn
B Kum™?!
Teny (MO 5 (MO E ) 5 W

Moreover, the functorial algorithm

IL, — (I, ~ (OO)\IJQHV(M? (IL,)) with splittings up to torsion),
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which is compatible with arbitrary automorphisms of the pair
GE(Mf(Tiv)) ~ (Wipo)*H := (Vi zo )™ /torsions

arisen as Isomet-multiples of automorphisms induced by automorphisms of the pair
Gz(M*@(Tév)) ~ (Wire)™, relative to the above displayed diagrams, is multira-
dially defined in the sense of the natural functor “Waraph(z)  of Proposition 11.7.

(Uniradiality of Constant Monoids) Each isomorphism 3 : M& (1L, ) = M® (Tiv)
of projective system of mono-theta environmens induces compatible collections of

1somorphisms
~ Tt 2 t t
I, 3 ™ (MO(IL) 3 ™ (MO(TE,) = I (MO(E,))
N > Y
B Kum™!
lI’CHS(NL?(I_[Q)) = \chnS(M?(Tév)) - \I’Tcgv
and 5
Gy = GuMP(IL)) = GuM2(TE)) = GuMP(E))
Y Y Y
B Kum™!
Wens(MP (T1)) < = Wens(MP(TE )¢ = Ui -

Moreover, the functorial algorithm
M, — (T ™ W (M (TL))),

which fails to be compatible (Note that we use the cyltomic rigidity isomorphism via
rational positive structure and LCFT and the surjection H'(Gy(—), pz(Gu(=))) —
7 to construct the constant monoid, which use the value group portion as well) with
automorphisms of the pair

GQ(M*@(Tig)) ~ (Uig, ) = (Wig, )™ /torsions

induced by automorphisms of the pair GQ(M?(T]::U)) ~ (Wig, )™, relative to the
above displayed diagrams, is uniradially defined.

Proof. Proposition follows from the definitions. O

Corollary 11.16.  (M-theoretic Gaussian Monoids, [TUTchII, Corollary 3.5])

MO be a projective system of mono-theta environments with Ht)?mp(M*@) = II,.

For t € LabCusp™ (II%™ (M®)), we write (=); for copies labelled by t of various objects

functorially constructed from MO (We use this convention after this corollary as well).
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1) (Conjugate Synchronisation) If we regard the cuspidal inertia subgroups C

( 9 9
Htgmp (M®) corresponding tot as subgroups of cuspidal inertia subgroups of Htimp(l\\/ﬂ*@),
then the Atfnp (MO)-outer action of F)'* = Atc?mp(M?)/AEmp(M?) on Htimp(M*@)
induces 1somorphisms between the pairs

GE(M*@)t ~ Weps (M*@)t

of a labelled ind-topological monoid equipped with the action of a labelled topological
group for distinct t € LabCusp™ (Ht;mp(M?)). We shall refer to these isomorphisms

as Ffi-symmetrising isomorplﬁsms. When we identify these objects labelled by
t and —t via a suitable Ffi-symmetm'sing isomorphism, we write (=) for the
resulting object labelled by |t| € |F;|. We write

(=)
for the object determined by the diagonal embedding in H|t|e]Fl(_)|t| via suitable

]Fl”i-symmetm‘smg isomorphisms (Note that, thanks to the ]Fl”i-symmetm'smg 180-
morphisms, we can construct the diagonal objects). Then by Corollary 11.11, we

obtain a collection of compatible morphisms

(I (M) =) M (ME) - Go(ME ) (jm,))

m N
diag
\chns(MS)) — \I!cns(M*@)ﬂFlD?

which are compatible with Ffi—symmetrising isomorphisms and well-defined up to
an inner automorphism of Ty "P(MQ) (i.e., this inner automorphism indetermi-

nacy, which a priori depends on |t| € |Fy|, is independent of |t| € |F,]).

(2) (Gaussian Monoids) We shall refer to an element of the set

o, =TI 8, © T ey

|t|eF [t|eF

as a value-profile (Note that this set has of cardinality (21)"" ). Then by using F*-
symmetrising isomorphisms and Corollary 11.11, we obtain a functorial algorithm
to construct, from MO, two collections of submonoids

q/gau(M?) = W&(M?) = \IJCHS(M?)&;q ‘fN - H \IJCHS(M?)M

%
[tlEF; £ :value profile

0o Wgan (MO) 1= { U (M) := @CDS(M?)Tm.g@zoc IT Zens(M2)

x*
It|€F; £ : value profile
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where each 1l¢(M®) is equipped with a natural GQ(M?‘) =y -action. We shall refer
to each of Ue(M?), ¥e(M®) as a mono-theta-theoretic Gaussian monoid.
The restriction operations in Corollary 11.11 give us a collection of compatible eval-
uation isomorphisms

Df,u_ ’s
(M (MP) ) T (MS) - {Go(MZ ) e}y erx
N m

eval

~

(00) Ul (M2) 5 (00) Ve (M2),

which is well-defined up to an inner automorphism of Ht;mp(Mf?) (Note that up

to single inner automorphism by Ffi—symmetrisz’ng isomog)hisms ), where we write
«-- for the compatibility of the action of GQ(M?‘)M on the factor labelled by |t| of
the oo We(MP). We write

eval

(oo)\IJEHV(M?) = (w)\ljgau(M*e)
for these collections of compatible evaluation morphisms induced by restriction.

(Constant Monoids and Splittings) The diagonal-in-|F;| submonoid W eys(M2) r, )
can be seen as a grpah between the constant monoid \DCHS(MS))O labelled by the zero
element 0 € |Fy| and the diagonal-in-F;* submonoid \IICHS(MS))<F;;<>, hence determines
an isomorphism

diag

~

Wens (M?)O — Wens (M?) (F¥)

of monoids, which is compatible with respective labelled GQ(M?‘)—actions. More-
over, the restriction operations to zero-labelled evaluation points (cf. Corollary 11.11)
give us a splitting up to torsion

V(M) = W, (M) xy - €7, oo We(M?) = U5, (MD) gx - €80

cns cns

of each of the Gaussian monoids, which is compatible with the splitting up to torsion
of Definition 11.12 (1), with respect to the restriction isomorphisms in the third

display of (2).
Proof. Corollary follows from the definitions. O
Corollary 11.17.  (F-theoretic Gaussian Monoids, [[UTchlI, Corollary 3.6]) Let

MO be a projective system of mono-theta environments with Htgmp (M9) =~ IT,. Sup-

pose that MO arises from a tempered Frobenioid T]:-"U in a ©-Hodge theatre THT® =

({Téﬂ}yey, TSL;OCI) by Theorem 8.14 (“F — M”):

MY =M?(TE).
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(1) (Conjugate Synchronisation) For each t € LabCuspi(Hzmp(M*@)) the Kum-
mer isomorphism in Proposition 11.14 (2) determines a collection of compatible
morphisms

*

(" (M2) =) Gu(MD) — Gu(MZ):

my m
Kum

(\IJTCE)t = Wens (M*@>t7

which are well-defined up to an inner automorphism (which is independent of t €
LabCusp™ (II temp(l\/[[@))) themp(Me), and F}'=-symmetrising isomorphisms be-

tween distinct t € LabCusp (Htemp(M@)) induced by the Ax (M®)-outer action of
B = Ac(MO)/Ax (M) on TLx (MD).

(2) (Gaussian Monoids) For each value-profile £, we write

Ur('F) € ¥r(E)  JI (Wie )i
[t|eF

9), o ¥e(M®) in Corollary 11.16

*

for the submonoid determined by the monoids ¥ ¢ (M

Kum

~

(2), respectively, via the Kummer isomorphism (Vic, )iy — Wens(MP)yy in (1)
Write

Vs (E) = (s (E)) N

s ¥r(1E) = {¥r (1F)}

£ : value profile ’

where each 11 x, (Tiv) is equipped with a natural G,(M )<F><> -action. We shall refer
to each of Il x, (Tév), ool 7, (T]:-"v) as a Frobenioid-theoretic Gaussian monoid.
Then by composing the Kummer isomorphism in (1) and Proposition 11.14 (1), (2)
with the restriction isomorphism of Corollary 11.16 (2), we obtain a diagram of
compatible evaluation ismorphisms

8 P
top 5 ~

e (MS) = IeMS) «—- {Gy(M?;)\t\}meFf = {Gu(MD)y }ItIE]Ff6
~ ~ r ™~
Kum eval Kum ™!
(OO)\I[T]:EQ _> (OO)\IIenv (M?) - (00) \Ifg (M"(?) - (OO)‘IIJ_-g (Tiﬂ)’

which is well-defined up to an inner automorphism of TP (M®) (Note that up to

single inner automorphism by Ffi—symmetm’sing isomo?phisms ), where «-- is the

same meaning as in Corollary 11.16 (2). We write
Kum eval Kum™*!

(00)\1}1‘.7-';9 = (m)\Penv<M?) = (m)qjgau(M?) = (OO)\I/}—gau(Tég)

for these collections of compatible evaluation morphisms.
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(3) (Constant Monoids and Splittings) By the same manner as in Corollary 11.16
(3), the diagonal submonoid (Vic, )(r,|y determines an isomorphism

diag
(Wie,)o — (‘I’Tcg)ayﬁ

of monoids, which is compatible with respective labelled GQ(M?)—actions. Moreover,
the splittings in Corollary 11.16 (3) give us splittings up to torsion
\Ij}—g(Tég) = (‘IJTXCE)QF*) -Im(f)N, OO\I/]'-E(Tég) = (\IITXCE)(]FL*) 'Im(f)QZO

l

(Here we write Im(=) for the image of Kum ™! o eval o Kum in (2)) of each of the
Gaussian monoids, which is compatible with the splitting up to torsion of Defini-

tion 11.12 (1), with respect to the restriction isomorphisms in the third display of

(2).
Proof. Corollary follows from the definitions. O

Remark 11.17.1.  ([IUTchIII, Remark 2.3.3 (iv)]) It seems interesting to note that
the cyclotomic rigidity of mono-theta environments admits ]Fl>q i-symmetry, contrary
to the fact that the theta functions, or the theta values gf’s do not admit Ffi—
symmetry. This is because the construction of the cyclotomic rigidity of mono-theta
environments only uses the commutator structure [, | (in other words, “curvature”) of
the theta group (i.e., Heisenberg group), not the theta function itself.

Remark 11.17.2.  (II-theoretic Gaussian Monoids, [TUTchII, Corollary 3.7, Re-
mark 3.7.1]) If we formulate a “Gaussian analogue” of Proposition 11.15, then the re-
sulting algorithm is only uniradially defined, since we use the cyclotomic rigidity isomor-
phism via rational positive structure and LCFT (cf. Remark 11.11.1 Proposition 11.15
(2)) to construct constant monoids. In the theta functions level (i.e., “env”-labelled
objects), it admits multiradially defined algorithms; however, in the theta values level
(i.e., “gau”-labelled objects), it only admits uniradially defined algorithms, since we
need constant monoids as containers of theta values (Note also that this container is
holomorphic container, since we need the holomorphic structures for the labels and lei—
synchronising isomorphisms). Later, by using the theory of log-shells, we will modify
such a “Gaussian analogue” algorithm (cf. below) of Proposition 11.15 into a multiradi-
ally defined algorithm after admitting mild indeterminacies (i.e., (Indet 1), (Indet —),
and (Indet v)) (cf. Theorem 13.12 (1), (2)).

A precise formulation of a “Gaussian analogue” of Proposition 11.15 is as follows:
Let MO be a projective system of mono-theta environments with IT%™"(M?) = II,.

Suppose that M® arises from a tempered Frobenioid T£ ,ina @—Hodge?heatre tHT® =
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({Téﬂ}wey, T3 ) by Theorem 8.14 (“F — M”):

mod

MY =MO(TE ).

We consider the full poly-isomorphism

full poly

~

MP (L) = MP(E)

of projective systems of mono-theta environments. We write MS);(T]:-"U) for M?‘ for
MO = M*@(ng). For M? = MP(II,), we identify IT,5(MS;) and G,(MS;) with
II,5 and G,(IL,z) respectively, via the tautological isomorphisms II,; (M*@‘) = I,
Gu(MZy) = Gu(Ig).

(1)

Each isomorphism 3 : M?(IL,) = MS?(T;U) of projective system of mono-theta
environments induces compatible collections of evaluation isomorphisms

Php g e (t ~ ot
Hﬂ‘ «-- {GE(HE‘)‘H}H‘EFL% — {GQ(M*>( £2))‘t|}|t\€]Fl* — {Go (M ( éﬂ))lt‘}\tleﬂ?f
eval B Kum ™1
(00) Vhny M2 (My)) = (o) YeMD(My)) 5 () TP (TE ) = (o) ¥Fe (£,
and
diag B

GQ(HES) = Gv(Hgi)aﬁ) %GQ(M*@‘(T}“ ))(]Fl*) = GE(M?(T]:'—U))@Fﬁ)

eval

(M2 (I1,))* = ‘I’s(M?(Hv))Xé ve(MP(TE)) = vR(E)X

L
\I’env

where «-- is the same meaning as in Corollary 11.16 (2).
(Uniradiality of Gaussian Monoids) The functorial algorithms
Iy, = (Gu(ILg) ™ Wgay (M®(11,)) with splittings up to torsion),

I, — (00 Vgau(MP(I1,)) with splittings up to torsion),

which fails to be compatible (Note that we use the cyltomic rigidity isomorphism via
rational positive structure and LCFT and the surjection H'(Gy(—), u5(Gy(—))) —
7 to construct the constant monoid, which use the value group portion as well) with
automorphisms of the pair

GQ(M?(sz)@f) ~ \Ilfg(Tgv)X“ = \Ilfg(T;Q)X/torsions

v

induced by automorphisms of the pair GQ(M?(Tév)) ~ Vr, (Tév)x, relative to
the above displayed diagrams in (1), is uniradially defined. a
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§11.3. Hodge-Arakelov-theoretic Evaluation and Gaussian Monoids at
Good Places.

In this subsection, we perform analogues of Hodge-Arakelov-theoretic evaluation,
and construction of Gaussian monoids for v € V&°°4,
Let v € V&°°4. For v € V& N Y™ (resp. v € V), put

I, :=1Ix C Iy =1y C I =1,

(resp. Uy =X C Uy =X, C Uy :=Cy),

where § , X, and C, are Aut-holomorphic orbispaces (cf. Section 4) associated to 5 ,
v = - v

X, and C,, respectively. Note that we have I /ITF = F'* (resp. Gal(Uf /Ugr) =

EL 7S

F,**). We also write

A, C IO, — G,(I1,), A:; C H;E — GQ(HEi), AT C T — Gy (II5)

(resp. DZ (Uy,) )

the natural quotients and their kernels (resp. the split monod), which can be group-
theoretically reconstructed by Corollary 2.4 (resp. which can be algorithmically re-

~

constructed by Proposition 4.5). Note that we have natural isomorphisms G, (IL,) —
Gu(IIF) = G (II5") = G,

Proposition 11.18.  (II-theoretic (resp. Aut-hol.-theoretic) Gaussian Monoids
at v € V8°U N Y™ (resp. at v € V#€), [TUTchII, Proposition 4.1, Proposition 4.3])

(1) (Constant Monoids) By Corollary 3.19 (resp. by definitions), we have a func-
torial group-theoretic algorithm to construct, from the topological group G, (resp.
from the split monoid DE), the ind-topological submonoid equipped with G,-action
(resp. the topological monoid)

Ggm \chns(GQ) C ooHl(G@ MZ(GQ)) = hg”l Hl(Jv NZ(GQ))
JCG, :open
(resp. \I'CHS(DZ) = OD(C'E_) )

which is an isomorph of (G, ~ O%U), (resp. an isomorph ofO%U). Thus, we obtain
a functrotal group-theoretic algorithm to construct, from the topological group II,
(resp. from the Aut-holomorphic space Uy ), the ind-topological submonoid equipped
with Gy (IL,)-action (resp. the topological monoid)

Gy(Ily) ™ Wens(Ily) := Wens(Gu(1Ly)) C o H* (GQ(HQ)MUZ(GQ(HB)))
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(7"6317- lpcnS([Ug) = \IICHS(DqE (Uv)) )7

1 N\ =1 1 _ T ) — 15
where oo H (GQ(HE)’ ) T thCGE(HE) :open H (J7 )’ ool (HE’ ) T 11énJCGE(HE) :open
Hl(Hi X Gu(IL) J; _)7 and OOHl (Hg’ _) = @JCG&(HQ :open H' (Hg X Gy (M) J, _)'

(2) (Mono-analytic Semi-simplifications) By Definition 10.6, we have the func-
torial algorithm to construct, from the topological group G, (resp. from the split
monoid Dlg_ ), the topological monoid equipped with the distinguished element

-
logGg(pg) € R>o(Gy) = (REO)@ (resp. 10gD (po) € RZO(DE) = (REO)E7 )
(c¢f. “logy (py)” in Definition 10.6) and a natural isomorphism

\I!I(;Rns(Gg) = (\IICHS(GQ)/‘IICDS(GQ)X)R = (REO)E

(resp. \I!]Ens (DZ) = (Uens (Dg)/q/cns (D£> x )R = (REO)E )

of the monoids (cf. Proposition 5.2 (resp. Proposition 5.4)). Write

Vs (Gy) 1= Pens(Gy) ™ X (REO)E (resp. W (DZ) = \PcnS(DZ)X X (REO)E ),

cns cns

write

Uons(ly) = W (Gy(Ily)), \IICHS<H2>X = \IJCHS(GE(HQ))Xv R>o(ILy) == R>0(Gy(1Ly))

(resp. WEa(Uy) := UEL(D, (Uy)), Wons(Up)™ = Pens(Dy, (Uw))*, R0(Uy) := Rx0(D, (Uy))

Just as in (1).

(3) (Conjugate Synchronisation) If we regard the cuspidal inertia subgroups C 11,
corresponding to t as subgroups of cuspidal inertia subgroups of Hyi, then the Agi—
outer action of F}'* = A /A on ITE (resp. the action of F)'* = Gal(UE /US)
on the various Gal(U,/UF)-orbits of cusps of Uy) induces isomorphisms between
the pairs (resp. between the labelled topological monoids)

Gy(y)e ~ Wens(Ily)r  (resp. Wens(Uy)e )

of the labelled ind-topological monoid equipped with the action of the labelled topo-
logical group for distinct t € LabCuspi(Hg) = LabCuspi(B(Hg)O) (resp. t €
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LabCusp™(U,)) (¢f. Definition 10.27 (1) (resp. Definition 10.27 (2)) for the defini-
tion ofLabCuspi(—)). We shall refer to these isomorphisms as Ffi-symmetrising
isomorphisms. These symmetrising isomorphisms determine diagonal submonoids

\I,cns |[Fl|) C H \I[cns |t| \chns IF* - H \chns |t|
[t €]Fy |t| €F*

which are compatible with the respective labelled G, (11,)-actions

(resp.  Wens(U <|IF‘l| - H Vens (U \t|7 Wens(U ]F* C H Wens (U |t| ),
t|€[F] |t|EFF
and an isomorphism

diag diag

lI’CHS(HE)O - \IICHS(HQ([F;ﬂ (resp. \I/cnS(Uy)O — \chn5<Ug)<]Ff*> )

of ind-topological monoids, which is compatible with the respective labelled G (I1,)-

actions (resp. of topological monoids).

(Theta and Gaussian Monoids) Write

\I}env(Hg) = \I]cns(Hg)X X {RZO : logng<pg) : IOgHE(Q)}

(resp. \I'enV([Ug) = \IICHS(UQ>X X {RZO ) log[ui(pg) : 10gwl@)} ),

where lognﬂ(pg) . 1ognﬂ(g) (resp. logUE(pg) -logmﬂ(g)) is just a formal symbol, and

Vg (Tl) = Wens (Iy) s X {RZO. <jz : 1ognu(pv)>j}

C H s () = H Wens(Ily) ;< Rxo(1ly);
JEFF JEFF

(resp. Ugan(Uy) := Wens(Uy) S s, X SR> - <j2 . IOgUl(pg)> .
(F) J

- H Vs (Uw); = H Vens(Up); x R>0(Uy); )
JEFF JEFF

where log™® (p,) (resp. log"(py,)) is just a formal symbol, and Rsq - (=) is de-
fined by the R>o-module structures of R>o(IL,);’s (resp. R>o(Uy);’s). Note that
we need the holomorphic structures for the labels and Ffi—synchmmsmg 150mor-
phisms. In particular, we obtain a functorial group-theoretically algorithm to con-
struct, from the topological group II, (from the Aut-holomorphic space U, ), the



A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 287

theta monoid Weny(IL,) (resp. Weny(Uy)), the Gaussian monoid Vgay(IL,) (resp.
Uoon(Uy)) equipped with natural G, (Il )-actions and splittings (resp. equipped with
natural splittings), and the formal evaluation isomorphism

Uenv(IL,) 5 Tgau(T) : log™(p,) - log"™(0) — (5% - log"™(py));

eval

(Tesp. \I’env(Ug) = \Ijgau(Ug> : logUE(pg) : 1OgUE(®) = (]2 : logwﬂ(pg))j )7

which restricts to the identity on the respective copies of Wens(IL,)* (resp. Wens(Uy)™ ),
and is compatible with the respective Gy (IL,)-actions and the natural splittings (resp.
compatible with the natural splittings).

Remark 11.18.1.  ([IUTchII, Remark 4.1.1 (iii)]) Similarly as in Proposition 11.15
and Remark 11.17.2, the construction of the monoids Wens(Il,) (resp. Wens(Uy)) is
uniradial, and the constructions of the monoids W (II,), Weny(1l,), and Wgay(IL,)

cns
SS

(resp. U (Uy), Veny(Uy), and Wgay,(Uy,)), and the formal evaluation isomorphism

eval eval

~ ~

Ueny(Iy) = VUgau(Il,) (resp. Weny(Uy) — Veau(Uy)) are multiradial. Note that,
the latter ones are constructed by using holomorphic structures; however, these can be

described via the underlying mono-analytic structures (cf. also the table after Exam-
ple 11.2).

Proof. Proposition follows from the definitions and described algorithms. O

Proposition 11.19.  (F-theoretic Gaussian Monoids at v € yeood n ynen (resp.
at v € V*°), [IUTchII, Proposition 4.2, Proposition 4.4]) For v € V&4 N V™" (resp.
v e V¥) let Tév = 1C, (resp. Tév = (Cy, "D, = U,, ky)) be a p,-adic Frobenioid
(resp. a triple) in a ©-Hodge theatre "HT® = ({T]::w}ﬂey, T5 ). We assume (for

simplicity) that the base category of Tév is equal to Btzmp(THQ)o). We write
G,('TL,) A Wix  (resp. Wiy :=0%(C,) )

for the ind-topological monoid equipped with G, (TT1,)-action (resp. the topological monoid)

determined, up to inner automorphism arising from an element of 111, by Tév, and
TGy, ~ Wipr (resp. Wip = OD(TC'E_) )

for the ind-topological monoid equipped with TGQ—action (resp. the topological monoid)
determined, up to inner automorphism arising from an element ofTG2 by the v-component
TF; of F-prime-strip {TFQ}QEX determined by the ©-Hodge theatre THT® .
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(1) (Constant Monoids) By Remark 3.19.2 (resp. by the Kummer structure 'k, ),

we have a unique Kummer isomorphism

Kum Kum

~

Ui = Uens(TIL) (resp. Uiz 5 Uops(TU,) )

of ind-topological monoids with G, (TIL,)-action (resp. of topological monoids).

(2) (Mono-analytic Semi-simplifications) We have a unique 7% -orbit (resp. a
unique {£1}-orbit)

“Kum?” “Kum?”
7% -orbit, poly {+£1}-orbit, poly
X ~ X ~ Fy X
2o S Uens(TGy) ™ (resp. Wip = Uens("DE)* )

of isomorphisms of ind-topological groups with 1G,-action (resp. of topological
groups), and a unique isomorphism

“Kum” “‘Kum”

~ ~

\IJTF = (\IJTF/\IJTF) 50wk (1Gy) (resp. xpm = (xpm/xpm) 5 wi (D) )

cns

of monoids, which sends the distinguished element of ‘I’]F‘}-g determined by the unique
generator (resp. byp, = e = 2.71828 - -, i.e., the element of the complex Archimedean
field which gives rise to \I/T]_— whose natuml logamthm is equal to 1) Of\IJT]:)— /\I/T]_.F

y) (resp. W& (D)) determined by log “u(p,) €
R>o(TG,) (resp. log E(pg) € R>o('DL)). In particular, we have a natural poly-

cns ( cns (

the distinguished element of Ui

1somorphism

(Kum » {‘Kum ”»
poly poly

~ ~

Ui o= U Fxxpw 5 (1G,) (resp. U e ._\If Fxxpw 5 ws (D)) )

cns cns

of ind-topological monoids (resp. topological monoids) which is compatible with the
natural splittings (We can regard these poly—isomorphisms as analogues of Kummer
isomorphism). We write \Ilis}. : \Ili}.F (resp. \II : \Ifi}_k) hence we have a

tautological isomorphism

tauto tauto

~ ~

tr — \Ifisfg (resp. ?Si — ?S}—E ).
(3) (Conjugate Synchronisation) The Kummer isomorphism in (1) determines a

collection of compatible Kummer isomorphisms

Kum Kum

(Uir )¢ — \IICHS(THg)t (resp. (‘IJTiv)t = \chnchg)t ),
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which are well-defined up to an inner automorphism of T1_[E (which is independent
of t € LabCusp®(11L,)) for t € LabCusp® ('II,) (resp. t € LabCusp®(TU,)), and
F fi—symmetﬂsz’ng isomorphisms between distinct t € LabCuspi(THg) (resp. t €
LabCuspi(TUg)) induced by the TAEi—outer action of Fl”i = TAZOY/TA:; on TH:;
(resp. the action of F)'* = Gal(T[UQi/TUg’r) on the various Gal(TUQ/TUi)—orbits of
cusps of TTUQ). These symmetrising isomorphisms determine an isomorphism

diag diag
(\PT}- )0 — (\IJTiv)OF;:e) (resp. (\I[Tiv)o — (\Iffiv)m;:e) )

of ind-topological monoids (resp. topological monoids), which are compatible with
the respective labelled G, (11L,)-actions.

(4) (Theta and Gaussian Monoids) We write

Ve, \Il}—gau(Tiv) (resp. Uiro, \I/]_—gau(Tz) )

—u

for the monoids with G, ("I, )-actions and natural splittings, determined by Wy, (T11,),
Weau(TTL,) in Proposition 11.18 (4) respectviely, via the isomorphisms in (1), (2),
and (3). Then the formal evaluation isomorphism of Proposition 11.18 (4}) gives us
a collection of evaluation isomorphisms

Kum eval Kum™!

~ ~ ~

\IJT.FU@ = VYeny (THE) — \Pgau (THQ) — \I!]'—gau (Té )

Kum eval Kum™!

(resp. Wize = Wen (ML) 5 Weuu('L,) 5 g (1

gau

'F) )7

=v
which restrict to the identity or the isomorphism of (1) or the inverse of the iso-

morphism of (1) on the various copies of \Iffz , Wens(TT1,)%, and are compatible

with the various natural actions of GQ(THQ) and natural splittings.

§11.4. Hodge-Arakelov-theoretic Evaluation and Gaussian Monoids in
the Global Case.

In this subsection, we globalise the constructions in Section 11.2 (v € V**) and
in Section 11.3 (v € V&°°Y) via global realified Frobenioids (cf. also Remark 10.9.1).
We can globalise the local Ffi—symmetries to a global Ffi—symmetry, thanks to the
global {#£1}-synchronisation in Proposition 10.33 (cf. also Proposition 10.34 (3)).
This is a H-portion of constructions in XH-Hodge theatres. In the final multiradial
algorithm, we use this B-portion to construct ©-pilot object (cf. Proposition 13.7 and
Definition 13.9 (1)), which gives us a E-line bundle (cf. Definition 9.7) (of negative large
degree) through an action on mono-analytic log-shells (cf. Corollary 13.13).
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Next, we also perform NF-counterpart (cf. Section 9) of Hodge-Arakelov-theoretic
evaluation. This is a X-portion of constructions in XH-Hodge theatres. In the final
multiradial algorithm, we use this K-portion to construct actions of copies of “F_.”
on mono-analytic log-shells (cf. Proposition 13.11 (2)), through which we convert X-line
bundles into E-line bundles (cf. the category equivalence (Convert) just after Defini-

tion 9.7) and vice versa (cf. Corollary 13.13).

Corollary 11.20.  (II-theoretic Monoids associated to D-B-Hodge Theatres, [[UTchII,
Corollary 4.5]) Let

L eell
99

= 4
THTP™ = (1D, «— Top — TDOF)
be a D-H-Hodge theatre, and
D= {:EDQ}QGY
a D-prime-strip. We assume, for simplicity, that D, = B*WP(*I1,)0 for v € V™",

We write D" = {iDZ}QEy for the associated D" -prime-strip to ¥, and ssume that
iDZ = Btemp (3G ,))0 for v € V7.

