A PROOF OF ABC CONJECTURE AFTER MOCHIZUKI

GO YAMASHITA

ABSTRACT. We give a survey of S. Mochizuki’s ingenious inter-universal Teichmiiller theory
and its consequences to Diophantine inequality. We explain the details as in self-contained
manner as possible.
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0. INTRODUCTION.

The author hears the following two stories: Once Grothendieck said that there were two ways
of cracking a nutshell. One way was to crack it in one breath by using a nutcracker. Another
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way was to soak it in a large amount of water, to soak, to soak, and to soak, then it cracked by
itself. Grothendieck’s mathematics is the latter one.

Another story is that once a mathematician asked an expert of étale cohomology what was
the point in the proof of the rationality of the congruent zeta functions via f-adic method
(not p-adic method). The expert meditated that Lefschetz trace formula was proved by using
the proper base change theorem, the smooth base change theorem, and by checking many
commutative diagrams, and that the proper base change theorem or the smooth base change
theorem themselves are not the point of the proof, and each commutative diagram is not the
point of the proof either. Finally, the expert was not able to point out what was the point
of the proof. If we could add some words, the point of the proof seems that establishing the
framework (i.e., scheme theory, and étale cohomology theory) in which already known Lefschetz
trace formula in the mathematical area of topology can be formulated and work even over fields
of positive characteristic.

S. Mochizuki’s proof of abc conjecture is something like that. After learning the prelimi-
nary papers (especially [AbsToplll], [EtTh]), all constructions in the series papers [IUTchI],
[IUTchlI], [[UTchIII], IUTchIV] of inter-universal Teichmiiller theory are trivial (However, the
way to combine them is very delicate (e.g., Remark 9.6.2, and Remark 12.8.1) and the way of
combinations is non-trivial). After piling up many trivial constructions after hundred pages,
then eventually a highly non-trivial consequence (i.e., Diophantine inequality) follows by itself!
The point of the proof seems that establishing the framework in which a deformation of a num-
ber field via “underlying analytic structure” works, by going out from the scheme theory to
inter-universal theory (See also Remark 1.15.3).

If we add some words, the constructions even in the preliminary papers [AbsToplll], [EtTh],
etc. are also piling-ups of not so difficult constructions, however, finding some ideas e.g., finding
that the “hidden endomorphisms” are useful for absolute anabelian geometry (See Section 3.2)
or the insights on mathematical phenomena, e.g., arithmetically holomorphic structure and
mono-analytic structure (See Section 3.5), étale-like object and Frobenius-like object (See Sec-
tion 4.3), and multiradiality and uniradiality (See Section 11.1), are non-trivial. In some sense,
it seems to the author that the only non-trivial thing is just the classical result [pGC] in the last
century, if we put the delicate combinations etc. aside. For more introductions, see Appendix A,
and the beginning of Section 13.

The following is a consequence of inter-universal Teichmiiller theory:

Theorem 0.1. (Vojta’s conjecture [Voj| for curves, proved by S. Mochizuki [[UTchl], [IUTchII],
[TUTchILI], IUTchIV, Corollary 2.3]) Let X be a proper smooth geometrically connected curve
over a number field, D C X a reduced divisor, Ux := X \ D. Write wx for the canonical sheaf
on X. Suppose that Ux is a hyperbolic curve, i.e., deg(wx (D)) > 0. For any d € Z~o and
€ € Rog, we have

hty 0y S (1 + €)(log-diff x + log-condp)

on Ux(Q)=2.
For the notation in the above, see Section 1.

Corollary 0.2. (abc conjecture of Masser and Oesterlé [Massl], [Oes]) For any € € Ry, we

have
1+e€

max{lal, 8], |ef} < | [ »

plabe

for all but finitely many coprime a,b,c € Z with a + b = c.

Proof. We apply Theorem 0.1 for X = Pt D D = {0,1,00}, and d = 1. We have wp: (D) =
Op1(1), log-diffpi(—a/b) = 0, log-condqo 1,00} (—a/b) = >_, .4 a4pl08p, and hto,,1)(—a/b) =
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log max{|al, |b|} ~ logmax{|al, |b|,|a+b|} for a,b € Z with b # 0, since |a+b| < 2max{|al, |b|}.
For any € € Ry, we take € > ¢ > 0. According to Theorem 0.1, there exists C' € R such that
log max{lal, [b], e[} < (1+€) >, . logp+ C for any a,b,c € Z with a+b = c. There are only

finitely many triples a,b,c¢ € Z with a + b = ¢ such that log max{|al, |b|, |c|} < £5C. Thus,

we have log max{|al, [b], ||} < (14 ¢€) >, . logp + elj:; log max{|al, |b|, |c|} for all but finitely
many triples a, b, c € Z with a + b = c. This gives us the corollary. 0]

0.1. Un Fil d’Ariane. By combining a relative anabelian result (relative Grothendieck Con-
jecture over sub-p-adic fields (Theorem B.1)) and “hidden endomorphism” diagram (EllCusp)
(resp. “hidden endomorphism” diagram (BelyiCusp)), we show absolute anabelian results: the
elliptic cuspidalisation (Theorem 3.7) (resp. Belyi cuspidalisation (Theorem 3.8)). By using
Belyi cuspidalisations, we obtain an absolute mono-anabelian reconstruction of the NF-portion
of the base field and the function field (resp. the base field) of hyperbolic curves of strictly Belyi
type over sub-p-adic fields (Theorem 3.17) (resp. over mixed characteristic local fields (Corol-
lary 3.19)). This gives us the philosophy of arithmetical holomorphicity and mono-analyticity
(Section 3.5), and the theory of Kummer isomorphism from Frobenius-like objects to étale-like
objects (cf. Remark 3.19.2).

The theory of Aut-holomorphic (orbi)spaces and reconstruction algorithms (Section 4) are
Archimedean analogue of the above absolute mono-anabelian reconstruction (Here, technique
of elliptic cusupidalisation is used again), however, the Archimedean theory is not so important.

In the theory of étale theta functions, by using elliptic cuspidalisation, we show the con-
stant multiple rigidity of mono-theta environment (Theorem 7.23 (3)). By using the quadratic
structure of Heisenberg group, we show the cyclotomic rigidity of mono-theta environment
(Theorem 7.23 (1)). By using the “less-than-or-equal-to-quadratic” structure of Heisenberg
group, (and by excluding the algebraic sections in the definition of mono-theta environments
unlike bi-theta environments), we show the discrete rigidity of mono-theta environment (The-
orem 7.23 (2)).

By the theory of Frobenioids (Section 8), we can construct ©-links and log-links (Defini-
tion 10.8, Corollary 11.24 (3), Definition 13.9 (2), Definition 12.1 (1), (2), and Definition 12.3).
(The main theorems of the theory of Frobenioids are category theoretic reconstructions, how-
ever, these are not so important (c¢f. [[UTchl, Remark 3.2.1 (ii)]).)

By using the fact Q.o N ZX = {1}, we can show another cyclotomic rigidity (Defini-
tion 9.6). The cyclotomic rigidity of mono-theta environment (resp. the cyclotomic rigid-
ity via Qo N Z* = {1}) makes the Kummer theory for mono-theta environments (resp. for
k-coric functions) available in a multiradial manner (Proposition 11.4, Theorem 12.7, Corol-
lary 12.8) (unlike the cyclotomic rigidity via the local class field theory). By the Kummer
theory for mono-theta environments (resp. for s-coric functions), we perform the Hodge-
Arakelov theoretic evaluation (resp. NF-counterpart of the Hodge-Arakelov theoretic evalu-
ation) and construct Gaussian monoids in Section 11.2. Here, we use a result of semi-graphs
of anabelioids (“profinite conjugate vs tempered conjugate” Theorem 6.11) to perform the
Hodge-Arakelov theoretic evaluation at bad primes. Via mono-theta environments, we can
transport the group theoretic Hodge-Arakelov evaluations and Gaussian monoids to Frobenioid
theoreteic ones (Corollary 11.17) by using the reconstruction of mono-theta environments from
a topological group (Corollary 7.22 (2) “Il — M”) and from a tempered-Frobenioid (Theo-
rem 8.14 “F +— M”) (together with the discrete rigidity of mono-theta environments). In the
Hodge-Arakelov theoretic evaluation (resp. the NF-counterpart of the Hodge-Arakelov theo-
retic evaluation), we use F;'*-symmetry (resp. Ff-symmetry) in Hodge theatre (Section 10.5
(resp. Section 10.4)), to synchronise the cojugate indeterminacies (Corollary 11.16). By the
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synchronisation of conjugate indeterminacies, we can construct horizontally coric objects via
“good (weighted) diagonals”.

By combining the Gaussian monoids and log-links, we obtain LGP-monoids (Proposition 13.6),
by using the compatibility of the cyclotomic rigidity of mono-theta environments with the profi-
nite topology, and the isomorphism class compatibility of mono-theta environments. By using
the constant multiple rigidity of mono-theta environments, we obtain the crucial canonical
splittings of theta monoids and LGP-monoids (Proposition 11.7, Proposition 13.6). By com-
bining the log-links, the log-shells (Section 5), and the Kummer isomorphisms from Frobenius-
like objects to étale-like objects, we obtain the log-Kummer correspondence for theta values
and NF’s (Proposition 13.7 and Proposition 13.11). The canonical splittings give us the non-
interference properties of log-Kummer correspondence for the value group portion, and the
fact F.ooq N [ [,<o0 Ov = (F,q) give us the non-interference properties of log-Kummer corre-
spondence for the NF-portion (cf. the table before Corollary 13.13). The cyclotomic rigidity
of mono-theta environments and the cyclotomic rigidity via Q<o N 7Z* = {1} also give us the
compatibility of log-Kummer correspondence with ©-link in the value group portion and in the
NF-portion respectively (cf.the table before Corollary 13.13). After forgetting arithmetically
holomorphic structures and going to the underlying mono-analytic structures, and admitting
three kinds of mild indeterminacies, the non-interefence properties of log-Kummer correspon-
dences make the final algorithm multiradial (Theorem 13.12). We use the unit portion of the
final algorithm for the mono-analytic containers (log-shells), the value group portion for con-
structing ©-pilot objects (Definition 13.9), and the NF-portion for converting X-line bundles
to B-line bundles vice versa (cf. Section 9.3). We cannot transport the labels (which depends
on arithmetically holomorphic structure) from one side of a theta link to another side of theta
link, however, by using processions, we can reduce the indeterminacy arising from forgetting
the labels (c¢f. Remark 13.1.1). The multiradiality of the final algorithm with the compabitility
with ©-link of log-Kummer correspondence (and the compatibility of the reconstructed log-
volumes (Section 5) with log-links) gives us a upper bound of height function. The fact that
the coefficient of the upper bound is given by (1 + €) comes from the calculation observed in
Hodge-Arakelov theory (Remark 1.15.3).

Leitfaden

§2. Prel. on Anab.

§6. Prel. on Temp.

§3. Abs. Mono-Anab. §7. Et. Th%/ §4. Aut-hol. — §5. Log-Vol. Log-Shell

/

§10. Hodge Theatre 611. H-A. Eval. ———— §12. Log-Link §13. Mult. Alg’'m.
§8. Fr'ds ——— §9. Prel. on NF-Eval. §1. Gen. Arith. Thm. 0.1

The above dependences are rough (or conceptual) relations. For example, we use some portions
of §7 and §9 in the constructions in §10, however, conceptually, §7 and §9 are mainly used in
§11, and so on.
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0.2. Notation.

General Notation:

For a finite set A, let #A denote the cardinality of A. For a group G and a subgroup H C G
of finite index, we write [G : H] for #(G/H). For a finite extension K D F of fields, we also
write [K : F| for the extension degree dimp K (There will be no confusions on the notations
|G : H] and [K : F]). For a function f on a set X and a subset Y C X, we write f|y for the
restriction of f on Y. We write m for the mathematical constant pi (i.e., 7 = 3.14159 - - - ).

In this paper, we call finite extensions of Q number fields (i.e., we exclude infinite extensions
in this convention), and we call finite extensions of Q, for some p mixed characteristic (or
non-Archimedean) local fields. We use the abbreviations NF for number field, MLF for
mixed-characteristic local field, and CAF for complex Archimedean field, i.e., a topological
field isomorphic to C.

For a prime number [ > 2, we put Ff := F/{£1}, F/'* := F, x {&1}, where {&1} acts
on F; by the multiplication, and |F;| := F;/{£1} = F; [[{0}. Put also [* := 5} = #F} and

Categories:

For a category C and a filtered ordered set I # (), let pro-C;(= pro-C) denote the category of
the pro-objects of C indexed by I, i.e., the objects are ((A;)ier, (fi;)i<jer)(= (Ai)icr), where A;
is an object in C, and f; ; is a morphism A; — A; satisfying f; ;jfix = fix foranyi < j <k €1,
and the morphisms are Homp,oc((A4;)ier, (Bj)jer) == @j lim, Home(A;, B;). We also consider
an object in C as an object in pro-C by setting every transition morphism to be identity (In
this case, we have Homy,o ¢ ((Ai)icr, B) = liny, Home(A;, B)).

For a category C, let C° denote the full subcategory of the connected objects, i.e., the
non-initial objects which are not isomorphic to the coproduct of two non-initial objects of
C. We write C" (resp. C*) for the category obtained by taking formal (possibly empty) count-
able (resp. finite) coproducts of objects in C, i.e., we define Homer resp. 1)y (11 Ais [1; Bj) =
[I; [1; Home(A;, By) (cf. [SemiAnbd, §0]).

Let Cy,Cs be categories. We say that two isomorphism classes of functors f : C; — Co,
f': Cy — C) are abstractly equivalent if there are isomorphisms oy : C; — Cf, ay : Co — C)

IThe author hears that a mathematician (I.F.), who pretends to understand inter-universal Teichmiiller
theory, suggests in a literature that the author began to study inter-universal Teichmiiller theory “by his
encouragement”. But, this differs from the fact that the author began it by his own will. The same person,
in other context as well, modified the author’s email with quotation symbol “>" and fabricated an email,
seemingly with ill-intention, as though the author had written it. The author would like to record these facts
here for avoiding misunderstandings or misdirections, arising from these kinds of cheats, of the comtemporary
and future people.



A PROOF OF ABC CONJECTURE AFTER MOCHIZUKI 7

such that foa; = ago f.

Let C be a category. A poly-morphism A — B for A, B € Ob(C) is a collection of
morphisms A — B in C. If all of them are isomorphisms, then we call it a poly-isomorphism.
If A = B, then a poly-isomorphism is called a poly-automorphism. We call the set of all
isomorphisms from A to B the full poly-isomorphism. For poly-morphisms {f; : A — B}ies
and {g; : B — C}jes, the composite of them is defined as {g; o f; : A = C}ujjerxs. A
poly-action is an action via poly-automorphisms.

Let C be a category. We call a finite collection {A;},c; of objects of C a capsule of ob-
jects of C. We also call {A;};c; a #J-capsule. A morphism {A;};c; — {A}}ycr of
capsules of objects of C consists of an injection ¢ : J < J' and a morphism A4; — Ai(j)
in C for each j € J (Hence, the capsules of objects of C and the morphisms among them
form a category). A capsule-full poly-morphism {4;};c; — {4 }jc is a poly-morphism

fit Ay = ALY J} =1T]..,Isome(A;, A in the category of the
{{ 7 (j)}]e (f1)jer€llje s Isome (A5, 47 ;) ( HJEJ A )))

e(j
capsules of objects of C, associated with a fixed injection ¢ : J < J'. If the fixed ¢ is a bijection,
then we call a capsule-full poly-morphism a capsule-full poly-isomorphism.

Number Field and Local Field:

For a number field F, let V(F') denote the set of equivalence classes of valuations of F, and
V(F)>e C V(F) (resp. V(EF)™ C V(F)) the subset of Archimedean (resp. non-Archimedean)
ones. For number fields ¥ C L and v € V(F), put V(L), := V(L) xyp) {v}(C V(L)), where
V(L) — V(F) is the natural surjection. For v € V(F), let F, denote the completion of F
with respect to v. We write p, for the characteristic of the residue field (resp. e, that is,
e=2.71828---) for v € V(F)*" (resp. v € V(F)*°). We also write m, for the maximal ideal,
and ord, for the valuation normalised by ord,(p,) = 1 for v € V(F)*". We also normalise
v € V(F)™" by v(uniformiser) = 1 (Thus v is ord, times the ramification index of F, over Q,).
If there is no confusion on the valuation, we write ord for ord,.

For a non-Archimedean (resp. complex Archimedean) local field k, let O be the valuation
ring (resp. the subset of elements of absolute value < 1) of k, O;° C Oy, the subgroup of units
(resp. the subgroup of units i.e., elements of absolute value equal to 1), and Op := Ox\{0} C Oy,
the multiplicative topological monoid of non-zero elements. Let m; denote the maximal ideal
of Oy, for a non-Archimedean local field k.

For a non-Archimedean local field K with residue field k, and an algebraic closure k of k,
we write Frobg € Gal(k/k) or Frob, € Gal(k/k) for the (arithmetic) Frobenius element i.e.,
the map k > 2 — %% € k (Note that “Frobenius element”, Frobg, or Frob; do not mean the
geometric Frobenius i.e., the map k > x + '/#% ¢ k in this survey).

Topological Groups and Topological Monoids:
For a Hausdorff topological group G, let (G —) G* denote the abelianisation of G as Hausdorff
topological groups, and let G5 (C G) denote the subgroup of the torsion elements in G.

For a commutative topological monoid M, let (M —)M8P denote the groupification of M,
i.€., the coequaliser of the diagonal homomorphism M — M x M and the zero-homomorphism,
let Miors, M*(C M) denote the subgroup of torsion elements of M, the subgroup of invertible
elements of M, respectively, and let (M —)MP" denote the perfection of M, i.e., the inductive
limit ligneN>1 M, where the index set Ns; is equipped with an order by the divisibility, and

the transition map from M at n to M at m is multiplication by m/n.
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For a Hausdorff topological group G, and a closed subgroup H C G, we write
Zg(H) :={9€ G| gh=hg,Yhe H},
CNg(H):={9€G|gHg'=H}, and
C Cq(H) :={g € G| gHg " N H has finite index in H,gHg™ '},

for the centraliser, the normaliser, and the commensurator of H in G, respectively (Note that
Za(H) and Ng(H) are always closed in G, however, Ce(H) is not necessarily closed in G. See
[AbsAnab, Section 0], [Anbd, Section 0]). If H = Ng(H) (resp. H = Cg(H)), we call H
normally terminal (resp. commensurably terminal) in G (thus, if H is commensurably
terminal in G, then H is normally terminal in G).

For a locally compact Hausdorff topological group G, let Inn(G)(C Aut(G)) denote the group
of inner automorphisms of G, and put Out(G) := Aut(G)/Inn(G), where we equip Aut(G)
with the open compact topology, and Inn(G), Out(G) with the topology induced from it. We
call Out(@) the group of outer automorphisms of G. Let G be a locally compact Hausdorff
topological group with Zg(G) = {1}. Then G — Inn(G)(C Aut(G)) is injective, and we have
an exact sequence 1 - G — Aut(G) — Out(G) — 1. For a homomorphism f : H — Out(G)

of topological groups, let G N H — H denote the pull-back of Aut(G) — Out(G) with respect
to f:
1l — G — Aut(G) — Out(G) — 1

T

-G -GN H it 1.

ut
We call G % H the outer semi-direct product of H with G with respect to f (Note that it
is not a semi-direct product).

Algebraic Geometry:
We put Up := P!\ {0,1,00}. We call it a tripod. We write My C Mgy for the fine moduli
stack of elliptic curves and its canonical compactification.

If X is a generically scheme-like algebraic stack over a field £ which has a finite étale Galois
covering Y — X, where Y is a hyperbolic curve over a finite extension of k, then we call X a
hyperbolic orbicurve over k£ ([AbsTopl, §0]).

Others:
For an object A in a category, we call an object isomorphic to A an isomorph of A.

For a field K and a separable closure K of K, we put pz(K) := Hom(@/Z,FX), and
pgz(K) = pz(K) ®; Q/Z. Note that Gal(K/K) naturally acts on both. We call p5(K),
pgz(K), pz,(K) := uz(K) ®3 Z; for some prime number I, or fiz/,z(K) := uz(K) ®3 Z/nZ for
some n the cyclotomes of K. We call an isomorph of one of the above cyclotomes of K as a
topological abelian group with Gal(K /K)-action a cyclotome. We write Xeye = Xeye, k& (T€sp.
Xeyed = Xeye i) for the (full) cyclotomic character (resp. the l-adic cyclotomic character) of
Gal(K/K) (i.e., the character determined by the action of Gal(K /K) on uz(K) (resp. pz,(K))).

1. REDUCTION STEPS IN GENERAL ARITHMETIC GEOMETRY.

In this section, by arguments in a general arithmetic geometry, we reduce Theorem 0.1
to certain inequality —|log(q)| < —|log(©)|, which will be finally proved by using the main

theorem of multiradial algorithm in Section 13.
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1.1. Notation around Height Functions. Take an algebraic closure Q of Q. Let X be a
normal, Z-proper, and Z-flat scheme. For d € Zs1, we write X (Q) D X(Q)=¢ := Ujr.g<a X (F).
We write X for the complex analytic space determined by X(C). An arithmetic line
bundle on X is a pair £ = (L, ||-||¢), where £ is a line bundle on X and || - || is a hermitian
metric on the line bundle £*¢ determined by £ on X®° which is compatible with complex
conjugate on X*°. A morphism of arithmetic line bundles £; — L, is a morphism of line
bundles £; — Ly such that locally on X sections with || - ||z, < 1 map to sections with
|- |lz, < 1. We define the set of global sections I'(£) to Hom(Ox, L), where Oy is the
arithmetic line bundle on X determined by the trivial line bundle with trivial hermitian metric.
Let APic(X) denote the set of isomorphism classes of arithmetic line bundles on X, which is
endowed with a group structure by the tensor product of arithmetic line bundles. We have a
pull-back map f*: APic(Y) — APic(X) for a morphism f: X — Y of normal Z-proper Z-flat
schemes.

Let F' be a number field. An arithmetic divisor (resp. Q-arithmetic divisor, R-arithmetic
divisor) on F is a finite formal sum a = ZUGV(F) c,v, where ¢, € Z (resp. ¢, € Q, ¢, € R)
for v € V(F)™" and ¢, € R for v € V(F)*°. We call Supp(a) := {v € V(F) | ¢, # 0}
the support of a, and a effective if ¢, > 0 for all v € V(F). We write ADiv(F') (resp.
ADivg(F), ADivg(F)) for the group of arithmetic divisors (resp. Q-arithmetic divisor, R-
arithmetic divisor) on F. A principal arithmetic divisor is an arithmetic divisor of the form
D vev(rymon V)V = X ey mme Fo + R]1og([ flu)v for some f € F. We have a natural isomor-
phism of groups ADiv(F')/(principal ones) = APic(Spec Or) sending ZUEV(F) ¢yv to the line
bundle determined by the projective Op-module M = (Hvev( fynon T m&) 1O of rank 1 equipped

with the hermitian metric on M ®zC = [[,cy(parc Fo @ C determined by [, ey pyare

where | - |, is the usual metric on F, tensored by the usual metric on C. We have a (non-
normalised) degree map

e ||,

degp : APic(Spec Of) = ADiv(F)/(principal divisors) — R

sending v € V(F)™" (resp. v € V(F)*°) to log(q,) (resp. 1). We also define (non-normalised)
degree maps degp : ADivg(F) — R, degp : ADivg(F) — R by the same way. We have
[FQ degF(E) mdegK(ﬂspecoK) for any finite extension K D F and any arithmetic line

bundle £ on Spec O, that is, the normalised degree deg is independent of the choice of F.

)
For an arithmetic line bundle £ = (£, ||-||z) on Spec OF, a section 0 # s € L gives us a non-zero
morphism O — £, thus, an identification of £~! with a fractional ideal a, of F. Then degy (L)
can be computed by the degree degp of an arithmetic divisor D, cypyon V(as)0—=23 ", cypyare ([ :

R]log||s||,)v for any 0 # s € L, where v(a,) := minge,, v(a), and || - ||, is the v-component of
| - ||z in the decomposition Earc = Hoev(pyare Lo over (Spec Op)™ = T, cypyue I @r C.

For an arithmetic line bundle £ on X, we define the (logarithmic) height function

hz: X@Q |= |J X(F)]| =R

[F:Q]<o0

associated to £ by ht#(z) 1= ﬁdeng}(Z) for v € X(F), where xp € X(Op) is the element
corresponding to x by X (F) = X(Op) (Note that X is proper over Z), and z} : APic(X) —
APic(Spec Op) is the pull-back map. By definition, we have htz 7 = htz +htz; for arithmetic
line bundles £;, £, ([GenEll, Proposition 1.4 (i)]). For an arithmetic line bundle (Z, || - ||.)
with ample Lg, it is well-known that #{z € X(Q)=? | htz(r) < C} < oo for any d € Z>; and
C € R (See Proposition C.1).
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For functions «, 5 : X(Q) — R, we write @ 2 § (resp. a < 8, a = [3) if there exists a constant
C € R such that a(x) > B(x)+C (resp. a(z) < B(x)+C, |a(z)—F(z)| < C) for all z € X(Q).
We call an equivalence class of functions relative to ~ bounded discrepancy class. Note that
ht7 2> 0 ([GenEll, Proposition 1.4 (ii)]) for an arithmetic line bunde £ = (L, ||-||) such that the
n-th tensor product 58” of the generic fiber Lo on X is generated by global sections for some
n >0 (e.g.Lg is ample), since the Archimedean contribution is bounded on the compact space

X and the non-Archimedean contribution is > 0 on the subsets A; := {s; # 0}(C X(Q)) for
i=1,...,m, where s,...,s, € I'(Xg, L’%”) generate /J%” (hence, A; U---UA,, = X(Q)). We
also note that the bounded discrepancy class of htz for an arithmetic line bundle £ = (£, ||-]|)
depends only on the isomorphism class of the line bundle Lo on Xg ([GenEll, Proposition 1.4

(iii)]), since for £; and L, with (£1)g = (£2)g we have htz- — htz; = ht— ~sc-n 2 0 (by the

fact that (L))o ® (EQ)S(_l) = Oy, is generated by global sections), and htz —htz 2 0 as well.
When we consider the bounded discrepancy class (and if there is no confusion), we write ht,,
for ht.

For x € X(F) C X(Q) where F is the minimal field of definition of z, the different ideal of
F' determines an effective arithmetic divisor 2, € ADiv(F) supported in V(F)*". We define

log-different function log-diff x on X (Q) to be

— _ 1
X(Q) 3 z = log-diff x(z) := T2 degp(0,) € R.

Let D C X be an effective Cartier divisor, and put Ux := X \ D. For x € Ux(F) C Ux(Q)
where F' is the minimal field of definition of z, let xp € X (Op) be the element in X (Op)
corresponding to z € Ux(F) C X(F) via X(F) = X(Op) (Note that X is proper over Z).
We pull-back the Cartier divisor D on X to D, on SpecOp via zr : SpecOp — X. We
can consider D, to be an effective arithmetic divisor on F' supported in V(F)™". Then we
call {2 := (D,);ea € ADiv(F) the conductor of x, and we define log-conductor function

log-condp on Ux(Q) to be

Ux(Q) > z +— log-condp(x) := degx(f?) € R.

1
[F: Q)
Note that the function log-diffx on X (Q) depends only on the scheme Xg ([GenEll, Remark

1.5.1]). The function log-condp on Ux(Q) may depend only on the pair of Z-schemes (X, D),
however, the bounded discrepancy class of log-condp on Ux(Q) depends only on the pair
of Q-schemes (Xg, Dg), since any isomorphism Xg — X{, inducing Dg — Dj, extends an

isomorphism over an open dense subset of SpecZ ([GenEll, Remark 1.5.1]).

1.2. First Reduction. In this subsection, we show that, to prove Theorem 0.1, it suffices to
show it in a special situation.

Take an algebraic closure Q of Q. We call a compact subset of a topological space compact
domain, if it is the closure of its interior. Let V' C Vg := V(Q) be a finite subset which contains
Ve, For each v € V NVEe (resp. v € V N V"), take an isomorphism between Q, and R and
we identify Q, with R, (resp. take an algebraic closure Q, of Q,), and let () # I, G X (resp.
0#K, S X(Q,)) be a Gal(C/R)-stable compact domain (resp. a Gal(Q,/Q,)-stable subset
whose intersection with each X (K) C X(Q,) for [K : Q,] < oo is a compact domain in X (K)).
Then we write Ky C X(Q) for the subset of points z € X(F) C X(Q) where [F : Q] < oo
such that for each v € VN Vg* (resp. v € V N V") the set of [I7: Q] points of X (resp.
X(Q,)) determined by x is contained in &C,. We call a subset Ky C X (Q) obtained in this way
compactly bounded subset, and V' its support. Note that IC,’s and V' are determined by
ICy by the approximation theorem in the elementary number theory.
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Lemma 1.1. ([GenEll, Proposition 1.7 (i)]) Let f : Y — X be a generically finite morphism
of normal, Z-proper, Z-flat schemes of dimension two. Let e be a positive integer, D C X,
E C Y effective, Z-flat Cartier divisors such that the generic fibers Dg, Eq satisfy: (a) Dg, Eg
are reduced, (b) Eg = fo"' (Dg)rea, and (c) fq restricts a finite étale morphism (Uy)g — (Ux)q.
where Ux := X\ D and Uy :=Y \ E.

(1) We have log-diff x|y + log-condp|y < log-diffy + log-condg.
(2) If, moreover, the condition (d) the ramification index of fo at each point of Egy divides
e, is satisfied, then we have

1
log-diffy < log-diff x|y + (1 — —> log-condply.
e

Proof. There is an open dense subscheme SpecZ[1/S] C SpecZ such that the restriction of
Y — X over SpecZ[1/S] is a finite tamely ramified morphism of proper smooth families of
curves. Then, the elementary property of differents gives us the primit-to-S portion of the
equality log-diff x|y + log-condply = log-diffy + log-condg, and the primit-to-S portion of
the inequality log-diffy < log-diff x|y + (1 — %) log-condp|y under the condition (d) (if the
ramification index of fp at each point of Eg is equal to e, then the above inequality is an
equality). On the other hand, the S-portion of log-condg and log-condp|y is ~ 0, and the
S-portion of log-diffy — log-diff x|y is > 0. Thus, it suffices to show that the S-portion of
log-diffy — log-diff x|y is bounded in Uy (Q). Working locally, it is reduced to the following
claim: Fix a prime number p and a positive integer d. Then there exists a positive integer
n such that for any Galois extension L/K of finite extensions of Q, with [L : K] < d, the
different ideal of L/K contains p"Op. We show this claim. By considering the maximal tamely
ramified subextension of L(u,)/K, it is reduced to the case where L/K is totally ramified p-
power extension and K contains i, since in the tamely ramified case we can take n = 1. It is
also redeced to the case where [L : K| = p (since p-group is solvable). Since K D p,, we have
L = K(a'/?) for some a € K by Kummer theory. Here a'/? is a p-th root of a in L.

By multiplying an element of (K*)P, we may assume that a € Og and a ¢ mb.(D pPOg).
Hence, we have Oy, D a'/?Or, D pOyr. We also have an inclusion of Og-algebras Ox[X]/(X? —
a) <= Op. Thus, the different ideal of L/K contains p(a'/?)*~'O;, D p'*®=V0.. The claim,
and hence the lemma, was proved. 0

Proposition 1.2. ([GenEll, Theorem 2.1) Fiz a finite set of primes 3. To prove Theorem 0.1,
it suffices to show the following: Put Up = I% \ {0,1,00}. Let Ky C Upi(Q) be a compactly
bounded subset whose support contains 3. Then, for any d € Z~y and € € R+, we have

ht, (01,00 S (1 + €)(log-diffpr + log-condyg 1 00} )
on Ky N Up (Q)=4.

Proof. Take X, D,d,e as in Theorem 0.1. For any e € Z-, there is an étale Galois covering
Uy — Uy such that the normalisation Y of X in Uy is hyperbolic and the ramification index of
Y — X at each point in E := (D X x Y )eq is equal to e (later, we will take e sufficiently large).
First, we claim that it suffices to show that for any ¢ € R.(, we have ht,, < (1 + €)log-diffy

on Uy (Q)=%dee(Y/X) " We show the claim. Take ¢ € R.q such that (1+ ¢)? < 1+ ¢. Then, we
have

hte, (pyly S (14 €)hty, < (1+ ¢)2log-diffy < (1 4+ ¢)?(log-diff x + log-condp)|y
< (1 + ¢)(log-diff x + log-condp)|y
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for e > %D))) (1- %)_1 on Uy (Q)44ee(Y/X) " Here, the first < holds since we have

deg(wx (D 1+4€
deg(E) )
deg(Y/X)deg(wx (D))

deg(wy) = deg(wy (E)) — deg(E) = deg(wy (E)) (1 -

B B deg(D) 1 - 1 ool
— deglon(E) (1- B ) > L deglon (E) = 1o deg(ex(Dll).

The second < is the hypothesis of the claim, the third < comes from Lemma 1.1 (2), and the
final inequality < comes from the choice of ¢ € R.q. Then, the claim follows since the map
Uy (Q)=¢dee(Y/X) — 7 (Q)=? is surjective. Therefore, the claim is proved.

Thus, it suffices to show Thoerem 0.1 in the case where D = (). We assume that ht,,, <
(1 + e)log-diff x is false on X (@)= Let V C Vg be a finite subset such that V > ¥ U V&©.
By using the compactness of X (K) where K/Q, (v € V) is a finite extension, there exists
a subset = C X(Q)=% and an unordered d-tuple of points =, ¢ X(Q,) for each v € V such
that ht,, < (1 + €)log-diffx is false on =, and the unordered d-tuples of Q-conjugates of
points in = converge to =, in X (Q,) for each v € V. By Theorem C.2 (the existence of non-
critical Belyi map), there exists a morphism f : X — P! which is unramified over Up and
f(Z,) C Up(Q,) for each v € V. Then, after possibly eliminating finitely many elements from
=, there exists a compactly bounded subset Ky C Upi(Q) such that f(Z) C Ky, by taking the
unions of Galois-conjugates of the images via f of sufficiently small compact neighbourhoods of
the points of =, in X(Q,) for v € V. Put X D E := f71({0,1,00});ea Take ¢ € R satisfying
1+ <(1+4¢€)(1 —2€deg(F)/deg(wx)). Then, we have

ht,, ~ hth(E) — htOX(E) R htwﬂ,,l({o,l,oo})|X — htOX(E)

S (1 + €)(log-diffpr | x + log-condg 1,00} x) — htoy (m)

< (1 + €)(log-diff x + log-condg) — hto (k)

s (1 + 6,) (log—diffX + htOX(E)) - htOX(E) = (1 + €/>10g—diﬁx + G/ht(’)X(E)

< (1 + €)log-diff x + 2¢'(deg(F) /deg(wx))ht,
on =. Here, the second ~ comes from that wy(F) = wpi1({0,1,00})|x. The first < is the
hypothesis of the proposition. The second < comes from Lemma 1.1 (1). The third <
comes from log-condgy < hto,(p) which can be proved by observing that the Archimedean

contributions are bounded on the compact space X*° and that the non-Archimedean por-
tion holds since we take (—),q in the definition of log-condg. The fourth < comes from
that w?;@deg(E)) ® Ox(—E)®desx)) is ample since its degree is equal to 2deg(E)deg(wx) —
deg(F)deg(wx) = deg(F)deg(wx) > 0.

By the above displayed inequality, we have (1—2¢'(deg(E )/deg(wX)))hth S (14€)log-diff x
on =. Then we have ht,, < (1 + ¢)log-diffx on = by the choice of ¢ € R.(. This contradicts
the hypothesis on =. ([l

1.3. Second Reduction —Log-Volume Computations. In this subsection and the next
subsection, we further reduce Theorem 0.1 to the relation “—|log(q)| < —[log(©)|”. The reason

why we should consider this kind of objects naturally arises from the main contents of inter-
universal Teichmiiller theory, which we will treat in the later sections. It might seem to readers

2

that it is unnatural and bizzard to consider abruptly “gb(p]?lord(qﬂj)Ova R0y, (®o<i<jOr,,)")
v v iCE

for all automorphisms ¢ of Q® Qpeic; %logp(()X ) which induces an automorphism of

®0<1<] o log,(O%, )” and so on, and that the relation —[log(q)| < —|log(©)] is almost the

same thlng as the mequahty which we want to show, since the reduction in this subsection and
in the next subsection is just calculations and it contains nothing deep. However, we would like
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to firstly explain how the inequality will be shown — the final step of showing the inequality by
concrete calculations— in these subsections before explaining the general theories.

Lemma 1.3. ([IUTchIV, Proposition 1.2 (i)]) For a finite extension k of Q,, let e denote the
ramification index of k over Q,. For \ € %Z, let p*Oy, denote the fractional ideal generated by
any element x € k with ord(z) = A\. Put

1| e 9 log (p5= 1
aiz{e’VPZ-‘ p=2 and b= M _ =

2 p=2, logp e
Then we have
p"Ox C log,(OF) C p~"O.
Ifp>2ande<p-— 2, then p*Oy = log,(Oy) = p~ 0.
Proof. We have a > 5 1, since for p > 2 (resp p = 2) we have a > %piZ = ﬁ > ]ﬁ (resp.
a=2>1= ) Then we have p®Oy, C pr- it Oc, N Oy C log,(Oy) for some € > 0, since the

p-adic exponentlal map converges on pp*1+ Oc, and x = log,(exp,(r)) for any x € pﬁﬁO@p
for € > 0.
On the other hand, we have pb% > —“ since b+ 1 > —-1= . We note that
p—1 e logp log

b+ 1€ Zsand that b+ 1 > 1if and only if e > p — 1. Wehave (b—l—l)—i-e >— since for

log(p;57) _ log 5

e > p—1 (resp. fore < p—1) we have (b+21)+1 > b+1 > 1 > - L (resp. (b+1)+i=1> F)
1
In short, we have min {(b +h+1 110’”r } _1. For b+ 1 € Zzo, we have (1 +peO(cp) ° S

1 —i—pp%lO(cp, since ord((1 +p%x)p - 1) > min{(b+ ;) +;,° . ,- Then,

we obtain pt*e log,(O;) C O Nlog,(1 —l—pﬁ“O@p) C Oy ﬂppfllJreO(cp C pe Oy, for some € > 0,
which gives us the second inclusion. The last claim follows by the definition of a and b. O

For finite extensions k& O ko of Q,, let ;/, denote ord(a), where a is any generator of the
different ideal of k over k.

Lemma 1.4. ([IUTchIV, Proposition 1.1]) Let {k;}icr be a finite set of finite extensions of Q,.
Put 0; := 0y, q,- Fiz an element *x € I and pul 0y := Ziel\{*} 0;. Then, we have

PP (®icrOr,)™ C @ie1Ok, C (®icrOr,)™,

where (R;e1Ok,)~ is the normalisation of ®;e1Oy, (tensored over Zy,).

Proof. The second inclusion is clear. It suffices to show that pLOI*J(O@ ®0,. ®iciOr,)~ C
O@ ®o,, ®ie1Oy,, since O@ is faithfully ﬂal)ver Oy, . Tt suffices to show that p°r (O@ ®o,,
®Ric1Ox,)~ C O@(X)ok* ®ie1Ok,, where p°* € Q, is an element with ord(p®*) = 0;-. By using the
induction on #1, it is reduced to the case where #1 = 2. In this case, O@@’Okl (O, ®z, O,) =
O@ ®z, O,, and p°2(0@ ®z, Ok,)~ C O@ ®z, Ok, holds by the definition of the different
ideal. O

Lemma 1.5. ([IUTchIV, Proposition 1.3]) Let k D ko be finite extensions of Q,. Let e, ey
be the ramification indices of k and ko over Q, respectively. Let m be the integer such that
p™ | [k« ko) and p™ 4 [k kol. Put 9 =g, and Oy, = ky/q, -
(1) We have oy, +1/eg < 0p+1/e. If k is tamely ramified over ky, then we have Oy, +1/eq =
0 + 1/6.
(2) If k is a finite Galois extension of a tamely ramified extension of ko, then we have
0 <0y +m+1/e.
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Remark 1.5.1. Note that “log-diff + log-cond”, not “log-dift”, behaves well under field ex-
tensions (See also the proof of Lemma 1.11 below). This is one of the reasons that the term
log-cond appears in Diophantine inequalities. ¢f. Lemma 1.1 for the geometric case.

Proof. (1): We may replace ky by the maximal unramified subextension in k D kg, and assume
that k/ko is totally ramified. Choose uniformizers wy € Oy, and w € Oy, and let f(z) € Oy, []
be the minimal monic polynomial of @y over Oy,. Then we have an Oy,-algebra isomorphism
O[]/ (f(x)) = Oy sending x to w. We also have f(x) = ¢° modulo my, = (wg). Then,

O — O, > minford(wy), ord(Eweo N > mm{e1 i (2 — 1>} =1 (% - 1), where the

Te \ eg e
inequalities are equalities if k/kg is tamely ramified.

(2): We use an induction on m. For m = 0, the claim is covered by (1). We assume m > 0.
By assumuption, k is a finite Galois extension of a tamely ramified extension k; of ky We may
assume that [k : k1] is p-powere by replacing ki by the maximal tamely ramified subextension
in k D k1. We have a subextension k D ko D ki, where [k : ko] = p and [ky : k| = p™ ! since
p-groups are solvable. By the induction hypothesis, we have 9, < o, + (m — 1) + 1/eg. It
is sufficient to show that 9 < 0y, + m + 1/eg + € for all € > 0. After enlarging ko and kq,
we may assume that k; D u, and (ex >)e; > p/e, where e; and ey are the ramification index
of k1 and ky over Q, respectively. By Kummer theory, we have an inclusion of Oy,-algebras
Ok, ]/ (a? — a) = Oy, for some a € Oy,, sending z to a'/? € O,. By modifying a by (O} )P, we
may assume that ord(a) < p621. Then we have 0, < ord(f"(a'/?)) 4 0, < ord(pa®=V/P) + 9, +
(m—1)+1/ey < 7%1”6—_21 + 0, +m+1/eg < pfes 4+ 0y +m~+1/eg <0y +m+1/eg + €. We
are done. 0

For a finite extension k over Q,, let ,LL}:g be the (non-normalised) log-volume function
(i.e., the logarithm of the usual p-adic measure on k) defined on compact open subsets of k
valued in R such that 4, 8(Oy) = 0. Note that we have 1°%(pOy) = — log #(Ok/pOy) = —[k :
Q,]logp. Let u® be the (non-normalised) radial log-volume function valued in R, such
that ulog(Ok) = 0, defined on compact subsets of C which project to a compact domain in R via
prp : C =RxOf — R (see Section 1.2 for the definition of compact domain) (i.e., the logarithm
of the usual absolute value log |prg(A)| on R of the projection for A C C). Note that we have
1°¢(eOy) = loge = 1. The non-normalised log-volume function u}fg is the local version of the

non-normalised degree map deg (Note that we have the summation deg, = Zvev( ) plFOg) and

the normalised one ;] Q ] ufg is the local version of the normalised degree map F: Q] deg 7 (Note

lo,
that we have the weighted average [FQ jdegp = m > vevir) [ Fo 1 Qugl( E Qv ]uFf)

with weight {[F, : Quu|}vev(r), Where vg € Vg is the image of v € V(F) via the natural
surjection V(F ) — Vg). For finite extensions {k;},c; over Q,, the normalised log-volume

functions { g}ze [ give us a normalised log-volume function >, ] = b ],u}fg on compact
p

open subsets of ®Z€1k;, (tensored over Q,) valued in R (since we have [k,@ ],uk, &(pOy,) = —logp
1P 1

for any i € I by the normalisation), such that (3_,; T 1@}3} ,ufg)(&g()ki) =0

Lemma 1.6. ([IUTchIV, Proposition 1.2 (ii), (iv)] and [IUTchIV, “the fact...consideration”
in the part (v) and the part (vi) of the proof in Theorem 1.10]) Let {k;}icr be a finite set
of finite extensions of Q,. Let e; denote the ramification index of k; over Q,. We write
a;, by for the quantity a, b defined in Lemma 1.3 for k;. Put 9; := 0,q,, ar = Ziel a;,
br = icrbi, and dp == 3., 0;. For XA € e%_Z, let p* Oy, denote the fractional ideal generated
by any element x € k; with ord(x) = X. Let ¢ : @,c,10g,(0;) = @, log,(OF) (tensered
over Z,) be an automorphism of Z,-modules. We extend ¢ to an automorphism of the Q,-
vector spaces Q, ®z, &,c;log,(OF ) by the linearity. We consider (®,c10k,)™ as a submodule
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12

of Qp @z, Qc; logp(OkXi) via the natural isomorphisms Q, ®z, (®ic1Ok,)~ = Qp ®z, ®ic1Ok, =
Q) ®z, ®icrlog, (O ).
(1) Pt IDI*:={ie€l|e>p—2}. Forany\ € E%Z, ip € I, we have

¢ (PAOkiO R0, (@ierOk;) > , p ® Py logp

el

C pP\J—fOﬂ—faﬂ ®1ng(0;i) c pLAJ—(Dﬂ—(aﬂ—fbﬂ(®i€10ki)~’ and

el

1 o o —Tar]—
(X g @00 S (A4 01+ )logl) + 33 + o)
iel p iel*

(2) If p>2 and e; = 1 for each i € I, then we have

1
o((©ier0k)™), Q) 55 198(Ok) C &) log, (07) € (®ie1Ox)™,

i€l i€l

and (s i) (@ic101,)™) = 0.

Proof. (1): We may assume that A = 0 to show the inclusions. We have pl*1*lerl(®,.,0,.)~ C
Pl ®@icr Ok C Qe log,(Oy ), where the first (resp. second) inclusion follows from Lemma 1.4
(resp. Lemma 1.3). Then we have ¢ (p*71+1%71(@,c,0r,)™) C ¢ (®c;108,(0F)) = @y log,(05) C
p 1 (®;¢04,)~, where the last inclusion follows from Lemma 1.3. If p = 2, we have [0;] +
lar] > ar > 2#I1. If p > 2, we have a; > e% and 9; > 1 — e% by Lemma 1.5 (1) hence, we

have [0;]+ [a;] > 0 +a; > #I. Thus, we obtain the remaining inclusion @),; 5- 25 108,(0y;) C
p PRl Q. log, (O ) for p > 2.
We show the upper bound of the log-volume. We have a; — < < 1Og( ), where the first

inequality for p > 2 (resp. p = 2) follows from a; < e—i(}ﬁ +1) = pT + e_z- and pT < % forp > 2
(resp. a; — e% =2— i <2= %), and the second inequality follows from x > 2logx for x > 0.
We also have (b; + )log( ) < log(L24) < log(2e;) < 1+ log(e;), where the first inequality
follows from the deﬁmon of b;, the second inequality follows from % < 2 for p > 2, and the
last inequality follows from log(2) < 1. Then, by combining these, we have (a; + b;) log(p) <
3+ log(e;). Fori € I'\ I*, we have a; = —b;(= 1/e;), hence, we have (a; + b;) log(p) = 0. Then,
we obtain (3-,c; i 1@,,] ) (pAIlerl=Tarl=Porl (@, ,104,)™) < (=(A = 1) + (07 + 1) + (a7 + 1) +
(br + 1)) log(p) = (= + 01 + ag + by + 4) log(p) < (=X -+ 07 + 4) log(p) + Tseps(3 + log(er)).
(2) follows from (1). O

For a non-Archimedean local field k, put Zj, := % log,,(O). We also put Z¢ := 7(unit ball).

We call Z,, the log-shell of k, where k is a non-Archimedean local field or £k = C. Let F be
a number field. Take vg € Vg™, For V(F) 3 vy,..., v, | vg, put Ly, .. o, = ®R1<i<nZF, (Here,
the tensor is over Z,). Take vg € Vg©. For V(F) 3 vy,...,v, | vg, let Ty, 0, C Ri<icnly,
denote the image of [[,,., Zr, under the natural homomorphism [[, ... Fi, = ®1<i<nFy,;)
(Here, the tensor is over R). For a subset A C Q, ®z, Ly, - v, (resp. A C L. w,), We call the
holomorphic hull of A the smallest subset, which contains A, of the form @;c;a,0p, in the
natural direct sum decomposition of the topological fields ®1<;<pF,, = @ierL;.

We define the subgroup of primitive automorphisms Aut(C)P"™ C Aut(C) to be the sub-
group generated by the complex conjugate and the multiplication by /—1 (thus, Aut(C)Prm =
ZJAZ x {£1}).

In the rest of this subsection, we choose a tuple (F/F, Er, VP2 1'V), where

mod>’ *?
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(1) F is a number field such that /=1 € F, and F is an algebraic closure of F,

(2) Er is an elliptic curve over F' such that Autz(Ez) = {£1}, where Ex := Ep xp F,
the 2.3(= 6)-torsion points Er[2.3] are rational over F, and F is Galois over the field
of moduli Fi0q of EF t.e., the subfield of F' deteremined by the image of the natural
homomorphism Aut(Ez) — Aut(F) = Gal(F/Q)(D> Gal(F/F)) (thus, we have a short
exact sequence 1 — Autp(Er) — Aut(Ep) — Gal(F/Fu.q) — 1), where Aut(Ex)
(resp. Aut#(F#)) denotes the group of automorphisms (resp. automorphisms over F)
of the group scheme Fr),

(3) VPad is a nonempty finite subset VP2, C V2 (C V,,0q := V(Fyu0a)), such that v f 2
holds for each v € Vb3, "and Er has bad multiplicative reduction over w € V(F),,

(4) [ is a prime number [ > 5 such that [ is prime to the elements of V24, as well as prime
to ord,, of the g-parameters of Er at w € V(F)P := V(F) xvy,__, V?24 "and

(5) V is a finite subset V C V(K), where K := F(EF|l]), such that the restriction of the
natural surjection V(K) — V,0q to V induces a bijection V = V4.

(Note that this is not the definition of initial ©-data, in which we will have more objects and
conditions. See Section 10.1.) Put dmeq = [Finoa : Q], (V¥ C)VE! .= V00 \ V224 " and

mod mod’
V(F)2od .= V(F) xy__ V& TLet v € V denote the element corresponding to v € Vg via
the above bijection.

mod mod *
Lemma 1.7. ([[UTchIV, Lemma 1.8 (ii), (iii), (iv), (v)])

(1) Fipa = Fiod(EF,,[2]) is independent of the choice of a model Ef,,,.

(2) The elliptic curve Er has at most semistable reduction for all w € V(F)

(3) Any model of Ew over F such that all 3-torsion points are defined over F' is isomorphic
to Er over F. In particular, we have an isomorphism Er,_, Xr,_, F'= Er over F for a
model Er, , of Ex over Fyq, such that F' D Fipq(Er, ,[3]).

(4) The extension K D Fyoq is Galois.

non

(Here, “tpd” stands for “tripod” i.e., the projective line minus three points.)

Proof. (1): In the short exact sequence 1 — Autz(Eg) — Aut(Egx) — Gal(F/Fue) — 1, a
section of the surjection Aut(Ex) — Gal(F/Fyeq) corresponds to a model E, . of Fr, and the
field Fiuoqa(Er, ,[2]) correpsonds to the kernel of the composite of the section Gal(F/Fyoq) —
Aut(E%) and the natural homomorphism Aut(Eg) — Aut(FE%[2]). On the other hand, by
the assumption Autz(Ex) = {£1}, the natural homomorphism Aut(Ez) — Aut(E#[2]) fac-
tors through the quotient Aut(Es) — Gal(F/Fueq), since the action of Autz(Ey) = {1}
on Ex[2] is trivial (=P = P for P € Ex[2]). This implies that the kernel of the compos-
ite Gal(F/Fuoa) — Aut(Ex) — Aut(Fg[2]) is independent of the section Gal(F/Fuoq) —
Aut(E%). This means that Fioa(Er,.,[2]) is independent of the choice of a model Ef__[2].
The first claim was proved.

(2): For a prime 7 > 3, we have a fine moduli X (r)z1 /) of elliptic curves with level r structure
(Note that it is a scheme since r > 3). Any F,-valued point with w { r can be extended to
Op,-valued point, since X (r)z /) is proper over Z[1/r]. We apply this to an F,,-valued point
defined by Er with a level r = 3 structure (which is defined over F' by the assumption). Then
Er has at most semistable reduction for w 1 3. The second claim was proved.

(3): A model of F over F corresponds to a section of Autp(F%) — Gal(F/F) in a one-to-one
manner. Thus, a model of Ex over F' whose all 3-torsion points are rational over F' corresponds
to a section of Autp(Ex) — Gal(F/F) whose image is in ker{p : Autr(Ez) — Aut(Ez[3])}.
Such a section is unique by Autz(FEg) Nker(p) = {1}, since Autx(Eg) = {+1} and the image
of —1 € Auti(E%) in Aut(Ex[3])} is non-trivial (if —P = P € Ex[3] then P € Ex[2]N Ex[3] =
{O}). The third claim was proved.
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(4): A model Ef, , of B over Foq, such that F' D Fi,q(Er,,[3]), gives us a section of
Autp(Ez) — Gal(F/Fyoq), hence homomorphisms PEp Gal(F/Fueq) — Aut(E%[r]) for
r = 3,1, which may depend on a model Er_ .. Take any g € Gal(F'/Fyoa). By assump-
tion that F is Galois over Foq, we have gGal(F/F)g~! = Gal(F/F) in Gal(F/Fyea). Thus,
both of Gal(F/K) and gGal(F/K)g~! are subgroups in Gal(F/F). We consider the conju-
gate p%FmOd’ (1) := pep_ (97" (-)9) of pg, - by g. By definition, the subgroup Gal(F/K)

(resp. gGal(F/K)g 1§mfs the kernel of pg, ; (resp. ngFmod’l). On the other hand, since
Pip 3(0) = peg, 3(9) " pEr,  3(0)pEy,  5(9) =1 for any a € Gal(F'/F) by the assumption,
the homomorphism pE 3 arises from a model Ep, =~ of Ep over Fiyq. Then, by the third
claim (3), the restriction pEFmO F/F) - : Gal(F/F) — Aut(E#[l]) to Gal(F/F) is unique,
i.e. PEp ilca®/r) = pEFmom llcaF/r)- Hence we have Gal(F/K) = gGal(F/K)g™*. Thus K

mod’

is Ga101s over Fy0q. The fourth claim was proved. O

We further assume that

(1) Ep has good reduction for all v € V(F)&°d N V(F)"" with v { 21,

(2) all the points of Er[5] are defined over F', and

(3) we have F' = Fi,a(vV—1, EF,,[3.5]), where Fipq := Fuod(EFr,4[2]) (Here Ef, , is any
model of Ez over Fioq, and EF, , is a model of Ez over Fiyq which is defined by the

Legendre form i.e., of the form y? = x(x — 1)(z — \) with A € Fipq).

For an intermediate extension Fl.q C L C K which is Galois over F,,q, we write 2% €
ADiv(L) for the effective arithmetic divisor supported in V(L) determined by the different
ideal of L over Q. We define log(0%) := Ta Q] deg; (0L) € R5y. We can consider the g-parameters

of Er at bad places, since Er has everywhere at most semistable reduction by Lemma 1.7 (2).
We write q© € ADivg(L) for the effective Q-arithmetic divisor supported in V(L) determined
by the g-parameters of Ep;, := Ep Xp (FL) at primes in V(FL)* := V(FL) xy,__, Vbad
divided by the ramification index of FIL/L (Note that 2/ is prime to the elements in Supp(q”)
even though Er has bad reduction over a place dividing 21). We define log(q) = log(q%) :=

Tal Q] ——=deg; (%) € Rso. Note that log(q’) does not depend on L. We write f© € ADiv(L) for
the effective arithmetic divisor whose support coincides with Supp(q%), however, all of whose
coefficients are equal to 1 (Note that Supp(q”) excludes the places dividing 21). We define
log(q") 1= ideg, (a) € Ro,

For an intermediate extension Fi,q C L C K which is Galois over Fy,,q, we define the
set of distinguished places V(L)¥t € V(L) to be V(L)¥* := {w € V(L)™" | there is v €
V(K)u™ which is ramified over Q}. We put V§** and V& to be the images of V(Fipq) ™ in Vg

mo:

and in V,,,q respectively, via the natural surJectlons V(Fipd) = Vinoa = Vg. For L = Q, Finoa,
we put s& = ZweV(L)d‘St ey,w € ADiv(L), where e, is the ramification index of L,,/Q,,,. We

define log(s%) := [LQ degL( Ly € Rs. We put

d o = 2.#(Z /A7)  #GLo(Fo) #G Lo (F3) #GLao (F5)dioa = 2"2.3%.5.dpmod

(Note that #GLQ(FQ) = 2. 3 #GLQ(FS) = 24.3, and #GLQ(FE)) = 2535) We write BS =
ZUQevdlst log(v —Y%Q € ADivg(Q), where v, := 1 if py, < df 4l and 1y, = 0 if py, > dj 4. We
define log(s=) := degg(s~) € Rx.

For number fields F' C L, a Q-arithmetic divisor a = ZMGV(L) cpyw on L, and v € V(F), we
define a, := 3 cyp), Cot.
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Lemma 1.8. ([IUTchIV, Proposition 1.8 (vi), (vii)]) The extension F/Fipq is tamely ramified
outside 2.3.5, and K/ F is tamely ramified outside l. The extension K/Fi,q is unramified outside
2.3.5.1 and Supp(q’ied).

Proof. First, we show that Ep,_, Xp, , I’ has at most semistable reduction at w { 2 for some
[F": Fipa,w] < 2 and we can take [ = Fi,q, in the good reduction case as follows: Now Ef, , is
defined by the Legendre form y* = z(x—1)(z—\). If A € Op,, ., then it has at most semistable

reduction since 0 #Z 1 in any characteristic. If @w"\ € O;tpdw for n > 0 where @ € Fipq. is a

/2y we have (y')? = 2/ (2 — ") (2 — @™ \)

uniformizer, then by putting 2’ := @w"x and 3/ := w
over Fipq.,(v/@), which has semistable reduction.

Then, the action of Gal(Fipa./F') on E[3.5] is unipotent (cf. [SGATt1, Exposé IX §7] the
filtration by “finite part” and “toric part”) for w { 2.3.5. Hence, F' = Fy,a(v/—1, E[3.5]) is
tamely ramified over Fi,q outside 2.3.5. By the same reason, the action of Gal(Fipq.,/F") on
E[l] is unipotent for w 1 [, and K = F(E]l]) is tamely ramified over F outside .

We show the last claim. Epr has good reduction outside 2/ and Supp(qf), since, by the
assumption, Er has good reduction for all v € V(F)&°d N V(F)*" with v { 2. Thus, K =

Fipa(v/—1, E[3.5.1]) is unramified outside 2.3.5.1 and Supp(gted). O

In the main contents of inter-universal Teichmiiller theory, we will use the bijection V. = V.04
as a kind of “analytic section of SpecOg — SpecOp and we will have an identifica-

mod ?
. . . lo, .
T 1mod) ]uK with u(F Do and an identification of —[ijd@] dey T L ) ]“Ki with

v Fmod v
log

m Y eV H(Fo)e (Note that the summation is taken with respect to V, not the whole

tion of

log

of the valuation V(K) of K). This is why we will consider RoFooyy] ©OF its normalised version
log log B
1 iy R . .
Fros)oGog] o Pl = TRog] for v € V (not for V(K)) with weight [(Fluod)s @ Qug) (not

[K, : Qy]) in this subsection.

Lemma 1.9. ([IUTchIV, some portions of (v), (vi), (vii) of the proof of Theorem 1.10,
and Propotision 1.5]) For vg € Vg, 1 < j < I*(= 51), and vo,...,v; € (Viod)u, (where

2
Vo, ..., v; are not necessarily distinct), let —[10g(©)|(v,...;3 denote the normalised log-volume

(z.e. > o<i<; muﬁi) of the following:
e Forwvg € Vi, the holomorphic hull of the union of
— (vertlcal indeterminacy=:(Indet 1))
qu./2lIv0,...7U‘7 (resp. Ly,,.. ;) for v, € VP (resp. for v; € veeod), and

=J
— (horizontal and permutative indeterminacies =:(Indet — ), (Indet v))

¢< J /2lOKU ®OK (®0§iSjOKgi)N> (’I“&S‘p. gb ((®0§i§j0Kgi)N) )fO’r‘yj c ybad (T'&S‘p.

for v, € ygood ), whe?“e ¢ Qug @2,y Lug,...0; = Qg ®2.q Loo,..v; TUNS through all of
automorphisms of finite dimensional QUQ vector spaces which induces an automor-

.....

77777

-----

“Teichmaller dilation” in Sectwn 3.5).
e Forvg € Vi©, the holomorphic hull of the union of
— (Vertlcal indeterminacy =:(Indet 1))
Lyg,...0; (C ®0§i§jKyi)f and
— (horizontal and permutative indeterminacies =:(Indet — ), (Indet v))
(@o<i<;®:)(Br), where By == (unit ball)®% in the natural direct sum decomposition
®o<i<j Ky, = Ce? (tensored over R), and (¢;)o<i<j runs through all of elements in

H0<z<] Aut( )prlm
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Put 0; 1= 0, /QUQ and 01 = Eogigj 0; for vg € V™. Then, we have the following upper

(1) Forwvg € leSt, we have

(—g—jord(qyj) +0; + 4) 10g Pug + 4(j + )iy log(dyql) v, € yhad

(07 +4) log pug + 4(J + 1)ty log(dy,oql) v, € V&
log log K
2 Hi, (du,) 1, ()
e TR +ApgE (52) + 40 + Vg (55, og(dial)-

2 [KQ],  Quol Sz, Ky, Qu) QWQ]

,,,,,

-----

Remark 1.9.1. In Section 13, it will be clear that the vertical (resp. horizontal) indeterminacy
arises from the vertical (resp. horizontal) arrows of the log-theta lattice i.e., the log-links (resp.
the theta-links), and the permutative indeterminacy arises from the permutative symmetry of
the étale picture.

Proof. (1): We apply Lemma 1.6 (1) to A := é—jord(qyj) (resp. 0) for v; € VP (resp. for

v; € veeed) 1= {0,1,...,5}, 9 := j, and k; := K, . (Note that \ € %%Z since q;;m € K,
by the assumptions that K = F(Ep[l]) and that Er[2] is rational over F, i.e., F' = F(FEFg[2]).)
Then, by the first inclusion of Lemma 1.6 (1), both of gb( jj/glOKv. B0, (®0§i§j0KEi)N>

(resp. ¢ ((®0<i<;Ox,.)~) ) ((Indet —), (Indet ) and @b,/ *Z,,. ., (vesp. Loy.,) ((Indet 1))

are contained in pggj_[bl el g logpv(@ (Ok, )- By the second inclusion of Lemma 1.6 (1), the

[Al=Tor]—Tar] Ricr

holomorphic hull of py, A =for]=far]=fbr] (®iefOIX<v,)~a

longQ (Ox, ) is contained in py; ;
and its normalised log-volume is < (—A-+0;+4) log(pUQ)—i—ZZeI (3+1og(e;)) by Lemma 1.6 (1).
If e; > py, —2, then p,, < d 40, since for v; { [ (resp. v, | I) we have p,, < 1+4+e; < 1+d} 40/2 <
dl’;odl (resp. puy =1 < d;“nodl) For e; > py, — 2, we also have log(e;) < —3 + 4log(dy,4!), since

i < dfoqlt/2 and €?/2 < (df, o). Thus, we have (=X 407 +4)log(py,) + > c;- (3 +10g(e;)) <
( A-07+4) log(pug ) +4(7+1) log(dfnodl) since if 1y, = 0, (4.¢., puy > i 4l), then e; < p,, —2
for all 4, hence I* = (). The last equality of the claim follows from the definitions.

(2): For vg € V™ \VG®™, the prime vg is unramified in K and vg # 2, since 2 ramifies in K by
K > +/—1. Thus, the ramification index e; of K,, over Q,, is 1 for each 0 <1 < j, and p,, > 2.
We apply Lemma 1.6 (2) to A := 0, I :={0,1,...,j}, and k; := K. Both of ¢ ((®0<i<;Ox,,)™)
((Indet —), (Indet +~)) and the log-shell Z,,, ., (Indet 1) are contained in ®;es longQ (O[X(E)

By the second inclusion of Lemma 1.6 (2), the holomorphic hull of ®;er log,,, (Ok, ) is contained

77777

in (®Z-GIOIX(%)N, and its log-volume is = 0.

(3): The natural direct sum decomposition ®g<;<; Ky, = C#? (tensored over R), where K, =
C, the hermitian metric on C®? | and the integral structure B; = (unit ball)®? ¢ C®? are
preserved by the automorphisms of ®o<i<; K, induced by any (¢;)o<i<; € [[p<ic; Aut(Ky, )P
((Indet —), (Indet v)). Note that, via the natural direct sum decomposition ®0§25]K4 =

C®U+D | the direct sum metric on C@(j“) induced by the standard metric on C is 2/ times the
tensor product metric on ®o<;<;K,, induced by the standard metric on K, = C (Note that

11 ® V—1]gg,c = 1 and |(V—1,—v—=1)[2gc = 2) (See also [IUTchIV, Proposition 1.5 (iii),
(iv)]). The log-shell Z,, ... is contained in 7/*'B; (Indet 1). Thus, an upper bound of the
log-volume is given by (j + 1) log(m). O
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Lemma 1.10. ([IUTchIV, Proposition 1.7, and some portions of (v), (vi), (vii) in the proof
of Theorem 1.10]) Fiz vg € Vg. For 1 < j < I*(= 51), we take the weighted average
—[10g(O)vg,; of —|10g(©)lfvo,...;; with respect to all (j + 1)-tuples of elements {vi}o<i<j in

(Vinod)vy with weight wy,, . ., = Hogzgg Wy, , where Wy 1= [(Fod)v : Qug) (not [K, : Qyy)), ie.,

1
_| 10g( )"UQ,] = W Z wvo,...,vj(_’ log(g)’{vo,...,vj})v

V05---,V5 € (Vmod)v@

where W =3 35 Vamod)ug Wag,..v; = (Dove(Vion) Wy )T = [Foa : QM and ), 05 €(Vinod)ug

vQ
is the summation of all (j+1)-tuples of (not necessarily distinct) elements vo, ..., v; € (Viod)vg
(we write Z for it from now on to lighten the notation). Let —|log(©)l,, denote the av-
V0,...,Vj

erage of —|log(9)lv,.,; with respect to 1 < j < I*, (which is called procession normalised
average), i.c., —|log(@ )lv@ = E ZISJSZ*( | log(© )|v@y)
(1) For vg € V& we have

[+
24

(2) For vy € VE™ \ V@™, we have —|10g(8)[s, < 0.
(3) Foruvg € Varc, we have —|1og(8)|y, <1+ 1.

1 [+5 )
—|1og(O)]v, < — log(qu,) + log(vyy) + 4log(s})) + (I + 5) log(s5;) ) og(d,eal)-

g

Remark 1.10.1. In the identification of ﬁ,u K.  with u( F e and the identification of V
log

T
Q’UQ] corre-

with V04, which are explained before, the weighted average 3 Z Wa,...v; Z o 0oc]

V0.,V 0<e<y
1

sponds to = Z Z Wy, ... W% = w Z Z Z WoTFmod) d<)@vv@]) —

0<i<jvo,...,v; 0<i<j Ue(Vmod)vQ UE( mod ) v vy

Z /f(‘}j‘fmod = [ T @] degp ., which is (j + 1) times the vg-part of the normalised

UE( mod) vQ
degree map.

[Fmod Q

Proof. (1): The Weighted average of the upper bound of Lemma 1.9 (1) gives us —|10g(8)lv,.; <

1 42 'U‘Kv qv ,LLI;;E’) (DKl) 4”55(@( ) 4 log 1 I
W D Wi o] T D Wenns O (g FA e T 4G, (55,) 108(deal)):

V0, Vj V0. V5 0<i<y
log )

123% v
_ 14 E Yy
W, W 2l Wy, .. Uj [K Qu Q] is equal to

J

] log . log
1 42 M \qu 1 2 M \9u
wal Z o) (X eten ) meah X w e
VE€(Vinod)vg V€(Vinod)ug vQ mo VE(Vinod)vg v mod v
_ 1 ﬁ Z [Ky ¢ (Finod)o] Nﬁi("‘lw)
Fnoa + @] 21 wWEV(K)ug (Kt Finod]  [Ky @ (Finod)o]

2

1 j2 log J

=— = =21

[K . Q] 21 Z :qu(qw) 21 Og(qv@)a
wGV(K)vQ
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where the second equality follows from that 1% (q.) = i wo(4), [Ku © (Fuoa)s] = [Ky :
(Finod )], and #V(K), = M Fnoal gy any w € V(K), with a fixed v € Vy,0q, since K is Galois

Ko (Fmod)o]
HEOK) - ngs (5%
over Foq (Lemma 1.7 (4)). On the other hand, - W Z Weg,....0; Z ({K a ]@H
V0,-.-,V; 0<i<j ¢

Augs (s5,)108(d500l) is equal to

3 log K log Q
1 /’LKE(DQ,L) luQvQ (51)@) 10g < .
W Z Z Wy Z Wy K, - Qui) +4 1 —1—4va@ (53;,) log(dynoal)

OSZS] UE(Vmod)UQ UE(Vmod)UQ

. log (K log Q
j + ]' IuKu(ag) ’u@u (s’UQ> o "

" [Fuoa: Q 2w RIS +4pgs (s5,)108(d50al)

mod - v Wy

G(Vmod)ﬂ@
. log (~K
] —f- 1 /LKI,( g) lo Q . lo
= e Augt (59) + 40 + Dugt (s5,) log(diyeal)
[Fmod : @] %)v@ [Ky : (Fmod)v] Qv@ Q Q d
. log (~K
J+1 Kyt (Fiod)v] M (D ) lo . lo <
- _J - O v + 4p® (s9) 4+ 405 + Dt (s5) log(dr, .4l
[Funod : Q] WEV(ZK)EQ K Fooa] Ky (Faoaa] T 0 (i) + 40+ L, (51,108 (droal)

= (j + 1) log(0;;) + 4log(sy,) + 4(j + 1) log(s5, ) log(dy,0al),
(Voo W0 = [Finod : Q] and the third equality fol-

lows from that a5 (0.,) = 18 (0,), (Ko (Fuuaa)] = (Kot (Fasa)u), and #V(K), = it

for any w € V(K), with a fixed v € V04 as before. Thus, by combining these, we have
)

where the second equality follows from }_ .

J «
~[108(0)[u,5 < =37 108(dug) + (j + 1) log(dy,) + 4log sy, +4(j + 1) log (s, ) log(dfyoal).
Then (1) holds, since we have l_*ZISjgl*(j +1) = ITH +1 = 42 and z_*21§jgl% j% =
(l*ﬂ)(%*ﬂ) (ZH) . Next, (2) trivally holds by Lemma 1.9 (2). Finally, (3) holds by Lemma 1.9
(3) Wlth s log( ) < H22 <]+ 1 since | > 3. O

Lemma 1.11. ([IUTchIV, (ii), (iii), (viii) in the proof of Theorem 1.10, and Proposition 1.6])
(1) We have the following bound of log(d¥) in terms of log(d'wd) and log(frd):
log(0%) < log(dtd) 4 log(fFt»e) 4 21og [ + 21.
(2) We have the following bound of log(s®) in terms of log(dftrd) and log(fFwd):
10g(59) < 2dimod(log(dF¢) + log(f*t)) + log ! + 5.

(3) We have the following bound of log(s=)log(ds, 4l): there is Npm € Rso (which is a
constant determined by using the prime number theorem) such that
4 *
(dmodl + T/PTHI)'

log (%) 10g(d,.a1) <

PTOOf. Note that 10g(0L> + 10g<fL) = [L_h ZweV(L)non €w Oy log(qw) + m ZwGSupp(fL) 10g(Qw) =
m EweV(L)non (0w + iz ) €w)ew 10g(quw) for L = K, F, Fipq, Finoa, Where q,, is the cardinality of
the residue field of L, e, is the ramification index of L,, over @, and ¢z, := 1 if w € Supp(f*),
and ¢z, := 0 if w ¢ Supp(f*).

(1): The extension F/F,,q is tamely ramified outside 2.3.5 (Lemma 1.8). Then, by using
Lemma 1.5 (1) 0y, + 1/eg = 01 + 1/e) for the primes outside 2.3.5 and Lemma 1.5 (2)
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Pr+1/e<vp,+1/eg+m+1/e <d;,+1/eg+ (m+1)) for the primes dividing 2.3.5, we have
log(2F) + log(f") < log(dftwd) + log(ffrd) + log(2'1.33.52) < log(dftrd) + log(fFrd) + 21 since
[F: Fipa] = [Fipa(V=1) : Fipd][F 1 Fipa(v/—1)] < 2.#GLy(F3).#GLy(F5) = 2.(2%.3).(2°.3.5) =
210325 and log2 < 1, log3 < 2, logh < 2. In a similar way, we have log(d%) + log(f%) <
log(0F) + log () 4+ 21ogl, since K/F is tamely ramified outside | (Lemma 1.8). Then, we have
log(0%) < log(o®) + log(f%) < log(d%) + log(f¥') + 2logl < log(dtrd) + log(fftwd) 4 2log 1 + 21.

(2): We have log(sQ) < dimoq log(s mod) for vg € V™. By using Lemma 1.5 (1), we have
log(spmd) < 2(10g(0v“’d) + log( “’d)) for V™ 3 vg 1 2.3.5.1, since 1 =0, +1/eq,, < 0p,,., +
L€k a0 < 2000000 T Lm0d v/ €Fmoa ) where LiFmod » = 1 for v € Supp(ffmed) and LiFimod » 1= 0
for v ¢ Supp(ffmed). Thus, we have log(s?) < deod(log(OFth) + log(ffrd)) + log(2.3.5.1) <
2 0d (log(DFivd) + log(thPd)) +logl+ 5, since log2 < 1, log 3 < 2, and log 5 < 2.

(3): We have log(s%)log(dy,.ql) = log(dial) 3o p<yr L. By the prime number theorem
lim,, o0 2 10g(py) / pn = 1 (where p, is the n-th prime nurr;lci)er), there exists 7y € R such that

* * Ao _ 4 g%
anme p<n 1< 310 fOI‘ n = Tprm - Then log(dmodl) Zp<d* 1< glog(dmodl)m gdmodl

if dzlodl > Tlprm, and log(d:nodl) Zp<dmod I < log(nprm)iilogn(i]r:r‘m) - %nprm if dmodl < Tprm- ThU.S,
we have log(s=) log(d%,,ql) < 3(dfoal + Morm)- O
Proposition 1.12. ([ITUTchIV, Theorem 1.10]) We set —|log(q)| := —5;1log(q). We have the
following an upper bound of —[log(O)] := = 3=, cv, [108(O)lu, :

1
~ [1og(@)] < — - log(a)+

I+1/ 1 12 36d,me .
e <_6 (1 B ) log(q) + (1 + %) (log(0ee) + log(f5»)) + 10(dfoal + nprm)> :

In particular, we have —[log(©)| < oo. If|—[log(q)| < —|log(©)||, then we have

80dmod

1
108 < (1 51 ) (log(@) + 0g() + 20(dl + )

where Npwm 18 the constant in Lemma 1.11.

Proof. By Lemma 1.10 (1), (2), (3) and Lemma 1.11 (1), (2), (3), we have

[+1 [+5
o log(q) + 1 (log(2") + log(f"»¢) 4 21ogl + 21)

+ 4 (2dimoa (log(07%4) + log(fr4)) + log I +5) + (I +5)

—[log(@)| < -

L W~

(dinoal + Mprm) +1+ 1.

2 2
Since 42 = A0l Dbl — Ll (] 4 1) 4 < gHL = HL18 and (45

bounded above by
<ZTT1 (_é log(q) + <1 + ?) (log(DFtpd) + log(thpd) +2logl + 21)
E
l
[+1 1 (1+4+32dm0d

sl gt )(IOg@Fmd)Hog(thPd))

w14

| /\

WLL (for [ > 5), this is

204

= (dioal + Tprm) + 4)

(2dmoa (log(2774) + log(§**4)) + log I + 5) + 23

o~

1
) (210gl+21)+76(10gl+5)+ 5

80
_(d:nodl + 77prm> + 4) .
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Since 4 + 32dmoa < 36dmoa, (1 4+ 4)(2logl + 21) = 2logl + 8" + (1 + 4)21 < 2logl + 83 +
(14 1)21 = 2logl + 46 (for [ > 5), 16% < 165 =8, and 15 < 16 (for I > 5), this is bounded
above by

[+1 1 36d 0 80, .
< T (=g tomm) + (14 2221 ) (og() + log(") + 2101+ 5 (Tl + ) +74).

Since 2logl + 74 < 20 + 74 < 2.741 + 2.741 = 22.741 < 22.2"2.3.5] < gdi ql < 5(dioal 4 Tprm),
and % + % < 10, this is bounded above by

(+1/( 1 360 *
< + (_— log(q) + (1 + j d) (log(DFtpd) + log(thpd)) +10(d}, 4l + ’f]prm)> )

4 6

Since 132 =1(1+7) >

4
[+1 1 12 36d,10 . 1
< e <_6 <1 2 ) log(q) + <1 + l d) (lOg(aFtpd) + 10g(thpd)) +10(d} 4l + nprm)) 5 log(q).

If —[log(g)| < —|1og(Q)], then for any —|log(8)| < Ce log(g), we have —[log(g)| < —[log(Q)[ <

Co log(q), ﬁence, , since |log( )| = 2:log(q) > 0. By taking Ce to be

200 +1) (_1 (1 12) log(q) + (1 + SGdZmOd) (log(27¢) + log(§t7¢)) + 10(dy0al + ”prm))_L

21’ this is bounded above by

41og(q) 6 [2
we have

1 12\ ! 36dmo

alog(q) (1 - 1_2) ((1 +— d) (log(d"9) + log (7)) + 10(dl gl + nprm)) :
Since (1 — 2)7!' <2 and (1 — 3)(1 + med) > 1 4 30dmed 5 19 <, 4(44] — %) which holds
for 1 > 5 (by dmoa(44l — 22) > 441 — 20 > 220 — 192 > 12), we have

8Odmod

1
5 log(a) < (1 + ) (log(2") + log(§**4)) + 20(df gl + Tprm)-

O

1.4. Third Reduction —Choice of Initial ©-Data. In this subsection, we regard Up: as the
A-line, i.e., the fine moduli scheme whose S-valued points (where S is an arbitrary scheme) are
the isomorphism classes of the triples [E, ¢o,w], where E is an elliptic curve f : E — S equipped
with an isomorphism ¢, : (Z/2Z)%% = E[2] of S-group schemes, and an S-basis w of f*Q}E/S
to which an adapted x € f,Op(—2(origin)) satisfies z(¢2(1,0)) = 0, z(¢2(0,1)) = 1. Here, a
section z € f,Op(—2(origin)), for which {1, x} forms Zariski locally a basis of f.Og(—2(origin)),
is called adapted to an S-basis w of f.Qy, /s if Zariski locally, there is a formal parameter T" at
the origin such that w = (1 + higher terms)dT” and = = 7 (1 + higher terms) (cf. [KM, (2.2),
(4.6.2)]). Then, A € Up1(S) corresponds to E : y?> = z(x—1)(x—N), ¢2((1,0)) = (x = 0,y = 0),
$2((0,1)) = (z = 1,y = 0), and w = —‘21—;". For a cyclic subgroup scheme H C E[l] of order
[ > 2, alevel 2 structure ¢ gives us a level 2 structure Im(¢y) of E/H. An S-basis w also gives
us an S-basis Im(w) of f.Q(y ;)5 For a = (¢a,w), put Im(a) := (Im(¢), Im(w)).

Let I’ be a number field. For a semi-abelian variety E of relative dimension 1 over a number
Spec O whose generic fiber Er is an elliptic curve, we define Faltings height of E as follows:

Let wg be the module of invariant differentials on E (i.e., the pull-back of QF, Jop Via the zero

| |Falt on

section), which is finite flat of rank 1 over Op. We equip an hermitian metric || -
= wp ®o, Fy for v € V(F)™ by (|[a]|5)? := @va a A @, where E, := E xp F, and

|[Falt on wp ®z C =

WE

v

@ is the complex conjugate of a. We also equip an hermitian metric || -
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’ |Falt ( | ’Falt

EBreal:vEV(F)MCWEU D EBcomplex:UGV(F)arc(wEu D w_Ev>7 by H resp. || and its COInpleX
conjugate) for real v € V(F)¥° (resp. for complex v € V(F)*°), where g, is the complex
conjugate of wg,. Then, we obtain an arithmetic line bundle g := (wg, || - ||5*). We define
Faltings height of E by ht™(E) := @degF(wE) € R. Note that for any 0 # a € wg, the
non-Archimedean (resp. Archimedean) portion ht™"(E, a)"" (resp. ht™"(E, a)*) of ht"™"(E)
is given by ﬁ D vey(rymon 10g v(a) log g, = @log #(wp/awg) (resp. —ﬁ > vev(pyore[Fo

1/2
R]log <E fE a/\d) = —m > vev(pyme [Fo + R]log (E fE a/\&)), where ht"™(E) =

W™ (B, a)™" + ht™(E, a)¢ is independent of the choice of 0 # a € wg (cf. Section 1.1).

Take an algebraic closure Q of Q. For any point [E,a] € Up(Q) of the A-line, we define
ht™([E, a]) := ht™(E). When [E,a] € Upi(C) varies, the hermitian metric || - |5 on
wp continuously varies, and gives a hermitian metric on the line bundle wg on Upi (C), where
£ is the universal elliptic curve of the A-line. Note that this metric cannot be extended to
the compactification P! of the M-line, and the Faltings height has logarithmic singularity at
{0,1, 00} (see also Lemma 1.13 (1) and its proof below).

We also introduce some notation. Let ht]™" o1 ({0,1 Oo} denote the non-Archimedean portion of

hty,, ({01,000 ([E; 0]), i.e. htg;? (o, LOO})([E,oz]) = [F:@] ——degp(27'({0,1,00})) for 25 : Spec Op —

P! representing [E,a] € PY(F) = P(Or) (Note that z3'({0,1,00}) is supported in V(F)ron
and degy is the degree map on ADiv(F'), not on APic(Spec Or)). Note that we have

Bt (0.1.00p) A Blups (f0,1,00h)

on P'(Q), since the Archimedean portion is bounded on the compact space ().

We also note that ht,, in [GenEll, Section 3] is a function on My (Q), on the other hand, our
Wt ({0,1,00p) 18 @ function on A-line P!(Q), and that the pull-back of ht,, to the A-line is equal
to 6 times our ht," 11,00}y ([ITUTchIV, Corollary 2.2 (i)}, See also the proof of Lemma 1.13 (1)
below).

Lemma 1.13. ([GenEll, Proposition 3.4, Lemma 3.5], [Silv, Proposition 2.1, Corollary 2.3])
Let I > 2 be a prime, E an elliptic curve over a number field F' such that E has everywhere at

most semistable reduction, and H C Ell] a cyclic subgroup scheme of order l. Then, we have

(1) (relation between ht,, , ({0,1,00}) and ht" )

20t S Dty (fo1.00p) S 207 + log(htu, (0.1,001)) S 20" + ehtuy, (01,00

for any € € Rog on Up (Q),
(2) (relation betwen ht™"([E, a]) and ht"™*([E/H,Im(c)]))

| 1
W™ (B, o]) — 5 log! < ht"™([E/H,Im(a)]) < ht™([E, a]) + 5 log .

(3) (relation between ht o1 ooy ([E, o) and hti?! 101 00y ([E/H, Im(a)]))
Furthermore, we assume that | is prime to U(qE,U) € Zwq for any v € V(F), where E
has bad reduction with q-parameter qg, (e.g., | > v(qgw) for any such v’s). Then, we
have

L0t (10,1,00n (LB @) = Dt (0.1 0oy ([E/ H, T (a)]).

Proof. (1): We have the Kodaira-Spencer isomorphism w§2 =~ wp1({0,1,00}), where £ is the
universal generalised elliptic curve over the compactification P! of the A-line, which extends
& over the A-line Upi. Thus we have ht,,; {0.1,00}) & 2ht,,_ on P'(Q), since the Archimedean
contribution is bounded on the compact space (P!)#°. Thus, it is reduced to compare ht,,_
and ht"™*.  Here, ht,. is defined by equipping a hermitian metric on the line bundle wg.
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On the other hand, ht™"* is defined by equipping a hermitian metric on the line bundle we,
which is the restriction of wg. Thus, it is reduced to compare the Archimedean contribu-
tions of ht,_ and ht*™!* The former metric is bounded on the compact space (PY)are. On
the other hand, we show the latter metric defined on the non-compact space (Up1)** has log-
arithmic singularity along {0,1,00}. Take an invariant differential 0 # dz € wg over Op.
Then dz decomposes as ((dzy)real:vev(Fyare, (d2y, A2y )complexvev(pyare) on L 22 Hreal:vEV( Fjarc E,

HHCOHlpleX:UGV(F)m(EvHE), where dz,, F, are the complex conjugates of dz,, E, respec-
tively. For v € V(F)*°, we have E, ~ F, /45, = F,/(Z ® 7,Z) and dz, is the descent of
the usual Haar measure on F,, where qpo = €*™™ and 7, is in the upper half plane. Then
[zl = (Y [, dzo A dz,)Y? = (Im(7,))2 = (=5 log(|a[2))/? and ht™"(E, dz)™° ~
—m > vev(pyee Iy ¢ R]log(—log |gp]v) has a logarithmic singularity at [¢p,.|, = 0. Thus,
it is reduced to calculate the logarithmic singularity of ht*™*(E, dz)®* in terms of ht,,, (10,1,00})-
We have |jg|y = |78, |0 = |g5.0|, " near |ge.|s, = 0, where jg is the j-invariant of E. Then, by the
arithmetic-geometric inequality, we have ht™*(E, dz)*° ~ —m 10g [T, cv(mymee (10g | ]o) o F

> —5log (ﬁ 2 vev(ryare 108 |jE\u) near [ [ cy(pyue [7Ele = 00. On the other hand, we have
17l ~ A% A — 112, 1/|M|? near |\, = 0,1,00 respectively for v € V(F)¥¢ since j =
28(A%2 — X + 1)3/A%(\ — 1)2. Thus, we have ht o,1,00p ([E 0]) = ﬁ > vey(ryon (V(AE) +
v(Ap — 1) +v(1/Ag))logq, = m ZveV(F)“‘m v(jg')loggq, = m ZUEV(F)"O“ log [jz'|o- By
the product formula, this is equal to m Zvew pyarc 10g |jE o By combining these, we obtain
ht"™ (B, dz)me > —1 log(2ht 10,1,00p) ([E, @) = =5 1og(Wti (0,101 ([ B, a])) near [T, cypyare 7l =
0o, or equivalently, near [,y o [Els = 0. We also have htﬁ;?({o’lm}) ~ hte, ({0,1,00}) ON

P'(Q), since the Archimedean contribution is bounded on the compact space (P')*°. There-
fore, we have ht™! < ht, < httalt 4 %1og(htwlp1 ({0,1,00})). This implies 2htFalt < hty,, ({0.1,00}) S
OhtFalt | log(hty,, ({0,1,00)). The remaining portion comes from log(1+z) < ex for any € € Ry.

(2): We have ht"™"([E, a])"" —log! < ht"™([E/H,Im(c)])"" < ht"™([E, a])"", since since
#coker{wp/y — wp} is killed by I. We also have ht"™"([E/H, Im(a)])™® = ht"™"([E, a])™* +
+logl, since (]| - ||?/1}1)2 = 1(]] - ||5"%)2 by the definition of || - [|F*"* by the integrations on F(C)
and (E/H)(C). By combining the non-Archimedean portion and the Archimedean portion, we
have the second claim.

(3): Take v € V(F)"™" where E has bad reduction. Then, the I-cyclic subgroup H xp F,
is the canonical multiplicative subgroup F;(1) in the Tate curve £ x g F,, by the assumption

[ {v(gew). Then, the claim follows from that the Tate parameter of £/H is equal to [-th power
of the one of E. ]

Corollary 1.14. ([GenEll, Lemma 3.5]) In the situation of Lemma 1.13 (3), we have

[

T P (01,000 ([B5 0]) < Wby, o,1.00p) ([ ) +log L+ C

for some constant C. € R which (may depend on €, however) is independent of E, F, H and I.

Remark 1.14.1. The above corollary says that if E[l] has a global multiplicative subgroup,
then the height of E is bounded. Therefore, a global multiplicative subspace M C E[l] does
not exist for general £ in the moduli of elliptic curves. A “global multiplicative subgroup” is
one of the main themes of inter-universal Teichmiiller theory. In inter-universal Teichmiiller
theory, we construct a kind of “global multiplicative subgroup” for sufficiently general F in the
moduli of elliptic curves, by going out the scheme theory. See also Appendix A
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Proof. For € > 0, take ¢ > 0 such that = < 1+ e. There is a constant A{ € R such that
hte,, ({0,1,00}) < 2ht"™® + ¢'ht,, o1 ({0,1,00}) T A€ on Up1(Q) by the second ind the third inequalities
of Lemma 1.13 (1). We have ht,, , ({0,1,00}) < 2(14€)ht™* + A, on Up1 (Q) by the choice of € > 0,
where A, := 2= AL By the first inequality of Lemma 1.13 (1), we have 2ht™lt < ey, ({0,1,001) +

B for some constant B € R. Put C. := A. 4+ B. Then, we have 1i€htg‘;‘ (o.1,00n([Era]) =

LB oo ((B/H, Im(a)]) < 206" [/, Tm(a)]) + A, < 206™(E,a]) + logl + A <

14+e™ "wp1
ht,, ( {;1700})([E ,a]) +logl + B, where the equality follows from Lemma 1.13 (3), and the first

inequality follows from Lemma 1.13 (2). Then, the corollary follows from that ht;”’ o ({0.1,00)) ~
ht,,, ({0,1,00)) (See just before Lemma 1.13). O

From now on, we use the assumptions and the notation in the previous subsection. We
also write log(q") (resp log(q)) for the R-valued function on the A-line Up obtained by
the normaised degree [LQ jdeg,, of the effictive (Q-)arithmetic divisor determined by the g-
parameters of an elliptic curve over a number field L at arbitrary non-Archimedean primes.
(resp. mnon-arcihmedean primes which do not divide 2). Note that log(q) in the previous
subsection avoids the primes dividing 2, and that for a compactly bounded subset KX C Up1 (Q)
whose support contains the prime 2, we have log(q") ~ log(q'?) on K (See [I[UTchIV, Corolarry
2.2 (i)]). We also note that we have

1 non
6 IOg(qv) ~ ht,, 1 ({0,1,00}) ~ ~ ht b1 ({0,1,00})

on PY(Q) (For the first equivalence, see the argument just before Lemma 1.13, and the proof
of Lemma 1.13 (1); For the second equivalence, see the argument just before Lemma 1.13).

Proposition 1.15. ([I[UTchIV, Corollary 2.2]) Let K C Up(Q) be a compactly bounded sub-
set with support containing Vg© and 2 € Vg, and A C Up (@) a finite set containing
{[(E,a)] | #Autg(E) # {£1}}. Then, there exists Cx € R, which depends only on K, sat-
isfying the following property: Let d € Zsg, € € Ryg, and set d* = 2'2.33.5.d. Then there
exists a finite subset Creyy, C Up(Q)=? such that €rey, D A and satisfies the following
property: Let v = [(Er,a)] € (Upn(F)NK)\ €rex g, with [F: Q] < d. Write Frea for the
field of moduli of B := Ep xp F, and Fipa == Fuod(Er,.,[2]) C F where Eg, ., is a model
of Bz over Fyoa (Note that Fmod(EFmd [2]) is independent of the choice of the model Ep, _, by
the assumption of Autw(Ex) # {£1}, and that Fuoa(EF, ,[2]) C F since [(Er, )] € Upi(F).
See Lemma 1.7 (1)). We assume that all the points of Er[3.5] are rational over F and that
F = Fypa(vV—1,Ep,,[3.5]), where Ep,, is a model of Ex over Fy,q which is defined by the
Legendre form (Note that Ep = Ef, , Xp,, I' and Er has at most semistable reduction for all
w € V(F)*" by Lemma 1.7 (2), (3)). Then, Er and Fyoq arise from an initial ©-data (See
Definition 10.1)

(F/F, XFvlngv Vgifldv )
(Note that it 1s included in the definition of initial ©-data that the image of the outer homomor-
phism Gal(Q/F) — GLy(F,) determined by Er[l] contains SLy(F;)). Furthermore, we assume

that | —|log(q )] < —|log(©)

for Er and Fyoq, which arise from an initial ©-data. Then, we

have
hty,, ({01,001 (2) < (14 €)(log-diffp: () + log-condg 1,001 (2)) + Ck.

Remark 1.15.1. We take A = {[(E,a)] € Un(Q) | E does not admit Q-core}. See Def-
inition 3.3 and Lemma C.3 for the definition of k-core, the finiteness of A, and that A D

{[(B,0)] | #Autg(E) # {£1}}.
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Remark 1.15.2. By Proposition 1.15, Theorem 0.1 is reduced to show —[log(q)| < —|log(©)|
for Er and Fyq, which arise from an initial ©-data. The inequality —|log(q )| < — log(©)| is

almost a tautological translation of the inequality which we want to show (See also Appendix A).
In this sense, these reduction steps are just calculations to reduce the main theorem to the
situation where we can take an initial ©-data, i.e., the situation where the inter-universal
Teichmiiller theory works, and no deep things happen in these reduction steps.

Proof. First we put €ree, = A, and we enlarge the finite set Ercg, several times in the
rest of the proof in the manner that depends only on K and d, but not on x. When it will
depend on € > 0, then we will change the notation &xcy 4 by Erex .. Take z = [(Er,a)] €
(Up (F)NK) \ Crege g-

Let Nprm € Ry be the constant in Lemma 1.11. We take another constant &,m € Rsg
determined by using the prime number theorem as follows (See [GenEll, Lemma 4.1]): We
define 9(x) := 3 e pea 108D (Chebychev’s J-function). By the prime number theorem (and
Proposition C.4), we have ¥(z) ~ x (z — 00), where ~ means that the ration of the both side
goes to 1. Hence, there exists a constant R 3 &4 > 5 such that

2 4
(s0) 3% < V(z) < 37

for any = > &pm.
Let h := h(Ep) = log(q") = ﬁ > vev(ryon T folog(p,) be the summation of the contri-

butions from g, for v € V(F)"" where p, and f, denote the residual characteristic at v and
the degree of extension of the residue field over I, respectively. Note also that h, € Zx
and that h, = 0 if and only if EFr has good reduction at v. By %log(qv) ~ htwwl({0,17oo}) and
Proposition C.1, we there are only finiely many isomorphism classes of Er (hence finiely many
x = [EF, a]) satisfying h: < &prm + Mprm- Therefore, by enlarging the finite set €rey 4, we may
assume that

(Sl) h% Z fprnl + nprnl-
Note that h> > 5 since {prm > 5 and 7Ny > 0. We have

(s2) 2d"hzlog(2d*h) > 2[F : Qlhz log(2[F : Q) > Y 2k log(2hyf, 1og(py))hufo log(py)

he#£0
> N hElog(ho)he > Y hTElog(hu)hy > Y log(hy),
hy#0 hy>ht/2 hy>h1/2

where the third inequality follows from 2log(p,) > 2log2 =log4 > 1. By [F : Q] < d*, we also
have

(s3) d'h: > [F:Qhi = Y h7ih,f,log(p,) > > h7ih,log(p,)
’UGV(F)non fUGV non
> > hihylog(py) > Y log(py).
hu2h1/2 hv2h1/2

Let A be the set of prime numbers satisfying either
(S1) p < b3,
(S2) p | hy # 0 for some v € V(F)™" or
(S3) p = p, for some v € V(F)™" and h, > h.
Then, we have
S’1 apy logp = ¥ h2) < 4h2 by the second inequality of (s0), and h: > &orm, Which
p:(S1) 3 P
follows from (s1),
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(S72) 3152 mot (53 1087 < 3o oy log(he) < 2d°h log(2d*h) by (s2), and
(S73) >, (s3)logp < d*hz by (s3).
Then, we obtain

(S'123) Jai=Y log(p) < 2h% + d*hz + 2d"h? log(2d*h)

peA

< 4d*h2 1og(2d*h) < —Epm + 5d*h2 log(2d*h),

where the first inequality follows from (S’1), (S'2), and (S’3), the second inequality follows
from 2h2 < d*h? and log(2d*h%) > log4 > 1, and the last inequality follows from (s1). Then,
there exists a prime number [ ¢ A such that | < 2(J4 + &,m), because otherwise we have
Va > D204+ Epm)) = 2(2(04 + Eum)) = 504, by the second inequality of (s0), which is a
contradiction. Since [ € A, we have
(P1) (upper bound of 1)
(5 <)h2 <1< 10d*hz log(2d*h) ( < 20(d*)2h?),
where the second inequality follows from that [ does not satisfy (S1), the third inequal-
ity follows from | < 2(J4 + &pm) and (S'123), and the last inequality follows from
log(2d*h) < 2d*h < 2d*h3 (since logz < z for = > 1),
(P2) (monodromy non-vanishing modulo /)
[t h, for any v € V(F)"" such that h, # 0, since [ does not satisfy (S2), and
(P3) (upper bound of monodromy at [)

if | = p, for some v € V(F)*, then h, < h2, since [ does not satisfy (S3).

Claim 1: We claim that, by enlarging the finite set €rcy 45, we may assume that

(P4) there does not exist I-cyclic subgroup scheme in Erll].
Proof of Claim 1: If there exists an [-cyclic subgroup scheme in Er[l], then by applying Corol-
lary 1.14 for e = 1, we have 552ht,,  (0.1,00p) () < logl+ Tk <1+ T (since logz < x for z > 1)
for some Tic € Ry, where Tic depends only on K. Thus, ht,, , ({0,1,c0}) (%) is bounded because we
have htwpl({o,l,oo})(x) < % + %TK < 71_—42 + %T ic. Therefore, there exist only finitely many
such z = [Ep, a|’s by Proposition C.1. The claim is proved.

Claim 2: Next, we claim that, by enlarging the finite set €rcg 4, we may assume that
(P5) 0 # VPhad .= fy € You | ¢ § 2], and Ep has bad multiplicative reduction at v}

mod °* mod

Proof of Claim 2: First, we note that we have
(p5a) h2 logl < h7 log(20(d*)*h?) < 2h2 log(5d*h)
(p5b) < 8hz log(2(d*)ihi) < 8h22(d*)iht = 16(d*)ih1.

where the first inequality follows from (P1). If VP = ()  then we have h =~ log(q®?) <

hz logl < 16(d*)ih% on IC, where the first inequality follows from (P3), and the last inequality

is (p5b). Thus, h%, hence h as well, is bounded. Therefore, there exist only finitely many such
x = [Er,a]’s by Proposition C.1. The claim is proved.

Claim 3: We also claim that, by enlarging the finite set €rcy 4, we may assume that

(P6) The image of the outer homomorphism Gal(Q/F) — GLy(F;) determined by Epll]
contains SLy ().
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Proof of Claim 3 (See [GenEll, Lemma 3.1 (i), (iii)]): By (P2) I { h, # 0 and (P5) V?d, =£ (), the

11
0 1
an [-Sylow subgroup S of GLy([F,), and the number of [-Sylow subgroups of GLs(IF;) is precisely
[l + 1. Note that the normaliser of S in GLy(F;) is the subgroup of the upper triangular
matrices. By (P4) E[l] 7 (I-cyclic subgroup), the image contains a matrix which is not upper
triangluar. Thus, the number ny of [-Sylow subgroups of H is greater than 1. On the other
hand, ny = 1 (mod ) by the general theory of Sylow subgroups. Then, we have ny = [+1 since

1 < nyg <I[+1. In particular, we have N, = (1 1) ,N_ = (1 O) € H. Let G C SLy(IFy) be

image H of the outer homomorphism contains the matrix N, := . Here, N, generates

01 11
the subgroup generated by N, and N_. Then, it suffices to show that G = SLy(TF;). We note
that for a,b € F;, the matrix N’ N¢ (this makes sense since N = NL = 1) takes the vector

. a o x . o
v = (1) to (ab n 1). This implies that we have (]Fz X IFZ) C G. This also implies that for

c € F[, there exists A, € G such that A.v = (C) (= cAyv). Then, we have cv = A]' A € Gu.
Thus, we proved that (F; x F;)\ { (8) } C Gu. Take any matrix M € SLy(F,;). By multiplying
M by an element in G, we may assume that Mv = v, since (F; x F;) \ {(8)} C Guv. This

10

means that M C {(* 1) } Thus, M is a power of N_. The claim is proved.

Then, we take, as parts of initial ©-data, F to be Q so far, F, Xp, [ to be the number field
F'; once-punctured elliptic curve associated to Er, and the prime number, respectively, in the
above discussion, and V24, to be the set VP24, of (P5). By using (P1), (P2), (P5), and (P6),
there exist data C'y, V, and ¢, which satisfy the conditions of initial ©-data (See Definition 10.1.
The existence of V and ¢ is a consequence of (P6)), and moreover,

(P7) the resulting initial ©-data (F/F, Xp,l,C, V, VP ¢) satisfies the conditions in Sec-
tion 1.3.

Now, we have | —|log(q)| < —|log(@)|| by assumption, and apply Proposition 1.12 (Note that

we are in the situation where we can apply it).
Then we obtain

1
glogm) < (1 +

(A) < (1 + d*h—%> (log(274) + log(§4)) + 200(d*)?A2 log(2d*h) + 207,

8Odmod

) (log(2) + log(§*1)) + 20(d0ql + Tprm )

where the second inequality follows from the second and third inequalities in (P1) and 80d,,0q <
di g (= 21233 5.dnea) < d*(:= 2'2.3%.5.d0a). We also have

1 1 1 1 1 1
(B) Llog(q®) — L10g(a) < thlogl < Lnblog(san) < b log(2dh),
where the first inequality follows from (P3) and (P5), the second inequality follows from (p5a),

and the last inequality follows from 5 < 23. We also note that

(© £ log(a) — < log(a®) < B
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for some constant Bx € R, which depends only on K, since log(q”) ~ log(q?) on K as
remarked when we introduced log(q") and log(q') just before this proposition. By combining
(A), (B), and (C), we obtain

11 , 1
h= 6log(q ) < ( +d'h ) (log(2"w4) + log(f*)) + (15d*)?h= log(2d*h) + 5Ck

\ 1
(ABC) (1 + d*h_7> (10g( Ftpd) + log(fFrpd)) + 6h5(60d*)2h—§ log(Qd*h) + §CK,

where we put Cx := 40n,m + 2By, the first inequality follows from 200 < 152, the second
inequality follows from 1 < 32 = 2242, Here, we put eg := (60d*)2h~2 log(2d*h) (> 5d*h~2).
We have

(Epsilon) ep < 4(60d*)2h 2 log(2(d*)Thi) < 4(60d*)3h~2ht = 4(60d*)3h ™4

Take any € > 0. If ez > min{1, ¢}, then hi, hence h as well, is bounded by (Epsilon). Therefore,
by Proposition C.1, by replacing the finite set €rey ; by a finite set €re 4., we may assume
that ez < min{1,e}. Then, finally we obtain

A (1 - g) (1 ! 16E> (1og(07) + log (1)) + (1 - EE) 3
6 5 5 5) 2

< (1+ep) (log(d™*) +log(§)) + Cx

<(l1+e) (log-dlﬁpl (rp) + log-cond{()’l’oo}(:BE)) + Cx,

where the first inequality follows from the definition of ez and € > 5d*h_% the second inequality

1+1 < 1+eg (i.e., eg(1—€g) > 0, which holds since eg < 1), and 1—2¢5 > 1 (i.e.,
5

e < 2, which holds since ez < 1), and the third inequality follows from ez < ¢, log-diffp: (x E) =
log(OFth) by definition, and log(ff»¢) < log-condyo1,c0}(2g) (Note that Supp(f) excludes the
places dividing 2 in the definition). Now the proposition follows from %log(qv) ~ Nty ({0,1,00))
on P'(Q) as remarked just before this proposition (by the effect of this ~, the Cx in the
statement of the proposition may differ from the Ci in the proof). O

follows from

Remark 1.15.3. (Miracle Identity) As shown in the proof, the reason that the main term
of the inequality is 1 (i.e., ht < ([1]+ ¢)(log-diff + log-cond) 4 bounded term) is as follows
(See the calculations in the proof of Lemma 1.10): On one hand (ht-side), we have an average

21 73 Zé/ 21 52 ﬁl/%% (l)3 = i. Note that we multlply 5 since the theta function under
consideration 11ves in a covering of degree 2/, and that we multlply 6 since the degree of A-line

over j-line is 6. On the other hand ((log-diff +log-cond)-side), we have an average l/Lz Zﬁ/ S

l/%% (é)2 = ﬁ. These two values miraculously coincide! In other words, the reason that the

main term of the inequality is 1 comes from the equality

1
6 (the degree of A-line over j-line) x 5 (theta function involves a double covering)

1 1 -
X 5 (the exponent of theta series is quadratic) x 3 (the main term of Z j? = n’/3)
j=1

1 1 -
=51 (the terms of differents are linear) x 5 (the main term of Z j~n?/2).
j=1
This equality was already observed in Hodge-Arakelove theory, and motivates the definition
of the ©-link (See also Appendix A). Mochizuki firstly observed this equality, and next he
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established the framework (i.e. going out of the scheme theory and studying inter-universal
geometry) in which these calculations work (See also [IUTchIV, Remark 1.10.1]).

Note also that it is already known that this main term 1 cannot be improved by Masser’s
calculations in analytic number theory (See [Mass2]).

Remark 1.15.4. (e-term) In the proof of Proposition 1.15, we also obtained an upper bound
of the second main term (i.e., the main behaviour of the term involved to €) of the Diophantine
inequality (when restricted to K):

ht < § + %62 log(d)

on K, where * is a positive real constant, ht := ht,,_, ({0,1,00}) and ¢ := log-diffp: +log-cond 1,0}
(See (ABC) in the proof of Proposition 1.15) It seems that the exponent 3 suggests a possible
relation to Riemann hypothesis. For more informations, see [IUTchIV, Remark 2.2.1] for
remarks on a possible relation to inter-universal Melline transformation, and [vFr|, [Mass2]
for lower bounds of the e-term from analytic number theory.

Remark 1.15.5. (Uniform ABC) So-called uniform abc conjecture (uniformity with respect
to d of the bounded discrepancy in the Diophantine inequality) is not proved yet, however, we
have an estimate of the dependence on d of our upper bound as follows (cf. [[UTchIV, Corollary
2.2 (ii), (iil)]): For any 0 < €4 < 1, put €} := #-€4(< 3). Then, we have

min{1, e} 'ex = min{1, e} "1(60d*)2h 2 log(2d*h) = (min{1, e}e}) " (60d*)2h 2 log (29 (d* ) ahi)
* * l—E*

< (min{l,6}62)_1(60d*)2+6dh_(%_€d) < ((min{1, e}ey) > (60d" ) Feh)2

where the first inequality follows from hz > 5, and z < log x for > 1, and the second inequality
follows from —3(3 —€j) = =34+ 2ea < -3 < —land (3 —€))(4+€) = —763 + Tea +2 >
%‘Ed +2 > €;+2. We recall that, at the final stage of the proof of Proposition 1.15, we enlarged
€rex g to Ereye 4 so that it includes the points satisfying ez > min{1, ¢}. Now, we enlarge €rc- 4
to €re 4. ,» Which depends only on K, d, €, and ¢4, so that it includes the points satisfying
eg > min{l,e}. Therefore, we obtain an inequality

1
ht = Eh < Hypif min{ 1, 6}_3€;3d4+6d + Hy

on €reg g e,» Where Hyyie € Ry is independent of K, d, €, and ¢4, and Hx € R+ depends only
on K. The above inequality shows an explicit dependence on d of our upper bound.

2. PRELIMINARIES ON ANABELIAN GEOMETRY.

In this section, we give some reviews on the preliminaries on anabelian geometry which will
be used in the subsequent sections.

2.1. Some Basics on Galois Groups of Local Fields.

Proposition 2.1. ([AbsAnab, Proposition 1.2.1]) For i = 1,2, let K; be a finite extension of
Qp, with residue field k;, and K; be an algebraic closure of K; with residue field k; (which is
an algebraic closure of k;). Let e(K;) denote the ramification index of K; over Q,, and put
fKG) = [k - Fp,]. Put Gg, = Gal(K;/K;), and let Pk, C Ix,(C Gg,) denote the wild inertia
subgroup and the inertia subgroup of G, respectively. Let a : G, — Gy, be an isomorphism
of profinite groups. Then, we have the following:
(1) pr =p2(=:p).
(2) The abelianisation o* : G52, = G%,, and the inclusions k' C O C K C G32, where
the last inclusion is defined by the local class field theory, induce isomorphisms
(a) o : k) 5k,
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(b
(c
(

o Of = Ok,
a1 Of = O, (cf. Section 0.2 for the notation O% ), and
a®®

~

KX — K.
(a Ky QP] [KQ Qp]f
(b) f(K1) = [(K,), and
(c) e(K1) = e(Ky).
The restrictions of a induce
(a) Oé|[K1 : IKI —)IKQ, and
( ) Oé|pK1 :PKl g PKQ.
(5) The induced map G3 /Ix, = G4 /I, preserves the Frobenius element Froby, (i.e., the
automorphism given by k; > x — x#%),
(6) The collection of the isomorphisms {(oz\Ul)ab L URP S Usb} a induces

open

Gr, D U1—5UCG,
an isomorphism jig;z(K1) = ngz(Ka), which is compatible with the actions of Gy, for
i=1,2, via o : G, = Gg,. In particular, o preserves the cyclotomic characters Xeye,i
fori=1,2.
(7) The isomorphism o : H*(Gal(Ky/K>), pigyz(K2)) = H?*(Gal(Ki/K1), poyz (7)) in-
duced by o is compatible with the isomorphisms H*(Gal(K;/K;), g/z(K:)) = Q/Z
the local class field theory fori=1,2.

[

(3)

—

)
)
)
)
)
)

(4)

Remark 2.1.1. In the proof, we can see that the objects in the above (1)—(7) are functorially
reconstructed by using only K; (or K3), and we have no need of both of K; and K, nor the
isomorphism « (i.e., no need of referred models). In this sense, the reconstruction algorithms
in the proof are in the “mono-anabelian philosophy” of Mochizuki (See also Remark 3.4.4

(2), (3))-

Proof. We can group-theoretically reconstruct the objects in (1)-(7) from G, as follows:
(1): p; is the unique prime number which attains the maximum of { ranky, G%g } J: prime? by the

local class field theory G% == (K)".
2a): k' = (G pritme-to-p the prime-to-p part of the torsion subgroup of G%®, where p is
7 g K;

tors
group-theoretically Teconstructed in (1).
(3a): [K; : Q) = rankg, G52 — 1, where p is group-theoretically reconstructed in (1).
(3b): p/ B = 4£(k)) + 1, where k; and p are group-theoretically reconstructed in (2a) and
(1) respectively.
(3c): e(K;) = [K; : Q)/f(K;), where the numerator and the denominator are group-
theoretically reconstructed in (3a) and (3b) respectively.

(4a): I, = Mgy 5u:open, e(v)=c(Gr ) Us where e(U) denotes the number group-theoretically

constructed from U in (3c) (i.e., e(U) := (rankg,U* — 1)/ log,(# L(UAPYPImetoP 4 1) ywhere
{p} := {p | ranks, G52 = max;rankz, G52 } and log, is the (real) logarithm with base p).

(4b): Pk, = (Ik,)P*? the pro-p part of I,, where I, is group-theoretically reconstructed in
(4a).

(2b): Ok, = Im (Ig,) :=Im {[K — G, — Gab} by the local class field theory, where I, is
group- theoretlcally reconstructed in (4a).

(5): The Fronbenius element Froby, is characterised by the element in G, /I, (= G52 /Im (I,))
such that the conjugate action on I, /Py, is a multiplication by p/%9) (Here we regard the
topological group I,/ Pk, additively), where I, and Pk, are group-theoretically reconstructed
in (4a) and (4b) respectively.
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(2c): We reconstruc O%. by the following pull-back diagram:

04>IH1([K1) G}lé G%/Im(IKl)HO
0 ——Im (Ig,) O%, Z>oFroby, — 0,

where I, and Frobg, are group-theoretically reconstructed in (4a) and (5) respectively.
(2d): In the same way as in (2c¢), we reconstruc K. by the following pull-back diagram:

0*>III1(]KZ) Gajg G%/Im(IKZ)HO
0 — Im (Ix,) KX ZFroby, — 0,

where I, and Frobg, are group-theoretically reconstructed in (4a) and (5) respectively.

(6): Let L be a finite extension of K;. Then, we have the Verlangerung (or transfer)
Gi}(bi — G of G, C Gk, by the norm map Gf}g ~ H\(Gg,,Z) — H(G,Z) & G in
group homology, which is a group-theoretic construction (Or, we can explicitly construct the
Verlangerung G%g — G% without group homology as follows: For x € G, take a lift 7 € G,
of . Let Gk, = [[, ;G denote the coset decomposition, and we write Zg; = g;¢;)x; for each

i, where z; € G. Then the Verlangerung is given by G% 3 = — ([], z;mod [G, GL]) € G?,

where [G, G] denotes the topological closure of the commutator subgroup [Gr,Gr] of Gp).

Then, this reconstructs the inclusion K < L*, by the local class field theory and the re-

construction in (2d). The conjugate action of G, on G — G2 preserves L* C G2 by the

reconstruction of (2d). This reconstructs the action of G, on L*. By taking the limit, we

reconstruct K; , hence pg/z(K;) = Q/Z @5 Hom(Q/ 7, K; ") equipped with the action of G K-
(7): The isomorphism H?(Gal(K;/K;), po/z(K;)) = Q/Z is defined by the composition

~

H2(Gal(K7/ Ko), poya(R) S B2 (Gal(Ko/K), K ) = H(Gal(K /K, (K))
X HA(Gal(K™/K;), Z) <~ HY(Gal(K™/K;),Q/Z) = Hom(Gal(K™/K;),Q/Z) 5 Q/Z,

where the first isomorphism is induced by the canonical inclusion pg,z (K;) — K, ", the multi-
plicative group (K}™)* (not the field K}™) of the maximal unramified extension K" of K; and the
Galois group Gal(K}"/K) are group-theoretically reconstructed in (2d) and (4a) respectively,
the third isomorphism is induced by the valuation (K™)* — Z, which is group-theoretically
reconstructed in (2b) and (2d), the fourth isomorphism is induced by the long exact sequence
associated to the short exact sequence 0 — Z — Q — Q/Z — 0, and the last isomorphism is
induced by the evaluation at Frobg,, which is group-theoretically reconstructed in (5). Thus,
the above composition is group-theoretically reconstructed. U

2.2. Arithmetic Quotients.

Proposition 2.2. ([AbsAnab, Lemma 1.1.4]) Let F be a field, and put G := Gal(F/F) for a
separable closure F of F. Let

1A= —-G—=1

be an exact sequence of profinite groups. We assume that A is topologically finitely generated.

(1) Assume that F' is a number field. Then A is group-theoretically characterised in 11 by
the maximal closed normal subgroup of I1 which is topologically finitely generated.
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(2) (Tamagawa) Assume that F is a finite extension of Q,. For an open subgroup II' C 1I,
we put A :=TI'NA and G' :=1I'/A', and let G’ act on (A')* by the conjugate. We
also assume that

(Taml)  VII' CII: open, Q := ((A')ab> o /(tors) is a finitely generated free Z-module,

where ()¢ denotes the G'-coinvariant quotient, and (tors) denotes the torsion part of
the numerator. Then, A is group-theoretically characterised in 11 as the intersection of
those open subgroups II' C 11 such that, for any prime number | # p, we have

(Tam2) dimg, (IT)*™ ©5 Q, — dimg, (I1)* @5 Q,
= [I1: 11] (dimg, (I1)"* 5 @, — dimg, ()™ @5 Q1)

where p 1s also group-theoretically characterised as the unique prime number such that
dimg, (1) ®5 Q, — dimg, (1) ®5 Q; # 0 for infinitely many prime numbers [.

Proof. (1): This follows from the fact that every topologically finitely generated closed normal
subgroup of Gal(F'/F) is trivial (See [FJ, Theorem 15.10]).
(2): We have the inflation-restriction sequence associated to 1 — A — II — G — 1:
1 — HY(G.Q/Z) — H'(I,Q/Z) — H'(A,Q/2)" — H*(G,Q/Z),
where (-)¢ denotes the G-invariant submodule. For the last term H?*(G,Q/Z), we also have
H2(G,Q/Z) = limy H*(G,12,/Z) = liny Hom(H*(G, ), Q/Z) = Hom(lim H*(G, pi), Q/Z) —
0 by the local class field theory. Thus, by taking Hom(—,Q/Z) of the above exact sequence,
we obtain an exact sequence
0— (A™), =1 = G* = 0.

Take the finite extension F’ corresponding to an open subgroup G’ C G. Then, by the assump-
tion of (Taml), we obtain

dimg, (I')* ©3 Q, — dimg, (I)" &7 Q

= dimg, (G')" ®3 Q, — dimg, (G')" ©z Qi = [F: Qy],
where the last equality follows from the local class field theory. The group-theoretic charac-
terisation of p follows from the above equalies. The above equalites also imply that (Tam?2)

is equivalent to [F’ : Q] = [II : II'|[F" : Q,], which is equivalent to [II : II'] = [G : G'], i.e.,
A = A’. This proves the second claim of the proposition. O

Lemma 2.3. ([AbsAnab, Lemma 1.1.5]) Let F' be a non-Archimedean local field, and A a
semi-abelian variety over F. Take an algebraic closure F of F, and put G := Gal(F/F). Let
T(A) := Hom(Q/Z, A(F)) denote the Tate module of A. Then, Q = T(A)g/(tors) is a finitely

generated free Z-module.

Proof. We have an extension 0 — S — A — A’ — 0 of group schemes over F', where S is a
torus and A’ is an abelian variety over F. Then T'(S) = Z(1)®" for some n after restristing on

an open subgroup of G, where T'(S) is the Tate module of T". Thus, the image of T'(S) in @ is
trivial. Therefore, we may assume that A is an abelian variety. By [SGATt1, Exposé IX §2],
we have extensions

0— T(A)=1 = T(A) = T(A)° =0,

0—=T(A)?=TA> =TA) =0
of G-modules, where T(A)<™! and T'(A)="? are the “fixed part” and the “toric part” of T'(A
respectively in the terminology of [SGATt1, Exposé IX §2], and we have isomorphisms T'(A) ! =
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T(B) for an abelian variety B over F which has potentially good reduction, and T(A)° =
M° &, Z, T(A) ™22 M2 ®; Z(l), where M° and M2 are finitely generated free Z-modules
and G acts both on M® and M2 via finite quotients. Thus, the images of T'(A)™? and T(A)™!
in @ are trivial (by the Weil conjecture proved by Weil for abelian varieties in the latter case).
Therefore, we obtain @ 2 (T'(A)%)g/(tors), which is isomorphic to (M%) /(tors) ®7, Z, since Z
is flat over Z. Now the lemma follows, since (M?°)s/(tors) is free over Z. O

Corollary 2.4. We have a group-theoretic characterisation of A = m (X%, T) in Il = m(X,7)
as Proposition 2.2 (2) (Tam2), where X is a geometrically connected smooth hyperbolic curve
over a finite extension F of Q,, and s : Spec F — X a geometric point lying over Spec F (which
gives a geometric point s on Xz = X Xp F via Xz — X).

Remark 2.4.1. Let X be a set of prime numbers such that p € ¥ and #X > 2. In the situation
of Corollary 2.4, let A* be the maximal pro-3 quotient, and put IT* := II/ker(A — A¥). Then,
the algorithm of Proposition 2.2 (2) works for II* as well, hence Corollary 2.4.1 holds for IT*
as well.

Proof. The corollary immediately follows from Proposition 2.2 (2) and Lemma 2.3. U
2.3. Slimness and Commensurable Terminality.

Definition 2.5. (1) Let G be a profinite group. We say that G is slim if we have Zg(H) =
{1} for any open subgroup H C G.
(2) Let f : Gy — G5 be a continuous homomorhism of profinite groups. We say that G,
relatively slim over G, (via f), if we have Zg,(Im{H — G2}) = {1} for any open
subgroup H C G.

Lemma 2.6. ([AbsAnab, Remark 0.1.1, Remark 0.1.2]) Let G be a profinite gruop, and H C G
a closed subgroup of G.

(1) If H C G s relatively slim, then both of H and G are slim.

(2) If H C G is commensurably terminal and H is slim, then H C G is relatively slim.

Proof. (1): For any open subgroup H' C H, we have Zy(H') C Zg(H') = {1}. For any open
subgroup G’ C G, we have Z4(G') C Zg(H NG") = {1}, since H NG’ is open in H.

(2): Take an open subgroup H' C H. The natural inclusion Co(H) C Ce(H') is an equality
since H' is open in H. Then, we have Zg(H') C Cg(H') = Cq(H) = H. This combined with
Zy(H') = {1} implies Zg(H') = {1}. O

Proposition 2.7. ([AbsAnab, Theorem 1.1.1, Corollary 1.3.3, Lemma 1.3.1, Lemma 1.3.7])
Let F be a number field, and v a non-Archimedean place. Let F, be an algebraic closure of F,,,
F the algebraic closure of F in F,,.
(1) Put G := Gal(F/F) > G, := Gal(F,/F,).
(a) G, C G is commensurably terminal,
(b) Gy C G is relatively slim,
(¢) Gy is slim, and
(d) G is slim.
(2) Let X be a hyperbolic curve over F. Take a geometric point s : Spec F, — X7 =X Xp
E, lying over Spec F, (which gives geometric pointss on Xz = XxpF, Xp, = XxpF,,
and X via Xz — X5 — X, and X — Xp, = X). Put A = m(X%,5) 2 m (X5, 5),
II:=m(X,3), and 11, := m(XEg,,S). Let x be any cusp of Xz (i.e., a point of the unique
smooth compactification of Xz over F which does not lie in X%), and I, C A (well-
defined up to conjugates) denote the inertia subgroup at x (Note that I, is isomorphic

to 2(1)) For any prime number L, let [g(gl) — AD denote the mazimal pro-l quotient of
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I, C A (Note that 1 is isomorphic to Zy(1) and that it is easy to see that I - A0
is injective).

(a) A is slim,

(b) II and 11, are slim, and

(c) I ¢ AO and I, € A are commensurably terminal.

Remark 2.7.1. Furthermore, we can show that Gal(F/F) is slim for any Kummer-faithful
field F' (See Remark 3.17.3).

Proof. (1)(a)(See also [NSW, Corollary 12.1.3, Corollary 12.1.4]): First, we claim that any
subfield K C F with K # F has at most one prime ideal which is indecomposable in F. Proof
of the claim: Let p; # po be prime ideals in K which do not split in F. Let f; € K[X] be any
irreducible polynomial of degree d > 0, and f, € K[X] a completely split separable polynomial
of the same degree d. By the approximation theorem, for any € > 0 there exists f € K[X] a
polynomial of degree d, such that |f — fi|,, < € and |f — fa|p, < €. Then, for sufficiently small
e > 0 the splitting fields of f and f; over K, coincide for i = 1,2 by Krasner’s lemma. By
assumption that p; # p, do not split in F, the splitting fields of f; and f» over K coincide.
Then, we have K = F, since splitting field of f, is K, and f; is any irreducible polynomial.
The claim is proved. We show (la). We specify a base point of G, to kill the conjugacy
indeterminacy, that is, we take a place v in K, over v, and we use G5 instead of G,,. Take any
g € Cq(G5). Then Gz NGy # {1}, since Gz N gGzg~ ' = G5 N Gyp has finite index in G5. Then
the above claim implies that Gz N Gy = Gy, i.e., gv = v. Thus, we have g € G5.

(c¢): Let Gk C G, be an open subgroup, and g € Z;,(Gk). Then for any finite Galois
extension L over K, the action of g on Gp, hence on G2, is trivial. By the local class field
theory, the action of g on L* is also trivial. Thus, we have g = 1, since L is any extension over
K.

(b) follows from (a), (c), and Lemma 2.6 (2).

(d) follows from (b) and Lemma 2.6 (1).

(2)(a): This is similar to the proof of (1c). Let H C A be an open subgroup. Let Xy — X&
denote the finite étale covering corresponding to H. We take any sufficiently small open normal
subgroup H' C A such that H" € H and the corresponding finite étale covering Xy — Xy has
the canonical compactification Xz of genus > 1. We have an identification H' = 7(Xg/,y)
for a basepoint y. Let Jg := Jac(Xp+) with the origin O denote the Jacobian variety of Xy
Take an element g € A. Then we have the following commutative diagram of pointed schemes:

R fy
(Xgr,y)— (Xg,y) —— (Ju, O)

gXJ/ ixl faw) gjl
(Xur, 9(y)— (Xur, 9(y)) — (Jur, 9(0)),

which induces

7Tl<XH/ay>4»7T1(JH'70) = T(JH’7O)

gfl g;]l i gil
m(Xur, 9(y)) —= (S, 9(0)) —=T(Ju, 9(0)),

where T'(Jy/,0) and T(Jg, g(O)) denote the Tate modules of Jy with origin O and ¢(O)
respectively (Note that we have the isomorphisms from 7; to the Tate modules, since F is
of characteristic 0). Here, the morphism ¢’ : (Jg:,O) — (Jgr,g(O)) is the composite of an
automorphism (¢7) : (Ju,O) — (Jur,O) of abelian varieties and an addition by g(O). We
also have a conjugate action conj(g) : H' = 71 (Xgr,y) — m(Xgr, g*(y)) = gH'g~' = H’', which
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induces an action conj(g)* : (H")*> — (H')*». This is also compatible with the homomorphism
induced by (¢g7)":

(H')* —T(Ju,0)
conj(g)abl (gj)il
(H"® —T(Jy, O).

Assume that g € Za(H). Then the conjugate action of g on H’, hence on (H')*", is trivial. By
the surjection (H')® — T'(Jgs, O), the action (¢g7). : T(Jg,0) — T(Jg,0) is trivial. Thus,
the action (¢7)" : (Jgr,0) — (Jgr, O) is also trivial, since the torsion points of Jg: are dense in
Jrr. Therefore, the morphism g7 : (Jy/, O) — (Jx, g*(O)) of pointed schemes is the addition by
g(0O). Then, the compatibility of ¢* : (Xz,y) — (X, g(y)) and g7 : (Jgr, O) — (Jur, g(O))
with respect to f, and fy, (i.e., the first commutative diagram) implies that ¢* : (Xp,y) —
(X#,9(y)), hence g% : (Xgr,y) = (Xw,g(y)), is an identity morphism by (the uniqueness
assertion of) Torelli’s theorem (See [Mil, Theorem 12.1 (b)]). Then, we have g = 1, since H' is
any sufficiently small open subgroup in H.

(b) follows from (a), (1c), and (1d).

(¢): This is similar to the proof of (1a). We assume that Ca(I,) # I (resp. Can (L,(;l)) # L&l)).
Take g € Ca(I,) (resp. CA(”(IS))) which is not in I, (resp. 1), Since g € I, (resp. g & Ig(gl)),
we have a finite Galois covering (resp. a finite Galois covering of degree a power of [) Y — X&
(which is unramified over x) and a cusp y of Y over x such that y # g(y). By taking sufficiently
small Ay C A (resp. Ay € AD), we may assume that Y has a cusp ¥ # v, g(y). We have

3 l N _ l l
Iy = gl,g™" (vesp. Iy, = gIi)g™). Since I, NIy (vesp. 1) N 15

(resp. Iél)), we have a finite Galois covering (resp. a finite Galois covering of degree a power
of I) Z — Y such that Z has cusps z, g(z), and 2’ lying over y, g(y), and 3’ respectively, and

I, = Iy (resp. ¥ = Ig(l()z)), i.e., z and g(z) have conjugate inertia subgroups in Ay (resp.

) has a finite index in I,

A(ZZ)) (Note that inertia subgroups are well-defined up to inner conjugate). On the other hand,
we have abelian coverings of Z which are totally ramified over z and not ramified over g(z),
since we have a cusp 2’ other than z and g(z) (Note that the abelianisation of a surface relation
Y- [ [w, Bi] = 1is 41 -+ -, = 1, and that if n > 3, then we can choose the ramifications
at v1 and 7, independently). This contradicts that z and ¢g(z) have conjugate inertia subgroups

in Az (resp. A(Zl)). O

2.4. Characterisation of Cuspidal Decomposition Groups. Let k a finite extension of
Qp. For a hyperbolic curve X of type (g,r) over k, let Ax and Iy denote the geometric
fundamental group (i.e., 7 of X3 := X x; k) and the arithmetic fundamental group (i.e., 7, of
X) of X for some basepoint, respectively. Note that we have a group-theoretic characterisation
of the subgroup Ax C Ilx (hence, the quotient IIx — Gy) by Corollary 2.4. For a cusp =,
we write I, and D, for the inertia subgroup and the decomposition subgroup at x in Ax and

in ITx respectively (they are well-defined up to inner automorphism). For a prime number [,
we also write I and Ag? for the maximal pro-I quotient of I, and Ay, respectively. Put also

Hg? = Il x/ker(Ax — Ag?). Then we have a short exact sequence 1 — Ag? — Hg? — G — 1.

Lemma 2.8. ([AbsAnab, Lemma 1.3.9], [AbsTopl, Lemma 4.5]) Let X be a hyperbolic curve
of type (g,r) over k.
(1) X is not proper (i.e., r > 0) if and only if Ax is a free profinite group (Note that this
criterion is group-theoretic ).
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(2) We can group-theoretically reconstruct (g,r) from Ilx as follows:
r = dimg, (A%? ®5 Q — dimg, (A%}O ®5 Q +1 ifr>0, forl#p,

. 5 (dimg, AR ®; Q —r+1)  if r>0,
%dim@l AR @5 Q ifr=0 foranyl,

) wt=2 ) wt=0

where (—)Y*=" with w € Z is the subspace on which the Frobenius at p acts with eigen-
values of weight w, i.e., algebraic numbers with absolute values q= (Note that the weight
1s independent of the choice Aof a lifting of the Frobenius element Frob, to Gy in the
extension 1 — I, — Gy — ZFrob, — 1, since the action of the inertia subgroup on
A3 is quasi-unipotent). Here, note also that Gy and Ax are group-theoretically recon-
structed from Ilx by Corollary 2.4, the prime number p, the cardinality q of the residue
field, and the Frobenius element Froby are group-theoretically reconstructed from Gy, by
Proposition 2.1 (1), (1) and (3b), and (5) respectively (See also Remark 2.1.1).

Remark 2.8.1. By the same group-theoretic algorithm as in Lemma 2.8, we can also group-
theoretically reconstruct (g,r) from the extension datum 1 — Agl() — Hgl() — Gy — 1 for any
[ # p (i.e., in the case where the quotient Hgl() — Gy is given).

Proof. (1): Trivial (Note that, in the proper case, the non-vanishing of H 2 implies the non-
freeness of Ax). (2): Let X — X be the canonical smooth compactification. Then, we have

r — 1 = dimg, ker {A?? ®5 Qp — A%b X7 @l} = dimg, ker {Af;? ®z Q — A% ®z @l}m:2
= dimg, (A ®; Q)™ — dimg, (A ®; Q)"
= dimg, (AR ®5 Q)" — dimg, (AR @5 Q)"
— dimg, (A% ®5 Q)"'=2 — dimg, (AY ®5 Q)™=
where the forth equality follows from the self-duality of As. The rest of the lemma (the formula
for g) is trivial. O

Corollary 2.9. ([NodNon, Lemma 1.6 (ii)=(i)]) Let X be an affine hyperbolic curves over k,
and X the canonical smooth compactification. We have the following group-theoretic charac-
terisations or reconstructions from Il :

(1) The natural surjection Ax — Ax (resp. Ag? —» A(Yl) for any l # p) is group-theoretically
characterised as follows: An open subgroup H C Ax (resp. H C Ag?) 18 contained in
ker(Ax — Ax) (resp. ker(Ag? — A(yl))) if and only if r(Xy) = [Ax : H]r(X) (resp.
r(Xyg) = [Ag? : H|r(X)), where Xy is the coverings corresponding to H C Ax, and

r(=)’s are their number of cusps (Note that r(—)’s are group-theoretically computed by
Lemma 2.8 (2) and Remark 2.8.1.

(2) The inertia subgroups of cusps in Ag? for any | # p are characterised as follows: A
closed subgroup A C Ag? which is isomorphic to Zy; s contained in the inertia subgroup
of a cusp if and only if, for any open subgroup A(Y” C Ag?, the composite

ANAY c AP - AD (A

vanishes. Here, Y denotes the canonical smooth compactification of Y (Note that the
natural surjection Agf) —» A(Yl) has a group-theoretic characterisation in (1)).
(3) We can reconstruct the set of cusps of X as the set of Ag?—orbits of the inertia subgroups

m Ag? via conjugate actions by Proposition 2.7 (2¢) (Note that inertia subgroups in Ag?
have a group-theoretic characterisation in (2)).
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(4) By functorially reconstructing the cusps of any covering Y — X from Ay C Ax C Iy,
we can reconstruct the set of cusps of the universal pro-covering XX (Note that the
set of cusps of Y is reconstructed in (3)).

(5) We can reconstruct inertia subgroups in Ax as the subgroups that fiz some cusp of the
universal pro-covering X 5 X of X determined by the basepoint under consideration
(Note that the set of cusps of X is reconstructed in (4)).

(6) We have a characterisation of decomposition groups D of cusps in llx (resp. in Hg?
for any l # p) as D = Np,(I) (resp. D = NHQ(D) for some inertia subgroup in Ax

(resp. in Agl()) by Proposition 2.7 (2¢) (Note that inertia subgroups in Ax and A()? are
reconstructed in (5) and in (2) respectively).

Remark 2.9.1. (See also [IUTchl, Remark 1.2.2, Remark 1.2.3]) The arguments in [AbsAnab,
Lemma 1.3.9], [AbsTopl, Lemma 4.5 (iv)], and [CombGC, Theorem 1.6 (i)] are wrong, because
there is no covering of degree [ of proper curves, which is ramified at one point and unramified
elsewhere (Note that the abelianisations of the geometric fundamental group of a proper curve
is equal to the one of the curve obtained by removing one point from the curve).

Proof. The claims (1) is trivial. (2): The “only if” part is trivial, since an inertia subgroup
is killed in Ay. We show the “if” part. Put A(Zl) = AA%Q C Ag?. The natural surjection
AY o AD/AD =~ 4740 AY) factors as AY — (AD)2 o A/(ANAY), since A/(ANAD)
is isomorphic to an abelian group Z/IVZ for some N. By the assumption of the vanishing of
AN Aﬁ’ in (Ay)?", the image Im{A N Ag) — (Aﬁ))ab} is contained in the subgroup generated
by the image of the inertia subgroups in Aﬁ). Hence, the image Im{A N Agf) — (Aﬁ))ab —
(A(ZZ))ab —- A/(AN A@)(g ZJINZ)} is contained in the image of the subgroup in A/(A N
Ag))(§ Z.JINZ) generated by the image of the inertia subgroups in Ag). Since the composite
Ac AV o ADAD >~ 4/An AV Z/1V7Z) is a surjection, and since Z/INZ is cyclic,
there exists the image I, C (A(Zl))ab of the inertia subgroup of a cusp z in Z, such that the
composite I, C (A(Zl))ab —- A/(AN A@)(g ZJINZ) is surjective (Note that if we are working
in the profinite geometric fundamental groups, instead of pro-/ geometric fundamental groups,
then the cyclicity does not hold, and we cannot use the same argument). This means that the

corresponding subcovering Y — Z(— X)) is totally ramified at z. The claims (3), (4), (5), and
(6) are trivial. O

Remark 2.9.2. (Generalisation to [-cyclotomically full fields, See also [AbsTopl, Lemma 4.5
(iii)], [CombGC, Proposition 2.4 (iv), (vii), proof of Corollary 2.7 (i)]) We can generalise the
results in this subsection for an l-cyclotomically full field &k for some [ (See Definition 3.1 (3)
below), under the assumption that the quotient llx — Gy, is given, as follows: For the purpose
of a characterisation of inertia subgroups of cusps, it is enough to consider the case where
X is affine. First, we obtain a group-theoretic reconstruction of a positive power ijc,l,up to fin
of the l-adic cyclotomic character up to a character of finite order by the actions of G} on
NG A ab@i@l)( H* ®- Q) for characteristic open torsion-free subgroups H C Ay. Next, we
group-theoretically reconstruct the l-adic cyclotomic character cyciup to in UP to a character
of finite order as Xcyc,iup to fin = Xmax, Where Xmax is the maximal power of X:ryc,up to fin DY Which
Gy, acts in some subquotient of H*® ®5 Q; for sufficiently small characteristic open torsion-free
subgroups H C Ax. Once we reconstruct the l-adic cyclotomic character Xcyciup to fin Up to
a character of finite order, then, for a finite-dimensional QQ;-vector space V' with continuous
Gi-action, we take any filtration V =V D V! 5 ... (resp. V(Xeyesup tofin) = VOO V! D ...
of Q[Gy]-modules (Here V(x!) denotes the twist of V' by x~!) such that each graded quotient
either has the action of G}, factoring through a finite quotient or has no non-trivial subquotients,
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and we use, instead of dimg, V¥*=C (resp. dimg, V**=?) in Lemma 2.8, the summation of
dimg, V7 /VIT! where the Gy-action on V7 /VIT! factors through a finite quotient of Gy, and
the rest is the same.

3. ABSOLUTE MONO-ANABELIAN RECONSTRUCTIONS.

In this section, we show mono-anabelian reconstruction algorithms, which are crucial ingre-
dients of inter-universal Teichmiiller theory.

3.1. Some Definitions.

Definition 3.1. ([pGC, Definition 1.5.4 (i)], [AbsToplII, Definition 1.5], [CombGC, Definition
2.3 (ii)]) Let k be a field.

(1) We say that k is sub-p-adic, if there is a finitely generated field L over Q, for some p
such that we have an injective homomorphism k& < L of fields.

(2) We say that k£ is Kummer-faithful, if & is of characteristic 0, and if for any finite
extension &’ of k£ and any semi-abelian variety A over &', the Kummer map A(k") —
H'(K',T(A)) is injective (which is equivalent to (s, NA(K') = {0}), where T(A)
denotes the Tate module of A. -

(3) We say that k is [-cyclotomically full, if the [-adic cyclotomic character Xcyc; : Gy —
Z; has an open image.

Remark 3.1.1. ([pGC, remark after Definition 15.4]) For example, the following fields are
sub-p-adic:
(1) finitely generated extensions of Q,, in particular, finite extensions of Q,,
(2) finite extensions of Q, and
(3) the subfield of an algebraic closure Q of Q which is the composite of all number fields
of degree < n over Q for some fixed integer n (Note that such a field can be embedded
into a finite extension of Q, by Krasner’s lemma).

Lemma 3.2. ([AbsToplll, Remark 1.5.1, Remark 1.5.4 (i), (ii)])
(1) If k is sub-p-adic, then k is Kummer-faithful.
(2) If k is Kummer-faithfull, then k is l-cyclotomically full for any I.
(3) If k is Kummer-faithfull, then any finitely generated field over k is also Kummer-faithful.

Proof. (3): Let L be a finitely generated extension of k. By Weil restriction, the injectivity of
the Kummer map for a finite extension L’ of L is reduced to the one for L, i.e., we may assume
that L' = L. Let A be a semi-abelian variety over L. Let U be an integral smooth scheme over
k such that A extends to a semi-abelian scheme A over U and the function field of U is L. By
a commutative diagram

A(L) HY(L, T (A))

| |

[Loej As(La) — Ilogi H' (Le, T(A2)),

where |U| denotes the set of closed points, L, is the residue field at z, and A, is the fiber at
x (Note that a € A(L) is zero on any fiber of = € |U|, then a is zero, since |U| is dense in U),
we may assume that L is a finite extension of k. In this case, again by Weil restriction, the
injectivity of the Kummer map for a finite extension L is reduced to the one for k, which holds
by assumption.

(1): By the same way as in (3), by Weil restriction, the injectivity of the Kummer map for
a finite extension k&’ of k is reduced to the one for k, i.e., we may assume that &’ = k. Let
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k embed into a finitely generated field L over Q,. By the base change from k to L and the
following commutative diagram

A(k) —— H'(k, T(A))

| |

A(L) — HY(L, T(A)),

the injectivity of the Kummer map for k is reduced to the one for L, i.e., we may assume that
k is a finitely generated extension over Q,. Then, by (3), we may assume that k = Q,. If A is
a torus, then (s, NA(Q,) = {0} is trivial. Hence, the claim is reduced to the case where A
is an abelian variety. Then A(Q,) is a compact abelian p-adic Lie group, which contains fo”
for some n as an open subgroup. Hence, we have (-, NA(Q,) = 0. Thus, the Kummer map
is injective. We are done. -

(2): For any finite extensin k' over k, the Kummer map for G,, over k' is injective by the
assumption. This implies that the image of l-adic cyclotomic character Gy — Z; has an open
image. ([l

Definition 3.3. ([CanLift, Section 2]) Let k be a field. Let X be a geometrically normal,
geometrically connected algebraic stack of finite type over k.