(1) (Constant Monoids) By Definition 11.12 (2) for v € V** and Proposition 11.18
(1) forv € V&ood we obtain a functorial algorithm, with respect to the D-prime-strip
19, to construct the assignment

{Gu(MO (L)) ~ U MO (1))} v € VP,
Uens (D) 1 V3 01 Ueng("D)y 1= § { G (L) ~ W (11,) } v € Y& nyron,
\Pcns(ipg) vE yarc,

where U (*D), is well-defined only up to a 11, -conjugacy indeterminacy for v €
ynon‘

(2) (Mono-analytic Semi-simplifications) By Proposition 11.18 (2) for v € V&°°4
and the same group-theoretic algorithm for v € yhad (Here, we write ¥cps(1l,) :=
Uens (MO (11,)) ), we obtain a functorial algorithm, with respect to the D" -prime-strip
i@'_, to construct the assignment

{1G, ~ U5,(1GY)} ve V™,
s (ifDZ) v e yarc7

cns

TS (D7) - Voum U (D7), =

cns cns

where \Ilifjs(iZDF)E is well-defined only up to a iGQ—conjugacy indeterminacy for

v € V", Fach U=

cns

(*D"), is equipped with a splitting

v (i:‘DF)Q: e (i@F); X RZO(%‘DF)Q

cns cns
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and each R>o(*D"), is equipped with a distinguished element
log ® (p,) € Rso("D"),.

If we regard ¥ as constructed from *®, then we have a functorial algorithm, with

respect to the D-prime-strip D, to construct isomorphisms

\chns<i®>; :> \Piis,(i@}_);

for each v € V, which are compatible with G,(*11,) = *G,-actions for v € V",

By Definition 10.6 ( “D-version”), we also obtain a functorial algorithm, with respect
to D" -prime-strip *D", to construct a (pre-)Frobenioid

D" (M)
isomorphism to the model object C\ . in Definition 10.4, equipped with a bijection
Prime(D" (¥27)) 5V,
and localisation isomorphisms
gl. to loc.
Yooyt Pprory, — Rso(tD7),
of topological monoids.
(Conjugate Synchronisation) We put
T = 1¢y 0 T¢®" 0 (¢O7)~ : LabCusp* (1D, ) 3 T

(cf. Proposition 10.33). The various local F}**-actions in Corollary 11.16 (1) and
Proposition 11.18 (3) induce isomorphisms between the labelled data

\chns(T@>)t

for distinct t € LabCuspjE ("D.). We shall refer to these isomorphisms as lei-
symmetrising isomorphisms (Note that the global {#£1}-synchronisation es-
tablished by Proposition 10.33 is crucial here). These ]Ffi-symmetrismg 1somor-
phisms are compatible with the (doubly transitive) Ffi—action on the index set T' of
the D-0°-bridge Tgbgeu with respect to T¢, hence, determine diagonal submonoids
\I]CHS(T©>-)<|F1|> C H \chns(T©>—)|t|7 \I]cns<T@>—)<[5‘l*> - H \chns(T©>-)|t|7
[t|E€[F:] |t|eF}
and an isomorphism
diag

~

Vers(1D )0 3 Wens(1D) o)
consisting of the local isomorphisms in Corollary 11.16 (3) and Proposition 11.18

(3).
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(4) (Local Theta and Gaussian Monoids) By Corollary 11.16 (2), (3) and Propo-

(5)

sition 11.18 (4), we obtain a functorial algorithm, with respect to the D-prime-strip
D, to construct the assignments

(00) Perv (D) 1 Vo0

{G ( ( ))}jGF* a% (oo)\I/env(M*@ (TH2>) v E ybad N ynon,
(00) Vv (D) 1= § {Gy (1 )} jers ™ (o0) Penv (') v e Vel n v,
o0) Yeny (YU, v e V™,

and
(00) Yegau (D) : Vo 0
{Gu(M2 (L))} jepr ™ (00) Pgau(MP(TTL,)) v € V¥ q Vo,
(00) Ygau (1D )y 1= {GQ(THE)}]EFZ* A (00) Ugan (TTL,) v € VeI nyron,
(00) Vgau (FUy) v e Ve,

where we write OO\IJenv(THQ) = \Ilenv(THQ) (resp. oo\IfenV(TUQ) = ‘IfenV(TTUQ)) and
OO\IIgau(THg) = \Pgau(THg) (TeSP- oo\IlgaU(TUg) = \I/gau(TUE)) forv e ngOd nyren
(resp. v € V) and (o0)Venv ("D )u '8, (00) Ygau (1D )u s are equipped with natural
splittings, and compatible evaluation isomorphisms

eval

~

(oo)\I/env(T©>-) — (oo)legau(T®>-)
constructed by Corollary 11.16 (2) and Proposition 11.18 (4).

(Global Realified Theta and Gaussian Monoids) We have a functorial algo-
rithm, with respect to the D" -prime-strip T to construct a (pre-)Frobenioid

Deny ("D1)

env

as a coply of the Frobenioid D" (1DL) of (2) above, multiplied a formal symbol
)_
logT33> (©), equipped with a bijection

Prime(D!, (D7) 5V,

env

and localisation isomorphisms

gl. to loc.
@DH— (Tg'-) v — \I/env(TQ';)E

env

of topological monoids. We have a functorial algorithm, with respect to the D' -
prime-strip "% to construct a (pre-)Frobenioid

D (197) H DH(IDL);

gau
JEFF
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whose divisor and rational function monoids are determined by the weighted diagonal
(42 )jEFz%’ equipped with a bijection
Prime(D", (TQ';)) 5V,

gau

and localisation isomorphisms

gl. to loc.

q)Dn— (TQ';),E L) \Ilgau(T@';)E

gau

of topological monoids for each v € V. We also have a functorial algorithm, with
respect to the D" -prime-strip T@i to construct a global formal evaluation iso-

morphism
eval

(DY) = Dyu('D)

DII—

env

of (pre-)Frobenioids, which is compatible with local evaluation isomorphisms of (4),
with respect to the localisation isomorphisms for each v € V and the bijections
Prime(—) = V.

Proof. Corollary follows from the definitions. O

Corollary 11.21.  (F-theoretic Monoids associated to BB-Hodge Theatres, [[UTchII,
Corollary 4.6]) Let

T'l/}ii .‘_wgell
fHT® = (153 & 15 = DO

be a H-Hodge theatre, and

ig = {i}— 2}26Y
an F-prime-strip. We assume, for simplicity, that the D-H-Hodge theatre associated to
THTE s equal to iy 7TPE i Corollary 11.20, and that the D-prime-strip associated

to *F is equal to *D in Corollary 11.20. We write 1§ = {i}"g}yey for the associated
F-prime-strip to *F.

(1) (Constant Monoids) By Proposition 11.19 (1) for V8°°Y, and the same group-
theoretic algorithm for v € V°*1 we have a functorial algorithm, with respect to the

F-prime-strip ¥, to construct the assignment

(Gt s} weue

\Ilcns(i%’) Voum \IJCHS(:C%)Q = i} yare
tF, veENVTT,

where \IICHSGS)E is well-defined only up to a I1‘[2-0077,j'ugacy indeterminacy for v €
V", By Proposition 11.14 (2) for v € VP2 (where we take “C,” to be *F,) and
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Proposition 11.19 (1) for v € V&4 we obtain a collection of Kummer isomor-
phism

Kum

Vens((F) = Pens(*D).
(Mono-analytic Semi-simplifications) By Proposition 11.19 (2) for V&°°%, and
the same group-theoretic algorithm for v & VP2 we have a functorial algorithm,
with respect to the F -prime-strip *§~, to construct the assignment

PSS (igl—) c Voue PSS (igl—)g — \II?FE

cns cns

where WSS (*7), is well-defined only up to a *G,-conjugacy indeterminacy for v €
V", Each U (*F"), is equipped with its natural splitting, and for v € V*°, with
a distinguished element (Note that the distinguished element in TE for v e V¢
is not preserved by automorphism of 1F . cf. also the first table in Section 4.3 cf.
[IUTchIl, Remark 4.6.1]). By Proposition 11.19 (2) for v € V&°° and the same
group-theoretic algorithm for v € V**4 we have a functorial algorithm, with respect
to F-prime-strip *§", to construct the collection of poly-isomorphisms (analogues

of Kummer isomorphism)

44}<um ”
poly

PSS (iSF) ; PSS (i@#)

cns cns

Let
ig“_ = (iC”_, Prime(iclk) :> y; 13'_7 {ipﬂ}ﬂey)

be the F'™-prime-strip associated to *F. We also have a functorial algorithm, with
respect to F'™-prime-strip *F", to construct an isomorphism

‘Kum?”

icH— L> :D||—(i®|—)
(We can regard this isomorphism as an analogue of Kummer isomorphism), where
DY (D) is constructed in Corollary 11.20 (2), which is uniquely determined by
the condition that it is compatible with the respective bijections Prime(—) = V and

the localisation isomorphisms of topological monoids for each v € V, with respect to

“Kum”
poly
the above collection of poly—isomoqj{ohisms s ((F5) 5 U _(#D) (Note that,
[{ um])
poly “Kum”

if we reconstruct both U (3F7) 5 WS (DN and ¢ S5 DYDY ina

cns cns

compatible manner, then the distinguished elements in W5, at v € V* can be
computed from the distinguished elements at v € V™" and the structure (e.g.. using
rational function monoids) of the global realified Frobenioids *C", D" (#D"). cf.

[IUTchII, Remark 4.6.1]).
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(3) (Conjugate Synchronisation) For each t € LabCusp®(1®,), the collection of
isomorphisms in (1) determine a collection of compatible Kummer isomorphisms

Kum

~

\Ilcns(T3">—)t — \Ifcns(T©>—)t7

where W (1D, ); is the labelled data constructed in Corollary 11.20 (3), and the
L, -conjugacy indeterminacy at each v € V is independent of t € LabCuspi(TCDg,
and Fﬁi—symmeﬂsing isomorphisms induced by the various local ]F;"i—actions mn
Corollary 11.17 (1) and Proposition 11.19 (8) between the data labelled by distinct
t e LaubCuspjE (1D,). These Ffi—symmetrising 1somorphisms are compatible with
the (doubly transitive) Ffi-action on the index set T of the D-©°-bridge Tgbgeu
with respect to T¢ in Corollary 11.20 (3), hence, determine (diagonal submonoids

and) an isomorphism

Vens("F)o = Tens () 52,y
consisting of the local isomorphisms in Corollary 11.17 (3) and Proposition 11.19
(3)-
(4) (Local Theta and Gaussian Monoids) Let

fr V% ¢ t2/7°©
SJ—> ©> -—> HT

be a ©-bridge which is glued to the ©F-bridge associate to the B-Hodge theatre
"HT® via the algorithm in Lemma 10.38 (Hence, J = T*). By Corollary 11.17
(2), (3) and Proposition 11.19 (4), we have a functorial algorithm, with respect to
the above ©-bridge with its gluing to the ©F -bridge associated to T’HTE, to construct
assignments

(oo)ql]:env (THTG) : y DU —

{GQ(THQ)}je]FZ* ~ (oo)\IIT}'E ve vy

(OO)\P]:env (THTG)E = arc
(00) Wi Fe ve V™,

and

{GQ(THE)}]‘GFZ* ~ (oo)‘I’fgau(T]:'—E) v e Vror
() V7 (E,) v e Ve

A

(Here the notation (=) (FHT®) is slightly abuse of notation), where we write V., (1HT®),
= Ve (1HT®),, and oo\IlJrgau(T’H'T@)2 = \Il]-"gau(THT@)y for v € V&°°U and
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(Oo)\I!]-‘env(THT@>Q S, (00) ¥ Fpan ("HT®)y’s are equipped with natural splittings, and
compatible evaluation isomorphisms

Kum eval Kum™!

(w)‘llfcnv(THT@) — (OO)WGDV(T©>) = (w)\llgau(T@>) = (OO)\IJ-Fgau(THT@)
constructed by Corollary 11.17 (2) and Proposition 11.19 (4).

(5) (Global Realified Theta and Gaussian Monoids) By Proposition 11.19 (4)

“Kum”

~

for labelled and non-labelled versions of the isomorphism *C'™ =  DF(FD") of
(2) to the global realified Frobenioids DL, (1DL), D'g:u(T@';) constructed in Corol-

lary 11.20 (5), we obtain a functorial algorithm, with respect to the above ©-bridge,
to construct (pre-)Frobenioids

Ch (HT®), Ch (1HT®)

(Here the notation (=)(THT®) is slightly abuse of notation. Note also that the
construction of C (FHT®) is similar to the one of Cly.,, in Definition 10.5 (4))
with equipped with bijections

Prime(C  ("HT®)) 3V, Prime(c", ((HT®)) 3V,

gau
localisation isomorphisms

gl. to loc. gl. to loc.

(I)cll— (THT@),Q L> \I/]-" (THT(a)E, @C\g)—au(TrHT(-)LE L) \I[]-‘gau (THTG) )E

env env

of topological monoids for each v € V, and evaluation isomrphisms

“Kum” eval “Kum™1”

CL.(OHT®) 5 DL, (@) 5 DL.(DD) 5 ChL.(HT®)

gau gau

of (pre-)Frobenioids constructed by Proposition 11.19 (4) and Corollary 11.20 (5),
which are compatible with local evaluation isomorphisms of (4), with respect to the
localisation isomorphisms for each v € V and the bijections Prime(—) S5 V.

Proof. Corollary follows from the definitions. O
Next, we consider X-portion.

Corollary 11.22.  (II-theoretic Monoids associated to D-X-Hodge Theatres, [[UTchII,
Corollary 4.7]) Let
DX "% "o
fHTP™ = (1D® & 19, 5 1D.)
be a D-K-Hodge theatre, which is glued to the D-H-Hodge theatre t3,7P8 of Corol-
lary 11.20 via the algorithm in Lemma 10.38 (Hence, J =T ).
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(1) (Global Non-realified Structures) By Ezample 9.5, we have a functorial algo-

(2)

rithm, with respect to the category "D®, to construct the morphism
fp® — 1p®,
the monoid/field/pseudo-monoid
m1(1D%) A ME('D®), m(1D®) A M”(D®), (D) ~ M2, (1D)

with m (TD®)- /w524 (1D®)-actions (Here, we use the notation 7, (TD®), 71 (1D®) and
it (1D®), not T1I®, TH®, (TTI®)™t in Example 9.5, respectively, for making clear
the dependence of objects), which is well-defined up to mi (TD®)- /7 (T1D®)-conjugay

indeterminacies, the submooid/subfield/subset

®

M, ("D°) € M®(1D®), M,p,q("D®) ¢ M7 (1D®), ME(1D®) c M2, (1D°),

mod

of m1 (1D®)- /mt2t (T1D®)-invariant parts, the Frobeniods

]:®

mod

(TD@) C }"@(TD©) S ]—"@(TD@)

(Here, we write F2

mod

(1D®), FO(ID®) for TF®_ |, TF® in Evample 9.5, respectively)
with a natural bijection (by abuse of notation)

Prime(F?

mod

(‘D) 5V,
and the natural realification functor

]:®

mod

(TD®) — FOE (1D@).

mod

(F;f-symmetry) By Definition 10.22, for j € LabCusp(TD®), we have a functorial
algorithm, with respect to the category TD®, to construct an F-prime-strip

FO(Do);,
which is only well-defined up to isomorphism, Moreover, the natural poly-

action of F} on D@ induces isomorphisms between the labelled data

@&
FO(ID)j, Mq("D®)j, Mipeq (D)5,

{m*('D®) A M2 (D)}, Fi

mod

("D®); — Fon, ("D®);
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for distinct j € LabCusp("D®). We shall refer to these isomorphisms as F} -
symmetrising isomorphisms. These Ff—symmetrising isomorphisms are com-
patbile with the (simply transitive) ]Fl’:é—actz'on on the index set J of the D-NF-bridge
ToRF with respect to ¢y : LabCusp(1D®) = J(= F) in Proposition 10.19 (3),
and determine diagonal objects

@ F®
Nﬂr(?lod(]L <]F9é - H Mmod TD@ Mmod(TD©)<Fl*) - H Mmod(TD©)j'
JeFy jEFF

We also write

mod mod

FO('D?) (F¥)> {m1**("D?) WM@B (TD@)}< F¥)> FE (TD©)< *y Fon (TD©>< F¥)
for a purely formal notational shorthand for the above Ffé—symmetrising 1somor-

phisms for the respective objects (cf. also Remark 11.22.1 below).

(3) (Localisations and Global Realified Structures) For simplicity, we write
T@j = {TDQj}yey (resp. T@'; = {TD'Q_j}EGY) for the D-(resp. D" -)prime-strip
associated to the F-prime-strip F©(TD®)|; (cf. Definition 10.22 (2)). By Defini-
tion 10.22 (2), Definition 9.6 (2), (3), and Definition 10.23 (3), we have a functorial
algorithm, with respect to the category TD®, to construct (1-)compatible collections
of “localisation” functors/poly-morphisms

(fp®); #2257 FO(IDO)|;, FEk(tD°); &0 (FO(TDO);)",

mod

]:@

mod

ra 1. to loc.
{1 (1D®) A M2, ('D®)),; & 2 M2, ('D,,) € M2, (D)}

up to isomorphism, together with a natural isomorphism

gl.real’d to gl. non-real’d®R

D'F(T’D?) i FOR (TD@)

mod

of global realified Frobenioids (global side), and a natural isomorphism

localised (gl.real’d to gl. non-real’ d®R)
l_ ~
Rxo("D5)y — V(Fo(iDo)|,)* v

of topological monoids for each v € V (local side), which are compatible with the re-
gl. to loc.

~

spective bijections Prime(—) = V and the localisation isomorphisms {@pi(tory,y —
J 1=

R0 ("D )y }uev constructed by Corollary 11.20 (2) and the above FER (1D9);
(FO(TD®)|;)R. Finally, all of these structures are compatible with the respective

gl. to loc.
—

F*-symmetrising isomorphisms of (2).
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Remark 11.22.1.  ([IUTchII, Remark 4.7.2]) Recall that F}*, in the context of
F;*-symmetry, is a subquotient of Gal(K/F) (cf. Definition 10.29), hence we cannot
perform the kind of conjugate synchronisations in Corollary 11.20 (3) for F;*-symmetry
(for example, it nontrivially acts on the number field M®(TD©)). Therefore, we have to
work with

(1) F-prime-strips, instead of the corresponding ind-topological monoids with Galois
actions as in Corollary 11.20 (3),

(2) the objects labelled by (—)moa (Note that the natural action of Galois group Gal(K/F')
on them is trival, since they are in the Galois invariant parts), and

(3) the objects labelled by (—)_x,

because we can ignore the conjugacy indeterminacies for them (In the case of (2), there

is no conjugacy indeterminacy). cf. also Remark 9.6.2 (4) (in the second numeration).

Proof. Corollary follows from the definitions. O

Corollary 11.23.  (F-theoretic Monoids associated to X-Hodge Theatres, [[UTchII,
Corollary 4.8]) Let

ng

T — 1 *HT@)

TwzF
VARG

T"HT@:(T]_—@ - tTF®

be a K-Hodge theatre, which lifts the D-X-Hodge theatre fay 7P of Corollary 11.22,
and 1s glued to the B-Hodge theatre t 7™ of Corollary 11.21 via the algorithm in
Lemma 10.38 (Hence, J =T%*).

(1) (Global Non-realified Structures) By Definition 9.6 (1) (the Kummer isomor-
phism by the cyclotomic rigidity isomorphism via Qg NZ* = {1} (Cyc.Rig.NF1)),
we have a functorial algorithm, with respect to the pre-Frobenioid TF®, to construct
Kummer isomorphism

Kum Kum

{F(D®) ~ TME, ) = {m*(1D®) ~ M2, (D)}, M = M2(TD®)

of pseudo-monoids with group actions, which is well-defined up to conjugacy in-
determinacies, and by restricting Kummer classes (cf. Definition 9.6 (1)), natural
Kummer isomorphisms

Kum Kum

{m (D) A TM®} = {72 (1D®) A M®(TD®)}, TME , = M®_,(TD®),

Kum Kum

[x(1D%) ~ 1H®} 5 [t (1D9) A BI%(1D°) ), 1M q > M ('DP).
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These isomorphisms can be interpreted as a compatible collection of isomorphisms
Kum Kum Kum Kum

T]:'@ AN J’_'@(T’D@), Tf@ AN f@(TID@)’ T}—god AN fri)od(Tfl)@), Tfri)g%d adN ]:@)]R (TD@))

mod
of (pre-)Frobenioids (cf. Definition 9.6 (1), and Example 9.5).

(F/-symmetry) The collection of isomorphisms of Corollary 11.21 (1) for the
capsule TF; of the F-prime-strips and the isomorphism in (1) give us, for each
j € LabCusp("D®) (= J), a collection of Kummer isomorphisms

Kum Kum

3 S TFe; 5 FODO);, {m(1D%) ~ M2, ). & {m*('D®) A M2,.("D®)}

Kum Kum

~ —® ~  ==®
UMS%Od)j — Mgod(TD@>j7 (TMmod)j - Mmod(TD©)j7
Kum Kum
(T“Fffod)j = fgod(TD@)jv (T}_Sfd)j = ‘Fgg{d(TD@%?

and B} -symmetrising isomorphisms between the data indezed by distinct j € LabCusp(TD?®),
induced by the natural poly-action of Ff on 1F®. These F} -symmetrising isomor-

phisms are compatbile with the (simply transitive) Ff—actz’on on the index set J of

the D-NF-bridge T¢XF with respect to "¢y : LabCusp(TD®) 5 J(= Ff) in Propo-

sition 10.19 (3), and determine various diagonal objects

Tr® “r®
(TMgod)(Ff) C H (TMI%Od)j7 (TMmod)(IFl*) C H (TMmod>j7
JEF; JEFy

and formal notational “diagonal objects” (cf. Corollary 11.22 (2))

T]:©|<]Fl%>7 {ﬁat(TD@B) r TMo@on}@Fﬁa (T“Fr(fod)ﬂFfé)? (TFE«?@(F&-

l

(Localisations and Global Realified Structures) By Definition 10.22 (2) and

Definition 10.23 (3), we have a functorial algorithm, with respect to the NF-bridge

Tk . . .
5, = TF® -5 TF® to construct mutually (1-)compatible collections of localisa-

tion functors/poly-morphisms,

gl. to loc. R gl. to loc. R
(Frodi = 185 (Faedi == 185,

mod

ra gl. to loc.
{{771 H(ID®) A TMiﬁ}j —" M, C TM""”XW}vev’
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up to isomorphism, which is compatible with the collections of functors/poly-morphisms
of Corollary 11.22 (3), with respect to the various Kummer isomorphisms of (1),
(2), together with a natural isomorphism

gl.real’d to gl. non-real d®R
Tolk ~ T
Cj ( ‘Frnod)

of global realified Frobenioids (global side), which is compatible with respective bijec-
tions Prime(—) =V, and a natural isomorphism

localised (gl.real’d to gl. non-real’ d®R)
\IJTSE v 3 \I[TF;R&

of topological monoids for each v € V (local side), which are compatible with the
gl. to loc.

~

respective bijections Prime(—) =+ V, the localisation isomorphisms {@fc\)-,y —
ng Yoev constructed by Corollary 11.20 (2) and the above (1FEX); gl to Joc-

TSEQ, the isomorphisms of Corollary 11.22 (3), and various (Kummer) isomorphisms
of (1), (2). Finally, all of these structures are compatible with the respective F} -
symmetrising isomorphisms of (2).

Proof. Corollary follows from the definitions. O
Write the results of this Chapter together, we obtain the following:

Corollary 11.24.  (Frobenius-picture of XH-Hodge Theatres, [IUTchII, Corol-
lary 4.10]) Let T 7™ 1 T™% pe RB-Hodge theatres with respect to the fized initial
O-data. We write THTD'&E, ty 7 PHE for the assosiated D- X B-Hodge theatres re-
spectively.

(1) (Constant Prime-strips) Apply the constructions of Corollary 11.21 (1), (3)
for the underlying B-Hodge theatre of 1472, Then the collection Uens(TF): of
data determines an F-prime-strip for each t € LabCuspi(T©>). We identify the
collections

Vens("F )0, Wens (") )

diag
of data, via the isomorphisms — in Corollary 11.21 (3), and we write

$h = ('CA, Prime(TDR) SV, T84, {Tpawtvev) (e, “A={0, (FF)}")

for the resulting F'" -prime-strip determined by the algorithm “F — 7. Note that
we have a natural isomorphism TS'F = TSmod of F'"-prime-strips, where TS'I;Od 18
the data contained in the ©-Hodge theatre OfTHTgEH.
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(2) (Theta and Gaussian Prime-strips) Apply Corollary 11.21 (4), (5) to the un-
derlying ©-bridge and B-Hodge theatre of THT®E . Then the collection Vx, (THT®)

of data, the global realified Frobenioid TCopy = Cenv(TH’T@), localisation isomor-
gl. to loc.

~

phisms ®ic . ., — env(T"HT@) for v €V give rise to an F'" -prime-strip

Tgenv - (TC(Ia'_nv7 Prlme(TDIe'_nv) - V 8:envﬂ {Tpenv,y}QGY)

(Note that 1§, is the F-prime-strip determined by Wz,  (1HT®)). Thus, there
is a natural identification isomorphism Y§&,, = ¥\ ca, where 1FL,, is associated
to data in YHT® (cf. Definition 10.5 (4) for 1§ ).

("HT®) of data, the global realified Frobenioid {Cyay =

gl. to loc.

~

= U (HTOR forvev

env

Simalarly, the collection U £

gau

Cgau(THT@), localisation isomorphisms P+

gau,)U

give rise to an F'" -prime-strip

Jr3gau - (TC!;W’ Prlme(Tplg'_au) N y? ngaua {TpgaU,E}EEY)

(Note that 155, is the F"-prime-strip determined by \D]-'gau(T,IL[Te)). Finally, the
evaluation isomorphisms of Corollary 11.21 (4), (5) determine an evaluation iso-

gau

morphism

of F'"-prime-strips.
X X :
(3) (©*#- and ©zh-Links) Let

I
FEA X! (resp. TEERXH ] resp. nga:Xu )

donote FFeXu_prime-strip associated to the F'" -prime-strip 13” (resp. T@env, resp.
Stan) (cf. Definition 10.12 (3) for F'™™*#-prime-strips). Then the functriality of

this algorithm induces maps
Tsompr (1§, 'A) — Tsomzewxu (TGN H, FERT M),

Isom]_—m(TSgau, @X) — Isomp»m(fszg—a:xu ig\bxu)

Note that the second map is equal to the composition of the first map with the

eval 1 3

evaluation isomorphism TF" and the functorially obtained isomorphism

env

TR 28 vl TS'F’X“ from this isomorphism. We shall refer to the full poly-isomorphism

gau

N full poly > N full poly >
~ X ~ X
TR Dy AFI X (resp. TFERxm T dFIEXH

env gau
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as the ©*#-link (resp. © 2k -link) from THTHE 1o t1HTHE (¢f. Definition 10.8),
and we write it as

X @ @X;J.
(P ae A S, (resp. THTHEE 2=y iqprX8 oy

and we shall refer to this diagram as the Frobenius-picture of XH-Hodge the-
atres (This is an enhanced version of Definition 10.8). Note that the essential
meaning of the above link is

4:25 AN qN » (T'BSp. «{q }1<]<l* AN gN » )

=v

for v e VPad,

(Horizontally Coric F"*#-Prime-strips) By the definition of the unit portion

of the theta monoids and the Gaussian monoids, we have natural isomorphisms

ngxu 0 tghxe 0 Tt xu

env gau
where TFH, TRLRK, IS are the F~>*F-prime-strips associated to the F" -prime-

strips 1§ N [ Sgau, respectively. Then the composite

poly poly

- ~ ~ - - ~ ~ +
TSAXH - T&tnxv” - TSAX“ (resp. TSAXM - Tslg_;uu — TS’AXM)
full poly
with the poly-isomorphism induced by the full poly-isomorphism TFE»>rn =y
full poly

i&[”“ (resp. TFH»xm 2y 4 'F’X”) in the definition of ©*F-link (resp. O}

gau gau~

link) is equal to the full poly-isomorphism of F~*H-prime-strips. This means that
(= )SFX“ is preserved (or “shared”) under both the ©*#-link and ©gh -link (This is
an enhanced version of Remark 10.8.1 (2)). Note that the value group portion is not
shared under the ©*F-link and the ©gk -link. Finally, this full poly-isomorphism

induces the full poly-isomorphism

full poly

T@Z AN igz
of the associated D" -prime-strips. We shall refer to this as the D- X B-link from
f T PRE 4 i’HTD'&E, and we write it as

g PHE Dy tgyyDRE
This means that (T)®'y is preserved (or “shared”) under both the ©*F-link and
OxH -link (This is an enhanced version of Remark 10.8.1 (1), Definition 10.21 and

gau
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Definition 10.35). Note that the holomorphic base “HTPBE7 is not shared under
the ©*F-link and the ©gh -link (i.e., ©*"-link and ©gh -link share the underlying
mono-analytic base structures, but not the arithmetically holomorphic base struc-

tures).

(5) (Horizontally Coric Global Realified Frobenioids) The full poly-isomorphism
full poly

~

DL = DY in (4) induces an isomorphism
(D" ("DR), Prime(D" ('0%)) = V, {Topr yhvev) = (D7 (*DR), Prime(D"(*D})) = V., {#ppr ,}vev)

of triples. This isomorphism is compatible with the Rsg-orbits

{Kum 2
poly

~

(‘cx, Prime("C) 5V, {Tpastoev) = (D7("D}), Prime(D"("DX)) = V, {Tppr , }oev)

and

l{Kum 2
poly

~

(*CA, Prime(*Cx) SV, {fpapteev) = (D"(*Dy), Prime(D" (*0%)) =V, {*opr o} vev)

of isomorphisms of triples obtained by the functorial algorithm in Corollary 11.21
(2), with respect to the ©*H-link and the @gxa‘fl—link. Here, the R<g-orbits are natu-

rally defined by the diagonal (with respect to Prime(—)) R g-action on the divisor
monoids.

Proof. Corollary follows from the definitions. O

Remark 11.24.1. (Etale picture of D- X H-Hodge Theatres, [ITUTchII, Corollary
4.11]) We can visualise the “shared” and “non-shared” relation in Corollary 11.24 as
follows:

IHTPEE |- — > Tl 219 |< — —[FHTP X

We shall refer to this diagram as the étale-picture of XH-Hodge theatres (This
is an enhanced version of Remark 10.8.1, Remark 10.21.1 and Remark 10.35.1). Note
that, there is the notion of the order in the Frobenius-picture (i.e., T(—) is on the left,
and *(—) is on the right), on the other hand, there is no such an order and it has a
permutation symmetry in the étale-picture (cf. also the last table in Section 4.3). Note
that these constructions are compatible, in an obvious sense, with Definition 10.21 and
Definition 10.35, with respect to the natural identification (_)’DZ = (_)C‘D;.
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§12. Log-links — An Arithmetic Analogue of Analytic Continuation.

§12.1. Log-links and Log-theta-lattices.

Definition 12.1.  ([IUTchIII, Definition 1.1]) Let '§ = {TF,},ev be an F-
prime-strip with the associated F" -prime-strip (resp. F' *H-prime-strip, resp. D-prime-
strip) 5 = {T}Z}QGY (resp. 5 m = {T‘FEXM}EGM resp. 1D = {TDE}EGY)‘

(1) Let v € V*°". We write
(Wir, > W =) Uy = (0 )P

for the perfection of W), (cf. Section 5.1). By the Kummer isomorphism of Re-

gp
tF,

an isomorph of K, (cf. Section 5.1 for the notation (—)22). Then we can define the

mark 3.19.2, we can construct an ind-topological field structure on ¥ which is
py-adic logarithm on Wi, and this gives us an isomorphism log, : W7 = \I/%
of ind-topological groups. Thus, we can transport the ind-topological field structure

gp . ~ . N .
of U7~ into W{,. . Hence, we can consider the multiplicative monoid “O®” of non-

zero integers of \I!;Vfi, and we write W,q 7, ) for it. Note that \Il%pg (1F) = \I”T}E.
The pair T, ~ ¥, o(t 7,) determines a pre-Frobenioid
log(TF,).
The resulting TTI,-equivariant diagram
(Log-link v € V") Uip, D Vo - Up = Ve

is called the tautological log-link associated to T]-"Q (This is a review, in our
setting, of constructions of the diagram (Log-link (non-Arch)) in Section 5.1), and
we write it as

7, 2% log(tF,).

(poly)
For any (poly-)isomorphism (resp. the full poly-isomorphism) log(TF,) — *F,
full poly
(resp. log(TF,) = %F,) of pre-Frobenioids, we shall refer to the composite
(poly)

7, % log(F,) = *F, as a log-link (resp. the full log-link) from F, to
1F, and we write it as

log

full
Tr, =% *F, (resp. 'F, oo

tE, ).

Finally, put

1
2py

IT]:E =

:
i (25 ) P 5 Wipy ) CWipe = Wign),
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and we shall refer to this as the Frobenius-like holomorphic log-shell asso-
ciated to TF, (This is a review of Definition 5.1 in our setting). By the recon-

structible ind-topological field structure on ¥y Fr = Ve

log(tF,) We can regard Zi r,

as an object associated to the codomain of any log-link T]-"2 log, 1]:2_

Let v € V¥, Recall that ', = (TC,, D, Tk,) is a triple of a pre-Frobenioid TC,,
an Aut-holomorphic space T[UQ = TDQ, and a Kummer structure T/QQ Wi g =
o"(i¢c,) — A'Pw which is isomorphic to the model triple (Cy, Dy, ky) of Defini-
tion 10.2 (3). For N > 1, we write W{'Y C ¥, C P¥, for the subgroup of

N-th roots of unity, and W% — \Iffgl

group \Iffg_.g (Recall that U5 — \If§1’f2 is an isomorph of “C =5 C*”). Then the
composite

for the universal covering of the topological

~ gp gp UN
\IIT]-'E - ‘IjurE - ‘I’T]:E/‘I’Ur:E

: : : 8P /\yHN ~
is also a universal covering of WyL /WiZ . We can regard U7 as constructed

from WL /WHX (cf. also Remark 10.12.1, Proposition 12.2, (4) in this definition,

Proposition 13.7, and Proposition 13.11). By the Kummer structure 'x,, we can

construct a topological field structure on \IJ%_. . Then we can define the Archimedean

. N L . . ~ ~ 58P
logarithm on W7 F and this gives us an isomorphism log, : W} F \Ifﬁv of

topological groups. Thus, we can transport the topological field structure of \I;%_.E

into Wi , and the Kummer structure Viz, — A'P: into a Kummer structure
T/ig : \IJT;E <+ A'P». Hence, we can consider the multiplicative monoid “O>”
of non-zero elements of absolute values < 1 of W , and we write Wy,qt 7, for
it. Note that W& )

log(tFy)
Aut-holomorphic space U, and the Kummer structure TK; determines a triple

= W% . The triple of topological monoid Wi,4i7,), the

log(TF,).
The resulting co-holomorphicisation-compatible-diagram

: arc ~ gp
(Log-link v € V) Uip, C \Iffi,’l “« Ve = U ar)

is called the tautological log-link associated to TF, (This is a review, in our
setting, of constructions of the diagram (Log-link (Arch)) in Section 5.2), and we

write it as
7 2% log(tF).
(poly)
For any (poly-)isomorphism (resp. the full poly-isomorphism) log(TF,) = *F,

full poly
(resp. log(TF,) = 1F,) of triples, we shall refer to the composite F, tog,
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(poly)
log(T7,) = *F, as a log-link (resp. the full log-link) from TF, to ¥F, and

we write it as

TF, log, YF, (vesp. F, e FF, ).
Finally, we write
IT J:L
for the W ot fg)—orbit of the uniquely determined closed line segment of Ui - which

is preserved by multiplication by 1 and whose endpoints differ by a generator of the

kernel of the natural surjection W77 — TP (Le., “the line segment [—m, +7]"), or

>< -
log(TFy)

(when we regard W1 as constructed from \17%;'@ /Y% ) equivalently, the ¥
orbit of the result of multiplication by N of the uniquely determined closed line
segment of \Il;“}.v which is preserved by multiplication by 1 and whose endpoints
differ by a generator of the kernel of the natural surjection L S A
(i.e., “the line segment N[—+:, ++] = [, +7]"), and we shall refer to this as the
Frobenius-like holomorphic log-shell associated to T}-y (This is a review of
Definition 5.3 in our setting). By the reconstructible topological field structure on

Uipn = \If%pg(wE ) We can regard Z; z as an object associated to the codomain of

any log-link T7, 2% {7,

We put

[O_Q(Tg) = {[O_Q(TFE) = \Ij?}l}vev

for the collection of ind-topological modules (i.e., we forget the field structure on
W% ), where the group structure arises from the additive portion of the field struc-
tures on Uy . For v € V', we regard U7 as equipped with natural G, (1L,)-
action. Write also

log('3) := {[UQ(T-FQ)}QGY

for the JF,-prime-strip determined by log(TF,)’s, and we write

5 % log(13)

for the collection {TF, o, log(TF,)}uev of diagrams, and we shall refer to this as

the tautological log-link associated to . For any (poly-)isomorphism (resp. the
(poly) full poly
full poly-isomorphism) log(T§) = *F (resp. log('F) = *F) of F-prime-strips,
(poly)
we shall refer to the composite 'F log, log(TF) = *F as a log-link (resp. the full

log-link) from ¥ to *F and we write it as

log

g 2% ix (resp. L full fog

5 ).
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Finally, we put
ITS = {IT}"E}EGY7

and we shall refer to this as the Frobenius-like holomorphic log-shell associ-
ated to '§. We also write

Iiy C log('3)
for {Z:z, C log("Fy)}vev. We can regard Ziz as an object associated to the

codomain of any log-link T§ Lo, Iz

For v € V™" (resp. v € V¥°), the ind-topological modules with G, (II)-action
(resp. the topological module and the closed subspace) Zix, C log(TF,) can be
constructed only from the v-component T]—"E XK of the associated JF FXE_prime-strip,
by the xp-Kummer structure, since these constructions only use the perfection
(—)Pf of the units and are unaffected by taking the quotient by O*(—) (cf. (Step
2) of Proposition 5.2) (resp. only from the v-component T]-"; of the associated
F'-prime-strip, by (Step 3) of Proposition 5.4, hence, only from the v-component
TFX1 of the associated F*H-prime-strip, by regarding this functorial algorithm
as an algorithm which only makes us of the quotien of this unit portion by uy for

N > 1 with a universal covering of this quotient). We write
Liponn C log(TF, X

for the resulting ind-topological modules with G, (TIL,)-action (resp. the resulting
topological module and a closed subspace). We shall refer to this as the Frobenius-
like mono-analytic log-shell associated to 7.7-'1'}: XK Finally, we put

Tigrxu = {IT]:;XH}QEY - [‘J_Q(TS'_X“) = {[O_Q(T]:;XM)}QGY

for the collections constructed from the F"*#-prime-strip '§™*# (not from TF). We

shall refer to this as the Frobenius-like mono-analytic log-shell associated to
T %"‘XM_

Proposition 12.2.  (log-Links Between F-Prime-strips, [[UTchIII, Proposition

1.2])) Let 1§ = {TF, }uev, ¥§ = {*F, }uev be F-prime-strips with associated F~*H-prime-
strips (resp. D-prime-strips, resp. D -prime-strips) 1§~ >+ = {T]:EX“}EGy, TFxe =
{i}zxu}yey (Tesp. D = {TD£}2€Y7 D = {'JFDQ}QGM resp. 1O = {TIDZ}QEM tor =
(3D} ev), respectively, and TF log, 1% a log-link from 1§ to ¥F. We recall the log-link

diagrams

([Ognon) lIJTJ-‘E D) \IJ;}__E —» [og(T‘,T-'E) — \If@

(poly)

~

gp
tog g(tF,) \Ijifga
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(poly)

~

<[Ogarc) \I]T]-‘E C \I/%I;__E “— [o_g(T]?E) — \I]gl

gp
log (1 Fy) ViF,:

for v € V™" and v € V¥, respectively.
(1) (Vertically Coric D-Prime-strips) The log-link 'F tog, 1% induces (poly-)isomorphisms

(poly) (poly)

~ ~

D 5 ip to- I ipF

of D-prime-strips and D" -prime-strips, respectively. In particular, the (poly-)isomorphism
(poly)
"D 5 D induces a (poly-)isomorphism
(poly)

~

Uens(M0) 5 T (1D).

(2) (Compatibility with Log-volumes) For v € V"" (resp. v € V) the dia-
gram log, .. (resp. the diagram log,..) is compatible with the natural p,-adic log-

gp 11, gp
volumes on (\PTFE) v and (\Ijlog(f}l)

\IITXJ_. and the natural radial log-volume on \Il%pg(u__ )) in the sense of the formula

(5.1) of Proposition 5.2 (resp. in the sense of the formula (5.2) of Proposition 5.4).

When we regard W7y as constructed from \Ilfg_./\lff; (cf. Definition 12.1 (2)),

" gp .
tF,

however, we regard the object W /WY (or W, /WY ) as being equipped with

)THE (resp. the natural angular log-volume on

then we equip \Il;‘gl])_.g/\fl’ﬁj,lﬁE the metric obtained by descending the metric of ¥

a “weight N7, that is, the log-volume of \IJTX}. \If’fﬁ 18 equal to the log-volume of
WS ([[UTchIIl, Remark1.2.1 (i)]) (cf. also Remark 10.12.1, Definition 12.1 (2),
(4), Proposition 13.7, and Proposition 13.11).

(3) ((Frobenius-like) Holomorphic Log-shells) For v € V" (resp. v € V¥¢), we
have

11, t
s T (07 ) ™ S log( 7)) € Tir, (< log(TF)

(cf. the inclusions (Upper Semi-Compat. (non-Arch)) O, log(O;) C I in Sec-
tion 5.1) (resp.

Vigizy CTir, (€ log( 7). Wi, i (T, - 085, )

(cf. the inclusions (Upper Semi-Compat. (Arch)) OF. C Iy, O C exp,(Zy) in
Section 5.2) ).

(4) ((Frobenius-like and Etale-like) Mono-analytic Log-shells) For v € V"
(resp. v € V*©) by Proposition 5.2 (resp. Proposition 5.4), we have a functorial
algorithm, with respect to the category TDZ(Z B(1G,)%) (resp. the split monoid
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TD£ ), to construct an ind-topological module equipped with a continuous TGQ—action
(resp. a topological module)

lo_g(TDZ) = {TGQm l{:N(TGE)} (resp. [o_g(TDZ) = k:N(TGE) )
and a topological submodule (resp. a topological subspace)
Tipr =I('Gy) C k~(1Gy)

(which is called the étale-like mono-analytic log-shell associated to D! )
equipped with a p,-adic log-volume (resp. an angular log-volume and a radial 1079-
volume). Moreover, we have a natural functorial algorithm, with respect to the
split-x u-Kummer pre-Frobenioid TF*H (resp. the triple TF*"), to construct an
Isomet-orbit (resp. {*1} X {if}-orbit arising from the independent {+1}-
actions on each of the direct factors “k~(G) = C~ x C™~” in the notation of Propo-
sition 5.4)

lKum ”»
poly

~

g("Fy ") 5 log('Dy)

of isomorphisms of ind-topological modules (resp. topological modules) (cf. the poly-
{{K ”»
pglr;

isomorphism ¥ (*F7) 5 U

cns cns

(*D"7) of Corollary 11.21 (2)). We also have
a natural functorial algorithm, with respect to the py-adic Frobenioid T]:g (resp.
the triple T F, ), to construct isomorphisms (resp. poly-isomorphisms of the {1} X
{£1}-orbit arising from the independent {£1}-actions on each of the direct factors
“k~(G) = C™~ x C™7” in the notation of Proposition 5.4)

ap (poly) : tagto f inducedbe Kum .
(Uiz, = ) lg("Fy) — log("F, ") — log("Dy )
induced by Kum
ap (poly) tagto - pOly,{:l:i}X{:tl} -
(resp. (Uyz = ) log(1\F) = log(TF, ™) — log('Dy) )

of isomorphisms of ind-topological modules (resp. topological modules) (cf. the iso-
morphism \Ilcns(iig); = \Ifiis(i’DF); of Corollary 11.20 (2) and the Kummer iso-
Kum

morphism Wens(*F) = Wens(*D) of Corollary 11.21), which is compatible with the
respective TGQ and GQ(THQ)—actions, the respective log-shells, and the respective log-
volumes on these log-shells (resp. compatible with the respective log-shells, and the
respective angular and radial log-volumes on these log-shells).

The above (poly-)isomorphisms induce collections of (poly-)isomorphisms

lKum ”
poly

~

log("§") := {log("F}, *")}vey = log("D") = {log("D})}vev,
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‘Kum »
poly

~

.’Z:TS)—X/,L = {ITFZXM}QGY — Ii—g}— = {ITDZ}EGY’

induced by Kum
(poly) tauto poly

(Tens(13) == {35 Joev =) l0g(13) := {log("Fo) }oew = log("§F#) = log("D"),

induced by Kum
tauto poly

~

Ifg = {IT]:E}Qey — ITSFX/J. :) IT@F

(Here, we regard each \IJ% as equipped with G, (*IL,)-action in the definition of
Vens(13)).

((Etale-like) Holomorphic Vertically Coric Log-shells) Let *® be a D-prime-
strip with associated D" -prime-strip *OF. We write

§("D)

for the F-prime-strip determined by Vens(*®). Assume that '§ = F = F(*D),
and that the given log-link is the full log-link 1§ full tog I = 3(*D). We have a
functorial algorithm, with respect to the D-prime-strip *2, to construct a collection
of topological subspaces

I*@ = ITS

(which is called a collection of vertically coric étale-like holomorphic log-
shell associated to *®) of the collection Wen(*D) = Veny(*F),and a collection of
1somorphisms

(cf. the isomorphism Wens(*D) X = WS (D7) X of Corollary 11.20 (2)).

Remark 12.2.1.  (Kummer Theory, [IUTchIII, Proposition 1.2 (iv)]) Note that

the Kummer isomorphisms

of Corollary 11.21 (1) are not compatible with the (poly-)isomorphism ¥ (D) =

Kum Kum

Uons((F) 2 Uens(MD), Vens(*F) = Vens(FD)

(poly)

~

Uens(3D) of (1), with respect to the diagrams (log,,,,) and (log,,.).
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Remark 12.2.2.  (Frobenius-picture, [[UTchIII, Proposition 1.2 (x)]) Let {"F}nez
be a collection of F-prime-strips indexed by Z with associated collection of D-prime-
strips (resp. D" -prime-strips) {"®},cz (resp. {"D"},cz). Then the chain of full
log-links

L fulllos (n-1)z full log po full log (ny1)e full log

of F-prime-strips (which is called the Frobenius-picture of log-links for F-prime-

strips) induces chains of full poly-isomorphisms

full poly full poly full poly full poly

~ ~

5 Wbp X onp I Mhgn S0

full poly full poly full poly full poly
:> (n—l)gl— ; ngl— :> (n+1)®|— :>

of D-prime-strips and D" -prime-strips respectively. We identify (7)®’s by these full
poly-isomorphisms, then we obtain a diagram

- full log \chns((n_l)s) full log \Ilcns(ng) full log \IJCHS((TL_H)S_) full log o
Kum Kum
Kum Kum Kum
Tens (D).

This diagram expresses the vertical coricity of Weu((7)®). Note that Remark 12.2.1

says that this diagram is not commutative.

Proof. Proposition follows from the definitions. 0

Definition 12.3.  (log-Links Between XHB-Hodge Theatres, [IUTchIII, Proposi-
tion 1.3 (i)]) Let

f X8 ig X

be XH-Hodge theatres with associated D- X H-Hodge theatres THTDMEE, by P8
respectively. We write T§~, 1§, ng (in T§;), 13 (in '37) (vesp. *Fs, 3., iSj (in
15,), 15, (in ¥37)) for F-prime-strips in the XB-Hodge theatre THT2® (resp. IHTXE).
For an isomorphism

~

R

of D- X HH-Hodge theatres, the poly-isomorphisms determined by = between the D-

prime-strips associated to '§~, s (resp. ¥, ¥F., resp. 1F;, ¥F;, resp. &, ¥§4)
poly poly
uniquely determines a poly-isomorphism log(TFs) = g~ (resp. log(Tg.) = 3.,
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poly poly log

resp. log(1§,;) = *F;, resp. log(§:) = ¥F.), hence, a log-link T~ = ¥ (resp.
log log log

¥ 5%, resp. T&- = i&-, resp. '§; = *F;), by Lemma 10.10 (2). We write
P rRE L8 gy N

for the collection of data = : TH7PHH X iHTDMEB, T3S [ig 5,15 [ig e, {ng [ig

¥5i jes, and {15, tog 15, ver, and we shall refer to it as a log-link from THT™E
poly

to HTX®. When = is replaced by a poly-isomorphism fy7PRE X g D-RE
full poly

(resp. the full poly-isomorphism P PRE X i”HTDMBH), then we shall refer to
the resulting collection of log-links constructed from each constituent isomorphism of the
poly-isomorphism (resp. full poly-isomorphism) as a log-link (resp. the full log-link
from THTHE to ¥ HTX®, and we also write it

THTEE P8 iy TEB (regp, T7EE MLET iy 7EE )

Note that we have to carry out the construction of the log-link first for single = for the
purpose of maintaining the compatibility with the crucial global {41 }-synchronisation
in the B-Hodge theatre ([IUTchIII, Remark 1.3.1]) (cf. Proposition 10.33 and Corol-
lary 11.20 (3)) (For a given poly-isomorphism of XH-Hodge theatres, if we consid-
ered the uniquely determined poly-isomorphisms on JF-prime-strips induced by the
poly-isomorphisms on D-prime-strips by the given poly-isomorphism of XH-Hodge the-
atres, not the “constituent-isomorphism-wise” manner, then the crucial global {£1}-
synchronisation would collapse (cf. [IUTchl, Remark 6.12.4 (iii)], [IUTchII, Remark
4.5.3 (iii)])).

Remark 12.3.1.  (Frobenius-picture and Vertical Coricity of D- X H-Hodge the-
atres, [IUTChIII, Proposition 1.3 (ii), (iv)]) Let {"HT®®},.cz be a collection of K-
Hodge theatres indexed by Z with associated collection of D- X H-Hodge theatres
{"HTPHEY, cz. Then the chain of full log-links

o full log (n_l)HTgEE full log nHT@EE full log (n+1)H7.gEE| full log o

of XH-Hodge theatres (which is called the Frobenius-picture of log-links for XMH-
Hodge theatres) induces chains of full poly-isomorphisms

full poly full poly full poly full poly

~ ~

~ (n_l)HTD_IXBH ~ nHT'D—&EE\ :> (n+1)HTD_IXBH :>

T

of D- X H-Hodge theatres. We identify ()7 PN by these full poly-isomorphisms,
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then we obtain a diagram
o full log (nfl)’HTgEE full log nHT®E5 full log (”+1)’H’T&EE full log o

Kum
Kuml

(7)7_[7-17—@537

Kum

Kum Kum

where Kum expresses the Kummer isomorphisms in Remark 12.2.1. This diagram ex-
presses the vertical coricity of HTPHE  Note that Remark 12.2.1 says that this

diagram is nmot commutative.

Definition 12.4.

([IUTCIIL, Definition 1.4]) Let {"™H T}, ez be a collec-

tion of KH-Hodge theatres indexed by pairs of integers. We shall refer to either of the

diagrams

Chis
L2

oxx

full log

full log

X
- —_— n,mHT‘ZEﬂ @

X p

(S2a
gau n,m+17_[7~®EE|

X p
gau

- —_—

as the log-theta-lattice. We shall refer to the former diagram (resp.

full log

full log
Oz
——
full log

X p
gau

n,mHT&EE

full log

gram) as non-Gaussian (resp. Gaussian).

Remark 12.4.1.

full log

full log

n+1,mH7‘|ZEE et

full log

full log
n—i—l,m—l—lHT@Eﬂ
full log

n+1,m7_[T®EH

full log

namt g TRE O it g BB _O%F

X p
gau

X p
gau

the latter dia-

For the proof of the main Theorem 0.1, we need only two adjacent

columns in the (final update version of) log-theta-lattice. In the analogy with p-adic
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Teichmiiller theory, this means that we need only “lifting to modulo p*” (cf. the last
table in Section 3.5).

Theorem 12.5.  (Bi-Cores of the Log-Theta-Lattice, [IUTchIII, Theorem 1.5])
Fiz an wnitial Th-data

F/F, Xp, I, Cr, V, VP24 ¢,
(/7 y Uy XKy Yo

mod>

For any Gaussian log-theta-lattice corresponding to this initial ©-data, we write ™D
(resp. "D~ ) for the D-prime-strip labelled “-" (resp. “>”) of the XEB-Hodge theatre.

(1) (Vertical Coricity) The vertical arrows of the Gaussian log-theta-lattice induce
the full poly-isomorphisms between the associated D-X H-Hodge theatres

full poly full poly full poly

~ ~ ~

~ n,mHT'D—gﬁﬂ ~ n,m—i—lHT'D—lEEEI ~ o
where n is fixed (cf. Remark 12.3.1).

(2) (Horizontal Coricity) The horizontal arrows of the Gaussian log-theta-lattice in-

duce the full poly-isomorphisms between the associated F©*"-prime-strips

full poly full poly full poly

~ ~ ~

~ n,mgzxu ~ n—l—l,msrzxu ~
where m is fived (cf. Corollary 11.24 (4)).

(3) (Bi-coric F"*#-Prime-strips) Let "D\ for the D" -prime-strip associated to
the F' -prime-strip ™3« of Corollary 11.24 (1) for the XB-Hodge theatre nmay THE

We idenfity the collections W ns("™ D)o, \I’cns(”’m@>)<]yl>:<> of data via the isomor-
diag

~

phism Ve (MmO ) — qlcns(”’mi)})(w) constructed in Corollary 11.20 (3), and
we write

3Z(n’m©>)

for the resulting F"-prime-strip (Recall that “A = {0, (F})}”) Note also we have
a natural identification isomorphism Fx (™™D ) = FL (WMD), where we write
F2(M™mDs) for the F"-prime-strip determined by Wens("™Ds) (Recall that “>=
{0, =}". ¢f. Lemma 10.38). We write

Fa (D), Fa(OD,)

for the associated F™* -prime-strip and FT**-prime-strip to {?Z("”"@g, respec-
tively. By the isomorphism “WUq,s(1D) = wz;s(iﬁ); ” of Corollary 11.20 (2), we
have a functorial algorithm, with respect to the D™ -prime-strip ™Dy, to construct
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an F X -prime-strip 32* (”””@Z). We also have a functorial algorithm, with respect
to the D-prime-strip ™™D, to construct an isomorphism

tauto

~

FA(D) S FA (L),
by definitions. Then the poly-isomorphisms of (1) and (2) induce poly-isomorphisms

poly poly poly

~

:> SZXM(n’m9>—) :> 3Z><p(n,m+1©>-) 5o

poly poly poly

S FA(DN) B F (D) S
of F XK _prime-strips, respectively. Note that the poly-isomorphisms (as sets of iso-
morphisms) of F~ XM -prime-strips in the first line is strictly smaller than the poly-

isomorphisms (as sets of isomorphisms) of F~*F-prime-strips in the second line
tauto

in general, with respect to the above isomorphism F (WD) S FX(mDRL),
by the existence of non-scheme-theoretic automorphisms of absolute Galois groups
of MLF’s (cf. the inclusion (nonGC for MLF) in Section 3.5), and that the poly-
morphisms in the second line are not full by Remark 8.5.1. In particular, by com-
posing these isomorphisms, we obtain poly-isomorphisms

poly

e ~ - ’o
gAxu(n,mQZ) x SAXH(H ,1M @Z)
of Fr >t _prime-strips for any n',m’ € Z. This means that the F~*H-prime-strip

SZX“(”””QZ) 18 coric both horizontally and vertically, i.e., it is bi-coric. Finally,
Kum

the Kummer isomorphism “U.,(*F) = Wens(*D)” of Corollary 11.21 (1) deter-

mines Kummer isomorphism

induced by Kum

R TN S N Gy
which is compatible with the poly-isomorphisms of (2), and the x u-Kummer struc-
tures at v € V" and a similar compatibility for v € V*° (cf. Definition10.12

(1)).
(4) (Bi-coric Mono-analytic Log-shells) The poly-isomorphisms in the bi-coricity
in (3) induce poly-isomorphisms

poly

~

{I’n,mgz C [U_g(n’mQZ)} % {In/’m/gz C [O_g(nlym/gz)} P

poly

= n.m ~ - n.m/
{ISZX“("’T”@Z) C [O_g(gAX“(, QZ))} — {Igzxu(n/,mlgz) C [O_Q(SAXM( ’ @Z))}
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for any n,m,n’,m, € Z, which are compatible with the natural poly-isomorphisms

lKum »
poly

~

{Igzxu(n,mQZ) C [O_g(gzxu(n’mQZ))} — {In,mgz C [U_g(n’mQZ)}

of Proposition 12.2 (4). On the other hand, by Definition 12.1 (1) for “Us(TFs)o”
and “\PCDS(TS>_)<F;§> 7 in Corollary 11.24 (1) (which construct ™' ), we obtain

Tomgs C log("™Fa)

(This is a slight abuse of notation since no F-prime-strip “"™Fa” has been defined).

Then we have natural poly-isomorphisms

induced by Kum
tauto poly

~

{Tomga Clog(™™Fa)} {L,mgzm c [a_g(”’msgxf‘)} ~ {L,,m@z c [o_g(”’mQZ)}

(cf. Proposition 12.2 (4)), where the last poly-isomorphism is compatible with the
poly-isomorphisms induced by the poly-isomorphisms of (2).

(5) (Bi-coric Mono-analytic Global Realified Frobenioids) The poly-isomorphisms
poly
nm S "/’m/C‘JZ of D" -prime-strips induced by the full poly-isomorphisms of (1)
and (2) for n,m,n’,m’ induce an isomorphism

(D" ("™ (D), Prime(D"("™(DR)) SV, {"ppi y }uew)
S (D (U (@), Prime(D" (" (DR)) S VA" ppr buew)
of triples (cf. Corollary 11.20 (2), and Corollary 11.24 (5)). Moreover, this isomor-

phism of triples is compatible, with respect to the horizontal arrows of the Gaussian
log-theta-lattice, with the R<g-orbits of the isomorphisms

("MCA, Prime(™™Cx) SV, {""pau}oev)

“‘Kum”

~

= (DN(MMDY), Prime(DT (MDR)) SV, {" " ppr  }uev)

of triples, obtained by the functorial algorithm in Corollary 11.21 (2) (cf. also Corol-
lary 11.24 (1), (5)).

Proof. Theorem follows from the definitions. O

§12.2. Kummer Compatible Multiradial Theta Monoids.

In this subsection, we globalise the multiradiality of local theta monoids (Propo-
sition 11.7, and Proposition 11.15) to cover the theta monoids and the global realified
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theta monoids in Corollary 11.20 (4), (5) Corollary 11.21 (4), (5), in the setting of
log-theta-lattice.