(1) Let Locg(X) denote the category whose objects are generically scheme-like algebraic
stacks over k& which are finite étale quotients (in the sense of stacks) of (necessarily
generically scheme-like) algebraic stacks over k£ that admit a finite étale morphism to X
over k, and whose morphisms are finite étale morphisms of stacks over k.

(2) We say X admits k-core if there exists a terminal object in Locg(X). We call a
terminal object in Loc(X) a k-core.

For an elliptic curve E over k with the origin O, we call the hyperbolic orbicurve (c¢f. Section 0.2)
obtained as the quotient (E\{O})//=£1 in the sense of stacks a semi-elliptic orbicurve over k
(cf. [AbsTopll, §0]. It is also called “punctured hemi-elliptic orbicurve” in [CanLift, Definition

2.6 (ii)]).

Definition 3.4. ([AbsTopll, Definition 3.5, Definition 3.1]) Let X be a hyperbolic orbicurve
(See Section 0.2) over a field k of characteristic 0.

(1) We say that X is of strictly Belyi type if (a) X is defined over a number field, and if
(b) there exist a hyperbolic orbicurve X’ over a finite extension &’ of k, a hyperbolic curve
X" of genus 0 over a finite extension k" of k, and finite étale coverings X « X' — X",

(2) We say that X is elliptically admissible if X admits k-core X — C, where C' is a
semi-elliptic orbicurve.

Remark 3.4.1. In the moduli space M, , of curves of genus g with r cusps, the set of points
corresponding to the curves of strictly Belyi type is not Zariski open for 2g —2+4+1r > 3, g > 1.
See [Cusp, Remark 2.13.2] and [Corr, Theorem B].

Remark 3.4.2. If X is elliptically admissible and defined over a number field, then X is
of strictly Belyi type (See also [AbsTopIIl, Remark 2.8.3]), since we have a Belyi map from
once-punctured elliptic curve over a number field to a tripod (cf. Section 0.2).

For a hyperbolic curve X over a field k£ of characteristic zero with the canonical smooth
compactification X. A closed point x in X is called algebraic, if there are a finite extension K of
k, a hyperbolic curve Y over a number field F' C K with the canonical smooth compactification
Y, and an isomorphism X x; K =Y xp K over K such that x maps to a closed point under
the composition X x; K 2Y xp K = Y.
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3.2. Belyi and Elliptic Cuspidalisations —Hidden Endomorphisms. Let k be a field
of characteristic 0, and k an algebraic closure of k. Put G} := Gal(k/k). Let X be a hyperbolic
orbicurve over k (cf. Section 0.2). Let Ay and IIx denote the geometric fundamental group
(i.e., m of X := X x; k) and the arithmetic fundamental group (i.e., 7 of X) of X for some
basepoint, respectively. Note that we have an exact sequence 1 - Ax — [Ixy — Gy — 1. We
consider the following conditions on k£ and X:

(Delta)x: We have a “group-theoretic characterisation” (for example, like Proposition 2.2 (1), (2))
of the subgroup Ay C Ily (or equivalently, the quotient Iy — Gy).

(GC): Isom-version of the relative Grothendieck conjecture (See also Theorem B.1) for the
profinite fundamental groups of any hyperbolic (orbi)curves over k holds, i.e., the natu-
ral map Isomy(X,Y) — Isomgzt(AX, Ay) = Isomg, (Ax, Ay)/Inn(Ay) is bijective for
any hyperbolic (orbi)curve X, Y over k.

(slim): Gy is slim (Definition 2.5 (1)).

(Cusp) x: We have a “group-theoretic characterisation” (for example, like Proposition 2.9 (3)) of
decomposition groups in [Ty of cusps.
We also consider the following condition (of different nature):
(Delta)’ x: Either
e IIy is given and (Delta)x holds, or
o Ay C Il are given.

Note that (Delta)yx, (GC), and (slim) are conditions on k and X, however, as for (Delta) x,
“the content of a theorem” depends on which case of (Delta) x is satisfied, i.e., in the former
case, the algorithm in a theorem requires only IIy as (a part of) an input datum, on the other
hand, in the latter case, the algorithm in a theorem requires both of Ax C Ilx as (a part of)
input data.

Remark 3.4.3. (1) (Delta)x holds for any X in the case where k is an NF by Proposi-
tion 2.2 (1) or k is an MLF by Corollary 2.4.

(2) (GC) holds in the case where k is sub-p-adic by Theorem B.1.

(3) (slim) holds in the case where k is an NF by Proposition 2.7 (1) (d) or k is an MLF
by Proposition 2.7 (1) (c). More generally, it holds for Kummmer-faithful field k& by
Remark 3.17.3, which is shown without using the results in this subsection.

(4) (Cusp)x holds for any X in the case where k is an MLF by Corollary 2.9. More generally,
(Cusp) x holds for [-cyclotomically full field & for some [ under the assumption (Delta)’ x
by Remark 2.9.2.

In short, we have the following table (See also Lemma 3.2):

NF, MLF = sub-p-adic = Kummer-faithful = I-cyclotomically full

(Delta) x holds (GC) holds (slim) holds (Cusp)x holds
for any X under (Delta)’x.
Remark 3.4.4. (1) Tt seems difficult to rigorously formulate the meaning of “group-theoretic

~Y

characterisation”. Note that the formulation for (Delta)x like “any isomorphism Iy, =
IIx, of topological groups induces an isomorphism Ay, = Ay, of topological groups” (it
is called bi-anabelian approach) is a priori weaker than the notion of “group theoretic
characterisation” of Ax in IIx (this is called mono-anabelian approach), which allows
us to reconstruct the object itself (not the morphism between two objects).

(2) (Important Convention) In the same way, it also seems difficult to rigorously formulate
“there is a group-theoretic algorithm to reconstruct” something in the sense of mono-
anabelian approach (Note that it is easy to rigorously formulate it in the sense of
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bi-anabelian approach). To rigorously settle the meaning of it, it seems that we have
to state the algorithm itself, i.e., the algorithm itself have to be a part of the statement.
However, in this case, the statement must be often rather lengthy and complicated.
In this survey, we use the phrase “group-theoretic algorithm” loosely in some sense,
for the purpose of making the input data and the output data of the algorithms in
the statement clear. However, the rigorous meaning will be clear in the proof, since
the proof shows concrete constructions, which, properly speaking, should be included
in the statement itself. We sometimes employ this convention of stating propositions
and theorems in this survey (If we use the language of species and mutations (See
[ITUTchIV, §3]), then we can rigorously formulate mono-anabelian statements without
mentioning the contents of algorithms).

(3) Mono-anabelian reconstructions have an advantage, as contrasted with bi-anabelian
approach, of avoiding “a referred model” of a mathematical object like “the C”, i.e., it
is a “model-free” (or “model-implicit”) approach. For more informations on Mochizuki’s
philosophy of mono-anabelian reconstructions versus bi-anabelian reconstructions, see

[AbsToplll, §1.3, Remark 3.7.3, Remark 3.7.5].

In this subsection, to avoid settling the meaning of “group-theoretic characterisation” in
(Delta) x and (Cusp)x (See Remark 3.4.4 (1)), we assume that k is sub-p-adic, and we include
the subgroup Ax (C Ilx) as an input datum. More generally, the results in this section hold in
the case where k and X satisfy (Delta)’x, (GC), (slim), and (Cusp)x. Note that if we assume
that & is an NF or an MLF, then (Delta)x, (GC), (slim), and (Cusp)x hold for any X, and we
do not need include the subgroup Ax (C IIy) as an input datum.

Lemma 3.5. Letvy : H — 11 be an open homomorphism of profinite groups, and ¢, ¢o : I = G
two open homomorphisms of profinite groups. We assume that G is slim. If ¢y 019 = ¢y 01,
then we have ¢1 = ¢o.

Proof. By replacing H by the image of 1, we may assume that H is an open subgroup of II.
By replacing H by NgenymgHg™', we may assume that H is an open normal subgroup of II.
For any g € Il and h € H, we have ghg™' € H, and ¢1(ghg™') = ¢2(ghg™') by assumption.
This implies that ¢1(g)¢1(h)¢1(9) ™" = ¢2(9)P2(h)d2(9) ™ = ¢2(g)¢1(h)d2(g)~". Hence we have
$1(9)92(9)"! € Zima)(G). By the assumption of the slimness of G, we have Zp,am)(G) = {1},
since Im(II) is open in G. Therefore, we obtain ¢;(g) = ¢2(g), as desired. O

Remark 3.5.1. In the algebraic geometry, a finite étale covering ¥ — X is an epimorphism.
The above lemma says that the inclusion map Ily C Iy correspoinding to Y — X is also an
epimorphism if IIx is slim. This enables us to make a theory for profinite groups (without
using 2-categories and so on.) which is parallel to geometry, when all involved profinite groups
are slim. This is a philosophy behind the geometry of anabelioids ([Anbd]).

Choose a hyperbolic orbicurve X over k, and let IIx denote the arithmetic fundamental
group of X for some basepoint. We have the surjection Iy — Gy determined by (Delta)’x.
Note that now we are assuming that k is sub-p-adic, hence, Gy, is slim by Lemma 3.2 (1) and
Remark 3.17.3. Take an open subgroup G C Gy, and put Il :=IIy X, G, and A := AxNIL In
this survey, we do not adopt the convention that (—)" always denotes the commutator subgroup
for a group (—).

In the elliptic and Belyi cuspidalisations, we use the following three types of operations:

Lemma 3.6. Put II' := Ilx/ to be the arithmetic fundamental group of a hyperbolic orbicurve
X' over a finite extension k' of k. Put A" := ker(Il' - Gy/).
(1) Let 11" < TI' be an open immersion of profinite groups. Then 11" arises as a finite étale
covering X" — X" of X', and A" :=T11" N A" reconstructs Axn.
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(2) LetII" < I1” be an open immersion of profinite groups such that there exists a surjection
" — G” to an open subgroup of G, whose restriction to 1" is equal to the given
homomorphism II' — G' C G. Then, the surjection II" — G" is uniquely determined
(hence, we reconstruct the quotient 11" — G" as the unique quotient of 11" having this
property), and 11" arises as a finite étale quotient X' — X" of X'.

(3) Assume that X' is a scheme i.e., not a (non-scheme-like) stack (We can treat orbi-
curves as well, however, we do not use this generalisation in this survey. cf. [AbsTopl,
Definition 4.2 (iii) (c)]). Let II" — 11" be a surjection of profinite groups such that the
kernel is generated by a cuspidal inertia subgroup group-theoretically characterised by
Corollary 2.9 and Remark 2.9.2 (We call it a cuspidal quotient). Then II” arises as
an open immersion X' — X", and we reconstruct Ax» as A'/A Nker(II" — I1").

Proof. (1) is trivial by the definition of IIx.

The first asserion of (2) comes from Lemma 3.5, since G is slim. Put (II')%* := Nyepr jmpgIl'g™
I, which is normal in IT” by definition. Then, (II')“® arises from a finite étale covering
(X6l — X’ by (1). By the conjugation, we have an action of II” on (II')%¥. By (GC),
this action determines an action of IT”/(II')% on (X’)%. We take the quotient X" :=
(X")Gal//(I1"/(IT')G21) in the sense of stacks. Then Ilx» is isomorphic to IT” by definition,
and the quotinet (X’)%a — X" factors as (X’)9 — X’ — X" since the intermediate quotient
(X")Gal/ /(11 /(1) %a1) is isomorphic to X’. This proves the second assertion of (2).

(3) is also trivial. O

3.2.1. Elliptic Cuspidalisation. Let X be an elliptically admissible orbicurve over k. By defini-
tion, we have a k-core X — C' = (E\{O})//{£1} where E denotes an elliptic curve over k with
the origin O. Take a positive integer N > 1. Let Ug y := (E'\ E[N])//{x1} C C denote the
open sub-orbicurve of C' determined by the image of E \ E[N]. Put Ux y := Ucny xc X C X,
which is an open suborbicurve of X. For a finite extension K of k, put Xx = X x; K,
Ck :=C xy K, and Fx := E x; K. For a sufficiently large finite extension K of k, all points
of Ex[N] are rational over K. We have the following key diagram for elliptic cuspidalisation:

(EllCusp) X —=C<=—F\{O} ST \ E[N] Ucn Ux,.n
EN\{O} C X,

where —’s are finite étale coverings, <—’s are open immersions, and two sqauares are cartesian.
We will use the technique of elliptic cuspidalisation three times:

(1) Firstly, in the theory of Aut-holomorphic space in Section 4, we will use it for the
reconstruction of “local linear holomorphic structure” of an Aut-holomorphic space (See
Proposition 4.5 (Step 2)).

(2) (This is the most important usage) Secondly, in the theory of étale theta function in
Section 7, we will use it for the constant multiple rigidity of étale theta function (See
Proposition 7.9).

(3) Thirdly, we will use it for the reconstruction of “pseudo-monoids” (See Section 9.2).

Theorem 3.7. (Elliptic Cuspidalisation, [AbsTopIl, Corollary 3.3]) Let X be an elliptically
admissible orbicurve over a sub-p-adic field k. Take a positive integer N > 1, and let Ux n
denote the open sub-orbicurve of X defined as above. Then, from the profinite groups Ax C llx,
we can group-theoretically reconstruct (See Remark 3.4.4 (2)) the surjection

X - HUX,N —» HX
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of profinite groups, which is induced by the open immersion Ux ny — X, and the set of the
decomposition groups in Ilx at the points in X \ Ux y.

We call my : Iy, , — IIx an elliptic cuspidalisation.

Proof. (Step 1): By (Delta)’x, we have the quotient IIx — Gy with kernel Ax. Let G C G
be a sufficiently small (which will depend on N later) open subgroup, and put II := IIx x¢, G,
and A := Ax NIL

(Step 2): We define a category Locg(IT) as follows: The objects are profinite groups I’ such
that there exist open immersions II <= II” < II’ of profinite groups and surjections II" — G,
I1” — G" to open subgroups of G, and that the diagram

H QH//(H H/

I

G G// G/

bl

is commutative. Note that, by this compatibility, the surjections II' — G’ and II” — G” are
uniquely determined by Lemma 3.6 (1), (2) (or Lemma 3.5). The morphisms from II; to IIy
are open immersions II; < Ily of profinite groups up to inner conjugates by ker(Ily — G5)
such that the uniquely determined homomorphisms Iy, - G; C G and Il - G5 C G are
compatible. The definition of the category Locg(IT) depends only on the topological group
structure of IT and the surjection II — G of profinite groups. By (GC), the functor X’ — Ilx
gives us an equivalence Locx(Xg) — Locg(Il) of categories, where K is the finite extension
of k corresponding to G C Gj. Then, we group-theoretically reconstruct (Ilx, C)Il¢, as the
terminal object (IT C)Ileore of the category Locg(I1).

(Step 3): We group-theoretically reconstruct Ac,. (C Il¢,. ) as the kernel Ao 1= ker(Ileore —
G). We group-theoretically reconstruct Ag,\o} as an open subgroup Agy of Agore of index 2
such that Ag is torsion-free (i.e., the corresponding covering is a scheme, not a (non-scheme-
like) stack), since the covering is a scheme if and only if the geometric fundamental group
is torsion-free (See also [AbsTopl, Lemma 4.1 (iv)]). We take any (not necessarily unique)
extension 1 — Agy — Il — G — 1 such that the push-out of it via Ay C Acore is isomorphic
to the extension 1 — Acpre = Heore = G — 1 (Note that Il is isomorphic to T Bl A\{O} where
B\ {O} is a twist of order 1 or 2 of Ex \ {O}). We group-theoretically reconstruct I, \ (0}
as ILn (Note that if we replace G by a subgroup of index 2, then we may reconstruct Iz, 103,
however, we do not detect group-theoretically which subgroup of index 2 is correct. However,
the final output does not depend on the choice of Tl).

(Step 4): Take

(a) an open immersion Iy y < Il of profinite groups with ey /Iy v = (Z/NZ)®* such
that the composite ey n — Il — Hzﬁt factors through as Il n — HzﬁfN — Hgﬁt,
where II.; — HZﬁt, Hepn — HZETN denote the quotients by all of the conjugacy classes
of the cuspidal inertia subgroups in Ilqy, Il x Tespectively, and

(b) a composite Il xy — II' of (N? — 1) cuspidal quotients of profinite groups such that
there exists an isomorphism II" = Il of profinite groups.

Note that the factorisation Il ny — HZﬁ’tN — Hgﬁt means that the finite étale covering corre-
sponding to Iy v < Iley extends to a finite étale covering of their compactifications ¢.e., the
covering corresponding to Ilgy y < Iley is unramified at all cusps as well. Note that there exists

such a diagram
!
IIey <= ey ny — IT" = 1y
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by (EllCusp). Note that for any intermediate composite Ilg; y — II* — II" of cuspidal quotients
in the composite Il xy — II' of cuspidal quotients, and for the uniquely determined quotient
IT* — G*, we have G* = G for sufficiently small open subgroup G C G}, and we take such an
open subgroup G C Gy.

We group-theoretically reconstruct the surjection mg: : Ilgr \gr (v) = g\ (o) induced by the
open immersion E \ E[N] — E} \ {O} as the composite mgr : ey ny — II' = Iy, since we
can identify wg+ with 7 by (GC).

(Step 5): Let Iloreq1 denote Il for G = Gj. If necessary, by changing Il., we may
take Il such that there exists a wunique lift of Ileope1/Ilen — Out(Iley) to Out(lley ) by

(EllCusp). We form Oit(Hcorevl/Heu) (See Section 0.2) to the surjection Iy — Ilg i.e.,
Hen, v O;t (Heore /Men) — ey O;t (Heore, /Hen) = Heore,1, where Igope,1 /Hen — Out(Ilen) (in the
definition of Oit(HcoreJ /Ien)) is the natural one, and e 1 /Iley — Out(Iley n) (in the definition
of O;t(HcoreJ /Ien)) is the unique lift of Il ope 1 /Iley — Out(Ilen) to Out(Iley ). Then we obtain

a surjection meo @ Meore v := Ilen & O;t (eore1 /Men) = Heore1. We group-theretically reconstruct
the surjection 7¢ : Ily,, , — Ilg induced by the open immersion Ug y < C' as the surjection
o7t Heore v = Ileore1, since we can identify mer with 7o by (GC).

(Step 6): We form a fiber product xr,,,,,IIx to the surjection Ileore v = Heore,1 i-€., Ilx, v 1=
Heore, N XTgorey Hx = Heore,t XMeorey Hx = IIx. Then we obtain a surjection mx, : Ilx xy —
Ix. We group-theretically reconstruct the surjection 7x : ly, , — Ilx induced by the open
immersion Ux y < X as the surjection mx» : IlIx y — Ilx, since the identification of 7, with
7o induces an identification of mxe with 7x.

(Step 7): We group-theretically reconstruct the decomposition groups at the points of X \
Ux n in IIx as the image of the cuspidal decomposition groups in IIx n, which are group-
theoretically characterised by Corollary 2.9, via the surjection Iy xy — IIx. U

3.2.2. Belyi Cuspidalisation. Let X be a hyperbolic orbicurve of strictly Belyi type over k. We
have finite étale coverings X « Y — P!\ (N points), where Y is a hyperbolic curve over a finite
extension k' of k, and N > 3. We assume that Y — X is Galois. For any open sub-orbicurve
Ux C X defined over a number field, put Uy := Y X x Ux. Then, by the theorem of Belyi
(See also Theorem C.2 for its refinement), we have a finite étale covering Ui, — Up: from an
open sub-orbicurve Uy, C Uy to the tripod Up: (See Section 0.2) over k’. For a sufficiently large
finite extension K of £/, all the points of Y\ UJ, are defined over K. We have the following key
diagram for Belyi cuspidalisation:

(BelyiCusp) Uy, € Uy € Y
X~—Y =P\ (Npoints)— Up Uy X,

where —’s are finite étale coverings, <—’s are open immersions, and the square is cartesian.

Theorem 3.8. (Belyi Cuspidalisation, [AbsTopll, Corollary 3.7]) Let X be an orbicurve over a
sub-p-adic field k. We assume that X is of strictly Belyi type. Then, from the profinite groups
Ax C Ilx, we can group-theoretically reconstruct (See Remark 3.4.4 (2)) the set

{Iye — Ux '}y,

of the surjections of profinite groups, where Ux runs through the open subschemes of X defined
over a number field. We can also group-theoretically reconstruct the set of the decomposition
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groups in Iy at the points in X \ Ux, where Ux runs through the open subschemes of X defined
over a number field.

We call Iy, — IIy a Belyi cuspidalisation.

Proof. (Step 1): By (Delta)’x, we have the quotient Iy — G} with kernal Ax. For sufficiently
small (which will depend on U later) open subgroup G C G, put 1l :=Ilx x¢, G.
(Step 2): Take

(a) an open immersion II <= II* of profinite grouops,

(b) an open immersion IT* < II**%U of profinite groups, such that the group-theoretic
algorithms described in Lemma 2.8 and Remark 2.9.2 tell us that the hyperbolic curve
corresponding to 114V has genus 0,

(c) a composite TIPSV — T[4 of cuspidal quotients of profinite groups, such that the
number of the conjugacy classes of cuspidal inertia subgroups of IT**4 is three,

(d) an open immersion IT*9 < 1%V of profinite groups,

(e) a composite IT*V" — II*Y of cuspidal quotients of profinite groups, and

(f) a composite IT*Y —» IT** of cuspidal quotients of profinite groups such that there exists
an isomorphism IT** = IT* of profinite groups.

Note that there exists such a diagram
1 < II* — Htpd,U s Htpd > H*,U’ —y H*,U — T = IT*

by (BelyiCusp). Note also that any algebraic curve over a field of characteristic 0, which is finite
étale over a tripod, is defined over a number field (i.e., converse of Belyi’s theorem, essentially
the descent theory) and that algebraic points in a hyperbolic curve are sent to algebraic points
via any isomorphism of hyperbolic curves over the base field (See [AbsSect, Remark 2.7.1]).
Put 7wy, : II%Y — II** = II* to be the composite. Note that for any intermediate composite
%Y — II# — II** in the composite II*Y" — II** of cuspidal quotients and for the uniquely
determined quotient II* — G#, we have G# = @ for sufficiently small open subgroup G C Gy,
and we take such an open subgroup G C Gy.

We group-theoretically reconstruct the surjection my : Ily, — Ily induced by some open
immersion Uy — Y as my7 : II*Y — II*, since we can identify my» with my by (GC) (Note that
we do not prescribe the open immersion Uy < Y).

(Step 3): We choose the data (a)-(e) such that the natural homomorphism ITx /IT* — Out(IT*)
has a unique lift ILy /IT* — Out(IT*Y) to Out(IT*Y) (Note that this corresponds to that Uy C Y

out
is stable under the action of Gal(Y/X), thus descends to Ux C X). We form x (IIx/IT*) to

the surjection II*U —» II* je., IV = IV % (ILy/II*) — II* % (Ilx/II) = . Then
we obtain a surjection mx» : IV — IIx. We group-theretically reconstruct the surjection
mx : Uy, —» Iy induced by the open immersion Uy < X as the surjection 7y, : IV — Ty,
since we can identify 7mx» with 7x by (GC) (Note again that we do not prescribe the open
immersion Uy — X. We just group-theoretically reconstruct a surjection Iy, — IIx for some
Ux C X such that all of the points in X \ Ux are defined over a number field).

(Step 4): We group-theretically reconstruct the decomposition groups at the points of X\ Uy
in ITx as the image of the cuspidal decomposition groups in II*"Y | which are group-theoretically

characterised by Corollary 2.9, via the surjection II;;, — Ilx. 0

Corollary 3.9. ([AbsTopll, 3.7.2]) Let X be a hyperbolic orbicurve over a non-Archimedean
local field k. We assume that X is of strictly Belyi type. Then, from the profinite group Ilx,
we can reconstruct the set of the decomposition groups at all closed points in X.

Proof. The corollary follows from Theorem 3.8 and the approximation of a decomposition group
in (the proof of) Lemma 3.10 below. O
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Since the geometric fundamental group Ay of X (for some basepoint) is topologically finitely
generated, there exist characteristic open subgroups

L. CAx[j+1 CcAxj]C...C Ay
of Ax for j > 1 such that [); Ax[j] = {1}. Take an algebraic closure k of k and put G, :=
Gal(k/k). For any section o : Gy — Ilx, we put
[Lx(j0) := Im(0)Ax(j] C Ix,
and we obtain a corresponding finite étale coverings

o= X[j+1,0] = X[j,0] = ... = X.

Lemma 3.10. ([AbsSect, Lemma 3.1]) Let X be a hyperbolic curve over a non-Archimedean
local field k. Suppose X is defined over a number field. Let o : Gj — llx be a section such
that Tm(o) is not contained in any cuspidal decomposition group of Ilx. Then, the following
conditions on o s equivalent:
(1) Im(o) is a decomposition group D, of a point x € X (k).
(2) Forany j > 1, the subgroup I x(; » contains a decomposition group of an algebraic closed
point of X which surjects onto Gj.

Proof. (1)<=(2): For j > 1, take points z; € X[j, o](k). Since the topological space [, X4, 0](k)
is compact, there exists an infinite set of positive integers J’ such that for any j > 1, the images
of z; in X[j,0](k) for j' > j with j* € J' converges to a point y; € Y[j_,o](k). By definition of
y;, the point y;, maps to y;, in X[js|(k) for any j; > jo. We write y € X (k) for the image of y;
in X (k). Then we have Im(c) C D, (up to conjugates), and y is not a cusp by the assumption
that Im(o) is not contained in any cuspidal decomposition group of Ily.

(1)=-(2): By using Krasner’s lemma, we can approximate x € X (k) by a point 2/ € Xp(F) C
X (k), where X is a model of X x; k over a number field F, which is sufficiently close to z so
that 2’ lifts to a point 2} € X[j, o](k), which is algebraic. O

3.3. Uchida’s Lemma. Let X be a hyperbolic curve over a field k. Take an algebraic closure
k of k. Put Gy := Gal(k/k), and Xz := X x; k. Let k(X) denote the function field of X.
Let Ay and IIx denote the geometric fundamental group (i.e., m of Xz) and the arithmetic
fundamental group (i.e., m; of X) of X for some basepoint, respectively. Note that we have an
exact sequence 1 = Ay — Iy — G — 1.

We recall that we have I'(X,O(D)) = {f € k(X)* | div(f) + D > 0} U {0} for a divisor D
on X.

Lemma 3.11. ([AbsToplIl, Proposition 1.2]) Assume that k be an algebraically closed, and X
proper.

(1) There are distinct points x,y1,y2 € X (k) and a divisor D on X such that z,y1,y> &
Supp(D) and (D) := dim; I'(X,O0(D)) = 2, and (D — E) = 0 for any E = e; + e
with ey, ea € {x,y1,Y2}, €1 # es.

(2) Let z,y1,y2, D be asin (1). Fori=1,2, and X\ € k*, there exists a unique fy; € k(X)*
such that

div(fai) +D =0, failz) = A failys) 70, failys—) = 0.
(3) Let x,y1,y2, D be as in (1). Take A\, u € k* with ﬁ # —1. Let faq1, fu2 € k(X)* be as

in (2). Then fx1+ fu2 € k(X)* is characterised as a unique element g € k(X)* such
that

div(g) + D >0, g(y1) = faa(y1), 9(y2) = fu2(y2).
In particular, A+ p € k* is characterised as g(x) € k*.
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Proof. (1): For any divisor D of degree > 2g — 2+ 3 on X, then we have (D) = (Kx — D) +
deg(D)+1—g = deg(D)+1—g > g+2 > 2, by the theorem of Riemann-Roch (Here, Kx denotes
the canonical divisor of X'). For any divisor D on X with d := (D) > 2, we write I'(X, O(D)) =
(f1,--., fa)x, and take a point P in the locus “fifo--- f4 # 07 in X of non-vanishing of the
section fjfo- - fg such that P & Supp(D) (Note that this locus is non-empty, since there is a
non-constant function in I'(X, O(D)) by I(D) > 2). Then, we have (D — P) < (D). On the
other hand, we have [(D) — (D — P) =I(Kx — D) —l(Kx — D+ P)+ 1 < 1. Thus, we have
I(D— P) = Il(D) — 1. Therefore, by substracting a suitable divisor from a divisor of degree
> 2g—2+3, there is a divisor D on X with {(D) = 2. In the same way, take z € X (k)\ Supp(D)
such that there is f € I'(X, Ox (D)) with f(z) # 0 (this implies that [(D —z) = (D) —1=1).
Take y; € X (k) \ (Supp(D) U {z}) such that there is g € ['(X, Ox (D — x)) with g(y;) # 0 (this
implies that [(D —xz —y;) = (D —z) —1=0), and yo € X (k) \ (Supp(D) U {z,y1}) such that
there are hy € I'(X,Ox(D — z)) and hy € I'(X, Ox (D — y1)) with hy(y2) # 0 and ha(y2) # 0
(this implies that [(D — 2z —y2) = (D —y1 —y2) = 0). The first claim (1) is proved. The claims
(2) and (3) trivially follow from (1). O

Proposition 3.12. (Uchida’s Lemma, [AbsToplll, Proposition 1.3]) Assume that k be an
algebraically closed, and X proper. There exists a functorial (with respect to isomorphisms of
the following triples) algorithm for constructing the additive structure on k(X)*U{0} from the
following data:

(a) the (abstract) group k(X)*,

(b) the set of surjective homomorphisms Vx := {ord, : k(X)* — Z}
maps at x € X (k), and

(c) the set of the subgroups {U, == {f € k(X)* | f(z) =1} C k(X)*}

vex(r) Of the valuation

of k(X)*.

v=ord;EVx

Proof. From the above data (a), (b), and (c), we reconstruct the additive structure on k(X)*
as follows:

(Step 1): We reconstruct k* C k(X)* as k* := [, ker(v). We also reconstruct the set
X (k) as Vx.

(Step 2): For each v = ord, € Vy, we have inclusions £ C ker(v) and U, C ker(v) with
k*NU, = {1}, thus we obtain a direct product decomposition ker(v) = U, x k*. Let pr, denote
the projection ker(v) — k™ Then, we reconstruct the evaluation map ker(v) > f — f(z) € k*
as f(x) :=pr,(f) for f € ker(v).

(Step 3): We reconstruct divisors (resp. effective divisors) on X as formal finite sums of
v € Vx with coefficient Z (resp. Z>¢). By using ord, € Vx, we reconstruct the divisor div(f)
for an element f in an abstract group k(X)*.

(Step 4): We reconstruct a (multiplicative) k*-module I'(X, O(D)) \ {0} for a divisor D
as {f € k(X)* |div(f)+ D >0}. We also reconstruct [(D) > 0 for a divisor D as the
smallest non-negative integer d such that there is an effective divisor E of degree d on X
such that T'(X,0(D — E)) \ {0} = 0 (See also the proof of Lemma 3.11 (1)). Note that
dimy, of I'(X, O(D)) is not available yet here, since we do not have the additive structure on
{f € k(X)*|div(f)+ D >0} U{0} yet.

(Step 5): For A\, u € k*, 3 # —1 (Here, —1 is the unique element of order 2 in k*), we take
ord,,ord,,,ord,, € Vx corresponding to x, ¥,y in Lemma 3.11 (1). Then, we obtain unique
s fuz, g € k(X)* as in Lemma 3.11 (2), (3) from abstract data (a), (b), and (c). Then,
we reconstruct the addition A + p € £* of A and p as g(x). We also reconstruct the addition
A+ p =0 for ﬁ =—1l,and A+ 0 =04+ X:= X for A € kX U{0}. These reconstruct the additive
structure on k* U {0}.



50 GO YAMASHITA

(Step 6): We reconstruct the addition f + g of f,g € k(X)* U {0} as the unique element
h € k(X)* U{0} such that h(z) = f(z) + g(x) for any ord, € Vx with f, g € ker(ord,) (Here,
we put f(z) := 0 for f = 0). This reconstructs the additive structure on k(X)* U {0}. O

3.4. Mono-Anabelian Reconstructions of Base Field and Function Field. We continue

the notation in Section 3.3 in this subsection. Furthermore, we assume that k& is of characteristic
0.

Definition 3.13. (1) We assume that X has genus > 1. Let (X C)X be the canonical
smooth compactification of X. We define

1i5(Ix) := Hom(H?(Ax, Z), Z).

We call iz (Ilx) the cyclotome of Iy as orientation.

(2) In the case where the genus of X is not necessarily greater than or equal to 2, we take a
finite étale covering Y — X such that Y has genus > 2, and we define the cyclotome
of IIx as orientation to be us(Ilx) := [Ax : Ay]us(Ily). It does not depend on the
choice of Y in the functorial sense, i.e., For any such coverings Y — X, Y’ — X, take
Y"” — X which factors through Y — Y — X and Y” — Y’ — X. Then the restrictions
H*(Ay, Z) — H*(Ayr, Z), H*(Ayr,Z) — H2(Ayr,Z) (where Y, Y7, and Y7 are the
canonical compactifications of Y, Y’ and Y” respectively), and taking Hom(—, 2) in-
duce natural isomorphisms [Ax : Ay]us(I1y) & [Ax  Ay][Ay - Aynlps(Ilyn) = [Ax -
Ay//]ﬂi(ﬂy//) = [AX . AY’HAY’ . A)ﬂ/]/ﬁi(ﬂyﬂ) :> [AX : Ay/]ﬁbi(ﬂy/) (See [AbSTOpIII,
Remark 1.10.1 (i), (ii)]).

(3) For an open subscheme @) # U C X, let Ay — AF“™(— Ax) be the maximal
intermediate quotient Ay — @ — Ax such that ker (Q — Ax) is in the center of @,
and Iy — TG °™ the push-out of Ay — AF*P ™ with respect to Ay C Iy, We call
them the maximal cuspidally central quotient of Ay and Il respectively.

Remark 3.13.1. In this subsection, by the functoriality of cohomology with piz(II(_y)-coefficients

for an open injective homomorphism of profinite groups Az C Ay, we always mean multiply-

ing ——— on the homomorphism between the cyclotomes IIy and II; (See also [AbsTopllII,
[Ay:AZ]

Remark 1.10.1 (i), (ii)]).

Proposition 3.14. (Cyclotomic Rigidity for Inertia Subgroups, [AbsTopIIl, Proposition 1.4])
Assume that X has genus > 2. Let (X C)X be the canonical smooth compactification of X.
Take a non-empty open subscheme U C X. We have an exact sequence 1 — Ay — Iy —
Gy — 1. Forx € X(k)\U(k), put U, := X \ {x}. Let I, denote the inertia subgroup of x
in Ay (it is well-defined up to inner automorphism of Ay ), which is naturally isomorphic to
Z(1).

(1) ker (Ay — Ay,) and ker (Il — Iy, ) are topologically normally generated by the inertia

subgroups of the points of U, \ U.
(2) We have an exact sequence

cusp-cent
1 — I, = Ap — Ay — 1,

which induces the Leray spectral sequence EY? = HP(Ax, HY(I,, I,)) = HPH(AGP " 1,)
(Here, I, and A‘f}fp_cent act on I, by the conjugates). Then, the composite

Z = Hom(l,, I,) = H*(Ay, H'(I,, I,)) = E>*

— By = H*(Ax, H(I,, 1)) = Hom(pz (1), L)
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sends 1 € Z to the natural 1somorphism
(Cyc. Rig. Iner.) ps(Mx) — I,

(this is a natural identification between ‘@(1)” arising from H? and “Z(1)” arising
from I,.) Therefere, we obtain a group-theoretic reconstruction of the isomorphism
(Cyc. Rig.Iner.) from the surjection Ay, — Ax (Note that the intermediate quotient
Ay, = AGP™ — Ax is group-theoretically characterised). We call the isomorphism
(Cyc. Rig. Iner.) the cyclotomic rigidity for inertia subgroup.

Proof. (1) is trivial. (2): By the definitions, for any intermediate quotient Ay, — Q — Ay
such that ker (Q — Ay) is in the center of @), the kernel ker (QQ — Ax) is generated by the
image of I,. Thus, we have the exact sequence 1 — I, — Agfp_cent — Ax — 1 (See also [Cusp,
Proposition 1.8 (iii)]). The rest is trivial. O

Remark 3.14.1. In the case where the genus of X is not necessarily greater than or equal to 2,
we take a finite étale covering Y — X such that Y has genus > 2, and a point y € Y (') lying
over x € X (k) for a finite extension &’ of k. Then, we have the cyclotomic rigidity p5(Ily) = I,
by Proposition 3.14. This induces isomorphisms

1
[Ax:Ay]

pz(x) = [Ax : Avluz(Ily)  — pz(ly) =1, = L.

We also call this the cyclotomic rigidity for inertia subgroup. It does not depend on the
choice of Y and y in the functorial sense of Definition 3.13 (2), i.e., For such Y — X, Y’ — X
with y € Y(ky), v/ € Y'(ky/), take Y — X with ¢y € Y"(ky~) lying over Y, Y” and y, v/, then
we have the following commutative diagram (See also Remark 3.13.1)

7 = Hom(/,, I,) Hom(p5(Ily ), 1))

= ~l -1
= | [Ay:Ayn]

Z = HOHl(Iy//, Iy//) — Hom(,uz(l_[yn), [y”)

— 1
T = | Byridyn]

Z = Hom(I, I,;) — Hom(y5(I1y.), I,,).

For a proper hyperbolic curve X over k, let J? denote the Picard scheme parametrising line
bundles of degree d on X (Note that J%is a J := J%torsor). We have a natural map X — J!
(P — O(P)), which induces IIx — II,1 (for some basepoint). For = € X (k), let t, : Gy — Il n
be the composite of the section Gy — Il x determined by x and the natural map Iy — Il;i1. The
group structure of Picard schemes also determines a morphism Il x -+ (d-times) - -+ x [Ij1 —
14 for d > 1. For any divisor D of degree d on X such that Supp(D) C X(k), by forming a
Z-linear combination of t,’s, we have a section tp : Gy — Il a.

Lemma 3.15. ([AbsToplll, Proposition 1.6]) Assume that k is Kummer-faithful, and that X
is proper. Take an open subscheme ) # U C X, and let

k(U 0F) = H' (T, u(R(X))) = H' (I, iz () = H' (I, i5(1Tx))

denote the composite of the Kummer map (for an algebraic closure k(X) of k(X)) and the

natural isomorphism ps(k) = ps(I1x ) (= Z(1)) (which comes from the scheme theory).

(1) Ky is injective.
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(2) (See also [Cusp, Proposition 2.3 (i)]) For any divisor D of degree 0 on X such that
Supp(D) C X(k), the section tp : Gy, — 1l; is equal to (up to conjugates by Ax) the
section determined by the origin O of J(k) if and only if the divisor D is principal.

(3) (See also [Cusp, Proposition 2.1 (i)]) We assume that U = X \ S, where S C X (k) is a
finite set. Then, the quotient Il — 15" ™ induces an isomorphism

HY (I s (Iy)) = H' (Hy, pg(x)).
(4) (See also [Cusp, Proposition 1.4 (ii)]) We have an isomorphism
H' (T, pz (Tx)) = (k)"
where (k*)" denotes the profinite completion of k*.

(5) (See also [Cusp, Proposition 2.1 (ii)]) We have a natural exact sequence induced by the
restrictions to I, (x € S):

0 B (I, B[] Lo i5(T0))) = B i (103))) — @) HO(IL, B (1, 15 (1Tx)).
€S z€S
The cyclotomic rigidity isomorphism (Cyc. Rig.Iner.) us(Ilx) = I, in Proposi-
tion 3.14 induces an isomorphism

HO(Tlx, H' (I, pz(T1x))) = Homuy (I, pz(1x)) = Z

(Hence, note that we can use the above isomorphism for a group-theoretic reconstruction
later). Then, by the isomorphisms in (3) and (4) and the above cyclotomic rigidity
1somorphism, the above exact sequence is identified with

1= (k)" = H'(Ily, 3 (Ily)) = P Z.
xeS
(6) The image of T'(U,OF) in H (Iy, puz(Ilx)) /(K™)" via Ky is equal to the inverse image
in H' Iy, pz(I1x)) /(KX)" of the submodule P, of @,csZ(C D,ecs ) determined by
the principal divisors with support in S.

Remark 3.15.1. (A general remark to the readers who are not familiar with the culture of
anabelian geometers) In the above lemma, note that we are currently studying in a scheme
theory here, and that the natural isomorphism i3 (k) 2 5 (Ilx) comes from the scheme theory.
A kind of “general principle” of studying anabelian geometry is like this:

(1) First, we study some objects in a scheme theory to obtain group-theoretic properties or
group-theoretic characterisations.

(2) Next, by using the group-theoretic properties or group-theoretic characterisations ob-
tained in the first step, we formulate group-theoretic reconstruction algorithms, and we
cannot use a scheme theory in this situation.

When we consider cyclotomes as abstract abelian groups with Galois action (i.e., when we
are working in the group theory), we only know a priori that two cyclotomes are abstractly
isomorphic (this is the definition of the cyclotomes), the way to identify them is not given, and
there are Z*-ways (or we have a 7~ torsor) for the identification (i.e., we have Zx—mdetermmacy
for the choice). It is important to note that the cylotomic rigidity 1somorphlsm (Cyc. Rig. Iner.)
is constructed in a purely group theoretic manner, and we can reconstruct the identification
even when we are working in the group theory. See also the (Step 3) in Theorem 3.17.

Proof. (1): By the assumption that & is Kummer-faithful, k(X)) is also Kummer-faithful by
Lemma 3.2 (3).

(2): The origin O € J determines a section sp : Gy — Il;, and, by taking (in the additive
expression) the substraction np :=tp — spo : G — A, (C I1;) (i.e., the quotient np = tp/so
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in the multiplicative expression), which is a 1-cocycle, of two sections tp,so : Gy — Il;, we
obtain a cohomology class [np] € H' (G, Ay). On the other hand, the Kummer map for J(k)
induces an injection (J(k) C)J(k)" C H'(k,Ay), since k is Kummer-faithful (Here, J(k)"
denotes the profinite completion of J(k)). Then, we claim that [D] = [O(D)] € J(k) is sent
to np € H(Gx, Ay) (See also [NTs, Lemma 4.14] and [Naka, Claim (2.2)]). Let ap : J — J
denote the morphism which sends z to  — [D], and for a positive integer N, let Jp x — J be
the pull-back of ap : J — J via the morphism [N] : J — J of multiplication by N:

JD,N —J

L

J\ {0])¢ ———

The origin O € J([ﬂ J) corresponds to a k-rational point +[D] € Jp n(k) lying over [D] € J(k).
By the k-rationality of +[D], we have tp(o) € II,, , (C II;) for ¢ € Gi. The inertia sub-
group o (C Apgoy) of the origin O € J(« Jp ) determines a system of geometric points
Qp.n € Jpn(k) corresponding to the divisor + (—[D]) for N > 1 such that Io always lies
over @p n. The conjugation conj(tp(c)) € Aut(Anoy) by tp(o) coincides with the automor-
phism induced by 0% = id Xgpecr Spec (071) € Aut((J \ {O}) ® k) (Note that a fundamental
group and the corresponding covering transformation group are opposite groups to each other).
Thus, tp(o)lotp(o)™" gives an inertia subgroup over oy (Qpn) = o(@Qpn). On the other
hand, by definition, we have tp(0)zotp(c)™' = tp(c)so(a) tso(o)zos0(0) tso(o)tp(o)™! =

1

nD(U)zgcyc(U)nD(a)*l for a generator zp of Ip, hence, tp(o)lptp(c)™" is an inertia subgroup

over vy (np(a) ™) (Qp.), where vy : Ay — Aut((J \ J[N]) @ k . (J\ {O}) ®y k)°P? (Here,
(—)°PP denotes the opposite group. Note that a fundamental group and the corresponding cov-
ering transformation group are opposite groups to each other). Therefore, we have o(Qp n) =

vn(np(0) 1) (Qp n). By noting the natural isomorphism Aut ((J \ J[N]) @ k it (J\{O}) ® E) =
J[N] given by v — ~(O), we obtain that

o (% (10D = ~rx(u(0))(0) + 3 ([0

Hence we have o (%[D]) — +[D] = vn(np(0))(0). This gives us the claim. The assertion (2)

follows from this claim.
(3): We have the following commutative diagram:

==

0 —- Hl (Gk, HO(A(Slsp-cent)) - Hl(HcU}lsp-cent> HO(Gk, Hl (Agusp-cent))

| | |

0 HY(Gy, H'(Av)) H(1ly) HY(Gy, HY (Av)),

where the horizontal sequences are exact, and we abbreviate the coefficient p5(II;y) by the
typological reason. Here, we have

HY(Gr, H(Ay, 5z (TTx))) = H' (G, pz(Tx)) = H' (Gy, HO(AG™™, 113 (11x))),
and
H (G, H' (A, p13(11x))) = H(Gr, AF) = HO(Gyy HH (AT ™, 1z (Ix))).
Thus by combining these, the assertion (3) is proved.
(4): By the exact sequence

0 — H' (G, H'(Ax, 15(11x))) — H' (T, p3(11x)) — H(Gr, H' (Ax, pz(Tx))) (= H'(Gy, AY)),
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and H'(Gy,, H'(Ax, pz(Ix))) = HY(Gy, pu5(Ilx)) = (k*)", it suffices to show that H(Gy, AY) =
0. This follows from (A%)%* = T(J)% = 0, since NyNJ(k) = 0 by the assumption that k is
Kummer-faithful (Here, T'(.J) denotes the Tate module of J, and J[N] is the group of N-torsion
points of .J).
(5) is trivial by noting H*(IIx, H°(I],cg Las 15 (Ix))) = H' (ILx, p5(Ix)) = (E*)" by (4).
(6) is trivial. O

Let kyp denote the algebraic closure of Q in k (Here, NF stands for “number field”). If Xz
is defined over kyp, we say that X is an NF-curve. For an NF-curve X, points of X (k) (resp.
rational functions on X7, constant rational functions (i.e., k C k(X))) which descend to kxy,
we call them NF-points (resp. NF-rational functions, NF-constants) on X3.

Lemma 3.16. ([AbsToplll, Proposition 1.8]) Assume that k is Kummer-faithful. Take an
open subscheme ) # U C X, and put S := X \ U. We also assume that U is an NF-
curve (hence X is also an NF-curve). Let Py C H*(Ily, uz(Ilx)) denote the inverse image of
Pl CP,esZ(C P,es 7) via the homomorphism HY(Iy, pz(llx)) — @zesi constructed in
Lemma 3.15.

(1) an element n € Py is the Kummer class of a non-constant NF-rational function if
and only if there exist a positive integer n and two NF-points x1,x9 € U(K') with a
finite extension k' of k such that the restrictions (nn)|s, == s (nn) € H (Gy, uz(Ix)),
where s, : Gy — Iy is the section corresponding to x; for i = 1,2, satisfy (in the
additive expression) (nn)|,, =0 and (nn)|z, # 0 (i.e., =1 and # 1 in the multiplicative
expression,).

(2) Assume that there exist non-constant NF-rational functions in I'(U,Of). Then, an
element n € Py N HY(Gy, uz(lx)) = (KX)" is the Kummer class of an NF-constant
in k* if and only if there exist a non-constant NF-rational function f € T'(U, Op)
and an NF-point x € U(K') with a finite extension k' of k such that ky(f)|z = n|. in

H'(Gyo. 13 (L)),

Proof. Let Xnr be a model of X5 over kxp. Then, any non-constant rational function on Xyp
determines a morphism Xyp — IP’ . which is non-constant i.e., Xyp(knp) — IP%NF(/@NF) is
surjective. Then, the lemma follows from the definitions. 0

Theorem 3.17. (Mono-Anabelian Reconstruction of NF-Portion, [AbsToplIl, Theorem 1.9])
Assume that k is sub-p-adic, and that X is a hyperbolic orbicurve of strictly Belyi type. Let X
be the canonical smooth compactification of X. From the extension 1 = Ax — 1lx = G — 1
of profinite groups, we can functorially group-theoretically reconstruct the NF-rational function
field kxp(X) and NF-constant field kxp as in the following. Here, the functoriality is with
respect to open injective homomorphisms of extension of profinite groups (See Remark 3.13.1),

as well as with respect to homomorphisms of extension of profinite groups arising from a base
change of the base field.

(Step 1) By Belyi cuspidalisation (Theorem 3.8), we group-theoretically reconstruct the set of
surjections {Ily — Ix},, for open sub-NF-curves ) # U C X and the decomposition
groups D, in Illx of NF-points x. We also group-theoretically reconstruct the inertia
subgroup I, := D, N Ay.

(Step 2) By cyclotomic rigidity for inertia subgroups (Proposition 3.14 and Remark 3.14.1), we
group-theoretically obtain isomorphism I, = uz(llx) for any v € X(k), where I, is
group-theoretically reconstructed in (Step 1).

(Step 3) By the inertia subgroups I, reconstructed in (Step 1), we group-theoretically reconstruct
the restriction homomorphism H'(Iy, uz(Ilx)) — H* (I, pz(Ilx)). By the cyclotomic
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rigidity isomorphisms in (Step 2), we have an isomorphism H* (I, us(1lx)) = Z. There-
fore, we group-theoretically obtain an exact sequence

L= ()" = H'(Iy, p(11x)) — P Z
€S
in Lemma 3.15 (5) (Note that, without the cyclotomic rigidity Proposition 3.14, we
would have 7 -indeterminacies on each direct summand of P,es Z and that the re-
construction algorithm in this theorem would not work). By the characterisation of
principal cuspidal divisors (Lemma 3.15 (2), and the decomposition groups in (Step 1)),
we group-theoretically reconstruct the subgroup

Py C H' Iy, pz(y))

of principal cuspidal divisors.

(Step 4) Note that we already group-theoretically reconstructed the restriction map n|,, in Lemma 3.16
by the decomposition group D, reconstructed in (Step 1). By the characterisations of
non-constant NF-rational functions and NF-constants in Lemma 3.16 (1), (2) in Py
reconstructed in (Step 3), we group-theoretically reconstruct the subgroups (via Kummer
maps Ky'’s in Lemma 3.15)

Fep € k(X)) C lim H' (I, p(Tx) ),
U

where U runs through the open sub-NF-curves of X x; k' for a finite extension k' of k.

(Step 5) In (Step 4), we group-theoretically reconstructed the datum kyg(X)* in Proposition 3.12
(a). Note that we already reconstructed the data ord,’s in Proposition 3.12 (b) as the
component at x of the homomorphism H'(Iy, pz(llx)) — @xesi reconstructed in
(Step 3). Note also that we already group-theoretically reconstructed the evaluation map
f — f(x) in Proposition 3.12 as the restriction map to the decomposition group D,
reconstructed in (Step 1). Thus, we group-theoretically obtain the data U,’s in Propo-
sition 3.12 (c). Therefore, we can apply Uchida’s Lemma (Proposition 3.12), and we
group-theoretically reconstruct the additive structures on

Fap U0}, Tnp(X)* U {0}

Proof. The theorem immediately follows from the group-theoretic algorithms referred in the
statement of the theorem. The functoriality immediately follows from the described construc-
tions. U

Remark 3.17.1. The input data of Theorem 3.17 is the extension 1 = Ax — IIx = G — 1
of profinite groups. If k is a number field or a non-Archimedean local field, then we need only
the profinite group Ilx as an input datum by Proposition 2.2 (1), and Corollary 2.4. (Note that
we have a group-theoretic characterisation of cuspidal decomposition groups for the number
field case as well by Remark 2.9.2.)

Remark 3.17.2. (Elementary Birational Analogue, [AbsTopIIl, Theorem 1.11]) Let nx denote
the generic point of X. If k is [-cyclotomically full for some [, then we have the characterisation
of the cuspidal decomposition groups in II, , at (not only NF-points but also) all closed points
of X (See Remark 2.9.2). Therefere, under the assumption that k is Kummer-faithful (See also
Lemma 3.2 (2)), if we start not from the extension 1 - Ay — IIx — Gy — 1, but from the
extension 1 — A, — II,, — G — 1, then the same group-theoretic algorithm (Step 2)-(Step
5) works without using Belyi cuspidalisation (Theorem 3.8) or (GC) (See Theorem B.1), and
we can obtain (not only the NF-rational function field kxr(X) but also) the rational function
field £(X) and (not only the NF-constant field kyp but also) the constant field k (Note also
that we do not use the results in Section 3.2, hence we have no circular arguments here).
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Remark 3.17.3. (Slimness of G}, for Kummer-Faithful k, [AbsToplll, a part of Theorem 1.11])
By using the above Remark 3.17.2 (Note that we do not use the results in Section 3.2 to show
Remark 3.17.2, hence we have no circular arguments here), we can show that Gy, := Gal(k/k)
is slim for any Kummer-faithful field & as follows (See also [pGC, Lemma 15.8]): Let Gy C Gy
be an open subgroup, and take g € Zg, (Gj/). Assume that g # 1. Then we have a finite Galois
extension K of k' such that g : K = K is not an identity on K. We have K = k’(a) for some
a € K. Take an elliptic £ over K with j-invariant a. Put X := E'\ {O}, where O is the origin
of E. Put also X9 := X X, K i.e., the base change by g : K = K. The conjugate by ¢ defines
an isomorphism IIx — IIxs. This isomorphism is compatible to the quotients to G, since g
is in Zg, (Gy). Thus, by the functoriality of the algorithm in Remark 3.17.2, this isomorphism
induces an K-isomorphism K (X) = K(X9)(= K(X) ®x, K) of function fields. Therefore, we
have g(a) = a by considering the j-invariants. This is a contradiction.

Remark 3.17.4. (See also [AbsToplll, Remark 1.9.5 (ii)], and [IUTchI, Remark 4.3.2]) The
theorem of Neukirch-Uchida (which is a bi-anabelian theorem) uses the data of the decom-
position of primes in extensions of number fields. Hence, it has no functoriality with respect
to the base change from a number field to non-Archimedean local fields. On the other hand,
(mono-anabelian) Theorem 3.17 has the functoriality with respect to the base change of the
base fields, especially from a number field to non-Archimedean local fields. This is crucial for
the applications to inter-universal Teichmiiller theory (For example, see the beginning of 10,
Example 8.12 etc.). See also [IUTchl, Remark 4.3.2 requirements (a), (b), and (c)].

In inter-universal Teichmiiller theory, we will treat local objects (i.e., objects over local
fields) which a priori do not come from a global object (i.e., an object over a number field), in
fact, we completely destroy the above data of “the decomposition of primes” (Recall also the
“analytic section” of Spec O — Spec Op, ). Therefore, it is crucial to have a mono-anabelian
reconstruction algorithm (Theorem 3.17) in a purely local situation for the applications to
inter-universal Teichmiiller theory. It also seems worthwhile to give a remark that such a
mono-anabelian reconstruction algorithm in a purely local situation got available by the fact
that the bi-anabelian theorem in [pGC] was proved for a purely local situation, unexpectedly
at that time to many people from a point of view of analogy with Tate conjecture!

Definition 3.18. Let k be a finite extension of Q,. We define

/JQ/Z(Gk) = %ﬂ (Hab>torsa Mz(Gk> = Hom(Q/ZauQ/Z(Gk))a

HCGY: open

where the transition maps are given by Verlangerung (or transfer) maps (See also the proof of
Proposition 2.1 (6) for the definition of Verlangerung map). We call them the cyclotomes of
Gg.

Remark 3.18.1. Similarly as Remark 3.13.1, in this subsection, by the functoriality of coho-

mology with pg,z(G (-))-coefficients for an open injective homomorphism of profinite groups

Gy C G, we always mean multiplying m on the homomorphism between the cyclotomes

of Gy and Gy (See also [AbsToplIl, Remark 3.2.2]). Note that we have a commutative diagram

H(Gy., p1gyz(Gy) — Q/Z
[Gk}ick/]mestriction l o~ l_

H2(Gy, pgyz(Gy)) — Q/Z,

where the horizontal arrows are the isomorphisms given in Proposition 2.1 (7).
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Corollary 3.19. (Mono-Anabelian Reconstruction over MLF, [AbsToplll, Corollary 1.10,
Proposition 3.2 (i), Remark 3.2.1]) Assume that k is a non-Archimedean local field, and that
X s a hyperbolic orbicurve of strictly Belyi type. From the profinite group Ilx, we can group-
theoretically reconstruct the following in a functorial manner with respect to open injections of
profinite groups:

(1) the set of the decomposition groups of all closed points in X,

(2) the function field k(X) and the constant field k, and

(3) a natural isomorphism

(Cyc. Rig. LCFT) 17 (Gr) = 1z(0" (1)),

where we put 115(0O" (llx)) := Hom(Q/Z, k(kxp)) for K : kg < ling, HY(Iy, pz(Ix)).
We call the isomorphism (Cyc. Rig. LCFT) the cyclotomic rigidity via LCFT or classical
cyclotomic rigidity (LCFT stands for “local class field theory”).

Proof. (1) is just a restatement of Corollary 3.9.

(2): By Theorem 3.17 and Corollary 2.4, we can group-theoretically reconstruct the fields
kxr(X) and kyp. On the other hand, by the natural isomorphism H?(Gy, uz(Gy)) — i/
group-theoretically constructed in Proposition 2.1 (7) (with Hom(Q/Z, —)) and the cup prod-
uct, we group-theoretically construct isomorphisms H'(Gy, 1i5(Gy)) = Hom(HY(Gy,Z), Z) =2
G2P. 'We also have group-theoretic constructions of a surjection G&* — G2°/Im(I, — G3P)
and an isormorphism G3*/Im(I; — G3P) = Z by Proposition 2.1 (4a) and Proposition 2.1
(5) respectively (See also Remark 2.1.1). Hence, we group-theoretically obtain a surjection
Hl(Gk,uz(Gk)/)\ — Z. We have an isomorphism 1z(Gr) = ps(Ily) Well—deﬁned up to mul-
tiplication by Z*. Then, this induces a surjection H'(Gy, piz(llx)) — Z well-defined up to
multiplication by Z*. We group-theoretically reconstruct the field £ as the completion of the
field (H'(Gy, pz(Ilx)) N Fxp) U {0} (induced by the field structure of ke U {0}) with respect
to the valuation determined by the subring of (H'(Gj, uz(Ilx)) N Fxp) U {0} generated by
ker {H Gy, pz(llx)) — i} Nkxp. The reconstructed object is independent of the choice of an

isomorphism 115(G) = pz(I1x). By taking the inductive limit of this construction with respect
to open subgroups of Gy, we group-theoretically reconstruct k. Finally, we group-theoretically
reconstruct k(X) by k(X) := k ®g_, kxr(X).

(3): We put pugz(0O”(llx)) = pz(0O”(Ilx)) ®5 Q/Z. We group-theoretically reconstruct
G"™ = Gal(k"™/k) by Proposition 2.1 (4a). Then, by the same way as Proposition 2.1 (7), we
have group-theoretic constructions of isomorphisms:

H*(Gy, pigyz(0” (M) 5 H* (G, 5(E")) «— H*(G™, k((k™)*))
= (G, Z) < HY(G™,Q/Z) = Hom(G™,Q/Z) = Q/Z.

Thus, by taking Hom(Q/Z, —), we obtain a natural isomorphism H?(Gy, pz(0” (ILy))) = Z.
By imposing the compatibility Aof this isomorphism with the group-theoretically constructed iso-
morphism H?(Gy, pi5(Gy,)) = Zin (2), we obtain a natural isomorphism p5(Gx) = pz(0” (Ilx)).

0

Remark 3.19.1. ([AbsToplII, Corollary 1.10 (c¢)]) Without assuming that X is of strictly Belyi
type, we can construct an isomorphism fi5(Gy) = pz(Ilx) (cf. Corollary 3.19 (3)). However, the
construction needs technically lengthy reconstructions of the graph of special fiber ([profGC, §1-
5], [AbsAnab, Lemma 2.3]. See also [SemiAnbd, Theorem 3.7, Corollary 3.9] Proposition 6.6 for
the reconstruction without Galois action in the case where a tempered structure is available)
and the “rational positive structure” of H? (See also [AbsAnab, Lemma 2.5 (i)]), where we
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need Raynaud’s theory on “ordinary new part” of Jacobians (See also [AbsAnab, Lemma 2.4]),
though it has an advantage of no need of [pGC]. See also Remark 6.12.2.

Remark 3.19.2. ([AbsTopllIl, Proposition 3.2, Proposition 3.3]) For a topological monoid
(resp. topological group) M with continuous Gg-action, which is isomorphic to O‘E (resp. EX)
compatible with the Gj-action, we put pz(M) := Hom(Q/Z, M*)) and ugz(M) := pz(M) @5
Q/Z. We call them the cyclotome of a topological monoid M. We also put M :=
M*er(G=G") - We can canonically take the generator of M™ /M* = N (resp. the generator of
M™ /M* up to {£1}) to obtain an isomorphism (A")&/(M"™)* = Z (resp. an isomorphism
(MUr)se J(MM)* = Z well-defined up to {£1}). Then, by the same way as Corollary 3.19 (3),
we have

H2<Gk,ﬂ@/z<M)) :> H2(Gk, Mgp) <L HQ(Gur, (Mur)gp>

5 HA(G™, (M) /(M™)*) (—N)> H*(G™,7Z) <~ H'(G™,Q/Z) = Hom(G"™,Q/Z) = Q/Z,

where the isomorphism H?(G"™, (M")eP /(Mv)*) % H?(G"™,Z) is canonically defined (resp.

well-defined up to {£1}), as noted above. Then, we have a canonical isomorphism (resp. an
isomorphism well-defined up to {£1})

(Cyc. Rig. LCFT2) 117(Gr) = pz (M),

by the same way as in Corollary 3.19 (3). We also call the isomorphism (Cyc. Rig. LCFT2)
the cyclotomic rigidity via LCFT or classical cyclotomic rigidity. We also obtain a
canonical homomorphism (resp. a homomorphism well-defined up to {+1})

M lim  H'(Jpz(M) = lim  H'(J,15(Gr)),

JCG: open JCG: open

by the above isomorphism, where the first injection is the canonical injection (The notation
> in OF = OX - (uniformiser)™ indicates that the “direction” N (= (uniformiser)") of Z (=

(uniformiser)?) (or a generator of Z) is chosen, compared to k= = or - (uniformiser)?, which

has {#1}-indeterminacy of choosing a “direction” or a generator of Z (= (uniformiser)Z). In
the non-resp’d case (i.e., the O”-case), the above canonical injection induces an isomorphism

Kum

M 5 02(Ily),

where OZ (ILy) denotes the ind-topological monoid determined by the ind-topological field
reconstructed by Corollay 3.19. We call this isomprhism the Kummer isomorphism for M.

We can also consider the case where M is an topological group with Gy-action, which is
isomorphic to OEX compatible with the Gi-action. Then, in this case, we have an isomorphism

15(Gr) = pz(M) and an injection M — ling ) o H'(J, pi5(Gy)), which are only well-defined

up to ix—multiple (i.e., there is no rigidity).

It seems important to give a remark that we use the value group portion (i.e., we use O%, not
O*) in the construction of the cyclotomic rigidity via LCFT. In inter-universal Teichmiiller the-
ory, not only the existence of reconstruction algorithms, but also the contents of reconstruction
algorithms are important, and whether or not we use the value group portion in the algorithm
is crucial for the constructions in the final multiradial algorithm in inter-universal Teichmiiller
theory. See also Remark 9.6.2, Remark 11.4.1, Propositin 11.5, and Remark 11.11.1.
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3.5. Philosophy of Mono-Analyticity and Arithmetical Holomorphicity (Explana-
tory). In this subsection, we explain Mochizuki’s philosophy of mono-analyticity and arith-
metical holomorphicity, which is closely related to inter-universality.

Let k be a finite extension of Q,, k an algebraic closure of k, and k'(C k) a finite extension
of Q,. It is well-known that, at least for p # 2, the natural map

(nonGC for MLF) o B B
ISOIntol:)ological ﬁclds(k/kv k/k,) — ISOInproﬁnitc groups(Gal(k/k/)a G&l(k/k?))
(scheme theory) (group theory)

is not bijective (See [NSW, Chap. VII, §5, p.420-423]. See also [AbsTopl, Corollary 3.7]). This
means that there exists an automorphism of G} := Gal(k/k) which does not come from an
isomorphism of topological fields (i.e., does not come from a scheme theory). In this sense, by
treating Gy, as an abstract topological group, we can go outside of a scheme theory. (A part of)
Mochizuki’s philosophy of arithmetically holomorphicity and mono-analyiticity is to consider
the image of the map (nonGC for MLF) as arithmetically holomorphic, and the right hand
side of (nonGC for MLF) as mono-analytic (Note that this is a bi-anabelian explanation, not
a mono-anabelian explanation (cf. Remark 3.4.4) for the purpose of the reader’s easy getting
the feeling. We will see mono-anabelian one a little bit later). The arithmetical holomorphicity
versus mono-analyticity is an arithmetic analougue of holomorphic structure of C versus the
undeyling analytic strucutre of R?*(= C).

Note that G has cohomological dimension 2 like C is two-dimensional as a topological
manifold. It _is well-known that this two-dimensionality comes from the exact sequence 1 —
I, — G, — ZFrob, — 1 and that both of I, and ZFrob, have cohomological dimension 1. In
the abelianisation, these groups correspond to the unit group and the value group respectively
via the local class field theory. Proposition 2.1 (2d) says that we can group-theoretically
reconstruct the multiplicative group k£* from the abstract topological group Gj. This means
that we can see the multiplicative structure of k£ in any scheme theory, in other words, the
multiplicative structure of £ is inter-universally rigid. However, we cannot group-theoretically
reconstruct the field £ from the abstract topological group Gy, since there exists a non-scheme
theoretic automorphism of GG as mentioned above. In other words, the additive structure of
k is inter-universally non-rigid. Proposition 2.1 (5) also says that we can group-theoretically
reconstruct Frobenius element Frob, in zFrobk(«— Gy,) from the abstract topological group Gy,
and the unramified quotient ZFrobk corresponds to the value group via the local class field
theory. This means that we can detect the Frobenius element in any scheme theory. In other
words, the unramified quotient ZFrob, and the value group Z(« k*) are inter-universally rigid.
However, there exists automorphisms of the topological group G which do not preserve the
ramification filtrations (See also [AbsToplll, Remark 1.9.4]), and the ramification filtration
(with upper numberings) corresponds to the filtration (1 + m}), of the unit group via the
local class field theory, where m; denotes the maximal ideal of O. In other words, the inertia
subgroup [, and the unit group O’ are inter-universally non-rigid (We can also directly see that
the unit group O is non-rigid under the automorphism of topological group k* without the
class field theory). In summary, one dimension of Gy or k* (i.e., the unramified quotient and
the value group) is inter-universally rigid, and the other dimension (i.e., the inertia subgroup
and the unit group) is not. Thus, Mochizuki’s philosophy of arithmetical holomorphicity and
mono-analyticity regards a non-scheme theoretic automorphism of Gy as a kind of arithmetic
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analogue of Teichmiiller dilation of the undeyling analytic strucutre of R?*(= C):

) - t

— —————

(See also [Pano, Fig. 2.1] instead of the above poor picture). Note that [Q,GC, Theorem 4.2]
says that if an automorphisms of G} preserves the ramification filtration, then the automor-
phism arises from an automorphism of k/k. This means that when we rigidify the portion
corresponding to the unit group (i.e., non-rigid dimension of Gy), then it becomes arithmeti-
cally holomorphic i.e., [Q,GC, Theorem 4.2] supports the philosophy. Note also that we have
C* = S! x Ry, where we put S' := OF C C* (See Section 0.2), and that the unit group S' is
rigid and the “value group” R+ is non-rigid under the automorphisms of the topological group
C* (Thus, rigidity and non-rigidity for unit group and “value group” in Archimedean case are
opposite to the non-Archimedean case).

Let X be a hyperbolic orbicurve of strictly Belyi type over a non-Archimedean local field k.
Corollary 3.19 says that we can group-theoretically reconstruct the field k£ from the abstract
topological group Ilx. From this mono-anabelian reconstruction theorem, we obtain one of the
fundamental observations of Mochizuki: IIx or equivalently the outer action Gj — Out(Ax)
(and the actions lx ~ k, O, Og, OEX) is arithmetically holomorphic, and Gy (and the actions
Gr Og, OEX on multiplicative monoid and multiplicative group) is mono-analytic (thus, taking
the quotient Iy — Gy is a “mono-analyticisation”) (cf. Section 0.2 for the notation OF). In
other words, the outer action of G}, on Ay rigidifies the “non-rigid dimension” of k*. We can
also regard X as a kind of “tangent space” of k, and it rigidifies £*. Note also that, in the p-adic
Teichmiiller theory, a nilpotent ordinary indigenous bundle over a hyperbolic curve in positive
characteristic rigidifies the non-rigid p-adic deformations. In the next section, we study an
Archimedean analogue of this rigidifying action. In inter-universal Teihmiiller theory, we study
number field case by putting together the local ones. In the analogy between p-adic Teichmiiller
theory and inter-universal Teichmiiller theory, a number field corresponds to a hyperbolic curve
over a perfect field of positive characteristic, and a once-punctured elliptic curve over a number
field corresponds to a nilpotent ordinary indigenous bundle over a hyperbolic curve over a
perfect field of positive characteristic. We will deepen this analogy later such that log-link
corresponds to a Frobenius endomorphism in positive characteristic, a vertical line of log-theta
lattice corresponds to a scheme theory in positive characteristic, ©-link corresponds to a mixed
characteristic lifting of ring of Witt vectors p™/p"™! ~» p"*1 /p"*2 a horizontal line of log-theta
lattice corresponds to a deformation to mixed characteristic, and a log-theta lattice corresponds
to a canonical lifting of Frobenius (cf. Section 12.1).

In short, we obtain the following useful dictionaries:

rigid ZFroby value group | multiplicative structure of k| S*(C C*)
non-rigid I unit group additive structure of k R.o(C C*)
C field k& IIx Oy ~ E, Og, OE, OEX arith. hol.

R?*(= C) | multiplicative group k* Gy Gp Og , OEX mono-an.
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inter-universal Teich. p-adic Teich.
number field hyperbolic curve of pos. char.

onece-punctured ell. curve nilp. ord. indigenous bundle

log-link Frobenius in pos. char.
vertical line of log-theta lattice scheme theory in pos. char.
O-link lifting p™/p" !~ prtt/prt?
horizontal line of log-theta lattice deformation to mixed. char.

log-theta lattice canonical lift of Frobenius

See also [AbsToplll, §1.3] and [Pano, Fig. 2.5]. Finally, we give a remark that separating ad-
ditive and multiplicative structures is also one of the main themes of inter-universal Teichmiiller
theory (cf. Section 10.4 and Section 10.5).