In this subsection, let THTHE®E be a XH-Hodge theatre with respect to the fixed
initial ©-data, and nmy 788 5 collection of XH-Hodge theatres arising from a Gaussian
log-theta-lattice.

Proposition 12.6.  (Vertical Coricity and Kummer Theory of Theta Monoids,
[IUTchIII, Proposition 2.1]) We summarise the theta monoids and their Kummer theory
as follows:

(1) (Vertically Coric Theta Monoids) By Corollary 11.20 (4) (resp. Corollary 11.20
(5)), each isomorphism of the full poly-isomorphism induced by a vertical arrow of

the Gaussian log-theta-lattice induces a compatible collection

(00) Yoy (D) 5 00y Very (" T1DS) (resp. DL, ("MDL) 5 DL

env env

(" HDE) )

of isomorphisms, where the last isomorphism is compatible with the respective bijec-

tion Prime(—) =V, and localisation isomorphisms.

(2) (Kummer Isomorphisms) By Corollary 11.21 (4) (resp. Corollary 11.21 (5)),
we have a functorial algorithm, with respect to the XH-Hodge theatre THT&EE, to

construct the Kummer isomorphism

Kum “Kum”

0 Vr (HT®) 5 () Ve (D) (resp. CLLOHT®) = DI (D0) ).

env

Here, the resp’d isomorphism is compatible with the respective Prime(—) = V and
the respective localisation isomorphisms. Note that the collection Vo, (D<) of
data gives us an F~-prime-strip §5. (1<), and an F"-prime-strip F'. (1D-) =
(Dény (1D5), Prime(Dg,,, (M05)) = V, §e.y (1D5), {1, o vev) and that the non-

resp’d (resp. the resp’d) Kummer isomorphism in the above can be interpreted as

an isomorphism

induced by Kum “Kum”

~

Tgie_nv - 8"e_nv(Jr33>) (T’@Sp. TSIe}_nv :> SIe}_nv(Jr£0>) )
of F"-prime-strips (resp. F'" -prime-strips).

(3) (Compatibility with Constant Monoids) By the definition of the unit portion
of the theta monoids (cf. Corollary 11.24 (4)), we have natural isomorphisms

I S 130, §(Mh) 5 i (D),

env)

which are compatible with the Kummer isomorphisms I

induced by Kum
= ~ (o
env — Senv(T©>)7
induced by Kum

TS,ZX/,L ~ 32“‘0@2) of (2) and Theorem 12.5 (3).
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Proof. Proposition follows from the definitions. O

Theorem 12.7.  (Kummer-Compatible Multiradiality of Theta Monoids, [[TUTchIII,
Theorem 2.2]) Fix an initial Th-data

(F/F, Xp, I, Cg, V, V224 " ¢).

mod>
Let THT®E be o XH-Hodge theatre with respect to the fixed initial ©-data.

(1) The natural functors which send an F'" -prime-strip to the associated F'™™*H- and
FrXt_prime-strips and composing with the natural isomorphisms of Proposition 12.6

(8) give us natural homomorphisms
Autzr (§he (105)) = Atz (Fom M (1D5)) & Atz (F2 " (1DR)),

Aut £+ (Tgenv) — Allt]:l%»xu(TgH_>Xu) —» Aut]_—»—xu(TS"_XM)

env

(Note that the second homomorphisms in each line are surjective), which are compat-
“Kum?” induced by Kum

~

ible with the Kummer isomorphisms g5 5§ (1D.), TS’ZX“ =
SFX“(T’DZ) of Proposition 12.6 (2), and Theorem 12.5 (3)

(2) (Kummer Aspects of Multiradiality at Bad Primes) For v € V**!, we write

Vi (1D2)0 € oWerv(MD5)0, V%, (HT®)y C «T5

env

("HT®),,

for the submonoids corresponding to the respective splittings (i.e., the submonoids
generated by “oog;nv(M*@) ” and the respective torsion subgroups). We have a com-
mutative diagram

poly
X ~ X
o ¥F,  (THTO) D aovr  (THTOY Coovr  (THTOX — covp  (AHTOJH 5w dsh)I”
pol
Kum |2 Kum |2 Kum |2 Kum |2 ‘Kum?” | Ey
poly

ooq’é_nv(T®>)E > OO\I,CDV(T@>)5 - oo\I’cnv(T@>)EX - oo‘I’CnV(T®>)EXM _> \I’CDS(*DZ>EXH1

where I®'y and 7§\ are as in Theorem 12.5 (3), and Corollary 11.24 (1), respec-
tively, the most right vertical arrow is the poly-isomorphism of Corollary 11.21 (2),
the most right lower horizontal arrow is the poly-isomorphism obtained by composing

the inverse of the isomorphism FX (1D5) < F*(TDR) of Proposition 12.6 (3)

and the poly-automorphism of W3S (T’DZ);“ iduced by the full poly-automorphism

cns
of the D" -prime-strip T@A, and the most right upper horizontal arrow s the poly-
isomorphism defined such a manner that the diagram is commutative. This com-
mutative diagram is compatible with the various group actions with respect to the
diagram

full poly
ngP 2 (D5 1) » G2 (D5 0)) = G2 (D5 ) = Gul (P50 5 G5 ).

(T38)5H is equal to the
zero map, hence the identity automorphism on the following objects is compatible

Finally, each of the various composite oo Wepny (1D )y — V&

cns
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(with respect to the various natural morphisms) with the collection of automorphisms

of \Iffjjs(TSZ);“ induced by any automorphism in Aut]_-FXM(TSqu)_.

(L, ) the submonoid and the subgroup Vi (1Dx)y D coWeny (1D)H

(1z)St  the cyclotome piz(MP (1D ) ® Q/Z with respect to the natural isomorphism
:U@(M?(TD%Q)) ® @/Z = oo\l[eHV(T®>)ﬁ
(I\\/JI)Zt the projective system M (TDs ,) of mono-theta environments

(spl)it the splittings OO\I/;W(T@QE —» oolIlenv(T@>)5 by the restriction to the zero-
labelled evaluation points (cf. Corollary 11.11 (3) and Definition 11.12 (1)).

Proof. Theorem follows from the definitions. O

Corollary 12.8.  ([IUTchIII, Etale Picture of Multiradial Theta Monoids, Corol-
lary 2.3]) Let {”’mHT@EE}n,meZ be a collection of XH-Hodge theatres arising from a
Gaussian log-theta-lattice, with associated D- X H-Hodge theatres nma T PHE e
consider the following radial environment. We define a radial datum

full poly

IR = (THTPHE, §h. (D), TmPd F0w(ioh), g (D) 5 g (MDh))

env

to be a quintuple of

(HTP)s o D-KB-Hodge theatre THTP™3,

(FNY& the Fr-prime-strip Fh,, (1D associated to PHTPHE,

env

(bad)st  the gudadruple foRbad = (L, ), (ug)S, (M)S, (spl)S') of Theorem 12.7 (2) for
v eV,

(F)5k  the F*#-prime-strip 3" (1D} associated to THTP, and

full poly

~

(envA)St  the full poly-isomorphim FXH(1Ds) S FJUH(DR).

env

We define a morphism from a radial datum TR to another radial datum *R to be a
quintuple of

(HTP)S an isomorphism THTP®S 3 1y 7P¥E or DK B-Hodge theatres,

Mory

(F" ) ore,  the isomorphism Fb,, (1D) = F&, (D) of F'-prime-strips induced by the iso-
morphism (HT")$S.,,



A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 321

~

(babd)i/t[orSR the isomorphism TRPad 5 tgbad of wyadruples induced by the isomorphism

(HTD ) i;clor ) and

(FX) 8 an isomorphism §3* (1DR) 5§34 (1DK) of F&*¥-prime-strips

(Note that the isomorphisms of (F'")$t  and (F7*#)S., are automatically compatible
with (envA)¢).
We define a coric datum

fe = (o, (")

to be a pair of

(D7) a D" -prime-strip 7", and

(F M) the F>F-prime-strip F **(TD") associated to 1D".

We define a morphism from a coric datum '€ to another coric datum *€ to be a pair

of
(@")K/Iégrc an isomorphism O 5 D5 of D" -prime-strips, and
(Skxﬂ)mw an isomorphism FH(TDT) 5 Fxr(FDN) of FMXFoprime-strips which induces

the isomorphism (@F)ngre on the associated D" -prime-strips.

We define the radial algorithm to be the assignment

full poly

TR = (TP, §LL(1D5), Tbed) 0 (ioh), xr(o.) 5 FU(04h))
e = (1L, 7% (10h))

and the assignment on morphisms determined by the data (.FPX“)%OM.

(1) (Multiradiality) The functor defined by the above radial algorithm is full and
essentially surjective, hence the above radial environment is multiradial.

(2) (Etale Picture) For each D- X B-Hodge theatre n.ma TPRE yieh, n,m € 7Z, we
can associate a radial datum ™" R. The poly-isomorphisms induced by the vertical
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poly poly
arrows of the Gaussian log-theta-lattice induce poly-isomorphisms --- — ™™MR =
poly

nmtlg 5. of radial data by Theorem 12.5 (1). We write
n,Om

for the radial datum obtained by idenfitying ™™ R for m € Z via these poly-isomorphisms,
and we write
’I’L,Oqt

for the coric datum obtained by applying the radial algorithm to ™°R. Similarly, the

poly-isomorphisms induced by the horizontal arrows of the Gaussian log-theta-lattice
full poly full poly full poly

~ ~

induce full poly-isomorphisms --- = ™mmDL 5 ntlmph 5 of
D" -prime-strips Theorem 12.5 (2). We write

0. 00

for the coric datum obtained by idenfitying ™°& for n € Z wvia these full poly-
1somorphisms. We can visualise the “shared” and “non-shared” relation in Corol-
lary 12.8 (2) as follows:

gll— (n,o©>)+n,o%bad_’_.“ > SZXM(O,OQZ) - gll— (n’,o©>)+n',o%bad+_“

env env

We shall refer to this diagram as the étale-picture of multiradial theta monoids.
Note that it has a permutation symmetry in the étale-picture (cf. also the last table
in Section 4.3). Note also that these constructions are compatible, in an obvious
sense, with Definition 11.24.1.

(Kummer Compatibility of G);a’l‘l-Link, env — A) The (poly-)isomorphisms
of F*t-prime-strips of /induced by (envA)§t, (FN){,.. » and (F7H)i,,,. are com-
full poly

patible with the poly-isomorphisms ”7’"32(“ = "+1’mSZX“ of Theorem 12.5 (2)

arising from the horizontal arrows of Gaussian log-theta-lattice, with respect to the
induced by Kum induced by Kum

~

Kummer isomorphisms ”’mSZX“ =5 32“‘(“%@2), n,mzh ~

env

S (D) of Theorem 12.5 (8) and Proposition 12.6 (2). In particular, we have

env

a commutative diagram

full poly
~

n,mgzxﬂ 5 n+1,mgz><u

induced by Kum & “Awsenv” ’El l% induced by Kum & “Awsenv”

full poly

S (D) T (D).
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(4) (Kummer Compatibility of G);a'fl-Link, L & IF) The isomorphisms F' ("™D<) =

env
~

S (vFhmDy), mmibad T ntlm ggbad o (7L (bad)ﬁ}lom are compatible

env Morgp 7
full poly

~

with the poly-isomorphisms ”””SZX“ = ”“’mSZX“ of Theorem 12.5 (2) arising

from the horizontal arrows of Gaussian log-theta-lattice, with respect to the Kummer

“‘Kum” induced by Kum

I ~

isomorphisms Mg S FE o (mmD.), "’mSZX“ = 3ZX“("’m©Z),
{4Kum7,

~

and (""CK, Prime("™CK) =V, {""paptvey) = (DT("MDR), Prime (D" (""D}))
=V, {"™ppr ,}eev) of Proposition 12.6 (2), Theorem 12.5 (3), (5) and their

ntLm( ) labelled versions, and the full poly-isomorphism of projective system of
full poly

mono-theta environments ‘M2 (1D~ ,) = M?(Tév)” of Proposition 11.15.

Proof. Corollary follows from the definitions. O

Remark 12.8.1.  ([IUTchIII, Remark 2.3.3]) In this remark, we explain similari-
ties and differences between theta evaluations and NF evaluations. Similarities are as
follows: For the theta case, the theta functions are multiradial in two-dimensional ge-
ometric containers, where we use the cyclotomic rigidity of mono-theta environments
in the Kummer theory, which uses only p-portion (unlike the cyclotomic rigidity via
LCFT), and the evaluated theta values (in the evaluation, which depends on a holo-
morphic structure, the elliptic cuspidalisation is used), in log-Kummer correspondence
later (cf. Proposition 13.7 (2)), has a crucial non-interference property by the constant
multiple rigidity (cf. Proposition 13.7 (2¢)). For the NF case, the x-coric functions are
multiradial in two-dimensional geometric containers, where we use the cyclotomic rigid-
ity of via Qso NZ* = {1} in the Kummer theory, which uses only {1}-portion (unlike
the cyclotomic rigidity via LCFT), and the evaluated number fields (in the evaluation,
which depends on a holomorphic structure, the Beyli cuspidalisation is used), in log-
Kummer correspondence later (cf. Proposition 13.11 (2)), has a crucial non-interference
property by F X N1, <., Ov = u(F.:4) (cf. Proposition 13.11 (2)). cf. also the follow-

m

ing table:
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mulirad. geom. container

in mono-an. container cycl. rig.

log-Kummer

theta

NF || sk-coric fct. ' NF F* 4 (up to {£1})(Belyi cusp’n) | via Q¢ N A

eval

theta fct. ~~ theta values ¢’ *(ell. cusp’n)

(depends on labels&hol. str.)

(indep. of labels, dep. on hol. str.)

mono-theta

= {1} FX

m

no interf. by
const. mul. rig.

no interf. by

od ﬁI_I'L)Soo OU =p

The differences are as follows: The output theta values gj ’ depend on the labels j € F*
(Recall that the labels depend on a holomorphic structﬁre), and the evaluation is com-
patible with the labels, on the other hand, the output number field £, (up to {£1})
does not depend on the labels j € Fl* (Note also that, in the final multiradial algorithm,
we also use global realified monoids, and these are of mono-analytic nature (since units
are killed) and do not depend of holomorphic structure). We continue to explain the
differences of the theta case and the NF case. The theta function is transcendental
and of local nature, and the cyclotomic rigidity of mono-theta environments, which is
compatible with profinite topology (cf. Remark 9.6.2), comes from the fact that the order
of zero at each cusp is equal to one (Such “only one wvaluation” phenomenon corre-
sponds precisely to the notion of “local”). Note that such a function only exists as a
transcendental function. (Note also that the theta functions and theta values do not
have Fﬁi—symmetry; however, the cyclotomic rigidity of mono-theta enrionments have
Iﬁ‘fi—symmetry. cf. Remark 11.17.1). On the other hand, the rational functions used in
Belyi cuspidalisation are algebraic and of global nature, and the cyclotomic rigidity via
Q=0 N 7x = {1}, which is obtained by sacrificing the compatibility with profinite topol-
ogy (cf. Remark 9.6.2). Algebraic rational function never satisfy the property like “the
order of zero at each cusp is equal to one” (Such “many valuations” phenomenon cor-
responds precisely to the notion of “global”). cf. also the following table (cf. [ITUTchIII,
Fig. 2.7)):

theta || B (0 is permuted) | transcendental | local compat. w/prof. top. “one valuation”

NF

X (0 is isolated) algebraic global | incompat. w/prof. top. | “many valuations”
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We also explain the “vicious circles” in Kummer theory. In the mono-anabelian
reconstruction algorithm, we use various cyclotomes p}, arising from cuspidal inertia
subgroups (cf. Theorem 3.17), these are naturally identified by the cyclotomic rigidity
isomorphism for inertia subgroups (cf. Proposition 3.14 and Remark 3.14.1). We write
pg, for the cyclotome resulting from the natural identifications. In the context of log-
Kummer correspondence, the Frobenius-like cyclotomes up’s are related to uY, via
cyclotomic rigidity isomorphisms:

i TMFr

Wl
log

1 Kum v
® Uy —> O /“Lét

log
Kum

If we consider these various Frobenius-like up,’s and the vertically coric étale-like ,uZt
as distinct labelled objects, then the diagram does not result in any “vicious circles” or
“loops”. On the other hand, ultimately in Theorem 13.12, we will construct algorithms
to describe objects of one holomorphic structure on one side of ©-link, in terms of
another alien arithmetic holomorphic structure on another side of ©-link by means of
multiradial containers. These multiradial containers arise from étale-like versions of
objects, but are ultimately applied as containers for Frobenius-like versions of objects.
Hence, we need to contend with the consequences of identifying the Frobenius-like pg.’s
and the étale-like uzt, which gives us possible “vicious circles” or “loops”. We consider
the indeterminacies arising from possible “vicious circles”. The cyclotome ,uZt is subject
to indeterminacies with respect to multiplication by elements of the submonoid

1" € Ny x {#1}

generated by the orders of the zeroes of poles of the rational functions appearing the cy-
clotomic rigidity isomorphism under consideration (Recall that constructing cyclotomic
rigidity isomorphisms associated to rational functions via the Kummer-theoretic ap-
proach of Definition 9.6 amounts to identifying various p},’s with various sub-cyclotomes
of pup’s via morphisms which differ from the usual natural identification precisely by
multiplication by the order € Z at a cusp “x” of the zeroes/poles of the rational func-
tion). In the theta case, we have

]Iord _ {1}

as a consequence of the fact that the order of the zeros/poles of the theta function at
any cusp is equal to 1. On the other hand, for the NF case, such a phenomenon never
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happens for algebraic rational functions, and we have
Im(I°"¢ — Nxp) = {1}

by the fact Qs N Z* = {1}. Note also that the indeterminacy arising from Im(I°*¢ —
{£1}) (C {£1}) is avoided in Definition 9.6, by the fact that the inverse of a non-
constand k-coric rational function is never k-coric, and that this thechnique is incompat-
ible with the identification of yg, and p, discussed above. Hence, in the final multiradial
algorithm, a possible Im(I°™ — {£1}) (C {#1})-indeterminacy arises. However, the to-
tality F_, of the non-zero elements is invariant under {£1}, and this indeterminacy is
harmless (Note that, in the theta case, the theta values ng have no {41}-invariance).

§13. Multiradial Representation Algorithms.

In this section, we construct the main multiradial algorithm to describe objects of
one holomorphic structure on one side of ©-link, in terms of another alien arithmetic
holomorphic structure on another side of ©-link by means of multiradial containers. We
briefly explain the ideas. We want to “see” (=multiradiality) the alien ring structure
on the left-hand side of ©-link (more precisely, @féP—link) from the right-hand side of
©-link:

P (eye)

As explained in Section 4.3, after constructing link (or wall) by using Frobenius-like ob-
jects, we relate Frobenius-like objects to étale-like objects via Kummer theory (Kum-
mer detachment). Then étale-like objects can penetrate the wall (étale transport)
(cf. Remark 9.6.1). We also have another step to go from holomorphic structure to the
underlying mono-analytic structure for the purpose of using the horizontally coric (i.e.,
shared) objects in the final multiradial algorithm. This is a fundamental strategy:

arith.-holomorphic Frobenius-like obj’s data assoc. to F-prime-strips
J Kummer theory
arith.-holomorphic étale-like obj’s data assoc. to D-prime-strips
J forget arith.-hol. str.
mono-analytic étale-like obj’s data assoc. to D" -prime-strips.

We look more. The O-link only concerns the multiplicative structure (X), hence, it
seems difficult to see the additive structure (H) on the left-hand side, from the right-
hand side. First, we try to overcome this difficulty by using a log-link (Note that
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Fﬁi—symmetrising isomorphisms are compatible with [og-links, hence, we can pull back

Uyan via log-link to construct Wrgp):

. > (eye)
% ¥ O-link -
H log(O “) e —>0
] T ][og—link
X O*H °
However, the square
> (eye)
% V@—linl; -
H log(O “) e —>o
] T ][og T[og
X OXH o——>oeo
S}

is non-commutative (cf. log(a®) # (loga)™), hence we cannot describe the left vertical
arrow in terms of the right vertical arrow. We overcome this difficulty by considering

the infinite chain of log-links:

P> (eye)
[og
p o
o —eo
log
[ ]
log

Then the infinite chain of log-links is invariant under the vertical shift, and we can
describe the infinite chain of log-links on the left-hand side, in terms of the infinite
chain of log-links on the right-hand side. This is a rough explanation of the idea.

§13.1. Local and Global Packets.

Here, we introduce a notion of processions.

Definition 13.1.  ([IUTchI, Definition 4.10]) Let C be a category. A n-procession
of C is a diagram of the form

all capsule-full poly all capsule-full poly all capsule-full poly

P1 — P2 — .. — Pn,
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where P; is a j-capsule of Ob(C) for 1 < j < n, and each — is the set of all capsule-full
poly-morphisms. A morphism from an n-procession of C to an m-procession of C

all capsule-full poly all capsule-full poly all capsule-full poly all capsule-full poly
Pl [N ce s Pn N Ql [N c. [N m

consists of an order-preserving injection ¢ : {1,...,n} — {1,...,m} together with a
. capsule-full poly .
capsule-full poly-morphism P; — Q. for 1 <7 <mn.

Ultimately, [*-processions of D" -prime-strips corresponding to the subsets {1} C
{1,2} € --- C F;* will be important.

Remark 13.1.1.  As already seen, the labels (LabCusp(—)) depend on the arith-
metically holomorphic structures (cf. also Section 3.5), i.e., A(_y’s or II_)’s (Recall that
II_y for hyperbolic curves of strictly Belyi type over an MLF has the information of the
field structure of the base field, and can be considered as arithmetically holomorphic,
on the other hand, the Galois group of the base field (II_y —)G ) has no information
of the field structure of the base field, and can be considered as mono-analytic). In
inter-universal Teichmiiller theory, we will reconstruct an alien ring structure on one
side of (the updated version of) ©-link from the other side of (the updated version of)
O-link (cf. also the primitive form of ©-link shares the mono-analytic structure TDZ ,
but not the arithmetically holomorphic structures D,, ¥*D, (Remark 10.8.1)), and we
cannot send arithmetically holomorphic structures from one side to the other side of
(the updated version of) ©-link. In particular, we cannot send the labels (LabCusp(—))
from one side to the other side of (the updated version of) ©-link, i.e., we cannot see

the labels on one side from the other side:
L2, ..., 0% — 2,7 ...,
Then we have (l*)l%—indeterminacies in total. However, we can send processions:
{1} = {1,2} = {1,2,3} = - > {1,2,...,[*} — {7} > {07} = - {72,... 7}

In this case, we can reduce the indeterminacies from (I*)!" to (I*)l. If we did not
use this reduction of indeterminacies, then the final inequality of height function would
be weaker (More precisely, it would be ht < (2 + €)(log-diff + log-cond), not ht <
(1 + €)(log-diff + log-cond)). More concretely, in the calculations of Lemma 1.10, if we
did not use the processions, then the calculation li* 213 j<i* (j+1) = I*TH + 1 would
be changed into & > 1<j<px (IF +1) =1* + 1, whose coefficient of [ would be twice.

For j =1,...,I% (Recall that [T =[* +1 = HTl (cf. Section 0.2)), we write

< . . + . .
ST ={1,...,5}, S7:={0,...,5— 1}

J
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Note that we have
Sf cSfc.-CSL=FF, SfcCcSyc-cSi=|F

We also consider S* as a subset of Sﬁ_l

Definition 13.2.  ([IUTchl, Proposition 4.11, Proposition 6.9]) For a D-O-bridge
T2 t 0T

©
D, —5 1D (resp. D-OF-bridge 1D ¢—> D, ), we write

Proc(TSDJ) (resp. Proc(TﬁDT) )

for the [*-processin (resp. [T-procession) of D-prime-strips determined by the sub-
capsules of 7D ; (resp. "®r) corresponding to the subsets S¥ € SF C ... C Slﬁ =Ff
(resp. St € S§ € ... C Slji = |Fy|), with respect to the bijection Ty : J = Ff
of Proposition 10.19 (1) (resp. the bijection |T| = |F;| determined by the Fi-group
structure of T'). For the capsule TDG (resp. TD;) of D" -prime-strips associated to D ;
(resp. "®7), we similarly define the I*-processin (resp. [*-procession)

Proc("®") (resp. Proc(®F) )

of D" -prime-strips. If the D-O-bridge T¢9 (resp. the D-O*-bridge Tgbgi) arises from
a capsule ©-bridge (resp. ©T-bridge), we similarly define the I*-processin (resp. [*-
procession)

Proc("§;) (resp. Proc("§r) )

of F-prime-strips.

Proposition 13.3.  (Local Holomorphic Tensor Packets, [IUTchIII, Proposition
3.1]) Let

{ag}aesji = {{QFQ}QEY}QES?

be a j-capsule of F-prime-strips with index set Sji. ForV 3 v( | vg € Vg := V(Q)),
we regard log(“Fy) as an inductive limit of finite dimensional topological modules over

Qug, by log(“Fy) = hﬂjcang:open([o_g(afg))“’. We shall refer to the assignment
Vg3 vy = log(®Fuy) = EP log(“F,)
V3u|vg
as the 1-tensor packet associated to the F-prime-strip *§, and the assignment
Vg 2 vg + [og : ®[og
aESJi

the j-tensor packet associated to the collection {*§} .+ of F-prime-strips,
J
where the tensor product is taken as a tensor product of ind-topological modules.
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(1) (Ring Structures) The ind-topological field structures on log(*Fy,) for o € S;-t

+
determine an ind-topological ring structure on lo_g(Sj Fuo) as an inductive limit of

v
direct sums of ind-topological fields. Such decompositions are compatible with the
natural action of the topological group “11, on the direct summand with subscript v

of the factor labelled c.

(2) (Integral Structures) Fiz o € Sﬁl, veV, vg € Vg with v | vg. Write

log(B+0F,) = lg"Fled R la(®Fu)p C logniF,,).
pesi \{a}

Then the ind-topological submodule lo_g(Sé‘tJrl’O‘}"g) forms a direct summand of the
ind-topological ring lo_g(Sj'EJrlfU@). Note that lo_g(sjiﬂ’o‘]:g) is also an inductive limit
of direct sums of ind-topological fields. Moreover, by forming the tensor product
with 1’s in the factors labelled by B € Sﬁrl \ {a}, we obtain a natural injective
homomorphism
log(°F,) — log(+1°F,)

of ind-topological rings, which, for suitable (cofinal) choices of objects in the induc-
tive limit descriptions for the domain and codomain, induces an isomorphism of
such an object in the domain onto each of the direct summand ind-topological fields
of the object in the codomain. In particular, the integral structure

Viger,) = Yrog(er,) U{0} C log(“Fy)
determines integral structures on each of the direct summand ind-topological fields
+ +
appearing in the inductive limit descriptions of lo_g(SHl’o‘}"E), lo_g(Sj+1.7:vQ).

~Y

Note that log(“F,) is an isomorph of log(EX) >~ K,, the integral structure @[Ug(a}‘g)
is an isomorph of Og—, and [o_g(SJj'EH’O‘fE) is an isomorph of @ K, — h_n;@z

Proof. Proposition follows from the definitions. O

Remark 13.3.1.  ([IUTchIII, Remark 3.1.1 (ii)]) From the point of view of “an-
alytic section” Vyoq — V(C V(K)) of Spec K — Spec Fyoq, We need to consider the
log-volumes on the portion of log(“F,) corresponding to K, relative to the weight

1
[KE : (Fmod)v] ’

where we write v € Vy,0q for the valuation corresponding to v via the bijection Vioq —
V (cf. also Definition 10.4). When we consider @Yaylv@ as in case of log(“Fy,), we use
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the normalised weight

1
Ky (Fiaoa)s] - (Zv,msfug [(Finod)u : Q)

so that the multiplication by p,, affects log-volumes as +log(py,) (resp. by —log(p.,))
for vg € Vi° (resp. vg € Vg™) (cf also Section 1.2). Similarly, when we consider

log-volumes on the portion of [og( pis Foo

with V 5 v, | vg for 0 < i < j, we have to consider these log-volumes relative to the

) corresponding to the tensor product of Ky,

weight
1

Hogz‘gj [Kyi t (Finod)v, ]’

where v; € Vy,0q corresponds to v,. Moreover, when we consider direct sums over all

possible choices for the data {v;},.<+ , we use the normalised weight
j+1

1
(Mosiss Ko, Fuod)o]) - {Ztutocscs elrmaarng s (Mosizy(Fnod)u : Quo)) §

(cf. also Section 1.2) so that the multiplication by p,,, affects log-volumes as + log(p.,)
(resp. by —log(pu,)) for vg € Vi (resp. vg € V™) (cf. Section 0.2 for the notation
(Vmod)v(@)-

Proposition 13.4.  (Local Mono-analytic Tensor Packets, [IUTchIII, Proposi-
tion 3.2]) Let

D Yaesr = {{Dihuev) .
J aGSj
be a j-capsule of D -prime-strips with index set S;-*L. We shall refer to the assignment
Vg 3 vg — log(°Dy) = log(*DY)
YBQ|’UQ

as the 1-tensor packet associated to the D" -prime-strip “®, and the assignment

Vg ovg — log(® = (X) log(*D},)
aESji

the 7-tensor packet associated to the collection {ag—}aesi of D" -prime-strips,
where the tensor product is taken as a tensor product of ind-topological modules. For
a € Sjjirl, veV, vg € Vg with v | vg, put

log(%i+1Dh) = log(°D}) @ ® log("D ) b C log(Sr+1 D ).
j+1\{a}
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If {O‘C‘DP}QGS;# arises from a j-capsule

o _ o
o L ) S

of F™XF_prime-strips, then we put

log (“F5 ) := log(“DY ), log(®s FL*) := log(% DY, ), log(S+1oFL ) = log(%+1oDY),

and we shall refer to the first two of them as the 1-tensor packetassociated to the
FrXt_prime-strip “§ **, and the j-tensor packet associated to the collection
{QS'_X”}aeSji of F™*Xt_prime-strips, respectively.