4. ARCHIMEDEAN THEORY —AVOIDING SPECIFIC REFERENCE MODEL C.

In this section, we introduce a notion of Aut-holomorphic space to avoid a specific fixed
local referred model of C (i.e., “the C”) for the formulation of holomorphicity, i.e., “model-
implicit” approach. Then, we study an Archimedean analogue mono-anabelian reconstructions
of Section 3, including elliptic cuspidalisation, and an Archimedean analogue of Kummer theory.

4.1. Aut-Holomorphic Spaces.

Definition 4.1. ([AbsToplll, Definition 2.1])

(1) Let X,Y be Riemann surfaces.

(a) Let Ax denote the assignment, which assigns to any connected open subset U C X
the group Ax(U) := Aut™(U) := {f : U = U holomorphic} C Aut(U*P) := {f :
U = U homeomorphic}.

(b) Let U be a set of connected open subset of X such that U is a basis of the topology
of X and that for any connected open subset V' C X, if V. C U € U, then V € U.
We call U a local structure on the underlying topological space X P,

(c) We call amap f: X — Y between Riemann surfaces an RC-holomorphic mor-
phism if f is holormophic or anti-holomorphic at any point z € X (Here, RC
stands for “real complex”).

(2) Let X be a Riemann surface, and U a local structure on X*P.

(a) The Aut-holomorphic space associated to X is a pair X = (X*P Ax), where
XtoP .= X'P the underlying topological space of X, and Ax := Ax.

(b) We call Ax the Aut-holomorphic structure on X'*P.

(c) We call Ax|;; a U-local pre-Aut-holomorphic structure on X*P.

(d) If X is biholomorphic to an open unit disc, then we call X an Aut-holomorphic
disc.

(e) If X is a hyperbolic Riemann surface of finite type, then we call X hyperbolic of
finite type.

(f) If X is a hyperbolic Riemann surface of finite type associated to an elliptically
admissible hyperbolic curve over C, then we call X elliptically admissible.
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(3) Let X, Y be Aut-holomorphic spaces arising from Riemann surfaces X, Y respectively.
Let U, V be local structures of X'P_ Y'*P respectively.

(a) A (U,V)-local morphism ¢ : X — Y of Aut-holomorphic spaces is a local iso-
morphism ¢%P : X'P — Y'*P of topological spaces suth that, for any U € U with
¢*P : U = V € V (homeomorphism), the map Ax(U) — Ay(V) obtained by the
conjugate by ¢™P is bijective.

(b) If U, V are the set of all connected open subset of X"*P YP respectively, then we
call ¢ a local morphism of Aut-holomorphic spaces.

(c) If ¢'°P is a finite covering space map, then we call ¢ finite étale.

(4) Let Z, Z' be orientable topological surfaces.

(a) Take p € Z, and put Orn(Z,p) := WM ommected, open m (W \ {p})*", which is
non-canonically isomorphic to Z. Note that after taking the abelianisation, there
is no indeterminacy of inner automorphisms arising from the choice of a basepoint
in (the usual topological) fundamental group m (W \ {p}).

(b) The assignment p — Orn(Z, p) is a trivial local system, since Z is orientable. Let
Orn(Z) denote the abelian group of global sections of this trivial local system,
which is non-canonically isomorphic to Z™ (%),

(c) Let o, B : Z — Z' be local isomorphisms. We say that o and [ are co-oriented if
the induced homomorphisms a., B, : Orn(Z) — Orn(Z’) of abelian groups coincide.

(d) A pre-co-orientation ( : Z — Z’ is an equivalence class of local isomorphisms
7 — 7' of orientable topological surfaces with respect to being co-oriented.

(e) The assignment which assigns to the open sets U in Z the sets of pre-co-orientations
U — Z' is a presheaf. We call a global section ( : Z — Z’ of the sheafification of
this presheaf a co-orientation.

(5) Let X, Y be Aut-holomorphic spaces arising from Riemann surfaces X, Y respectively.
Let U, V be local structures of X*P_ YP respectively.

(a) (U,V)-local morphisms ¢, ¢y : X — Y of Aut-holomorphic spaces is called co-
holomorphic, if ¢;°® and ¢3 are co-oriented.

(b) A pre-co-holomorphicisation ¢ : X — Y is an equivalence class of (U,V)-
local morphisms X — Y of Aut-holomorphic spaces with respect to being co-
holomorphic.

(c) The assignment which assigns to the open sets U in X'™P the sets of pre-co-
holomorphicisation U — Y is a presheaf. We call a global section ¢ : X — Y
of the sheafification of this presheaf a co-holomorphicisation.

By replacing “Riemann surface” by “one-dimensional complex orbifold”, we can easily extend
the notion of Aut-holomorphic space to Aut-holomorphic orbispace.

Proposition 4.2. ([AbsToplIIl, Proposition 2.2]) Let X|Y be Aut-holomorphic discs arising
from Riemann surfaces X, Y respectively. We equip the group Aut(X*P) of homeomorphisms
with the compact-open topology. Let Aut®“™™(X) (C Aut(X'P)) denote the subgroup of RC-
holomorphic automorphisms of X. We regard Aut"(X) and Aut®°"(X) as equipped with the
induced topology by the inclusions

Aut™(X) ¢ AutROP(X) © Aut(XtP).
(1) We have isomorphisms
Aut™(X) =2 PSLy(R), Aut®M(X) = PGL,(R)

as topological groups, Aut" (X) is a subgroup in Aut?° (X)) of index 2, and Aut®“(X)
is a closed subgroup of Aut(X™P).
(2) Aut®oPY(X) is commensurably terminal (cf. Section 0.2) in Aut(X'P).
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(3) Any isomorphism X = Y of Aut-holomorphic spaces arises from an RC-holomorphic
isomorphism X =Y.

Proof. (1) is well-known (the last assertion follows from the fact of complex analysis that the
limit of a sequence of holomorphic functions which uniformly converges on compact subsets is
also holomorphic).

(2) It suffices to show that Cauy(xtor)(Aut" (X)) = Aut"“"(X) (cf.Section 0.2). Take
o € Cpug(xrory (Aut" (X)), Then, Aut"(X)NaAut™ (X)a ! is a closed subgroup of finite index

in Aut™!(X), hence an open subgroup in Aut™(X). Since Aut"™(X) is connected, we have
Aut"™(X) N aAut"™!(X)a™! = Aut"(X). Thus, a € Nyuyxror)(Aut" (X)) (cf. Section 0.2).
Then, by the conjugation, a gives an automorphism of Aut"(X). The theorem of Schreier-van
der Waerden ([SvdW]) says that Aut(PSLy(R)) = PGLy(R) by the conjugation. Hence, we have
o € Aut®P(X). (Without using the theorem of Schreier-van der Waerden, we can directly
show it as follows: By Cartan’s theorem (a homomorphism as topological groups between Lie
groups is automatically a homomorphism as Lie groups, cf.[Serrel, Chapter V, §9, Theorem
2]), the automorphism of Aut"™!(X) given by the conjugate of a is an automorphism of Lie
groups. This induces an automorphism of Lie algebra sly(C) with sly(R) stabilised. Hence, « is
given by an element of PG Ly(R). See also [AbsTopllIl, proo of Proposition 2.2 (ii)], [QuConf,
the proof of Lemmal.10].)

(3) follows from (2), since (2) implies that Aut®™!(X) is normally terminal. O

The followoing corollary says that the notions of “holomorphic structure”, “Aut-holomorphic
structure”, and “pre-Aut-holomorphic structure” are equivalent.

Corollary 4.3. (a sort of Bi-Anabelian Grothendieck Conjecture in Archimedean Theory,
[AbsTopllIl, Corollary 2.3]) Let X, Y be Aut-holomorphic spaces arising from Riemann surfaces
X, Y respectively. Let U, V be local structures of X*P, Y'*°P respectively.

(1) Any (U, V)-local isomorphism ¢ : X — Y of Aut-holomorphic spaces arises from a
unique €tale RC-holomorphic morphism ¢ : X — Y. If X and Y are connected, then
there exist precisely 2 co-holomorphicisations X — Y, corresponding to the holomorphic
and anti-holomorphic local isomorphisms.

(2) Any pre-Aut-holomorphic structure on X' extends to a unique Aut-holomorphic struc-
ture on XP,

Proof. (1) follows from Proposition 4.2 (3).

(2) follows by applying (1) to automorphisms of the Aut-holomorphic spaces determined by
the connected open subsets of X'*P which determine the same co-holomorphicisation as the
identity automorphism. O

4.2. Elliptic Cuspidalisation and Kummer theory in Archimedean Theory.

Lemma 4.4. ([AbsToplll, Corollary 2.4]) Let X be a hyperbolic Aut-holomorphic orbispace
of finite type, arising from a hyperbolic orbicurve X over C. Only from the Aut-holomorphic
orbispace X, we can determine whether or not X admits C-core, and in the case where X admits
C-core, we can construct the Aut-holomorphic orbispace associated to the C-core in a functorial
manner with respect to finite étale morphisms by the following algorithms:

(1) Let U — X*P be any universal covering of X*P. Then we reconstruct the topological
fundamental group 7 (X*P) as the opposite group Aut(UP /XP)oPP of Aut(TUtP /X P).
(2) Take the local structure U of U*P consisting of connected open subsets of U*P which
map isomorphically onto open sub-orbispaces of X©P. We construct a natural U-local
pre-Aut-holomorphic structure on U™ by restricting Aut-holomorphic structure of X
on X*P and by transporting it to U*P. By Corollary 4.3 (2), this gives us a natural
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Aut-holomorphic structure Ay on U*P. We put U := (U*P, Ay). Thus, we obtain a
natural injection m(X%P)PP = Aut(UtP/X'P) — Aut’(U) C Aut(U) = PGLy(R),
where Aut’(U) denotes the connected component of the identity of Aut(U), and the last
isomorphism is an isomorphism as topological groups (Here, we regard Aut(U) as a
topological space by the compact-open topology).

X admits C-core if and only if Im(m (X%P)PP) = Im(7y(X*P)PP  Aut’(U)) is of
finite index in Ueore := C g0y (Tm (7 (X*P)PP)). If X admits C-core, then the quotient
XP — X ore := U™P/ /[Tloope in the sense of stacks is the C-core of X. The restriction
of the Aut-holomorphic structure of U to an appropriate local structure on U and trans-
porting it to Xeore give us a natural Aut-holomorphic structure Ax.,,,. of Xcore, hence,
the desired Aut-holomorphic orbispace (X —)Xcore := (Xeores AXeore ) -

Proof. Assertions follow from the described algorithms. See also [CanLift, Remark 2.1.2]. [

Proposition 4.5. (Elliptic Cuspidalisation in Archimedean Theory, [AbsToplII, Corollary 2.7],
See also [AbsTopllIl, Proposition 2.5, Proposition 2.6]) Let X be an elliptically admissible Aut-
holomorphic orbispace arising from a Riemann orbisurface X. By the following algorithms,
only from the holomorphic space X, we can reconstruct the system of local linear holomorphic
structures on X'P in the sense of (Step 10) below in a functorial manner with respect to finite
étale morphisms:

(Step 1)

(Step 2)

(Step 3)

(Step 4)

(Step 5)

(Step 6)

By the definition of elliptical admissibility and Lemma 4.4 (2), we construct X — Xeore,
where Xeore arises from the C-core Xeore of X, and Xore is semi-elliptic (cf. Section 3.1).
There is a unique double covering E — Xcore by an Aut-holomorphic space (not orbis-
pace), i.e., the covering corresponding to the unique torsion-free subgroup of index 2 of
the group .o of Lemma 4.4. Here, E is the Aut-holomorphic space associated to a
onec-punctured elliptic curve E'\ {O} over C.

We consider elliptic cuspidalisation diagrams E « EN — K (See also the portion of
“E\{O} «= E\E[N] < E\{O}” in the diagram (EllCusp) of Section 3.2), where E¥ —
E is an abelian finite étale coveing which is also unramified at the unique punctured point,
EP — (EN)P is an open immersion, and EN — E, EN — E are co-holomorphic. By
these diagrams, we can reconstruct the torsion points of the elliptic curve E as the
points in B\ EN. We also reconstruct the group structure on the torsion points
induced by the group structure of the Galois group Gal(EN/E), i.e., 0 € Gal(EY /E)
corresponds to “+[P]” for some P € E[N].

Since the torsion points constructed in (Step 2) are dense in E'P we reconstruct the
group structure on E*P as the unique topological group structure extending the group
structure on the torsion points constructed in (Step 2). In the subsequent steps, we take
a simply connected open non-empty subset U in WP,

Let p € U. The group structure constructed in (Step 3) induces a local additive
structure of U at p, i.e., a+,b:=(a—p)+ (b—p)+peU fora,be U, whenever it
1s defined.

We reconstruct the line segments of U by one-parameter subgroups relative to the
local additive structures constructed in (Step 4). We also reconstruct the pairs of par-
allel line segments of U by translations of line segments relative to the local additive
structures constructed in (Step 4). For a line segment L, put OL to be the subset of
L consisting of points whose complements are connected, we call an element of OL an
endpoint of L.

We reconstruct the parallelograms of U as follows: We define a pre-O-parallelogram
A of U to be Ly U Ly U Ly U Ly, where L; (i € ZJAZ) are line segments (constructed in
(Step 5)) such that (a) for any py # ps € A, there exists a line segment L constructed
in (Step 5) with OL = {p1,pa2}, (b) L; and Lo are parallel line segments constructed



(Step 7)

(Step 8)

(Step 9)
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in (Step 5) and non-intersecting for any i € Z/AZ, and (¢) L; N Ly = (OL;) N (OL;41)
with #(L; N Liy1) = 1. We reconstruct the parallelograms of U as the interiors of the
unions of the line segments L of U such that OL C A for a pre-0-parallelogram A. We
define a side of a parallelogram in U to be a mazimal line segment contained in P\ P
for a parallelogram P of U, where P denotes the closure of P in U.

Let p € U. We define a frame F = (S1,5;) to be an ordered pair of intersecting sides
S1 # S of a parallelogram P of U constructed in (Step 6), such that S;NSs = {p}. If a
line segment L of U have an infinite intersection with P, then we call L being framed
by F. We reconstruct an orientation of U at p (of which there are precisely 2) as an
equivalence class of frames of U'P at p relative to the equivalence relation of frames
F = (51,5:), F = (51,5%) of U at p generated by the relation that Sy is framed by F
and Sy is framed by F.

Let V be the Aut-holomorphic space determined by a parallelogram VP C U constructed
in (Step 7). Let p € V*°P. Take a one-parameter subgroup S of the topological group
Ay (VtP) (=2 PSLy(R)) and a line segment L in U constructed in (Step 5) such that one
of the endpoints (cf. (Step 5)) of L is equal to p. Note that one-parameter subgroups
are characterised by using topological (not differentiable) group structure as the closed
connected subgroups for which the complement of some connected open neighbourhood
of the identity element is not connected. We say that L is tangent to S - p at p if any
pairs of sequences of points of L'\ {p}, (S -p)\ {p} converge to the same element of
the quotient space VP \ {p} — P(V,p) determined by identifying positive real multiples
of points of VP \ {p} relative to the local additive structure constructed in (Step /)
at p (i.e., projectivification). We can reconstruct the orthogonal frames of U as the
frames consisting of pairs of line segments Ly, Lo having p € U as an endpoint that are
tangent to the orbits Sy - p, Sa - p of one-parameter subgroups Sy, Sz C Ay(V'P) such
that Sy is obtained from Sy by conjugating Sy by an element of order 4 (i.e., “ti”) of a
compact one-parameter subgroup of Ay (V™©P).

Forp e U, let (V)pevcu be the projective system of connected open neighbourhoods of p
m U, and put

A, = {f € Aut((V)pever) | f satisfies (LAS), (Orth), and (Om')},

where

(LAS): compatibility with the local additive structures of V(C U) at p constructed in (Step

4)?

(Orth): preservation of the orthogonal frames of V(C U) at p constructed in (Step 8), and
(Ori): preservation of the orientations of V(C U) at p constructed in (Step 7)

(Step 10)

(See also Section 0.2 for the Hom for a projective system). We equip A, with the
topology induced by the topologies of the open neighbourhoods of p that A, acts on. The
local additive structures of (Step 4) induce an additive structure on A, == A, U {0}.
Hence, we have a natural topological field structure on Ip. Tha tautological action of
C* on C D U induces a natural isomorphism C* = A, of topological groups, hence a
natural isomorphism C = Ip of topological fields. In this manner, we reconstruct the
local linear holomorphic structure “C* at p” of U at p as the topological field Ip
with the tautological action of A,(C A,) on (V)pevcu-

For p,p' € U, we construct a natural isomorphism Ip = .,4_],/ of topological fields as
follows: If p' is sufficiently close to p, then the local additive structures constructed
in (Step 4) induce homeomorphism from sufficiently small neighbourhoods of p onto
sufficiently small neighbourhoods of p' by the translation (=the addition). These home-
omorphisms induce the desired isomorphism Ip = .A_p/. For general p,p’ € U, we can
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obtain the desired isomorphism Ip = A_p/ by joining p’ to p via a chain of sufficiently
small open neighbourhoods and composing the isomorphisms on local linear holomorphic
structures. This isomorphism is independent of the choice of such a chain. We call
((Ap)p, (A, = Ay), ) the system of local linear holomorphic structures on E'°P
or X' We identify (A, C Ip) 's for p’s via the above natural isomorphisms and let
AX c AX denote the identified ones.

Proof. The assertions immedeately follow from the described algorithms. OJ

Hence, the formulation of “Aut-holomorphic structure” succeeds to avoid a specific fixed
local referred model of C (i.e., “the C”) in the above sense too, unlike the usual notion of
“holomorphic structure”. This is also a part of “mono-anabelian philosophy” of Mochizuki.
See also Remark 3.4.4 (3), and [AbsToplIIl, Remark 2.1.2, Remark 2.7.4].

Let k be a CAF (See Section 0.2). We recall (cf. Section 0.2) that we write Oy C C for the
subset of elements with |- | < 1in k, O} C O, for the group of units i.e., elements with |- | = 1,
and OF := Oy \ {0} C Oy, for the multiplicative monoid.

Definition 4.6. ([AbsToplll, Definition 4.1])

(1) Let X be an elliptically admissible Aut-holomorphic orbispace. A model Kummer
structure r; : k = AX (resp. Koy OF — A* resp. rpx : kX — A* resp.
Kow OF — A*) on X is an isomorphism of topological fields (resp. its restriction
to O}, resp. its restriction to k*, resp. its restriction to O} ). An isomorphism r; :
M 5 AX of topological fields (resp. an inclusion sy : O < A* of topological
groups, resp. an inclusion sy : kX < A* of topological groups, resp. an inclusion
ka2 OF — A® of topological monoids) is called a Kummer structure on X if there
exist an automorphicm f : X = X of Auto-holomorphic spaces, and an isomorphism
g : M = k of topological fields (resp. an isomorphism g : M = O;° of topological
groups, resp. an isomorphism ¢ : M = k* of topological groups, resp. an isomorphism
g: M = OF of topological monoids) such that f*ork = ryr0g (resp. f*o;{okx =Kyog
resp. [* o kpx = Ky o g resp. f*okpe = Ky O g), where f* : AX 5 AX (resp.
frr A S A% resp. fr i AR S A% resp. f* 1 AX S5 A%) is the automorphism induced
by f. We often abbreviate it as X / M.

(2) A morphism ¢ : (X; A M) — (X, A M,) of elliptically admissible Aut-
holomorphic orbispaces with Kummer structures is a pair ¢ = (¢x, ¢p) of
a finite étale morphism ¢x : X; — X, and a homomorphism ¢, : M; — My of
topological monoids, such that the Kummer structures x; and ks are compatible with
¢nr - My — My and the homomorphism (@), : A¥1 — A%z arising from the functorial-
ity of the algorithms in Proposition 4.5.

The reconstruction

X (X, X A A ¢ AX (with field str.) tautological Kummer Structure)
described in Proposition 4.5 is an Archimedean analogue of the reconstruction

M (ILI AR (with field see) 5859l HY(J, (1)) |
JCII: open
described in Corollary 3.19 for non-Archimedean local field k. Namely, the reconstruction in
Corollary 3.19 relates the base field k£ to Iy via the Kummer theory, and the reconstruction
in Proposition 4.5 relates the base field A* (=2 C) to X, hence, it is a kind of Archimedean

Kummer theory.
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Definition 4.7. (See also [AbsToplIl, Definition 5.6 (i), (iv)])

(1) We say that a pair G = (C, 8 of a topological monoid C' and a topological submonoid
C C is a split monoid, if C is isomorphic to OF, and — (' determines an
isomorphism C™* x 8 — C of topological monoids (Note that C* and 8 are necessarily

isomorphic to S* and (0, 1] 1% R>q respectively). A morphism of split monoids
G, = (C1, C1) = Gy = (Cy, C'y) is an isomorphism C; — Cy of topological monoids
which induce an isomorphism C'; = 82 of the topological submonoids.

Remark 4.7.1. We omit the definition of Kummer structure of split monoids ([AbsToplII,

Definition 5.6 (i), (iv)]), since we do not use them in inter-universal Teichmiillert theory (In-
stead, we consider split monoids for mono-analytic Frobenius-like objects). In [AbsToplll],

we consider a split monoid G = (C, 8) arising from arith-holomorphic “OZ” via the mono-
analyticisation, and consider a Frobenius-like object M and k~(G) = C~ x C~ (See Proposi-

tion 5.4 below) for G = (C, 8) On the other hand, in inter-universal Teichmiiller theory, we
consider k~(G) = C~ x C~ directly from “Og” (See Proposition 12.2 (4)). When we consider
k~(G) directly from “Og”, then the indeterminacies are only {£1} x {£1} (i.e., Archimedean

(Indet —)), however, when we consider a Frobenius-like object for G = (C, C'), then we need

to consider the synchronisation of k; and ky via group-germs, and need to consider 8 up to
R (i.e., we need to consider the category TBH in [AbsToplIl, Definition 5.6 (i)]). See also
[AbsToplIl, Remark 5.8.1 (i)].

Let Gx = (O% e 8 denote the split monoid associated to the topological field AX, i.e.,
the topological monoid O "> and the splitting O% <= 0% NRyo =: o} ax of 0% — 0% /0’4«
and X ~ Of. For a Kummer structure X A Of of an elliptically admissible Aut-holomorphic

orbispace, we pull back O %, via the Kummer structure OF < AX, we obtain a decomposition
of OF as OF x Ok, where Ok =~ O /O, . We consider this a551gnment

as a mono-analytification.

4.3. Philosophy of Etale- and Frobenius-like Objects (Explanatory). We further con-
sider the similarities between the reconstructions in Corollary 3.19 and Proposition 4.5, and
then, we explain Mochizuki’s philosophy of the dichotomy of étale-like objects and
Frobenius-like objects.

Note also that the tautological Kummer structure X .~ A* rigidifies the non-rigid “R,”
(See Secton 3.5) in A* (=2 C*) in the exact sequence 0 — S' — C* — R.y — 0 (See also
[AbsToplIl, Remark 2.7.3]). In short, we have the following dictionary:

Arith. Hol. Mono-Analytic

non-Arch. k/Q, : fin. My, Ty~ OF rigidifies O | Gy, Gy~ OX x O

0— 0y =k — Z(rigid) — 0 | “k”  can be reconstructed O;: non-rigid
Arch. k(= C) X, X~ Op rigidifies “Rs¢” | Gx, Gx v O % 5;:
0 — S!(rigid) - C* — Rso — 0| “C”  can be reconstructed “R<¢”: non-rigid
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We consider profinite groups Ilx, Gy, categories of the finite étale coverings over hyperbolic
curves or spectra of fields, and the objects reconstructed from these as étale-like objects.
On the other hand, we consider abstract topological monoids (with actions of Iy, Gy), the
categories of line bundles on finite étale coverings over hyperbolic curves, the categories of
arithmetic line bundles on finite étale coverings over spectra of number fields, as Frobenius-
like objects. Note that when we reconstruct I1x ~ OED or X O, then these are regarded as
étale-like objects whenever we remember that the relations with I1y and X via the reconstruction
algorithms, however, if we forget the relations with IIx and X via the reconstruction algorithms,
and we consider them as an abstract topological monoid with an action of Ilx, and an abstract
topological monoid with Kummer structure on X, then these objects are regarded as Frobenius-
like objects (See also [AbsToplll, Remark 3.7.5 (iii), (iv), Remark 3.7.7], [Frdl, §I4], [[UTchlI,
§11]). Note that if we forget the relations with Iy and X via the reconstruction algorithms,
then we cannot obtain the functoriality with respect to Ilx or X for the abstract objects.

We have the dichotomy of étale-like objects and Frobenius-like objects both on arithmeti-
cally holomorphic objects and mono-analytic objects, .e., we can consider 4 kinds of objects
— arithmetically holomorphic étale-like objects (indicated by D), arithmetically holomorphic
Frobenius-like objects (indicated by JF), mono-analytic étale-like objects (indicated by D"),
and mono-analytic Frobenius-like objects (indicated by F") (Here, as we can easily guess, the
symbol - means “mono-analytic”). The types and structures of prime-strips (cf. Section 10.3)
and Hodge theatres reflect this classification of objects (See Section 10).

Note that the above table also exhibits these 4 kinds of objects. Here, we consider G ~ Og X
(0Z/0F) and Gx ~ O x (Oy /Oy) as the mono-analyticisations of arithmetically holomorphic
objects II;, ~» OF, and X\~ O respectively. See the following diagrams:

Frobenius-like forgey étale-like Frobenius-like forgey étale-like
(base with line bundle) (base) (base with line bundle) (base)
arith. hol. IIx ~ O IIx X Op X
mono-anyticisation I l —|; l
< O Gx -~ O % O, G
mono-an. G ~ Of X Op——— Gy, x YUy X U= Gx.

The composite of the reconstruction algorithms Theorem 3.17 and Proposition 4.5 with “for-
getting the relations with the input data via the reconstruction algorithms” are the canonical

“sections” of the corresponding functors Frobenius-like et tale-like (Note also that, by Propo-
sition 2.1 (2c¢), the topological monoid OF can be group-theoretically reconstructed from Gy,
however, we cannot reconstruct OF as a submonoid of a topological field k, which needs an
arithmetically holomorphic structure).

In inter-universal Teichiiller theory, the Frobenius-like objects are used to construct links (i.e.,
log-links and ©-links). On the other hand, some of étale-like objects are used (a) to construct
shared objects (i.e., vertically coric, horizontally coric, and bi-coric objects) in both sides of the
links, and (b) to exchange (!) both sides of a ©-link (which is called étale-transport. See
also Remark 9.6.1, Remark 11.1.1, and Theorem 13.12 (1)), after going from Frobenius-like
picture to étale-like picture, which is called Kummer-detachment (See also Section 13.2), by
Kummer theory and by admitting indeterminacies (Indet —), (Indet 1), and (Indet «v»). (More
precisely, étale-like 1Ty and G} are shared in log-links. The mono-analytic G}, is also (as an
abstract topological group) shared in ©-links, however, arithmetically holomorphic IIx cannot
be shared in ©-links, and even though Og /tors’s are Frobenius-like objects, OEX Jtors’s (not
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Og ’s because the portion of the value group is dramatically dilated) are shared after admitting

Z*-indeterminacies.) See also Theorem 12.5.

étale objects reconstructed from Galois category indifferent to order

-like Iy, Gk, X, Gx coverings can be shared, can be exchanged
Frobenius | abstract 11y ~ OED , G OEX X 5%, Frobenioids order-conscious

-like X Og, Gx ™ O x (?(c line bundles can make links

4.4. Absolute Mono-Anabelian Reconstructions in Archimedean Theory. The follow-
ing theorem is an Archimedean analogue of Theorem 3.17.

Proposition 4.8. (Absolute Mono-Anabelian Reconstructions, [AbsToplII, Corollary 2.8]) Let
X be a hyperbolic curve of strictly Belyi type over a number field k. Let k be an algebraic
closure of k, and Ilx the arithmetic fundamental group of X for some basepoint. From the
topological group Iy, we group-theoretically reconstruct the field k = knp by the algorithm
in Theorem 3.17 (cf. Remark 3.17.1). Take an Archimedean place © of k. By the following
group-theoretic algorithm, from the topological group I1x and the Archimedean place U, we can
reconstruct the Aut-holomorphic space Xy associated to Xy := X Xy ky in a functorial manner
with respect to open injective homomorphisms of profinite groups which are compatible with the
respective choices of Archimedean valuations:

(Step 1) We reconstruct NF-points of Xz as conjugacy classes of decomposition groups of NF-
points in Ilx by in Theorem 3.17. We also reconstruct non-constant NF-rational func-
tions on Xy by Theorem 3.17 (Step 4) (or Lemma 3.16). Note that we also group-
theoretically obtain the evaluation map f +— f(x) at NF-point x as the restriction to the
decomposition group of x (cf. Theorem 3.17 (Step 4), (Step 5)), and that the order func-
tion ord, at NF-point x as the component at x of the homomorphism H'(Iy, pz(Ix)) —

@yesi in Theorem 3.17 (Step 3) (cf. Theorem 3.17 (Step 5)).

(Step 2) Define a Cauchy sequence {z;};en of NF-points to be a sequence of NF-points x;
such that there exists an exceptional finite set of NF-points S satisfying the following
conditions:

o x; &S for all but finitely many j € N, and
e For any non-constant NF-rational function f on Xz, whose divisor of poles avoids
S, the sequence of values {f(z;) € ky}jen forms a Cauchy sequence (in the usual
sense) in ky.
For two Cauchy sequences {x;}jen, {y;}ijen of NF-points with common exceptional set S,
we call that these are equivalent, if for any non-constant NF-rational function f on Xz,
whose divisor of poles avoids S, the Cauchy sequences {f(z;) € ks}tjen, {f(y;) € kz}jen
i ky converge to the same element of k.

(Step 3) For an open subset U C ky and a non-constant NF-rational function f on Xz, put
N(U, f) to be the set of Cauchy sequences of NF-points {z;};en such that f(x;) € U for
all j € N. We reconstruct the topological space X*P = Xy(ky) as the set of equivalence
classes of Cauchy sequences of NF-points, equipped with the topology defined by the sets
N(U, f). A non-contant NF-rational function extends to a function on X*P by taking
the limit of the values.
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(Step 4) Let Ux C X*™P, Uy C ky be connected open subsets, and f a non-constant NF-rational
function on Xz, such that the function defined by f on Ux gives us a homeomorphism
fu : Ux = Uy. Let Aut™(Uy) denote the group of homeomorphisms f : Uy = Uy (C ky),
which can locally be expressed as a convergent power series with coefficients in ky with
respect to the topological field structure of k.

(Step 5) Put Ax(Ux) := f;* o Aut"(Uy) o fy € Aut(Ux). By Corollary 4.8, we reconstruct the
Aut-holomorphic structure Ax on X%™P as the unique Aut-holomorphic structure which
extends the pre-Aut-holomorphic structure defined by the groups Ax(Ux) in (Step 4).

Proof. The assertions immediately follow from the described algorithms. ([l

We can easily generalise the above theorem to hyperbolic orbicurves of strictly Belyi type
over number fields.

Lemma 4.9. (Compatibility of Elliptic Cuspidalisation in Archimedean Place with Galois The-
oretic Belyi Cuspidalisation, [AbsToplIIl, Corollary 2.9]) In the situation of Proposition 4.8,
suppose further that X 1is elliptically admissible. From the topological group Ilx, we group-
theoretically reconstruct the field k = kxy by Theorem 8.17 (cf. Remark 3.17.1), i.e., via Belyi
cuspidalisation. Take an Archimedean place T of k(Ilx). Let X = (X*P Ax) be the Aut-
holomorphic space constructed from the topological group 1lx and the Archimedean valuation v
in Proposition 4.8, i.e., via Cauchy sequences. Let AX be the field constructed in Proposition 4.5,
i.e., via elliptic cuspidalisation. By the following group-theoretically algorithm, from the topo-
logical group Il x and the Archimedean valuation U, we can construct an isomorphism AX S by
of topological fields in a functorial manner with respect to open injective homomorphisms of
profinite groups which are compatible with the respective choices of Archimedean valuations:

(Step 1) As in Proposition 4.8, we reconstruct NF-points of Xz, non-constant NF-rational func-
tions on Xy, the evaluation map f — f(x) at NF-point x, and the order function
ord, at NF-point x. We also reconstruct E*P and the local additive structures on it in
Proposition 4.5.

(Step 2) The local additive structures of E*P determines the local additive structures of X*P. Let
x be an NF-point of X4(ky), U an element of a sufficiently small neighbourhood Ux C X*P
of x in X which admits such a local additive structure. For each NF-rational function
f which vanishes at x, the assignment (U, f) — lim, o nf (n -, V) € ky, where © -, "
18 the operation induced by the local additive structure at x, depends only on the image
df|, € w, of f in the Zariski cotangent space w, to Xgz. It determines an embedding
Ux — Homy_(w., ks) of topological spaces, which is compatible with the local additive
structures.

(Step 3) Varying the neighbourhood Ux of x, the embeddings in (Step 2) give us an isomorphism
A, = ky of topological fields by the compatibility with the natural actions of Ay, kX
respectively. As x varies, the isomorphisms in (Step 3) are compatible with the isomor-
phisms Ay — Iy in Proposition 4.5. This gives us the desired isomorphism AX = k.

Remark 4.9.1. An importance of Proposition 4.5 lies in the fact that the algorithm starts in
a purely local situation, since we will treat local objects (i.e., objects over local fields) which a
priori do not come from a global object (i.e., an object over a number field) in inter-universal
Teichmiiller theory. See also Remark 3.17.4.

Proof. The assertions immediately follow from the described algorithms. U
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5. LoG-VOLUMES AND LOG-SHELLS.

In this section, we construct a kind of “rigid containers” called log-shells both for non-
Archimedean and Archimedean local fields. We also reconstruct the local log-volume functions.
By putting them together, we reconstruct the degree functions of arithmetic line bundles.

5.1. Non-Archimedean Places. Let £ be a finite extension of Q,, and k an algebraic closure
of k. Let X be a hyperbolic orbicurve over k of strictly Belyi type. Put &~ := (Og)pf (« Og)

the perfection of OF (See Section 0.2). The p-adic logarithm logy; induces an isomorphism
logg : K~ = k
of topological monoids, which is compatible with the actions of IIx. We equip £~ with the

topological field structure by transporting it from % via the above isomorphism logz. Then, we
have the following diagram, which is called a log-link:

(Log-Link (non-Arch)) 07 DO - k™ = (O )= (0% U {0} « OF.,

which is compatible with the action of lx (this will mean that Ilx is wvertically core. See
Proposition 12.2 (1), Remark 12.3.1, and Theorem 12.5 (1)). Note that we can construct
the sub-diagram O% ) OEX — k™, which is compatible with the action of Gy, only from
the topological monoid Og (i.e., only from the mono-analytic structure), however, we need the
topological field k (i.e., need the arithmetically holomorphic structure) to equip k™ a topological
field structure and to construct the remaining diagram k™~ = (OF.)E2 + OF ..

Definition 5.1. We put
1
2p
where (—)"x denotes the fixed part of the action of Iy, and we call Z; a Frobenius-like
holomorphic log-shell. B

On the other hand, from IIx, we can group-theoretically reconstruct an isomorph k(Ilx) of
the ind-topological field k£ by Theorem 3.19, and we can construct a log-shell 7 (ITx) by using
k(Ilx), instead of k. Then, we call Z(Ilx) the étale-like holomorphic log-shell for IIx. By

the cyclotomic rigidity isomorphism (Cyc. Rig. LCFT2), the Kummer homomorphism gives us
a Kummer isomorphism

(Mx ~E) S (x A (Tx)) (C lim H' (M), pz(T1x))

(OII;INX C) Ik = %

pf
Z; (C (k)"™), where Z; := Im {OkX — (Of) = kN}

for & (Iy) (See (Step 4) of Theorem 3.17, and Remark 3.19.2), hence obtain a Kummer
isomorphism

(Kum (non-Arch)) T, = I(Ilx)

for Z;.. In inter-universal Teichmiiller theory, we will also use the Kummer isomorphism of
log-shells via the cyclotomic rigidity of mono-theta environments in Theorem 7.23 (1) See
Proposition 12.2.

Note that we have important natural inclusions
(Upper Semi-Compat. (non-Arch))
Oy, logg(Or) C Iy and Of (Ilx), loggm,(Of (Ix)) C Z(Ily),

which will be used for the upper semi-compatibility of log-Kummer correspondence (See
Proposition 13.7 (2)). Here, we put O (ILy) := O (Ilx)*, Ox(Ilx) := Oz(ID)"x | and O(Ilx)
is the ring of integers of the ind-topological field k(IT).
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Proposition 5.2. (Mono-Analytic Reconstruction of Log-Shell and Local Log-Volume in non-
Archimedean Places, [AbsToplIl, Proposition 5.8 (i), (ii), (iii)]) Let G be a topological group,
which is isomorphic to Gy. By the following algorithm, from G, we can group-theoretically recon-
struct the log-shell “I” and the (non-normalised) local log-volume function “,u}fg ” (cf. Section 1.3)
in a functorial manner with respect to open homomorphisms of topological groups:

(Step 1) We reconstruct p, f(k), e(k), &k, OF, and O by Proposition 2.1 (1), (3b), (3¢), (2a),

(2¢), and (2b) respectively. To indicate that these are reconstructed from G, let pg,
far eq, & (G), OZ(G) and OF(G) denote them respectively (From now on, we use

the notation (—)(G) in this sense). Let pa© be the number of elements of E(G)C of
pa-power orders, where (—)¢ denotes the fized part of the action of G.

(Step 2) We reconstruct the log-shell “Z,” as Z(G) := ilm {OEX(G)G — k™ (G) = Og(G)pf}.
Note that, by the canonical injection Q — End(k~(G)) (Here, End means the endomor-
phisms as (additive) topological groups), the multiplication by ﬁ canonically makes
sense. We call Z(G) the étale-like mono-analytic log-shell.

(Step 3) Put R,on(G) = (EX(G)/OEX(G))A, where (—)" denotes the completion with respect
to the order structure determined by the image of OZ(G)/OZ(G). By the canonical
isomorphism R = End(R,on(G)), we consider Ryon(G) as an R-module. It is also
equipped with a distinguished element, i.e., the image F(G) € Ryon(G) of the Frobe-
nius element (constructed in Proposition 2.1 (5)) of O%(G)G/OEX(G)G via the com-
posite O%(G)G/OEX(G)G C OZ(G)/OZ(G) C Run(G). By sending fglogpe € R to
F(G) € Ruon(G), we have an isomorphism R = R,on(G) of R-modules. By transporting
the topological field structure from R to Ryon(G) via this bijection, we consider Ryon(G)
as a topological field, which is isomorphic to R.

(Step 4) Let M(k™(G)%) denote the set of open compact subsets of the topological additive group
k~(G)Y. We can reconstruct the local log-volume function p'°%(G) : M(k~(G)%) —
Ruon(G) by using the following characterisation properties:

(a) (additivity) For A, B € M(k™(G)%) with ANB = 0, we have exp(1'°8(G)(AUB)) =
exp(1'°8(G)(A)) + exp(u'°8(G)(B)), where we use the topological field structure of
Ruon(G) to define exp(—),

(b) (+-translation invariance) For A € M(k~(G)Y) and a € k™ (G)Y, we have 18 (G) (A+
a) = ;¢ (G)(A),

(¢) (normalisation)
WEGI(G)) = (1= 5 + eacaa ) FIO)

where we put €g to be 1 if pg # 2, and to be 2 if pg = 2.
Moreover, if a field structure on k := k™ (G)% is given, then we have the p-adic logarithm
log;, : Oy — k on k (where we can see k both on the domain and the codomain), and
we have

(5.1) 1 (G)(A) = 1'% (G)(logy,(A))
for an open subset A C O} such that log,, induces a bijection A = log,(A).

Remark 5.2.1. Note that, we cannot normalise p!°¢(G) by “u°8(G)(OE) = 07, since “O%.”
needs arithmetically holomorphic structure to reconstruct (cf. [Q,GC]).

Remark 5.2.2. The formula (5.1) will be used for the compatibility of log-links with
log-volume functions (See Proposition 13.10 (4)).
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Proof. To lighten the notation, put p := pg, € :==eq, f := fg, m :== mg, € :== €. Then, we have
et (Zy) = eef log p+py® (log(O;)) = (eef —m) log p—log(p! —1)+*(O}) = (eef —m) log p—
log(p” — 1) + log (1 = ,%) + 5(O) = (eef —m — f)logp = (—1 +ee - %) flogp. O

5.2. Archimedean Places. Let k be a CAF (See Section 0.2). Let X be an elliptically
admissible Aut-holomorphic orbispace, and ry : k = AX a Kummer structure. Note that
k (resp. k*, O)) and A* have natural Aut-holomorphic structures, and rj determines co-

holomorphicisations between k (resp. k*, O;) and AX. Let k™~ — k* be the universal covering
of k*, which is uniquely determined up to unique isomorphism, as a pointed topological space
(It is well-known that it can be explicitly constructed by the homotopy classes of paths on
k*). The topological group structure of k* induces a natural topological group structure of
k~. The inverse (i.e., the Archimedean logarithm) of the exponential map k& — k* induces an
isomorphism
log, : kK~ = k

of topological groups. We equip k™~ (resp. O;.) with the topological field structure (resp.
the topological multiplicative monoid structure) by transporting it from & via the above iso-
morphism log,. Then, k; determines a Kummer structure sp~ : k~ = AX (resp. Ko~
Op~ — ﬁ) which is uniquely characterised by the property that the co-holomorphicisation
determined by kg~ (resp. ko,.) coincides with the co-holomorphicisation determined by the
composite of k&~ = k and the co-holomorphicisation determined by ;. By definition, the co-
holomorphicisations determined by kj, and kg~ (resp. ko, ) are compatible with log, (This
compatibility is an Archimedean analogue of the compatibility of the actions of IIx in the
non-Archimedean situation). We have the following diagram, which is called a log-link:

(Log-Link (Arch)) OF Ck* « k™ = (0% = (OF)P U {0} + O,

which is compatible with the co-holomorphicisations determined by the Kummer structures (This
will mean X is vertically core. See Proposition 12.2 (1)). Note that we can construct the sub-
diagram Of C k* « k™ only from the topological monoid O} (i.e., only from the mono-analytic
structure), however, we need the topological field &k (i.e., need the arithmetically holomorphic

structure) to equip k™~ a topological field structure and to construct the remaining diagram
k= (OF ) + 0%

Definition 5.3. We put
1
(Ok~ = -1 C) IRES OI:N I]: (C kN),
s

where Z; is the the uniquely determined “line segment” (i.e., closure of a connected pre-compact
open subset of a one-parameter subgroup) of £~ which is preserved by multiplication by +1
and whose endpoints differ by a generator of ker(k™~ — k*) (i.e., Z; is the interval between
“—mi” and “mi”, and Zj, is the closed disk with redius 7). Here, a pre-compact subset means a
subset contained in a compact subset, and see Section 0.2 for 7. We call Z;, a Frobenius-like
holomorphic log-shell.

On the other hand, from X, we can group-theoretically reconstruct an isomorph k(X) := A%
of the field k by Proposition 4.5, and we can construct a log-shell Z(X) by using k(X), instead of
k. Then, we call Z(X) the étale-like holomorphic log-shell for X. The Kummer structure
ki gives us a Kummer isomorphism

(Kum (Arch)) T, = I(X)
for Ik
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Note that we have important natural inclusions
(Upper Semi-Compat. (Arch))
O~ C T, O) Cexpy(Zy) and Op.(X) C Z(X), O (X) C expy) (Z(X))

which will be used for the upper semi-compatibility of log-Kummer correspondence (See
Proposition 13.7 (2)). Here, we put O; (X) := O(X)*, and O(X) (See also Section 0.2) is the
subset of elements of absolute value < 1 for the topological field k(X) (or, if we do not want
to use absolute value, the topological closure of the subset of elements x with lim,_,, 2" = 0),
and expy, (resp. expyx)) is the exponential function for the topological field k (resp. k(IT)).
Note also that we use O;. to define Z; in the above, and we need the topological field
structure of k to construct O}, however, we can construct Zj, as the closure of the union of the
images of Z; via the finite order automorphisms of the topological (additive) group k™, thus,

we need only the topological (multiplicative) group structure of 7 (not the topological field
structure of k) to construct Zy.

Proposition 5.4. (Mono-Analytic Reconstruction of Log-Shell and Local Log-Volumes in

Archimedean Places, [AbsToplll, Proposition 5.8 (iv), (v), (vi)]) Let G = (C, 8) be a split
monoid. By the following algorithm, from G, we can group-theoretically reconstruct the log-shell

“Tc”, the (non-normalised) local radial log-volume function “u®” and the (non-normalised)

local angular log-volume function «ﬁgg ”in a functorial manner with respect to morphisms of

split monoids (In fact, the constructions do not depend on 8, which is “non-rigid” portion.

See also [AbsToplIl, Remark 5.8.1]):

(Step 1) Let C~ — C* be the (pointed) unversal covering of C*. The topological group structure
of C* induces a natural topological group structure on C~. We regard C™ as a topological
group (Note that C* and C™ are isomorphic to S' and the additive group R respectively).
Put

E~(G)=CY"xC~, K(G):=C"xC".

(Step 2) Let Seg(G) be the equivalence classes of compact line segments on C~, i.e., compact
subsets which are either equal to the closure of a connected open set or are sets of one
element, relative to the equivalence relation determined by translation on C™~. Forming
the union of two compact line segments whose intersection is a set of one element deter-
mines a monoid structure on Seg(G) with respect to which Seg(G) = Rsq (non-canonical
isomorphism). Thus, this monoid structure determines a topological monoid structure
on Seg(G) (Note that the topological monoid structure on Seg(G) is independent of the
choice of an isomorphism Seg(G) = Rx).

(Step 3) We have a natural homomorphism k™ (G) = C~xC™~ — k*(G) = C*xC™ of two dimen-
sional Lie groups, where we equip C~,C* with the differentiable structure by choosing
isomorphisms C~ = R, C* = R* (the differentiable structures do not depend on the
choices of isomorphisms). We reconstruct the log-shell “Z¢” as

Z(G) := {(az,bx) | v € Iin; a,bER; a® +V* =1} C k™ (G),

where L. C C~ denotes the unique compact line segment on C~ which is invariant
with respect to the action of {x1}, and maps bijectively, except for its endpoints, to
C*. Note that, by the canonical isomorphism R = End(C™~) (Here, End means the
endomorphisms as (additive) topological groups), ax for a € R and x € I}~ canonically
makes sense. We call Z(G) the étale-like mono-analytic log-shell.

(Step 4) We put R,o(G) := Seg(G)P (Note that R,..(G) = R as (additive) topological groups).
By the canonical isomorphism R = End(R,..(G)), we consider R,..(G) as an R-module.
It is also equipped with a distinguished element, i.e., (Archimedean) Frobenius element
F(G) € Seg(G) C Rue(G) determined by Zf.~. By sending 2w € R to F(G) € Rue(G),



A PROOF OF ABC CONJECTURE AFTER MOCHIZUKI 75

we have an isomorphism R = R...(G) of R-modules. By transporting the topological
field structure from R to R,..(G) via this bijection, we consider R,..(G) as a topological
field, which is isomorphic to R.

(Step 5) By the same way as Z(G), we put

05 (G) = {(az,bx) | x € L a,beR; a® +b° =7} C k7(G),

where 0L}~ is the set of endpoints of the line segment I}~ (i.e., the points whose
complement are connected. cf. Proposition 4.5). Then, we have a natural isomorphism
R0 x O (G) ~ k~(G)\{(0,0)}, where (a,x) is sent to ax (Note that ax makes sense by
the canonical isomorphism R = End(C™) as before). Let pr,q : k~(G)\{(0,0)} — R,

Pl K7 (G) \ {(0,0)}0..(G) denote the first and second projection via the above
isomorphism. We extend the map pr,q = k~(G) \ {(0,0)} — Ry to a map pry :
k~(G) — R.

(Step 6) Let M(k™(QG)) be the set of nonempty compact subsets A C k™~ (G) such that A projects
to a (compact) subset pr,,4(A) of R which is the closure of its interior in R. For any
A e M(k~(G)), by taking the length 1(G)(A) of prq(A) C R with respect to the usual
Lebesgues measure on R. By taking the logarithm p'°¢(G)(A) := log(u(G)(A)) € R =
Rac(G), where we use the canonical identification R = R,..(G), we reconstruct the
desired local radial log-volume function ;'°¢(G) : M(k™(G)) — Raw(G). This also

satisfies
log 7
27

(G (Z(G)) F(G)

by definition.

(Step 7) Let Mi(k™(G)) denote the set of non-empty compact subsets A C k~(G)\ {(0,0)} such
that A projects to a (compact) subset pr,,,(A) of Op.(G) which is the closure of its
interior in O (G). We reconstruct the local angular log-volume function ji'°5(G) :
M(k™(G)) = Rae(G) by taking the integration ji(G)(A) of Prong(A) C Op(G) on
O~ (G) with respect to the differentiable structure induced by the one in (Step 1), taking
the logarithm ji'°8(G)(A) := log(jii(G)(A)) € R = R,..(G), where we use the canonical
identification R = R,,.(G), and the normalisation

() O01-(@) = TR (),
Moreover, if a field structure on k := k™ (G) is given, then we have the exponential map expy, :
k — k* on k (where we can see k both on the domain and the codomain), and we have

(5:2) O (G)(A) = [ (G) (expg(A))

for a non-empty compact subset A C k with exp,(A) C O, such that pr,,q and exp,, induce
bijections A = pr,q(A), and A = exp,(A) respectively.

Remark 5.4.1. The formula (5.2) will be used for the compatibility of log-links with
log-volume functions (See Proposition 13.10 (4)).

Proof. Proposition immediately follows from the described algorithms. OJ

6. PRELIMINARIES ON TEMPERED FUNDAMENTAL GROUPS.

In this section, we collect some prelimiraries on tempered fundamental groups, and we show
a theorem on “profinite conjugate vs tempered conjugate”, which plays an important role in
inter-universal Teichmiiller theory.
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6.1. Some Definitions. From this section, we use André’s theory of tempered fundamental
groups ([A1]) for rigid-analytic spaces (in the sense of Berkovich) over non-Archimedean fields.
We give a short review on it here. He introduced the tempered fundamental groups to obtain a
fundamental group of “reasonable size” for rigid analytic spaces: On one hand, the topological
fundamental groups 7;°® for rigid analytic spaces are too small (e.g., 7" (Pg, \{0,1,00},2) =
{1}. If X is a proper curve with good reduction, then 7°°(X?*" ) = {1}). On the other
hand, the étale fundamental groups ¢ for rigid analytic spaces aree too big (e.g., By the
Gross-Hopkins period mappings ([GH1|, [GH2]), we have a surjection W‘ft(Rlcp,a:) — SLo(Q,).
See also [A2, 11.6.3.3, and Remark after III Corollary 1.4.7]). André’s tempered fundamental
group "™ is of reasonable size, and it comparatively behaves well at least for curves. An
étale covering Y — X of rigid analytic spaces is called tempered covering if there exists a
commutative diagram

H>T

Z

Y — X
of étale coverings, where T" — X is a finite étale covering, and Z — T is a possibly inifinite
topological covering. When we define a class of coverings, then we can define the fundamental

group associated to the class. In this case, 7°"?(X, z) classifies all tempered pointed coverings

of (X,z). For example, we have W‘{emp(]P’(lcp \ {0,00}) = Z, and for an elliptic curve E over C,
with j-invariant jz, we have 7/°"P(E) & Z x Z if 1jl, < 1, and 7""P(E) = Z x 7 if 7, > 1
([A1, §4.6]). Here, Z corresponds to the universal covering of the graph of the special fiber.
The topology of ﬂemp is a little bit complicated. In general, it is neither discrete, profinite, nor
locally compact, however, it is pro-discrete. For a (log-)orbicurve X over an MLF, let B*™P(X)
denote the category of the (log-)tempered coverings over the rigid analytic space associated
with X. For a (log-)orbicurve X over a field, let also B(X) denote the Galois category of the
finite (log-)étale coverings over X.

Definition 6.1. ([SemiAnbd, Definition 3.1 (i), Definition 3.4])

(1) If a topological group II can be written as an inverse limit of an inverse system of
surjections of countable discrete topological groups, then we call Il a tempered group
(Note that any profinite group is a tempered group).

(2) Let II be a tempered group. We say that II is temp-slim if we have Z(H) = {1} for
any open subgroup H C II.

(3) Let f : II; — I, be a continuous homomorphism of tempered groups. We say II; is
relatively temp-slim over I, (via f), if we have Zp,(Im{H — Il}) = {1} for any
open subgroup H C II;.

(4) ([TUTchI, §0]) For a topological group II, let B*™P(II) (resp. B(II)) denote the category
whose objects are countable discrete sets (resp. finite sets) with a continuous II-action,
and whose morphisms are morphisms of Il-sets. A category C is called a connected
temperoid, (resp. a connected anabelioid) if C is equivalent to B*™P(II) (resp.
B(II)) for a tempered group II (resp. a profinite group II). Note that, if C is a connected
temperoid (resp. a connected anabelioid), then C is naturally equivalent to (C°)T (resp.
(C%1) (See Section 0.2 for (—)° (=)T and (—)1). If a category C is equivalent to
BtmP(II) (resp. B(II)) for a tempered group II with countable basis (resp. a profinite
group II), then we can reconstruct the topological group I, up to inner automorphism,
by the same way as Galois category (resp. by the theory of Galois category). (Note that
in the anabelioid/profinite case, we have no need of condition like “having countable
basis”, since “compact set arguments” are available in profinite topology.) We write
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m1(C) for it. We also put m(C°) := 7 ((C°)7) (resp. m(C°) := m((C°)*)) for C a
connected temperoid (resp. a connected anabelioid).

(5) For connected temperoids (resp. anabelioids) Cq, Cy, a morphism C; — C, of temper-
oids (resp. a morphism C; — C» of anabelioids) is an isomorphism class of functors
Cy — C; which preserves finite limits and countable colimits (resp. finite colimits) (This
is definition in [IUTchI, §0] is slightly different from the one in [SemiAnbd, Definition
3.1 (iii)]). We also define a morphism C) — C9 to be a morphism (C?)" — (C)" (resp.
(€)= (€)).

Note that if Iy, Iy are tempered groups with countable basis (resp. profinite groups), then
there are natural bijections among

e the set of continuous outer homomorphisms IT; — 1l
e the set of morphisms B*™P(I1;) — B*™P(Il,) (resp. B(II;) — B(Ily)), and
e the set of morphisms B*™P(I1;)% — B*™P(11,)° (resp. B(II;)" — B(I1)°).

(See also [IUTchI, Remark 2.5.3].)

Let K be a finite extension of Q.

Lemma 6.2. Let X be a hyperbolic curve over K. Let AY™ C IIS™ denote the geomet-

ric tempered fundamental group ﬁemp(X ,T) and the arithmetic tempered fundamental group

W‘{emp(X, T) for some basepoint T, respectively. Then, we have a group-theoretic charasterisa-

tion of the closed subgroup AS™ in TT™.
Remark 6.2.1. By remark 2.4.1, pro-¥ version of Lemma 6.2 holds as well.

Proof. Note that the homomorphisms AY™ — Ay 1= (AY™)" and ™ — [y := (E™)"
to the profinite completions are injective respectively, since the homomorphism from a (discrete)
free group to its profinite completion is injective (Free groups and surface groups are residually
finite (See also Proposition C.5)). Then, by using the group-theoretic characterisation of Ay in
IIx (Corollary 2.4), we obtain a group-theoretic characterisation of AY™ as AE™ = II%™ N

Ax. UJ

Let K be an algebraic closure of K. Let k and k denote the residue field of K and K
respectively (k is an algebraic closure of k).

Definition 6.3. (1) Let X be a pointed stable curve over k with marked points D. Put
X := X \ D. Then, we associate a dual semi-graph (resp. dual graph) Gx to X as
follows: We set the set of the vertices of Gx to be the set of the irreducible components
of X, the set of the closed edges of Gy to be the set of the nodes of X, and the set
of the open edges of Gx to be the set of the divisor of infinity of X (i.e., the marked
points D of X). To avoid confusion, we write X, and v, for the irreducible component
of X and the node of X corresponding to a vertex v and an closed edge e respectively.
A closed edge e connects vertices v and v’ (we may allow the case of v = ¢’), if and only
if the node v, is the intersection of two branches corresponding to X, and X,,. An open
e connects a vertex v, if and only if the marked point corresponding to e lies in X,.

(2) (cf.[AbsAnab, Appendix]) We contitue the situation of (1). Let ¥ be a set of prime
numbers. A finite étale covering of curves is called of X-power degree if any prime
number dividing the degree is in 3. We also associate a (pro-Y) semi-graph Gx (= G%)
of anabelioids to X, such that the underlying semi-graph is Gy as follows: Put
X' := X \ {nodes}. For each vertex v of Gx, let G, be the Galois category (or a
connected anabelioid) of the finite étale coverings of ¥-power degree of X! := X, x x X’
which are tamely ramified along the nodes and the marked points. For the branches
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ve(1) and v,(2) of the node v, corresponding to a closed edge e of Gx, we consider the
scheme-theoretic interstion X/ () of the completion along the branch v,(i) at the node
ve of X' for i = 1,2 (Note that X  is non-canonically isomorphic to Spec k((1))). We
fix a k-isomorphism X vty = X, (2, We identify these, and let X{ denote the identified
object. Let G. be the Galois category (or a connected anabelioid) of the finite étale
coverings of X-power degree of X! which are tamely ramified along the node. For each
open edge e, corresponding to a marked point x, put X to be the scheme-theoretic
interstion of the completion of X at the marked point # with X’ (Note that X, is non-
canonically isomorphic to Speck((t))). Let G., be the Galois category (or a connected
anabelioid) of the finite étale coverings of Y-power degree of X! which are tamely
ramified along the marked point. For each edge e connecting vertices v; and vy, we have
natural functors G,, = G, G,, — G. by the pull-backs. For an open edge e connected
to a vertex v, we have a natural functor G, — G, by the pull-backs. Then the data
Gx(=G%) :=={Gs;Ge; G, — G.} defines a semi-graph of anabelioids.

(3) (cf. [SemiAnbd, Definition 2.1]) For a (pro-X) semi-graph G(= G¥) = {G,; G.; G, — G}
of anabelioids with connected underlying semi-graph G, we define a category B(G)(=
B(G*)) as follows: An object of B(G)(= B(G%)) is data {S,, ¢c}ve, where v (resp. e)
runs over the vertices (resp. the edges) of G, such that S, is an object of G,, and
be : e(1)*S,, = e(2)*S,, is an isomorphism in G,, where e(1) and e(2) are the branches
of e connecting v; and vy respectively (Here, e(i)* : G,, — G, is a given datum of G).
We define a morphism of B(G) in the evident manner. Then, B(G) itself is a Galois
category (or a connected anabelioid). In the case of G = Gx in (2), the fundamental
group associated to B(G)(= B(G*¥)) is called the (pro-X) admissible fundamental
group of X.

(4) (cf.[SemiAnbd, paragraph before Definition 3.5 and Definition 3.5]) Let G(= G*) =
{Gv;Ge; G, — Ge} be a (pro-X) semi-graph of anabelioids such that the underlying
semi-graph G is connected and countable. We define a category B (G)(= B (G*)) as
follows: An object of BV (G)(= B*¥(G)) is data {S,, ¢¢ }v.e, Where v (resp. e) runs over
the vertices (resp. the edges) of G, such that S, is an object of (G%) (See Section 0.2
for (=) and (—)7), and ¢, : e(1)*S,, = €(2)*S,, is an isomorphism in (G°) ", where e(1)
and e(2) are the branches of e connecting v; and vy respectively (Here, e(i)* : G, — G
is a given datum of G). We define a morphism of B“V(G) in the evident manner.
We can extend the definition of B“V(G) to a semi-graph of anabelioids such that the
underlying semi-graph G is countable, however, is not connected. We have a natural full
embedding B(G) < B*(G). Let (B(G) C)B*P(G)(= B*"P(G*)) C B“"(G) denote
the full subcategory whose objects {Sy, ¢c}v are as follows: There exists an object
{S!,#.} of B(G) such that for any vertex or edge ¢, the restriction of {S! ¢.} to G.
splits the restriction of {S,, ¢.} to G. i.e., the fiber product of S! (resp. ¢.) with S,
(resp. ¢.) over the terminal object (resp. over the identity morphism of the terminal
object) in (G%)T (resp. (GY)") is isomorphic to the coproduct of a countable number of
copies of S/ (resp. ¢.) for any vertex v and any edge e. We call B*™P(G)(= B*"P(G¥))
(pro-X) (connected) temperoid associated with G(= G¥).

We can associate the fundamental group Ag™(= Agz)’temp) = 1 (B*P(G)) (=
71 (B*™P(G*))) of B*™P(G)(= B*™P(G*¥)) (after taking a fiber functor) by the same

way as a Galois category. Let Ag(= A(gz)) denote the profinite completion of Ag)’temp.

(Note that Ag(= A(gz)) is not the maximal pro-X quotient of m(B(G*)), since the profi-
nite completion of the “graph covering portion” is not pro-%). By definition, Atgemp(:
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A(QE)’temp) and A(QE) are tempered groups (Definition 6.1 (1), See also [SemiAnbd, Propo-
sition 3.1 (i)]).

Remark 6.3.1. (cf [SemiAnbd, Example 3.10]) Let X be a smooth log-curve over K. The
special fiber of the stable model of X determines a semi-graph G of anabelioids. We can
relate the tempered fundamental group AX™ := 7;""®(X) of X with a system of admissible
fundamental groups of the special fibers of the stable models of coverings of X as follows: Take
an exhausitive sequence of open characteristic subgroups --- C N; C --- C A;mp (¢ > 1) of finite
index of At;mp. Then, N; determines a finite log-étale covering of X whose special fiber of the
stable model gives us a semi-graph G; of anabelioids, on which Agﬁmp /N; acts faithfully. Then, we
obtain a natural sequence of functors - - - <= B*™P(G;) < - - - +— B*"P(G) which are compatible
with the actions of Ag?mp /N;. Hence, this gives us a sequence of surjections of tempered groups

out
DS o s my(B(G) S (ALYNG e = m(BR(Gy)) K (AE/N) e
m(B*™P(G)). Then, by construction, we have

(6.1) Atemp ~ L (Atemp (Atemp/N )) — 1&1 A;mp/ker(Ni — Atgeimp)'
We also have

(62) Ao = i (g, (3/F)) = im A er(F; » Ag),

where jV\ denotes the closure of N; in Ax. By these expressions of AY™ and Ay in terms of
Atemp 's and Ag,’s, we can reduce some properties of the tempered fundamental group A%™ of
the generic fiber to some properties of the admissible fundamental groups of the special ﬁbers
(See Lemma 6.4 (5), and Corollary 6.10 (1)). Let AT)™® denote the fundamental group
associated to the category of the tempered coverings dominated by coverings which arise as a
graph covering of a finite étale Galois covering of X over K of ¥-power degree, and Ag(z) its
profinite completion (Note that Ag?) is not the maximal pro-X quotient of Ag?mp or Ay, since
the profinite completion of the “graph covering portion” is not pro-X). If p & X, then we have

Ag?),telnp o A(gE),temp and Ag?) -t A(gz),

since Galois coverings of Y-power degree are necessarily admissible (See [Hur, §3|, [SemiAnbd,
Corollary 3.11]).

6.2. Profinite Conjugate VS Tempered Conjugate.

Lemma 6.4. (special case of [SemiAnbd, Proposition 2.6, Corollary 2.7 (i), (ii), Proposition
3.6 (iv)] and [SemiAnbd, Example 3.10]) Let X be a smooth hyperbolic log-curve over K. Put
AR = 1 (X X K) and TIE™ = 1*"P(X). Let G*™P(= G™'™P) denote the temperoid
determined by the special fiber of the stable model of X x i K and a set ¥ of prime numbers, and
put Atgemp = m(G*™P) (for some base point). Take a connected sub-semi-graph H containing
a vertez of the underling semi-graph G of G*™. We assume that H is stabilised by the natural
action of G on G. Let H*™ denote the temperoid over H obtained by the restriction of G**™P
to H. Put AFG™ = m(H*™P)(C Ag™). Let Ag and Ay denote the profinite completion of
AG™ and A respectively.

) Ay C Ag is commensurably terminal,

(2) Ay C Ag is relatively slim (resp. A" C AG™ is relatively temp-slim),

(3) Ay and Ag are slim (resp. A" and AG™ are temp-slim),
(4) inertia subgroups in Atgemp of cusps are commensurably terminal, and
(5) AS™ and TI'E™ are temp-slim.
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Proof. (1) can be shown by the same manner as in Proposition 2.7 (1a) (i.e., consider coverings
which are connected over H and totally split over a vertex outside H). (3) for A: We can show
that Ay and Ag are slim in the same way as in Proposition 2.7. (2): Ay C Ag is relatively
slim, by (1), (3) for A and Lemma 2.6 (2). Then the injectivity (which comes from the residual
finiteness of free groups and surface groups (See also Proposition C.5)) of A;_'imp — Ay and
AG™ < Ag implies that AS™ C Ag™ is relatively temp-slim. (3) for A*™P: It follows from
(2) for A*™P in the same way as in Proposition 2.6 (2). (4) can also be shown by the same
manner as in Proposition 2.7 (2¢). (5): By the isomorphism (6.1) in Remark 6.3.1 and (3) for
AP it follows that AS™ is temp-slim (See [SemiAnbd, Example 3.10]). Hence, IT%™ is also
temp-slim by Proposition 2.7 (1c). O

Definition 6.5. Let G be a semi-graph of anabelioids.

1) We call a subgroup of the form A, = m(G,) (C AS™) for a verter v a verticial
g
subgroup. R
2) We call a subgroup of the form A, := m(G.) (= Z*\} .= Z)(C AE™) for a
1ex\{p} g
closed edge e an edge-like subgroup.

Proposition 6.6. ([SemiAnbd, Theorem 3.7 (iv)]) Let X be a smooth hyperbolic log-curve over
K. Let Gt*™P (= G=mP) denote the temperoid determined by the special fiber of the stable model
of X and a set ¥ of prime numbers, and put A" = w1 (G*™P) (for some base point). For a
vertez v (resp. an edge e) of the underlying sub-semi-graph G of G*™ we put A, := m1(G,)(C
AG™) (resp. A. = 11(G.)(C Ag™)) to be the profinite group corresponding to G, (resp. G.)
(Note that we are not considering open edges here). Then, we have the followng group-theoretic

characterisations of A,’s and A, ’s.

(1) The mazimal compact subgroups of Agmp are precisely the verticial subgroups of Ag™.

2) The non-trivial intersection of two mazimal compact subgroups of AG™ are precisel
g G Y
the edge-like subgroups of Atgemp.

Remark 6.6.1. Proposition 6.6 reconstructs the dual graph (not the dual semi-graph) of the
special fiber from the tempered fundamental group without using the action of the Galois group
of the base field. In Corollary 6.12 below, we reconstruct the inertia subgroups, hence open
edges as well, using the Galois action. However, we can reconstruct the open edges without
Galois action, by more delicate method in [SemiAnbd, Corollary 3.11] (i.e., by constructing a
covering whose fiber at a cusp under consideration contains a node).

We can also reconstruct the dual semi-graph of the special fiber from the profinite funda-
mental group by using the action of the Galois group of the base field (See [profGC]).

Proof. Let Ag denote the profinite completion of Agsmp . First, note that it follows that A,NA,
has infinite index in A, for any vertices v # v’ by the commensurable terminality of Afe™P
(Lemma 6.4 (1)). Next, we take an exhausitive sequence of open characteristic subgroups

- C N; C -+ C Atgemp of finite index, and let G;(— G) be the covering corresponding to
]gVZ-(C AZ™). Let G° denote the universal graph covering of the underlying semi-graph G; of

Take a compact subgroup H C Atgemp, then H acts continuously on G° for each i € I, thus
its action factors through a finite quotient. Hence, H fixes a vertex or an edge of G$° (see also
[SemiAnbd, Lemma 1.8 (ii)]), since an action of a finite group on a tree has a fixed point by
[Serre2, Chapter I, §6.5, Proposition 27] (Note that a graph in [Serre2| is an oriented graph,
however, if we split each edge of G$° into two edges, then the argument works). Since the action
of H is over G, if H fixes an edge, then it does not change the branches of an edge. Therefore, H
fixes at least one vertex. If, for some cofinal subset J C I, H fixes more than or equal to three
vertices of G} for each j € J, then by considering paths connecting these vertices (cf. [Serre2,
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Chapter I, §2.2, Proposition 8]), it follows that there exists a vertex having (at least) two closed
edges in which H fixes the vertex and the closed edges (see also [SemiAnbd, Lemma 1.8 (ii)]).
Since each G; is finite semi-graph, we can choose a compatible system of such a vertex having
(at least) two closed edges on which H acts trivially. This implies that H is contained in (some
conjugate in Ag of) the intersection of A, and A., where e and ¢’ are distinct closed edges.
Hence, H should be trivial. By the above arguments also show that any compact subgroup in
Agemp is contained in A, for precisely one vertex v or in A,, A, for precisely two vertices v, v/,
and, in the latter case, it is contained in A, for precisely one closed edge e. 0

Proposition 6.7. ([[UTchI, Proposition 2.1]) Let X be a smooth hyperbolic log-curve over K.
Let Gt*mP(= G=t°mP) denote the temperoid determined by the special fiber of the stable model
of X and a set X of prime numbers. Put Atgemp = m1(G*™P), and let Ag denote the profinite
completion of Agemp (Note that the “profinite portion” remains pro-Y, and the “combinatorial
portion” changes from discrete to profinite). Let A C Atgemp be a non-trivial compact subgroup,
v € Ag an element such that YAy~ C Atgemp. Then, v € Atgemp.

Proof. Let r (resp. I'*™P) be the “profinite semi-graph” (resp. “pro-semi-graph”) associated
with the universal proﬁnlte étale (resp. tempered) covering of G*™P. Then, we have a natural
inclusion I'e™P s F We call a pro-vertex in [ in the i image of this inclusion tempered vertex.
Since A and yAy~! are compact subgroups of Atemp, there exists vertices v, v" of G (here G
denotes the underlying semi-graph of G'**™P) such that A C A'*™ and yAy~! C AN™ by
Proposition 6.6 (1) for some base points. Here, A" and A™ for this base points correspond
to tempered vertices ¥, 0" € ['**™P Now, {1} # vAy ™t C vAtempv_l NAS™ and yAlemPy~L jg

also a fundamental group of G'*™ with the base point obtained by conJugatlng the base point
under consideration above by . This correponding to a tempered vertex v7 € ['temP Hence, for
the tempered vertices ©7 and v/, the associated fundamental group has non-trivial intersection.

By replacing Htgemp by an open covering, we may assume that each irreducible component has
genus > 2, any edge of G abuts to two distinct vertices, and that, for any two (not necessarily
distinct) vertices w, w’, the set of edges e in G such that e abuts to a vertex w” if and only
if w” € {w,w'} is either empty of of cardinality > 2. In the case where ¥ = {2}, then by
replacing Htgemp by an open covering, we may assume that the last condition “cardinality > 2”
is strongthen ot the condition “even cardinality”.

If v7 is not equal to v’ nor v7 is adjacent to v/, then we can construct the covering over X, (here
X, is the irreducible component correspondlng to v), such that the ramification indices at the
nodes and cusps of X, are all equal (Note that such a covering exists by the assumed condition
on G in the last paragraph), then we extend this covering over the irreducible components
which adjacent to X, finally we extend the covering to a split covering over the rest of X
(See also [AbsTopll, Proposition 1.3 (iv)] or [NodNon, Proposition 3.9 (i)]). This implies that
there exist open subgroups J C Atemp which contain AS™ and determine arbitrarily small

neighbourhoods 'yAtemp’y NJ of {1} This is a contradiction. Therefore, v7 is equal to v/, or

v7 is adjacent to v’. In particular, v7 is tempered, since v is tempered. Hence, both of v and
v7 are tempered. Thus, we have v € Atemp , as desired. O

Corollary 6.8. ([IUTchl, Proposition 2.2]) Let AG™ and AY™ be as in Lemma 6.4.

(1) AF™ C Ag is commensurably terminal, and
(2) AX™P C Ag is commensurably terminal. In particular, A™ C Atgemp is also commen-

surably terminal as well.
Proof. (1): Let v € Ag be an element such that Ag™ N yAZ™Py~! is finite index in Atgemp.
Let A, C AF™ be a verticial subgroup, and put A := A, NYAF™y~1 C A, C AF™. Since
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A, Al = [AS™  AE™ N YAy~ < 00, the subgroup A is open in the compact subgroup
g g g

A,, 5o, it is a non-trivial compact subgroup of Atemp Now, 7 'A 1AM Atemp C Atemp

p group 8 T=7 Y

Since A,y 'Ay C Atemp and A is a non-trivial compact subgroup, we have ~ Atemp by
Y 2 p group,

Proposition 6.7. Thus s Atemp, as desired.

(2): We have AF™ C CAtgemp(A;_(znlp) C Oag(AY™) C Cagy(Ay) by definition. By Lemma 6.4

(1), we have Ca,(Ay) = Ay Thus, we have Ca,(AN™) = Ca,, (AS™) combining these. On
the other hand, by (1) for AY™, we have Ca,, (AY™) = AYX™. By combining these, we have
AP C Opg(A™) = Ca,, (AY™) = AY™ as desired. O

Corollary 6.9. ([[UTchI, Corollary 2.3]) Let Ax, Atgemp, NS H, Ag, Ay be as in Lemma 6.4.
Put Ag(éf%p = At}({:mp XAtgemp A;_Clmp(c Ai}gmp); and AX,H = Ax X Ag AH(C Ax)

(1) Ag?fﬁlp C AS™ (resp. Axm C Ax) is commensurably terminal.
2) The closure of A'S%P in Ay is equal to Ax .
X,H »

(3) We have Axyuy N AG™ = AE?EIP(C Ax).

(4) Let I, ¢ A™ (resp. I, C Ax) be a cusp x of X. Write T for the cusp in the stable
model corresponding to x. Then I, lies in a A"P-(resp. Ax-)conjugate of Ag?’%p (resp.
Axm) if and only if T meets an irreducible component of the special fiber of the stable
model which is contained in H.

(5) Suppose that p ¢ ¥, and there is a prime number | ¢ ¥ U {p}. Then, Axy is slim. In

particular, we can define

t out
temp |, temp ou L
HX]HI . AXH X GK, HX,H = AX,H X GK

by the natural outer actions of G on A;f%p and Ax g respectively.

(6) Suppose that p & X, and there is a prime number | ¢ X U {p}. Htemp c II'¢™ and
IIxy C IlIx are commensurably terminal.

Proof. (1) follows from Lemma 6.4 (1) and Corollary 6.8 (2). Next, (2) and (3) are trivial.
(4) follows by noting that an inertia subgroup of a cusp is contained in precisely one verticial
subgroup. We can show this, (possibly after replacing G by a finite étale covering) for any
vertex v which is not abuted by the open edge e corresponding to the inertia subgroup, by
constructing a covering which is trivial over G, and non-trivial over G, ([CombGC, Proposition
1.5 ()]). (6) follows from (5) and (1). We show (5) (The following proof is a variant of the proof
of Proposition 2.7 (2a)). Let J C Ax be an open normal subgroup, and put Jy := J N Axp.

We write J — J= for the maximal pro-X U {I} quotient, and J; 1 := Im(Jy — JZUI),
Suppose a € Ay g commutes with Jy. Let v be a vertex of the dual graph of the geometric
special fiber of a stable model X; of the covering X; of X3 corresponding to J. We write
J, C J for the decomposition group of v, (which is well-defined up to conjugation in J), and

we put JooW = Im(J, — J™). First, we show a claim that Jo"t" 0 JZ°Y is infinite and

non-abelian. Note that J, N Jyg, hence also Jo A Jzu{l}, surjects onto the maxmal pro-I
quotient J' of J,, since the image of the homomorphism J, C J C Ax — Ag is pro-%, and
we have ker(J, C J C Axy — Ag) C J, N Jg, and | € ¥. Now, J! is the pro-I completion
of the fundamental group of hyperbolic Riemann surface, hence is infinite and non-abelian.
Therefore, the claim is proved. Next, we show (5) from the claim. We consider various Ax-
SULLY 4 EUL)
N Jy
Eu{l} N

n J¥Y . Then, by Proposition 6.6, it follows that « fixes v, since
JEUD Bl
v H

conjugates of J,
a commutes with J, EU{I} Moreover, since the conjugation by a on J! («—
is trivial, it follows that a not only fixes v, but also acts trivially on the irreducible component
of the special fiber of X; corresponding to v (Note that any non-trivial automorphism of an
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irreducible component of the special fiber induces a non-trivial outer automorphism of the
tame pro-/ fundamental group of the open subscheme of this irreducible component given by
taking the complement of the nodes and cusps). Then, o acts on (J*V1})2P as a unipotent
automorphism of finite order, since v is arbitrary, hence o acts trivially on (J*V14)aP Then,
we have oo = 1, as desired, since J is arbitrary. O

Corollary 6.10. ([IUTchlI, Proposition 2.4 (i), (iii)]) We continue to use the same notation as
above. We assume that p ¢ X (which implies that A" — APHemP o Ag)’temp = AF"™ and
Ay - AR = AP = Ag).
et A C e a non-trivial pro-¥ compact group, v € Ilx an element such tha
1) Let A € AY™ b trivial pro-% t Il lement such that
YAyt C AS™P. Then we have y € TTI™P.
(2) (A1, Corollary 6.2.2]) AX™ C Ax (resp. IIx™ C Ilx) is commensurably terminal.

Remark 6.10.1. By Corollary 6.10 (2) and Theorem B.1, we can show a tempered version of
Theorem B.1:

HOHl(Ii?m(X Y) _> Homdense in an open subgp. of fin. mdeX(Htemp Htemp)/Inn(A‘;amp)

(For a homomorphism, up to inner automorphisms of AY™, in the right hand side, consider
the induced homomorphism on the profinite completions. Then it comes from a morphism in
the left hand side by Theorem B.1, and we can reduce the ambiguity of inner automorphisms of
the profinite completion of A}™ to the one of inner automorphisms of A}’™ by Corollary 6.10

(2)). See also [SemiAnbd, Theorem 6.4].

Proof. (1): Take a lift ¥ € II%™ — G of the image of v € IIx — Gg. By replacing v
by v(7)7? € Ax, we may assume that v € Ay. For an open characteristic sugroup N C
Atemp let N denote the closure of N in Ax, and let Gy denote the (pro Y)) semi-graph of
anabelioids determined by the stable model of the covering of X xx K corresponding to N.
By the isomorphisms (6.1) and (6.2) in Remark 6.3.1, it suffices to show that for any open
characteristic subgroup N C A", the image of v € Ax —» Ax/ker(]\Af — Ag, ) comes from
A" /ker(N —» Atge]jlp) < Ay /ker(N — Ag, ). Take such an N. Since N is of finite index
in A we have A /N =2 Ay /N. We take a lift 7 € A™ — A'™ /N = Ay /N of the
image v € Ax —» AX/N. By replacing v by v(7)™! € N, we may assume that v € N. Note
that Ay := ANN(C N C A$™) is a non-trivial open compact subgroup, since N is of finite
index in A¥™. Since Ay is a pro-¥ subgroup in A%™, it is sent isomorphically to the image
by AP ACHT™ Hence, the image Ay C AG™ of Ay by AF™ — AP temp o A(QE)’tcmp =
Agemp is also non-trivial open compact subgroup (Here we need the assumption p ¢ ¥. If p € 3,
then we only have a surjection A(E) otemp A(gz)’temp, and the image of Ay might be trivial).

Note that Ay is in Agh® = Im(N C AY™ — AG™). Consider the following diagram, where
the horizontal sequences are exact:

L AL e AP Jker(N —» ALY e AP /N 1

l -

1 ——Ag, — Ax/ker(N — A™) ——= Ay /N —— 1

Since yisin N, the image 7 of v € Ay — Ax /ker(N — Ag,) lands in Ag, . Since Ay (C AP

1

is a non-trivial open compact subgroup, and AN ' C Atejjlp by assumption, we conclude

RS Atgefvnp by Proposition 6.7, as desired. (2) follows from (1) by the same way as in Corollary 6.8
(1). O
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The following theorem is technically important for inter-universal Teichmiiller theory:

Theorem 6.11. (Profinite Conjugate VS Tempered Conjugate, [I[UTchl, Corollary 2.5]) We

continue to use the same notation as above. We assume that p & .. Then,

(1) Any inertia subgroup in Ilx of a cusp of X is contained in Hgf-mp of and only if it is an

inertia subgroup in II¢™ of a cusp of X, and
(2) A Tlx-conjugete of TI™ contains an inertia subgroup in IS™ of a cusp of X if and
poey . tem
only if it is equal to TIE™.

Remark 6.11.1. In inter-universal Teichmiiller theory,

(1) we need to use tempered fundamental groups, because the theory of étale theta function
(see Section 7) plays a crucial role, and

(2) we also need to use profinite fundamental groups, because we need hyperbolic orbicurve
over a number field for the purpose of putting “labels” for each places in a consistent
manner (See Proposition 10.19 and Proposition 10.33). Note also that tempered funda-
mental groups are available only over non-Archimedean local fields, and we need to use
profinite fundamental groups for hyperbolic orbicurve over a number field.

Then, in this way, the “Profinite Conjugate VS Tempered Conjugate” situation as in Theo-
rem 6.11 naturally arises (See Lemma 11.9). The theorem says that the profinite conjugacy
indeterminacy is reduced to the harmless tempered conjugacy indeterminacy.

~

Proof. Let I,(= 7Z) be an inertia subgroup of a cusp z. By applying Corollary 6.10 to the
unique pro-¥. subgroup of I, it follows that a ITx-conjugate of I, is contained in 1™ if and
only if it is a IT%"P-conjugate of I, and that a IIx-conjugate of II'¢"™ containes I, if and only
ep oy e tem

if it is equal to IT™ O
Corollary 6.12. Let X be a smooth hyperbolic log-curve over K, an algebraic closure K of
K. Then, we can group-theoretically reconstruct the inertia subgroups and the decomposition
groups of cusps in II¢™ := 71" (X).

Remark 6.12.1. By combining Corollary 6.12 with Proposition 6.6, we can group-theoretically
reconstruct the dual semi-graph of the special fiber (See also Remark 6.6.1).

Proof. By Lemma 6.2 (with Remark 6.2.1) we have a group-theoretic reconstruction of the
quotient IT™ —» G from II¢™. Let Ay and ITx denote the profinite completions of A"
and II'¢™ respectively. By using the injectivity of AY™ < Ax and IE™ — Ilx (i.e.,
residual finiteness (See also Proposition C.5)), we can reconstruct inertia subgroups I of cusps
by using Corollary 2.9, Remark 2.9.2, and Theorem 6.11 (Note that the reconstruction of the
inertia subgroups in Ay has Ax-conjugate indeterminacy, however, by using Theorem 6.11,
this indeterminacy is reduced to Ag?mp—conjugate indeterminacy, and it is harmless). Then, we
can group-theoretically reconstruct the decomposition groups of cusps, by taking the normaliser
Nypem (1), since I is normally terminal in A" by Lemma 6.4 (4). O

Remark 6.12.2. (a little bit sketchy here, cf. [AbsAnab, Lemma 2.5], [AbsToplIII, Theorem
1.10 (¢)]) By using the reconstruction of the dual semi-graph of the special fiber (Remark 6.12.1),
we can reconstruct

(1) a positive rational structure on H2(Ax, 1i5(Gk))" = Hom(H*(Ax, 15(Gx)), Z),
(2) hence, a cyclotomic rigidity isomorphism:
(Cyec. Rig. via Pos. Rat. Str.) 15(Gr) = pz(Ily)

(We call this the cyclotomic rigidity isomorphism via positive rational structure
and LCFT.)
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as follows (See also Remark 3.19.1):

(1) By taking finite étale covering of X, it is easy to see that we may assume that the nor-
malisation of each irreducible component of the special fiber of the stable model X of X
has genus > 2, and that the dual semi-graph 'y of the special fiber is non-contractible
(cf. [profGC, Lemma 2.9, the first two paragraphs of the proof o Theorem 9.2]). By
Remark 6.12.1, we can group-theoretically reconstruct the quotient A'}?mp — AL cor-
responding to the coverings of graphs (Note that, in [AbsAnab], we reconstruct the dual
semi-graph of the special fiber from profinite fundamental group, ¢.e., without using tem-
pered structure, via the reconstruction algorithms in [profGC]. See also Remark 6.6.1).
Let Ax denote tha profinite completion of At;mp , and put V := A%. Note that the
abelianisation Vo™ .= (AmP)ab = [¥&(D'y 7)(+£ 0) is a free Z-module. By using a
theorem of Raynaud (cf. [AbsAnab, Lemma 2.4], [Tam, Lemma 1.9], [Ray, Théoreme
4.3.1]), after replacing X by a finite étale covering (whose degree depends only on p
and the genus of X), and K by a finite unramified extension, we may assume that the
“new parts” of the Jacobians of the irreducible components of the special fiber are all
ordinary, hence we obtain a G g-equivariant quotient V' — V"V such that we have an
exact sequence

0 — VI VRV = VIV @5 7, — VE =0,

where V¢ is an unramified G g-module, and V™ is the Cartier dual of an unramified
G g-module, and that V"V — Vzcomb = Yeomb @, Z(;«é 0). Let (—)_ (like Ve, Vz‘x’mb)
denote the tensor product in this proof. Then the restriction of the non-degenerate
group-theoretic cup product

VY @5 VY @5 115(Gr) = M = HA(A, 15(Gx)) (2 Z),

where (—)¥ := Hom(—,Z), to (V%)

~

(V)Y @5 (VY)Y @5 15(Gr) — M (= Z)

is still non-degenerate, since it arises from the restriction of the polarisation given by
the theta divisor on the Jacobian of X to the “new part” of X (i.e., it gives us an ample
divisor). Then, we obtain an inclusion

(VEm) 5 i (Gic) 5 MY > (V™) @5 iz (Gi) @ MY = Ker(V™ = Vo) € Ve,

where the second last inclusion comes from ps(Gg )% = 0.

By the Riemann hypothesis for abelian varieties over finite fields, the (ker(V¢ —»
Vo) @z, Q) = ((ker(VE — V") @z, Qp)a, = 0, where (=)g, denotes the
G -coinvariant quotient (Note that ker(V¢ — Vz‘fmb) arises from the p-divisible group
of an abelian variety over the residue field). Thus, the surjection V¢ —» }/comb Rz Ly,
has a unique Gg-splitting VZC;’mb — Vét®@p. Similarly, by taking Cartier duals, the
injection (Vzmmb)v @5 pz(Gr) @ MY ®5 Z, — V™ also has a unique G g-splitting
e, (Vz?omb)v Q5 1z(Gr) @ MY @5 Q,. By these splittings, the Gg-action on
Vi @y, gives us a p-adic extension class

nz, € (Vg,™)")™ @ MY @ HY(K, 13(Gx)) [ Hi (K, pz(Gx)) = (V™) ")** @ MY«
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0 v Vgew VgL 0
) iy
(Vésmb)v ® ﬂZ(GK) ® MV Vésmb.

Next, ker(VZ — Vch’mb) is an unramified Gx-module, since it arises from [(# p)-

divisible group of a semi-abelian variety over the residue field, where we put 7 =
I 4pZy. Again by the Riemann hypothesis for abelian varieties over finite fields, the
injection (Vch’mb)v ® piz(Gr) @ MY = ker(VIe" — Vif“lb) of unramified G g-modules
splits uniquely over Q. Then, we can construct a prime-to-p-adic extension class

s € (VE™))¥2 @ MY @ H'(K, 15(Gx))/H} (K, 13(Gk)) @ Q = (VZ™)) o MY @ Q :

new comb 7new 7comb
0 ker( eq VZ/@Q) — VZ,®Q — VZ/®Q —0
y
(Vfomb)\/ ® UZ(GK) ® M\/'

7'Q

Then, combining p-adic extension class and prime-to-p-adic extension class, we obtain
an extension class

g € (VZ™)) @ MY @ H'(K, 1z(Gr)) [ Hi (K, 13(Gk)) ® Q = (VZ™))* @ MY Q.
Therefore, we obtain a bilinear form
(Vzcomb)®2 SN MV ®Z (@7

and the image of (V/comP)®2 (Vic‘mlb)®2 gives us a positive rational structure (i.e.,
Qs ¢-structure) on MY ®5 Q (cf. [AbsAnab, Lemma 2.5]).
(2) By the group-theoretically reconstructed homomorphisms

HY (G, 115(Gx)) > Hom(HY (G, Z),Z) = G2 — G2 /Im (I — G2) =7,
in the proof of Corollary 3.19 (2), we obtain a natural surjection
HY(Gpz(Tx)) - Hom(ug (Gk), 7 (1)) = H*(Ax, p5(Gr))Y

(Recall the definition of pi5(IIx)). Then, by taking the unique topological genera-
tor of Hom(u5(Gk), iz (I11x)) which is contained in the positive rational structue of

H?*(Ax, p5(Gr))Y, we obtain the cyclotomic rigidity isomorphism fiz(Gg) = ps(Ilx).

It seems important to give a remark that we use the value group portion (i.e., we use O, not
O*) in the construction of the above surjection H'(Gy,us(Gk)) = Hom(Hl(GK,Z),Z) =
G2 = G2 /Im(Ix — G3) = 7, hence, in the construction of the cyclotomic rigidity via
positive rational structure and LCFT as well. In inter-universal Teichmiiller theory, not only
the existence of reconstruction algorithms, but also the contents of reconstruction algorithms
are important, and whether or not we use the value group portion in the algorithm is crucial

for the constructions in the final multiradial algorithm in inter-universal Teichmiiller theory.
See also Remark 9.6.2, Remark 11.4.1, Propositin 11.5, and Remark 11.11.1.
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7. ETALE THETA FUNCTIONS — THREE RIGIDITIES.

In this sectin, we introduce another (probably the most) important ingredient of inter-
universal Teichmiiller theory, that is, the theory of étale theta functions. In Section 7.1, we
introduce some varieties related to the étale theta functions. In Section 7.4, we introduce the
notion of mono-theta environment, which plays important roles in inter-universal Teichmiiller
theory.

7.1. Theta-Related Varieties. We introduce some varieties and study them in this subsec-
tion. Let K be a finite extension of Q,, and K an algebraic closure of K. Put G := Gal(K/K).
Let X — Spf O be a stable curve of type (1,1) such that the special fiber is singular and ge-
ometrically irreducible, the node is rational, and the Raynaud generic fiber X (which is a
rigid-analytic space) is smooth. For the varieties and rigid-analytic spaces in this Section, we
also call marked points cusps, we always put log-structure on them, and we always consider
the fundamental groups for the log-schemes and log-rigid-analytic spaces. Let IT%™P, A%™P
denote the tempered fundamental group of X (with log-structure on the marked point) for
some basepoint. We have an exact sequence 1 — Ax — [Ix — Gx — 1. Put Iy := (Hg?mp)A,
Ax = (AY™)" to be the profinite completions of TI'¢™, A" respectively. We have the
natural surjection Aﬁ?mp —» 7 corresponding to the universal graph-covering of the dual-graph
of the configuration of the irreducible components of X. We write Z for this quotient for the
purpose of distinguish it from other Z’s. We also write Ax — Z for the profinite completion
of AY™ — Z.

Put AS = Ax/[Ax,[Ax,Ax]], and we call it the theta quotient of Ay. We also put
Ao = N> A% (2 Z(1)), and A := A% We have the following exact sequences:
1= A = A =AY = 1,
12 Z(1) =5 AN 5 Z — 1.
Let (AY™)® and (A%™)°! denote the image of AY™ via the surjections Ay — A$ and

Ax — (A —)AY respectively:

Ax A A

A‘;?mp (Ag?mp)e (Aggmp)ell‘
Let (IT™)® and (IT%™)*! denote the push-out of IT'¢™ via the surjections AS™ — (AP
and AE™ — ((AS™)® —)(A%™)! respectively:
I e ()0 e (1
A\j;mp (Atjmp)@ (Atemp)eu
X > (Rx > (Rx :
We have the following exact sequences:
1= Ag — (AY™)® — (AF™)! — 1,
1= Z(1) = (A 5 7 — 1.
Let Y — X (resp. 9 — X) be the infinite étale covering correspoinding to the kernel
1™ of IT™ — Z. We have Gal(Y/X) = Z. Here, ) is an infinite chain of copies of the

projective line with a marked point # 0,00 (which we call a cusp), joined at 0 and oo, and
cach of these points “0” and “co”is a node in ). Let (AY¥™)®, (AL™)el (resp. (ITE™P)°,
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(IT™P)e) denote the image of AF™ (resp. I157™P) via the surjections AX™ — (A$™)® and
A s (AP0 ) (AP (resp. T - (™) and ™ — (™) ) (ILE™))
respectively:

A o (AR e (AR I e (IO e (T

Lol

Atyt?mp ( A;ﬂmp)@ ( At;mp)ell, Hgfmp (H;fmp)@ (Hg/emp)ell'

We also have a natural exact sequence
1= Ag — (AY™)° — (AF™)! — 1.

Note that (AYX™P)ell & 7(1) and that (AX™)O(2 Z(1)#2) is abelian.

Let gx € Ok be the g-parameter of X. For an integer N > 1, set Ky := K(uy, q}(/N) CK.
Any decomposition group of a cusp of Y gives us a section Gx — (Hgfmp )l of the natu-
ral surjection (ITy"™P)" — Gx (Note that the inertia subgroup of cusps are killed in the
quotient (—)"). This section is well-defined up to conjugate by (AY™)". The composite
Gry = Gg — (IL"P)el = (TI™P)ell /N (AF™)! is injective by the definition of Ky, and the
image is stable under the conjugate by I, since G, acts trivially on 1 — Z/NZ(1) —
(AP /N(AF™P)! — Z — 1 (whose extension class is given by q;(/N), by the definition of
Ky. Thus, the image G, < (IIz"™)M/N(AY™)! determines a Galois covering Yy —» Y.
We have natural exact sequences:

1 — Iy — ™ — Gal(Yy/Y) — 1,

1= (AN @ Z/NZ (= Z/NZ(1)) — Gal(Yy/Y) — Gal(Ky/K) — 1.
Let (At;;vnp)e, (Agﬂp)eu (resp. (Hgf;np)@, (Hgf’]?lp)eu) denote the image of Agﬂp (resp. H%f;vnp)
via the surjections AY™ — (AF™)® and Ay™ — ((AF™) =) (AL (resp. TI1™P —
(II™P)® and TI5™P — ((II3™)® —) (I155™P)1) respectively:

AJETP o (AFT)O o (AP e (IO o (11

R I

AP o (AYP)O o (AP L o ()0 e (ITP) el

We also have a natural exact sequence
1= Ao ® Z/NZ (= Z/NZ(1)) — (IIFIP)° /N(AF™)® — Gy — 1.

Let Yy — ) be the normalisation of ) in Yy, i.e., write ) and Yy as the formal scheme and
the rigid-analytic space associated to Og-algebra A and K-algebra By respectively, and take
the normalisation Ay of A in By, then Qn = Spf Ay. Here, 9y is also an infinite chain of
copies of the projective line with N marked points # 0,00 (which we call cusps), joined at 0
and oo, and each of these points “0” and “co”is a node in ). The covering Yy — ) is the
covering of N-th power map on the each copy of G,, obtained by removing the nodes, and the
cusps correspond to “1”, since we take a section G — (H;emp)e” corresponding to a cusp in
the construction of Yy. Note also that if N is divisible by p, then )y is not a stable model
over Spf Ok, .

We choose some irreducible component of Q) as a “basepoint”, then by the natural action of
Z = Gal(Y/X) on 9), the projective lines in 9) are labelled by elements of Z. The isomorphism
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class of a line bundle on ) 5 is completely determined by the degree of the restriction of the line
bundle to each of these copies of the projective line. Thus, these degrees give us an isomorphism

Pic(Yn) = 7%,

i.e., the abelian group of the functions Z — Z. In the following, we consider Cartier divisors
on Yy, t.e., invertible sheaves for the structure sheaf Oy, of PYn. Note that we can also
consider an irreducible component of 9y as a Q-Cartier divisor of )y (See also the proof of
[EtTh, Proposition 3.2 (i)]) although it has codimension 0 as underlying topological space in
the formal scheme ). Let £y denote the line bundle on )y correspoinding to the function
Z — 7 :aw1forany a € Z, i.e., it has degree 1 on any irreducible component. Note also that
we have I'(Qn, Oy, ) = Ok, . In this section, we naturally identify a line bundle as a locally
free sheaf with a geometric object (i.e., a (log )(formal) scheme) defined by it.

Put Jy = Ky(a'/N | a € Ky) C K, which is a finite Galois extension of K, since
K$/(KX)N is finite. Two splitting of the exact sequence

1= Ae ®Z/NZ — (IIy")° /N (AY™)® — G, — 1

determines an element of H'(Gg,,Ae ® Z/NZ). By the definition of Jy, the restriction
of this element to G, is trivial. Thus, the splittings coincide over G, , and the image
Gy — (I /N(AF™)® is stable under the conjugate by 11", Hence, the image G, <
(IIy")® /N (AY™)® determines a finite Galois covering Zy — Yy. We have the natural exact
sequences

1 — I — Iy — Gal(Zy/Yy) — 1,

Let (AZTP)€, (AZTP)el (resp. (II;0P)©, (IT7P)<!) denote the image of AXr™ (resp. II5TP)
via the surjections At;;np — (AYI™)® and Ate;np ((AyI™)© )(A'{ffvnp)e“ (resp. Hte;np —
(Hgf;vnp)@ and Hgffvnp —» ((Ht;;”p)@ —»)(Htg;lp)eu) respectively:

AP o (AYI)O e (AT e () e ()
AP e (M) e (AT, T e () e (1)

Let 3y — 2y be the normalisation of ) in Zy in the same sense as in the definition of Q).
Note that the irreducible components of 3y are not isomorphic to the projective line in general.

A section s; € I'(Q), £1) whose zero locus is the cusps is well-defined up to an Oy -multiple,
since we have I'(2), Oy) = Og. Fix an isomorphism £5V = €]y, and we identify them.
A natural action of Gal(Y/X) (= Z) on £, is uniquely determined by the condition that it
preserves s;. This induces a natural action of Gal(Yy/X) on £i]y,-

Lemma 7.1. ([EtTh, Proposition 1.1})

(1) The section sily, € T(Qn, Lilyy) = T Dn, £3Y) has an N-th root sy € T'(3n, Lx]35)
over 3.

(2) There is a unique action of HE? on the line bundle £y R0y, Oy, over Yy X0k, Oy
which is compatible with the section sy : 3n — L£n Q0 Oy - Furthermore, this action
factors through TI™ — TI¢™/ Htemp Gal(Zx/X), and the action of A"/ Atemp
LN R0k, Oy, 18 fazthful

mp
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Proof. Put (Yy)sy = YNy Xk, Jn, and Gy to be the group of automorphisms of £N|(YN)JN

which is lying over the Jy-automorphisms of (Yy)y, induced by elements of AE™/ At;;“p C
Gal(Yy/X) and whose N-th tensor power fixes the sivy), . Then, by definition, we have a
natural exact sequence

1= pun(Jn) = Gy — AP /AP — 1.
We claim that
My = ker(Gy — AP /AL — AL /AL = 7)

is an abelian group killed by N, where the above two surjections are natural ones, and the
kernels are py(Jy) and (AY™) ® Z/N7Z (= 7./NZ(1)) respectively. Proof of the claim (This
immediate follows from the structure of the theta group (=Heisenberg group), however, we
include a proof here): Note that we have a natural commutative diagram

1 1
1 — un(Jn) Hy (AY™)' @ Z/NZ (=2 Z/NZ(1)) — 1
l:
1 — un(Jn) gn AP /AT 1
AL AR e A A (2 7),
1 1

whose rows and columns are exact. Let ¢ be a primitive N-th root of unity. The function
whose restriction to every irreducible component minus nodes G,, = Spf Ok[[U]] of Yu is
equal f(U) := g—:é represents an element of # which maps to a generator of Ay™/ A;e;np,
since it changes the pole divisor from 1 to ¢. Then, the claim follows from the identity
[locjen1 F(CTIU) = g—:ég:é Ulizjcv]il = 1. The claim is shown.

Let Sy be the tautological Z/NZ(1)-torsor Ry — Y obtained by taking an N-th root

of sy, i.e., the finite Y y-formal scheme Spf @OSjSN_lﬁﬁ(_j)), where the algebra structure is

defined by the multiplication 2%(_]\7) — Oy, by s1]|yy- Then, Gy naturally acts on (Ry)s, =
RN Xo, Jn by the definition of Gn. Since sy, has zero of order 1 at each cusp, (Bn)s,
is connected and Galois over X, := X xg Jy, and Gy — Gal((Rn)sy/Xsy)- Since (i)
AP /Atﬁfﬁlp acts trivially on uy(Jy), and (ii) Hy is killed by N by the above claim, we
have a morphism 3y Xo, K — Ry Xo,, Oy over Yy Xo,, Oy, by the definitions of
A = Ax/[Ax, [Ax, Ax]] and Zy, i.e., geometrically, 3y X0,y K(— QY X0k K) has the
universality having properties (i) and (ii) (Note that the domain of the morphism is 35 xo0, K,
not 3y, since we are considering A(_y, not II_y). Since we used the open immersion G, —
(Ht;flp)@ JN(AY™)® ) whose image is stable under conjugate by II'¢"™, to define the morphism
3nv = Yn, and sy, is defined over Ky, the above morphism 3y X0,y K — Ry X0k, Oy
factors through 3y, and induces an isomorphism 35 — Ry X0k O, by considering the
degrees over Yn X0, Ojy on both sides (i.e., this isomorphism means that the covering
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determined by Ag ® Z/NZ coincides with the covering determined by an N-th root of sy, ).
This proves the claim (1) of the lemma.

Next, we show the claim (2) of the lemma. We have a unique action of on £y Xo . Oy
over Yy X0y, Oy, which is compatible with the section sy : 3y — £n R0k, Oy, , since the
action of II'¢"™P(— Gal(Yy/X)) on £y, = £3" preserves s;y,, and the action of II¢™ on
)y preserves the isomorphism class of £y. This action factors through 1T/ HtZe;le, since sy

temp
1_[X

is defined over Zy. Finally, the action of IT¢"/ HtZe:;p is faithful, since s; has zeroes of order 1
at the cusps of Yy, and the action of AF™ /AF™ on Yy is tautologically faithful. O

We set
KN I:KQN, JN ::KN(al/N|a€KN) CF

D = Von X0i, Oliys Yy = Yan X, Jy, £y 1= Lnlg, = L5 X0, L Oy

(The symbol () roughly expresses “double covering”. Note that we need to consider double
coverings of the rigid analytic spaces under consideration to consider a theta function below. )
Let Z ~ be the composite of the coverings YN — Yy and Zy — Yy, and 3 ~ the normalisation
of 35 in Zy in the same sense as in the definition of V. Put also

Y =Y =Y,, @3:@]1:@2, K=K =J =K.

Since IT™ acts compatibly on 2)y and )y, and on £y®0 wcy OJx» and the natural commutative
diagram

ENHSN

L

Yy — DN

is cartesian, we have a natural action of TI'¥™ on £y, which factors through %™/ .

Next, we choose an orientation on the dual graph of the configuration of the irreducible
components of ). Such an orientation gives us an isomorphism Z — Z. We give a label
€ Z for each irreducible component of ). This choice of labels also determines a label € Z
for each irreducible component of 9y, 9. Recall that we can also consider the irreducible
component (2)y); of Yy labelled j as a Q-Cartier divisor of Yy (See also the proof of [EtTh,
Proposition 3.2 (i)]) although it has codimension 0 as underlying topological space in the formal
scheme 9)y (Note that (2) ~); is Cartier, since the completion of )y at each node is isomorphic
to Spf Oj [[u,v]]/(uv — q;(/QN)). Put Dy = 3,5 5° (Dn); (i.e., the divisor defined by the

summation of “ ] /2N — 07 on the irreducible component labelled j with respect to j € Z). We
claim that
(7.2 Oy, (On) = & (= €55 ®0,_0;,).

Proof of the claim: Since Pic(Qy) = ZZ, it suffices to show that Dy.(Yn); = 2 for any
1 € Z, where Dy. (@ ~)i denotes the intersection product of Dy and (@ N)i, i.e., the degree

of O (D)5, We have 0 = Dy (D) = S jen@n)- D) = 2+ (Da)0)? by the
conﬁguratlon of the irreducible components of )y (i.e., an infinite chain of copies of the
projective line joined at 0 and o). Thus, we obtain ((2)y); ) = —2. Then, we have D n.(Yn); =

ZjerQ(QjN)j'(QjN)i = (j —1)? = 252 + (j + 1)*> = 2. This proves the claim.
By the claim, there exists a section

TNZQJN%SN,
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well-defined up to an O* —multiple whose zero locus is equal to ®y. We call 7y a theta

temp

trivialisation. Note that the action of IIy,"" on @ N, £x preserves Ty up to an O; -multiple,
N

since the action of Hgfmp on 2) N fixes Dy.
Let M > 1 be an integer which divides N. Then, we have natural morphisms Yy —

D — D, DIy = D — D, 3y — 3u — 2, and natural isomorphisms Lulyy = 2;‘3(N/M),

Corlyy = LY (NM) By the definition of Jn(= Kon(a'N | a € Kyy)), we also have a natural
diagram

Ly — Ly

TN T T™M T
Dy —= D,
which is commutative up to an OX —multiple at £y, and an OX —multiple at £y, since 7y and
Ty are defined over 9oy and Q)QM respectively (Recall that QJN = Yoy X0, oF ) By the
relation ©(—U) = —O(U) given in Lemma 7.4 (2), (3) below (Note that we have no circular
argument here), we can choose 7 so that the natural action of I P on £, preserves 7. In
summary, by the definition of Jy, we have the following:

N/M Ty for any positive

e By modifying 7x’s by OX —multlples we can assume that 7
integers N and M such that M | N.

e In particular, we have a compatible system of actions of Hgfmp on {Dntns1, {Lntast
which preserve {7 }n>1.

e Fach of the above actions of

H;?mp on 2) ~, £y differs from the action determined by

the action of IT{™ on Yy, Ly ®0y, Oy in Lemma 7.1 (2) by an element of i (Jn).
Definition 7.2. We take 7y's as above. By taking the difference of the compatible system

of the action of H;,Cmp on {@N}Nzl, {QN}Nzl in Lemma 7.1 determined by {sy}n>1 and the
compatible system of the action of Ht.;mp on {Dn}tn=1, {€x}n>1 in the above determined by
{7~ }n>1 (Note also that the former actions, i.e., the one determined by {sy}y>1 in Lemma 7.1
come from the actions of IT'¢™, however, the latter actions, i.e., the one determined by {7y} x>1
in the above do not come from the actions of H;mp), we obtain a cohomology class

i® € H'(IIE™, Ag),

via the isomorphism sy (Jy) = Z/NZ(1) = Ag ® Z/NZ (Note that we are currently studying
in a scheme theory here, and that the natural isomorphism px(Jy) = Ag ® Z/NZ comes from
the scheme theory (See also Remark 3.15.1).
Remark 7.2.1. (See also [EtTh, Proposition 1.3])
(1) Note that 7j© arises from a cohomology class in o Hl(Ht;mp/Ht-Z-e?p, A ® Z/NZ),
and that the restriction
lim A (I /TS, Ae @ Z/NZ) — lim H' (AT /AL, Ag ® Z/NZ)

N>1 N>1
= Jl\{#m Hom (A" /AL, Ao @ Z/NZ)
>1

sends 7® to the system of the natural isomorphisms {Atemp / Atemp =S Ao ®ZINZ} N>

(2) Note also that s, : @ — £, is well-defined up to an OX multlple Son : 3y — £y is an
N-th root of s, 7 : @ — 21 is well-defined up to an O -multiple, and 7y : @N — SN
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is an N-th root of 7;. Thus, 7j® € Hl(H;emp, Ag) is well-defined up to an O ;-multiple.
Hence, the set of cohomology classes

0% -ij® c H'(IIZ™, Ae)

is independent of the choices of sy’s and 7n’s, where O acts on H 1(H§fmp, Ag) via
the composite of the Kummer map OI-X-{ — H'(Gj:, Ag) and the natural homomorphism

HY (G, Ae) = H'(IIZ™, Ag). We call any element in the set O% -ij€ the étale theta
class.

7.2. Etale Theta Function. Let (@m =) 4 C 9 be the irreducible component labelled 0 € Z
minus nodes. We take the unique cusp of 4 as the origin. The group structure of the underlying
elliptic curve X, determines a group structure on 4. By the orientation on the dual graph of
the configuration of the irreducible components of %), we have a unique isomorphism &l = @m
over Og. This gives us a multiplicative coordinate U € I'(4l,O;). This has a square root
UeT({, O;) on $:= 4l x99 (Note that the theta function lives in the double covering. See
also Lemma 7.4 below).

We recall the section associated with a tangential basepoint. (See also [AbsSect, Definition 4.1
(iii), and the terminology before Definition 4.1]): For a cusp y € Y (L) with a finite extension
L of K, let D, C IlIy be a cuspidal decomposition group of y (which is well-defined up to
conjugates) We have an exact sequence

1= I, (2 Z(1)) — D, — G — 1,
and the set Sect(D, — G) of splittings of this short exact sequnece up to conjugates by I,
is a torsor over H'(Gp,Z(1)) = (L*)" by the usual way (the difference of two sections gives
us a l-cocycle, and the conjugates by I, yield 1-coboundaries), where (L*)" is the profinite

completion of L. Let w, denotes the cotangent space to Y at y. For a non-zero element 6 € w,,
take a system of N-th roots (N > 1) of any local coordinate ¢ € my , with dt[, = 6, then, this
system gives us a 2(1) (= I,)-torsor (Y\Q(tl/N))Nzl — Y\;\ over the formal completion of Y at
y. This Z(1) (= I,)-covering (Y|Q(t1/N))N21 e Y|2 corresponding to the kernel of a surjection
D, — I, (= 2(1)), hence it gives us a section of the above short exact sequence. This is called
the (conjugacy class of ) section associated with the tangential basepoint §. In this
manner, the structure group (L*)" of the (L*)"-torsor Sect(D, — G) is canonically reduced
to L™, and the L*-torsor obtained in this way is canonically identified with the L*-torsor of
the non-zero elements of w,. Furthermore, noting also that Y comes from the stable model 9,
which gives us the canonical Op-submodule &,( C w,) of w,, the structure group (L*)" of the
(L*)"-torsor Sect(D, — Gp,) is canonically reduced to Oj, and the Oj -torsor obtained in this
way is canonically identified with the Oj-torsor of the generators of &,.

Definition 7.3. We call this canonical reduction of the (L*)"-torsor Sect(D, — G) to the
canonical O] -torsor the canonical integral structure of D,, and we say that a section s in
Sect(D, — () is compatible with the canonical integral structure of D,, if s comes
from a section of the canonical O -torsor. We call the L*-torsor obtained by the push-out
of the canonical Of-torsor via Of — L* the canonical discrete structure of D,. Let 7
denote the maximal prime-to-p quotient of Z, and put (0F) := Im(Of — (L*)® 2’) We
call the (Of )-torsor obtained by the push-out of the canonical Of-torsor via O — (Of)
the canonical tame integral structure of D, (See [AbsSect, Deﬁnition 4.1 (ii), (iii)]). We
also call a reduction of the (L*)"-torsor Sect(D, — Gp) to a {£1}-torsor (resp. fiy-torsor)
{£1}-structure of D, (resp. pg-structure of D,). When a {x1}-structure (resp. po-
structure) of D, is given, we say that a section s in Sect(D, — G1) is compatible with the
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{£1}-structure of D,, (resp. the puy-structure of D,, if s comes from a section of the
{#£1}-torsor (resp. the pugy-torsor).

Lemma 7.4. ([EtTh, Proposition 1.4]) Put

— g > (-1 Vet ¢ (8L, Oy).

Note that @(U) extends uniquely to a meromorphic function on 2) (cf. a classical complex theta

function 61 1(T, 2) == Zexp <7rz'7' (n + %)2 + 271 (z + %) (n + %)) = %Z( " q2("+2) UQ"“,
nez nez
. . . _1 l<n+l)2 n(n+1)
where q := e*™7 and U := €™?) and that q*q% >’ =qyx? isin K.

(1) ©(U) has zeroes of order 1 at the cusps of ), and there is no other zeroes. ©(U) has
poles of order j% on the irreducible component labelled j, and there is no other poles,
i.e., the divisor of poles of O(U) is equal to D;.

(2) Fora € Z, we have

6 (¢40) = (-1)7ay T T20(0),

(3) The classes OX ii® are precisely the Kummer classes associated to an OX -multiple of the

reqular functzon @(U) on the Raynaud generic fiber Y. In particular, for a non-cuspidal
point y € Y(L) with a finite extension L ofK the restriction of the classes

0% i®|, € H'(GL, Ae) = H' (G, Z(1)) = (L*)"

lies in L* C (L*)", and are equal to O - O(y) (Note that we are currently studying
in a scheme theory here, and that the natural isomorphism Ae = Z(1) comes from the
scheme theory (See also Remark 3.15.1).

(4) For a cusp y € Y(L) with a finite estension L of K, we have a similar statement as
in (3) by modifying as below: Let D, C 1y be a cuspidal decomposition group of y
(which is well-defined up to conjugates). Take a section s : G, — D, compatible with

the canonical integral structure of D,,. Let s comes from a generator 0 &y. Then, the
restriction of the classes

Of - i%lsc) € H'(Gr. o) = H'(G, (1)) = (L¥)",

via G, < D, C H;fmp, lies in L C (L*)", and are equal to O} - %(y), where @(y)

1s the value at y of the first derivative of @( ) at y by 9. In particular, the set of
the restriction of the classes O* ii°|s(cy) is independent of the choice of the generator

fe Wy (hence, the choice of the section s which is compatible with the canonical integral
structure of D).

We also call the classes in O[-X.( - 1{® étale theta function in light of the above relationship
of the values of the theta function and the restrictions of these classes to GG, via points.
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Proof. (2)
e ,é n n+z= _om— —n— 2 —n—1+3 n
@(U I)ZqX Z(_) ( )U2 l_qX Z 1 )UQ +1
nez neL
_1 n % TL+% 2. n e
= —qx* (=1) X< ) Ut = —0(U),
neE”Z

nez ne”L
3 -3 n 3("t3 3 n -8 n 3(nt3) +a(nt n
C) (quU) = qXS Z(_l) q)2(( 2) (CIXU>2 +1 ng (_1) )2(( 2) ( 2)U2 +1
neZ nez
~ n ntats n a o’
= ot g T = (1) T 6(0)
neL

(1): Firstly, note that q)%(U is the canonical coordinate of the irreducible component labelled
a, and that the last equality of (2) gives us the translation formula for changing the irreducible
components. The description of the divisor of poles comes from this translation formula and
O(U) e T(L, Oy) (i.e @(U) is a regular function on $1). Next, by putting I/ = +1 in the first
equality of (1), we obtaln O©(%1) = 0. Then, Dby the last equality of (2) again, it suffices to show
that @(U ) has simple zeroes at U = 41 on {l. By taking modulo the maximal ideal of O}, we
have O(U) = U — U~'. This shows the claim.

(3) is a consequence of the construction of the classes O - ii® and (1).

(4): For a generator NS Wy, the corresponding section s € Sect(D, — Gp) described before
this lemma is as follows: Take a system of N-th roots (N > 1) of any local coordinate t € mg

with dt|, = 8, then, this system gives us a Z(1) (2 I,)-torsor DINEN))vs1 — D) over the
formal completion of 9) at y. This Z(1) (¥ I,))-covering (i)w(tl/N))Ng —» @lg corresponding
to the kernel of a surjection D, — I, (= Z(1)), hence a section s € Sect(D, — Gp). For
g € Gy, take any lift g € D, (Ht-Yemp) of G, then the above description says that s(g) =
(GEYNY NV LY -G, where (G(#YN) /1Y) ysy € Z(1) = I, (Note that the right hand side does
not depend on the choice of a lift §). The Kummer class of © := ©(U) is given by Htemp >
h o (R(OYN)/OYN) 1 € Z(1). Hence, the restriction to Gy, via Gy > D, C I is given
by G 3 g = ((g(tN)AN)71g(OY) /OMN ) ot = (G(O/0) M) /(©/) /N )21 € Z(l)- Since
O(U) has a simple zero at y, we have (F((6/6)/Y)/(©/)N)y>1 = (9((dO/6)/N) /(A /6)/V) 1,
where d© /0 is the first derivative 92 de aty by 6. Then, G1, 3 g — (g((dO/)V/N)/(dO /)N )y €
Z(l) is the Kummer class of the value (y) at y. O

If an automorphism ¢y of Hgfmp is lying over the action of “—1” on the underlying elliptic

curve of X which fixes the irreducible component of Q) labelled 0, then we call 1y an inversion
automorphism of I\,

Lemma 7.5. ([EtTh, Proposition 1.5])
(1) Both of the Leray-Serre spectral sequences

B3 = H*((AE™)™, H'(Ae, Ae)) = H*P((AL™)®, Ag),
By’ = H'(G e, H'((AF™)°, D)) = H*'((IIF™)°, Ae)
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associated to the filtration of closed subgroups
temp\© temp\©
Ao C (AL™)7 C (IL;™)

degenerate at Fy, and this determines a filtration 0 C Fil* C Fil' C Fil° = Hl((Htemp)@ Ap)

on H'((IT™)9, Ae) such that we have
Fil’/Fil' = Hom(Ae, Ag) = Z,
Fil' /Fil* = Hom((AY™)®/Ae, Ag) = Z - log(U),
Fil? = H'(Gy, Do) = H' (G, Z(1)) 5 (K*)".
Here, the symbollog(U) denotes the standard isomorphism (At-Yemp)@/A@ = (A;’mp)e” =
Z(1) = Ag (gz’ven in a scheme theory).
(2) Any theta class ii° € Hl(Htemp Ae) arises from a unique class ij° € Hl((Htemp)G Ap)
(Here, we use the same symbol 1i® by abuse of the notation) which maps to the zden—

tity homomorphism in the quotient FllO/Fll1 = Hom(Ag, Ag) (i.-e., maps to 1 € Z =
Hom(Ae, Ae)). We consider O - ij° C Hl((Htemp)e A@) addztwely, and write 1° +

log(OF) forit. Then, a € Z = Z ™ /T acts on 7i° + log(O%) as
. 2
i© + 1og(0%) v i® — 2alog(U) % log(gx) + log(O%).
In a similar way, for any inversion automorphism vy of H%fmp, we have
by (712 +log(0F)) = ij° +log(OF)
vy (log(U) + log(0F)) = — log(U) + log(O).

Proof. (1): Since Ag = Z(l) and (Agfmp)e” = Z(l) and 2(1) has cohomological dimension 1,
the first spectral sequence degenerates at Fs, and this gives us a short exact sequence
0— H'((AT™), Ag) — H'((AL™)®, Ae) = H'(Ae, Ao) — 0.
This is equal to
0—Z-log(U) = H'((AF™)°, Ag) = Z — 0.
On the other hand, the second spectral sequence gives us an exact sequnece
0— H' (G, Ae) = H((IIZ™)®, Ag) — H' ((AL™)®, Ae)“k — H? (G, o) — 0.

Then, by Remark 7.2.1 (1), the composite

H((IE™)°, M) — HY(AE™)°, M)

C H'((AF™)®, M) — H' (Ao, Mo) = Z
maps the Kummer class of ©(U) to 1 (Recall also the definition of Zy and the short exact

sequence (7.1)). Hence, the second spectral sequence degenerates at Fy, and we have the
description of the graded quotients of the filtration on H 1((H;emp)G, Ag).

(2): The first assertion holds by definition. Next, note that the subgroup (AZ™)! C
(AP)el corresponds to the subgroup 2Z(1) C Z(1) x Z = (A™)°! by the theory of Tate
curves, where Z(1) C (A'™)el! corresponds to the system of N(> 1)-th roots of the canonical
coordinate U of the Tate curve associated to X, and 2Z(1) = (At.;mp)eu corresponds to the

system of N(> 1)-th roots of the canonical coordinate U introduced before (In this sense, the
usage of the symbol log(U) € Hom((AL™)%, Ag) is justified). Then, the description of the
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action of a € Z = Z follows from the last equality of Lemma 7.4 (2), and the first description
of the action of an inversion automorphism follows from the first equality of Lemma 7.4 (2).
The second description of the action of an inversion automorphism immediately follows from
the definition. 0J

The following proposition says that the étale thete function has an anabelian rigidity, ¢.e., it
is preserved under the changes of scheme theory.

Proposition 7.6. (Anabelian Rigidity of the Etale Theta Function, [EtTh, Theorem 1.6]) Let
X (resp. 1X) be a smooth log-curve of type (1,1) over a finite extension K (resp. TK) of Q,
such that X (resp. TX ) has stable reduction over Oy (resp O+y ), and that the special fiber is
singular, geometrically irreducible, the node is rational. We use similar notation for objects
associated to TX to the notation which was used for objects associated to X. Let
temp ~ tem
v I = IR
be any isomorphism of abstract topological groups. Then, we have the following:
temp\ __ yrtemp
(1) 7(1_[3“/ ) = Hn“f . N
(2) v induces an isomorphism Ae — TAg, which is compatible with the surjections

HY (G, Ae) = HN Gy, Z(1)) S (KX —» Z
HY Gy TAe) S HYG, 0, 2(1) = (KX > Z

determined the valuations on K and VK respectively. In other words, v induces an
isomorphism HY (G, Ae) = HY (G, TAg) which preserves both the kernel of these
surjections and the element 1 € Z in the quotients.

(3) The isomorphism ~* : H'(II gfmp,A@) H(IT; temp ,TAe) induced by ~ sends OF - ij°
to some 17 = Htemp/Htemp-conjugate of O - T77 (This indeterminacy of TZ-conjugate
inevitably arises from the choice of the irreducible component labelled 0).

Remark 7.6.1. ([EtTh, Remark 1.10.3 (i)]) The étale theta function lives in a cohomology
group of the theta quotient (IT'™)®, not whole of ™. However, when we study anabelian
properties of the étale theta function as in Proposition 7.6, the theta quotient (H;mp)@ is
insufficient, and we need whole of I15™.

Remark 7.6.2. ([IUTchIII, Remark 2.1.2]) Related with Remark 7.6.1, then, how about con-
sidering Hpartlal temp . — T X5 Z instead of ™7 (Here, ITx denotes the profinite fundamen-

tal group, and IIxy —» Z is the profinite completion of the natural surjection IT'¢™ — Z.)
The answer is that it does mot work in inter-universal Teichmiiller theory, since we have
Ny ([Rertial tempy jpppartial temp - %7 /7 (Op the other hand, Ny, (II'™) = '™ by Coro-

rally 6.10 (2)). The profinite conjugacy indeterminacy on Hg?rtlal P gives rise to Z-translation

indeterminacies on the coordinates of the evaluation points (See Definition 10.17). On the other
hand, for H'}?mp, we can reduce the Z-translation indeterminacies to Z-translation indetermina-
cies by Theorem 6.11 (See also Lemma 11.9).

Remark 7.6.3. The statements in Proposition 7.6 are bi-anabelian ones (cf. Remark 3.4.4).
However, we can reconstruct the TZ-conjugate class of the theta classes OTXR - 14® in Propo-
sition 7.6 (3) in a mono-anabelian manner, by considering the descriptions of the zero-divisor
and the pole-divisor of the theta function.

Proof. (1): Firstly, v sends AF™ to A{"P, by Lemma 6.2. Next, note that v sends AF™ to
Aﬁ‘;mp by the discreteness (which is a group-theoretic property) of Z and TZ. Finally, v sends the

cuspidal decomposition groups to the cuspidal decomposition groups by Corollary 6.12. Hence,



98 GO YAMASHITA

v sends Il to Il;y, since the double coverlngs Y — Y and Y — Y are the double covering
characterised as the 2-power map [2] : Gy, — Gy, on each irreducible component, where the
origin of the target is given by the cusps.

(2): We proved that v(A%™) = TAY™. Then, v(Ae) = TAg holds, since Ag (resp. TAg)
is group-theoretically defined from AY™ (resp. TA%™). The rest of the claim follows from
Corollary 6.12 and Proposition 2.1 (5), (6).

(3): After taking some IT'¢™ /TIy"™ = Z-conjugate, we may assume that ~ : Htemp Htemp is
compatible with suitable inversion automorphisms ¢y and f1y- by Theorem B.1 (cf [SemlAnbd
Theorem 6.8 (ii)], [AbsSect, Theorem 2.3]). Next, note that 7y tautologically sends 1 €
7 = Hom(A@,A@) = Fil’/Fil' to 1 € Z = Hom("Ae, Ag) = Fil’/IFil'. On the other
hand, #® (resp. Tij®) is sent to 1 € 7 = Hom(Ae,Ag) = Fil’/Fil' (resp. 1 € 7 =
Hom(TAe, TAg) = TFil’/tFil'), and fixed by ¢y (resp. fiy) up to an O/-multiple (resp. an
O/-multiple) by Lemma 7.5 (2). This determines 7i© (resp. 7€) up to a (K*)"-multiple
(resp. a (FK*)"-multiple). Hence, it is sufficient to reduce this (K *)"-indeterminacy (resp.
(f K*)"-indeterminacy) to an Oj:-indeterminacy (resp. an O[-indeterminacy). This is done
by evaluating the class 7i® (resp 5i€) at a cusp y of the 1rreduc1ble component labelled 0
(Note that “labelled 0” is group-theoretically characterised as “fixed by inversion isomorphism
ty (resp. Tuy)”), if we show that v preserves the canonical integral structure of D,.

(See also [SemiAnbd, Corollary 6.11] and [AbsSect, Theorem 4.10, Corollary 4.11] for the
rest of the proof). To show the preservation of the canonical integral structure of D, by v, we
may restrict the fundamental group of the irreducible component labelled 0 by Proposition 6.6
and Corollary 6.12 (See also Remark 6.12.1). The irreducible component minus nodes {1 is
isomorphic to G,, with marked points (=cusps) {£1} C G- Then, the prime-to-p-quotient
Aﬁime_to_p of the geometric fudamental group of the generic fiber is isomorphic to the prime-

to-p-quotient Aﬁ?me"m'p of the one of the special fiber, where k& denotes the residue field of

K. This shows that the reduction of the structure group of (K*)"-torsor Sect(D, — G )
o (0z) = 1Im(O; — K* ®Z'), which is determined the canonical integral strucure (i.e.,
the canonical tame integral structure), is group-theoretically preserved as follows (cf. [AbsSect,

Proposition 4.4 (i)]): The outer action Gz — Out(Ap]:me **P) canonically factors through

(prlme to-p)

G — Out(Aprlme "oP) and the geometrically prime-to-p-quotient T} of the arithmetio

fundamental group of the special fiber is group-theoretically constructed as Apnmc top © G by

using Gj, — Out(ApZn“e **P). Then, the decomposition group Dy, in the geometrlcally prime-
to-p-quotient of the arithmetic fundamental group of the integral model fits in a short exact
sequence 1 — (I =), ® /N D, — Gy — 1, where [, is an inertia subgroup at y. The
set of the splitting of this short exact sequence forms a torsor over H'(Gj, I;) >~ %, These
splittings can be regarded as elements of H 1(D;,I?’J) whose restriction to I is equal to the
identity element in H'(I;,I}) = Hom([}, I/). Thus, the pull-back to D, of any such element of
HY(D,, I)) gives us the reduction of the structure group to (O%)" determined by the canonical
integral structure.

Then, it suffices to show that the reduction of the structure group of (K *)"-torsor Sect(D, —
Gy) to K*, which is determined the canonical integral strucure (i.e., the canonical discrete
structure), is group-theoretically preserved, since the restriction of the projection Z — 7' to

Z C 7 is injective (cf. [AbsSect, Proposition 4.4 (ii)]).
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Finally, we show that the canonical discrete structure of (K*)"-torsor Sect(D, —» G) is
group-theoretically preserved. Let U be the canonical cooridnate of G,,;. For y = 1, we

consider the unit U F1 € T(G e \ {£1}, Og,, ;\{+1}), which is invertible at 0, fails to be
invertible at y, and has a zero of order 1 at y. We consider the exact sequence

1= (K*)" — H'(Ip1 (o), p3(Ix)) = Z B Z
constructed in Lemma 3.15 (5). The image of the Kummer class x(TF1) € H'(Ilp1\ 0,43, 15 (I1x))
in Z®7Z (i.e., (1,0)) determines the set (K*)" - x(U F 1). The restriction of (K>)" - k(U F 1)
to D, is the (K ) -torsor Sect(D, — G ), since the zero of order of x(U F1) at y is 1. On the
other hand, (U F 1) is invertible at 0. Thus, the subset K* - k(U F 1) C (K*)" - (U F 1) is
characterised as the set of elements of (K*)" - (U F 1) whose restriction to the decomposition
group Dy at 0 (which lies in (K*)" = H'(G jz, uz(Ilx)) € H'(Dy, pz(Ix)) since #(U F 1) is in-
vertible at 0) in fact lies in K* C (K*)". Thus, we are done by Corollary 6.12 (or Corollary 2.9)
(cf. the proof of [AbsSect, the proof of Theorem 4.10 (i)]). O

From now on, we assume that

(1) K =K,

(2) the hyperbolic curve X minus the marked points admits a K-core X — C := X//{%1},
where the quotient is taken in the sense of stacks, by the natural action of {£1} deter-
mined by the multiplication-by-2 map of the underlying elliptic curve of X (Note that
this excludes four exceptional j-invariants by Lemma C.3), and

(3) V-1€ K.

Let X — X denote the Galois covering of degree 4 determined by the multiplication-by-2 map
of the underlying elliptic curve of X (i.e., G"8 /¢% — G /¢% sending the coordinate U of the
G2 in the codomain to U2, where U is the coordinate of the G,,"™ in the domain). Let ¥ — X
denote its natural integral model. Note that X — C' is Galois with Gal(X /C) = (Z/27)%3.

Choose a square root /—1 € 7 of —1. Note that the 4-torsion points of the underlying
elliptic curve of X are U = \/—_11\/(1_)(i C K for 0 < 4,5 < 3, and that, in the irreducible
components of X, the 4-torsion points avoiding nodes are +v/—1. Let 7 denote the 4-torsion
point determined by v/—1 € K. For an étale theta class 7j°® € H 1(Hgfmp, Ag), let

O ¢ (IS, Ao
denote the IT"™"/ Hzfmp = 7 x s-orbit of 7i°.

Definition 7.7. (cf. [EtTh, Definition 1.9])
(1) We call each of two sets of values of 7j©-£*#2
n@ZXM2|T’ @ZXM2|T C KX

a standard set of values of 7j9Zx#2,

(2) There are two values in K* of maximal Valuations of some standard set of values of

77@ TX iz (Note that @(QX\/_) (—1)° qX 2 (/-1 )*2“@)(\/ 1) by the third equality of

Lemma 7.4 (2), and ©(— qX\/ 1) = —@(qX\/ 1) by the second equality of Lemma 7.4
(2)). If they are equal to 1, then we say that 7j92*#2 is of standard type.

Remark 7.7.1. Double coverings X — X and C' — C' are introduced in [EtTh], and they are
used to formulate the definitions of a standard set of values and an étale theta class of standard
type, ([EtTh, Definition 1.9]), the definition of log-orbicurve of type (1,Z/IZ), (1,(Z/IZ)®),
(1,Z/1Z)+, (1,(Z/I1Z)®)+ ([EtTh, Definition 2.5]), and the constant multiple rigidity of the
étale theta function ([EtTh, Theorem 1.10]). However, we avoid them in this survey, since they
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are not directly used in inter-universal Teichmiiller theory, and it is enough to formulate the
above things by modifying in a suitable manner.

Lemma 7.8. (cf. [EtTh, Proposition 1.8]) Let C' = X//{&1} (resp. TC = TX//{%1}) be a
smooth log-orbicurve over a finite extension K (resp. TK) of Q, such that /—1 € K (resp.

V=1 € 1K). We use the notation 1(—) for the associated objects with TC. Let v : TI5™ 5

Htemp be an isomorphism of topological groups. Then, v induces isomorphisms II'¢™ =5 I

TX
Htemp Htemp Htemp Htemp )

% , and

Proof. (See also the proof of Proposition 7.6 (1)). By Lemma 6.2, the isomorphism v induces an
isomorphism ya,, : AE™P 5 Ate P Since AY™ C AG™ (resp. Atemp C Atemp) is characterised
as the open subgroup of 1ndeX 2 Whose proﬁmte completlon is torsmn free i.e., corresponds to
the geometric fundamental group of a scheme, not a non-scheme-like stack (See also [AbsTopl,
Lemma 4.1 (iv)]), 7a. induces an isomorphism va, : AY™ 5 A, Then, ya, induces
an isomorphism yaa : (AT S (APl since (AF™P)! (resp.  (AIFP)) is group-
theoretically constructed from AY™ (resp. A{FP). By the discreteness of Gal(Y/X) = Z
(resp Gal("Y/TX) = TZ), the isomorphism Yaqr induces an isomorphism vy : AR AP (=
Z) 5 AIPP/ASTP(21Z). Thus, by considering the kernel of the action of ILS™ (resp. II%7P)
on Atemp / Atemp (resp. Atemp / Atemp) the isomorphisms v and 4z induce an isomorphism 7y, :
Htemp = Htemp . Since i, preserves the cuspical decomposition groups by Corollary 6.12, it
induces 1som0rphlsms Htemp — Htemp, and Htemp Htemp. O

Proposition 7.9. (Constant Multiple Rigidity of the Etale Theta Function, cf. [EtTh, Theorem
1.10]) Let C = X//{£1} (resp. 'C = 1X//{%1}) be a smooth log-orbicurve over a finite
extension K (resp. 1K) of Q, such that /=1 € K (resp. /=1 € 1K ). We assume that C' is
a K-core. We use the notation T(—) for the associated objects with TC. Let v : TI5™ = Htcmp
be an isomorphism of topological groups. Note that the isomorphism v induces an zsomorph@sm
™ 5 ISP by Lemma 7.8. Assume that -y maps the subset ij®L*#2 C Hl(Htemp Ag) to the

subset TUGZX“Q C Hl(Htemp "Ag) (cf. Proposition 7.6 (3)). Then, we have the following:

@ZX/},Q @ZX#Q

(1) The isomorphism ~y preserves the property that ij i1s of standard type, i.e., 1
is of standard type if and only if 1i®L*r2 js of standard type. This property umquely
determines this collection of classes.

(2) Note that v induces an isomorphism K> = TK* where K* (resp. 1K) is regarded a
subset of (K>*)N = HY(Gg,Ae) C HYIIE™, Ag)) (resp. (TK)N =2 HY(Gig,TAe) C
HYIL™®,1Ae))). Then, v maps the standard sets of values of j9%*12 to the standard
sets of values of TH®Lx#H2,

(3) Assume that §j®LxH2 (hence, 179Lx12 qs well by the claim (1)) is of standard type,
and that the residue characteristic of K (hence, 'K as well) is > 2. Then, §j®Z£x#2
(resp. 1ii®Lxk2 ) determines a {£1}-structure (See Definition 7.3) on (K*)"-torsor
(resp. (TK>*)"-torsor) at the unique cusp of C' (resp. TC') which is compatible with the
canonical integral structure, and it is preserved by 7.

Remark 7.9.1. The statements in Proposition 7.9 are bi-anabelian ones (c¢f. Remark 3.4.4).
However, we can reconstruct the set Tj®£*#2 in Proposition 7.9 (2) and (3) in a mono-anabelian
manner, by a similar way as Remark 7.6.3.

Proof. The claims (1) and (3) follows from the claim (2). We show the claim (2). Since v
induces an isomorphism from the dual graph of ) to the dual graph of ') (Proposition 6.6), by
the elliptic cuspidalisation (Theorem 3.7), the isomorphism v maps the decomposition group
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of the points of Y lying over 7 to the decomposition group of the points of 'Y lying over 7+

The claim (2) follows from this. O

7.3. I-th Root of Etale Theta Function. First, we introduce some log-curves, which are
related with [-th root of the étale theta function. Let X be a smooth log-curve of type (1, 1)
over a field K of characteristic 0 (As before, we always put the log-structure associated to the
cusp on X, and consider the log-fundamental group). Note also that we are working in a field
of characteristic 0, not in a finite extension of , as in the previous subsections.

Assumption (0): We assume that X admits K-core.

We have a short exact sequence 1 — Ax — Ilxy — Gx — 1, where IIx and Ay are the
arithmetic fundamental group and the geometric fundamental group (with respect to some
basepoints) respectively, and Gx = Gal(K/K). Put AY = A® = Ax/[Ax,Ax], A =
Ax/[Ax, [Ax,Ax]], and Ag = Im{A2AY — AS}. Then, we have a natural exact sequence
1= Ag = AS — AY — 1. Put also 11§ := Ix /ker(Ax — A%).

Take [ > 2 be a prime number. Note that the subgroup of A§ generated by I-th powers of

elements of AS is normal (Here we use [ # 2). We write AQ — Ay for the quotient of A
—ell

by this normal subgroup. Put Ag := Im{Ae — Ax}, Ay = Ax/Ag, lx := lx/ker(Ax —
Ax), and ﬁig .= Ilx/Ag. Note that Ag = (Z/IZ)(1) and Zig is a free Z/1Z-module of rank 2.

Let x be the unique cusp of X, and let I, C D, denote the inertia subgroup and the
decomposition subgroup at x respectively. Then, we have a natural injective homomorphism
D, — 1§ such that the restriction to I, gives us an isomorphism I, = Ag(C II%). Put also

D, :=Im{D, — TIx}. Then, we have a short exact sequence
1 Ag > D, = Gr — 1.

Assumption (1): We choose a quotient ﬁi? — () onto a free Z/lZ-module of rank 1 such that

.. el —cell . .. . L
the restriction A(;( — @ to A; remains surjective, and the restriction D, — @ to D, is trivial.

Let
X=X

denote the corresponding covering (Note that every cusp of X is K-rational, since the restriction
D, — @ to D, is trivial) with Gal(X/X) = @, and we write IIx C Iy, Ax C Ay, and

—ell 1 . .
Az C Zi(l for the corresponding open subgroups. Let ¢x (resp. tx) denote the automorphism

of X (resp. X) given by the multiplication by —1 on the underlying elliptic curve, where the
origin is given by the unique cusp of X (resp. a choice of a cusp of X). Put C' := X//ux,
C := X//ux (Here, //’s mean the quotients in the sense of stacks). We call a cusp of C, which
arises from the zero (resp. a non-zero) element of ), the zero cusp (resp. a non-zero cusp) of
C. We call 1y and ¢y inversion automorphisms. We also call the unique cusp of X over the
zero cusp of C' the zero cusp of X. This X (resp. C) is the main actor for the global additive
(B) portion (resp. global multiplicative (X)) portion) in inter-universal Teichmiiller theory.

Definition 7.10. ([EtTh, Definition 2.1]) A smooth log-orbicurve over K is called of type
(1,I-tors) (resp. of type (1,l-tors)y) if it is isomorphic to X (resp. C) for some choice of
ﬁ‘;? — (@ (satisfying Assumption (0), (1)).

Note that X — X is Galois with Gal(X/X) = @, however, C — C is not Galois, since
tx acts on @ by the multiplication by —1, and any generator of Gal(X/X) does not de-
scend to an automorphism of C' over C' (Here we use | # 2. See [EtTh, Remark 2.1.1]). Let
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Ac C Ilg (resp. A¢ C 1) denote the geometric fundamental group and the arithmetic
fundamental group of C' (resp. C) respectively. Put also e = e /ker(Ilxy — Iyx), (resp.
¢ = lg/ker(Ily — Ilx),) Ac := Ac/ker(Ax — Ax), (resp. A¢ = Ag/ker(Ax — Ax),),

—ell

and ZZP = Ag/ker(Ax — Ay).

Assumption (2): We choose ¢,, € Ac an element which lifts the non-trivial element of Gal(X /C)) =
ZJ2L.

We consider the conjugate action of €,, on Ay, which is a free Z/IZ-module of rank 2. Then,

the eigenspace of Ax with eigenvalue —1 (resp. +1) is equal to Zzl (resp. Ag). Hence, we
obtain a direct product decomposition
—ell

ZXQAXXZ@

([EtTh, Proposition 2.2 (i)]) which is compatible with the conjugate action of Ily (since the
conjugate action of €,, commutes with the conjugate action of My). Let s, : Zeg — Ax denote

the splitting of Ay —» Zzl given by the above direct product decomposition. Then, the normal
subgroup Im(s,) C Iy induces an isomorphism

D, > x/Im(s,)

over Gg.