(1) (Mono-analytic/Holomorphic Compatibility) Assume that {*®"} = arises
J
from a j-capsule

{ag}aesjt = {{QFQ}QGY}QGS?E

of F-prime-strips. We write {QSFX“}aegi for the j-capsule of FT*F-prime-strips
J

(‘I{um »
tauto poly

associated to {*F}, csx. Then the (poly-)isomorphisms log(TF,) = log(TFI*) =
log(TDY) of Proposition 12.2 (4) induce natural poly-isomorphisms

I{Kum ” [IKum ”
tauto poly tauto poly

~

~ o+ ~ - sf = ~ SN
log(“Fuy) 3 log(*FLX) 5 log(*Dh), log(* Fy) S tog(T FLXM) S 10g( D)),

“‘Kum”

tauto poly

log(5 1 F)) 5 log(Srr F) 5 log(Sie D))

of ind-topological modules.

(2) (Integral Structures) For V. > v | vg € Vg™ the étale-like mono-analytic log-
shells “Lipr” of Proposition 12.2 (4) determme topological submodules
(D5 ) € log(®D: ), Z(5 D) c tog(5 DL ), Z(5+1oDE) ¢ log(Sr+1oDh)
vQ _g v/ (%o} v/ v g v/

which can be regarded as integral structures on the Q-spans of these submodules.
ForVsuv|vg € V@ by regarding the étale-like mono-analytic log-shells “Lip-" of
Proposition 12.2 (4) as the “closed unit ball” of a Hermitian metric on “[0_9(*155) 7
and putting the induced direct sum Hermitian metric on lo_g(o‘DZQ), and the induced

tensor product Hermitian metric on log(Sj DZQ), we obtain Hemitian metrics on

aph sE - ST : :
log(“D;,, ), log(* Dy,,), and log(*i+1*Dy, ), whose associated closed unit balls

+ + £ £
I(*D,,) € 0g(*D,,), I(% D) C log(™s D,,), Z(5+°D,) C log(*++D,),
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. st st
can be regarded as integral structures on [o_g(aD;@), log(®s D:Q), and log( g+1»0‘D;@)}
respectively. For any V 5 v | vg € Vg, we put

Qramb . Q- am- SEF Y sk ST -
I%(*D},) := Q-span of Z(*D,, ) C log(“D},), Z°% D) := Q-span of Z(* D, ) C log(*i D} ),

7O Df) = Quspan of T(+D)) C log(+1°D5).
If {O‘DF}aeSi arises from a j-capsule {*§} o+ of F-prime-strips then, the objects

aT- Q(aP- sF Q(STpr S*, o SE Lapr .
I( DUQ)fI ( D’UQ)7I( D’UQ)?I ( DUQ)7I( +i DE)’ ZQ( +1 DE) determine

s*

i F,

vQ

), 19 F,

+ +
I(“Fup)s IH("Fug)s I w)s IOV OFy), TOCHOF,),

and

T(OFH), TEOFM), T Fwm), TS Fw), T(EmeFm), 10w Frxm)

(‘Kum »
tauto poly
via the above natural poly-isomorphisms log(* F.,) — [og(o‘}"gQX“) — log(O‘DZQ),
“‘Kum?” “Kum?”
tauto poly tauto poly

~ ~

log(¥ Fup) 5 log(® F0) 5 tog(S DY), log(BH0F,) S log(SrraFL ey 5

Si e . .
log(®i+1*D,,) of ind-topological modules.

Proof. Proposition follows from the definitions. O
Proposition 13.5.  (Global Tensor Packets, [IUTchIII, Proposition 3.3]) Let
fay 728

be a XH-Hodge theatre with associated X- and H-Hodge theatres T’HTg, fHTE respec-
tively. Let {*F},cqx be a j-capsule of F-prime-strips. We consider Sf as a subset of
J

the index set J appearing the X-Hodge theatre FHT™ via the isomorphism Ty : J = ]Fl*
of Proposition 10.19 (1). We assume that for each o € Sf, a log-link

ag 199 tx,

poly
(i.e., a poly-morphism log(®F) = ¥, of F-prime-strips) is given. Recall that we have

a labelled version (TMiod)j of the field TMiod (cf. Corollary 11.23 (1), (2)). We call

~—=® —®
(Jr]MIrnod)Sjé = ®(TMmod)a

x*
aESj

the global j-tensor packet associated to S;é and the XH-Hodge theatre T TR,
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(2)
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(Ring Structures) The field structures on (TMiod)a for o € S§ determine a
ring structure on (TMiod)S%, which decomposes uniquely as a direct sum of num-
ber fields. Moreover, by composing with the given log-links, the various localisation
functors “(T}"Sod)j — 1%, 7 of Corollary 11.23 (3) give us a natural injective local-
1sation ring homomorphism

_ 1. to loc.
(Mooa)sx = 2 g Fyy) = [ loa®r+1 7o
: log

vo €V

to the product of the local holomorphic tensor packets of Proposition 13.3, where we
+

i+1, and the component labelled by 0 in [o_g(SHI}'U@) of

the Zocalzsatzon homomorphism is defined to be 1.

consider S* as a subset of ST

(Integral Structures) For a € S;:é, by taking the tensor product with 1’s in the
factors labelled by 5 € S;é \ {a}, we obtain a natural injective ring homomorphism
~7® ~7®
(TMmod)Ot — (T]Mlmod)Sjé
which induces an isomorphism of the domain onto a subfield of each of the di-
rect summand number fields of the codomain. For each vg € Vg, this homomor-
phism is compatible, in the obvious sense, with the natural injective homomorphism
+
log(“Fy) < [o_g(gﬂl’o‘]:g) of ind-topological rings of Proposition 13.3 (2), with re-
spect to the localisation homomorphisms of (1). Moreover, for each vy € Vo (resp.

vg € V§€), the composite

—® gl. to loc.

+ +
(Mooa)a = (Mhnoa)s: Tog (S5 Fyy) — log(5+1 o)

of the above displayed homomorphism with the vg-component of the localisation ho-
momorphism of (1) sends the ring of integers (resp. the set of elements of absolute
value < 1 for all Archimedean primes) of the number field (TMiod)a into the sub-
module (resp. the direct product of subsets) constituted by the integral structures on
[o_g(sﬁl}"v@) (resp. on various direct summand ind-topological fields oflo_g(SjiH]:vQ))
of Proposition 13.3 (2).

Proof. Proposition follows from the definitions. O

§13.2. Log-Kummer Correspondences and Multiradial Representation

Algorithms.

Proposition 13.6.  (Local Packet-Theoretic Frobenioids, [IUTchIII, Proposi-

tion 3.4])
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(1) (Single Packet Monoids) In the situation of Proposition 13.3, for a € S;Erp (S
X
log(*Fy)

of units, and realification \I/]Eag(a]_-v), via the natural homomorphism log(“F,) —

V, vg € Vg with v | vg, the image of the monoid Viog(ar,), its submonoid ¥

st ,a .. . .
log(®+v*F,) of Proposition 15.3 (2), determines monoids

X R

+ +
\Illog( I+ Y E, ) tog(d+1"% 7y ) \Ijlog( I+ F)

which are equipped with Gy, (*11,)-actions when v € V', and for the first monoid,

with a pair of an Aut-holomorphic orbispace and a Kummer structure when v € V*'¢.
+

We regard these monoids as (possibly realified) subquotients of [o_g(SjJrl’O‘]-"Q) which

+

act on appropriate (possibly realified) subquotients oflo_g(sjv“l’a]:g). (For the purpose
+

of equipping Wi, ,) etc. with the action on subquotients of lo_g(SHl’O‘}"E), in the

algorithmical outputs, we define \IJ[ (§i+1 “r) etc. by using the image of the natural
og(CItLU T Fy,

homomorphism log(*F,) — lo_g(SJ‘iH’o‘]:g)).
(2) (Local Logarithmic Gaussian Procession Monoids) Let
Py RE 108 g, N

be a log-link of XA-Hodge theatres. Consider the F-prime-strip processions Proc(fgr).
Recall that the Frobenius-like Gaussian monoid o)V 7,, ., (tHT®), of Corollary 11.21
(4) is defined by the submonoids in the product HjeF;:e (\Ilfiv)j (cf. Corollary 11.17
(2), Proposition 11.19 (4)). Consider the following diagram:

H]EFl* [U_g(]ifg) C HjGJFl* [U_g(Sngl]:iJT_'E)

U U
poly by (1)
~ ~ + ..
ey (Brz))s jers Yiegoiry = Iljers Yioalrer o),
U
T
\Ilfgau( ég)

where, in the last line, we write \Il}‘gau(Tév), by abuse of notation, for \IJ}-E(Tgv)
for a value profie € in the case of v € VP*4. We take the pull-backs of \If;gau(Ti )
via the poly-isomorphism given by log-link FHT™E fog, tH T2 and send them
to the isomorphism HjeIFl* Uiog(itr,) — Hjelb‘l* U, i1ty constructed in (1).
By this construction, we obtain a functorial algorithm, with respect to the log-link
b TXE fog, fq 7 of XHB-Hodge theatres, to construct collections of monoids

log lo
Voo o Wp o (EIHTEE), W (I TEE),
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equipped with splittings up to torsion when v € yhad (resp. splittings when v €
Ve°od). We shall refer to them as Frobenius-like local LGP-monoids or Frobenius-
like local logarithmic Gaussian procession monoids. Note that we are able

to perform this construction, thanks to the compatibility of log-link with the
F/*-symmetrising isomorphisms.

Note that, for v e V**4 we have

o I .
<j-1abelled component, of \IJ;LGP((ig)THTgEE)SE( H”)) C I@(Sj‘il’”ifg)

(i.e., “(I?; D) Ok, -ng C Qlog(Og )”), where we write (—)Gﬂ(inﬂ) for the invariant

part, and the above j-labelled component of Galois invariant part acts multiplica-
+

tively on I@(Sﬁl’]’ifg). For any v € V, we also have

(j—labelled component of (\II}—LGP((iﬂ)T”HTgE);()G“(iH“O C I@(Sﬂil’j;ifg)

(i.e., (K, D) Ok. C Qlog(Og )" forv € veood) where I, = {1} for v € V™,

and the above j-labelled component of Galois invariant part of the unit portion acts
+ .

multiplicatively on ZQ 5+ ’”]—"2).

Proof. Proposition follows from the definitions. O

Proposition 13.7. (Kummer Theory and Upper Semi-Compatibility for Verti-
cally Coric Local LGP-Monoids, [IUTchIII, Proposition 3.5]) Let {”’mHTgp}n,meZ be
a collection of XH-Hodge theatres arising from a Gaussian log-theta-lattice. For each n

inZ, we write

n,O%TD-gE

for the D- X H-Hodge theatre determined, up to isomorphism, by n.ma TP form € Z,
via the vertical coricity of Theorem 12.5 (1).

(1) (Vertically Coric Local LGP-Monoids and Associated Kummer Theory)

We write

F(M°D5 )
for the F-prime-strip associated to the labelled collection of monoids “W.ps("°D )¢
of Corollary 11.20 (3). Then by applying the constructions of Proposition 13.6 (2)
to the full log-links associated these (étale-like) F-prime-strips (cf. Proposition 12.2
(5)), we obtain a functorial algorithm, with respect to the D- X H-Hodge theatre
”’OHTDMEE, to construct collections of monoids

”

YEQ — \I]LGP(n,oHTD—&EE)27 OO\IILGP(n,oHTD—@EEI)U
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equipped with splittings up to torsion when v € yhad (resp. splittings when v €
Veood). We shall refer to them as vertically coric étale-like local LGP-monoids
or vertically coric étale-like local logarithmic Gaussian procession monoids.
Note again that we are able to perform this construction, thanks to the compatibil-
ity of log-link with the Ffi—symmetrising isomorphisms. For eachn,m € Z,
this functorial algorithm is compatible, in the obvious sende, with the functorial
alogrithm of Proposition 13.6 (2) for (=) = ™™(=), and *(=) = »™~ (=), with

respect to the Kummer isomorphism

Kum

~

\chns(n’m/3>)t — \chns(n’o®>)t

of labelled data of Corollary 11.21 (3) and the identification of nm' %, with the F-
prime-strip associated to \Ilcns("’m/$>)t form’ = m —1,m. In particular, for each

n, m € Z, we obtain Kummer isomorphisms

Kum

n,m—12%nm XH ~ n,0 -XH
(w)\I]fLGP( ’ 1=5n, HT )2 - (OO)quLGP( ’ HTD )v

for local LGP-monoids forv € V.

(2) (Upper Semi-Compatibility) The Kummer isomorphisms of the above (1) are
upper semi-compatible with the log-links nm—1gy BB 108 nmag K of XH-
Hodge theatres in the Gaussian log-theta-lattice in the following sense:

(a) (non-Archimedean Primes) For vg € Vi@, (and n € Z) by Proposition 13.6
(2), we obtain a vertically coric topological module

+
I F (D5 Jug)-

Then for any j =0,...,0%, m € Z, v | vg, and m’ > 0, we have

m’ n,m X H L s* n,o
&R Kumolog (\Ifcns( : &)m) C IEH F(D, ),),

where we write Kum for the Kummer isomorphism of (1), and [ogm/ for the m/-
th iteration of p,-adic logarithm part of the log-link (Here we consider the m'-th
iteration only for the elements whose (m’ — 1)-iteration lies in the unit group).
cf. also the inclusion (Upper Semi-Compat. (non-Arch)) in Section 5.1.

(b) (Archimedean Primes) For vg € V§¢, (and n € Z) by Proposition 13.6 (2),

we obtain a vertically coric closed unit ball

+
IEm F(eD, )ug)-
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Then for any j =0,...,0%, m € Z, v | vg, we have

® Kum (ans(n,mg>)‘>;|) CI(Sﬁl}—(n’O@>)v@)>

R Kum (Closed ball of radius 7 inside qlcns(”vmgg%) C ZEGH F(Dy ),
+
J+1

and, for m’ > 1,

[t|€S

logm/

(closed ball of radius 7 inside \Ilcns(”’m$>)%> D (a subset) — \Ifcns(mm—m'&)'j',
where we write Kum for the Kummer isomorphism of (1), and [ogm/ for the

m’-th iteration of the Archimedean exponential part of the log-link (Here we
consider the m’-th iteration only for the elements whose (m’ — 1)-iteration lies

in the unit group). cf. also the inclusion (Upper Semi-Compat. (Arch)) in
Section 5.2.

(Bad Primes) Letv € V** and j # 0. Recall that the monoids (Oo)\IJ;LGP((i[g)THTgEE)Q,
and (OO)\IfLGp("’W'['TDMEE)E are equipped with natural splitting up to torsion
in the case of xW(—), and up to 2l-torsion in the case of ¥(—). We write

(n,m—lﬂ)n,mHleEH> (n,m—lﬂ)n,mHT@Eﬁ)

(m)\PJﬁLGP( v C (OO)\II}—LGP(

v

(00) \IJIJ_,_GP (7L,Or71_[z7-1)—®\EE|)E c (00) lI]LGP (n’OHTD_gEH)Q

for the submonoids defined by these splittings. Then the actions of the monoids

nm—12%yn.m XH
Vg (o1 mmy ™8 (€ 7)

on the ind-topological modules

IQ(SJ'i+17j‘/—-'(n’O©>_)2) - [Ug(sﬁrljjf(n’o@>—)y) (.7 =1,... 7l*)7

via the Kummer isomorphisms of (1) is mutually compatible, with respect to
the log-links of the n-th column of the Gaussian log-theta-lattice, in the follow-
ing sense: The only portions of these actions which are possibly related to each
other via these log-links are the indeterminacies with respect to multiplication
by roots of unity in the domains of the log-links (since U (=)NWU* (=) = ug ).
Then the p,-adic logarithm portion of the log-link sends the indeterminacies at
m (i.e., multiplication by pg) to addition by zero, i.e., no indeterminacy! at
m+1 (cf. also Remark 10.12.1, Definition 12.1 (2), (4), and Proposition 12.2
(2) for the discussion on quotients by \Ilﬁ"gv for v e V).
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Now, we consider the groups
(Weas (7)) )52, g (1B
of units for v € V, and the splitting monoids
\Pé_fLGp((n’m_lﬂ)nymHTgE)g
forv € ybad as acting on the modules
IO F (D5 )

not via a single Kummer isomorphism of (1), which fails to be compatible with the log-
links, but rather via the totality of the pre-composites of Kummer isomorphisms with
iterates of the py-adic logarithmic part/Archimedean exponential part of log-links as in
the above (2). In this way, we obtain a local log-Kummer correspondence between
the totality of the various groups of units and splitting monoids for m € Z, and their
actions on the “T(—)” labelled by “n,o”

{ Kumo log™ (groups of units, splitting monoids at (n,m)) ~ Z%(™°(=)) }mez. m>0,
which is invariant with respect to the translation symmetries m — m + 1 of the n-th

column of the Gaussian log-theta-latice.

Proof. Proposition follows from the definitions. O

Proposition 13.8.  (Global Packet-Theoretic Frobenioids, [TUTchIII, Proposi-
tion 3.7])

(1) (Single Packet Global non-Realified Frobenioid, X-Line Bundle Version)
In the situation of Proposition 13.5, for each o € S;:e, by the construction of Defi-

nition 9.7 (1), we have a functorial algorithm, from the image
7® ~7® ® +
(Myion)a = Im ((Moa)a = (Maa)ss = log(5+1 Fye))

of the number field, via the homomorphisms of Proposition 13.5 (1), (2) to construct
a (pre-)Frobenioid
(" Fton)a

with a natural isomorphism
("Fooa)a = ((Fiop)a

of (pre-)Frobenioids (cf. Corollary 11.23 (2) for (TF2. )a), which induces the tau-
tological isomorphism (TMiod)a = (TM?AOD)Q on the associated rational function
monoids. We ofthen identify (T]-"fod)a with (TFK%OD)Q, via the above isomorphism.
We write (Y FEE L) a for the realification of (*FEop)a-
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(2) (Single Packet Global non-Realified Frobenioid, BH-Line Bundle Version)
For each a € Sf, by the construction of Definition 9.7 (2), we have a functorial
algorithm, from the number field (TM:?JD)& = (TM?/IOD)Q and the Galois invariant
local monoids

+ G, (°I1
(qlrog(sj+1’af£)) (")

of Proposition 13.6 (1) for v € V, to construct a (pre-)Frobenioid
(" Fon)a

(Note that, for v € V™" (resp. v € V*°), the corresponding local fractional ideal J,
of Definition 9.7 (2) is a submodule (resp. subset) ofIQ(Sj‘EH’O‘FQ) whose Q-span is

Q st | ,a . . .
equal to T%(%i+v*F,)) with natural isomorphisms

(T‘Fn(?ob)a :> (T‘Fr(fod)av (T'Fn@ob)oé :> (T‘Fl\C?IOD)Ot

of (pre-)Frobenioids, which induces the tautological isomorphisms (TMfioa)a = (TMiod)a,

(TMioa)a = (TMﬁOD)a on the associated rational function monoids, respectively.
We write (TFER), for the realification of ({FE,,)a.

moo

(3) (Global Realified Logarithmic Gaussian Procession Frobenioids, X-Line

Bundle Version) Let P LN P log-link. In this case, in the construc-
+

tion of the above (1), (2), the target [o_g(SjH}"VQ) of the injection is I-labbeled ob-

ject lo_g(SJj'E+1’j;i.7-"V@), thus, we write (“*”ME/IOD)Q, (“*”Mioa)a, ((i*)TFSOD)a,

(=72, fOT(TMI(;B/IOD)OM (TM§OD)Q, (Faop)as (1FE,3)a, respectively, in order

to specify the dependence. Consider the diagram

gl.real’d to gl. non-real’d®@R
ol ~, (TR ()T FOR
HjeIij ch Hje[ﬁl* (T'Fmod)J - Hje]F;f(( )T-FMOD)Jv
U
Tclk

gau

where the isomorphisms in the upper line are Corollary 11.23 (3) and the reali-
fication of the isomorphism in (1). Then by sending the global realified portion
TC'g;u of the F'"-prime-strip ngau of Corolllary 11.24 (2) via the isomorphisms

of the upper line, we obtain a functorial algorithm, with respect to the log-link
tgy B (08 tq 7 RE of Proposition 13.6 (2), to construct a (pre-)Frobenioid

rlogyt
Clap (T HTE®),

We shall refer to )¢ p = CﬁGP((iﬂ)THTgE) as a Frobenius-like global
realified LGP-monoid or Frobenius-like global realified X-logarithmic Gaus-

lo
sian procession monoids. The combination of it with the collection ¥ £, ., ((IA)THT&E)
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of data constructed by Proposition 15.6 (2) gives rise to an F'" -prime-strip
(:H)TS‘EGP = ((i%”clfepa Prime((i%”c{GP) =V, (i_m%'fcpv {(i%)TPLGP,y}QGY)

with a natural isomorphism

~

of F'"-prime-strips.

(4) (Global Realified Logarithmic Gaussian Procession Frobenioids, E-Line
Bundle Version) Write

(=) 7By

rlogyt ) X\
T \IJ]:LGP(( ) HT )’ (i%)TS"[_gp = (i_ﬁTgiI:GP'

\Ij]'—lgp

In the construction of (3), by replacing ((FEE);, 5 (FFEEL); by (FEE), 5

mod mod
log

(Tfffa)j, we obtain a functorial algorithm, with respect to the log-link FH TS 2%

IHTSE of Proposition 13.6 (2), to construct a (pre-)Frobenioid

=fef = Cl{;p((iﬂ)f}”@@).

and an F'" -prime-strip
(i*)Tg'{'—gp - ((i—>)TC|[;p, Prime((i%)TC‘[;p) 3V, (iﬁ)Tg';gp’ {(i%)Tp[gp,g}QGY)
with tautological isomorphisms

Tg‘gau ~ (i—>)T8:|ItGP ~ (iﬁ)Tgl[;p
of F'"-prime-strips. We shall refer to (i_”TC'[;p = C‘[;p((iﬂ))THTﬁEE) as a Frobenius-
like global realified [gp-monoid or Frobenius-like global realified HH-logarithmic

Gaussian procession monoids.

(5) (Global Realified to Global non-Realified®R) By the constructions of global

realified Frobenioids C'{GP((iﬂ)THT&E) and C}Ep((i%)THT&Eﬁ) of (3), (4), we

have a commutative diagram

rlogyt
Clap(C ) HTH®)— HjeFf(Tfh@;)[HéD)j

lg -

(T HTHE) = TLepr (Frno)s-

moo

I+
Clgp
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In particular, by the definition of (T}"n@foa)j in terms of local fractional ideals, and
the product of the realification functors Hje]Fl* (F2); — Hje]Fl* (FFEE);, we ob-
tain an algorithm, which is compatible, in the obvious sense, with the localisation
isomorphisms {1 pigp.vtvev and {TpLap v }tvev, to construct objects of the (global)

categories C'[;p((im*)THTxE), C'LFGP((J:M)THT&E), from the local fractional ideals
generated by elements of the monoid ¥, ((¢m>)T?—l7'&EE)E for v e YPad,

Proof. Proposition follows from the definitions. O
Definition 13.9.  ([IUTchIII, Definition 3.8])

Write \I/}[gp ((iﬁ’)T’HTmH)Q = Vr . ((iE”T’z’-[TgEE)2 for v € V**!. When we re-

gard the object of

H (TJ: nc?ob)j

JEFF
and its realification determined by any collection, indexed by v € V24, of generators
up to po; of the monoids \Il]%[gp ((iﬂ))THTxE)E, as an object of the global realified
Frobenioid (1Cp = Clap(CD HTEE) or Goick = ch, (79 HTHE),
then we shall refer to it as a ®@-pilot object.

We shall refer to the object of the global realified Frobenioid TCk of Corollary 11.24
(1) determined by any collection, indexed by v € yPad of generators up to torsion
of the splitting monoid associated to the split Frobenioid T]-"Z’U in the v-component
of the F"-prime-strip g of Corollary 11.24 (1), as a q-piloi? object.

Let f7%8 18 t9/ 788 e 5 log-link of XH-Hodge theatres, and
*HT@EE
a XH-Hodge theatre. Let
*SZPXM (resp. (;t—>)T3:'It&;<H7 resp. (i%)Tg'[;;XM )

be the F'F™*F_prime-strip associated to the F'"-prime strip *Sk of Corollary 11.24

(1) (resp. (i*)TSfGP, resp. (i*)TS‘EGP). We shall refer to the full poly-isomorphism
full poly full poly
(i%)TS‘Eggu AN *SZF I (resp. (iﬁ)TS'[;:XN AN *SZF XKy
as the @[ &p-link (resp. @[Xg’;-link) from THT™E to *HTHE  relative to the log-link

[ L
Py ™8 08 THTXEB, and we write it as

X

X 1 o)
Ty BB OLp g W (resp. THTXE 28 wq®E )
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(3) Let {"™HTZB), ez be a collection of KMH-Hodge theatres indexed by pairs of
integers. We shall refer to the diagram

full log full log
orép Rm Orndp gm Orére
ey n,m—f—l?_[T e n+1,m+1H7‘ B,
full log full log
Orép Orép Orép
n,mHTgEE n+1,mH7‘&EE ,
full log full log
(resp.
full log full log

X

ork ork O
9P n,m—l—lfHT@EE\ 9P n—l—l,m—l—lHTxEE‘ 9P
full log full log
X p X X

S} e
tgp n’m,HTgEB tgp n_H’m’HTXEH tgp

full log full log

) as the LGP-Gaussian log-theta-lattice (resp. Igp-Gaussian log-theta-lattice),

where the O fp-link (resp. O/ -link) from nm TEE to nt1ma T §g taken rela-

tive to the full log-link ™m=19¢ 738 MLY% nma 788 Note that both of ©)%,-link

and @[ng-link send O-pilot objects to ¢-pilot objects.

Proposition 13.10.  (Log-volume for Packets and Processions, [[UTchIII, Propo-

sition 3.9])

(1) (Local Holomorphic Packets) In the situation of Proposition 13.4 (1), (2), for
Vouv|uvg e VE" (resp. Vo u|wvg € V), a € S;-—:Ll, the pu,-adic log-volume
(resp. the radial log-volume) on each of the direct summand p,,-adic fields (resp.
complex Archimedean fields) of T%(*F.,), I@(Sj‘E+1 Fug)s and IQ(S;_LH’J']:UQ) with the
normalised weights of Remark 13.3.1 determines log-volumes

g . M(ZC(F,,)) = R, p%  : M@IUS ) = R,

K +
«,UVQ Sj+1,v@
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ueE M@ F,)) S R,

1Y
where we write M(—) for the set of compact open subsets of (—) (resp. the set of
compact closures of open subsets of (—)), such that the log-volume of each of the
local holomorphic integral structures

Oar

vQ

st st |
c I%(“F,,), Osﬁl% C IS Fyy), Osj;pa@ c 190 F),
given by the integral structures of Proposition 13.3 (2) on each of the direct sum-
mand, 1S5 equal to zero. Here, we assume that these log-volumes are normalised in
such a manner that multiplication by p, corresponds to —log(p,) (resp. +log(py))
on the log-volume (cf. Remark 13.3.1) (cf. Section 0.2 for p, with Archimedean

v). We shall refer to this normalisation as the packet-normalisation. Note that
« log ”
Sjiﬂf”‘@
lections of capsules in a procession, we normalise log-volumes on the products of

s invaariant by permutations of Sjﬂrl. When we are working with col-

‘M(—)" associated to the various capsules by taking the average over the various
capsules. We shall refer to this normalisation as the procession-normalisation.

(Mono-analytic Compatibility) In the situation of Proposition 13.4 (1), (2),
for Vo ulvg € V" (resp. Vo v |vg € V), a € S;.—LH, by applying the p,,-adic
log-volume (resp. the radial log-volume) on the mono-analytic log-shells Tipr”
of Proposition 12.2 (4), and adjusting appropriately the discrepancy between the
local holomorphic integral structures of Proposition 13.3 (2) and the mono-analytic

integral structures of Proposition 13.4 (2), we obtain log-volumes

o +
s - M(Z%(°D},)) — R, ;ﬁgg o M(IZY(E D)) = R,
S e P MDD S R,

where we write M(—) for the set of compact open subsets of (—) (resp. the set
of compact closures of open subsets of (—)), which are compatible with the log-
volumes of (1), with respect to the natural poly-isomorphisms of Proposition 13.}
(1). In particular, these log-volumes can be constructed via a functorial alogrithm
from the D" -prime-strips. If we consider the mono-analyticisation of an F-prime-
strip procession as in Proposition 13.6 (2), then taking the average of the packet-
normalised log-volumes gives rise to procession-normalised log-volumes, which are
compatible with the procession-normalised log-volumes of (1), with respect to the
natural poly-isomorphisms of Proposition 13.4 (1). By replacing “D™ 7 by F"*#,
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we obtain a similar theory of log-volumes for the various objects associated to the

2

mono-analytic log-shells “L; zr-xpu

8, MIQ(CFZ) SR, MIERFS) SR,

M
a,vg e

+
uf;fl vy P M(ZREraF ) 5 R,

which is compatible with the “DF 7-version, with respect to the natural poly-isomorphisms
of Proposition 13.4 (1).