Assumption (3): We choose any element s*(®) of the H' (G, Ag)(=2 K* /(K *)!)-torsor Sect(D, —
G'), where Sect(D, — G) denotes the set of sections of the surjection D, — G-.

Then, we obtain a quotient Iy —» IIx — Ilx/Im(s,) = D, — D,/s*®)(G) = Ag. This
quotient gives us a covering
X>»X

with Gal(X/X) = Ag. Let Ay C Ay, IIx C IIx denote the open subgroups determined by
X. Note that the composition ZK — Z& —» Z;H is an isomorphism, and that Z& = Im(s,),
Ax = Ax - Ap. Since Gal(X/X) = Ax/Ax = Ag, and I, = Ag — Ag, the covering X — X
is totally ramified at the cus_ps (Note also that the irreducible components of the Specgl fiber
of the stable model of X are isomorprhic to P!, however, the irreducible components of the
special fiber of the stable model of X are not isomorphic to P!). Note also that the image of €ix
in Ac/Ax is characterised as the unique coset of Ag/Ax which lifts the non-trivial element
of A¢/Ax and normalises the subgroup Ax C Ag, since the eigenspace of Ax/Ax = Ag
with eigenvalue 1 is equal to Ag ([EtTh, Proposition 2.2 (ii)]). We omit the construction of
“C” (See [EtTh, Proposition 2.2 (iii)]), since we do not use it. This X plays the central role

in the theory of mono-theta environment, and it also plays the central role in inter-universal
Teichmiiller theory for places in V9.

Definition 7.11. ([EtTh, Definition 2.3]) A smooth log-orbicurve over K is called of type
(1, I-tors®) if it is isomorphic to X (which is constructed under Assumptions (0), (1), (2), and

(3))-

The underlines in the notation of X and C indicate “extracting a copy of Z/IZ”, and the
double underlines in the notation of X and C' indicate “extracting two copy of Z/IZ” ([EtTh,
Remark 2.3.1]).
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Lemma 7.12. (cf. [EtTh, Proposition 2.4]) Let X (resp. 1X) be a smooth log-curve of type

(1,1-tors®) over a finite extension K (resp. 'K) of Q,. We use the notation '(—) for the
associated objects with Té. Assume that X (resp. 1X) has stable reduction over Ok (resp.
O+ ) whose special fiber is singular and geometrically irreducible, and the node is rational. Let

t ~ t . . . . . .

v I = ILS™ be an isomorphism of topological groups. Then, v induces isomorphisms
tempifv temp 7temp ~, temp temp ~ temp temp ~ temp temp ~ temp

o™ = 157, e ™ = 17 ™ = I, I = 1L, and TLTT — TEG.

~

Proof. By Lemma 6.2, v induces an isomorphism Atgmp 5 AP, By the K-coricity, the

t . . . . t ~
<P which induces an isomorphism AS™ —

tC
t . .. . . t ~ t
A, Then, by the same way as in Lemma 7.8, this induces isomorphisms AY™ — A",

™ 5 IEEY, and 2™ S ILT™. Note that Ax (resp. Aiy) and Ae (resp. Ag) are

group-theoretically constructed from AF™ (resp. A{Y), and that we can group-theoretically
reconstruct Ax C AS™ (resp. At x C AYYP) by the image of Atgnp (resp. A'&mp). Hence,

. . . . . t ~
isomorphism 7 induces an isomorphism ITS™" — II

the above isomorphisms induce an isomorphism Ay — Aiy, since Ax = Ax - Ag (resp.
~ A N s . . . . temp temp . temp
Aix = Asx - "Ag). This isomorphism induces an isomorphism A x A x » since Ay

(reps. A:egp) is the inverse image of Ay C AY™ (resp. Aiy C A{Y™) under the natural

quotient AY™ — Ay (resp. A

temp N : . temp temp
ix  — Aix). The isomorphism Ay™ — AY

. t t . ..
since ITx™ (resp. IL5™) is reconstructed as the outer semi-direct

induces an

temp

. . t ~
isomprhism IT¢™ — IL™,

out out
product Ax x Gk (resp. Aix X Gig), where the homomorphism Gx — Out(Ax) (resp.
Gig — Out(Aiy)) is given by the above constructions induced by the action of Gk (resp.
GTK)- |:|

Remark 7.12.1. ([EtTh, Remark 2.6.1]) Suppose p; C K. By Lemma 7.12, we obtain
AutK(é) =l X {:tl}, AutK(X) = Z/ZZ X {:l:l}, AU_tK(Q) = {1},

where x is given by the natural multiplicative action of {£1} on Z/IZ (Note that C — C'is
not Galois, as already remarked after Definition 7.10 (c¢f. [EtTh, Remark 2.1.1])).

Now, we return to the situation where K is a finite extension of Q,.

Definition 7.13. ([EtTh, Definition 2.5]) Assume that the residue characteristic of K is odd,
and that K = K. We also make the following two assumptions:

Assumption (4): We assume that the quotient ﬁe)? — () factors through the natural quotient
Iy — Z determined by the quotient IT'"™ —» Z discussed when we defined Y.

Assumption (5): We assume that the choice of an element of Sect(D, —» Gf) in Assumption
(3) is compatible with the {£1}-structure (See Definition 7.3) of Proposition 7.9 (3).

A smooth log-orbicurve over K is called of type (1,Z/1Z) (resp. of type (1, (Z/1Z)®), resp.
of type (1,Z/lZ)+ ), if it is isomorphic to X (resp. X, resp. C) (which is constructed under
the Assumptions (0), (1), (2), (3), (4), and (5)).

Note also that the definitions of smooth log-(orbi)curves of type (1, [-tors), of type (1, I-tors),
and of type (1,l-tors®) are made over any field of characteristic 0, and that the definitions of
smooth log-(orbi)curves of type (1,Z/IZ), of type (1,7Z/1Z)+ and of type (1,(Z/IZ)®) are made
only over finite extensions of Q,,.
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Let Y — X (resp. Y X) be the composite of the covering Y — X (resp. ¥ — X) with

X —» X. Note that the coverings Y Y — Y and Y — Y are of degree [.
~ We have the following diagram

Ao (2Z/12) -

[~

Y y ¥
Ao (2717, ~7./17 ext of Z/27
X o(=Z/1Z) X Q(=Z/1Z) X t of Z/
= by p2
l{il} {=1}

_QGaloi
non-Galois C

deg=I

I

and note that the irreducible components and cusps in the special fibers of X, X, X, X, Y, Y,
Y, and g are described as follows (Note that X — X and Y — Y are totally ramified at each
cusp):

e X: 1 irreducible component (whose noramalisation = P!) and 1 cusp on it.

e X: 2 irreducible components (22 P') and 2 cusps on each,

e X: [ irreducible components (= P!) and 1 cusp on each,

e X: [ irreducible components (% P!) and 1 cusp on each,

e Y the irreducible components (=2 P!) are parametrised by Z, and 1 cusp on each,
e Y the irreducible components (= P!) are parametrised by Z, and 2 cusps on each,
e Y: the irreducible components (%2 P!) are parametrised by [Z, and 1 cusp on each,
° g the irreducible components (% P!) are parametrised by (Z, and 2 cusps on each.

We have introduced the needed log-curves. Now, we consider étale theta functions. By
Assumption (4), the covering Y — X factors through X. Hence, the class 7j® € Hl(Ht-}fmp, Ag),
which is well-defined up to an O}-multiple, and its 115%™/ H;Cmp = 7 X pp-orbit can be regarded
as objects associated to IT%™.

We recall that the element ii© € H 1(Ht;mp,A@ ® Z/IZ) arises froma an element 7j° €
Hl((Hgfmp)e, Ap ® Z/IZ) by the first claim of Lemma 7.5 (2), where we use the same symbol
ii® by abuse of notation. The natural map D, — Ht-;mp — (Hzfmp)@ induces a homomorphism
HY((TIM)°, Ap @ Z/IZ) — H'(Da, Ao @ Z/IZ), and the image of ij° € H'((IIJ")°, Ae ®
ZJIZ) in HY(D,, Ag ® Z/IZ) comes from an element ii°® € H*(D,, Ag ® Z/IZ), where we use
the same symbol 7j® by abuse of notation again, via the natural map H'(D,, Ag ® Z/IZ) —
HY(D,,Ae ® Z/IZ), since we have an exact sequence

0 — H'(Dy, Ao ® Z/IZ) — H'(Dy, Ao ® ZIZ) — H' (106, Ao ® Z/IZ),
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and the image of 7® in H'(IAe,Ae ® Z/IZ) = Hom(IAe, Ae @ Z/IZ) vanishes by the first
claim of Lemma 7.5 (2). On the other hand, for any element s € Sect(D, — G), the map
D, > g+ g(s(g))7! gives us a l-cocycle, hence a cohomology class in H'(D,, Ae ® Z/IZ),
where g denotes the image of ¢ via the natural map D, —» Gg. In this way, we obtain a map
Sect(D, — Gg) — HY(D,,Ae ® Z/IZ). (See the following diagram:

0—— H'(D,, Ao ® Z/IZ) HY(D,, Ao ® Z/IZ)

| |

Sect(D, —» Gg) HY((ITZ™)®, Ae @ Z/IZ),

HOHI(ZA@, A@ & Z/ZZ)

where the horizontal sequence is exact.) We also have a natural exact sequence
0 — H Gk, Mo ®ZJIZ) — HY(D,, Ao ® Z/IZ) — H*(Ae @ Z)1Z, Ao @ Z]IZ).

The image of ii® € H'(D,, Ao ®Z/IZ) in H'(Ae®Z/IZ, Ao ®Z/IZ) = Hom(Ae ®Z/IZ, Ao ®
Z/IZ) is the identity homomorphism by the first claim of Lemma 7.5 (2) again. The image
Im(s) € HY(D,, Ao ®Z/IZ) of any element s € Sect(D, — G ) via the above map Sect(D, —»
Gg) = HY(D,, Ao ® ZJIZ) in H' (Ao ® ZJIZ, Ao ® Z/IZ) = Hom(Ae ® Z/1Z, N ® Z/1Z) is
also the identity homomorphism by the calculation Ag ® Z/IZ 3 g — g(s(g)) ! = g(s(1))™' =
g- 17! = g. Hence, any element in Im{Sect(D, — Gg) — H*(D,,Ae ® Z/IZ)} differs from
ii® € H'(D,, Ao ® Z/IZ) by an H (G, Ao ® Z/17) = K*/(K*)-mutiple. Now, we consider
the element s*®) € Sect(D, —» Gg) which is chosen in Assumption (3), and let Im(s*®) €
HY(D,, Ao ®Z/IZ) denote its image in H*(D,, Ag ® Z/IZ). By the above discussions, we can
modify 7i® € H'(D,, Ae®Z/IZ) by a K*-multiple, which is well-defined up to a (K *)"-multiple,
to make it coincide with Im(s*®) € H'(D,, Ag ® Z/IZ). Note that stronger claim also holds,
i.e., we can modify 7® by an OZX-multiple, which is well-defined up to an (O} )-multiple, to
make it coincide with Im(s*®)), since sA® € Sect(D, — G), is compatible with the canonical
integral structure of D, by Assumption (5) (Note that now we do not assume that 7©2*#2 is of
standard type, however, the assumption that s is compatible with the {#1}-structure in the
case where j92%#2 is of standard type implies that s*3) is compatible with the canonical integral
structure of D, even we do not assume that 779242 is of standard type). As a conclusion, by
modifying #® € H 1((I'It;mp)e, Ao ® Z/IZ) by an Oj--multiple, which is well-defined up to an
(OF)!-multiple, we can and we shall assume that ii® = Im(s*®) € H'(D,, Ao ® Z/IZ), and we
obtain an element 7® € H 1(H§fmp, Ag ® Z/IZ), which is well-defined up to an (O} )!-multiple
(not an Og-multiple), i.e., by the choice of X, the indeterminacy on the ratio of s; and 7; in

the definition of 7j® disappeared. In the above construction, an element Sect(D, — Gf) can
be considered as “modulo [ tangential basepoint” at the cusp x, the theta function O has a
simple zero at the cusps (i.e., it is a uniformiser at the cusps), and we made choices in such a
way that 7 = Im(s*®) holds. Hence, the covering X — X can be regarded as a covering of
“taking a [-th root of the theta function”. -
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Note that we have the following diagram
H'Y(s*®)(G ), Ao @ Z)I7)

HY(D,,Ae ® Z/17)

00— H'(D,/s"(Gx), Ao @ Z/1Z) —= H'(IF™, Ao @ Z/IZ) — H'(IIJ™, Ao @ Z/IZ)

0,

where the horizontal sequence and the Vertical sequence are exact. Now, the image of 7
Im(s*®) € HY(D,,Ae ® Z/IZ) in H'(s*®)(Gk), Ao ® Z/IZ) vanishes by the Calculatlon
() 5 $(g) 3 A (G (AVEAT)) ! = ADg)(X ()1 = 1 and the above
vertical sequence. Thus, #1® = Im(s*®)) comes from an element of H'(D,/s*®)(Gk), Ao ®
ZJIZ). Therefore, the image of ij° € H'(ILS™, Ap ® Z/IZ) in H' (1™, Ap @ Z/IZ) vanishes,

since it arises from the element of H'(D, / A8 (Gk), Ao ® Z/17) ‘and the above horizontal
sequence. As a conclusion, the image of j© € H'(IIJ"™, Ag) in H'(IIZ"™", Ag) arises from

an element 2 e H 1(l_ItZ.emp ,[Ag), which is well-defined up to Og. In some sense, 2 can be
considered as an “I-th root of the étale theta function”. Let ﬁg’lzx‘” denote the Htgmp / H;gmp =

(IZ x py)-orbits of °.

Definition 7.14. ([EtTh, Definition 2.7]) We call /%"2*#> of standard type, if 522 is of
standard type. B

By combining Proposition 7.9 Lemma 7.12, and definitions, we obtain the following:

Corollary 7.15. (Constant Multiple Rigidity of I-th Roots of the Etale Theta Function,
¢f. [EtTh, Corollary 2.8]) Let X (resp. 1X) be a smooth log-curve of type (1,(Z/IZ)®) over
a finite extension K (resp. 'K ) of Q,. We use the notation T(—) for the associated objects with
FX. Let: Htemp — Htemp be an isomorphism of topological groups.

-© AZX o

(1) The Zsomorphzsm 7 preserves the property that i) 15 of standard type. Moreover,

this property determines this collection of classes up to a p-multiple.

(2) Assume that the cusps of X are rational over K, the residue characteristic of K is prime
tol, and that uy C K. Then the {£1}-structure of Proposition 7.9 (3) determinesa fiy-
structure (cf. Definition 7.3) at the decomposition groups of the cusps of X. Moreover,
this pe-structure is compatible with the canonical integral structure (cf. Definition 7.3)
at the decomposition groups of the cusps of X, and is preserved by .

Remark 7.15.1. The statements in Corollary 7.15 are bi-anabelian ones (cf. Remark 3.4.4).
However, we can reconstruct the set ﬁe,zzxm in Corollary 7.15 (1) in a mono-anabelian manner,

by a similar way as Remark 7.6.3 and Remark 7.9.1.

Lemma 7.16. ([EtTh, Corollary 2.9]) Assume that i, C K. We make a labelling on the cusps
of X, which is induced by the labelling of the irreducible components of 2 by Z. Then, this
determines a bijection

{ Cusps of X} /Autg(X) = ||
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(See Section 0.2 for |F|), and this bijection is preserved by any isomorphism =y H&emp = Htfnp
of topological groups. a a

Proof. The first claim is trivial (See also Remark 7.12.1). The second claim follows from
Remark 6.12.1. O]

7.4. Three Rigidities of Mono-Theta Environment. In this subsection, we introduce
the notion of mono-theta environment, and show important three rigidities of mono-theta
environment, that is, the constant multiple rigidity, the cyclotomic rigidity, and the discrete
rigidity.
Definition 7.17. For an integer N > 1, we put
HNN7K = un X GK
For a topological group II with a surjective continuous homomorphism Il - G, we put
Mpn] =1 xgy My i, Alpn] == ker (H[un] - Gr) = A X py,
where A := ker(II - Gg), and we call [I[uy] cyclotomic envelope of IT — Gx. We also put
pn (H[pn]) := ker(Ipy] — II).
and we call puy(II[uy]) the (mod N) cyclotome of the cyclotomic envelope I1[uy]|. Note
that we have a tautological section G — II,, x of II,, x — Gk, and that it determines a
section
$A8 T — T[],
and we call it a mod N tautological section. For any object with II[uy]-conjugate action,
we call a py-orbit a puy-conjugacy class.

Y

Here, the py in fux] plays a roll of “uxn” which comes from line bundles.

Lemma 7.18. ([EtTh, Proposition 2.11]) Let Il — G (resp. 'II — Gix ) be an open subgroup
of the tempered or profinite fundamental group of hyperbolic orbicurve over a finite extension
K (resp. TK) of Q,, and put A :=ker(Il - Gg) (resp. 1A :=ker(Tll — Gig)).

(1) The kernel of the natural surjection Aluy] — A (resp. TAlun] — TA) is equal to the
center of Alun] (resp. TAlun]). In particular, any isomorphism Aluy] = TA[un] is
compatible with the surjections Aluy] — A, TAlun] — TA.

(2) The kernel of the natural surjection Uuy] — I (resp. M[uxn]| — '11) is equal to the
union of the center of the open subgroups of U[uy] (resp. "luy]). In particular, any
isomorphism U[puy] = TH[uy] is compatible with the surjections W[uy] — I1, TH[py] —
1.

Proof. Lemma follows from the temp-slimness (Lemma 6.4 (5)) or the slimness (Proposition 2.7
(2a), (2b)) of A, TA, I, 'L O

Proposition 7.19. ([EtTh, Proposition 2.12])

(1) We have an inclusion
ker ((AF™)° = (AF™)) = 186 C [(AF™)°, (AF™)°] .
(2) We have an equality
A5 . (357 ] (Y03ep] = (5 s, (e = (5] )

(€ (a0)lun] € (AF™)°lunl)
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alg

denotes the restriction of the mod N tautological section S(Atemp)@ :

where S(Atemp ‘ZA

(A%™)® 5 (A0 [ux] 10 106 (C (AF™)P).

Proof. The inclusion of (1) follows from the structure of the theta group (=Heisenberg group)
(AX™)®. The equality of (2) follows from (1). O

Remark 7.19.1. (c¢f. [EtTh, Remark2.12.1]) As a conclusion of Proposition 7.19 the sub-

group Im( (lAgtemp ‘ ; A@) i.e., the splitting [Ag X uy —, can be group-theoretically re-
constructed, and the cyclotomic rigidity of mono-theta environment (See Theorem 7.23 (1)),
which plays an important role in inter-universal Teichmiiller theory, comes from this fact.
Note that the inclusion of Proposition 7.19 (1) does not hold if we use X instead of X, i.e.,

ker ((A§"™)° — (AF™)) = Ao ¢ [(AF™)°, (A5™)°

Let s?}lg denote the composite

alg

S
1_[temp

Y
T B T ] o T,

and we call it a mod N algebraic section. Take the composite 7 : H;fmp — Ag ®Z/NZ =

py of the reduction modulo N of any element (i.e., a 1-cocycle) of the collection of classes
ﬂ@ ALxp2 - - Hl(Htemp [Ag), and the isomorphism [Ag ® Z/NZ = uy, which comes from a

scheme theory (cf. Remark 3.15.1). We put

—1 1 t t
sy =m0 set I — Himp[,uN].

Y

<@

and call sY a mod N theta section. Note that s is a homomorphism, since s§ (gh)

n(gh) s (gh) = (g(n(h))n(9)) "3 (9)s3%(h) = (8§g(9)n(h)8§g(g) "(9))” 18§g(9)8§g(h) =

al al e [e) T N - .
n(g)~ 1szg(g)77(h) 1szg(h) = si(g)sy(g). Note also that the natural outer action

Gal (/) 2 T I3 2 T ] T ] = Out (15 ]

of Gal(Y/X) on Htemp[,uN] fixes Im(s} o . Htemp — Htemp[pN}) up to a conjugate by puy, since

alg

alg extends to a mod N tautological section sntemp Htemp —

the mod N algebraic section sY

g™ [pn]. Hence, 59 up to 11" [ ]-conjugates is independent of the choice - of an element

of n@ MExpz Hl(ntemp 1Ae) (Recall that IIY™" — Gal(Y/X) = IZ x p). Note also that
conjugates by pun Corresponds to modifying a 1 cocycle by 1-coboundaries.
Note that we have a natural outer action

K* = K*J(K)N 5 HY Gk, pn) < Hl(Htimp,uN) e Out(Hzmp[uN]),

where the isomorphism is the Kummer map, and the last homomorphism is given by sending

a 1-cocycle s to an outer homomorphism s?lltgemp (9)a — s(g)s;ltgemp (g9)a (g € Htimp, a € py) (Note

alg

that the last homomorphism is well-defined, since sHltemp ( g)asntemp (¢")d (= sia_[liemp (99 )s;lémp (¢)Ma)d)
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Htemp

for g,¢9' € , a,a’ € puy is sent to

al al — al al al
s(gq’)s imp(gg) e (9) Ya)a = g(s(g'))s(g)s imp(gg) émp(g’) as] o ()0’

Y

= 8(9)9(8(9’))8;1&“1;) (9)as;fms (9')0" = 5(9)8] Eomn (9)sg’ )as) s (9)
Y Y Y Y

by s, and since for a 1-coboundary s(g) = b=1g(b) (b € uy) is sent to
al al al al al —1 al
T (0)0 > $(9)5n(9)0 = g D)5 ()0 = 0753 ()03 (0) S ()
Y Y Iy Y Y Y

1 alg
- b Htemp

(9)ba = b" st (9)

which is an inner automorphism). Note also any element Im(K*) := Im(K* — Out(I13™[uy]))

lifts to an element of Aut(IIy™[uy]) which induces the identity automorphisms of both the

Htemp

quotient Hte Plun] — and the kernel of this quotient. In this natural outer action of K>,

an O multlple on 7]@ 12X pa corresponds to an Oj-conjugate of s

Definition 7.20. (Mono-Theta Environment, [EtTh, Definition 2.13]) Let
Dy i (Im(K*), Gal(Y/X)) © Out(I™juy))

denote the subgroup of Out(l_[txemp [11n]) generated by Im(K*) and Gal(Y/X) (= 1Z).

(1) We call the following collection of data a mod N model mono-theta environment:
e the topological group Htemp [un],

temp

e the subgroup Dy (C Out(II Y [un])), and

e the py-conjugacy class of subgroups in themp [n] determined by the image of the

theta section sg.

(2) We call any collection M = (II, Dy, s8) of the following data a mod N mono-theta
environment:
e a topological group 11,
e a subgroup Dy (C Out(II)), and
e a collection of subgroups s of II,
such that there exists an isomorphism II = Htxemp [n] of topological groups which maps

Dy C Out(Il) to Dy, and 59 to the py-conjugacy class of subgroups in themp[,uN]

determined by the image of the theta section sg.

(3) For two mod N mono-theta environments M = (I, Dy, sf}), "M = ('IL, Diy, s§,), we
define an isomorphism of mod N mono-theta environments M — TM to be an
isomorphism of topological groups IT = TII which maps Dy to Dy, and s§ to sm For
a mod N mono-theta environment M and a mod M mono-theta environment "M with
M | N, we define a homomorphism of mono-theta environments M — ™™ to be

an isomorphism M, = "M, where M, denotes the mod M mono-theta environment
induced by M.

Remark 7.20.1. We can also consider a mod N bi-theta environment B = (II, Dy, 55, s ff[lg),

which is a mod N mono-theta environment (II, Dy, s9) with a datum s

the py-conjugacy class of the image of mod N algebraic section s?}lg (cf. [EtTh, Definition 2.13

corresponding to

(iii)]). As shown below in Theorem 7.23, three important rigidities (the cyclotomic reigidity, the
discrete rigidity, and the constant multiple rigidity) hold for mono-theta environments. On the
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other hand, the cyclotomic rigidity, and the constant multiple rigidity trivially holds for bi-theta
environments, however, the discrete rigidity does not hold for them (See also Remark 7.23.1).
We omit the details of bi-theta environments, since we will not use bi-theta environments in
inter-universal Teichmiiller theory.

Lemma 7.21. ([EtTh, Proposition 2.14])

(1) We have the following group-theoretic chracterisation of the image of the tautological
section of (I1Ae)[un] — 1Ag as the following subgroup of (At;mp)e[,uN] :

(180)ux) ({7 (@) € (AF™)0un] | 0 € (AF™)0un], 7 € Aut(TT™ [u]) such that ()}

where

(%) : the image of v in Out(IIy™P[uy]) belongs to Dy,
and vy induces the identity on the quotient themp[uN] e H;mp —- Gg.

(2) Let te : H;,emp — Htemp[,uN] be a section obtained as a conjugate of s¢ relative to the

actions of K* and IZ. Putd := (s Y) lte, which is a 1-cocycle of H;ﬂ;p valued in iy .

Let éi5 € Aut(Il temp[ ~]) denote the automorphzsm given by sntemp (g)c:»—> (5(g)5;1§emp (9)a

4 4

(g € Ht-;mp, a € py), which induces the identity homomorphisms on both the quotient
Htemp[u:N] — Htemp and the kernel of this quotient. Then, és extends to an automor-
phism a5 € Aut(Htemp[pJN}) which induces the identity homomorphisms on both the
quotient Htemp[,uN] —» Htemp and the kernel of this quotient. The conjugate by oz maps

59 to te, and preserves the subgroup Dy C Out(Htjmp[uN]).
(3) LetM = (H;mp[,uN], Dy, 5-,) be the mod N model mono-theta environment. Then, every

automorphism of Ml induces an automorphism of Htemp by Lemma 7.18 (2), hence an
automorphism ofﬂtemp Aut(II temp) NIm(Dy — Out(Iy™P)) = Aut(II temp)xOut(Ht;mp)

Im(Dy — Out(HtXemp)). It also induces an automorphism of the set of cusps ofg.

Relative to the labelling by Z on these cusps, this induces an automorphism of Z given
by (IZ) x {£1}. This assignment gives us a surjective homomorphism

Aut(M) — (I1Z) x {£1}.

Proof. (1): Take alift v € Aut((Htemp)[,uN]) of an element in Im(K ™) C Dy (C Out((ITF™) [1n]))
such that v satisfies (*). Then, v can be written as v = 772, where v, € Inn(Htemp[pN]),
Y2 € Aut(II¥™[uy]), the image of 7o in Out(Iy™[uy]) is in Im{K* — Hl(GK,,uN) —
H 1(Ht£mp,u]v) — Out(II t;mp[uN})}, and the automorphism induced by 7o of the quotient
I [LN] 1™ and the automorphism of its kernel (= uy) are trivial. Since the compos-
ite Hl(GK,,uN) — H' (Y™, py) — HY(AY™, py) is trivial, the composite H' (G, puy) —
Hl(HtXemp,u ) — Hl(Atemp,uN) — Out(Atemp[,uN]) is trivial as well. Hence, the automor-

phism induced by v, of A}Y™[uy] is an inner automorphism. On the other hand, the automor-

phism induced by ~; of Gr is trivial, since the automorphism induced by 7, of Gk is trivial,
and the condition (*). Then, the center-freeness of Gk (cf. Proposition 2.7 (1c)) implies that
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T € Inn(Ht Plun]) is in Inn(AYemp[,uN]). Hence, the automorphism induced by v = 417, of
Atemp[uN] is also an inner automorphism. Since (Atemp)@[uN](%“ IZ x Z(1) x py) is abelian,
the inner automorphism induced by v of (Afmp) I N] is trivial. Then, (1) follows from Propo-
sition 7.19 (2).

(2): By definition, the conjugate by és maps s@ to t@ Since the outer action of Gal(Y /X)) =
IZ on Atemp (] fixes 5 € up to puy-conjugacy, the cohomology class of 0 in H 1(Ht.;mp , ) s in

the submodule generated by the Kummer classes of K* and (1/1)2llog(U) = 21?)g(U) by the
first displayed formula of Lemma 7.5 (2) (See Lemma 7.5 (1) for the cohomology class log(U)).

Here, note that the cohomology class of § is in Fil', since both of (s alg) SY and salg t9

to 1 in Fil°/Fil' = Hom(lAe,!Ag) by Lemma 7.5 (2). Note also that “1/l” comes from that
we are working with [-th roots of the theta functions 77@ 1Zxp2 (cof the proof of Lemma 7.5 (2)),

maps

and that “l” comes from [Z. Thus, 0 descends to a 1—cocycle of Htxemp valued in py, since the
coordinate U? descends to Y. Hence, ds extends to an automorphism s € Aut(Htemp[ﬂN]),

which induces identity automorphisms on both the quotient Htemp [un] — Htemp and the kernel

temp

of this quotient. The conjugate by a; preserves Dy C Out( Y [un]), since the action of

Gal(Y/X) maps 2log(U) to a K*-multiple of 2log(T)).
(3) comes from (2). O

Corollary 7.22. (Group-Theoretic Reconstruction of Mono-Theta Environment, [EtTh, Corol-
lary 2.18]) Let N > 1 be an integer, | a prime number and X a smooth log-curve of type

(1,(Z/1Z)®) over a finite extension K of Q,. We assume that | and p are odd, and K = K.
Let My be the resulting mod N model mono-theta environment, which is independent of the
choice of a member of ne Zxp2 up to isomorphism over the identity of themp by Lemma 7.21

(2).
(1) Let TTI™ be a topological group which is isomorphic to Htemp. Then, there exists a

group- theoretic algorithm for constructing
e subquotients

FIEmP I TG, F(1A6), HAE™)®, F(ITE™)0, T (Al™)0, (11

of TI_Itgmp, and
e a collection of subgroups ofTHtgnlp for each element of (ZJIZ)/{%1},
such that any isomorphism THZHP = Hzmp maps
e the above subquotients to the subquotients

I T, G, 16, (AR, (ITF™)°, (AF™)°, (11

of IT'¢™ respectively, and
e the above collection of subgroups to the collection of cuspidal decomposition groups
of Y™ determined by the label in (Z/1Z)/{+1},
in a functorial manner with respect to isomorphisms of topological groups (and no need
of any reference isomorphism to Htemp)
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(2) “II+— M)™
There exists a group-theoretic algorithm for constructing a mod N mono-theta environ-
ment "M = (111, Diyy, s§,), where

I .= Tﬂzmp Xia, ((((1Ae) ® Z/NZ) x 'G)

up to isomorphism in a functorial manner with respect to isomorphisms of topological
groups (and no need of any reference isomorphism to Htgnp ). (See also [EtTh, Corollary

2.18 (ii)] for a stronger form,).

(3) M II)™
Let ™M = (TH,DTH,S?H) be a mod N mono-theta environment which is isomorphic
to M. Then, there exists a group-theoretic algorithm for constructing a quotient
T — TII™ | such that any isomorphism TM = My maps this quotient to the quotient

temp temp - . . . .
l_[¥ un] — Hg in a functorial manner with respect to isomorphisms of mono-theta
environments (and no need of any reference isomorphism to My ). Furthermore, any
isomorphism "M = My induces an isomorphism from

Tﬂzmp = Aut(THtimp) X Out (i) Im(Dig — Out(THtimp))
to Hgmp, where we set the topology of Tﬂz‘mp as the topology determined by taking
I 55 Aut(TIE™) X g ooy {1} © 1T

to be an open subgroup. Finally, if we apply the algorithm of (2) to Tﬂtimp, then the
resulting mono-theta environment is isomorphic to the original TM, via an isomorphism
which induces the identity on THtXemp.

(4) Let TM = (I, Diyy, s8,), and M = (*IL, Dsyy, s5,) be mod N mono-theta environments.
Let THtXemp and thXemp be the topological groups constructed in (3) from "M and *M

respectively. Then, the functoriality of the algorithm in (3) gives us a natural map
Isom“N‘Conj(TM, iM[) — Isom(THtéemp, iHZHP),

which is surjective with fibers of cardinality 1 (resp. 2) if N is odd (resp. even), where
Isom"N M denotes the set of pn-conjugacy classes of isomorphisms. In particular, for
any positive integer M with M | N, we have a natural homomorphism Aut*y <™ (TM) —
Auttv <N (TM,,), where TMy; denotes the mod M mono-theta environment induced by
M such that the kernel and cokernel have the same cardinality (< 2) as the kernel and
cokernel of the homomorphism Hom(Z/2Z,7/NZ) — Hom(Z/2Z,7Z/MZ) induced by
the natural surjection ZJNZ — Z.]MZ, respectively.

temp

Proof. (1): We can group-theoretically reconstruct a quotient THX — Gk by Lemma 6.2,

other subquotients by Lemma 7.8, Lemma 7.12 and the definitions, and the labels of cuspidal
decomposition groups by Lemma 7.16.
(2) follows from the definitions (Note that we can reconstruct the set 1%2*#2 of theta classes

by Remark 7.15.1, thus, the theta section s§}, as well (See the construction of the theta section
sg before Definition 7.20)).
7(3): We can group-theoretically reconstruct a quotient I —» THtXemp by Lemma 7.18 (2). The

reconstruction of 'IIy™" comes from the definitions and the temp-slimness of Tﬂtémp (Lemma 6.4
(5)). The last claim of (3) follows from the definitions and the description of the algorithm in

(2).
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(4): The surjectivity of the map comes from the last claim of (3). The fiber of this map is a
ker(Aut#¥ ™ (TM) — Aut(TTIg™?))-torsor. By Theorem 7.23 (1) below (Note that there is no

circular argument), the natural isomorphism T(IAe) @ Z/NZ = py(T(1Ae[uy])) is preserved by
automorphisms of TM.. Note that ker( Aut*¥ ™ (TM) — Aut(THtXemp)) consists of automorphisms
acting as the identity on THtxemp, hence, on ker (11T — THtxemp) by the above natural isomorphism.
Thus, we have B B

ker(Aut"~ ™ (TM) — Aut(THtXemp)) = Hom(THtXemp/TH';mp, ker(TTI — TH%,jmp)L

where Tﬂgmp /TH'?Zemp =~ 1y and ker('II — THzmp)) = puy. The cardinality of this group is 1
(resp. 2) is N is odd (resp. even). The last claim follows from this description. O

Theorem 7.23. (Three Rigidities of Mono-Theta Environment, [EtTh, Corollary 2.19]) Let
N > 1 be an integer, | a prime number and X a smooth log-curve of type (1, (ZJ17)®) over

a finite extension K of Q,. We assume that | and p are odd, and K = K. Let My be the
resulting mod N model mono-theta environment (which is independent of the choice of a member

of ﬁe’@x“z, up to isomorphism over the identity of Htxemp by Lemma 7.21 (2)).
(1) (Cyclotomic Rigidity) Let "M = (TII, Dipy, s5;) be a mod N mono-theta environment
which is isomorphic to My. Let THtgmp denote the topological group obtained by apply-

ing Corollary 7.22 (3). Then, there exists a group-theoretic algorithm for constructing
subquotients

H1Ae[un]) € H((AE™)®fn]) € T pun])
of T1 such that any isomorphism "M = My maps these subquotients to the subquotients

INolin] € (AE™)O[uy] C (TTE"™)° 1]

of Htxemp[,uN], i a functorial manner with respect to isomorphisms of mono-theta en-

vironments (no need of any reference isomorphism to My ). Moreover, there exists a
group-theoretic algorithm for constructing two splittings of the natural surjection

f(1Ae[un]) — T(126)

such that any isomorphism "M = My maps these two splittings to the two splittings of
the surjection

ZA@[[LN] - ZA@

alg

determined by the mod N algebraic section s o

and the mod N theta section s3. in a

~

functorial manner with respect to isomorphisms of mono-theta environments (no need of
any reference isomorphism to M ). Hence, in particular, by taking the difference of these
two splittings, there exists a group-theoretic algorithm for constructing an isomorphism
of cyclotomes

(Cyc. Rig. Mono-Th.) T(1Ae) ® Z/NZ = un(T(1A6[pn]))

such that any isomorphism "M = My maps this isomorphism of the cyclotomes to the
natural isomorphism of cyclotomes

[Ae ® Z/NZ = pn(1Ae[pn])

in a functorial manner with respect to isomorphisms of mono-theta environments (no
need of any reference isomorphism to My ).
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(2) (Discrete Rigidity) Any projective system ("My)y>1 of mono-theta environments
s isomorphic to the natural projective system of the model mono-theta environments
(Mpy)n>1-

(3) (Constant Multiple Rigidity) Assume that ij*'%*#* is of standard type. Let ("My) >

be a projective system of mono-theta environments. Then, there exists a group-theoretic
algorithm for constructing a collection of classes of Hl(TH$Hlp,T(lA@)) such that any

isomorphism ("My)n>1 — (My)ns1 to the projective systems of the model mono-
theta environments maps the above collection of classes to the collection of classes of
Hl(H;?mp,lAg) gwen by some multiple of the collection of classes ﬁe’lzx‘” by an ele-

ment of y; in a functorial manner with respect to isomorphisms of projective systems of
mono-theta environments (no need of any reference isomorphism to (My)n>1).

We call T(IAg) ® Z/NZ the (mod N) internal cyclotome of the mono-theta environ-
ment "M, and py(T(IAg[uy])) the (mod N) external cyclotome of the mono-theta envi-
ronment "™M. We call the above isomorphism (Cyc. Rig. Mono-Th.) the cyclotomic rigidity
of mono-theta environment.

Proof. (1): Firstly, note that the restrictions of the algebraic section s;lg and the theta sec-

tion s€ to ker{IL¥™ —» (II)™)©1 coincide by Remark 7.2.1 (1). Hencg, we can reconstruct
V Y Y y

ker{T(ﬁtXemp[,uN]) — T((Htxemp)@[m\,])} as the subset of (any py-conjugacy class of) s§, whose
elements project to ker{(IIy™?) — T((IIy™)€)}, via the projection T(IIF™[py]) — T(IIF™P),

where T(Htimp[uN]) —» T(Htgnp), T(Hzmp:), and T(I'Itimp) —» T((Htgemp )® ‘are reconstructed by
Lemma 7.18 (2), Corollary 7.22 (3) and Corollary 7.22 (1) respectively. We can also recon-
struct the subquotients (IAe[un]) C T((AF™)®un]) C T((IIF™)®[un]) as the inverse images

of ((1Ag) C T((AY™)®) C T((thjmp)@), which are reconstructed by Corollary 7.22 (1) (3), via
the quotient T((Htfnp)@[;LN]) — ((II™)®). We can reconstruct the splitting of the natural

surjection T(IAg[un]) = T(IAg) given by the theta section directly as s};. On the other hand,
we can reconstruct the splitting of the natural surjection T(IAg[un]) — T(IAg) given by the
algebraic section by the algorithm of Lemma 7.21 (1).

(2) follows from Corollary 7.22 (4), since R m o Hom(Z/2Z,7Z/NZ) = 0 and R Wm o juy =
0. See also Remark 7.23.1 (2).

(3) follows from Lemma 7.21 (3), Corollary 7.15, the cyclotomic rigidity (1), and the discrete
rigidity (2). O

Remark 7.23.1. In this remark, we compare rigidity properties of mono-theta environments
and bi-theta environments (See Remark 7.20.1 for bi-theta environments).

(1) (Cyclotomic Rigidity) The proof of the cyclotimic rigidity for mono-theta environments
comes from the reconstruction of the image of the algebraic section, and this recon-
struction comes from the quadratic structure of theta group (=Heisenberg group) (See
Remark 7.19.1). On the other hand, for a bi-theta environment, the image of the alge-
braic section is included as a datum of a bi-theta environment, hence, the cyclotomic
rigidity trivially holds for bi-theta environment.

(2) (Constant Multiple Rigidity) The proof of the constant multiple rigidity for mono-theta
environments comes from the elliptic cuspidalisation (See Proposition 7.9). On the
other hand, for a bi-theta environment, the image of the algebraic section is included as
a datum of a bi-theta environment. This means that the ratio (i.e., étale theta class)
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determined by the given data of theta section and algebraic section is independent of
the simultaneous constant multiplications on theta section and algebraic section, hence,
the constant multiple rigidity trivially holds for bi-theta environment.

(3) (Discrete Rigidity) A mono-theta environment does not include a datum of algebraic

section, it includes only a datum of theta section. By this reason, a mono-theta en-
vironment has “shifting automorphisms” és in Lemma 7.21 (2) (which comes from
the “less-than-or-equal-to-quadratic” structure of theta group (=Heisenberg group)).
This means that there is no “basepoint” relative to the [Z action on Y, i.e., no dis-
tinguished irreducible component of the special fiber. If we work with a projective
system of mono-theta environments, then by the compatibility of mod N theta sec-
tions, where N runs through the positive integers, the mod N theta classes determine a
single “discrete” [Z-torsor in the projective limit. The “shifting automorphisms” gives
us a [Z-indeterminacy, which is independent of N (See Lemma 7.21 (3)), and to find
a common basepoint for the IZ/NIZ-torsor in the projective system is the same thing
to trivialise a lim IZ]IZ(= 0)-torsor, which remains discrete. This is the reason that
the discrete rigidity holds for mono-theta environments. On the other hand, a bi-theta
environment includes a datum of algebraic section as well. The basepoint indetermi-
nacy is roughly NiZ-indeterminacy (i.e., the surjectivity of Lemma 7.21 (3) does not
hold for bi-theta environments. for the precise statement, see [EtTh, Proposition 2.14
(iii)]), which depends on N, and to find a common basepoint for the [Z/NIZ-torsor in
the projective system is the same thing to trivialise a I'&HN IZ/NIZ(= lZ)—torsor, which
does not remain discrete (it is profinite). Hence, the discrete rigidity does not hold for
bi-theta environments.
Note also that a short exact sequence of the projective systems

0— NIZ - IZ - IZ/NIZ -0 (resp. 0 > IZ —IZ — IZ]IZ — 0 )

with respect to N > 1, which corresponds to bi-theta environments (resp. mono-theta
environments), induces an exact sequence

0 — lim NIZ (= 0) — IZ — 1Z — R'lim NIZ(= 1Z/1Z) — 0
N N
(resp. 0 = 1Z —1Z — 0 — RILle(: 0) ),
N

and that R'lim  NIZ = IZ)1Z (resp. R" lim 17 = 0) exactly corresponds to the non-

discreteness (resp. discreteness) phenomenon of bi-theta environment (resp. mono-theta
environment). See also [EtTh, Remark 2.16.1].

The following diagram is a summary of this remark (See also [EtTh, Introduction]):

cycl. rig. disc. rig. const. mult. rig.
mono-theta env. delicately OK OK delicately OK
(structure of theta group) (elliptic cuspidalisation)

bi-theta env. trivially OK Fails trivially OK
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Remark 7.23.2. If we consider N-th power OV (N > 1) of the theta function © instead
of the first power ©! = O, then the cyclotomic rigidity of Theorem 7.23 (1) does not hold,
since it comes from the quadratic structure of the theta group (=Heisenberg group) (See Re-
mark 7.19.1). The cyclotomic rigidity of the mono-theta environment is one of the most im-
portant tools in inter-universal Teichmiiller theory, hence, if we use OV (N > 1) instead of
O, then inter-universal Teichmiiller theory does not work. If it worked, then it would give us
a sharper Diophantine inequality, which would be a contradiction with the results in analytic
number theory (cf. [Mass2]). See also Remark 11.10.1 (the principle of Galois evaluation) and
Remark 13.13.3 (2) (N-th power does not work).

Remark 7.23.3. The cyclotomic rigidity rigidifies the Z* = Aut(z(l))—indeterminacy of an ob-
ject which is isomorphic to “Z(1)”, hence rigidifies the induced Z* = Aut(Z(1))-indeterminacy
of H(—, “Z(l)”). As for the cohomology class log(©) of the theta function ©, it ridigifies
7~ log(©). The constant multiple rigidity rigidifies log(©) + Z. Hence, the cyclotomic rigid-
ity and the constant multiple rigidity rigidify the indeterminacy 7~ log(é) + 7Z of the affine
transformation type. The discrete rigidity rigidifies Z = = Hom( “Z(l)” “Z(1)”). Here the second
“Z(l)” is a coefficient cyclotome, and it is subject to 7x = Aut( (1))-indeterminacy which is

rigidified by the cyclotomic rigidity. The first “Z(l)” is a cyclotome which arises as a subquo-
tient of a (tempered) fundamental group. Hence, three rigidities of mono-theta environments
in Theorem 7.23 correspond to the structure of the theta group (=Heisenberg group) (A%™)®:

cyclotomic rigidity constant multiple rigidity
0 discrete rigidity

See also the filtration of Lemma 7.5 (1).

7.5. Some Objects for Good Places. In inter-unversal Teichiiller theory, X is the main
actor for places in V"*. In this subsection, for the later use, we introduce a counterpart g of
X for places in Vo and related objects (However, the theory for the places in ¥**@ is more
important than the one for the places in V&°4).

Let X be a hyperbolic curve of type (1,1) over a field K of characteristic 0, C' a hyperbolic
orbicurve of type (1,[-tors)+ (See Definition 7.10) whose K-core C' is also the K-core of X.
Then, C' determines a hyperbolic orbicurve X := C x¢ X of type (1,l-tors). Let tx be the
non-trivial element in Gal(X /C)(= Z/27Z). Let Gk denote the absolute Galois group of K for
an algebraic closure K. Let [ > 5 be a prime number.

Assumption We assume that G acts trivially on A ® (Z/1Z).

(In inter-universal Teichmiiller theory, we will use for K = Foa(EF, . ,[l]) later.) We write €°
for the unique zero-cusp of X. We choose a non-zero cusp € and let ¢ and €’ be the cusps of
X over ¢, and let Ax — AP ® (Z/I1Z) - A, be the quotient of A% ® (Z/IZ) by the images of
the inertia subgroups of all non-zero cusps except € and €’ of X. Then, we have the natural
exact sequence

0— [g/ X [g// — A§—> AE® (Z/ZZ) — 0,
with the natural actions of Gk and Gal(X/C)(= Z/2Z), where E is the genus one compact-

ification of X, and I, I, are the images in A, of the inertia subgroups of the cusps €, €

respectively (We have non-canonically Iy 2 I, = Z/IZ). Note that ¢x induces an isomorphism
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I, = I, and that 1x acts on Ag ® (Z/IZ) via the multiplication by —1. Since [ is odd, the
action of tx on A, induces a decomposition
Ac = A x A7,

where tx acts on A and A7 by +1 and —1 respectively. Note that the natural composites
Io — Ac — Af and I — A, — A are isomorphisms. We define (Ilx —).Jx by pushing the
short exact sequences 1 = Ay — Ilx — Gx — 1 and by Ax — A, — Af:

1 Ax —= Iy — Gy 1
1 AF Jx Gy 1.

€ X

Next, we consider the cusps “2¢’” and “2¢”” of X corresponding to the points of £ obtained by
multiplying €’ and €” by 2 respectively, relative to the group law of the elliptic curve determined
by the pair (X, €%). These cusps are not over the cusp ¢ in C, since 2 # +1 (mod [) by [ > 5.
Hence, the decomposition groups of “2¢”” and “2¢”” give us sections o : Gx — Jx of the natural
surjection Jxy — Gg. The element ¢x € Gal(X /C'), which interchange I and I, acts trivially
on AT (Note also I, — A, +— I), hence, these two sections to Jx coincides. This section
is only determined by “2¢’” (or “2¢"””) up to an inner automorphism of Jy given by an element
AT, however, since the natural outer action of G on AT is trivial by Assumption, it follows
that the section completely determined by “2¢” (or “2¢””) and the image of the section is
normal in Jx. By taking the quotient by this image, we obtain a surjection (IIy —)Jx — Af.
Let B

XX

be the corresponding covering with Gal(X/X) = AL (= Z/IZ).

Definition 7.24. ([IUTchI, Definition 1.1]) An orbicurve over K is called of type (1, l—t0r§)
if it is isomorphic to g over K for some | and e.

The arrow — in the notation g indicates a direction or an order on the {+1}-orbits (i.e., the
cusps of C) of @ (in Assumption (1) before Definition 7.10) is determined by € (Remark [IUTchl,
Remark 1.1.1]). We omit the construction of “CG” (See [IUTchl, §1]), since we do not use it.

This g is the main actor for places in V&°° in inter-universal Teichmiiller theory:

local V"2 | local V&°°? | global B | global K

main actor X 5 Xy Cx

—Uv

Lemma 7.25. ([IUTchI, Corollary 1.2]) We assume that K is an NF or an MLF. Then,
from H)_fy there exists a group-theoretic algorithm to reconstruct Ix and Ilg (as subgroups of

Aut(g)) together with the conjugacy classes of the decomposition group(s) determined by the
set(s) of cusps {€,€"} and {€} respectively, in a functorial manner with respect to isomorphisms
of topological groups.

See also Lemma 7.8, Lemma 7.12 ([EtTh, Proposition 1.8, Proposition 2.4]).

Proof. First, since II X IIx and I are slim by Proposition 2.7 (2b), these are naturally embed-
ded into Aut (11 X ) by conjugate actions. By the K-coricity of C, we can also group-theoretically
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reconstruct (I1 X C) e (C Aut(Il iﬁ)) By Proposition 2.2 or Corollary 2.4, we can group-
theoretically reconstruct the subgroups Ag C Hg and A x C IT X (In particular, we can
reconstruct ! by the formula [Ax @ A X ] = 21%). We can reconstruct Ax as a unique torsion-free

subgroup of A¢ of index 2. Then, we can reconstruct Ilx (C Ilg) as [Ix = H - 11 X where
/

H :=ker(Ax — A% ® (Z/IZ)). The conjugacy classes of the decomposition groups of €, ¢,
and ¢’ in IIx can be reconstructed as the decomposition groups of cusps (Corollary 2.9 and
Remark 2.9.2) whose image in IIx /I X is non-trivial. Then, we can reconstruct the subgroup

Il C Ile by constructing a splitting of the natural surjection Il /Iy — Ilo /Iy determined
by IIo/Ilx, where the splitting is characterised (since [ 1 3) as the unique splitting (whose
image C Il /lly) stabilising (via the outer action on Ilx) the collection of conjugacy classes
of the decomposition groups in IIx of €’, ¢, and ¢’ (Note that if an ivolution of X fixed ¢
and interchanged € and €”, then we would have 2 = —1(mod [), i.e., [ | 3). Finally, the
decomposition groups of ¢ and €’ in [Ix can be reconstructed as the decomposition group of
cusps (Corollary 2.9 and Remark 2.9.2) whose image in Iy /IIx is non-trivial, and is not fixed,

up to conjugacy, by the outer action of Il¢/Ily (= Z/27Z) on ﬁg. O
Remark 7.25.1. ([IUTchl, Remark 1.2.1]) By Lemma 7.25, we have

Autg (X)) = Gal(X/C) (= Z/2IZ)
(cf-Remark 7.12.1).

8. FROBENIOIDS.

Roughly speaking, we have the following proportional formula:
Anabelioid (=Galois category) : Frobenioid = coverings : line bundles over coverings,

that is, the theory of Galois categories is a categorical formulation of coverings (i.e., it is formu-
lated in terms of category, and geometric terms never appear), and the theory of Frobenioids
is a categorical formulation of line bundles over coverings (i.e., it is formulated in terms of
category, and geometric terms never appear). In [Frdl] and [FrdII], Mochizuki developed a
general theory of Frobenioids, however, in this survey, we mainly forcus on model Frobenioids,
which mainly used in inter-universal Teichmiiller theory. The main theorems of the theory of
Frobenioids are category-theoretic reconstructions of related objects (e.g., the base categories,
the divisor monoids, and so on) under certain conditions, however, we avoid these theorems by
including the objects, which we want to reconstruct, as input data, as suggested in [[UTchI,
Remark 3.2.1 (ii)].

8.1. Elementary Frobenioid and Model Frobenioid. For a category D, we call a con-
travariant functor ® : D — 9Mlon to the category of commutative monoids 9lon a monoid on
D (In [Frdl, Definition 1.1], we put some conditions on ®. However, this has no problem for
our objects used in inter-universal Teichmiiller theory.) If any element in ®(A) is invertible for
any A € Ob(D), then we call & group-like.

Definition 8.1. (Elementary Frobenioid, [Frdl, Definition 1.1 (iii)]) Let ® be a monoid on a
category D. We consider the following category Fg:

(1) Ob(Fg) = Ob(D).
(2) For A, B € Ob(D), we put

Homp, (A, B) := {¢ = (Base(¢), Div(¢), degp.(¢)) € Homp(A, B) x ®(A) x N>q}.
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We define the composition of ¢ = (Base(¢), Div(¢),degp(¢)) : A — B and ¢ =
(Base(v), Div(¢), degg(n)) : B — C' as

o := (Base() o Base(9), (Base(9)) (Div (1)) + degg, () Div(6), degg (¢)deggy (6)) : A = C.

We call Fg an elementary Frobenioid associated to ®. Note that we have a natural
functor Fg — D, which sends A € Ob(Fg) to A € Ob(D), and ¢ = (Base(¢), Div(¢), degp, (4))
to Base(¢). We call D the base category of Fg.

For a category C and an elementary Frobenioid Fg, we call a covariant functor C — Fg
a pre-Frobenioid structure on C (In [Frdl, Definition 1.1 (iv)], we need conditions on @,
D, and C for the general theory of Frobenioids). We call a category C with a pre-Frobenioid
structure a pre-Frobenioid. For a pre-Frobenioid C, we have a natural functor C — D by the
composing with Fe — D. In a similar way, we obtain operations Base(—), Div(—), degp.(—)
on C from the ones on Fg by composing with Fg — D. We often use the same notation on C as
well, by abuse of notation. We also call ® and D the divisor monoid and the base category
of the pre-Frobenioid C respectively. We put

O*(A) :={¢ € Autc(A) | Base(¢) = id, degp,(¢) = 1} C Aute(A),

and
O (A) := {¢ € End¢(A) | Base(¢) = id, degp,(¢) = 1} C Endc(A)
for A € Ob(C). We also put uy(A) :={a € O*(A) | a™ =1} for N > 1.

Definition 8.2. ([IUTchI, Example 3.2 (v)]) When we are given a splitting spl : O% /O* — O"
(resp. a py-orbit of a splitting spl : O /O* — O for fixed N') of O — O% /O* i.e., functorial
splittings (resp. functorial py-orbit of splittings) of O (A) — O%(A)/O*(A) with respect to
A € Ob(C) and morphisms with degp, = 1, then we call the pair (C, spl) a split pre-Frobenioid
(resp. a pn-split pre-Frobenioid).

If a pre-Frobenioid satisfies certain technical conditions, then we call it a Frobenioid (See
[Frdl, Definition 1.3]). (Elementary Frobenioids are, in fact, Frobenioids ([Frdl, Proposition
1.5]).) In this survey, we do not recall the definition nor use the general theory of Frobenioids,
and we mainly focus on model Frobenioids.

Definition 8.3. (Model Frobenioid, [Frdl, Theorem 5.2]) Let ® : D — 9ton be a monoid
on a category D. Let B : D — MMon be a group-like monoid on D, and Divg : B — $=P a
homomorphism. We put ®Prat .= [m(Divg) C ®&P. We consider the following category C:

(1) The objects of C are pairs A = (Ap, a), where Ap € Ob(D), and a € $(Ap)eP. We put
Base(A) := Ap, ®(A) := ¢(Ap), and B(A) := B(Ap).
(2) For A = (Ap,a), B = (Bp, 8) € Ob(C), we put

¢ = (Base(¢), Div(¢), degp.(¢), uy) € Homp(Ap, Bp) x ®(A) x N>y x B(A)
such that degp,(¢)a + Div(¢) = ®(Base(¢))(5) + Dive(ue)

We define the composition of ¢ = (Base(¢), Div(¢), degp.(¢),us) : A — B and ¢ =
(Base(v), Div(v), degp, (¢), uy) : B — C as

pogim (| Bunth) o Bue) BB o) (Divy) + degnVIDIV), |
T degr(v)degr,(0), B(Base(0)) (uy) + desr, (1), |

We equip C with a pre-Frobenioid structure C — Fg by sending (Ap,a) € Ob(C) to Ap €
Ob(Fg) and (Base(¢), Div(¢), degp.(¢), ug) to (Base(¢), Div(¢), degg,(¢)). We call the category
C the model Frobenioid defined by the divisor monoid ® and the rational function
monoid B (Under some conditions, the model Frobenioid is in fact a Frobenioid).

Home (A, B) := {
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The main theorems of the theory of Frobenioids are category-theoretic reconstructions of
related objects (e.g., the base categories, the divisor monoids, and so on), under certain con-
ditions. However, in this survey, we consider isomorphisms between pre-Frobenioids not to be
just category equivalences, but to be category equivalences including pre-Frobenioid structures,
i.e., for pre-Frobenioids F, 7’ with pre-Frobenioid structures F — Fg, 7' — Fg/, where Fg, Fg
are defined by D — &, D' — &' respectively, an isomorphism of pre-Frobenioids from F
to F' consists of isomorphism classes (See also Definition 6.1 (5)) of equivalences F' — F,
D' = D of categories, and a natural transformation ® — ®|p (where ®|p is the restriction
of ® via D' = D), such that it gives rise to an equivalence Fg: — Fg of categories, and the
diagram

F e F

.y

Fo —> Fo

is 1-commutative (i.e., one way of the composite of functors is isomorphic to the other way of
the composite of functors) (See also [IUTchl, Remark 3.2.1 (ii)]).

Definition 8.4. (1) (Trivial Line Bundle) For a model Frobenioid F with base category
D, we write O4 for the trivial line bundle over A € Ob(D), i.e., the object determine
by (4,0) € Ob(D) x ®(A)8P (These objects are called “Frobenius-trivial objects” in the
terminology of [Frdl], which can category-theoretically be reconstructed only from F
under some conditions).

(2) (Birationalisation, “Zs¢ ~+ Z”) Let C be a model Frebenioid. Let C*" be the category
whose objects are the same as in C, and whose morphisms are given by

Homguirat (A, B) 1= liny Home (A, B).

¢:A’— A, Base(¢) :isom, degp, (¢)=1

(For general Frobenioids, the definition of the birationalisation is a little more compli-
cated. See [Frdl, Proposition 4.4]). We call C*"® the birationalisation of the model
Frobenioid C. We have a natural functor C — CP*at,

(3) (Realification, “Zs¢ ~» R>¢”) Let C be a model Frobenioid whose divisor monoid is
® and whose rational function monoid is B. Then, let C® be the model Frobenioid
obtained by replacing the divisor monoid ® by ®% := ® ®;._ Rs¢, and the rational
function monoid B by B¥ := R - Im(B — ®2P) C (®®)&P (We need some conditions on C,
if we want to include more model Frobenioids which we do not treat in this survey. See
[Frdl, Definition 2.4 (i), Proposition 5.2]). We call C¥ the realification of the model
Frobenioid C. We have a natural functor C — C¥.

Definition 8.5. (x-, xpu-Kummer structure on pre-Frobenioid, [ITUTchll, Example 1.8 (iv),
Definition 4.9 (i)])

(1) Let G be a toplogical group isomorphic to the absolute Galois group of an MLF. Then,
we can group-theoretically reconstruct an ind-topological monoid G ~ O (G) with G-
action, by Proposition 5.2 (Step 1). Put O*(G) = (O (G))*, O*(G) := (O%(G))sors
and O**(G) = O*(G)/O"(G) (We use the notation O**(—), not O*(—)/O"(—), be-
cause we want to consider the object O*(—)/O*(—) as an abstract ind-topological mod-
ule, i.e., without being equipped with the quotient structure O*/O"). Put

Isomet(G) = { G-equivariant isomorphism O**(G) = O**(G) preserving
the integral str. Im(O*(G)" — O**(G)") for any open H C G} .



A PROOF OF ABC CONJECTURE AFTER MOCHIZUKI 121

We call the compact topological group Isomet(G) the group of G-isometries of
O**(@G). If there is no confusion, we write just Isomet for Isomet(G).

(2) Let C be a pre-Frobenioid with base category D. We assume that D is equivalent to the
category of connected finite étale coverings of the spectrum of an MLF or a CAF. Let
A be a universal covering pro-object of D. Put G := Aut(A ), hence, G is isomorphic
to the absolute Galois group of an MLF or a CAF. Then, we have a natural action
G~ O%(Ay). For N > 1, we put

pn(As) i={a € O%(Ay) | a™ =1} C O*(Ay) = O%(Ax)iors € O (Ay),
and
0" (Ax) = O™ (Ax) == 0" (Ax)/pn(Ax) = O(Ax) = 0" (Ax)/O"(Ax).

These are equipped with natural G-actions. We assume that G is non-trivial (i.e.,
arising from an MLF). A X-Kummer structure (resp. Xp-Kummer structure)

on C is a Z*-orbit (resp. an Isomet-orbit)

poly poly

K< 1 O*(GQ) = 0%(Ay) (resp. k™" : O*"(G) = O**(As) )

of isomorphisms of ind-topological G-modules. Note that the definition of a x- (resp.
X p-) Kummer structure is independent of the choice of A.. Note also that any
x-Kummer structure on C is unique, since ker(Aut(G ~ O*(G)) — Aut(G)) =
2*(: Aut(O*(G))) (cf. [IUTchII, Remark 1.11.1 (i) (b)]). We call a pre-Frobenioid
equipped with a x-Kummer structure (resp. xp-Kummer structure) a X-Kummer
pre-Frobenioid (resp. X u-Kummer pre-Frobenioid). We call a split pre-Frobenioid
equipped with a x-Kummer structure (resp. X pu-Kummer structure) a split- Xx-Kummer
pre-Frobenioid (resp. split- X y-Kummer pre-Frobenioid).

Remark 8.5.1. ([IUTchII, Remark 1.8.1]) In the situation of Definition 8.5 (1), no automor-
phism of O*#(G) induced by an element of Aut(G) is equal to an automorphism of O**(G) in-
duced by an element of Isomet(G) which has nontrivial image in Z (Here p is the residual char-
acteristic of the MLF under consideration), since the composite with the p-adic logarithm of the
cyclotomic character of G (which can be group-theoretically reconstructed by Proposition 2.1
(6)) determines a natural Aut(G) x Isomet(G)-equivariant surjection O*#(G) — Q,, where

Aut(G) trivially acts on Q, and Isomet(G) acts on Q, via the natural surjection Z* — 7).
8.2. Examples.

Example 8.6. (Geometric Frobenioid, [Frdl, Example 6.1]) Let V' be a proper normal geo-
metrically integral variety over a field k, k(V') the function field of V', and k(V)™ a (possibly
inifinite) Galois extension. Put G := Gal(k(V)~/k(V)), and let Dy be a set of Q-Cartier
prime divisors on V. The connected objects Ob(B(G)°) (See Section 0.2) of the Galois category
(or connected anabelioid) B(G) can be thought of as schemes Spec L, where L C k(V)™ is a
finite extension of k(V'). We write V, for the normalisation of V' in L, and let I, denote the set
of prime divisors of V7, which maps into (possibly subvarieties of codimension > 1 of) prime divi-
sors of D) We assume that any prime divisor of Dy, is Q-Cartier for any Spec L € Ob(B(G)°).
We write ®(L) C Z>o[Dy] for the monoid of effective Cartier divisors D on V, such that every
prime divisor in the support of D is in Dy, and B(L) C L* for the group of rational functions f
on V7, such that every prime divisor, at which f has a zero or a pole, is in Dy. Note that we have
a natural homomorphism B(L) — ® (L) which sends f to (f)o — (f)e (Here, (f)o and (f)so
denote the zero-divisor and the pole-divisor of f respectively). This is functrial with respect to
L. The data (B(G)",®(—),B(—),B — @) determines a model Frobenioid Cy vy~ by -
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An object of Cy )~ py, which is sent to Spec L € Ob(B(G)?), can be thought of as a
line bundle £ on V;, which is representable by a Cartier divisor D with support in ;. For
such line bundles £ on SpecL and M on Spec M (L,M C k(V)~ are finite extensions of
k(V)), a morphism £ — M in Cyiw)~p, can be thought of as consisting of a morphism
Spec L — Spec M over Speck(V), an element d € Ns;, and a morphism of line bundles
L2 — M|y, on Vi, whose zero locus is a Cartier divisor supported in Dy,

Example 8.7. (p-adic Frobenioid, [Frdll, Example 1.1}, [IUTchl, Example 3.3]) Let K, be a
finite extension of Q,, (In inter-universal Teichmiiller theory, we use v € yeeed qymer). Put

D,:=B(X )°, and D, :=B(K,),

where gv is a hyperbolic curve of type (1, l—@grg) (See Definition 7.24). By pulling back finite
étale coverings via the structure morphism gv — Spec K, we regard DZ as a full subcategory
of D,. We also have a left-adjoint D, — Dg to this functor, which is obtained by sending a II X -
set I/ to the G, -set E/ker(H;_gv — Gg,) = ker(Hi()U — G, )-orbits of £ ([Frdll, Definition
1.3 (ii)]). Then,
®c, : Spec L — ord(OF )* := (01, /OF)P*

(See Section 0.2 for the perfection (—)P) gives us a monoid on Df. By composing the above
D, — D, it gives us a monoid ®¢, on D,. Also,

ey : Spec L — ord(Z;, ) (C ord(OF)™)

(See Section 0.2 for the perfection (—)P) gives us a submonoid ®c- C P, on D). These
monoids ®¢, on D, and P¢- on DZ determine pre-Frobenioids (In fact, these are Frobenioid)

C, CCy

whose base categories are D and D, respectively. These are called p,-adic Frobenioids.
These pre-Frobenioid can be regarded as model Frobenioids whose rational function monoids
B are given by Ob(DZ) 3> Spec L — L* € Mon, and L* > f— (f)o — (f)eo := image of f €
Per (L) C D¢, (L) ([Frdll, Example 1.1]). Note that the element p, € Z; gives us a splitting
splz : O% /O* — O, hence a split pre-Frobenioid

F, = (C,spl)).

We also put
F =C,

p— =

for later use.

Example 8.8. (Tempered Frobenioid, [EtTh, Definition 3.3, Example 3.9, the beginning of §5],
[[UTchl, Example 3.2]) Let X := X ~— X, := X, beahyperbolic curve of type (1, I-tors®)
and a hyperbolic curve of type (1,7Z/IZ) respectively (Definition 7.13, Definition 7.11) over a
finite extension K, of Q,, (As before, we always put the log-structure associated to the cusps,
and consider the log-fundamental groups). Put

Dy — Btemp(év)o’ DZ = B(KQO,

and Dy := B*P(X,)" (See Section 0.2 for (—)°. Note also that we have 71 (D,) = II{"™", and

m(D}) = Gk, (See Definition 6.1 (4))). We have a natural functor D, — D, which sends
Y — év to the composite Y — év — X,



A PROOF OF ABC CONJECTURE AFTER MOCHIZUKI 123

For a tempered covering Z — X, and its stable formal model 3 over Oy, where L is a
finite extension of K, let 3., — 3 be the universal combinatorial covering (i.e., the covering
determined by the universal covering of the dual graph of the special fiber of 3), and Z,, the
Raynaud generic fiber of 3.

Definition 8.9. ([EtTh, Definition 3.1], [IUTchI, Remark 3.2.4]) Let Div (34 ) denote the
monoid of the effective Cartier divisors whose support lie in the union of the special fiber and
the cusps of 3,,. We call such a divisor an effective Cartier log-divisor on 3. Also, let
Mero(3.,) denote the group of meromorphic functions f on 3., such that, for any N > 1,f
admits an N-th root over some tempered covering of Z. We call such a function a log-
meromorphic function on 3.

Definition 8.10. ([EtTh, Definition 3.3, Example 3.9, the beginning of §5], [[UTchl, Example
3.2])

(1) Let A be a tempered group (Definition 6.1). We call a filtration {A;};cs, (where [ is
countable) of A by characteristic open subgroups of finite index a tempred filter, if
the following conditions are satisfied:

(a) We have (),c; Ai = A,

(b) Every A; admits an open characteristic subgroup A such that A;/A% is free,
and, for any open normal subgroup H C A; with free A;/H, we have A® C H.

(c) For each open subgroup H C A, there exists unique A7? C H, and, A C H
implies A7® C A2 for every i € I.

(2) Let {A;}ier be a tempered filter of Agﬂp . Assume that, for any ¢ € I, the covering
detemined by A; has a stable model 3, over a ring of integers of a finite extension
of K,, and all of the nodes and the irreducible components of the special fiber of 3;
are rational (we say that 3; has split stable reduction). For any connected tempered
covering Y — X, which corresponds to an open subgroup H C At;znp, we put

Bo(Y) = lim Divy(300) 3%/, Bo(Y) := lim Mero(3e,)#%=/").
AXCH ArCH

These determine functors ®y : Dy — Mon, By : Dy — Mon. We also have a natural
functor By — ®§°, by taking f — (f)o — (f)oo. We write B{™" C By for the subfunctor
defined by the constant log-meromorphic functions, and ®§*¢ C ®8P for the image of
Bt in OFP.

(3) Let D" C Dy denote the full subcategory of tempered coverings which are unramified
over the cusps of X (i.e., tempered coverings of the underlying elliptic curve E, of X,).
We have a left adjoint Dy — D", which is obtained by sending a IIx -set E to the I -
set E/ker(Ily, — Ilp ) := ker(Ilx — Ilg )-orbits of E ([Frdll, Definition 1.3 (ii)]).
For Y € Ob(D,), let Y°! denote the image of Y by the composite D, — Dy — DgL. We
put, for Y € Ob(D,),

pf
(YY) := (hﬂ Div+(300)Ga1(Z°°/Yen)> C ®y(the image of Y in Dy)P",
Zoo

where Z,, range over the connected tempered covering Z,, — Y in Dg! such that the
composite Z,, — Y — X arises as the generic fiber of the universal combinatorial
covering 3., of the stable model 3 of some finite étale covering Z — X, in D! with
split stable reduction over the ring of integers of a finite extension of K, (We use
this @, not &y, to consider only divisors related with the theta function)iWe write
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(—=)|p, for the restriction, via D, — Dy, of a functor whose domain is Dy. We also put
D = D ®z, Rxg and P* := & @z, Rxo. Put

B := Bo|p, X(@myw PP, &= (R- D7) |p, X (grye & C P,
and
Beonst . B(c)onsth)g X (052 PP s ((I)const)gp _ (R ) (I)Sonst)h)2 X (0% PEP ((I)R)gp
The data (D,,®,B,B — @) and (D,, Pomst Beonst Beonst —  (Peonst)eP) determine
model Frobenioids
F, and Cy(= ;:ase-ﬁeld>

respectively (In fact, these are Frobenioids). We have a natural inclusion Cy CE . We
call £ ~a tempered Frobenioid and C, its base-field-theoretic hull. Note that C,

is also a p,-adic Frobenioid.

(4) We write © € OX(Obmt) for the reciprocal (i.e., 1/(—)) of the [-th root of the nor-

malised theta functlon “which is well-defined up to pg and the action of the group of
automorphisms [Z C Aut(Oﬁ ) (Note that we use the notation Q in Section 8.3. This

is not the reciprocal (i.e., not 1 /(—)) one). We also write ¢, for the ¢g-parameter of the
elliptic curve E, over K,. We consider ¢, as an element g, € O%(Ox ) (= Of, ). We

assume that any 2I-torsion point of E, is rational over K,. Then, ¢, admits a 2{-root
in O”(Ox ) (= O%,). Then, we have

(V=) =g =q/" € 0°(Ox),

(which is well-defined up to ugy), since @(\/H—q) = —q_l/zx/—_lfzé(\./_—l) =q Y2 (in
the notation of Lemma 7.4) by the formula ©(¢*/?U) = —¢~*/2U~20(U) in Lemma 7.4.
The image of a determines a constant section, which is denoted by logq)( ) of the

monoid ®¢, of C The submonoid

Pep = Nlogq)( )|DF C D¢, |pr
gives us a p,-adic Frobenioid
C: (ce, = (£ ybase-field F )
whose base category is DF The element ¢ € K, determines a pg(—)-orbit splz of the
splittings of O — O% /O* on C; Hence, -
Fr = (Chspl)
is a pg-split pre-Frobenioid. ) -

Remark 8.10.1. We can category-theoretically reconstruct the base-field-theoretic hull C, from

v ([EtTh, Corollary 3.8]). However, in this survey, we include the base-field-theoretic hull in

the deta of the tempered Frobenioid, i.e., we call a pair va L= (; ) C,) a tempered Frobenioid,

by abuse of language/notation, in this survey.

Example 8.11. (Archimedean Frobenioid, [Frdll, Example 3.3], [IUTchl, Example 3.4]) This
example is not a model Frobenioid (In fact, it is not of isotropic type, which any model Frobe-
nioids should be). Let K, be a complex Archimedean local field (In inter-universal Teichmiiller
theory, we use v € V*°). We define a category

Cy
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as follows: The objects of C, are pairs (V,A) of a one-dimensional K,-vector space V, and a
subset A = Bx(C CV = Ok xord(K,) (Here we put ord(K)) := K /O . See Section 0.2 for
Ok,), where B C Oy (= S!) is a connected open subset, and C' C ord(K ) = Ry, is an interval
of the form (0, \] with A\ € R.o (We call A an angular region). The morphisms ¢ from (V, A)
to (V/,A’) in C, consist of an element degg,(¢) € N>; and an isomorphism V®degr:(®) = 1/
of K,-vector spaces which sends A®de:(@) into A’. We put Div(¢) := log(a) € Rsg for the
largest a € Ry such that o - Im(A®der(?)) C A’ Let {Spec K, } be the category of connected
finite étale coverings of Spec K, (Thus, there is only one object, and only one morphism),
and ® : {Spec K,,} — 9on the functor defined by sending Spec K, (the unique object) to

—lo,

ord(O% ) = (0,1] " R>g. Put also Base(V,A) := Spec K, for (V,;A) € Ob(C,). Then, the
triple (Base(—), ®(—),degp,(—)) gives us a pre-Frobenioid structure C, — Fg on C, (In fact,
this is a Frobenioid). We call C, an Archimedean Frobenioid (cf. the Archimedean portion
of arithmetic line bundles). Note also that we have a natural isomorphism O (C,) = Of.

of topological monoids (We can regarad C, as a Frobenioid-theoretic representation of the
topological monoid OF. ).

Let X be a hyperbolic curve of type (1, l—t_o_r_;:) (See Definition 7.24) over K,, and let X
denote the Aut-holomorphic space (See Section 4) determined by g , and put -

D, = &v.
Note also that we have a natural isomorphism
K, S APu
of topological fields (See (Step 9) in Proposition 4.5), which determines an inclusion
Ky 1 OF(C,) — AP
of topological monoids. This gives us a Kummer structure (See Definition 4.6) on D,. Put
E, = (Cu Dy, ).

just as a triple. We define an isomorphism J 1 = £ "9 of triples in an obvious manner.
Next, we consider the mono-analyticisation. Put

C; = C,.

Note also that AP naturally determines a split monoid (See Definition 4.7) by transporting
the natural splitting of K, via the isomorphism K, — AP of topological fields. This gives us
a splitting Spl; on C; , hence, a split-Frobenioid (C; , spIZ), as well as a split monoid

D) = (0”(C,),spl,).
We put

- oy el

F, =(C,,D,,spl,),

just as a triple. We define an isomorphism F,; = F, of triples in an obvious manner.

Example 8.12. (Global Realified Frobenioid, [Frdl, Example 6.3], [[UTchl, Example 3.5]) Let
Fioa be a number field. Let {Spec Fl0q} be the category of connected finite étale coverings of
Spec Fiuoa (Thus, there is only one object, and only one morphism). Put

(I)C‘rflod(Fmod) = @ ord(Oy) Rz, R>0 & @ ord(0y ),

UGV(FmOd)non UEV(FmOd)arC
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where ord(OF) := OY /O (See Section 0.2 for O, and OF, v € V(F,0q4)*¢). We call an element
of ®(Fioa) (resp. P(Fioq)8) an effective arithmetic divisor (resp. an arithmetic divisor).
Note that ord(OY) = Zsq for v € V(F0a)"", and ord(OY) = Rsq for v € V(Fi0q)*¢. We have

a natural homomorphism

IB%<-Fmod) Féod — (D(Fmod>gp
Then, the data ({Spec Fioa}, e, B) determines a model Frobenioid
Cmod

(In fact, it is a Frobenioid.) We call it a global realified Frobenioid.
We have a natural bijection
Prime(C).4) = Vinod

. . H_ . . .
(by abuse of notation, we put Prime(C,,qq) := Prime(®c- (Spec Find))), where Prime(—) is

mod
defined as follows:

Definition 8.13. Let M be a commutative monoid such that 0 is the only invertible element
in M, the natural homomorphism M — M?®P is injective, and any a € M®P with na € M for
some n € N> is in the image of M — M®. We define the set Prime(M) of primes of M as
follows ([Frdl, §0]):
(1) For a,b € M, we write a < b, if there is ¢ € M such that a + ¢ = b.
(2) For a,b € M, we write a < b, if there is n € N34 such that a < nb.
(3) For 0 # a € M, we say that a is primary, if a < b holds for any M 3 b < a, b # 0.
(4) The relation a < b is an equivalence relation among the set of primary elements in M,
and we call an equlvalence class a prime of M (this definition is different from a usual
definition of primes of a monoid). Let Prime(M) denote the set of primes of M.

Note that p, determines an element

IOg;Od (pU) S (I)C”'

for v € Vyyoq = Prime(C ,), where Per (= Rsg) denotes the v-portion of e

mod

8.3. From Tempered Frobenioid to Mono-Theta Environment. Let £ , be the tempered

Frobenioid constructed in Example 8.8. Recall that it has a base category D, with m(D,)
II¢"P(=: II,). Let Oy denote the object in £, corresponding to the trivial line bundle on

(z.e., Oy = (g, 0) € Ob( D,) x (:) See Definition 8.4 (1)). Let Yin, 3uiv, 3ivs Lv, and £n
as in Section 7.1. We can interpret the pull-backs to 3,y of

||"<= 2

(1) the algebraic section s;ny € I' (3;n, £in]3,y) of Lemma 7.1, and
(2) the theta trivialisation 7y € T’ (@U\/, 21N> after Lemma 7.1.
as morphisms
sy, sy 0 Oz — Q1N|3W
in F respectively. For A € Ob(;y), let APrat denote the image of A in the birationalisation
vl — (év)birat (Definition 8.4 (2)). Then, by definition, we have

No(sh) =67 e o (o)

for an N-th root of Q, where g .= O is a [-th root of the theta function © ([EtTh, Propo-
sition 5.2 (i)]), as in Section 7.1 (See also the claim (7.2)). Let H(3;x) (C Autp,(3v)) de-

note the image of Ht.YC P

under the surjective outer homomorphism Hmmp — Autpﬂ(guv), and
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H(0s, ) (C AutJ:rE(OglN)/OX(OSlN)) (resp. H(QlN|3LN) (C Autg (QZN|3W)/OX(QZN|3[N)) ) the
inverse image of H(3;y) of the natural injection Aut; ( 311\1)/0 (0s,,) = Autp, (31v) (resp.

Autig(ilN‘gzN)/OX (EIN‘BZN) — Autpg(BlN)):

Htemp —>>Autp (slN) <—3Aut; ( 31N)/OX(031N) (resp. AUtég(ilNlle)/OX(’élN‘le) )

—'U

] |

omp H(BlN) — >H<031N) (resp. H<£"ZN|31N) )

Note that we have natural isomorphisms H(Oj, ) = H(3y) = H(QZN|31N). Choose a section
of Autg (O3, ) — Autpg(él ~), which gives us a homomorphism

sﬁ\l}iv : H(Ogl ) — Autg (O3IN)

v

Then, by taking the group actions of H(21N|31N) on sy, and s (cf. the actions of Hifmp on Sy
and 7y in Section 7.1), we have unique groups homomorphisms

S]ITVgp ]I—\’,_gp : H('élN|31N) — Aut; (£1N|3lN)

which make diagrams

]

SN . SN .
Os,v — Livls,, Oy — Livls,y
(s”“’mm)(h)l is%‘g"(h) (s mv|211\1)(h)l ls#p(h)
sN . 51\—\‘] .
O3lN 2lN|3lN’ 0311\7 SlN|3zN7

triv

commutative for any h € H ()EINH ), where s%V| £,y is the composrce of s with the natural

isomorphism H (£;y|: 5 ) = H(Oy ). Then, the difference sy® o (sy*")~! gives us a 1-cocycle
(21N’3ZN) — MN(QlNyalN)a whose cohomology class in

H'(H(&xls,,), i (Lavls, ) (C HI(H$mp,MN(QZN|31N)))

is, by construction, equal to the (mod N) Kummer class of an I-th root Q of the theta function,
and also equal to the ﬁe) modulo N constructed before Definition 7.14 under the natural iso-

morphisms [Ag ® (Z/]_VZ) = lulN(ElN|3lN) = ,uN(QlN|3-lN) ([EtTh, Proposition 5.2 (iii)]). (See
also Remark 7.2.1.)
Note that the subquotients H:emp — (I$™)®) 1Ae C (II%™)® in Section 7.1 determine

subquotients Autp, (S) — Autd (5), (IAe)s C Autp (S) for S € Ob(D,). As in Remark 7.6.3,
Remark 7.9.1, and Remark 7.15.1, by considering the zero-divisor and the pole-divisor (as
seen in this subsection too) of the normalised theta function ©(v/—1)~'©, we can category-
theoretically reconstruct the [Z x po-orbit of the theta classes of standard type with uy(—)-
coefficient ([EtTh, Theorem 5.7]). As in the case of the cyclotomic rigidity on mono-theta
environment (Theorem 7.23 (1)), by considering the difference of two splittings of the surjection
(lAg)s[un(S)] — (lAe)s, we can category-theoretically reconstruct the cyclotomic rigidity
isomorphism

(Cyc. Rig. Frd) (I1Ag)s ®Z/NZ = pn (S) (= Lyn(S))



128 GO YAMASHITA

for an object S of £ such that wun(S) = Z/INZ, and (IAe)s ® Z/NZ = Z/NZ as abstract

groups ([EtTh, Theorem 5.6]). We call this isomorphism the cyclotomic rigidity in tem-
pered Frobenioid. )
Put (H(3v) C)Im(IIF™) (C Autp,(3iv)) to be the image of IIy™ (Note that we used

H;emp in the definition of H(3;y)) under the natural surjective outer homomorphism Htgnp —»

AHtDE(SlN)7 and

—v

Ey = sﬁgp(lm(ﬂzmp)) ',UN(élN|31N) - AUt£E<glN|3m)'

Put also
EN :=Ey X L (11 Iy,

where the homomorphism Htxemp — Im(HtXemp) is well-defined up to Htgnp—conjugate. Then,
the natural inclusions /'LN(EINBZN) — Ey and Im(IIy"™") — Ey induce an isomorphism of
topological groups

BN 5 T

Let (KJ)YN C OX((QWBW)MM) denote the subgroup of elements whose N-th power is

in the image of the natural inclusion K) — OX((E1N|3W)MM), and we put (O;(U)l/N =

(K)YN N OX(£1N|31N). Then, the set of elements of OX(EZNBZN) which normalise the sub-
group Ey C Autg (Liv 5,.) 13 equal to the set of elements on which I3 acts by multipli-

cation by an element of px(€v]5, ), and it is equal to (O )Y/N. Hence, we have a natural
outer action of (O[X(v)l/N/,uN(QZNBZN) — Oy on Ey, and it extends to an outer action of
(KN Jun(€ivls,,,) = KX on Ey ([EtTh, Lemma 5.8]). On the other hand, by composing
the natural outer homomorphism H;I:lp —» Autpg(gl ~) with sy ® we obtain a natural outer ac-

tion IZ — Htgmp/ﬂtxemp — Out(Ey). Let Dy 1= (Im(K)),1Z) C Out(E}) denote the subgroup
generated by these outer actions of K and [Z.
We also note that sy® : H(QZNBZN) — AUJEE(QZNBZN) factors through Ey, and let si¥™ :

Ht;fmp — EL denote the homomorphism induced by by taking (—) X LI Htxemp to the

h(;momorphism H(QIN|3ZN) — Ey. Let s% denote the ’LLN('QINL%ZN) —conjug;cy classes of the
subgroup given by the image of the homomorphism s
Then, the triple

M(év) = (E%7 D]"a 82)

reconstructs a (mod N) mono-theta environment (We omitted the details here to verify that
this is indeed a “category-theoretic” reconstructions. In fact, in inter-universal Teichmiiller
theory, for holomorphic Frobenioid theoretic objects, we can use “copies” of the model object
(category), instead of categories which are equivalent to the model object (category), and we
can avoid “category-theoretic reconstructions” See also [[UTchl, Remark 3.2.1 (ii)]). Hence,
we obtain:

Theorem 8.14. ([EtTh, Theorem 5.10], [[UTchII, Proposition 1.2 (ii)]) We have a category-
theoretic algorithm to reconstruct a (mod N) mono-theta environment M(F ) from a tempered

Frobenioid ;U. B

Corollary 7.22 (2) reconstructs a mono-theta environment from a topological group (“II —
M”) and Theorem 8.14 reconstructs a mono-theta environment from a tempered Frobenioid
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(“F — M”). We relate group-theoretic constructions (étale-like objects) and Frobenioid-
theoretic constructions (Frobenius-like objects) by transforming them into mono-theta envi-
ronments (and by using Kummer theory, which is available by the cyclotomic rigidity of mono-
theta environment), in inter-universal Teichmiiller theory, especially, in the construction of
Hodge-Arakelov theoretic evaluation maps:

M, — ™ «—TE .

See Section 11.2.

9. PRELIMINARIES ON NF-COUNTERPART OF THETA EVALUATION.
9.1. Pseudo-Monoids.

Definition 9.1. ([IUTchI, §0])

(1) A topological space P with a continuous map P x P D S — P is called a topological
pseudo-monoid if there exists a topological abelian group M (we write its group
operation multiplicatively) and an embedding ¢ : P < M of topological spaces such
that S = {(a,b) € P x P | «(a) - t(b) € «(P) C M} and the restriction of the group
operation M x M — M to S gives us the given map S — P.

(2) If M is equipped with the discrete topology, we call P simply a pseudo-monoid.

(3) A pseudo-monoid is called divisible if there exist M and ¢ as above such that, for any
n > 1 and a € M, there exists b € M with 0" = a, and if, for any n > 1 and a € M,
a € ((P) if and only if a” € ((P).

(4) A pseudo-monoid is called cyclotomic if there exist M and ¢ as above such that, the
subgroup gy C M of torsion elements of M is isomorphic to Q/Z, and if py, C o(P),
par - o(P) C o(P) hold.

(5) For a cyclotomic pseudo-monoid P, put ys(P) := Hom(Q/Z, P) and call it the cyclo-
tome of a cycltomic pseudo-monoid P.

Definition 9.2. ([[UTchl, Remark 3.1.7]) Let Fjoq be a number field, and Cp,_, = (Er, ., \
{O})//{£1} a semi-elliptic orbicurve (cf. Section 3.1) over Fnq which is an Fy,.q-core (Here,
the model Ep ., over Fyoq is not unique in general). Let L be Fioq or (Fioa)» for some
place v of Fiea, and put Cr, := Cpg_, Xg . L and let |CL| denote the coarse scheme of the
algebraic stack C, (which is isomorphic to the affine line over L), and |Cf| the canonical smooth
compactification of |Cp|. Let Lo denote the function field of C, and take an algebraic closure
L¢ of Le. Let L be the algebraic closure of L in L. We put

e Foa if L = F0q or L = (Fl04)y for v:non-Archimedean,
o (Fiod)v if L = (Fioa)o for v: Archimedean,

and

L" i L=F,u,
Z/[f = % .
Of if L= (Fmod)v-

(1) A closed point of the proper smooth curve determined by some finite subextension of
Lc C Lg is called a critical point if it maps to a closed point of |C| which arises from
one of the 2-torsion points of Ep_ ..

(2) A critical point is called a strictly critical point if it does not map to the closed point
of |C| which arises from the unique cusp of CJ.

(3) A rational function f € Lc on Le is called k-coric (k stands for “Kummer”), if the
following conditions hold:
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(a) If f & L, then f has precisely one pole (of any order) and at least two distinct
zeroes over L.
(b) The divisor (f)o of zeroes and the divisor (f)s of poles are defined over a finite
extension of L* and avoid the critical points.
(¢) The values of f at any strictly critical point of [C| are roots of unity.
(4) A rational function f € L¢ is called o k-coric, if there is a positive integer n > 1 such
that ™ is k-coric.
(5) A rational function f € L¢ is called ok x-coric, if there is an element ¢ € Uz such that
¢+ fis sk-coric.

Remark 9.2.1. (1) A rational function f € L¢ is k-coric if and only if f is 4 k-coric
(2) An o kx-coric function f € L¢ is k-coric if and only if the value at some strictly
critical point of the proper smooth curve determined by some finite subextension of
Le C Le containing f is a root of unity.
(3) The set of k-coric functions (C L¢) forms a pseudo-monoid. The set of . k-coric func-
tions (C L¢) and the set of .k x-coric functions (C L¢) form divisible cyclotomic
pseudo-monoids.

9.2. Cyclotomic Rigidity via NF-Structure. Let F' be a number field, [ > 5 a prime
number, Xr = Er \ {O} a once-punctured elliptic curve, and Fy,,q(C F) the field of moduli
of Xp. Put Cp := Xp//{£1}, and K := F(EF[l]). Let Cx be a smooth log-orbicurve of
type (1,l-tors)s (See Definition 7.10) with K-core given by Cx := Cr xr K. Note that Cr
admits a unique (up to unique isomorphism) model CF,__, over Fy,oq, by the definition of Fi,oq
and K-coricity of Ck. Note that C) determines an orbicurve X, of type (1,I-tors) (See
Definition 7.10).

Let TD® be a category, which is equivalent to D := B(C)°. We have an isomorphism TTI® :=
m("D®) = 1l¢, (See Definition 6.1 (4) for m ((—)?)), well-defined up to inner automorphism.

Lemma 9.3. ([IUTchI, Remark 3.1.2] (i)) From "D, we can group-theoretically reconstruct a
profinite group TTI®*(C I®) corresponding to Ilx, .

Proof. First, we can group-theoretically reconstruct an isomorph TA® of Ac, from T1°, by
Proposition 2.2 (1). Next, we can group-theoretically reconstruct an isomorph TA®* of A Xy
from TA® as the unique torsion-free subgroup of TA® of index 2. Thirdly, we can group-
theoretically reconstruct the decomposition subgroups of the non-zero cusps in TA®* by Re-
mark 2.9.2 (Here, non-zero cusps can be group-theoretically grasped as the cusps whose inertia
subgroups are contained in TA®*). Finally, we can group-theoretically reconstruct an isomorph
Iiii of Ilx, as the subgroup of fTI® generated by any of these decomposition groups anél

Definition 9.4. ([IUTchI, Remark 3.1.2] (ii)) From 'TI®(= 7 (1D®)), instead of reconstructing
an isomorph of the function field of O directly from 'II® by Theorem 3.17, we apply Theo-
rem 3.17 to TTI°* via Lemma 9.3 to reconstruct an isomorph of the function field of X, with
I /TTI®*-action. We call this procedure the ©-approach. We also write M%(TH@) to be the
cyclotome defined in Definition 3.13 which we think of as being applied via ©-approach.
Later, we may also use ©-approach not only to Il¢,, but also Il¢ , HXU’ and H)_(m (See

Section 10.1 for these objects). We will always apply Theorem 3.17 to these objects via ©-
approach (As for Iy (resp. Ix ), see also Lemma 7.12 (resp. Lemma 7.25)).

Remark 9.4.1. ([IUTchl, Remark 3.1.2] (iii)) The extension
1= A =AY =AY = 1
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in Section 7.1 gives us an extension class in
H*(AY, Ae) = H*(AY, Z) ® Ae = Hom(uz(I1x), Ae),
which determines an tautological isomorphism
1z (1) = Ae.
This also gives us
(Cye. Rig. Ori. &Theta) ps(Ilx) = 1Ag.

As already seen in Section 7, the cyclotome [Ag plays a central role in the theory of étale
theta function. In inter-universal Teichmiiller theory, we need to use the above tautological
isormophism in the construction of Hodge-Arakelov theoretic evaluation map (See Section 11).

By applying Theorem 3.17 to 'TI®(= 7, ("D®)), via the ©-approach (Definition 9.4), we can
group-theoretically reconstruct an isomorph
M (D)
of the field F with fII®-action. We also put M®("D®) := M@B(T'D@)X, which is an isomorph of
F~. We can also group-theoretically reconstruct a profinite group % (D TI?) corresponding
to Ile,, . by a similar way (“Loc”) as in (Step 2) of the proof of Theorem 3.7 (We considered

“IT’s over G’s” in (Step 2) of the proof of Theorem 3.7, however, in this case, we consider “II’s
without surjections to G’s”). Hence, we obtain a morphism

'p° — D% .= B('11*)°,

which corresponding to C' — CF,__,. Then, the action of TI® on M (fT1°) naturally extends
to an action of TTI¥. In a similar way, by using Theorem 3.17 (especially Belyi cuspidalisations),
we can group-theoretically reconstruct from 'II® an isomorph

(TH®)rat (_» TH®)
of the absolute Galois group of the function field of Cr__, in a functorial manner. By using
elliptic cuspidalisations as well, we can also group-theoretically reconstruct from fII® isomorphs
M ("D®), MZ.(D®), M. (D)
of the pseudo-monoids of k-, k-, and kX- coric rational functions associated with Cr__

with natural (TI®)**-actions (Note that we can group-theoretically reconstruct evaluations at
strictly critical points).

Example 9.5. (Global non-Realified Frobenioid, [IUTchl, Example 5.1 (i), (iii)]) By using the
field structure on M®(TD©), we can group-theoretically reconstruct the set
V('D°)
of valuations on M@B(TD@) with fTI®-action, which corresponds to V(F). Note also that the set
Wiea 1= V('D?)/TTI®, (resp. V('D®) := V(I'D®)/TI® )
of TTI®-orbits (resp. 'TI®-orbits) of V(D) reconstructs Vg (resp. V(K)), and that we have
a natural bijection
Prime("F2.,) = "Viea
(See Definition 8.13 for Prime(—)). Thus, we can also reconstruct the monoid
o*("D)(~)
on "D¥ which associates to A € Ob("D?) the monoid ®*("D®)(A) of stack-theoretic (i.e.,

Y

we are considering the coverings over the stack-theoretic quotient (Spec Ok )//Gal( K/ Fipoa) (=
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Spec Op, ) arithmetic divisors on M®(TD@)A (C M®(TD@)) with the natural homomorphism
M"(fD®)4 — ®®(1D®)(A)%P of monoids. Then, these data (D% &*(ID®) M" (ID?)) —
% (TD®)(—)eP) determine a model Frobenioid

Fo(D?)

whose base category is "D®. We call this a global non-realified Frobenioid.

Let TF® be a pre-Frobenioid, which is isomorphic to F#(D®). Suppose that we are given
a morphism "D® — Base(TF®) which is abstractly equivalent (See Section 0.2) to the natural
morphism "D® — D®. We identify Base(TF®) with ™D® (Note that this identification is
uniquely determined by the F,oq-coricity of Cp_, and Theorem 3.17). Let

TP =TF*ipe (= TF?)

denote the restriction of TF® to D via the natural TD® — TD®. We also call this a global
non-realified Frobenioid. Let also

TF@ = 1-]:@)|terminal object in TD® (C T]:®)

mod °

denote the restriction of TF® to the full subcategory consisting of the terminal object in "D®
(which corresponds to Cr__,). We also call this a global non-realified Frobenioid. Note that
the base category of TF,,,q has only one object and only one morphism. We can regard 'F%_,
as the Frobenioid of (stack-theoretic) arithmetic line bundles over (Spec Ok )//Gal(K/Finoa) (=
Spec Fiuoa). In inter-universal Teichmiiller theory, we use the global non-realified Frobenioid
for converting X-line bundles into E-line bundles and vice versa (See Section 9.3 and Corol-
lary 13.13).

Definition 9.6. (,.x-Coric and .k x-Coric Structures, and Cyclotomic Rigidity via Qs NZ* =
{1})
(1) (Global case, [IUTchl, Example 5.1 (ii), (iv), (v)]) We consider O*(O4) (which is iso-
morphic to the multiplicative group of non-zero elements of a finite Galois extension of
Fiod), varying Galois objects A € Ob("D®) (Here O, is a trivial line bundle on A. See
Definition 8.4 (1)). Then, we obtain a pair

I A~ T0®*

well-defined up to inner automorphisms of the pair arising from conjugation by II%.
For each p € Prime(®ize(04)), where ®;re denotes the divisor monoid of TF¥, we
obtain a submonoid

TOE C TOX(OZirat>’
by taking the inverse image of p U {0} C ®ize(O4) via the natural homomorphism
O*(Ohrat) — @4 26 (O 4)8P (i.e., the submonoid of integral elements of O* (O%rat) with
respect to p). Note that the natural action of Autire(O4) on O*(O5™) permutes the
OF’s. For each py € Prime(®+xs(04,)), where Ay € Ob(TD?) is the terminal object,
we obtain a closed subgroup

I, c f®

(well-defined up to conjugation) by varying Galois objects A € Ob(TD?®), and by con-
sidering the elements of Autizs(O4) which fix the submonoid 'O} for system of p’s
lying over pg (i.e., a decomposition group for some v € V(Fy,0q)). Note that po is non-
Archimedean if and only if the p-cohomological dimension of ', is equal to 2 +1 = 3
for inifinitely many prime numbers p (Here, 2 comes from the absolute Galois group of a
local field, and 1 comes from “A-portion (or geometric portion)” of TII¥). By taking the
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completion of TOE with respect to the corresponding valuation, varying Galois objects
A € Ob(TD?), and considering a system of p’s lying over pg, we also obtain a pair

My, ~ TOEO
of a toplogical group acting on an ind-topological monoid, which is well-defined up to
the inner automorphisms of the pair arising from conjugation by TI_IPO (since TI_IPO is
commensurably terminal in I (Proposition 2.7)).
Let
(TH®)rat ~ TM®
denote the above pair (TT1#)™ ~ fO®*. Suppose that we are given isomorphs
(TH®)rat ~ TME;@? (THGB)rat ~ TMin

(Note that these are Frobenius-like object) of

(TH®)rat ~ Min(TDC@) (TH®)rat ~ Minx (T'D@)

respectively (Note that these are étale-like object) as cyclotomic pseudo-monoids with
a continuous action of (TTI#)™', We call such a pair an o k-coric structure, and an
sk X-coric structure on TF® respectively.

We recall that the étale-like objects M®  (fD®), and MY, ("D®) are constructed as

subsets of o H' (1) u (T1°) i= g,y o HYCH, n€ (1))

MiH(TD@) (resp. M® (TD@) )CooHl((TH@)rat,ug(TH@))_

ok X

On the other hand, by taking Kummer classes, we also have natural injections
TMin - OOH1<<TH®)rat;MZ(TMiH))’ TMinX C OOHl((TH(@)rat’MZ(TM@ ),

oKX
where o H((TTI®)™at —) = B e st open H'(H,—). (The injectivity follows from
the corresponding injectivity for M®  ("D®) and M? _, ("D®) respectively.) Recall that
the isomorphisms between two cyclotomes form a 2X—torsor, and that k-coric functions
distinguish zeroes and poles (since it has precisely one pole (of any order) and at least
two zeroes). Hence, by (Q ® Z D)Qs0 N 7x = {1}, there exist unique isomorphisms

(Cyc. Rig. NF1) pg (M°) 5 pp (M2 ), g (T1°) = g (M2, )

ok X
characterised as the ones which induce Kummer isomorphisms
Kum Kum

™M, ML ('D°), M, M2, (D)

respectively. In a similar manner, for the isomorph II® ~ TM® of TTI® ~ 0% there
exists a unique isomorphism

(Cyc. Rig. NF2) p (M) = iz ("M*)
characterised as the one which induces a Kummer isomorphism
Kum
M = M® (D)
between the direct limits of cohomology modules described in (Step 4) of Theorem 3.17,
in a fashion which is compatible with the integral submonoids “Op 7. We call the isomor-
phism (Cyc. Rig. NF2) the cyclotmoic rigidity via Qs N Z* = {1} (See [IUTchI,
Example 5.1 (v)]). By the above discussions, it follows that TF® always admits an

sok-coric and an .,k X-coric structures, which are unique up to uniquely determined iso-
morphisms of pseudo-monoids with continuous actions of (TT1#)™ respectively. Thus, we
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regard T F® as being equipped with these uniquely determined . k-coric and s X-coric
structures without notice. We also put

O T ra; oo (1 ra
M oq(1D°) = (M ('D*) ™, I o= (M)
M@(Tp@) — (M® (TD@))(TI‘[@)rat’ TM® — (TM(@ )(Tl‘[@)rat’

where (=)™ denotes the ('TI®)™¢invariant part.

(2) (Local non-Archimedean case, [[UTchI, Definition 5.2 (v), (vi)]) For v € V™" let 1D,
be a category equivalent to B*™P(X v)o (resp. B (g )?) over a finite extension K, of Q,,,

where X (resp. X ) is a hyperbolic orbicurve of type (1,(Z/1Z)®) (Definition 7.13)
(resp. of type (1, l—@) (Definition 7.24)) such that the field of moduli of the hyperbolic

curve “X” of type (1,1) in the start of the definition of hyperbolic orbicurve of type
(1,(Z/1Z)®) (resp. of type (1,l—w)) is a number field Fi,.q. By Corollary 3.19, we
can group-theoretically reconstruct an isomorph

I, ~ M, ("D,)
of nglp ~ 01% (resp. HE@ ~ OI%) from 11, := 7, ("D,).

Let v € Vioa = V(Floa) be the valuation lying under v. From 'II,, we can group-
theoretically reconstruct a profinite group 11, corresponding to Cg, ), by a similar
way (“Loc”) as in (Step 2) of the proof of Theorem 3.7. Let

TDU
denote B('II,)°. We have a natural morphism "D, — "D, (This corresponds to X L=
C(Foa)e (TESP. X = Cr, ».)). In a similar way, by using Theorem 3.17 (especially

Belyi cuspidalisations), we can group-theoretically reconstruct from TII, an isomorph
(THv)rat (— THU)

of the absolute Galois group of the function field of C(x, ., in a functorial manner. By
using elliptic cuspidalisations as well, we can also group-theoretically reconstruct, from
ML, isomorphs

M"E'U(TDE)7 MOOHU(TDQ)7 MOORX'U(TDE)
of the pseudo-monoids of k-, k-, and s kXx- coric rational functions associated with
C(r,.0), With natural (TII,)™"-actions (Note that we can group-theoretically reconstruct
evaluations at strictly critical points).

Let TF, be a pre-Frobenioid isomorphic to the p,-adic Frobenioid C, = (£ )*** in
Example 8.8 (resp. to the p,-adic Frobenioid C, in Example 8.7) whose base category
is equal to 'D,. Let

("TL,)™ ~ ™,
denote an isomorph of ('IL,)** ~ M, (TD,) determined by 'F,. Suppose that we are
given isomorphs

("MTL)™ A TM e, (TL)™ A TML e
(Note that these are Frobenius-like object) of
(ML) A M (D), (L™ A~ M (TDy)

(Note that these are étale-like objects) as cyclotomic pseudo-monoids with a continuous
action of (TIL,)"". We call such pairs an o k-coric structure, and an o,k X-coric
structure on 'F, respectively.
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We recall that the étale-like objects Mm,{v(TDE)’ MMHXU(TDE) is constructed as subsets
of oo HY (ML), 2 (ML) o=l o HEH, 2 () ):
M. ro("Dy) (resp. M_uxo(Dy) ) C oo H'((TML)™, i (TL)).
On the other hand, by taking Kummer classes, we also have natural injections
Moo C oo ((TL)™, 15 (M), M2 € oo H ()™, 15(ML o).
(The injectivity follows from the corresponding injectivity for M__,,,("D,) and M. ,,("D,,)

A~

respectively.) Recall that the isomorphisms between two cyclotomes form a Z*-torsor,
and that r-coric functions distinguish zeroes and poles (since it has precisely one pole

(of any order) and at least two zeroes). Hence, by (Q ® Z D)Qso N 7x = {1}, there
exist unique isomorphisms

(Cyc. Rig. NF3) pz (M) = pz(Mow), 13 (M) = 7ML o)
characterised as the ones which induce Kummer isomorphisms
Kum Kum

TMOOKU é MOOK’U(TDQ)7 TMOOI{XU ;> MOOKXU(TDQ)

respectively. In a similar manner, for the isomorph I, ~ M, of I, ~ I\\/JL)(TDQ),
there exists a unique isomorphism

(Cyec. Rig. NF4) w8 (T,) = piz("ML)

characterised as the one which induces a Kummer isomorphism
Kum
M, = M, ('D,)

between the direct limits of cohomology modules described in (Step 4) of Theorem 3.17.
We also call the isomorphism (Cyc. Rig. NF4) the cyclotmoic rigidity via Q>Oﬂzx =
{1} (See [IUTchI, Definition 5.2 (vi)]). By the above discussions, it follows that TF,
always admits an ., k-coric and ,kX-coric structures, which are unique up to uniquely
determined isomorphisms of pseudo-monoids with continuous actions of (TIL,)™ respec-
tively. Thus, we regard 'F, as being equipped with these uniquely determined . x-coric
and .k X-coric structures without notice. We also put

T rat T
Mo ("Dy) = (Moo (D)) ™, MLy = (M) 1)

where (—)M)™" denotes the (TTI,)™"-invariant part.
(3) (Local Archimedean case, [IUTchI, Definition 5.2 (vii), (viii)]) For v € V*¢, let "D, be an
Aut-holomorphic orbispace isomorphic to the Aut-holomorphic orbispace § associated

rat
Y

to X . where X s a hyperbolic orbicurve of type (1, l—to_r§) (Definition 7.24) such that

the field of moduli of the hyperbolic curve “X” of type (1,1) in the start of the definition
of hyperbolic orbicurve of type (1, l—m) is a number field Foq.

Let v € Vioa = V(Fioa) be the valuation lying under v. By Proposition 4.5, we can
algorithmically reconstruct an isomorph

T'DU

of the Aut-holomorphic orbispace C, associated with C(g, ), from "D,. We have a
natural morphism D, — D, (This corresponds to X = C(Fueq),- Note that we have

a natural isomorphism Aut("D,) = Gal(K,/(Fuod)v) (C Z/27Z), since Ck is a K-core.
Put
D= n(1D,\ B) (= D,),
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where we choose a projective system of ("D, \ ¥)’s which arise as universal covering
spaces of ™D, with ¥ D {strictly critical points}, #Y < oo (See Definition 9.2 for

strictly critical points). Note that "D is well-defined up to deck transformations over
ID,. Let
-

M,("D,) c AP

denote the topological submonoid of non-zero elements with norm < 1 (which is an

isomorph of OF) in the topological field A= (See Proposition 4.5 for A'P). By using
elliptic cuspidalisations, we can also algorithmically reconstruct, from D, isomorphs

MKU(TDg)a Moofw(TDQ)» MOOHXU(TDQ) (C HomCO—hol(T,D;at7Mv(TDQ)gp))

of the pseudo-monoids of k-, k-, and kX~ coric rational functions associated with
CFpoa). 88 sets of morphisms of Aut-holomorphic orbispaces from D" to ML, ("D,)&P (=

A'P+) which are compatible with the tautological co-holomorphicisation (Recall that

A'Ps has a natural Aut-holomorphic structure and a tautological co-holomorphicisation
(See Definition 4.1 (5) for co-holomorphicisation)).

Let 17, = (iC,,"D,, 'k, : O”(iC,) — A™P:) be a triple isomorphic to the triple
(Cy, Dy, ky) in Example 8.11, where the second data is equal to the above ID,. Put

M, := O™ (1C,).
Then, the Kummer structure ', gives us an isomorphism

Kum

Tk : ™M, & M, ("D,)

of topological monoids, which we call a Kummer isomorphism. We can algorithmi-
cally reconstruct the pseudo-monoids

TMoom); TMOOHXU

of k-coric and ok X-coric rational functions associated to C(g,, as the sets of maps

od)v
fprat s M, (1D, )8 H "MEP (disjoint union)
which send strictly critical points to TM®P, otherwise to M., ("D, )eP, such that the com-

o Trat tp e T ipee JSH ) o vep t
posite "D — M, ("D, )8 [ [ M8 ——————— M, ("D, )8 is an element of M__,.,("D,),
M_ «xo("D,) respectively. We call them an o, k-coric structure, and an ok X-coric
structure on T]-"2 respectively. Note also that TI\/JL.W(C TMoom,) can be reconstructed as
the subset of the maps which descend to some D, \ X in the projective limit of "Dt

and are equivariant with the unique embedding Aut('D,) < Aut(A'P). Hence, the
Kummer structure 'r, in 'F, determines tautologically isomorphisms

Kum Kum Kum

TMK)’U % MH’U(TDQ)7 TMOOH’U % MOOHU(TDg)v TMooan % MOOHXU(TDQ)
of pseudo-monoids, which we also call Kummer isomorphisms.

Remark 9.6.1. (Mono-Anabelian Transport) The technique of mono-anabelian transport
is one of the main tools of reconstructing an alien ring structure in a scheme theory from another
(after admitting mild indeterminacies). In this occasion, we explain it.

Let II, *II be profinite groups isomorphic to IIx, where X is a hyperbolic orbicurve of strictly
Belyi type over non-Archimedean local field k (resp. isomorphic to Ilg, as in this section).
Then, by Corollary 3.19 (resp. by Theorem 3.17 as mentioned in this subsection), we can group-
theoretically construct isomorphs O™ (11I), O™ (*II) (resp. M®(TII), M®(*II)) of OF (resp. F)
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with TTI-, I-action from the abstract topological groups II, *II respectively (These are étale-
like objects). Suppose that we are given isomorphs 'O, *O (resp. "™®, M®) of O™ (II),
O (*IT) (resp. M®('II), M®(*II)) respectively (This is a Frobenius-like object), and that an
isomorphism TIT = *IT of topological groups. The topological monoids TO> and *O> (resp. the
multiplicative groups TM® and #M® of fields) are a priori have no relation to each other, since
an “isomorph” only means an isomorphic object, and an isomorphism is not specified. However,
we can canonically relate them, by using the Kummer theory (cf. the Kummer isomorphism in
Remark 3.19.2), which is available by relating two kinds of cyclotomes (i.e., cyclotomes arisen
from Frobenius-like object and étale-like object) via the cyclotomic rigidity via LCFT (resp.

via Qs NZ* = {1} ):

(mntor) S oo M s ovem) S fnnor

Frobenius-like étale-like ) étale-like Frobenius-like
(resp.

(T ~ TM®) gy (T ~ M®(T1)) i“j:{%jnby(in ~ M® (1)) i (T~ TMP)

Frobenius-like étale-like étale-like Frobenius-like).
In short,

ML, (A M) 8 (3 A IME)

a priort

canonically

(I~ ™®) = (I~ M),

mono-anabelian

transport

pplied

makes ayailable a .
= Kummer theory "= mono-anabelian transport.

cyclotomic rigidity

This technique is called the mono-anabelian transport.

Remark 9.6.2. (differences between three cyclotomic rigidities) We already met three kinds
of cyclotomic rigidities: the cyclotomic rigidity via LCFT (Cyc. Rig. LCFT2) in Remark 3.19.2,
of mono-theta environment (Cyc. Rig. Mono-Th.) in Theorem 7.23 (1), and via Qso N Z* =
{1} (Cyec. Rig. NF2) in Definition 9.6:

nz(Gr) = nz(M), Y(186) @ Z/NZ = pn("(18e[un])), 15 (M%) = 1z ('M7).

In inter-universal Teichmiiller theory, we use these three kinds of cyclotomic rigidities to three
kinds of Kummer theory respectively, and they correspond to three portions of ©-links, i.e.,

(1) we use the cyclotomic rigidity via LCFT (Cyc. Rig. LCFT2) for the constant monoids
at local places in V&°°4 N V" which is related with the unit (modulo torsion) portion
of the ©-links,

(2) we use the cyclotomic rigidity of mono-theta environment (Cyc. Rig. Mono-Th.) for the
theta functions and their evaluations at local places in V" which is related with the
value group portion of the ©-links, and

(3) we use the cyclotomic rigidity of via Q¢ NZ* = {1} (Cyc. Rig. NF2) for the non-realified
global Frobenioids, which is related with the global realified portion of the ©-links.

We explain more.
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In Remark 9.6.1, we used 'O (& O'% ) and as examples to explain the technique of
mono-anabelian transport. However, in inter-universal Teichmiiller theory, the mono-
anabelian transport using the cyclotomic rigidity via LCFT is useless in the important
situation i.e., at local places in VP (However, we use it in the less important situation
i.e., at local places in V&°°4 N V"), because the cyclotomic rigidity via LCFT uses
essentially the value group portion in the construction, and, at places in V" in inter-
universal Teichmiiller theory, we deform the value group portion in ©-links! Since the
value group portion is not shared under ©-links, if we use the cyclotomic rigidity via
LCFT for the Kummer theory for theta functions/theta values at places in V"¢ in
a Hodge theatre, then the algorithm is only valid with in the same Hodge theatre,
and we cannot see it from another Hodge theatre (i.e., the algorithm is uniradial.
(See Remark 11.4.1, Proposition 11.15 (2), and Remark 11.17.2 (2)). Therefore, the
cyclotomic rigidity via LCFT is not suitable at local places in V" which deforms the
value group portion.

Instead, we use the cyclotomic rigidity via LCFT at local places in V&°°4N V", In this
case too, only the unit portion is shared in ©-links, and the value group portion is not
shared (even though the value group portion is not deformed in the case of V&N y»or),
thus, we ultimately admit Zx—indetermina(}y to make an algorithm multiradial (See
Definition 11.1 (2), Example 11.2, and Appendix A.4. See also Remark 11.4.1, and
Proposition 11.5). Mono-analytic containers, or local log-volumes in algorithms have no
effect by this Zx—indeterminacy.

In V" we use the cyclotomic rigidity of mono-theta environment for the Kummer
theory of theta functions (See Proposition 11.14, and Theorem 12.7). The cyclotomic
rigidity of mono-theta environment only uses ppy-portion, and does not use the value
group portion! Hence, the Kummer theory using the cyclotomic rigidity of mono-theta
environment in a Hodge theatre does not harm/affect the ones in other Hodge theatres.
Therefore, these things make algorithms using the cyclotomic rigidity of mono-theta
environment multiradial (See also Remark 11.4.1).

In Remark 9.6.1, we used TM® (= FX) and as examples to explain the technique of
mono-anabelian transport. However, in inter-universal Teichmiiller theory, we cannot
transport TM® (2 F ) by the technique of the mono-anabelian transport by the following
reason (See also [IUTchIl, Remark 4.7.6]): In inter-universal Teichmiiller theory, we
consider Ilg, as an abstract topological group. This means that the subgroups Il¢,,
Ix . are only well-defined up to Ilg,-conjugacy, i.e., the subgroups Il¢, , lx . are only
well-defined up to automorphisms arising from their normalisers in Ils,. Therefore,
we need to consider these groups Ilg, , Ilx, as being subject to indeterminacies of
F#-poly-actions (See Definition 10.16). However, F¥ non-trivially acts on TM® (= F ™).
Therefore, TM®(22 F™) is inevitablyy subject to Ff-indeterminacies. Instead of TM® (=2
F), we can transport the 'TI®-invariant part Meq = (TM®)'1° (= FX ) since Ff
trivially poly-acts on it, and there is no ;' -indeterminacies (See also Remark 11.22.1).
Another important difference is as follows: The cyclotomic rigidity via LCFT and of
mono-theta environment are compatible with the profinite topology, i.e., it is the pro-
jective limit of the “mod N7 levels. On the other hand, the cyclotomic rigidity via
Q-0 NZ* = {1} is not compatible with the profinite topology, i.e., it has no such “mod
N7 levels. In the Kummer tower (/;; =) l@m(kX +— k* < ---), we have the field struc-
tures on each finite levels £*(U{0}), however, we have no field structure on the limit
level k*. On the other hand, the logarithm “)" %” needs field structure. Hence, we
need to work in “mod N7 levels to construct log-links, and the Kummer theory using the
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cyclotomic rigidity via Q<o N Z* = {1} is not compatible with the log-links. Therefore,
we cannot transport global non-realified Frobenioids under log-links. On the realified
Frobenioids, we have the compatibility of the log-volumes with log-links (i.e., the for-
mulae (5.1) and (5.2) in Proposition 5.2 and Proposition 5.4 respectively). (Note that
N-th power maps are not compatible with addtions, hence, we caanot work in a single
scheme theoretic basepoint over both the domain and the codomain of Kummer N-th
power map. This means that we should work with different scheme theoretic basepoints
over both the domain and the codomain of Kummer N-th power map, hence the “iso-
morphism class compatibility” i.e., the compatibility with the convention that various
objects of the tempered Frobenioids are known only up to isomorphism, is crucial here
(cf. [IUTchII, Remark 3.6.4 (i)], [IUTchIII, Remark 2.1.1 (ii)]) (This is also related to
Remark 13.13.3 (2b))).

Cyclotomic rigidity via LCFT of mono-theta env. | via Q<g N 7% = {1}

Related Component units value group global realified
of ©-links modulo torsion (theta values) component
Radiality uniradial or multiradial multiradial

multiradial up to 7*-indet.

Compatibility with compatible compatible incompatible
profinite top.

9.3. X-line bundles, and H-line bundles. We continue to use the notation in the previous
section. Moreover, we assume that we are given a subset V C V(K) such that the natural
surjection V(K) — V(F,eq) induces a bijection V.= V(F,.q) (Note that, as we will see
in the following definitions, we are regarding V as an “analytic section” of the morphism
Spec O — Spec Op,_ ). Put V" := VN V(K)" and V¥ :=V N V(K)>.

Definition 9.7. ([IUTchIII, Example 3.6]) Let F=_, (i.e., without “I”) denote the global non-
realified Frobenioid which is constructed by the model D(C)° (i.e., without “I”).

(1) (X-line bundle) A X-line bundle on (Spec Ox)//Gal(K/Fyoq) is adata L = (T, {t, }rev),
where
(a) T'is an F_ ,-torsor, and
(b) t, is a trivialisation of the torsor T, := T ®Rpx (K /Og,) for each v € V, where

Froq — K /Og, is the natural group homomorphism,

satisfying the condition that there is an element ¢ € T such that ¢, is equal to the
trivialisation determined by ¢ for all but finitely many v € V. We can define a tensor
product (£L¥)®" of a K-line bundle £¥ for n € Z in an obvious manner.

(2) (morphism of X-line bundles) Let £ = (11, {t14 }vev), LY = (T3, {t24 }vev) be K-line
bundles. An elementary morphism £¥ — L% of X-line bundles is an isomorphism
Ty = T of F ;-torsors which sends the trivialisation ¢, , to an element of the O% -orbit
of t3, (i.e., the morphism is integral at v) for each v € V. A morphism of X-line
bundles from L% to LY is a pair of a positive integer n € Z-o and an elementary
morphism (£5)®" — L% We can define a composite of morphisms in an obvious
manner. Then, the X-line bundles on (Spec Ok)//Gal(K/Fy0q) and the morphisms



140 GO YAMASHITA

between them form a category (in fact, a Frobenioid)
Friop:
We have a natural isomorphism

® ~ ®
Frod — Fnob

mod

of (pre-)Frobenioids, which induces the identity morphism FX , — FX , on ®((—)Prat).
Note that the category Fyjop is defined by using only the multiplicative (R ) structure.
(3) (B-line bundle) A B-line bundle on (Spec O )//Gal(K/Fyoq) is a data L2 = {J, },ev,
where J, C K, is a fractional ideal for each v € V (i.e., a finitely generated non-zero
Ok,-submodule of K, for v € V""" and a positive real multiple of O, for v € V*¢
(See Section 0.2 for O, )) such that J, = Ok, for finitely many v € V. We can define

a tensor product (L£%)®" of a H-line bundle £L® for n € Z in an obvious manner.

(4) (morphism of B-line bundles) Let LT = {J1, }vev, £3 = {J2, }vev be H-line bundles.
An elementary morphism L] — £5 of E-line bundles is an element f € F_, such
that f - Jy, C Jo, (i.e., f is integral at v) for each v € V. A morphism of HE-line
bundles from £P to £F is a pair of a positive integer n € Z-o and an elementary
morphism (£F)®" — L. We can define a composite of morphisms in an obvious
manner. Then, the B-line bundles on (Spec Ok)//Gal(K/Fy0q) and the morphisms
between them form a category (in fact, a Frobenioid)

f®

mod*

We have a natural isomorphism

fﬁod :> 'th?oa
mod 7 FI:od on @((_)birat).
Note that the category F.o, is defined by using both of the multiplicative (X) and the
additive (B) structures.

of (pre-)Frobenioids, which induces the identity morphism F

Hence, by combining the isomorphisms, we have a natural isomorphism

(Convert) F

~ &
mod — F MOD

of (pre-)Frobenioids, which induces the identity morphism FX , — FX , on ®((—)Prat).

m

10. HODGE THEATRES.

In this section, we construct Hodge theatres after fixing an initial ©-data (Section 10.1).
More precisely, we construct ©F!NF-Hodge theatres (In this survey, we call them XH-Hodge
theatres). We can consider Z/IZ as a finite approximation of Z for [ >> 0 (Note also that
we take | >> 0 approximately of order of a value of height function. See Section ). Then,
we can consider F/* and Ffi as a “multiplicative finite approximation” and an “additive finite
approximation” of Z respectively. Moreover, it is important that two operations (multiplication
and addition) are separated in “these finite approximations” (See Remark 10.29.2). Like Z/IZ
is a finite approximation of Z (Recall that Z = Gal(2)/X)), a Hodge theatre, which consists
of various data involved by X " &v’ C'y and so on, can be seen as a finite approximation of

upper half plane.

Before preceeding to the detailed constructions, we briefly explain the structure of a ©F'NF-
Hodge theatre (or XE-Hodge theatre). A ©FINF-Hodge theatre (or a XH-Hodge theatre) will
be obtained by “gluing” (Section 10.6)

e a ONF-Hodge theatre, which has a F}-symmetry, is related to a number field, of arith-
metic nature, and is used to Kummer theory for NF (In this survey, we call it a K-Hodge
theatre, Section 10.4) and
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o a O*!_Hodge theatre, which has a ]Ffi—symmetry, is related to an elliptic curve, of
geometric nature, and is used to Kummer theory for © (In this survey, we call it a
B-Hodge theatre, Section 10.5).

Separating the multiplicative (X) symmetry and the additive () symmetry is also important
(See ****[IUTchII, Remark 4.7.3, Remark 4.7.6]).

ONF-Hodge theatre | F;-symmetry (X) | arithmetic nature | Kummer theory for NF

©*_Hodge theatre | F;*-symmetry (B) | geometric nature | Kummer theory for ©

As for the analogy with upper half plane, the multiplicative symmetry (resp. the additive
symmetry) corresponds to supersingular points of the reduction modulo p of modular curves
(resp. the cusps of the modular curves). See the following tables ([IUTchI, Fig. 6.4]):

X-symmetry Basepoint Functions

(cf.Remark 10.29.1) | (cf. Corollary 11.23)

upper half plane | z — %, % supersingular pts. rat. fct. w = z—jr;
Hodge theatre F/-symm. Ff ~ YBer elements of F.q
H-symmetry Basepoint Functions

(cf.Remark 10.29.1) |  (c¢f. Corollary 11.21)

upper half plane | z+— 2 +a, 2 — —Z +a cusp trans. fct. ¢ = 2™

Hodge theatre F,'*-symm. vE theta values {gj2}1§j§l>:<

Coric symmetry (cf. Proposition 10.34 (3))

upper half plane 22, —Z

Hodge theatre {£1}

These three kinds of Hodge theatres have base-Hodge theatres (like Frobenioids) respectively,
i.e., a ©OFUINF-Hodge theatre (or a WE-Hodge theatre) has a base-O*"NF-Hodge theatre (or
D-0*INF-Hodge theatre, or D- X B-Hodge theatre), which is obtained by “gluing”

e a base-ONF-Hodge theatre (or D-ONF-Hodge theatre, or D-X-Hodge theatre) and
e a base-O*'-Hodge theatre (or D-O*'-Hodge theatre, or D-HB-Hodge theatre).

A D-ONF-Hodge theatre (or D-X-Hodge theatre) consists

e of three portions
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— (local object) a holomorphic base-(or D-)prime-strip 1®~ = {TDs ,},ev, where
D, , is a category equivalent to B (g )0 for v € V&N V™™ or a category equiv-

alent to B*™P(X v)o for v € VP or an Aut-holomorphic orbispace isomorphic to

§ for v € V* (Section 10.3),

— (local object) a capsule T®; = {1D;};c; of D-prime-strips indexed by J (& Ff)
(See Section 0.2 for the term “capsule”), and

— (global object) a category "D® equivalent to B(Cx)°,

e and of two base-bridges

— a base-(or D-)O-bridge ¢S, which connects the capsule "D ; of D-prime-strips to
the D-prime-strip D~ , and

— a base-(or D-)NF-bridge T¢YF, which connects the capsule D of D-prime-strips
to the global object "D®.

Here, for a holomorphic base-(or D-)prime-strip "® = {ID,},cv, we can associate its mono-
analyticisation (cf. Section 3.5) T = {TD] },ev, which is a mono-analytic base-(or D" - )prime-
strip.

On the other hand, a D-©**"-Hodge theatre (or D-B-Hodge theatre) similarly consists

e of three portions
— (local object) a D-prime-strip "D, = {TD, , },ev,
— (local object) a capsule D7 = {ID;};cr of D-prime-strips indexed by T (= F,),
and
— (global object) a category "D®* equivalent to B(X x)°,
e and of two base-bridges
— a base-(or D-)O*-bridge ngﬁii, which connects the capsule "®¢ of D-prime-strips
to the D-prime-strip '®. , and
— a base-(or D-)O-bridge Tqﬁeu, which connects the capsule " of D-prime-strips
to the global object TD®F.

Hence, the structure of a D-©*'NF-Hodge theatre (or D-KMB-Hodge theatre) is as follows (For
the torsor structures, Aut, and gluing see Proposition 10.20, Proposition 10.34, Lemma 10.38,
and Definition 10.39):

D-O*INF-HT

gluing (>={0,-})

(Aut = {£1}) D-O*LHT 1D - =1D. D-ONF-HT (Aut = {1})

D-0*-bridge qugi ({1} x{£1}¥ -torsor) (rigid) | T¢Q  D-©-bridge
~ gluing (J=(T\{0})/{£1}) . ~ T

teT(F) D MO o, (e sy
D-0°_bridge T¢2e11 (]Fli—torsor) (Ff—torsor) t¢NF  D-NF-bridge

Geometric (X ~) Dot D (e~ Cf) Arithmetic
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We can also draw a picture as follows (cf. [IUTchl, Fig. 6.5]):

D, = /* >:g’>} D, = /*
69" 69
J=(T\{0})/{1} % x
E A Dr= /5 /55T = Dy=/1/% /s
¢2e11 d)EF
X+ ok @+ __ 0 i T © __ 0
Fi'= 1 | D =B(X) Fi 1t L D¥=B(Ck)",
+++ K%

where /’s express prime-strips.

These are base Hodge theatres, and the structure of the total space of Hodge theatres is as
follows: A ONF-Hodge theatre (or K-Hodge theatre) consists

e of five portions
— (local and global realified object) a ©-Hodge theatre THT® = ({Tig}geyfr F o)

which consists of
* (local object) a pre-Frobenioid T]:-"v isomorphic to the p,-adic Frobenioid £
(Example 8.7) for v € V&Y N Y™™ or a pre-Frobenioid isomorphic to the
tempered Frobenioid £ for v € VP (Example 8.8), or a triple Tév —

(1Cy, "D, 'k,), isomorphic to the triple F = (Cy, Dy, ky) (Example 8.11) of
the Archimedean Frobenioid C,, the Aut-holomorphic orbispace D, = §

and its Kummer structure &, : O (C,) — AP~ for v € V¥, and
* (global realified object with localisations) a quadruple
Tiod = ((Choas Prime(TCoq) = V, {TF boev, {79, }oev) of a pre-Frobenioid
isomorphic to the global realified Frobenioid C) ; (Example 8.12), a bi-
jection Prime(TC! ;) = V, a mono-analytic Frobenioid-(or F'-)prime-strip
{TF}oev (See below), and global-to-local homomorphisms {fp! },cv.
— (local object) a holomorphic Frobenioid-(or F-)prime-strip 1§~ = {1 F~ , }oev, where
fF. , is equalto the TF,’s in the above ©-Hodge theatre H7°.
— (local object) a capsule 1§ ; = {1§,},es of F-prime-strips indexed by J (= Ff) (See
Section 0.2 for the term “capsule”),
— (global object) a pre-Frobenioid TF® isomorphic to the global non-realified Frobe-
nioid F°("D®) (Example 9.5), and
— (global object) a pre-Frobenioid TF® isomorphic to the global non-realified Frobe-
nioid F#("D?) (Example 9.5).
e and of two bridges
— a O-bridge 72, which connects the capsule 'F; of prime-strips to the prime-strip
., and to the ©-Hodge theatre 1§ -—-» "HT®, and
— an NF-bridge TN, which connects the capsule 'F; of prime-strips to the global

X )

objects TF® --» TF®,

v

and these objects are “lying over” the corresponding base objects.
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Here, for a holomorphic Frobenioid-(or F-)prime-strip '§ = {1 F, },cv, we can algorithmically
associate its mono-analyticisation (cf. Section 3.5) 1§ = {TF! },cy, which is a mono-analytic
Frobenioid-(or F" - )prime-strip.

On the other hand, a ©*°-Hodge theatre (or E-Hodge theatre) similarly consists

e of three portions
— (local object) an F-prime-strip 1§ = {1 F. , }oev,
— (local object) a capsule '§r = {1F, }er of F-prime-strips indexed by T (= F,), and
— (global object) the same global object "D®* as in the D-H-Hodge theatre,

e and of two bridges
— a ©*-bridge Tqbi)i, which connects the capsule F7 of prime-strips to the prime-strip

%, and
— a 0% bridge 7@ is equal to the D-©M-bridge T2,
and these objects are “lying over” the corresponding base objects.

Hence, the structure of a ©*°'NF-Hodge theatre (or XH-Hodge theatre) is as follows (For
the torsor structures, Aut, and gluing see Lemma 10.25, Lemma 10.37, Lemma 10.38, and
Definition 10.39):

@:I:ellNF_HT Tr]_lf]—@
A
JF-prime-strip
ghuing (>={0-})

(Aut = {&1}) OFLHT 1§, =13, ONF-HT (Aut = {1})

©% bridge wgi T({il}x{il}v—torsor) (rigid) T fy9 O-bridge
~ gluing (J=(T\{0})/{=£1}) ) ~ T
TR 5 SO i e e Ry
(169" 107 1DOF) @l bridge 199" l([ﬁ'li—torsor) (Ff—torsor)lngiF NF-bridge
Geometric tpe+ fFe Arithmetic
TpO_1p®
v
Kummer for © fFe® Kummer for NF

10.1. Initial ©-data.

Definition 10.1. We call a collection of data
(F/Fa XFa la QK) Y> Vbad E)

mod>
an initial ®-data, if it satisfies the following conditions:

(1) F is a number field such that /=1 € F, and F is an algebraic closure of F. We write

(2) XF is a once-punctured elliptic curve over F, which admits stable reduction over all
v € V(F)™. We write Er(D Xp) for the elliptic curve over F' obtaine by the smooth
compactification of Xp. We also put Cp := Xp//{£1}, where “//” denotes the stack-
theoretic quotient, and —1 is the F-involution determined by the multiplication by —1
on Ep. Let Fjoq be the field of moduli (i.e., the field generated by the j-invariant of
Er over Q). We assume that F' is Galois over Fy,,q of degree prime to [, and that
2 - 3-torsion points of Fr are rational over F'.
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(3) VPad ' C Vo0a := V(Foq) is a non-empty subset of V2ou, \ {v € V2u | v | 2} such
that Xz has bad (multiplicative in this case by the condition above) reduction at the
places of V(F) lying over VP24, Put V& := V, 4\ V?2d (Note that Xp may have
bad reduction at some places V(F) lying over VE°!) V(F)bad .= yhad »y  V(F), and
V(F)goed .= &l 5 Y(F). We also put Iy, = m(Xp) C g, := m(Cp), and
AXF = 7T1(XF Xp F) C ACF = 7T1(CF XF F)

(4) lis a prime number > 5 such that the image of the outer homomorphism Gp — GLy(IF))
determined by the [-torsion points of Er contains the subgroup SLy(F;) C GLy(IF,;). Put
K := F(Eg|[l]), which corresponds to the kernel of the above homomorphism (Thus,
since 3-torsion points of Ep are rational, K is Galois over Fy,,q by Lemma 1.7 (4). We
also assume that [ is not divisible by any place in V22, "and that [ does not divide the
order (normalised as being 1 for a uniformiser) of the g-parameters of Er at places in
V( F)bad.

(5) Cpis ahyperbolic orbicurve of type (1, [-tors)+ (See Definition 7.10) over K with K-core
given by Ck := Cp xp K (Thus, Cj is determined, up to K-isomorphism, by Cr by the
above (4)). Let X, be a hyperbolic curve of type (1,I-tors) (See Definition 7.10) over
K determined, up to K-isomorphism, by C. Recall that we have uniquely determined
open subgroup Ay C Ac corresponding to the hyperbolic curve X of type (1, I-tors®)

(See Definition 7.11), which is a finite étale covering of C% := Cpx p F (See the argument

. . . T - I
after Assumption (2) in Section 7.3, where the decomposition Ay = Z; X Ag does not

depend on the choice of €, ).

(6) V C V(K) is a subset such that the composite V C V(K) — Vyq is a bijection, i.e.,
V is a section of the surjection V(K) — V4. Put V™" := VN V(K)™", V¥ =
VN V(K)2e, yeod .= VN V(K)&od and V™ .= V N V(K)P, For a place v € V,
put (=), := (=)r Xp K, or (=), := (—)x Xg K, for the base change of a hyperbolic
orbicurve over F and K respectively. For v € V" we assume that the hyperbolic
orbicurve C, is of type (1,Z/IZ)+ (See Definition 7.13) (Note that we have “K = K",

since 2-torsion points of Er are rational). For a place v € V| it follows that X-xply
admits a natural model X over K,, which is hyperbolic curve of type (1, (Z/ 1Z,)®) (See

Definition 7.13), where v is a place of F¥ lying over v (Roughly speaking, X is defined
by taking “I-root of the theta function”). For v € V" we write II, := Htgnp.

(7) € is a non-zero cusp of the hyperbolic orbicurve Cf. For v € V, we write ¢, for the
cusp of C, determined by e¢. If v € VP24 we assume that €, 1s the cusp, which arises

from the canonical generator (up to sign) of Z via the surjection Iy —» Z determined
by the natural surjection I — Z (See Section 7.1 and Definition 7.13). Thus, the
data (X := Xp xp K, Cj, €) determines a hyperbolic curve X . of type (1, l-tors) (See

Definition 7.24). For v € V&°°¢ we write II, := Hiﬁ )

Note that C'j and e can be regarded as “a global multiplicative subspace and a canonical
generator up to {£1}”, which was one of main interests in Hodge-Arakelov theory (See Appen-
dix A). At first glance, they do not seem to be a global multiplicative subspace and a canonical
generator up to {£1}, however, by going outside the scheme theory (Recall we cannot obtain
(with finitely many exceptions) a global multiplicative subspace within a scheme theory), and
using mono-anabelian reconstructions, they behave as though they are a global multiplicative
subspace and a canonical generator up to {£1}.
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From now on, we take an initial O-data (F/F, Xp,l,Cp,V, VP ) and fix it until the end
of Section 13.

10.2. Model Objects. From now on, we often use the convention (cf. [IUTchI, §0]) that,
for categories C,D, we call any isomorphism class of equivalences C — D of categories an
isomorphism C — D (Note that this termniology differs from the standard terminology of
category theory).

Definition 10.2. (Local Model Objects, [IUTchl, Example 3.2, Example 3.3, Example 3.4])
For the fixed initial ©-data, we define model objects (i.e., without “I”) as follows:

(1) (D, :holomorphic, base) Let D, denote the category B*™P(X v>0 of connected objects
of the connected temperoid Bt™P (X ) for v € V" the category B (g )° of connected
objects of the connected anabelioid B ( gv) for v € V&°°4NV™ and the Aut-holomorphic
orbispace § associated with X for v € V#¢ (See Section 4).

(2) (D) : mono-analytic, base) Let D denote the category B(K,)? of connected objects of
the connected anabelioid B(K,) for v € V™, and the split monoid (O~(Cy), splk) in
Example 8.11. We also put G, := m(D!) for v € V™"

(3) (C, : holomorphic, Frobenioid-theoretic) Let C, denote the base-field-theoretic hull (£ U)base‘ﬁeld

(with base category D,) of the tempered Frobenioid ZF in Example 8.8 for v € ygad,

the p,-adic Frobenioid C, (with base category D,) in Example 8.7 for v € V&°4 0y or,
and the Archimedean Frobenioid C, (whose base category has only one object Spec K,
and only one morphism) in Example 8.11 for v € V¥©.

(4) (£, :holomorphic, Frobenioid-theoretic) Let F = denote the tempered Frobenioid £
(with base category D,) in Example 8.8 for v € V" the p,-adic Frobenioid C, (with
base category D,) in Example 8.7 for v € VNV and the triple (C,, Dy, k,) of the
Archimedean Frobenioid, the Aut-holomorphic orbispace, and the Kummer structure

: O (C,) = APz in Example 8.11 for v € V.

(5) (CF mono-analytic, Frobenioid-theoretic) Let C! denote the p,-adic Frobenioid C!, (with
base category DF) in Example 8.8 for v € Vbad the p,-adic Frobenioid CF (Wlth base
category D!) in Example 8.7 for v € V&Y N V™" and the Archimedean Frobenioid Cy
(whose base category has only one object Spec K, and only one morphism) in Exam-

ple 8.11 for v € V.
(6) (F, :mono-analytic, Frobenioid-theoretic) Let F, denote the py-split pre-Frobenioid

(CF spl%) (with base category DZ ) in Example 8.8  for v € V" the split pre-Frobenioid
(CJ,sply) (with base category D) in Example 8.7 for v € V&4 1 V™" and the
triple (C,, DY ,splZ), where (C) ,splZ) is the split Archimedean Frobenioid, and D =
(0%(Cy), splz ) is the split monoid (as above) in Example 8.11 for v € V¥,

See the following table (We use D,’s (resp. D.’s, resp. F! ’s) with v € V for D-prime-strips

(resp. D -prime-strips, F"-prime-strips) later (See Definition 10.9 (1) (2)). However, we use
Cy, (not év) with v € V*" and F with v € V#¢ for F-prime-strips (See Definition 10.9 (3)),

and F s with v € V for ©-Hodge theatres later (See Definition 10.7)):
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VP4 (Example 8.8) yeeod 0y e (Example 8.7) V*¢ (Example 8.11)
D, Bew(x) (1) B(X )" (IL) X,
D, B(K,)* (Gy) B(K,)" (Gy) (0" (Cy),spl,)
Cy (éﬁ)base‘ﬁeld (I, ~ (O%)pf) I, ~ (O%)pf Arch. Fr’'d C, («~~ang. region)
£, | temp. Frd F («~O-fct.) equal to C, (Cy, Dy, Ky)
Cy Gy~ OF-- g a G, ~ OF - p)) equal to C,
Fy (C,sply) (C,sply) (€}, DL, spl)

We continue to define model objects.

Definition 10.3. (Model Global Objects, [ITUTchI, Definition 4.1 (v), Definition 6.1 (v)]) We
put
D = B(Ck)’, D :=B(Xy)".

Isomorphs of the global objects will be used in Proposition 10.19 and Proposition 10.33 to
put “labels” on each local objects in a consistent manner (See also Remark 6.11.1). We will use
D® for (D-)®-Hodge theatre (Section 10.4), and D®* for (D-)B-Hodge theatre (Section 10.5).

Definition 10.4. (Model Global Realified Frobenioid with Localisations, [IUTchl, Example
3.5]) Let C!_, be the global realified Frobenioid in Example 8.12. Note that we have the

mod
natural bijection Prime(C! ;) = Vioq, and an element log’ ,(p,) € i, for each v € Vyeq.

For v € Vpod, let v € V denote the corresponding element under the bijection V = V,,0q. For
cach v € V, we also have the (pre-)Frobenioid C} (See Definition 10.2 (5)). Let CJ® denote the
realification of CJ (Definition 8.4 (3)) for v € V™" and C, itself for v € V**°. Let loge(py) € <I>§5
denote the element determined by p,, where @ denotes the divisor monoid of C;*. We have
the natural restriction functor -

C\F od — CHR
for each v € V. This is determined, up to isomorphism, by the isomorphism

gl. to loc.