(Global Compatibility) In the situation of Proposition 13.8 (1), (2), write

79 (7+1.7-"V H Z@ J+1]-" C log( 7+1.7-"V H log( 7+1.7-"

vgEVg vg€Vg

and we write
MO Fr) € ] MEAGH 7))
vg€Vqg
for the subset of elements whose components have zero log-volume for all but finitely
many vg € Vo. Then by adding the log-volumes of (1) for vg € Vg, we obtain a
global log-volume

) +
mf o MEIY(GRFy) - R

J+1

which s invariant by multiplication by elements of
+
(Moo)a = ("Mopla © I35 Fyy)

(product formula), and permutations of Sjjjrl. The global log-volume ,ulgof V@({JQ}EEY)
10

of an object {J,}vev of (FL.3)a (cf Definition 9.7 (2)) is equal to the degree
of the am’thmetic line bundle determined by {Jy,}vev (cf. the natural isomorphism
(Fmo)a = (17

mod

)a of Proposition 13.8 (2)), with respect to a suitable normali-
sation.

(log-Link Compatibility) Let {""HT=F, .z be a collection of RB-Hodge the-

atres arising from an LGP-Gaussian log-theta-lattice.

(a) Forn,m € Z, the log-volumes of the above (1), (2), (3) determine log-volumes
on the various “I%(—)” appearing in the construction of the local/global LGP-

/lgp-monoids/Frobenioids in the F' -prime-strips “"Fap, "™, of Propo-

tgp
sition 13.8 (3), (4), relative to the log-link ™™ HTHS L1900 gy R,
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(b) At the level of the Q-spans of log-shells “I%(—)” arising from the various JF-
prime-strips involved, the log-volumes of (a) indexed by (n,m) are compatible,
in the sense of Proposition 12.2 (2) (i.e., in the sense of the formula (5.1) of
Proposition 5.2 and the formula (5.2) of Proposition 5.4), with the log-volumes
indezed by (n, m—1) with respect to the log-link n,m—1lg ¥ full oo nmay THE
(This means that we do not need to be worried about how many times log-
links are applied in the log-Kummer correspondence, when we take values
of the log-volumes).

Proof. Proposition follows from the definitions. O

Proposition 13.11.  (Global Kummer Theory and Non-Interference with Local
Integers, [IUTchIII, Proposition 3.10]) Let {”’mHTgp}n,mez be a collection of XHB-
Hodge theatres arising from an LGP-Gaussian log-theta-lattice. For each n
mZ, we write

n,OrHTD—gEB

for the D-X H-Hodge theatre determined, up to isomorphism, by nmg TP form e Z,
via the vertical coricity of Theorem 12.5 (1).

(1) (Vertically Coric Global LGP- [gp-Frobenioids and Assosiated Kummer
Theory) By applying the construcions of Proposition 13.8 to the (étale-like) F-
prime-strips “F("°D.):” and to the full log-links associated to these (étale-like) F -
prime-strips (cf. Proposition 12.2 (5)), we obtain functorial algorithms, with respect
to the D-X H-Hodge theatre ”’OHTDMEB, to construct vertically coric étale-like
number fields, monoids, and (pre-)Frobenioids equipped with natural

isomorphisms
Moo (""" HT P58, = Myjop ("“HT P 5E) 5 Mo (““HTPHE) , = Mo (““HTPE),,,
M2, (" HTPEB) S5 ME, (moHTPER)
Frooa(MCHTPHE) y 5 Froo("oHTPHE)0 5 Fiop ("HTP %),

via T
fora e Sf e J, and vertically coric étale-like F'"-prime-strips equipped

with natural isomorphisms
SII—(n,O/HTD-&EH)gau ~ SH—(n,o/HTD-®BH)LGP ~ ‘/—_-H—(n,oHTD-IEEE)[gp‘

Note again that we are able to perform this construction, thanks to the com-
patibility of log-link with the Fﬁi—symmetrising isomorphisms. For each
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n,m € 7, these functorial algorithms are compatible, in the obvious sense, with
the (non-vertically coric Frobenius-like) functorial algorithms of Proposition 13.8
for (=) = ™™ (=), and *(=) = ™™~ 1(=), with respect to the Kummer isomor-

phisms
Kum
\chns(mm/g%)t :> \Ilcns(n,m/©>-)t7
: fwm / —e | At _g /
(n,m Mgod)j - Mgod (n,m D©)j7 (n,m Mmod)j - Mmod<n’m D©)j

of labelled data (cf. Corollary 11.21 (3), and Corollary 11.23 (2)), and the evident
tdentification of”’m/& with the F-primes-strip associated to W .y ("’m/§>)t form' =

m — 1,m. In particular, for each n,m € Z, we obtain Kummer isomorphisms

Kum Kum
~  ==®

n,mrr® n,0 -XIH n,m— nmir® ~ r® n,0 -XIH
(""" Mpoa)a — Mypea("°HT P )0, (™" Myion /mon)a — Myiop fmoo ("OHT %),

Kum Kum

n,m ~ n,o ‘D-XH n,m— n,m ~ n,0 D-XH
(""Mpod)a T Mioq("THT P ) e, (WM GG o)a T Miton jmeo (THT T ),

Kum Kum

n,m ~ n,o -XH n,m-— n,m ~ n,o -XH
( ’ f@ )Oé - ‘Frg?od( 7 HTD )OM (( ’ o fl\%OD/moa)a - fl\®/IOD/moD< ’ ,HTD )Ow

mod
Kum Kum

n,mggau :> g\l—(n,oHT'D—@E)gau, ((n,m—l—))n,mgl{GP/[gp) :> SIF(n,oHTD—&E)LGP/[gp,

(Here (—)MOD/moo 18 the shorthand for “(—)mop (Tesp. (—)moo)”, and (—)rap/igp
is the shorthand for “(—)vap (resp. (—)wgp)”) of fields, monoids, Frobenioids, and
F"_prime-strips, which are compatible with the above various equalities, natural

inclusions, and natural isomorphisms.

(2) (Non-Interference with Local Integers) In the notation of Proposition 13.4
(2), Proposition 13.6 (1), Proposition 13.8 (1), (2), and Proposition 13.10 (3), we
have

t a + +
(TM%OD)QQH ‘IJIOQ(S;_LH!O‘FE) = M((TMI\@)/IOD)Q) C H ZQ(SJ'H’ F,) = H IQ(SJ+1va) = IQ(SJ+1_FVQ)
veV veV vg€Vyg

; « ) . . + ,
(i.e.; “FroaM o<oo OI(>F1nod)v = w(FX,q)") (Here, we identify HYBQWQIQ(SJ‘HL *Fy)
+
with TQ(Si+1 Fuy)). Now, we consider the multiplicative groups

((n,m—l%)n,li(;B/[OD)j

of non-zero elements of number fields as acting on the modules

=+
IO (D, )v,)



348 GO YAMASHITA

not via a single Kummer isomorphism of (1), which fails to be compatible with
the log-links, but rather via the totality of the pre-composites of Kummer isomor-
phisms with iterates of the p,-adic logarithmic part/Archimedean exponential part
of log-links, where we observe that these actions are mutually compatible, with
respect to the log-links of the n-th column of the LGP-Gaussian log-theta-lattice, in
the following sense: The only portions of these actions which are possibly related to
each other via these log-links are the indeterminacies with respect to multiplication
by roots of unity in the domains of the log-links (by the above displayed equal-
ity). Then the py-adic logarithm portion of the log-link sends the indeterminacies
at m (i.e., multiplication by p((m=12)mmME (Y, ) to addition by zero, i.e., no
indeterminacy! at m + 1 (cf. also Remark 10.12.1, Definition 12.1 (2), (4), and
Proposition 12.2 (2) for the discussion on quotients by \If’fgv for v € V¥). In this
way, we obtain a global log-Kummer correspondence between the totality of
the various multiplicative groups of non-zero elements of number fields for m € Z,
and their actions on the “T%(—)” labelled by “n,o”

’

{ Kumo log™ ("2 15 0p);) A~ T (<)) Ymez, mzo

which is invariant with respect to the translation symmetries m — m+1 of the n-th

column of the LGP-Gaussian log-theta-latice.

(3) (Frobenioid-theoretic log-Kummer Correspondences) The Kummer isomor-
phisms of (1) induce, via the log-Kummer correspondence of (2), isomorphisms of
(pre- ) Frobenioids

Kum Kum

n,m— n,m ~ n,0 -XIH n,m— n,m ~ n,o -XH
(( el Faop)e — Frop(™ HTP ™ )a, (™ 1=)m, FﬁﬂgD)a - Fﬁ%D( CHTPHE),

which are mutually compatible with the log-links of the LGP-Gaussian log-theta-
lattice, as m rus over the elements of Z. These compatible isomorphisms of (pre-
)Frobenioids with the Kummer isomorphisms of (1) induce, via the global log-
Kummer correspondence of (2) and the splitting monoid portion of the the local
log-Kummer correspondence of Proposition 13.7 (2), a Kummer isomorphism

Kum

(n,m—l—))n,mgl{ép ~ S\FL(n,oHTD—XEH)LGP

of associated F'™ L -prime-strips, which are mutually compatible with the log-links
of the LGP-Gaussian log-theta-lattice, as m rus over the elements of Z.

Note that we use only MOD-/LGP-labelled objects in (2) and (3), since these are defined
only in terms of multiplicative operations (X), and that the compatibility of Kummer
isomorphisms with log-links does not hold for mod-/lgp-labelled objects, since these are
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defined in terms of both multiplicative and additive operaions (X and B ), where we only
expect only a upper semi-compatibility (cf. Definition 9.7, and Proposition 15.7 (2)).

Proof. Proposition follows from the definitions. U
The following the Main Theorem of inter-universal Teichmiiller theory:

Theorem 13.12.  (Multiradial Algorithms via LGP-Monoids/Frobenioids, [[UTchIII,
Theorem 3.11]) Fiz an initial ©-data

(F/F, Xp, I, Ci, V, V22, o).

mod?

Let
{n,mHTIZEE }n,mEZ

be a collection of KH-Hodge theatres, with respect to the fixed initial ©O-date, arising
from an LGP-Gaussian log-theta-lattice. For each n € 7, we write

n,OHT'D—gE

for the D-KH-Hodge theatre determined, up to isomorphism, by n.mag ¥ form e Z,
via the vertical coricity of Theorem 12.5 (1).

(1) (Multiradial Representation) Consider the procession of D" -prime-strips Proc(™°D.)
{n,OQE} SN {n70957 n,OQE} oy Ly {n,OQE’ n,OQE’ o 7n’O©l:é}'
Consider also the following data:

(Shells) (Unit portion — Mono-anaytic Containers) For V 3> v | vg, j € |Fi|, the
topological modules and mono-analytic integral structures

T(EmoDh) ¢ T8(EmoDh ), I(EdmeoD)) ¢ 9 dmeD)),

which we regard as equipped with the procession-normalised mono-analytic log-
volumes of Proposition 13.10 (2),

(ThVals) (Value Group Portion — Theta Values) For v € V°*, the splitting monoid
Uilgp("OHTP ),

of Proposition 13.7 (2c), which we regard as a subset of

H IQ(Sﬁl’jm’ng),

J€F,
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£
equipped with a multiplicative action on Hje]Fl* I@(Sj+1’-7’n7o’D£)’ via the natural
poly-isomorphisms
{Kum»—l

poly tauto™ !

ToEamepy) 5 IoEwamertue, ) 5 19 adneF(oh),)

of Proposition 13.4 (2), and
(NFs) (Global Portion — Number Fields) For j € F}, the number field

AT N + o i e
Myiop (" HTPFE); = Mo (CHTPHE), c 19(SmeDf ) .= [ 70E+meD))

vQ GV@

with natural isomorphisms

Frion (" HTPEE); 3 oy (oHTP M), Fabp (WHTPH%); 5 Fal (oHTPHE),

moo

(cf. Proposition 13.11 (1)) between the associated global non-realified/realified
Frobenioids, whose associated global degrees can be computed by means of the
log-volumes of (a).

We write
n,omLGP

for the collection of data (a), (b), (c) regarded up to indeterminacies of the following
two types:

(Indet ) the indeterminacies induced by the automorphisms of the procession of D -
prime-strip Proc(™°®%.), and

(Indet —) for eachvg € Vg™ (resp. vg € Vi), the indeterminacies induced by the action
of independent copies of Isomet (resp. copies of {1} x{x1}-orbit arising from
the independent {+1}-actions on each of the direct factors “k~(G) = C~xC™”
of Proposition 12.2 (4)) on each of the direct summands of the j + 1 factors
appearing in the tensor product used to define IQ(S?EH;”’ODZQ)

Then we have a functorial algorithm, with respect to Proc(”"’@;), to construct
moRLGE . (from the given initial ©-data). For n,n' € Z, the permutation symmetries
of the étale picture of Corollary 12.8 (2) induce compatible poly-isomorphisms

poly , poly ,
PI“OC(n’O@;) ~ PI‘OC(n ,OCD;)’ n,omLGP A n,oERLGP
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poly
which are, moreover, compatible with the poly-isomorphisms ™°Df = ”/"’@g in-
duced by the bi-coricity of the poly-isomorphisms of Theorem 12.5 (3). We shall re-
poly

~

fer to the switching poly-isomorphism ™° RV 5 n'oRLGP 45 an étale-transport
poly-isomorphism (¢f. also Remark 11.1.1), and we also shall refer to (Indet «)
as the étale-transport indeterminacies.

(2) (log-Kummer Correspondence) For n,m € 7, the Kummer isomorphisms

Kum Kum
~ ~ —@

n,m n,o nmyr® n,o
Uens(""8= )t = Vens(MD ), ("""Mpoa)i — Mpeq(™ D©)jv

Kum
{m* (""DY) A MY = AmT(MODY) A M2 (MDY},
(wheret € LabCusp™ (™°®,.)) of labelled data of Corollary 11.21 (3), Corollary 11.23
(1), (2) (cf. Proposition 13.7 (1), Proposition 13.11 (1)) induce isomorphisms be-
tween the vertically coric étale-like data (Shells), (ThVals), and (NFs) of (1), and
the corresponding Frobenius-like data arising from each XHB-Hodge theatre nomay TRE .

(a) for V3 v |vg, j € |Fi|, isomorphisms

“‘Kum?”
tauto poly

~ ~

I(Q) (Sji+1?"vmf-'v@) ~ I(Q) (Sji+1;n,mf5@xu) = I(@) (Sﬁ_lm,o,pv@)’
“‘Kum?”
L tauto L. poly 1.
I(Q) (§j+1’j;n7m‘/—_.v) :> I(Q) (SjJrl,j;n,vakxu) :> I(Q) (Sj+17j;n7ODv)

of local mono-analytic tensor packets and their Q-spans (cf. Proposition 13.4
(2)), all of which are compatible with the respective log-volumes by
Proposition 13.10 (2) (Here, T\ (=) is a shorthand for “T(—) (resp. T%(—))”),

(b) for V**! 5 v, isomorphisms

Kum

\I/-%_LGP((n,m—lé)n,mzHTﬁEE)E ~ \I}iGP(mOIHTD-&EE)g

of splitting monoids (cf. Proposition 153.7 (1)),

(c) for j € B}, isomorphisms

n,m— n,myr® ~  r® n,o -XIH
() Mo /me)i — Mivion jmes ("CHT ),
Kum
n,m—1—=)n,m r® ~ ® n,0 D-XH
(( ) fMOD/maD)j ]:MOD/moo( HT )J?
Kum
n,m—1—)n,m T®R ~ ®R 7,0 'D-XH
(¢ > FMOD/mod)i = Fniop/meo T HT )is



352 GO YAMASHITA

of number fields and global non-realified /realified Frobenioids (cf. Proposition 13.11
(1)), which are compatible with the respective natural isomorphisms between

4

“(—)mop” and “(—)moo” (Here, (—)MoOD/moo 5 @ shorthand for “(—)mop

(resp. (—)mod)”), here, the last isomorphisms induce isomorphisms

Kum

n,m—1—)n,ml- ~ I- n,0 D-XH
( ) Crap gy — CLGP/[gp( HT )

(Here, (—)rap/1gp 15 a shorthand for “(—)Lap (resp. (—)igp)”) of the global re-
alified Frobenioid portions of the F'" -prime-strips (mm=1=)nmgl Fr (o mTPEE) o,

(”:m—H)mmS'[;p, and S‘F("’OHTD'gEE)[gp (cf. Proposition 13.11 (1)).

Kum
Moreover, the various isomorphisms \IIJL_-LGP(("’m’1%)"’"‘3’{7-&53)2 S Uiap (”’OHTDMEE)E’S,
Kum
and ("R 0n ma); T Maton jmes ("HTPEE); s in (b), (c) are mu-
tually compatible with each other, as m runs over Z, with respect to the log-links
of the n-th column of the LGP-Gaussian log-theta-lattice, in the sense that the
only portions of the domains of these isomorphisms which are possibly related to
each other via the log-links consist of p in the domains of the log-links at (n,m),
and these indeterminacies at (n,m) (i.e., multiplication by p) are sent to addi-
tion by zero, i.e., mo indeterminacy! at (n,m + 1) (cf. Proposition 13.7 (2c),

Kum

~

Proposition 13.11 (2)). This mutual compatibility of(("’m_l_’)"’mM?AOD/moa)j —

Kum

~

M?AOD/WD(”’OHTD'&EE)J- s implies mutual compatibilities of ((mm=1=InmFs . 5
Kum

Friop("HTPEE) s, and (mm=12mmEQon); 5 Fagop (MCHT ™), s (Note
that the mutual compatibility does not hold for (—)men-labelled objects, since these
are defined in terms of both multiplicative and additive operaions (X and B ), where
we only expect only a upper semi-compatibility (cf. Definition 9.7, Proposition 13.7
(2), and Proposition 13.11 (3)). On the other hand, the isomorphisms of (a) are
subject to the following indeterminacy:

(Indet 1) the isomorphisms of (a) are upper semi-compatible, with respect to the log-
links of the n-th column of the LGP-Gaussian log-theta-lattice, as m runs over
Z, in a sense of Proposition 153.7 (2a), (2b).

(We shall refer to (Indet —) and (Indet 1) as the Kummer detachment in-
determinacies.) Finally, the isomorphisms of (a) are compatible with the
respective log-volumes, with respect to the log-links of the n-th column of the
LGP-Gaussian log-theta-lattice, as m runs over Z (This means that we do not need
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to be worried about how many times log-links are applied in the log-Kummer
correspondence, when we take values of the log-volumes).

(3) (O7&p-Link Compatibility) The various Kummer isomorphisms of (2) are com-
patible with the @LGP-links in the following sense:

(a) (Kummer on A) By applying the Ffi-symmetry of the XH-Hodge theatre

Kum

~

"’m”HT&EE, the Kummer isomorphism Wens (""" F )t — WYens(°Ds )t induces
induced by Kum

~

a Kummer isomorphism ""§ " — S (D) (cf. Theo-

rem 12.5 (3)). Then we have a commutative diagram

full poly

n,mgzxu ~ 5 n+1,ms;z><,u

induced by Kum %l l% induced by Kum

full poly

B (oDl e F (DY),

where the upper horizontal arrow is induced (cf. Theorem 12.5 (2)) by the
O7 &p-link between (n,m) and (n+ 1,m) by Theorem 12.5 (3).

(b) (A — env) The F"-prime-strips “™Fr ., §r ("°Ds) appearing implicitly in
the construction of the F'* -prime-strips (mm—1=mmalr & ("’O’HTDNE)LGP,
(nm—1=)n,mazt lgp 3'F(”’°H7’D'®E)[gp, admit natural isomorphisms ”’mSZX“ =
nmyt Xp SFX“(” °DR) 5 FLA(MDY) of associated FT*F-prime-strips (cf.

Proposition 12.6 (3)). Then we have a commutative diagram

Fx full poly -

, 2 ~ s 1, 12

n mSA n—+ m%'A

induced by Kum & “Arenv” %l l% induced by Kum & “Arenv”
full poly

S:I—Xu(n og}—) ~ Sl—xu(n—i—l og}—)

env env

where the upper horizontal arrow is induced (cf. Theorem 12.5 (2)) by the
O &p-link between (n,m) and (n + 1,m) by Corollary 12.8 (3).

(c) (env — gau) Recall that the (vertically coric étale-like) data ““°R” i.e.,

(AT, FE (D5, ooy (7°D5)u D oo T ("D}, 15 (MO ("D 1)) © Q/Z, MY(*°D>

full poly
oo Uiy L ZNH(ODR), B (D) 5 S”"<"’°@Z>>

("D )y = oo ("D} |

UGVbad

of Corollary 12.8 (2) implicitly appears in the construction of the F' -prime-

StT’ipS (n,m—l—))n,mslﬁ-gp’ 3II—(n,oHTD—@EE\)LG (n,m—1—)n, mglgp} S\I—(n,oHT’D—IXEEI)[gp.

)2)7
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poly

(d)

rat n,o n,o 1. to loc. n,o n,o
{1t (vD®) A ME, (v DO)} B B M ("°Dy,) € M xn (D)

GO YAMASHITA

This (vertically coric étale-like) data arising from noy TPRE s related to
corresponding (Frobenius-like) data arising from the projective system of the
mono-theta environments associated to the tempered Frobenioids of the XH-
Hodge theatre nma TRE gy v e VP yia the Kummer tsomorphisms and
poly-isomorphisms of projective systems of mono-theta environments of Propo-
sition 12.6 (2), (8) and Theorem 12.5 (8). With respect to these Kummer
isomorphisms and poly-isomorphisms of projective systems of mono-theta en-

vironments, the poly-isomorphism

poly

~

n,o% = n+1,o%

full poly

~

iduced by the permutation symmetry of the étale picture noqypPRE X
ntloq T PRE o compatible with the full poly-isomorphism

- full poly -
n,m X ~ n+1l,m X
Sa — Sa

of F& >t -prime-strips induced by O &p-link between (n,m) and (n+1,m) and
so on. Finally, the above two displayed poly-isomorphisms and the various
related Kummer isomorphisms are compatible with the wvarious evaluation
map implicit in the portion of the log-Kummer correspondence of (2b), up to
indeterminacies (Indet ), (Indet —), (Indet 1) of (1), (2).

(k-coric — NF) With respect to the Kummer isomorphisms of (2) and the
gluing of Corollary 11.21, the poly-isomorphism

veV

5 [{m (e D®) A M, (DO} S M ("D, ) € Mo ("HD )|

J

(cf. Corollary 11.22 (3)) induced by the permutation symmetry of the étale
full poly

picture "CHTPRE X ntlogyrPRE o ompatible with the full poly-

isomorphism
full poly
n,m et X 1 ~ n+lmetXpu
Sa - N

of F™ ¥ -prime-strips induced by O] &p-link between (n,m) and (n+1,m). Fi-
nally, the above two displayed poly-isomorphisms and the various related Kum-
mer isomorphisms are compatible with the various evaluation map implicit in
the portion of the log-Kummer correspondence of (2b), up to indeterminacies

(Indet »), (Indet —), (Indet 1) of (1), (2).

veV
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Proof. Theorem follows from the definitions. O

A rough picture of the final multiradial representation is as follows:

(Friod)l T (Fr;iod)l*

where the multiplicative group (F

.d); of non-zero elements of a j-labelled number field

acts on I;.@, and Uiqp acts on I;@ in the (j + 1)-capsule by multiplication by ng. Note

that Ui,p does not act on other components IE)Q, . 715'@71 of the (j + 1)-capsule. Note
also that the 0-labelled objects (together with the diagonal labelled objects) are used to
form horizontally coric objects (Recall that “A = {0, (F;*)}”), and (F*_4
do not act on O-labelled (Q-span of) log-shell IE)Q.

The following table is a summary of Theorem 13.12 and related topics:

) iR
);’s or Yigp
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(temp. conj. vs. prof. conj. — Ffi—conj. synchro.— diag.—hor. core— @Egp—linki)
(1) (Objects) (2) (log-Kummer) (3) (Comat’ty with ©;§p-link)
F;ﬂi—sym. Z (« units) inv. after admitting inv. after admitting
7l (Indet 1) (Indet —) (~ Z*-indet.)
Iﬁ‘fi—sym. \11pr val. gp. no interf. by const. mult. rig. protected from Z*-indet.
2! (+<—compat. of log-link (ell. cusp’n<pro-p anab. by mono-theta cycl. rig.
w/ F'F-sym.) +hidden. endom.) (+—quad. str. of Heis. gp.)
]Ff—sym. M,,0q NF no interf. protected from 7% -indet.
X Belyi cusp’n(«+—pro-p anab. by FX 4N vaoo Oy, =pu by Qs N 7% = {1}
+hidden endom.)

others: (compat. of log.-vol. w/ log-links), (Arch. theory:Aut-hol. space (ell. cusp’n is used))

(disc. rig. of mono-theta), (étale pic.: permutable after admitting (Indet »») (autom. of proc. incl.))

Corollary 13.13.  (Log-volume Estimates for ©-Pilot Objects, [[UTchIII, Corol-
lary 3.12]) We write

—|log(©)] € RU{+o0}

for the procession-normalised mono-analytic log-volume (where the average is taken over
j € F*) of the holomorphic hull (¢f. the definiton after Lemma 1.6) of the union
of the possible image of a ®-pilog object, with respect to the relevant Kummer
isomorphisms in the multiradial representation of Theorem 13.13 (1), which we regard
as subject to the indeterminacies (Indet 1), (Indet — ), and (Indet ) of Theorem 13.13
(1), (2). We write

—|log(q)] € R

for the procession-normalised mono-analytic log-volume of the image of a q-pilot object,
with respect to the relevant Kummer isomorphisms in the multiradial representation of
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Theorem 13.13 (1), which we do not regard as subject to the indeterminacies (Indet 1),

(Indet — ), and (Indet ~) of Theorem 138.18 (1), (2) (Note that we have |log(q)| > 0).

Then we obtain -
~|10g(q)| < —|10g(©)

(i.e., ‘0 < —(large number) + (mild indeterminacies)”. cf. also § A.4). Note also that

the explicit computations of the indeterminacies in Proposition 1.12, in fact, shows that

—|log(©)] < oo.

oxk
Proof. The O] 4p-link 0,09 7HE LGP 1,09y 7™ i) quces the full poly-isomorphism
full poly
0,0FFexm I LOFIeXK of Fexu_prime-strips, which sends ©-pilot objects to a

g-pilot objects. By the Kummer isomorphisms, the %°-labelled Frobenius-like objects
corresponding to the objects in the multiradial representaion of Theorem 13.12 (1) are
isomorphically related to the %°-labelled vertically coric étale-like objects (i.e., mono-
analytic containers with actions by theta values, and number fields) in the multira-
dial representaion of Theorem 13.12 (1). After admitting the indeterminacies (Indet
A ), (Indet —), and (Indet 1), these (0,0)-labelled vertically coric étale-like objects
are isomorphic (cf. Remark 11.1.1) to the (1,0)-labelled vertically coric étale-like ob-
jects. Then Corollary follows by comparing the log-volumes (Note that log-volumes are
invariant under (Indet »~), (Indet —), and also compatible with log-Kummer corre-
spondence of Theorem 13.12 (2)) of (1,0)-labelled g-pilot objects (by the compatibility
with O &p-link of Theorem 13.12 (3)) and (1, o)-labelled ©-pilot objects, since, in the
mono-analytic containers (i.e., Q-spans of log-shells), the holomorphic hull of the union
of possible images of ©-pilot objects subject to indeterminacies (Indet «), (Indet —),
(Indet 1) contains a region which is isomorphic (not equal) to the region determined by
the g-pilot objects (This means that “very small region with indeterminacies” contains
“almost unit region”). O

Then Theorem 0.1 (hence, Corollary 0.2 as well) is proved, by combining Proposi-
tion 1.2, Proposition 1.15, and Corollary 13.13.

Remark 13.13.1. By admitting (Indet «), (Indet —), and (Indet 1), we obtain
objects which are ivariant under the ©; &p-link. On the other hand, the ©&p-link can
be considered as “absolute Frobenius” over Z, since it relates (non-ring-theoretically)

-2 .
q to{¢’ }1<;j<ix. Therefore, we can consider

(Indet ) the permutative indeterminay in the étale transport:

N

o —>o<—e “IG,=*G,” (and autom’s of processions)
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(Indet —) the horizontal indeterminacy in the Kummer detachment:
o e TOXH = 10> with integral structures,
and

(Indet 1) the vertical indeterminacy in the Kummer detachment:

. log(O*)—— QLp log(O*)
(og] logT L////////)7
° Ok

as “descent data from Z to F;”.

Remark 13.13.2.  The following diagram (cf. [[UTchIII, Fig. 3.8]) expresses the
tautological two ways of computations of log-volumes of g-pilot objects in the
proof of Corollary 13.13:

. étale transport X
H-line bdls.lgjsp;é assoc. to ~ H-line bdls.lsjgl% assoc. to

) 2
{0,021 }vev up to Indet.’s suited to Famoo {17023’ }uvev up to Indet.’s

Kummer detach.

: compare log-vol.’s
via log-Kummer corr. P g

compatibility with ©[ 4o H

o lip-link
X-line bd1‘.2assoc. to = X-line bdl. assoc. to ~ [ H-line bdl. assoc. to
{097  Juev suited to Fumop {19 }oev - {199 Yoev '

These tautological two ways of computations of log-volumes of g-pilot objects can be
considered as computations of self-intersection numbers “A.A” of the diagonal “A C
Z @y, Z” from point view of Remark 13.13.1. This observation is compatible with
the analogy with p-adic Teichmiiller theory (cf. last table in Section 3.5), where the
computation of the global degree of line bundles arising from the derivative of the
canonical Frobenius lifting (+» ©-link) gives us an inequality (1 —p)(2g —2) < 0 (Recall
that self-intersection numbers give us Euler numbers). This inequality (1—p)(2¢g—2) <0
essentially means the hyperbolicity of hyperbolic curves. Analogously, the inequality
[log(©)] < [log(g)| =0

means the hyperbolicity of number fields.

cf. also the following table (cf. [[UTchIII, Fig. 3.2]):
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X-line bundles, MOD /LGP-labelled objects BB-line bundles, mod/Igp-labelled objects
defined only in terms of X defined in terms of both X and H
value group/non-coric portion unit group/coric portion
“(=)'F>” of O7 Lp-link “=)xmr of @EgP/Gé’;—link
precise log-Kummer corr. only upper semi-compatible log-Kummer corr.
ill-suited to log-vol. computation suited to log-vol. computation
subject to mild indeterminacies

Remark 13.13.3.  In this remark, we consider the following natural questions:
How about the following variants of ©-links?

(1)

.2
9 r1<j<ix q >0);
(o o ¢ OB

(2)

{(QjQ)Nhgjgﬁé =g (N > 1), and

=v =v

(3)

q r—>g’\ (A € Ryp).

From conclusions, (1) works, and either of (2) or (3) does not work.

(1) ([IUTchIII, Remark 3.12.1 (ii)]) We explain the variant (1). Recall that we have

I ~ ht >> |deg(¢q )| = 0. Then the resulting inequalty from “the generalised O p-
link” is

A-0 < —(ht) + (indet.)

for A << [, which gives us the almost same inequality of Corollary 13.13, and weaker
inequality for A > [ than the inequality of Corollary 13.13 (since deg(q ) < 0).

(2) ([EtTh, Introduction, Remark 2.19.2, Remark 5.12.5], [IUTchII, Remark 1.12.4,
Remark 3.6.4], [IUTchIII, Remark 2.1.1]) We explain the variant (2). There are
several reasons that the variant (2) does not work (cf. also the principle of Galois
evaluation of Remark 11.10.1):
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(a)

GO YAMASHITA

If we replace © by © (N > 1), then the crucial cyclotomic rigidity of mono-
theta environments (Theorem 7.23 (1)) does not hold, since the construction
of the cyclotomic rigidity of mono-theta environments uses the quadraticity of
the commutator [, | structure of the theta group (i.e., Heisenberg group) (cf.
also Remark 7.23.2). If we do not have the cyclotomic rigidity of mono-theta
environments, then we have no Kummer compatibility of theta monoids (cf.
Theorem 12.7).

If we replace © by ©N (N > 1), then the crucial constant multiple rigidity
of mono-theta environments (Theorem 7.23 (3)) does not hold either, since, if
we consider N-th power version of mono-theta environments by relating the
1-st power version of mono-theta environments (for the purpose of maintain-
ing the cyclotomic rigidity of mono-theta environments) via N-th power map,
then such N-th power map gives rise to mutually non-isomorphic line bundles,
hence, a constant multiple indeterminacy under inner automorphisms arising
from automorphisms of corresponding tempered Frobenioid (cf. [TUTchIII, Re-
mark 2.1.1 (ii)], [EtTh, Corollary 5.12 (iii)]).

If we replace © by ©F (N > 1), then, the order of zero of © at cusps is equal
to N > 1, hence, in the log-Kummer correspondence, one loop among the
various Kummer isomorphisms between Frobenius-like cyclotomes in a column
of log-theta-lattice and the vertically coric étale-like cyclotome gives us the N-
power map before the loop, therefore, the log-Kummer correspondence totally
collapses. cf. also Remark 12.8.1 (“vicious circles”).

If it worked, then we would have

0 < —N(ht) + (indet.),

which gives us an inequality

1
ht < N(l + €)(log-diff + log-cond)

for N > 1. This contradicts Masser’s lower bound in analytic number theory
([Mass2]).

(3) ([IUTchIII, Remark 2.2.2]) We explain the variant (3). In the theta function case,

idm(OX-OOQﬂH

we have Kummer compatible splittings arisen from zero-labelled evaluation points
(cf. Theorem 12.7):

e
H/A) . Aut(@), Isomet ~ (G ~ O*F)
e

ol — 1€ Oxr,

0-labelled ev. pt.
(_)
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Here, the crucial Kummer compatibility comes from the fact that the evaluation
map relates the Kummer theory of O*-portion of O -6 on the left to the coric O*#
on the right, via the evaluation .0 — 1 € O*#. On the other hand, in the case of
the variants (3) under consideration, the corresponding arrow maps g’\ —1e O%H,
hence, this is incompatible with passage to Kummer classes, since the Kummer class
of g)‘ in a suitable cohomology group of II/A is never sent to the trivial element of

full poly
the relavant cohomology group of G, via the full poly-isomorphism II/A =  G.

Appendix A. Motivation of the Definition of the ®-Link.

In this section, we explain a motivation of ©-link from a historical point of view,
i.e., in the order of classical de Rham’s comparison theorem, p-adic Hodge comparison
theorem, Hodge-Arakelov comparison theorem, and a motivation of ©-link. This section
is an explanatory section, and we do not give proofs, or sometimes rigorous statements.
cf. also [Pano, §1].

§ A.1. The Classical de Rham Comparison Theorem.

The classical de Rham’s comparison theorem in the special case for G,,(C) = C*
says that the pairing

H1 (G (C),Z) ®z Hip(Gm(C)/C) —

which sends [y]®|w] to f w, induces a comparison isomorphism Hip (G,,(C)/C) = C®y
(H1(G,,(C),Z))* (Here, we write (-)* for the Z-dual). Note that H(G,,(C),Z) = Z ],
H} (G, (C)/C) = C[4F], and f 4T = 27, where we write 7o for a counterclockwise
loop around the origin, and 7" for a standard coordinate of G,,

§ A.2. p-adic Hodge-theoretic Comparison Theorem.

A p-adic analogue of the above comparison paring (in the special case for G,,, over
Qp) in the p-adic Hodge theory is the pairing

Tme ®Zp HéR(GM/Qp) — Bcrys;

which sends € ® [dTT] to (“ fg dTT =")log [¢] = t(= t), where we write T, for the p-adic
Tate module, € = (€,), is a system of p-power roots of unity (i.e., ¢ = 1, €1 # 1, and
€l 1 = €n), Berys is Fontaine’s p-adic period ring (cf. also [Fo3]), and ¢ = log[¢] is an
element in Bg,ys defined by e (cf. also [Fo3]). The above pairing induces a comparison
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isomorphism Beys ®q, Hl (G /Qp) = Berys ®z, (TpGm)* (Here, we write (-)* for the
Zp-dual). Note that € = (e,,), is consdered as a kind of analytic path around the origin.

We consider the pairing in the special case for an elliptic curve E over Z,. We
have the universal extension 0 — (LieEy )* — Eép — Eg, — 0 (cf. [Mess] for the
universal extension) of Eg, = F ®z, Q, (Here, we write (-)* for the Q,-dual, and
E@fp (2 Eg,) is the dual abelian variety of Eg, ). By taking the tangent space at
the origin, we obtain an extension 0 — (LieE@fP)* — LieE&p — LieEg, — 0 whose
Qp-dual is canonically identified with the Hodge filtration of the de Rham cohomol-
ogy 0 — (LieEg,)* — Hig(Eq,/Qp) — LieE@{p — 0 under a canonical isomorphism
Hin(Eg,/Q,) = (LieE(&p)* (cf. also [MM] for the relation between the universal ex-
tension and the first crystalline cohomology; [BO1] and [BO2] for the isomorphism
between the crystalline cohomology and the de Rham cohomo/l(lgy). For an element

wpt of (LieE&p)*, we have a natural homomorphism logwE L qup — ((A}a /0, such that

the pull-back (IngE . )*dT is equal to wgt, where E&p is the formal completion of E(&p

at the origin, and @a /Q, 18 the formal additive group over Q.
Now, the pairing in the p-adic Hodge theory is

T,E ® (LieE}, )* — Berys,

which sends P ® wgt to (¢ waET = 7)log,, . [P], where P = (P,), satisfies that
P, € E(@p), Py = 0, and pP,+1 = P,. The above pairing induces a comparison
isomorphism Beys ®g, Hig(Gm/Qp) = Berys ®z, (1,Gy)* (Here, we write (+)* for the
Z,-dual). Note again that P = (P, ), is consdered as a kind of analytic path in E. cf.
also [BO1] and [BO2] for the isomorphism between the de Rham cohomology and the
crystalline cohomology; [MM] for the relation between the first crystalline cohomology
and the universal extension; [Mess] for the relation between the universal extension
and the Dieudonné module; [Fo2, Proposition 6.4] and [Fol, Chapitre V, Proposition
1.5] for the relation between the Dieudonné module and the Tate module (the above

isomorphism is a combination of these relations).
§ A.3. Hodge-Arakelov-theoretic Comparison Theorem.

Mochizuki studied a global and “discretised” analogue of the above p-adic Hodge
comparison map (cf. [HASurl], [HASurIl]). Let E be an elliptic curve over a number
field F', [ > 2 a prime number. Assume that we have a nontrivial 2-torsion point
P € E(F)[2] (we can treat the case where P € E(F) is order d > 0 and d is prime to [;
however, we treat the case where d = 2 for the simplicity). Write £ = O(l [P]). Then
roughly speaking, the main theorem of Hodge-Arakelov theory says that the evaluation
map on ET[l|(= EJl])

L(ET, L]p1)*®<t =5 Ll gy (= Ll gy = @y F)
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is an isomorphism of F-vector spaces, and preserves specified integral structures (we
omit the details) at non-Archimedean and Archimedean places. Here, we write I'(ET, L] g+ )9°8<!
for the part of I'(ET, £|g+) whose relative degree is less than [ (Note that Zariski locally
ET is isomorphic to E x Al = Spec Og[T]). Note that dimp I'(ET, £|p+)dee<t = 2]
since dimp I(E, L) = [, and that dimp £|gy = [ since #E[l] = 1. The left-hand
side is the de Rham side, and the right-hand side is the étale side. The discretasation
means that we consider [-torsion points E[l], not the Tate module, and in philosophy,
we consider E[l] as a kind of approzimation of “underling analytic manifold” of E (like
€ = (én)n and P = (P,), were considered as a kind of analytic paths in G,, and E
respectively). We also note that in the étale side we consider the space of functions
on E[l], not E[l] itself, which is a common method of quantisations (like considering
universal enveloping algebra of Lie algebra, not Lie algebra itself, or like considering
group algebra, not group itself).

(For the purpose of the reader’s easy getting the feeling of the above map, we also
note that the G,,-case (i.e., degenerated case) of the above map is the evaluation map

F[T]deg<l — @QGMF

sending f(T") to (f(¢))ceu,, which is an isomorphism since the Vandermonde determi-
nant is non-vanishing.)

For j > 0, the graded quotient Fil™/ /Fil /"' (in which the derivations of theta
function live) with respect to the Hodge filtration given by the relative degree on the
de Rham side (=theta function side) is isomorphic to wg(_j ), where wg is the pull-back
of the cotangent bundle of E to the origin of E. On the other hand, in the étale side
(=theta value side), we have a Gaussian pole ¢’ /8O r in the specified integral structure
near the infinity (i.e., ¢ = 0) of M. This Gaussian pole comes from the values of theta
functions at torsion points. We consider the degrees of the corresponding vector bundles
on the moduli of elliptic curves to the both sides of the Hodge-Arakelov comparison map.

The left-hand side is

-1 12 l2
-3 o]~ — or] = o g,
7=0
since [w5?] = [Qa,,) = [logg], where Quq,, is the cotangent bundle of M.y and 6 is

the degree of the A-line over the j-line. The right-hand side is

1 -1 l2
—57 2 lloga] =~ flogq].
=0

Note that these can be considered as a discrete analogue of the calculation of Gaussian
integral

/ e dr = /7

— 00
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from the point of view that —g; Zl;%) j%[log q] is a Gaussian distribution (i.e., j — j2)

J
. . . -1 . ~ 12 . . .

in the cartesian coordinate, and — > ._ j[wr] = —5[wE] is a calculation in the polar
coordinate and [wg] is an analogue of /7, since we have w%’Q = Qanm,, and the integration

of Quq,, around the infinity (i.e., ¢ = 0) is 2mi. cf. also Remark 1.15.1
8§ A.4. Motivation of the Definition of the ®-Link.

In the situation as in the Hodge-Arakelov setting, we assume that E has everywhere
stable reduction. In general, E[l] does not have a global multiplicative subspace, i.e., a
submodule M C E[l] of rank 1 such that it coincides with the multiplicative subspace 1,
for each non-Archimedean bad places. However, let us assume such a global multiplica-
tive subspace M C E|l] exists in sufficiently general F in the moduli of elliptic curves.
Let M x N = E[l] be an isomorphism as finite flat group schemes over F' (not as Galois
modules). Then by applying the Hodge-Arakelov comparison theorem to E' := E/N
over K := F(FE]l]), we obtain an isomorphism

;2
F(<E/)T7[’|(E’)T)deg<l — @ (qWOK) KXok K7

(—15t =) <y<ix (=151

where ¢ = (qy)v:bad is the g-parameters of the non-Archimedean bad places. Then by
the incompatibility of the Hodge filtration on the left-hand side with the direct sum
decomposition in the right-hand side, the projection to the j-th factor is nontrivial for
most j:

Fil’ = ¢Ox < ¢/ Ok,

. 1
where we write q := q2I.

This morphism of arithmetic line bundles is considered as
an arithmetic analogue of Kodaira-Spencer morphism. In the context of (Diophantine
applications of) inter-universal Teichmiiller theory, we take [ to be a prime number in
the order of the height of the elliptic curve, thus, [ is very large (cf. Section 10). Hence,
the degree of the right-hand side in the above inclusion of the arithmetic line bundles
is negative number of a very large absolute value, and the degree of the left-hand side

is almost zero comparatively to the order of [. Therefore, the above inclusion implies
0 < —(large number) (~ —ht),

which gives us a upper bound of the height ht < 0 in sufficiently general E in the moduli
of elliptic curves.

However, there never exists such a global multiplicative in sufficiently general E in
the moduli of elliptic curves (If it existed, then the above argument showed that the
height is bounded from the above, which implies the number of isomorphism class of
E is finite (cf. also Proposition C.1)). If we respect the scheme theory, then we cannot
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obtain the inclusion O — ngO x- Mochizuki’s ingenious idea is: Instead, we respect

the inclusion qOx — ng Ok, and we say a good-bye to the scheme theory. The ©-link
in inter-universal Teichmiiller theory is a kind of identification

. 2
(©-link) : {gj }1§j§l*(=l_71) — 4

in the outside of the scheme theory (In inter-universal Teichmiiller theory, we also con-
struct a kind of “global multiplicative subspace” in the outside of the scheme theory).
So, it identifies an arithmetic line bundle of negative degree of a very large absolute
value with an arithmetic line bundle of almost degree zero (in the outside of the scheme
theory). This does not mean a contradiction, because both sides of the arithmetic
line bundles belong to the different scheme theories, and we cannot compare their de-
grees. The main theorem of the multiradial algorithm in inter-universal Teichmauller
theory implies that we can compare their degrees after admitting mild indeterminacies
by using mono-anabelian reconstruction algorithms (and other techniques). We can cal-
culate that the indeterminacies are (roughly) log-diff +1log-cond by concrete calculations.
Hence, we obtain
0 < —ht + log-diff 4 log-cond,

i.e., ht < log-diff +log-cond. We have the following remark: We need not only to recon-
struct (up to some indeterminacies) mathematical objects in the scheme theory of one
side of a ©-link from the ones in the scheme theory of the other side, but also to reduce
the indeterminacies to mild ones. In order to do so, we need to control them, to reduce
them by some rigidities, to kill them by some operations like taking p-adic logarithms
for the roots of unity (cf. Proposition 13.7 (2c¢), Proposition 13.11 (2)), to estimate
them by considering that some images are contained in some containers even though
they are not precisely determinable (cf. Proposition 13.7 (2), Corollary 13.13), and to
synchronise some indeterminacies to others (cf. Lemma 11.9, and Corollary 11.16 (1))
and so on. This is a new kind of geometry — a geometry of controlling indeterminacies
which arise from changing scheme theories i.e., changing unverses. This is Mochizuki’s
inter-universal geometry.

Finally, we give some explanations on “multiradial algorithm” a little bit. In
the classical terminology, we can consider different holomorphic structures on R?, i.e.,
C = R? = C, where one C is an analytic (not holomorphic) dilation of another C,
and the underlying analytic structure R? is shared. We can calculate the amount of
the non-holomorphic dilation C = R? = C based on the shared underlying analytic
structure R? (If we consider only holomorphic structres and we do not consider the
underlying analytic structure R?, then we cannot compare the holomorphic structures
nor calculate the non-holomorphic dilation). This is a prototype of the multiradial
algorithm. In philosophy, scheme theories are “arithmetically holomorphic structures”
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of a number field, and by going out the scheme theory, we can consider “underlying
analytic structure” of the number field. The ©-link is a kind of Teichmiiller dilation
of “arithmetically holomorphic structures” of the number field sharing the “underlying
analytic structure”. The shared “underlying analytic structure” is called core, and each
“arithmetically holomorphic structure” is called radial data. The multiradial algorithm
means that we can compare “arithmetically holomorphic structures” (of the both sides
of ©-link) based on the shared “underlying analytic structure” of the number field after
admitting mild indeterminacies (In some sense, this is a partial (meaningful) realisation
of the philosophy of “the field of one element” F;). Mochizuki’s ideas of “underlying
analytic structure” and the multiradial algorithm are really amazing discoveries.

Appendix B. Anabelian Geometry.

For a (pro-)veriety X over a field K, let IIx (resp. Ax) be the arithmetic funda-
mental group of X (resp. the geometric fundamental group of X) for some basepoint.
Let Agf) be the maximal pro-p quotient of A x, and write Hg]g) = Iy /ker(Ax — Ag?)).
For (pro-)varieties X, Y over a field K, we write Hom%™ (X,Y) (resp. Isomg (X,Y))
for the set of dominant K-morphisms (resp. K-isomorphisms) from X to Y. For an
algebraic closure K over K, write G := Gal(K/K). We write Homgr <" (ILx, ITy ) (resp.
Hom(();p;n(ﬂg?), H(Y’-))), resp. Isom@" (Ax, Ay), resp. Isomgl;(t(Ag?), Ag)))) for the set of
open continuous G i-equivariant homomorphisms from IIx to Iy (resp. from Hg?) to
Hgf) ), resp. from Ax to Ay up to composition with an inner automorphism arising from

Ay, resp. from Agf) to Agf) up to composition with an inner automorphism arising
from Agf )).

Theorem B.1. (Relative Version of the Grothendieck Conjecture over Sub-p-
adic Fields [pGC, Theorem A]) Let K be a sub-p-adic field (Definition 3.1 (1)). Let
X be a smooth pro-variety over K. Let'Y be a hyperbolic pro-curve over K. Then the

natural maps
Hom{2™ (X, Y) — Hom@*" (ILy, Iy ) /Inn(Ay) — Hom@ (1Y, 1) /Inn(AE)
are bijective. In particular, the natural maps
Isomg (X,Y) — Isomgit(AX, Ay) — Isomgf(A%), Agf)))
are also bijective.

Remark B.1.1. The Isom-part of Theorem B.1 holds for a larger class of field
which is called generalised sub-p-adic field ([TopAnb, Theorem 4.12]). Here, a field K
is called generalised sub-p-adic if there is a finitely generated extension L of the
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fractional field of W (F,) such that we have an injective homomorphism K < L of
fields. ([TopAnb, Definition 4.11]), where we write W (F,) for the ring of Witt vectors
with coefficients in [F,,.

Appendix C. Miscellany.
§ C.1. On the Height Function.

Proposition C.1. ([GenEll, Proposition 1.4 (iv)]) Let £ = (L,|| - ||z) be an
arithmetic line bundle such that Lg is ample. Then we have #{x € X (Q)=? | htz(z) <
C} < oo for any d € Z>1 and C € R.

Proof. By using ES” for n >> 0, we have an embedding Xg — ]P’g for some N.

By taking a suitable blowing-up f : X — X, this embedding extends to g : X < P¥
over Spec Z, where X is normal, Z-proper, Z-flat, and fq : )?Q = Xg. Then the propo-
sition for (X,Z) is reduced to the one for (X, f*£). As is shown in Section 1.1, the
bounded discrepancy class of ht;.z depends only on (f*L)g. Thus, the proposition
for (X, f*L) is equivalent to the one for (X, g*m), where m is the line bun-
dle Opy (1) equipped with the standard Fubini-Study metric || - [[rs. Then it suffices
to show the proposition for (P]ZV,W). For 1 < e < d, we put @ := (P} Xspeez
-+ (e-times) - - + Xgpecz P )/(e-th symmetric group), which is normal Z-proper, Z-flat.
The arithmetic line bundle ®<;<.pr} Opé\f<1) on PV xgpeez - - - (e-times) - - - Xgpecz PV
descends to Lg = (L, || ||z,) on Q with (Lg)q ample, where pr; is the i-th projection.
For any x € PY(F) where [F : Q] = e, the conjugates of x over Q determine a point
rg € Q(Q), and, in turn, a point y € Q(Q) determines a point x € PV (F) up to a finite
number of possibilities. Hence, it suffices to show that #{y € Q(Q) | htZQ (y) <C} <o
for any C' € R. We embed Q < P) for some M by (ﬁQ)®m for m >> 0. Then by the
same argument as above, it suffices to show that #{z € PM(Q) | htg (1)( ) <C} < o0

for any C' € R. For z € PM(Z)(= PM(Q)), we have htg (1)( x) = deg(@x Opn (1) by

definition. We have degg : APic(SpecZ) = R since any prOJectlve Z-module is free (Q
has class number 1), where an arithmetic line bundle £z ¢ on SpecZ in the isomorphism
class corresponding to C' € R via this isomorphism is (Ogpecz, e~ | - |) (Here | - | is the
usual absolute value). The set of global sections I'(Lz ) is {a € Z | |a| < e“} which is
a finite set (cf. Section 1.1 for the definition of T'(£)). We also have Lz ¢, < Lz.¢c, for
Cy < Cy. Let xg,...,20 € T(PY, Opéu(l)) be the standard generating sections (“the

coordinate (zg : ... : xp) € PY7) with ||ai|lps < 1 for 0 < i < M ie., zq,...,20m €
['(Opp(1)). Then for z € PM(Z)(= PM(Q)) with htg (1)(x) < C, we have a map
x*Opnm (1) — Lz, which sends zg,...,xp € F(Opé\l( )) to z*(xg),...,x*(xp) €

I'(Lz.c). This map {z € PM(Z ht < CY = I(Ly.0)2M+D | which sends
: w O\ :
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to (z*(z0),...,2*(war)), is injective since zo, ...,z € T(PY, Opa (1)) are generating
sections. In short, we have {z € PM(Q) | htm(:c) <C}Cc{(xzg:...: M) €
PM(Q) | z; € Z, |zs| < e® (0 < i < M)}. Now, the proposition follows from the
finiteness of I'(Lz,c)®M+1Y). O

§ C.2. Non-critical Belyi Maps.

The following theorem, which is a refinement of a classical theorem of Belyi, is used
in Proposition 1.2.

Theorem C.2. ([Belyi, Theorem 2.5], non-critical Belyi map) Let X be a proper
smooth connected curve over Q, and S,T C X (Q) finite sets such that SNT = (). Then
there exists a morphism ¢ : X — IE% such that (a) ¢ is unramified over IE%\ {0,1, 00},

(b) $(S) € {0,1,00}, and (c) ¢(T) C P(Q) \ {0, 1,00}

Proof. (Step 1): By adjoining points of X (Q) to T, we may assume that #7 >
2gx + 1, where gx is the genus of X. We consider T as a reduced effective divisor on
X by abuse of notation. Let so € I'(X, Ox(T")) be such that (sg)o = 1", where we write
(50)o for the zero divisor of sg. We have HY(X,Ox (T — z)) = H*(X,wx(x — T))* =0
for any x € X(Q) since deg(wx(z —T)) < 29x —2 — (2gx +1) +1 = —2. Thus,
the homomorphism I'(X, Ox (T)) = Ox(T) ® k(x) induced by the short exact sequnce
0= Ox(T —z) - Ox(T) — Ox(T) ® k(x) — 0 is surjective. Hence, there exists
an s; € I'(X,0x(T)) such that s;(t) # 0 for all t € T since Q is infinite. Then
(so : s1) has no basepoints, and gives us a finite morphism ¢ : X — IP’}@ such that
Y*Op1(1) = Ox(T), and ¢(t) = 0 for all t € T since (sg)o = 1. Here, 1) is unramified
over 0 € ]P’}@, since ¥Y*Op1(1) = Ox(T) and T is reduced. We also have 0 ¢ (S5)
since (sg)o = T and SNT = (. Then by replacing X, T, and S by IP’}@, 0, and
P(S)N{x € ]P’}@ | ¢ ramifies over x} respectively, the theorem is reduced to the case
where X = IP’}@, T = {t} for some t € P(Q) \ {o0}

(Step 2): Next, we reduce the theorem to the case where X = IP’}@, S c PHQ),
T = {t} for some t € P1(Q) \ {oo} as follows: We will construct a non-zero rational
function f(z) € Q(z) which defines a morphism ¢ : IE% — IE% such that ¢(S) C P1(Q),
o(t) ¢ ¢(S), and ¢ is unramified over ¢(t). By replacing S by the union of all Gal(Q/Q)-
conjugates of S, we may assume that S is Gal(Q/Q)-stable (Note that ¢ ¢ (new S) since
t € PL(Q) and t ¢ (old S)). Write m(S) := maxp([F : Q] — 1), where F runs through
the fields of definition of the points in S, and d(S) := Y p([F : Q] — 1), where F
runs thrhough the fields of definition of the points in S with [F' : Q] — 1 = m(95).
Thus, S C PH(Q) is equivalent to d(S) = 0, which holds if and only if m(S) = 0. We
use an induction on m(S), and for each fixed m(S), we use an induction on d(5). If
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m(S),d(S) # 0, take a € S\ P1(Q) such that d := [Q(a) : Q] is equal to m(S) + 1.
We choose a; € Q such that 0 < |t — a1 < (mingeg\ (o0} [$ — a1])/d(1 4 d.d!). Then
by applying an automorphism f(z) = (minges\ (oo} |s — a1])/(z — a1) of P§ (and
replacing t and S by f1(t) and f1(S) respectively), we may assume that |s| < 1 for all
s € S(= S\{oo}) and |t| > d(1+d.d!) (Note that the property (new t) € P*(Q)\{oo} still
holds since |(old t) —ai| > 0 and fi(z) € Q(x)). Let g(z) = 2% +c1z? 1t +- - +cq4 € Q[z]
be the monic minimal polynomial of o over Q. Then |¢;| < d! for 1 <14 < d since ¢; is a
summation of (‘j)(g d!) products of i conjugates of a. Thus, |g(s)| < 14+|ci|+- -+ |cq| <
1+d.d and |¢'(s)| < d+d|ci|+ -+ d|eqg| < d(1+d.d) for all s € S(= 5\ {o0}) since
|s] < 1 (Here ¢'(z) is the derivative of g(z)). Hence, t ¢ g(S) U g(S,) =: S’, where
Sy :=1{8€ Q| g (B) =0} We also have [Q(/) : Q] < d for any o/ € g(S,) since
g(x),¢'(z) € Q[z] and deg(¢'(z)) < d. Therefore, S" is Gal(Q/Q)-stable and we have
m(S") < m(S) or (m(S") = m(S) and d(S”) < d(S)). This completes the induction,
and we get a desired morphism ¢ by composing the constructed maps as above.

(Step 3): Now, we reduced the theorem to the case where X = IP’}@, S c PLQ),
and T = {t} for some t € P}(Q) \ {oc} with SNT = 0. We choose ay € Q such
that 0 < |t — az| < (minges\{oo} | — a2])/4. Then by applying an automorphism
fo(x) := 1/(z — az) of Py (and replacing ¢t and S by fa(t) and fo(S) respectively),
we may assume that [t| > 4|s| for all s € S(= S\ {o0}). (Note that the property
(new t) € P1(Q) \ {oo} still holds since |(old t) — az| > 0 and fa(z) € Q(z)). New
t is not equal to O since old ¢ is not equal to co. By applying the automorphism
x — —x of IP’}@, we may assume that ¢ > 0 (still ¢ € P}(Q) \ {0,00}). By applying an
automorphism f3(x) := z 4 a3 of Pg, where az := maxg\{oc}5s'<0 |5'| (a3 := 0 when
{s" € S\ {0} | s’ <0} =0) and replacing t and S by f3(t) and f3(S) respectively, we
may assume that s > 0 for all s € S(= 5\ {o0}) and ¢t > 2s for all s € S(= S5\ {o0}),
since (t +as)/(s+as) > t/(s+ az) > t/2a3 > 2 where t, s are old ones (still (new t) €
PY(Q)\ {0, 00}). By adjoing {0, 0o} (if necessary for 0), we may assume that S O {0, 0o}
since t ¢ {0, 00}.

(Step 4): Thus, now we reduced the theorem to the case where X = IF’}@, {0,000} C
S c PL(Q), T = {t} for some t € P1(Q) \ {oo} with SNT =0, and s > 1, ¢ > 2s
for every s € S\ {0,00}. We show the theorem in this case (hence the theorem in
the general case) by the induction on #S. If #S < 3 then we are done. We assume
that #S > 3. Let a4 € Q be the second smallest s € S\ {0,00}. By applying
an automorphism fy(z) := x/ay of Py (and replacing ¢t and S by fi(t) and f4(S)
respectively), we may assume moreover that 0 < r < 1 for some r € S and s > 1 for every
s € S\{0,r,1,00} Write r = m/(m + n) where m,n € Z~o. We consider the function
h(z) := z™(x — 1)" and the morphisms 1, )" : Pg — P defined by h(z) and h(z) + as
respectively, where a5 := —mingeg\ {0} 1(s). We have h({0,1,7,00}) C {0, h(r),oo}.
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Thus #¢(S) < #S and hence #v'(S) < #S. Any root of the derivative h'(z) =
m=lg - 1) ((m+n)r—m)=0isin {0,7,1,00} C S. Thus 9 is unramified outside
¥(S), and hence 1" is unramified outside ¢’(S). Now h(z) is monotone increasing for
x > 1 since h/(x) > 0 for z > 1. Thus we have h(t) > h(s) for s € S\ {oo} with s > 1
since t > 2s > s. We also have h(t) > h(2) > 1 since t > 2 (which comes from ¢ > 2s
for s =1 € S). Thus, ¥(t) ¢ ¥(S) since |h(x)] < 1 for 0 < x < 1. Hence we also
have ¢/ (t) ¢ ¢'(S). Now we claim that (h(t) + as)/(h(s) +as) > 2 for all s € S\ {o0}
such that h(s) + as # 0. If this claim is proved, then by replacing S, ¢ by ¥'(.S), ¥'(t)

respectively, we are in the situation with smaller #S where we can use the induction

Xz

hypothesis, and we are done. We show the claim. First we observe that we have
h(t)/h(s) = (t/s)™((t—1)/(s—1))" > (t/s)™+™ > (t/s)? (*) for s € S\ {00}, since t > s
implies (t —1)/(s—1) > t/s. In the case where n is even, we have a5 = 0 since h(s) >0
for all s € S\ {oco} and h(0) = 0. Thus, we have (h(t) 4+ as)/(h(s) + as) = h(t)/h(s) >
(t/s)2 >t/s>2for 1 <s€ S\ {oo} by (*). On the other hand, h(s) + a5 = h(s) =0
for s = 0,1 and (h(t) + as)/(h(r) + a5) = h(t)/h(r) > h(t) = "t —-1)" >t > 2
by 0 < h(r) < 1 and t > 2. Hence the claim holds for even n. In the case where n
is odd, we have a5 = |h(r)| = (=2=)"(="-)", since h(x) < 0 for 0 < z < 1 and,

m—+n m—+n

zr=r & hz)=0fr0 <z <1l Wealso have 0 < a5 = (;;25)" ()" <
Then for 1 < s € S\ {oo} with h(s) > as, we
have (h(t) + as)/(h(s) +as) > h(t)/2h(s) > (t/s)?/2 > 2 by (¥). For 1 <s € S\ {oo}
with h(s) < as, we have (h(t)+as)/(h(s)+as) > h(t)/2a5 > 2h(t) = 2" (t—1)" >t > 2
by 0 < as <1/4and t > 2. For s =r € S, we have h(r) + a5 = —as + a5 = 0. For
s=0,1€ 5, wehave (h(t)+as)/(h(s)+as) = (h(t)+as)/as > h(t) =t"(t—-1)" >t > 2
by 0 < as < 1/4 and ¢t > 2. Thus, we show the claim, and hence, the theorem. O

m n mn mn

m+n m+n — (m—n)2+4dmn — 4dmn

1
4
2h

/
(h

§ C.3. k-Cores.

Lemma C.3. ([CanLift, Proposition 2.7]) Let k be an algebraically closed field
of characteristic 0.

(1) If a semi-elliptic (cf. Section 3.1) orbicurve X has a nontrivial automorphism, then
it does not admit k-core.

(2) There exist precisely 4 isomorphism classes of semi-elliptic orbicurves over k which

do not admit k-core.

Proof. (Sketch) For algebraically closed fields k& C &/, the natural functor from
the category Et(X) of finite étale coverings over X to the category Et(X xj k') of
finite étale coverings over X X k' is an equivalence of categories, and the natural map
Isomy (Y7, Ys) — Isomy (Yy X K, Yy x4 k) is a bijection for Y1,Y; € Ob(Et(X)) by
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the standard arguments of algebraic geometry, i.e., For some k-variety V such that the
function field k(V') of V' is a sub-field of k', the diagrams of finite log-étale morphisms
over (X xi k', D x k') (Here, X is a compactification and D is the complement) under
consideration is the base-change of the diagrams of finite étale morphisms over V with
respect to Speck’ — Speck(V) — V, we specialise them to a closed point v of V', we
deform them to a formal completion ‘71, at v, and we algebrise them (cf. also [CanLift,
Proposition 2.3, [SGA1, Exposé X, Corollaire 1.8]), and the above bijection is also
shown in a similar way by noting H°(Y, we /k(—D)|7) = 0 for any finite morphism
Y — X in the argments of deforming the diagrams under consideration to V. Thus,
the natural functor Locg (X ) — Loc (X x k') is an equivalence categories. Hence, the
lemma is reduced to the case where k = C.

We assume that k£ = C. Note also that the following four statements are equivalent:

(i) X does not admit k-core,

(ii) 71(X) is of inifinite index in the commensurator Cpgy,,r)o(m1(X)) in PSLy(R)%(=
Aut(H)) (Here, we write PSLy(R)? for the connected component of the identity of
PSLy(R), and we write H for the upper half plane),

(iii) X is Margulis-arithmetic (cf. [Corr, Definition 2.2]), and
(iv) X is Shimura-arithmetic (cf. [Corr, Definition 2.3]).

The equivalence of (i) and (ii) comes from that if X admits k-core, then the morphism
to k-core X — Xcope is isomorphic to H/mi(X) — H/Cpsr,m)o(71(X)), and that if
71 (X) is of finite index in Cpgp, gy (71(X)), then H /71 (X) — H/Cpgsr,myo (11(X)) is
k-core (cf. also [CanLift, Remark 2.1.2, Remark 2.5.1]). The equivalence of (ii) and
(iii) is due to Margulis ([Marg, Theorem 27 in p.337, Lemma 3.1.1 (v) in p.60], [Corr,
Theorem 2.5]). The equivalence of (iii) and (iv) is [Corr, Proposition 2.4].

(1): We assume that X admits a k-core Xcore. Let Y — X be the unique double
covering such that Y is a once-punctured elliptic curve. We write Y, Xcore for the
smooth compactifications of Y, Xore respectively. Here, we have Y \ Y = {y}, and a
point of Y is equal to vy if and only if its image is in Xcore \ Xecore- Thus, we have
Xeore \ Xeore = {x}. The coarsification (or “coarse moduli space”) of Xcoe is the
projective line IP’}C over k. By taking the coarification of a unique morphism Y — X g,
we obtain a finite ramified covering Y — PL. Since this finite ramified covering Y — P%
comes from a finite étale covering Y — Xcope, the ramification index of ¥ — P} is the
same as all points of Y lying over a given point of P}. Thus, by the Riemann-Hurwitz
formula, we obtain —2d + ), e%(ei — 1), where e;’s are the ramification indices over the
ramification points of P}, and d is the degree of the morphism Y —» P}. Hence, by
3. L(e; — 1) = 2, the possibility of e;’s are (2,2,2,2), (2,3,6), (2,4,4), and (3,3,3).

1 e
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Since y is the unique point over x, the largest e; is equal to d. In the case of (2,2,2,2),
we have X = X o0, and X has no nontrivial automorphism. In other three cases, Y is a
finte étale covering of the orbicurve determind by a triangle group (cf. [Takel]) of type
(2,3,00), (2,4,00), and (3,3,00). By [Takel, Theorem 3 (ii)], this implies that Y is
Shimura-arithmetic, hence X is Shimura-arithmetic as well. This is a contradiction (cf.
also [CanLift, Remark 2.1.2, Remark 2.5.1]) by the above equivalence of (i) and (iv).
(2): If X does not admit k-core, then X is Shimura-arithmetic by the above equiv-
alence of (i) and (iv). Then by [Take2, Theorem 4.1 (i)], this implies that, in the
notation of [Take2], the arithmetic Fuchsian group m1(X) has signature (1;00) such
that (tr(a),tr(B),tr(af)) is equal to (v/5,2v/5,5), (v6,2v3,3v?2), (2v/2,2v/2,4), and

(3,3,3). This gives us precisely 4 isomorphism classes. O
§C.4. On the Prime Number Theorem.

For z > 0, write m(z) := #{p | p : prime < z} and ¥(z) := > ;0 p<r 108D
(Chebychev’s ¥-function). The prime number theorem says that

m(x) ~ (x — 00),

log

where, ~ means that the ratio of the both side goes to 1. In this subsection, we show
the following proposition, which is used in Proposition 1.15.

Lemma C.4. 7(z) ~ 1557 (z = o0) if and only if ¥(x) ~ x (x — 00).

This is well-known for analytic number theorists. However, we include a proof here

for the convenience for arithmetic geometers.

Proof. 'We show the “only if” part: Note that J(z) = || logt-d(n(t)) = m(z)log z—
m(1)log1 — [} 7T(t)dt m(z)logz — [ 7r(t)dt (since 7r( ) = 0 for t < 2). Then it suf-

fices to show that lim,_, . & = N Mdt = 0. By assumption ﬁ =0 <logt>’ we have

1 (o ow(t) 30 1 (* d T 4t _ (VT d vz VT

_f2 Tdt =0 (_ 2 logt) f logtt — J2 logtt—i_ff logt — 10g2+10 f’we obtain

limg o0 L[5 ”gt) dt = 0. We show the “if” part: Note that m(x f3/2 eerd(W(t) =
9(z) 19(3/2) () g _m(t) :

gz ~ Toaa) T f3/2 Tog 0% dt = loga: + f2 Tog 0% dt (since 9(t ) =0 for t < 2). Then it

fffgti)z dt = 0. By assumption ﬁ(t) = O(t), we have

logx x 9(t) o log © x _
22 )5 fognzdt = O( 2l (1ogt)2)- By J, —(1og1t)2dt = fz (1ogt)2 + ff (logt)2 <

z T—VvZT logx rx O(¢
(1o\g/;)2 + (log\/\%z, we obtain lim,_, oo i f2 t(loég)Q dt = 0. 0

suffices to show that lim,_, o IOg z f2 :

§ C.5. On the Residual Finiteness of Free Groups.

Proposition C.5. (Residual Finiteness of Free Groups) Let F' be a free group.
Then the natural homomorphism F — F to its profinite completion Fis mjective.
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Proof. Let a € F\ {1}. It suffices to show that there exists a normal subgroup
H C F of finite index such that a € H. Let Gen (C F) be a set of free generators of F.
Write Gen™' := {a~' | a € Gen} C F. Thus, any element of F may be written as a finite
product of elements of Gen U Gen!. Let a = ayan_1-- a1, where a; € Gen U Gen_l,
be such a representation of a (i.e., as a finite product of elements of Gen U Gen_l) of
minimal length. Let ¢ : Gen — G411 be a map such that, for x € Gen, ¢(z) € Sy
et
it suffices to observe that since the representation a = ayany_1---aq is of minimal
1

sends i — i+ 1ifx =q;and j— j—1ifx =a (To see that such a ¢ exists,

length, the equations a; = x, a;,_1 = ™' cannot hold simultaneously.) Since Gen is
a set of free generators of F', the map ¢ : Gen — Gy extends to a homomorphism
¢p : F — Sy such that, for i = 1,..., N, the permutation ¢p(a;) sends i — i + 1.
Write H for the kernel of ¢r. Since ¢p induces an injection of F/H into the finite
group Sy 1, it follows that H is a normal subgroup of finite index in F. Then ¢r(a)
sends 1 — N + 1, hence, in particular, is nontrivial, i.e., a & H, as desired. Ol

§ C.6. Some Lists on Inter-universal Teichmiiller Theory.

Model Objects
Local:

VP2 (Example 8.8) yeood n y o (Example 8.7) V** (Example 8.11)

Btemp(éﬁ)o (HE) B(gg)o (HQ) §2

B(Ky)" (Go) B(Ky)" (Gy) (O™ (Cy),sply)
(;ﬂ)base'ﬁeld (IT, ~ (O%)pf) II, ~ (Ol%)pf Arch. Fr’d C, («ang. region)
temp. Fr’d £z («O-fct.) equal to C, (Cy, Dy, ky)
Gy O}% : ET Gy Ol% Py equal to C,
(Cg, splZ) (C'g_’ spIZ) (CZ, DZ, splZ)

We use C, (not ;v) with v € V™" and F with v € V€ for F-prime-strips (cf.
Definition 10.9 (3)), and F s with v € V for ©-Hodge theatres.

Global:
DO = B(C ), DO* = B(X,)",
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gl. to loc.

smod : (Cltlod’ Prime(cltlod) :> y? {F£}2€y7 {pg : (I)Cl’;od,v — Q)ERE}_ }QEY )
(Po 1081m0a (Po) = ey 1080 (0) )-

Some Model Bridges, and Bridges

e (model D-NF-bridge, Def. 10.16) ¢)F := Aut(D®) 0 ¢y 0 Aut(D,) : D, PolY peo
ONF 1= {§3F ey : D1 P DO, 6N = (action of j) 0 91T : D, " DO,
pol
¢1§2€F = {QS?IF}J'@F;? P Dy = {Qj}jewl* = pe.

e (model D-O-bridge, Def. 10.17)

Btemp(ﬂv)o eval. section Btemp (HU)O (ﬂ c ybad)
labelled by j -
full poly o Aut(Dy, )

Btemp(Hv)O :> Btemp (Hv)O (Q c ygood)

¢g = Aut(Ds )0

ol ol ol
Dy, 2D, 9§ = {¢Sj}yey D, PR D, 69 = {gb?}jgﬂ?l* Dy PR D
o (model ©°'-bridge, Def. 10.31) ¢5" := Altteye, (DOF)0 ¢, 0Aut (D, ) : Dy, poly
DO+ a -
o {(b@eu}vew Dy 2 DOt 9" .= (action of t) 0 @ : D, poly DO*,
@e” — {¢@en}teIF1 C DL OJI CES

N +-full poly N +-full poly
o (model ©*-bridge, Def. 10.30) ¢3 " : Dy, — Dy,, ¢ : D, —

ol B
Dy vy 09" = {69 Vier, : D = {Di}rer, 5 Ds..
tyNF Fg
o (NF-,©-bridge, Def. 10.24) (}§;, — IFQ - 1F®) (g, 3. --
0Te).
o (6°©F bridge, Def. 10.36) Ty : 1§ 2N 1D+ 1y@F 15, P ig.
Theatres

e (O-Hodge theatre, Def. 10.7) THT® = ({T]-" Yoev, T Q)
e (D-R-Hodge theatre, Def. 10.18 (3)) THTP™ = (D@ % D, = T@ >).

£y NF ;
e (X-Hodge theatre, Def. 10.24 (3)) *HT® = (1F® «—- 1F© <w—96 5, — i B> -
HT®).

t ¢O:t + d)@ell

e (D-BB-Hodge theatre, Def. 10.32 (3)) THTP® = (1D, = 1®, — DOF),
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wi woell

e (B-Hodge theatre, Def. 10.24 (3)) THT® = (1§, = 1§y — Do),

o (D- R &-Hodge theatre, Def. 10.40 (1)) THTPEE — (137D-8 B8 19, 7D-8)

e (XH-Hodge theatre, Def. 10.40 (2)) THTXE = (fn 7% eliine fHT™).
Properties(Proposition 10.20, Lemma 10.25, Proposition 10.34, Lemma 10.37)

o Isom(TpYF, ¥¢JF) :an F*-torsor.

o #Tsom(TgYT, 1g)F) =

o #lsom(THTP® tHTPH) =1,

NFT <} %
¢5 form a D-K-Hodge theatre . < an F;‘é-tOI'SOI'-

. Isomcapsule—full poly(TQJ, TQJ’)
o Tp3F ~ fHTPH up to F*-indeterminacy.

e Isom(1yLF 2¢9pNF) = Isom(!

ngF 2 NF)

o Isom(14Q,242) = Isom(1¢2,262).

o Isom(*HT® 2HT®) 5 Isom(1Ds, 2D-).

o Isom("HT™ *HT) 5 Tsom("HTPH 2HTPE).

EpNF 19 f K Hodge theat
L Isomcapsule—full poly(iSingJ’) Yy o ¥y forma odge theatre

:an ;¥ -torsor.
. Isom(%ii,iqﬁgi): a {£1} x {&1}¥-torsor.
o Isom(TolF #oNF): an Ffi—torsor. we have a natural isomorphism

o Isom(THTPE tHTPE): an {+1}-torsor.

1 o* + oell .
o Isomcapsule-+-full poly(TgTa T@T’) ¢+ 'e% form a D-FBiHodge theatre . 5y le:l: X{:I:l}y—

torsor.
. T(b@en tHTPE up to F,'*-indeterminacy.
o Tsom(19",2¢9%) 5 Isom(1¢9 ", 2697).
e Isom(} 2011,21,&2011) = Isom(* ot 2¢@CH).
o Isom(*HTE,21TE) 5 Isom(l?—[TD'E,Q'HTDE).

I i Iib@i ;twee“ form a B Hodge theatre X+ \Y
L Isomcapsule—+—full poly( ST, 3T’) EEE .oan Fl X {:l:l}*—

torsor.
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Links

full poly
o (D-R-link, Def. 10.21) tH7TP® 2y iy7P® (i =, i9h).

full poly
o (D-F-link, Def. 10.35) iHTP® 25 iy7P® (i =, iph).

full poly

o (D-R M- link, Cor. 11.24 (4)) TP X8 2y g7 PHE (igh =, iph).

full poly

(©-link, Def. 10.8) tHT® -2 ix7® (f3h .. = iF- ).

mod

x full poly
(©*k-link, Cor. 11.24 (3)) THT™E 7\ jq 7X@ (1glexn =y gglexny

X full poly
(el ~
(@gaﬁ‘l—link, Cor. 11.24 (3)) P8 2 gy ™E (T3|F>X“ — ¢3|Z>X”).

gau

X full poly
ok ~
(O7Lp-link, Def. 13.9 (2)) THTHE LG squXE  (Gtgrexn 2y wglbxu)

X p full poly
g

(S]
o (O f-link, Def. 13.9 (2)) THT™® 20 w78 (Gotgibxn =y gl

o (log-link, Def. 12.3) TH7™® 108 49,758
(fTPHE 2 a7 PRE tx 99 ity 08 ap (15 8 15 (1G5 S
¥ her).



Index of Terminologies

abc Conjecture, 5 - FrXt_prime-strip, 316
uniform -, 46 bounded discrepancy class, 16

abstractly equivalent, 11 bridge

algorithm D-NF- -, 226

multiradial, 193, 241, 365
uniradial, 193
a-signed automorphism

D-O- -, 226
D-O- - is glued to D-O*- -, 249
D-0° - 243

- of 1D, 238 D-O%- - 242
anabelioid NF- -, 234
connected -, 110 O- -, 235

morphism of -s, 111
angular region, 175

O- - is glued to ©%- -, 249
O°ll - 246

arithmetic O*- -, 246
Margulis-, 371 base-NF- -, 226
Shimura-, 371 base-O- -, 226

arithmetically holomorphic, 85 base-©°l- - 243

arithmetic divisor, 15, 176 base-O*- -, 242

R-, 15
effective -, 15, 176
principal -, 15
arithmetic line bundle, 15
Aut-holomorphic disc, 89
Aut-holomorphic orbispace, 90
Aut-holomorphic space, 89
elliptically admissible -, 89
hyperbolic - of finite type, 89
local morphism of -s, 90

Uu,v)- -, 89

co-holomorpic (U, V)- -, 90

finite étale (U, V)- -, 90
morphism to "D®, 217
morphism to D@+, 217

Aut-holomorphic structure, 89
U-local pre- -, 89

bi-anabelian, 62

bi-coric

isomorphism of D-NF- -s, 226
isomorphism of D-O- -s, 226
isomorphism of D-0°!- —s, 243
isomorphism of D-O*- -s, 243
isomorphism of NF- -s; 234
isomorphism of ©- -s, 235
isomorphism of ©°ll- _s, 247
isomorphism of ©*- -s, 246
model D-NF- -, 224

model D-6- -, 225

model D-0°!- - 242

model D-O*- -, 241

model NF- -, 232

model ©- -, 231

model base-NF- -, 224

model base-O©- -, 225

model base-©°l- - 242

model base-O*- -, 241

CAF, 12
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capsule, 11
#J--, 11

- -full poly-isomorphism, 12
- -full poly-morphism, 12
morphism of -, 11
Cauchy sequence, 100
equivalent -, 100
closed point
algebraic -, 61
co-holomorphicisation, 90
pre- -, 90
commensurably terminal, 13
commensurator, 13
compactly bounded subset, 17
support of -, 17
condition
-(Cusp)x, 61
-(Delta) x, 61
-(Delta)’x, 61
-(GC), 61
-(slim), 61
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cusp

+-label class of -s of II,, 265
+-label class of -s of IIF, 265
+-label class of -s of TZS@, 238
+-label class of -s of TDE, 237
+-label class of -s of ﬁg, 265
+-label class of -s of ﬁf, 265
label class of -s of TD@? 222
label class of -s of 1D, 222
non-zero -, 144

set of -s of TD®@, 222

set of -s of "DO* 238

set of -s of 1D, 222, 237

set of -s of Tfo, 237

set of -s of TQ;, 222

zero -, 144 -

cuspidalisation

Belyi -, 68
elliptic -, 66

cuspidal quotient, 64
cyclotome, 14

co-orientation, 90 - of Gy, 82
pre- -, 90 -of M, 84
co-oriented, 90 - of P, 181
coric, 250 - of Ilx as orientation, 73
ok~ -, 182 -of K, 14
ok~ - structure, 186, 189, 191 - of Mfup], 151
ok X~ -, 182 external - of TM, 160
sk X~ - structure, 186, 189, 191 internal - of "M, 160
k- -, 181 cyclotomic envelope, 151
- category, 250 cyclotomic rigidity
- data, 250 - for inertia subgroup, 74, 75
-ally defined, 250 - in tempered Frobenioid, 179
bi- -, 99 - of mono-theta environment, 160

horizontally -, 99, 212, 240 - via Qs NZ* = {1}, 187, 189
vertically -, 99 - via LCFT, 83, 84

critical point, 181 - via positive rational structure and
strictly -, 181 LCFT, 122
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classical -, 83, 84

decent data from Z to Fy, 358
domain
compact -, 17

edge-like subgroup, 115
element

negative - of F'*, 236

positive - of Ffi, 236
étale-like object, 97
étale theta class, 132

- of standard type, 141, 150

standard set of values of -, 141
étale theta function, 135
étale-transport, 99, 326, 351

indeterminacies, 351
evaluation isomorphism, 280, 281, 283,

289, 292, 296

formal -, 287

global formal -, 293

of F'"-prime-strips, 302
evaluation points

-of X, 224

-of X 225

Faltings height, 36
FiF-group, 236
]Fli-torsor, 236
positive automorphism of, 237
frame, 94
-d, 94
orthogonal -, 94
Frobenioid, 167
un-split pre- -, 167
x-Kummer pre- -, 170
x p-Kummer pre- -, 170
p-adic -, 171
Archimedean -, 175
base category of elementary -, 167

base category of pre- -, 167

base-field-theoretic hull of tempered
-, 174

birationalisation of model -, 169

divisor monoid of model -, 168

divisor monoid of pre- -, 167

elementary -, 167

global non-realified -, 185

global realified -, 176

isomorphism of pre- -s, 168

model -, 168

pre- -, 167

pre- - structure, 167

rational function monoid of model -,
168

realification of model -, 169

split pre- -, 167

split- x-Kummer pre- -, 170

split- x y-Kummer pre- -, 170

tempered -, 174

vertically coric étale-like pre- -, 346

Frobenius

absolute -, 357

Frobenius-like object, 97
fundamental group

admissible - |, 113

Galois evaluation

principle of -, 270, 359

graph
dual -, 111
dual semi- - , 111

semi- - of anabelioids, 112

graph of =, 251

height function, 16
Hodge theatre

D-ONF- -, 226
D-©*ell _ 243
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D-O+FINF- -, 249 Kummer-detachment, 99, 326

D-KH- -, 249 indeterminacy, 352

D-BH- -, 243 Kummer-faithful, 58

D-X- -, 226 Kummer isomorphism

e- -, 211 - by Kummer structure, 191
ONF- -, 235 - for M, 85

O*ell _ 247 - for F-prime-strips, 300
O*CINF- -, 249 - for 7, 103, 106

B- -, 247 - for & (Ilx), 103

X- -, 235 - for algebraic closure of number
XH- -, 249 fields, 187, 299

base-ONEF- -, 226

base-©*ell- - 243
base-OFINF- -, 249
isomorphism of H- -, 247
isomorphism of X- -, 235
isomorphism of XH- -s, 249
isomorphism of D-H- -s, 243
isomorphism of D-K- -s, 226
isomorphism of D- X H- -s, 249

- for constant monoids, 276, 288, 294

- for labelled Frobenioids, 300

- for labelled constant monoids, 288,
295

- for labelled number fields, 300

- for labelled pseudo-monoids, 300

- for local LGP-monoids, 337

- for monoids, 189

- for number fields, 299

- for pseudo-monoids, 187, 189, 299
- for theta monoids, 276

holomorphic hull, 25

indeterminacy - of F'*L_prime-strip, 348
horizontal -, 29 Kummer structure
permutative -, 29 x--, 170
vertical -, 29 X p- -, 170

initial ©-data, 40, 202
integral element, 12

- of an Aut-holomorphic space, 96
model - of an Aut-holomorphic

inter-universal Melline transformation, space, 96
46 morphism of elliptically admissible
inversion automorphism, 136, 144, 260 Aut-holomorphic orbispaces

pointed -, 260, 261 with -s, 96
isometry of O**(G), 169

isomorph, 11 l[-cyclotomically full, 58, 59

isomorphism line bundle
of categories, 204 H- -, 196
X- -, 195

k-core, 60 elementary morphism of H- -s, 196

admit -, 60 elementary morphism of X- -s, 195
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morphism of H- -s, 196 local structure, 89

morphism of K- -s, 195 log-conductor function, 17
tensor product of H- -, 196 log-different function, 16
tensor product of X- -, 195 log-divisor

effective Cartier, 172

log-Kummer correspondence

line segment, 93

- tangent to S - p, 94

log- - from TF, to ¥F,, 305, 307

log- - from TF to *F, 307

log- - from THT™® to 1 7%% 313

base-©ONF- -, 228

base-O*¢ll- - 246

full log- - from TF, to *F,, 305, 307

full log- - from T§ to *F, 307

full log- - from THTX® to +1 753,
313

generalised O] 4p- -, 359

tautological log- - associated to TF,,
305, 306

tautological log- - associated to g,
307

endpoint of -, 94 global -, 348
parallel -s, 94 local -, 339
link log-meromorphic function, 172
D-ONF- -, 228 log-orbicurve
D-0%Fell 246 of type (1,(Z/I1Z)®), 147
D-\B- -, 246 of type (1,Z/17Z), 147
D-K- -, 228 of type (1,Z/1Z) 4, 147
D- X B- -, 303 of type (1, l—t%), 164
O- -, 211 of type (1, I-tors), 144
O*H- - 303 of type (1,l-tors)y, 144
O bp- -, 342 of type (1,l-tors®), 145
Ogdu- -5 303 log-shell, 25, 106
@[Xg‘;— -, 342 étale-like holomorphic -, 103, 106
log- -, 102, 106 étale-like mono-analytic -, 104, 108

étale-like mono-analytic - associated
to D, 310
Frobenius-like holomorphic -, 103
Frobenius-like holomorphic -
associated to T]-"y, 306, 307
Frobenius-like holomorphic -
associated to TS, 308
Frobenius-like mono-analytic -
associated to T]-"gx“, 308
Frobenius-like mono-analytic -
associated to T§*#, 308
vertically coric étale-like
holomorphic - associated to *®,
311

log-theta-lattice, 314
LGP-Gaussian -, 343
[gp-Gaussian -, 343

local additive structure, 93
local field, 12
local linear holomorphic structure, 95

system of -s, 95 Gaussian -, 314
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non-Gaussian -, 314 vertically coric étale-like local LGP-
log-volume function, 23, 104 -, 337
global -, 345

radial -, 23, 107

vertically coric étale-like local
logarithmic Gaussian procession
-, 337
multiradial, 250
- environment, 250
-ly defined, 250
pn-conjugacy class, 151
mutations, 63, 250

maximal cuspidally central quotient, 73
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étale- - of D-K-Hodge theatres, 229



A PROOF OF THE ABC CONJECTURE AFTER MOCHIZUKI 383

étale- - of ©-Hodge theatres, 212

étale- - of XH-Hodge theatres, 304

étale- - of multiradial theta monoids,
322
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mod N bi- -, 154
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