~

po: Qer o, QI)ERE 108 50 (P0) ) ]logq,(pg)

1
[Ky : (F mod Jv
of topological monoids (For the assignment, consider the volume interpretations of the arith-
metic divisors, i.e., log, #(O(r,.q)./Pv) = ml gy, #(Ok,/py)). Recall also the point
of view of regarding V(C V(K)) as an “analytic section” of Spec Ox — Spec Op._ . (The left

mod

hand side ®¢r- ,, is an object on (Finod)v, and the right hand side (I)CF is an object on K,). Let
3" 4 denote the quadruple

mod : (Cmod7 Prlnle<cmod> g y? {F£}2€y7 {pﬁ}QEY)

of the global realified Frobenioid, the bijection of primes, the model objects F!’s in Defini-

tion 10.2 (6), and the localisation homomorphisms. We define an isomorphism S'Fod L= sfmod 9
of quadruples in an obvious manner.
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Isomorphs of the global realified Frobenioids are used to consider log-volume functions.
Definition 10.5. (O-version, [[UTchl, Example 3.2 (v), Example 3.3 (ii), Example 3.4 (iii),
Example 3.5 (ii)])

(1) (V") Take v € V", Let DY (C D,) denote the category whose objects are A° :=
A x gv for A € Ob(D'Q_ ), where x is the product in D,, and morphisms are morphisms

over gv in D, (Note also that gv € Ob(D,) is defined over K,). Taking “(—) x gv”

induces an equivalenc DZ = DS of categories. The assignment
Ob(Dy) 3 A® = 0% (O4e) - (BV]0,6) C O™ (OZE")
determines a monoid O%,(—) on D (See Example 8.8 for 9 € O*(0p**), and O

for Definition 8.4 (1)). Under the above equivalence D = DY of Categci)ries7 we have
natural isomorphism Of, (—) = Oge(—). These are compatible with the assignment

gg|OA = QQ‘OAG

and a natural isomorphism O*(O,) = 0*(0O40) induced by the projection A® = A x
Y — A (See Example 8.8 for ¢ € O”(Ox )). Hence, the monoid Oge(—) determines
a p,-adic Frobenioid - ) )

CQ@ (C élﬁirat)
whose base category is DS . Note also QU determines a pg(—)-orbit of splittings splS of

CO. We have a natural equivalence C!' = C® of categories, which sends splZ to spl?,
hence, we have an isomorphism

Fo(=(Cy,sply)) = Fo:=(C,splY)
of pg9-split pre-Frobenioids.
(2) (Verdny™) Take v € VE°YN V™", Recall that the divisor monoid of C; is of the form
0o (=) = O} (—) x Nlog(p,), where we write log(p,) for the element p, considered
additively. We put

Oge (=) = Ogo(—) x Nlog(p,) log(©),

~

where log(p,) log(©) is just a formal symbol. We have a natural isomorphism OF_ (—) —

OZo(—). Then, the monoid Ope(—) determines a p,-adic Frobenioid

C@
whose base category is D := D). Note also that log(p,)log(©) determines a splitting
Spl(z of CS. We have a natural equivalence CZ = CE@ of categories, which sends splz to
Spl(z, hence, we have an isomorphism

]—Z(: (Cg,splz)) 5 }"f = (Cf,splg)
of split pre-Frobenioids.
(3) (V™) Take v € V™. Recall that the image ®¢; of spl, of the split monoid (O&, spl,)

is isomorphic to Rxo. We write log(p,) € ®¢- for the element p, considered additively
(See Section 0.2 for p, with Archimedean v). We put

Do := R log(py) log(©),
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where log(p,) log(8) is just a formal symbol. We also put O, := (O )*, and O :=
OCXF. Then, we obtain a split pre-Frobenioid B B B

(€9, spl?),

such that O™ (CY) = O X ®co. We have a natural equivalence C, Cy of categories,

=~
which sends spl’, to spl hence, we have an isomorphism (CJ, s Z) = (C2, spl(;) of split
pre-Frobenioids, and an 1somorphlsm

Fo(=(C,Dl,spl))) = FO = (C2, DY, splY)

of triples, where we put D := D! .

(4) (Global Realified with Localisations) Let C!_, be the global realified Frobenioid con-
sidered in Definition 10.4. For each v € V.4, let v denote the corresponding element
under the bijection V= V,,.q4. Put

q)cw = q)c\rgod . log(g),

theta
where log(0) is just a formal symbol. This monoid ®ey-  determines a global realified
Frobenioid

Ctheta
with a natural equivalence C!t | = Cl} ..., of categories and a natural bijection Prime(C}}.,) —
Viod- For each v € Vyoq, the element log’, ,(p,) € e C Per determines an el-

ement log". . (p,) log(©) € ®¢r , C P . As in the case where C We have the

natural restriction functor

mod>
eR

Ctheta —C

for each v € V. This is determined, up to isomorphism, by the isomorphism

gl. to loc. T 108e(p) log(Q) v e Ve,

P v Pro 108104(P0)108(8) 2§ gy (py) 0Es(@) o ybad
) [Ko:(Fnoa)o] 10824 ) o= =

of topological monoids, where logg(p,)log(©) € (I>R denotes the element determined
by logg(p,) for v € VE°4 and logq,(@ ), loge(py), ~and logq,( ) denote the element
determined by © , p,, and q respectively for v € V" (Note that logq,(@ ) is not a

formal symbol). Note that for any v € V, the localisation homomorphisms p, and ,0(;
are compatible with the natural equivalences Cy g = Ciepas and Cy = C2:

“mod—theta”

log;lod (pv) i log;od (pv) IOg (Q)

] :

1 l 1
o] 080 (Po) 25 atony 1080(P2) 108(9)

for v € V&4 and

“mod—theta”

10800 (P0) l0g 04 (P0) 10g(©)

pvl Ik

1 . logg (pw) logq’(gg)
T 1080 (P) 28 (e Tog0 (4,)
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for v € V" Let §l,... denote the quadruple
theta : (Ctheta7 Prlrne(ctheta) :> y? {ff}y€y7 {IOS}EGY)

of the global realified Frobenioid, the bijection of primes, the ©-version of model objects
F2’sin (1), (2), and (3), and the localisation homomorphisms.

Note that we have group-theoretic or category-theoretic reconstruction algorithms such as
reconstructing D} from D,. We summarise these as follows ([IUTchI, Example 3.2 (vi), Example

3.3 (iii)]):

except
v f v

/F/ = ™

I
r

up to lZ-indet. -

on Qv for veyPad \ E ! v /‘

ffl—>C§}—>D§.

(Note also the remark given just before Theorem 8.14.)

Definition 10.6. (D-version or “log-shell version”, [IUTchI, Example 3.5 (ii), (iii)]) Let
’Dlrtlod
Let ®pr , Prime(Dy,.q) = Vinod; 10gioq(pu) € Ppr , C ®pr  be the

corresponding objects under the tautologlcal equivalence Cmod = D 4. For each v € V04, let
v denote the corresponding element under the bijection V= V4.

For v € V""", we can group-theoretically reconstruct from DZ

(RZ0)w = Ruon(Gl) (= Rxo)

and Frobenius element F(G,) € (R5), by (Step 3) in Proposition 5.2 (Recall that G, =
m(D})). Put also

denotes a copy of C!"

mod*

logg (pv) = evF(Gv> (Rgo)gv

where e, denotes the absolute ramification index of K.
For v € V*° we can also group-theoretically reconstruct from the split monoid DF =

(OCDHsplZ)
(REO) - RarC<DD ( R>0)
and Frobenius element F(D}) € (RS,), by (Step 4) in Proposition 5.4. Put also

1) ¢ e

where 2 € R* is the length of the perimeter of the unit circle (Note that (R5,), has a natural
R*-module structure).
Hence, for any v € V, we obtain a uniquely determined isomorphism

logg (py ) =

gl. to loc. 1

~

poPpr o = (RSg)w  logpoq(po) = Hlogg(pg)

[Kg: (Fmod v

of topological monoids.
Let §5 denote the quadruple

(IDIF

mod>

Prlme(Dlr;od> — y> {D£}£€Y7 {pQD}EEY)
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of the global realified Frobenioid, the bijection of primes, the D" -version of model objects DZ ’s,
and the localisation homomorphisms.

10.3. ©-Hodge Theatre, and Prime-Strips.

Definition 10.7. (©-Hodge theatre, [[UTchI, Definition 3.6]) A ©@-Hodge theatre is a col-
lection
"HT® = ({'E }oev, "Bimoa):
where
(1) (local object) Tév is a pre-Frobenioid (resp. a triple ('C,, D,, 'k,)) isomorphic to the
model F (resp. isomorphic to the model triple F = (Cy; Dy, ky)) in Definition 10.2 (4)
for v € V™ (resp. for v € V*°). We write D,, D], D9, 1F 179 (resp. 1D, 1DY,
T]:£ 7T]—"§ ) for the objects algorithmically reconstructed from T]—" correspondlng to the

model objects (i.e., the objects without T).
(2) (global realified object with localisations) T§" . is a quadruple

( Cmod? PI‘II’HG(TCmOd) :> V {TfF}UGV7 {TpU}UEV)

where C!. | is a category equivalent to the model C',_, in Definition 10.4, Prime('C! ) =

V is a bijection of sets, T}"g is the reconstructed object from the above local data Té "

gl. to loc.
and Tp, : Dicr - (IJTCF is an isomorphism of topological monoids (Here 'C! is

the reconstructed object from the above local data T]—" ) such that there exists an iso-
morphism of quadruples '§" = F- .. We write Tﬁtheta, 55 for the algorithmically

reconstructed object from TS‘;md corresponding to the model objects (i.e., the objects
without T).

Definition 10.8. (©-link, [[UTchI, Corollary 3.7 (i)]) Let "HT® = ({T.E }oev, 1§hoa), HT® =
({i]: Yoew, F§E 1) be ©-Hodge theatres (with respect to the fixed initial O-data). We call the

full poly-isomorphism (See Section 0.2)
full poly

~

1-‘s,?{‘nheta — 1'S;mod

the ©-link from "HT to ¥HT (Note that the full poly-isomorphism is non-empty), and we
write it as
HTe 2 T,
and we call this diagram the Frobenius-picture of ®-Hodge theatres ([[UTchl, Corollary
3.8]). Note that the essential meaning of the above link is
‘@l = gt

for v € VP4,

Remark 10.8.1. ([IUTchI, Corollary 3.7 (ii), (iii)])
(1) (Preservation of D) For each v € V, we have a natural composite full poly-isomorphism

full poly
TD’— TD@) AN iDZ’

where the first isomorphism is the natural one (Recall that it is tautological for v € yeeod,
and that it is induced by (—) x Y for v € VP4) | and the second full poly-isomorphism

is the full poly-isomorphism of the ©-link. Hence, the mono-analytic base ‘”DZ 7 s
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preserved (or “shared”) under the ©-link (i.e., D', is horizontally coric). Note that the
holomorphic base “D,” is not shared under the ©-link (i.e., ©-link shares the underlying
mono-analytic base structures, but not the arithmetically holomorphic base structures).
(2) (Preservation of O*) For each v € V, we have a natural composite full poly-isomorphism

full poly
OTXC; = OTXC? = Oixcg,

where the first isomorphism is the natural one (Recall that it is tautological for v € ygood,
and that it is induced by (—) x zv for v € V"), and the second full poly-isomorphism
is induced by the full poly—isomofphism of the ©-link. Hence, “chg 7 is preserved (or
“shared”) under the ©-link (i.e., O& is horizontally coric). Note also that the value
group portion is not shared under the ©-link.

We can visualise the “shared” and “non-shared” relation as follows:

D, |- - >| (1D, ~ 0, ) = ("D} ~ 0, ) |[< - =Dy

We call this diagram the étale-picture of ®-Hodge theatres ([IUTchI, Corollary 3.9]). Note
that, there is the notion of the order in the Frobenius-picture (i.e., (=) is on the left, and *(—)
is on the right), on the other hand, there is no such an order and it has a permutation symmetry
in the étale-picture (See also the last table in Section 4.3).

This ©-link is the primitive one. We will update the ©-link to ©*#-link, ©zh-link (See

Corollary 11.24), and Oy fp-link (resp. ©;f-link) (See Definition 13.9 (2)) in inter-universal
Teichmiiller theory:

“Hodge-Arakelov theoretic eval.” “log -link”
% d AN

©X* _link

©-link jote O &p-link (resp. ©pf-link).

“theta fct.——theta values”

and OX—O0*/u

Definition 10.9. ([IUTchI, Definition 4.1 (i), (iii), (iv) Definition 5.2 (i), (ii), (iii), (iv)])
(1) (D:holomorphic, base) A holomorphic base-prime-strip, or D-prime-strip is a
collection

D= {TDQ}QGY
of data such that D, is a category equivalent to the model D, in Definition 10.2 (1)
for v € V", and "D, is an Aut-holomorphic orbispace isomorphic to the model D,
in Definition 10.2 (1). A morphism of D-prime-strips is a collection of morphisms
indexed by V between each component.
(2) (D" : mono-analytic, base) A mono-analytic base-prime-strip, or D" -prime-strip
is a collection
D" = {'D, }ev
of data such that D! is a category equivalent to the model D! in Definition 10.2 (2) for
v € V™" and D! is a split monoid isomorphic to the model D! in Definition 10.2 (2).
A morphism of D" -prime-strips is a collection of morphisms indexed by V between
each component.
(3) (F :holomorphic, Frobenioid-theoretic) A holomorphic Frobenioid-prime-strip, or
JF-prime-strip is a collection

TS = {T}—y}yey
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of data such that TF, is a pre-Frobenioid isomorphic to the model C, (not F ) in

Definition 10.2 (3) for v € V** and 'F, = (1C,,D,, x,) is a triple of a category,
an Aut-holomorphic orbispace, and a Kummer structure, which is isomorphic to the
model £ in Definition 10.2 (3). An isomorphism of F-prime-strips is a collection
of isomorphisms indexed by V between each component.

(4) (F" :mono-analytic, Frobenioid-theoretic) A mono-analytic Frobenioid-prime-strip,
or F-prime-strip is a collection

TS'_ = {Tf;';:}yey
of data such that T]—"g is a g-split pre-Frobenioid (resp. split pre-Frobenioid) isomorphic
to the model F! in Definition 10.2 (6) for v € V" (resp. v € V&4 N Y™, and

T.7:£ = (TCQF , TDZ:TspIZ) is a triple of a category, a split monoid, and a splitting of C,,
which is isomorphic to the model F, in Definition 10.2 (6). An isomorphism of F"-
prime-strips is a collection of isomorphisms indexed by V between each component.
(5) (F" :global realified with localisations) A global realified mono-analytic Frobenioid-
prime-strip, or F"-prime-strip is a quadruple
1" = ('c", Prime("c") = V. 15", {Tpu}ev),
where TC" is a pre-Frobenioid isomorphic to the model C!, ; in Definition 10.4, Prime(TC")

gl. to loc.
= V is a bijection of sets, 7§ is an F"-prime-strip, and Tp, : ®ior, — (I)]ECZ is an
isomorphism of topological monoids (Here, TC' is the object reconstructed from TF),
such that the quadruple T§" is isomorphic to the model §' ; in Definition 10.4. An
isomorphism of F'"-prime-strips is an isomorphism of quadruples.

(6) Let Autp(—), Isomp(—, —) (resp. Autp-(—), Isomp-(—, —) resp. Autz(—), Isomz(—, —)
resp. Autz(—), Isomzr (—, —) resp. Autz(—), Isomz+(—, —)) be the group of auto-
morphisms of a D-(resp. D" -, resp. F-, resp. F -, resp. JF'-)prime-strip, and the set
of isomorphisms between D-(resp. D"-, resp. F-, resp. F' -, resp. F'-)prime-strips.

Remark 10.9.1. We use global realified prime-strips with localisations for calculating (group-
theoretically reconstructed) local log-volumes (See Section 5) with the global product formula.
Another necessity of global realified prime-strips with localisations is as follows: If we were
working only with the various local Frobenioids for v € V (which are directly related to com-
putations of the log-volumes), then we could not distinguish, for example, p"Op, from Op,
with m € Z for v € V", since the isomorphism of these Frobenioids arising from (the updated
version of) ©-link preserves only the isomorphism classes of objects of these Frobenioids. By
using global realified prime-strips with localisations, we can distinguish them (c¢f. [[UTchIII,

(xii) of the proof of Corollary 3.12]).

Note that we can algorithmically associate D" -prime-strip D" to any D-prime-strip D and
so on. We summarise this as follows (See also [ITUTchl, Remark 5.2.1 (i), (ii)]):

THTO LE D

LT

e L -
Lemma 10.10. ([IUTchI, Corollary 5.3, Corollary 5.6 (i)])

(1) Let 'F®, 2F® (resp. \F®, 2F®) be pre-Frobenioids isomorphic to the global non-realifed
Frobenioid TF® (resp. TF®) in Example 9.5 , then the natural map

Isom(* F¥ 2 F®) — Isom(Base(' F¥), Base(2F¥))
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(resp. Isom('F®,°F®) — Isom(Base(' ), Base(*F*)) )
18 bijective.
(2) For F-prime-strips '§, *F, whose associated D-prime-strips are 1D, D respectively, the
natural map

Isomz('F,%F) — Isomp('D,?D)
15 bijective.
(3) For F"-prime-strips 1§", 23", whose associated D" -prime-strips are 1D, 2D respec-
tively, the natural map

Isomz (*F,%%") — Isomp- (*D7,20")
15 bijective.
(4) Forwv € yPhad et ]:-"v be the tempered Frobenioid in Example 8.8, whose base category is
D, then the natural map

Aut(£)) — Aut(D,)

18 bijective.
(5) For Th-Hodge theatres "HT®, *HT®, whose associated D-prime-strips are *D~, *D
respectively, the natural map
Isom(*HT®,2HT®) — Isomp('D,*D.)
15 bijective.
Proof. (1) follows from the category-theoretic construction of the isomorphism M®(TD®) =
™M® in Example 9.5. (2) follows from the mono-anabelian reconstruction algorithms via Belyi
cuspidalisation (Corollary 3.19), and the Kummer isomorphism in Remak 3.19.2) for v € V™",
and the definition of the Kummer structure for Aut-holomorphis orbispaces (Definition 4.6) for

v € V¥ (3) follows from Proposition 5.2 and Proposition 5.4. We show (4). By Theorem 3.17,
automorphisms of D, arises from automorphisms of X " thus, the surjectivity of (4) holds. To

show the injectivity of (4), let a be in the kernel. Then, it suffices to show that o induces
the identity on the rational functions and divisor monoids of £ . By the category-theoretic

reconstruction of cyclotomic rigidity (See isomorphism (Cyec. Rig. Frd)) and the naturality of
Kummer map, (which is injective), it follows that o induces the identity on the rational functions
of £ " Since a preserves the base-field-theoretic hull, « also preserves the non-cuspidal portion

of the divisor of the Frobenioid theoretic theta function and its conjugate (these are preserved
by «, since we already show that « preserves the rational function monoid of év), hence «

induces the identity on the non-cuspidal elements of the divisor monoid of £ - Similary, since

any divisor of degree 0 on an elliptic curve supported on the torsion points admits a positive
multiple which is principal, it follows that « induces the identityo on the cuspidal elements of
the divisor monoid of £ as well. by considering the cuspidal portions of divisor of a suitable

rational functions (theseiare preserved by «, since we already show that « preserves the rational
function monoid of £ v). (Note that we can simplify the proof by suitably adding £ , more data,

and considering the isomorphisms preserving these data. See also the remark given just before
Theorem 8.14 and [IUTchl, Remark 3.2.1 (ii)]). (5) follows from (4). O

Remark 10.10.1. ([IUTchI, Remark 5.3.1]) Let '§, 2§ be F-prime-strips, whose associated
D-prime-strips are D, 2 respectively. Let

oD =29
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be a morphism of D-prime-strips, which is not necessarily an isomorphism, such that all of the
v(€ V&°°Y)-components are isomorphisms, and the induced morphism ¢~ : '®~ — 2" on the
associated D" -prime-strips is also an isomorphism. Then, ¢ uniquely lifts to an “arrow”

Y F =%,

which we say that 9 is lying over ¢, as follows: By pulling-back (or making categorical fiber
products) of the (pre-)Frobenioids in 2§ via the various v(€ V)-components of ¢, we obtain the
pulled-back F-prime-strip ¢*(*F) whose associated D-prime-strip is tautologically equal to 1®.
Then, this tautological equality uniquely lifts to an isomorphism '§ = ¢*(2F) by Lemma 10.10

(2):
1§ Y g (2F)

N

1% g

Definition 10.11. ([IUTchI, Definition 4.1 (v), (vi), Definition 6.1 (vii)]) Let "D® (resp. 'D%%)
is a category equivalent to the model global object D® (resp. D°%) in Definition 10.3.

(1) Recall that, from "D® (resp. TD®%), we can group-theoretically reconstruct a set V(ID®)
(resp. V(ID®%)) of valuations corresponding to V(K) by Example 9.5 (resp. in a slim-
ilar way as in Example 9.5, ¢.e., firstly group-theoretically reconstructing an isomorph
of the field F' from m; (FD®*) by Theorem 3.17 via the ©-approach (Definition 9.4), sec-
ondly group-theoretically reconstructing an isomorph V(fD®%) of V(F) with 7, (fD®%)-
action, by the valuations on the field, and finally consider the set of 7 ("D®%)-orbits of
V('Do)).

For w € V(ID®)*¢ (resp. w € V('D*)a¢) by Proposition 4.8 and Lemma 4.9,
we can group-theoretically reconstruct, from "D® (resp. "D®%), an Aut-holomorphic
orbispace

C("P®,w) (resp. X("D%, w) )

corresponding to C,, (resp. X,,). For an Aut-holomorphic orbispace U, a morphism
U — D (resp. U— ID* )

is a morphism of Aut-holomorphic orbispaces U — C("D®, w) (resp. U — X("D°F, w))
for some w € V(ID?)2 (resp. w € V(IDoF)are),
(2) For a D-prime-strip "D = {ID,},cv, a poly-morphism

ip PN ipe (resp. 1D PO fpos )

is a collection of poly-morphisms {D, poly D} ey (resp. {TD, PO tpost }oev) indexed
by v € V (See Definition 6.1 (5) for v € V" and the above definition in (1) for v € V*°).

(3) For a capsule YD = {*D}.cp of D-prime-strips and a D-prime-strip "D, a poly-
morphism

Egy P tpo (resp. £ poly D% resp. F® POt )
is a collection of poly-morphisms {*D poly D%} eer (resp. {¢D poly D%}, Tesp.
(D 2 1D ).

Definition 10.12. ([IUTchII, Definition 4.9 (ii), (iii), (iv), (v), (vi), (vii), (viii)]) Let *§" =
{*F} }vev be an F"-prime-strip with associated D -prime-strip *07 = {#D },cv.
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(1) Recall that i]-'; is a ug-split pre-Frobenioid (resp. a split pre-Frobenioid, resp. a triple
(icg, iDg,isplZ)) for v € V" (resp. v € V&4 N V™" resp. v € V7). Let A, be a
universal covering pro-object of ¥D! | and put *G := Aut(*A,,) (hence, *G is a profinite

group isomorphic to G,,). For v € V" (resp. v € V& q Y™, let
01 (*Ax) (C 07 (FA))
denote the submonoid generated by pg(*As) and the image of the splittings on i]—"f

v

(resp. the submonoid determined by the image of the splittings on i]—"g ), and put
0% (1A) = O (1 A) [1m(PA) (resp. 0" (PA) = O (FAL) ),
and
OP 1 AL) = O"(FAL) x O (FAy) (resp. O™ *F(FAL) == O"(FAL) x O**(*AL) ).

These are equipped with natural *G-actions.

Next, for v € V™", we can group-theoretically reconstruct, from *G, ind-topological
modules *G ~ O*(}G), *G ~ O**(}G) with G-action, by Proposition 5.2 (Step 1)
(See Definition 8.5 (1)). Then, by Definition 8.5 (2), there exists a unique Z*-orbit of

isomorphisms
poly

~

WL 0(M@) S 0% (YA

of ind-topological modules with *G-actions. Moreover, 5!

v

induces an Isomet-orbit

poly

~

ifszx“ OGS O*M(HAL)
of isomorphisms.

For v € V*" the rational function monoid determined by O™*#(*A )#? with G-
action and the divisor monoid of ¥ !, determine a model Frobenioid with a splitting. The
Isomet-orbit of isomorphisms & *# determines a x y-Kummer structure (Definition 8.5
(2)) on this model Frobenioid. For v € V" (resp. v € V*), let

i]:EHXu

denote the resulting split-x yu-Kummer pre-Frobenioid (resp. the collection of data ob-
tained by replacing the split pre-Frobenioid *C, in F = (}C,*Df, *spl}) by the in-
ductive system, indexed by the multiplicative monoid Ns;, of split pre-Frobenioids ob-
tained from *C! by taking the quotients by the N-torsions for N € N>;. Thus, the units
of the split pre-Frobenioids of this inductive system give rise to an inductive system
cee o OFIN(Ay) = o OFPNM(A L) — - -+ and a system of compatible surjections
{(iDZ )¢ = O*FN(Ax) tvens, (which can be regard as a kind of Kummer structure on
FPFE»>1) for the split monoid #*D!), and, by abuse of notation,

i]:EF

for the split-x-Kummer pre-Frobenioid determined by the split pre-Frobenioid if£ with
the x-Kummer structure determined by imzx.
(2) Put
igl—ww = {ijﬂ_»XM}veV-
Let also
B = {0F, ey (vesp. P§ = {VF) M ey )

denote the collection of data obtained by replacing the various split pre-Frobenioids of
15T (resp. *F™*#) by the split Frobenioid with trivial splittings obtained by considering
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the subcategories determined by morphisms ¢ with Div(¢) = 0 (i.e., the “units” for
v € V™") in the pre-Frobenioid structure. Note that *F/* (resp. *F*#) is a split-x-
Kummer pre-Frobenioid (resp. a split-x y-Kummer pre-Frobenioid).

An F™*-prime-strip (resp. an F"*H-prime-strip, resp. an F">*H-prime-strip) is
a collection

F = F ey (resp. TF = (L ey, resp. T = {F ey )

(4)

of data such that *F! > (resp. *JF! *# resp. *JF. »**) is isomorphic to ¥F* (resp. *F!*#,
resp. FF®*H) for each v € V. An isomorphism of F"*-prime-strips (resp. Frx.
prime-sjcrips, resp. FX-prime-strips) is a collection of isomorphisms indexed by V
between each component.

An F™XHr_prime-strip is a quadruple

g = (et Prime(*clk) SV, g {*po}oev)

where *C" is a pre-Frobenioid isomorphic to the model C!, , in Definition 10.4, Prime(*C")
gl. to loc.

= V is a bijection of sets, *§™*#* is an F>*#-prime-strip, and *p, : Pcr-, —> DT

is an isomorphism of topological monoids (Here, *CZ is the object reconstructed from
*]-Q’X“), such that the quadruple *§" is isomorphic to the model §- , in Definition 10.4.

An isomorphism of F"™*K_prime-strips is a collection of isomorphisms indexed by
V between each component.

Let Autzrx (=), Isomzrx (—, —) (resp. Autz-xu(—), [somz-xu(—, —) resp. Autzexu(—),
Isomzrexu(—, —) resp. Autzexu(—), Isomzrex.(—, —)) be the group of automorphisms
of an F*-(resp. F XK~ resp. F'»*H - resp. F'™*H-)prime-strip, and the set of isomor-
phisms between F'*-(resp. F'*H - resp. F »*F-, resp. F'>*I-)prime-strips.

Remark 10.12.1. In the definition of *F/*>*# for v € V*° in Definition 10.12, we consider an
inductive system. We use this as follows: For the crucial non-interference property for v € V",
we use the fact that the p,-adic logarithm kills the torsion pu(—) C O*(—). However, for v €
V*¢, the Archimedean logarithm does not kill the torsion. Instead, in the notation of Section 5.2,
we replace a part of log-link by &~ — (O7)® — (O7)®/un(k) and consider k™ as being
reconstructed from (Of)#/un(k), not from (O} )P, and put weight N on the corrsponding
log-volume. Then, there is no problem. See also Definition 12.1 (2), (4), Proposition 12.2 (2)
(cf. [[UTchIII, Remark 1.2.1]), Proposition 13.7, and Proposition 13.11.

Definition 10.13. ([IUTchIII, Definition 2.4])

(1)

Let

13" = {ifg}yey
be an F"-prime-strip. Then, by Definition 10.12 (1), for each w € V", the splittings
of the pg-split-Frobenioid *F}, determine submonoids O*+(—) C O(—) and quotient
monoids O (=) = O* (=) = O+(=)/O*(=). Similarly, for each w € V&°°¢, the splitting
of the split Frobenioid *#}, determines a submonoid O+(—) C O”(—). In this case, we
put O” (=) := O+(-). Let

B = (A ey, B = (A hey

denote the collection of data obtained by replacing the ug-split/split Frobenioid portion
of each *F] by the pre-Frobenioids determined by the subquotient monoids O+(—) C
O" (=) and O™ (—), respectively.
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An FrL-prime-strip (resp. an F>-prime-strip) is a collection

*SFJ_ — {*fgl}gey (resp. *S;Fb — {*f£>}y€y )
of data such that *F,+ (resp. *F/*) is isomorphic to 75+ (resp. *F*) for ecach v € V.
An isomorphism of F"1-prime-strips (resp. F>-prime-strips) is a collection of

isomorphisms indexed by V between each component.
An F"l-prime-strip (resp. F'”-prime-strip) is a quadruple

T = (*C", Prime(*C") SV, *F, {*putuev)

(resp. *SIF> — (*Clk, Prime(*C'F) :> y’ *S;F>’ {*pg}yey) )
where *C" is a pre-Frobenioid isomorphic to the model C!, , in Definition 10.4, Prime(*C")

=V is a bijection of sets, *F+ (resp. *F *) is an F"t-prime-strip (resp. F >-prime-
gl. to loc.
strip), and *p, : Peor, — <I>]§(35 is an isomorphism of topological monoids (Here,

*C! is the object reconstructed fromi"‘]:gL (resp. *F'*)), such that the quadruple *F"+

(resp. *F™) is isomorphic to the model F_, in Definition 10.4. An isomorphism of
F'L_prime-strips (resp. F'”-prime-strips) is a collection of isomorphisms indexed
by V between each component.

10.4. Multiplicative Symmetry X: ONF-Hodge Theatres and NF-, ©O-Bridges. We
begin constructing the multiplicative portion of full Hodge theatres.

Definition 10.14. ([I[UTchI, Definition 4.1 (i), (ii), (v)]) Let "® = {ID,},ev be a D-prime-

strip.

(1)

For v € V" (resp. v € V&° N V"), we can group-theoretically reconstruct in a
functorial manner, from 71 (7D,), a tempered group (resp. a profinite group) (2 71 ("D,))
corresponding to C, by Lemma 7.12 (resp. by Lemma 7.25). Let

D
denote its B(—)°. We have a natural morphism D, — "D, (This corresponds to X L
C, (resp. g — C,)). Similarly, for v € V™, we can algorithmically reconstruct, in

a functorial manner, from D, an Aut-holomorphic orbispace TQE corresponding to C'
by translating Lemma 7.25 into the theory of Aut-holomorphic spaces (since g admits

a K,-core) with a natural morphism D, — 'D,. Put
TQ = {TQQ}QEY'

Recall that we can algorithmically reconstruct the set of conjugacy classes of cuspidal
decomposition groups of 7, ("D,) or 7, (fD,) by Corollary 6.12 for v € V" by Corol-
lary 2.9 for v € V&° N V™" and by considering mo(—) of a cofinal collection of the
complements of compact subsets of the underlying topological space of ™D, or 1D, for
v € V*°. We say them the set of cusps of "D, or D,

For v € V, a label class of cusps of "D, is the set of cusps of 1D, lying over a
single non-zero cusp of "D, (Note that each label class of cusps consists of two cusps).
We write -

LabCusp("D,)
for the set of label classes of cusps of ™D,. Note that LabCusp("D,) has a natural
[F-torsor structure (which comes from the action of F; on @ in the definition of X
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in Section 7.1). Note also that, for any v € V, we can algorithmically reconstruct a
canonical element
Tﬂv € LabCusp('D,)

corresponding to €, in the initial ©-data, by Lemma 7.16 for v € V" Lemma 7.25 for

v € Ve N VY™ and a translation of Lemma 7.25 into the theory of Aut-holomorphic
spaces for v € V¥,
(Note that, if we used "D, (i.e., “C,”) instead of 'D, (i.e., “gv”) for v € V&I
V"*", then we could not reconstruct Tnv. In fact, we could make the action of the
automorphism group of "D, on LabCusp transitive for some v € V°° 0 V™" by using
Chebotarev density theorem (i.e., by making a decomposition group in Gal(K/F) <
GL2(IF;) to be the subgroup of diagonal matrices with determinant 1). See [IUTchI,
Remark 4.2.1].)
(3) Let TD? is a category equivalent to the model global object D® in Definition 10.3. Then,
by Remark 2.9.2, similarly we can define the set of cusps of "D® and the set of label

classes of cusps
LabCusp("D®),

which has a natural F;*-torsor structure.
From the definitions, we immediately obtain the following proposition:

Proposition 10.15. ([IUTchI, Proposition 4.2]) Let 7® = {ID,},ev be a D-prime-strip. Then
for any v,w € V, there exist unique bijections

LabCusp("D,) = LabCusp('D,)
which are compatible with the F; -torsor structures and send the canonical element Tﬂv to the

canonical element Tﬂw' By these identifications, we can write

LabCusp("D)

for them. Note that it has a canonical element which comes from Tﬂv 's. The F}-torsor structure
and the canonical element give us a natural bijection -

LabCusp("®) & Ff.
Definition 10.16. (Model D-NF-Bridge, [IUTchl, Example 4.3]) Let
Aut (Ck) C Aut(Cyg) = Out(Ilg, ) = Aut(D®)
denote the subgroup of elements which fix the cusp € (The firs isomorphisms follows from

Theorem 3.17). By Theorem 3.7, we can group-theoretically reconstruct Ax from Il¢, . We
obtain a natural homomorphism

Out(Ilg, ) — Aut(AY ® F)/{£1},

since inner automorphisms of Il act by multiplication by 41 on E[l]. By choosing a suitable

basis of A% @ F;, which induces an isomorphism Aut(A%® ® F;)/{+1} = GLy(F;)/{£1}, the
images of Aut,(Cy) and Aut(Cy) are identified with the following subgroups

{6 5)} {5 2)} cmicn. sty

of GLy(F,)/{£1}, where Im(Gp, . ,) C GLo(F,)/{£1} is the image of the natural action of

— mod
Gp,., = Gal(F/Fyoa) on Ex[l]. Put also

VA = Aut () -V C VB .= Aut(Cp) -V € V(K.
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Hence, we have a natural isomorphism
Aut(Cr)/Aut(Cx) = FF,

thus, VP is the Fj-orbit of V*". By the above discussions, from 7;(D?), we can group-
theoretically reconstruct
Aut (D) C Aut(D°)
corresponding to Aut.(Cx) C Aut(Cf) (See also Definition 10.11 (1), (2)).
For v € V"™ (resp. v € VE°Y N V™ resp. v € V™), let

gay @ Dy — D
denote the natural morphism correponding to év — O, = Ok (resp. & — C, = C, resp.
a tautological morphism D, = X — C, = C(D?,v)) (See Definition 10.11 (1)). Put

N = Aut (D?) o $XF o Aut(D,) : D, X5 D°.

Let ©; = {Dy, tvev be a copy of the tautological D-prime-strip {D,},ev for each j € F/
(Here, v; denotes the pair (j,v)). Put

poly
M= (0 ey 1 Dy P DO

(See Definition 10.11 (2)). Since ¢}F is stable under the action of Aut(D®), we obtain a
poly-morphism
gb;-\]F := (action of j) o o) : ®; poly D°,
by post-composing a lift of j € F/ = Aut(D®)/Aut (D?) to Aut(D®). Hence, we obtain a
poly-morphism
ol
¢NF = {Q%\IF}ge]Fl* P Dy = {Qj}je]Ffé = e

*

from a capsule of D-prime-strip to the global object D® (See Definition 10.11 (3)). This is
called the model base-(or D-)NF-bridge. Note that ¢}" is equivariant with the natural
poly-action (See Section 0.2) of F;* on D® and the natural permutation poly-action of F} (via
capsule-full poly-automorphisms (See Section 0.2)) on the components of the cupsule ©,. In
particular, we obtain a poly-action of F} on (D, D, ¢}").

Definition 10.17. (Model D-O-Bridge, [IUTchl, Example 4.4]) Let v € V", Recall that we
have a natural bijection between the set of cusps of C, and |F;| by Lemma 7.16. Thus, we can
put labels (€ |F;|) on the collections of cusps of X, X , by considering fibers over C',. Let

M— € XQ(‘[(E)

denote the unique torsion point of order 2 such that the closures of the cusp labelled 0 € |F|
and p— in the stable model of X, over Ok, intersect the same irreducible component of the
special fiber (i.e., “—1” in G'&/ q%v). We call the points obtained by translating the cusps
labelled by j € [F;| by p— with respect to the group scheme structure of E,(D X,) (Recall that
the origin of £, is the cusp labelled by 0 € [IF;|) the evaluation points of X, labelled by
J. Note that the value of QU in Example 8.8 at a point of zv lying over an evaluation point
labelled by j € |Fy| is in the pg-orbit of -

2

J
= JEZ such that j=j in |F]
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_22/2

.. j ; 94 . —j2/2
by calculation © (\/ —qi) = (-1iq@= V-1 2§@(\/ —1) = qyi / in the notation of Lemma 7.4

(See the formula ©(¢Z*U) = (=1}~ Y207 ~28(U7) in Lemma 7.4). In particular, the points of
X ) lying over evaluation points of X, are all defined over K,, by the definition of X L, X,

.. (covering map,@) ..
(Note that the image of a point in the domain of ¥’ — Y xAlisrational over K,, then
the point is rational over K,. See also Assumption (5) of Definition 7.13). We call the points in
X(K,) lying over the evaluation points of X, (labelled by j € |F;|) the evaluation points of

X (labelled by j € [F[). We also call the sections G, = II,(= ILx ) given by the evaluation

points (labelled by j € |F;|) the evaluation section of II, — G, (labelled by j € |F|).
Note that, by using Theorem 3.7 (elliptic cuspidalisation) and Remark 6.12.1 (together with
Lemma 7.16, Lemma 7.12), we can group-theoretically reconstruct the evaluation sections from
(an isomorph of) II,.
Let ©- = {D- , }wev be a copy of the tautological D-prime-strip {Dy, }wev. Put
62 =Aut(Ds,) o (B"P(IL,)" "5 B(K,)" """ BemR(IL,)) o Aut(D,,)

— labelled by j
poly
: Dy, 8D,

Note that the homomorphism m1(D,,) — m1(D>,) induced by any constituent of the poly-
morphism gbg (which is well-defined up to inner automorphisms) is compatible with the re-
spective outer actions on T (Dy,) and 7% (Ds ) (Here 71 denotes the geometric portion of
71, which can be group-theoretically reconstructed by Lemma 6.2) for some outer isomorphism
m(Dy,) = 71°(D>,) (which is determined up to finite ambiguity by Remark 6.10.1). We
say this fact, in short, as gby@]_ is compatible with the outer actions on the respective geometric

tempered fundamental groups.

Let v € V&°°4, Put
full poly

¢y Dy, = D,

Yy

to be the full poly-isomorphism for each j € F},

ol
99 = {qsg_}ﬂ D, D

and |
02 = {07 }jers + Ds 7 D

This is called the model base-(or D-)®-bridge (Note that this is not a poly-isomorphism).
Note that ©, has a natural permutation poly-action by F/, and that, on the other hand, the
labels € |F;| (or € LabCusp(®-)) determined by the evaluation sections corresponding to a
given j € F} are fixed by any automorphisms of ©- .

Definition 10.18. (D-NF-Bridge, D-O-Bridge, and D-X-Hodge Theatre, [[UTchl, Definition
4.6])

(1) A base-(or D-)NF-bridge is a poly-morphism
N g, POt o,

where "D? is a category equivalent to the model global object D, and '® ; is a cupsule of
D-prime-strips indexed by a finite set .J, such that there exist isomorphisms D® = D,
D, = D, conjugation by which sends ¢}F — T¢X. An isomorphism of D-NF-

~

bridges <T¢§F 1D, poly TD@> — (iqbl:F 1D poly iD@)) is a pair of a capsule-full
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capsule-full poly

~

poly-isomorphism D — 1D, and an Aut ("D®)-orbit (or, equivalently, an
poly
Aut (*D®)-orbit) TD® = +¥D® of isomorphisms, which are compatible with T¢Y¥ pIF.
We define compositions of them in an obvious manner.
(2) A base-(or D-)O-bridge is a poly-morphism

poly
Tgbg : T:DJ — Jr:D>7

where D is a D-prime-strip, and 7D is a cupsule of D-prime-strips indexed by a
finite set J, such that there exist isomorphisms ®s = "D., D, = ', conjugation by
which sends ¢2 — T¢9. An isomorphism of D-O-bridges (qu;? 1D, poly T@>> =

capsule-full poly

~

<1gb§3 D poly i®>> is a pair of a capsule-full poly-isomorphism D —
full poly
¥D 7 and the full-poly isomorphism "®. = *D., which are compatible with T¢2,
t¢9. We define compositions of them in an obvious manner.
(3) A base-(or D-)ONF-Hodge theatre (or a D-X-Hodge theatre) is a collection

PR X" 169
fHTPHE = (1D & 19, 51D, ),

where ToNF is a D-NF-bridge, and T¢9 is a D-O-bridge, such that there exist isomor-
phisms D® = TD° D, = 1D, D, = 1D, conjugation by which sends ¢ s TgNF
2 — T¢9. An isomorphism of D-X-Hodge theatres is a pair of isomorphisms of
D-NF-bridges and D-0O-bridges such that they induce the same bijection between the
index sets of the respective capsules of D-prime-strips. We define compositions of them
in an obvious manner.

Proposition 10.19. (Transport of Label Classes of Cusps via Base-Bridges, [ITUTchl, Propo-
GNF t 0
sition 4.7]) Let THTP™ = (fD° & D, Bt 1D.) be a D-K-Hodge theatre.

(1) The structure of D-O-bridge 1¢9 at v € VP involving the evaluation sections deter-
mines a bijection

fx : J S FF.

(2) For j e J, ve V" (resp. v e Y¥) we consider the various outer homomorphisms
ﬂl(TDQj) — 71 (1D®) induced by the (v, j)-portion TQSQNjF : TDQ], — D@ of the D-NF-bridge
TN, By considering cuspidal inertia subgroups of m ("D®) whose unique subgroup of
index | is contained in the image of this homomorphism (resp. the closures in m(TD®)
of the images of cuspidal inertia subgroups of 7Tl<TDyj) (See Definition 10.14 (2) for
the group-theoretic reconstruction of cuspidal inertia subgroups for v € V%) these
homomorphisms induce a natural isomorphism

LabCusp('D®) & LabCusp(TDyj)

of Fj-torsors. These isomorphisms are compatible with the isomorphism LabCusp(T'Dyj) =

LabCusp(Tij) of Bf -torsors in Proposition 10.15 when we vary v € V. Hence, we ob-
taine a natural isomorphism

LabCusp("D®) & LabCusp("®;)

of Fj -torsors.
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Next, for each j € J, the various v(€ V )-portions of the j-portion Tqﬁj@ 1D, —» 1D,
of the D-O-bridge ¢S determine an isomorphism

LabCusp('®;) = LabCusp("D-.)

of ¥ -torsors. Therefore, for each j € J, by composing isomorphisms of F} -torsors
obtained via T¢J", 169, we get an isomorphism

f¢kC : LabCusp(*D®) = LabCusp('D-)

of Ff -torsors, such that Tgb?c is obtained from T¢tC by the action by Tx(j) € F}.
(3) By considering the canonical elements Tﬂv € LabCusp('D,) for v’s, we obtain a unique
element -
[e] € LabCusp("D®)
such that, for each j € J, the natural bijection LabCusp(1®.) = Ff in Proposi-
tion 10.15 sends T¢°([Ye]) = Tor°("'x(j) - ['e]) = "x(j). In particular, the element
(€] determines an isomorphism

¢y + LabCusp("D®) 5 J (5 Fy)
of [ -torsors.

Remark 10.19.1. (c¢f. [IUTchl, Remark 4.5.1]) We consider the group-theoretic algorithm in
Proposition 10.19 (2) for v € V. Here, the morphism m;("D,,) — 1 ("D?) is only known up to
71 (TD?)-conjugacy, and a cuspidal inertia subgroup labelled by an element € LabCusp("D®)
is also well-defined up to 7, ("D®)-conjugacy. We have no natural way to synchronise these
indeterminacies. Let J be the unique open subgroup of index [ of a cuspidal inertia subgroup.
A non-trivial fact is that, if we use Theorem 6.11, then we can factorise J < 7 ("D®) up to
71 (TD®)-conjugacy into J — m (1D, ) up to m ("D, ,)-conjugacy and m ("D, ) = 1 (FD®) up

out out

to m (1D®)-conjugacy (i.e., factorise J & m("D®) as J — m (1D, )= ﬂl(TDO)). This can be
regarded as a partial synchmmsatwn of the indeterminacies.

Proof. The proposition immediately follows from the described algorithms. OJ
The following proposition follows from the definitions:

Proposition 10.20. (Properties of D-NF-Brideges, D-O-Bridges, D-X-Hodge theatres, [[UTchI,
Proposition 4.8])

(1) For D-NF-bridges TquF ingF the set Isom(ToLF, *¢X") is an Ff -torsor.
For D-O-bridges ¢S, *¢2, we have #Isom(TohF oNF) =

)
) For D-X-Hodge theatres THTP™ AHTP™, we have #Isom(T’HTD HAHTPH) =
) For a D-NF-bridge T¢X¥ and a D O-bridge 199, the set

(2
(3
(4
capsule full poly
{capsule ~full poly-isom. 1©; D, by which T(bNF Tqb@ form a D-X -Hodge theatre}

is an F} -torsor.
5) For a D-NF-bridge TN, we have a functorial algorithm to construct, up to F¥-indeterminacy,
g X g ! Yy
a D-X-Hodge theatre whose D-NF-bridge is T¢LF .

Definition 10.21. ([I[UTchI, Corollary 4.12]) Let FHTP™ 1 TP™ be D-K-Hodge theatres.
the base-(or D-)ONF-link (or D-X-link)

D

fy7Ps = 7P
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is the full poly-isomorphism
full poly

oo~ F
D = D
between the mono-analyticisations of the codomains of the D-O-bridges.

Remark 10.21.1. In D-X-link, the D" -prime-strips are shared, but not the arithmetically
holomorphic structures. We can visualise the “shared” and “non-shared” relation as follows:

T - [0 = < - ™

We call this diagram the étale-picture of D-X-Hodge theatres. Note that we have a
permutation symmetry in the étale-picture.

We constructed D-X-Hodge theatres. These are base objects. Now, we begin constructing
the total spaces, i.e., K-Hodge theatres, by putting Frobenioids on them.

F NF e
We start with the following situation: Let FH7P™ = (fD® & D, Y D.) be a D-X-
Hodge theatre (with respect to the fixed initial ©-data). Let THT® = ({'E, Joev, "Shoa) be

mod
a ©-Hodge theatre, whose associseted D-prime strip is equal to "D+ in the given D-K-Hodge
theatre. Let g~ denote the F-prime-strip tautologically associated to (the {Tiv}gey -portion

of) the ©-Hodge theatre "H7®. Note that '®D. can ben identified with the D-prime-strip
associated to TF~:

T’HT@ S T3:>

I

Definition 10.22. ([IUTchI, Example 5.4 (iii), (iv)]) Let TF® be a pre-Frobenioid isomorphic

to F#("D?) as in Example 9.5, where D is the data in the given D-X-Hodge theatre "H T,
We put TF® := TF®|ipe, and TF2 1 := T F®| rminal object in 1p®, as in Example 9.5.

(1) For § € LabCusp("D?®), a §-valuation € V("D®) is a valuation which lies in the “im-

age” (in the obvious sense) via T¢}¥ of the unique D-prime-strip D ; of the capsule D,

such that the bijection LabCusp('D®) = LabCusp('®;) induced by T¢X" sends 4 to

the element of LabCusp('®;) = F; (See Proposition 10.15) labelled by 1 € F} (Note
that, if we allow ourselves to use the model object D®, then a d-valuation € V(ID®)
is an element, which is sent to an elemento of V¥ < V(K) under the bijection
LabCusp("D®) = LabCusp(D®) induced by a unique Aut,("D®)-orbit of isomorphisms
ID® 5 D@ sending 6 + [¢] € LabCusp(D?)).

(2) For § € LabCusp("D?), by localising at each of the d-valuations € V(ID®), from TF®
(or, from ((TTI®)2 ~ TM®) = (7, ("D®) ~ O®*) in Definition 9.6), we can construct an
F-prime-strip

T]:© ’6
which is well-defined up to isomorphism (Note that the natural projection VE s Vood
is not injective, hence, it is necessary to think that TF|s is well-defined only up to iso-
morphism, since there is no canonical choice of an element of a fiber of the natural
projection VX" — Vmod) as follows: For a non-Archimedean d-valuation v, it is the p,-

adic Frobenioid associated to the restrictions to “the open subgroup” of 'II,, N7 ("D?)

determined by ¢ € LabCusp('D®) (i.e., corresponding to “X” or “g”) (See Defini-

bad

o, then we have to replace

tion 9.6 for 'Il,,). Here, if v lies over an element of V
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the above “open subgroup” by its tempered analogue, which can be done by recon-
structing, from the open subgroup of 'II,, N (D®), the semi-graph of anabelioids by
Remark 6.12.1 (See also [SemiAnbd, Theorem 6.6]). For an Archimedean ¢-valuation v,
this follows from Proposition 4.8, Lemma 4.9, and the isomorphism M®(TD®) = TM®
in Example 9.5.

For an F-prime-strip *§ whose associated D-prime-strip is D, a poly-morphism

1 3, poly T f@
full poly

is a full poly-isomorphism g — TF®|s for some § € LabCusp("D®) (Note that the
fact that TF®|; is well-defined only up to isomorphism is harmless here). We regard such

a poly-morphism *§ POt 7o g lying over an induced poly-morphism ¥ PN DO, Note
also that such a poly-morphism g PO o i compatible with the local and global . x-

coric structures (See Definition 9.6) in the following sense: The restriction of associated
Kummer classes determines a collection of poly-morphisms of pseudo-monoids

{(TH@)rat ~TME, PRy e iI\\/JIMXU}
> vev

indexed by V, where the left hand side (TII¥)™* ~ "M%, is well-defined up to auto-

morphisms induced by the inner automorphisms of (TTI#)™' and the right hand side

M.y C M., is well-defined up to automorphisms induced by the automorphisms

of the F-prime strip *§. For v € V™", the above poly-morphism is equivariant with
respect to the homomorphisms (*IL,)™" — (TTI®)¢ (See Definition 9.6 (2) for (*IL,)")

induced by the given poly-morphism *§ POt o,
For a capsule F = {°F} of F-prime-strips, whose associated capsule of D-prime-strips is
E® and an F-prime-strip F whose associated D-prime-strip is D, a poly-morphism

By PN 470 (1egp, B 2N 5 )

is a collection of poly-morphisms {§ POl + 9% eer (resp. {°F poly 1§}ecr). We consider
a poly-morphism £F b Qa8 (resp. EF poly %) as lying over the induced poly-

morphism D Py tpe (resp. ©D poly D).

We return to the situation of

THTG P T&>

I

Definition 10.23. (Model ©-Bridge, Model NF-Bridge, Diagonal F-Objects, Localisation
Functors, [IUTchl, Example 5.4 (ii), (v), (i), (vi), Example 5.1 (vii)]) For j € J, let 1§, =
{‘L}"yj }ies be an F-prime-strip whose associated D-prime-strip is equal to ™D;. We also put
157 :={1§;}jes (i.e., a capsule indexed by j € J).

Let

TF® be a pre-Frobenioid isomorphic to F®(TD®) as in Example 9.5, where "D is

the data in the given D-X-Hodge theatre "HTP™. We put TF® := I F®|ipe, and 172, =

TF®
(1)

jast

terminal object in TD®, &S 111 Example 9.5.

For j € J, let

pol
P 1 P IS
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denote the poly-morphism (See Definition 10.22 (4)) uniquely determined by T¢; by
Remark 10.10.1. Put

o o poly
Tw* = {ij }jGIFf : TSJ — T%>

We regard 19 as lying over 7¢9. We call 49 the model ©-bridge. See also the
following diagram:

15, 15, HTO S 1F

I I

fD,, 1D, <1 HTPH ——1D..

\-'/

149, 162

For j € J, let
poly s
Tw;\TF . ng Pox T]:O

denote the poly-morphism (See Definition 10.22 (3)) uniquely determined by T¢; by
Lemma 10.10 (2). Put

NF NF poly 5
Tw% — {T% }jeIFl* : ‘r&] POX t ro.

We regard T as lying over T¢YF. We call 1Y the model NF-bridge. See also the
following diagram:

TNP, TN

55, 150 7

I I

T@j, T@J <~ T,HTD_& P TD@.

V

TONF 1gNF

Take also an F-prime-strip '§ ;) = {T]-"EU> Yoev,,- We write D5 for the associated

D-prime-strip to Tsw. We write V, := {Qj}yey. We have a natural bijection v, S5V
v; — v. These bijections determine the diagonal subset

VipCV, = Hyj,
jeJ
which admits a natural bijection V 5 V. Hence, we obtain a natural bijection
We have the full poly-isomorphism

full poly

~

T3<J> — T3'>
and the “diagonal arrow”
Fy — 8,
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full poly
which is the collection of the full poly-isomorphisms T& N 1%, indexed by j € J.
We regard 3, (resp. TS< J7y) as a copy of %, “situated on” the constituent labelled by
j € J (resp. “situated in a diagonal fashion on” all the consitutents) of the capsule 'D ;.
We have natural bijections

Vip =V, 5 Prime(" 72 ) = Viod

for j € J. Put
TJT?]) = {1 Foa Viy— Prime("7,4)},

= {T mod’ Yj :> Prime(T"T_-ﬁod)}
for j € J. We regard T]-"ju (resp. TF® @) as a copy of TF¥ . “situated on” the constituent

labelled by j € J (resp. “situated in a diagonal fashion on” all the Consitutents) of the
capsule "D ;. When we write T]—"& for the underlying category (i.e., TFZ ) of *]—"8) by

1
abuse of notation, we have a natural embedding of categories

T r® tr®e . t®
jed
Note that we do not regard the category TF; as being a (pre-)Frobenioid. We write
T]—"j@R, T]—"gﬂf for the realifications (Definition 8.4) of T]:f”, T}"% respectively, and put
R ._ R
F =Tl T
Since TF® . is defined by the restriction to the terminal object of TD®, any poly-

morphism 'F PO e (resp. 15 il TF) (See Definition 10.22 (3)) induces, via
restriction (in the obvious sense), the same isomorphism class

F

Uiy

(resp. (1F® = TF® 5 )iFe 2 tFr & 00 1 F, )
of restriction functors, for each v ;) € V) (resp. v; € V;) (Here, for vy € Vi (resp.
v; € V2), we write T]—"yu>
abuse of notation), i.e., it is independent of the choice (among its F/-conjugates) of
the poly-morphism "7 — TF® (resp. TF; — TF®). See also Remark 11.22.1 and
Remark 9.6.2 (4) (in the second numeration). Let

(resp. T.7-"21,) for the category component of the triple, by

(Fe = 1F® o) F:

mod

¢ gl. to loc.
= T B

(resp. (TF® = TF® o) F®

mod

@ 8l to loc.
— TP ="18)
denote the collection of the above isomorphism classes of restriction functors, as v, )

(resp. yj) ranges over the elements of V, (resp. yj). By combining 7 € J, we also
obtain a natural isomorphism classes

1. to loc.
T]:f]@g o loc TS,J

of restriction functors. We also obtain their natural realifications
1. to loc. 1. to loc. 2R gl to loc.
o S o L

Definition 10.24. (NF-Bridge, ©-Bridge, K-Hodge Theatre, [IUTchl, Definition 5.5])
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(1) an NF-bridge is a collection
£pNF
(i&] Ny 2O NN i]:®)

as follows:

(a) ¥§; = {!F;};es is a capsule of F-prime-strip indexed by J. We write ¥D; =
{#D,},es for the associated capsule of D-prime-strips.

(b) *F©, *F® are pre-Frobenioids isomorphic toy *F®, ¥F® in the definition of the
model NF-bridge (Definition 10.23), respectively. We write ¥D®, *D® for the base
categories of ¥F®, ¥ F® respectively.

(c) The arrow --+ consists of a morphism *D® — ¥D®  which is abstractly equivalent
(See Section 0.2) to the morphism "D® — TD® definition of the model NF-bridge
(Definition 10.23), and an isomorphism *F® = ¥ F®|; 0.

(d) ¥ is a poly-morphism which is a unique lift of a poly-morphism *¢Y¥ : D

¥D® such that ¥¢YY forms a D-NF-bridge.
Note that we can associate an D-NF-bridge *¢%" to any NF-bridge *4)Y". An isomor-
phism of NF-bridges

( SJl 11/)NF j—-@ N 1]_— ) ( SJZ 24 NF 2}_@ o 2/___@)

is a triple

oly

capsule-full poly poly

~

1 2 1 ~ 2 1 ~ 2
SJl — SJQ? f©—> ]:@7 f®—> F®

capsule-full poly poly
of a capsule-full poly-isomorphism g, — 2% 75, (We write '©; — 2D, for
poly poly
the induced poly-isomorphism), a poly-isomorphism ' F® — 2F® (We write 'D° —
poly poly
2D® for the induced poly-isomorphism) such that the pair '®; — 2®;, and 'D® —
2D® forms a morphism of the associated D-NF-bridges, and an isomoprhism 'F®
2F® such that this triple is compatible (in the obvious sense) with 14X, 2¢)XF and the
respectwe --»’s. Note that we can associate an isomorphism of D-NF- brldges to any
isomorphism of NF-bridges.

(2) A ©-bridge is a collection
d}()
(i&I ig> -2 iHT@)

as follows:
(a) ¥F; = {*F,}jes is a capsule of F-prime-strips indexed by J We write ¥D; =
{#D,},es for the associated capsule of D-prime-strips.
(b) ¥HT® is a ©-Hodge theatre.
(c) ¥F~ is the F-prime-strip tautologically associated to F94T®. We use the notation
--» to denote this relationship between F. and *HT°. We write ¥D. for the
D-prime-strip associated to g~

(d) 2 = {9}, er 15 the collection of poly-morphisms 9 1y 25 POl 4% determined
by a D-O-bridge *¢9 = {igzﬁ?}j@g?e by Remark 10.10.1.
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Note that we can associate an D-O-bridge ¢ to any ©-bridge 9. An isomorphism
of ®-bridges

(I&A i s - iHT@) = (2&72 &) “Fs - 2HT@>

is a triple

capsule-full poly full poly

~ ~

13]1 — 23J27 1{§> — 2S>7 17-[7-@ % 2HT®

capsule-full poly

~

of a capsule-full poly-isomorphism §;, — 2% 7, the full poly-isomorphism
poly
LFe =3 2F© and an isomoprhism 'F® —— 2F® of HT-Hodge theatres, such that this
triple is compatible (in the obvious sense) with 149, 219, and the respective --+’s. Note
that we can associate an isomorphism of D-O-bridges to any isomorphism of ©-bridges.
(3) A ©NF-Hodge theatre (or X-Hodge theatre) is a collection
1 NF

) tp©
iHT&:(i}—@ I R L G N *HT@>,

tNF
where <¢]—"® o iFe i&]) forms an NF-bridge, and (i&] N S i’HT@)

forms a ©-bridge, such that the associated D-NF-bridge *¢}F and the associated D-O-
bridge *¢9 form a D-X-Hodge theatre. An isomorphism of X-Hodge theatres is a
pair of a morphism of NF-bridge and a morphism of ©-bridge, which induce the same
bijection between the index sets of the respective capsules of F-prime-strips. We define
compositions of them in an obvious manner.

Lemma 10.25. (Properties of NF-Brideges, ©-Bridges, X-Hodge theatres, [[UTchI, Corollary
5.6])

(1) For NF-bridges 'WX¥, 2NF (resp. ©-bridges 09, 2y, resp. K-Hodge theatres "HT™,

2HT™) whose associated D-NF-bridges (resp. D-O-bridges, resp. D-X-Hodge theatres)

are 'oNY 2N (resp. 199, 209, resp. Iy TPH, QHTD@) respectively, the natural map

NF 2
x

(resp. Isom(* S,%ﬁg) — Isom(*¢2,%09),
resp. Isom(*HT™,*HT™) — Isom(*HT P 2HTPH) )
18 bijective.
(2) For an NF-bridge *X¥ and a ©-bridge *b2, the set

¢NF 2 I;IF)

Isom(* MY — Isom(

capsule-full poly
{capsule-full poly-isom. *F; %, by which ing, ¢¢§ form a X-Hodge theatre}

is an F} -torsor.

Proof. By using Lemma 10.10 (5), the claim (1) (resp. (2)) follows from Lemma 10.10 (1) (resp.
(2)). O

10.5. Additive Symmetry H: ©*°-Hodge Theatres and ©°-, ©*-Bridges. We begin
constructing the additive portion of full Hodge theatres.

Definition 10.26. ([IUTchI, Definition 6.1 (i)]) We call an element of F;'* positive (resp.
negative) if it is sent to +1 (resp. —1) by the natural surjction F;* — {41}.
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An Fli-group is a set £ with a {£1}-orbit of bijections £ = F;,. Hence, any F;"-group
has a natural [F;-module structure.

An ]Fli-torsor is a set T with an F;'*-orbit of bijections 7' = F; (Here, Ff > (\, £1) is
actingg on z € F; via z — +2+ \). For an ]Fli—torsor T, take an bijection f : T' = F; in
the given Ffi—orbit, then we obtain a subgroup

Aut (T) (resp. AutL(T) )

of Aut(sets)(T") by transporting the subgroup F; 22 {z — 2+ for XA € F;} C Aut(ges) (F)
(resp. F;'= = {z + L2+ A for A € F;} C Aut(ses)(F;)) via f. Note that this subgroup
is independent of the choice of f in its F,'*-orbit. Moreover, any element of Aut, (7T) is
independent of the choice of f in its F;-orbit, hence, if we consider f up to Ff‘i—orbit,
then it gives us a {£1}-orbit of bijections Aut, (T) = Fy, i.e., Aut,(T) has a natural
Ff—group structure. We call Aut, (7)) the Ff—group of positive automorphisms of
T. Note that we have [Auty(T); Aut, (T)] = 2.

The following is an additive counterpart of Definition 10.14

Definition 10.27. ([[UTchI, Definition 6.1 (ii), (iii), (vi)]) Let " = {ID,},cv be a D-prime-

strip.

(1)

For v € V"™ (resp. v € V&9 N V™), we can group-theoretically reconstruct in a
functorial manner, from m; (1D,), a tempered group (resp. a profinite group) (2 7, ("D,))
corresponding to X, by Lemma 7.12 (resp. by Lemma 7.25). Let

tp*
denote its B(—)°. We have a natural morphism D, — "Dy (This corresponds to X —
X, (resp. X =X ,))- Similarly, for v € V¥, we can algorithmically reconstruct, ina

v

functorial manner, from D, an Aut-holomorphic orbispace TQ; corresponding to X,
by translating Lemma 7.25 into the theory of Aut-holomorphic spaces (since g admits
v

a K,-core) with a natural morphism D, — TQ;'E. Put

D% = {1D} huev.

Recall that we can algorithmically reconstruct the set of conjugacy classes of cuspidal
decomposition groups of m;("D,) or Wl(TQj) by Corollary 6.12 for v € V**, by Corol-

lary 2.9 for v € V&°4 N V" and by considering my(—) of a cofinal collection of the
complements of compact subsets of the underlying topological space of TD, or TQ; for

v € V™. We say them the set of cusps of D, or DE.

For v € V, a ®-label class of cusps of D, is the set of cusps of D, lying over a
single (not necessarily non-zero) cusp of "Dy, We write

LabCusp™('D,)

for the set of 4=label classes of cusps of 'D,. Note that LabCusp(D,) has a natural
F/-action. Note also that, for any v € V, we can algorithmically reconstruct a zero
element

ng € LabCusp™(1D,),

and a canonical element
Tﬂf € LabCusp™('D,)
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which is well-defined up to multiplication by +1, such that we have Tﬂf — Tﬂv under
the natural bijection N B

{LabCuspi(TDy) \ {TQS}} /{£1} = LabCusp(D,).
Hence, we have a natural bijection
LabCusp®('D,) = T,

which is well-defined up to multiplication by +1, and compatible with the bijection
LabCusp('D,) = F; in Proposition 10.15, i.e., LabCusp®(1D,) has a natural Fi-group
structure. This structure ]Fli—group gives us a natural surjection

Aut(TDQ) — {£1}
by considering the induced automorphism of LabCusp®(D,). Let
Aut, ("D,) C Aut("D,)

denote the kernel of the above surjection, and we call it the subgroup of positive
automorphisms Put Aut_("D,) := Aut('D,) \ Aut, ("D,),and we call it the set of
negative automorphisms. Similarly, for o € {1}, let

Aut, (7D) € Aut, (TD) (resp. Auto (") C Aut, (D) )

denote the subgroup of automorphisms such that any v(€ V)-component is positive

(resp. v(€ V)-component is positive if a(v) = +1 and negetive if a(v) = —1), and we
call it the subgroup of positive automorphisms (resp. the subgroup of a-signed
automorphisms).

(3) Let "D®* is a category equivalent to the model global object D®* in Definition 10.3.
Then, by Remark 2.9.2, similarly we can define the set of cusps of "D®* and the set
of t-label classes of cusps

LabCusp™("D®%),
which can be identified with the set of cusps of "D®F.

Definition 10.28. ([IUTchI, Definition 6.1 (iv)]) Let ® = {ID,},ev, *D = {¥D,},ev be D-
+-full poly +-full poly
prime-strips. For any v € V, a +-full poly-isomorphism D, — D, (resp. 'T®
¥D) is a poly-isomorphism obtained as the Aut, (TD,)-orbit (resp. Aut, ("D)-orbit) (or equiv-
alently, Aut, (*D,)-orbit (resp. Aut, (*D)-orbit)) of an isomorphism D, = D, (resp. D =
+-full poly

~

ID). If " = D, then there are precisely two +-full poly-isomorphisms D, — D,
(resp. the set of +-full poly-isomorphisms "D, = D, has a natural bijection with {41}¥).
We call the +-full poly-isomorphism determined by the identity automorphism positive, and
the other one negative (resp. the +-full poly-isomorphism corresponding to o € {£1}¥ an a-
signed +-full poly-automorphism). A capsule-+-full poly-morphism between capsules
of D-prime-strips

capsule-+-full poly

~

{Tgt}teT — {i@t’}t’ET’

+-full poly

is a collection of +-full poly-isomorphisms D, — iQL(t), relative to some injection ¢ :
T—T.
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Definition 10.29. ([IUTchI, Definition 6.1 (v)]) As in Definition 10.16, we can group-theoretically
construct, from the model global object D®* in Definition 10.3, the outer homomorphism

(Aut(X ) =) Aut(D°*) — GLa(Fy)/{£1}

determined by FEx[l], by considering the Galois action on A% ® F; (The first isomorphism
follows from Theorem 3.17). Note that the image of the above outer homomorphism contains

the Borel subgroup { <(>; :) } of SLy(IF;)/{£1}, since the covering X ;; — Xk corresponds to

the rank one quotient A3 @ F; — Q. This rank one quotient determines a natural surjective
homomorphism
Aut(DF) — Ff,

which can be reconstructed group-theoretically from D®%. Let Auty(D®F) C Aut(D°F) =
Aut(X ;) denote the kernel of the above homomorphism. Note that the subgroup Aut. (D) C
Aut(D®%) = Aut(X ) contains Autg (X ), and acts transitively on the cusps of X ;. Next,
let Auteusp(DOF) € Aut(D®*) denote the subgroup of automorphisms which fix the cusps of
X4 (Note that we can group-theoretically reconstruct this subgroup by Remark 2.9.2). Then,
we obtain natural outer isomorphisms

Autg (X ) 5 Auty (DF)/Auteys, (DF) & Ff‘i,

where the second isomorphism depends on the choice of the cusp € of C . See also the following
diagram:

Aut(X ) —=— Aut(D°%) Ff
IFI*W(S ;)c SLa(F;)/{£1}

Autg (X ) Auty (DF) ——F/'F
\

Autensp, (DOF).

If we write Aut, (D°%) C Auty(D®F) for the unique subgroup of index 2 containing Aute,s, (D),
then the cusp € determines a natural Ff—group structure on the subgroup

Auty (D°F) /At ensp (D®F) C Auty(DF)/Autens, (D°F)

(corresponding to Gal(X ;. /Xx) C Autg (X)), and a natural Fi*-torsor structure on LabCusp™ (D®%).
Put also

VE := Auty (DF) - V = Autenep, (D°F) -V € V(K).
Note also that the subgoup Auty (D) C Aut(D®F) = Aut(X ) can be identified with the
subgroup of Aut(X ) which stabilises V*, and also that we can easily show that V¥ = Y=
(Definition 10.16) (cf. [[UTchI, Remark 6.1.1]).

Remark 10.29.1. Note that Ffi—symmetry permutes the cusps of X, without permuting
V* (C V(K)), and is of geometric nature, which is suited to construct Hodge-Arakelov theoretic
evaluation map (Section 11).

On the other hand, F}" is a subquotient of Gal(K/F') and F}*-symmetry permutes various [F} -
translates of V¥ = V¥ < VB (C V(K)), and is of arithmetic nature (cf. [UTchI, Remark
6.12.6 (i)]), which is suite to the situation where we have to consider descend from K to
Fioa. Such a situation induces global Galois permutations of various copies of G, (v € V")
associated to distinct labels € F}* which are only well-defined up to conjugacy indeterminacies,
hence, F;*-symmetry is ill-suited to construct Hodge-Arakelov theoretic evaluation map.
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Remark 10.29.2. (c¢f. [IUTchII, Remark 4.7.6]) One of the important differences of F}-symmetry
and Ffi-symmetry is that F*-symmetry does not permute the label O with the other labels, on
the other hand, Ffi—symmetry does.

We need to permute the label 0 with the other labels in Ffi—symmetry to perform the con-
jugate synchronisation (See Corollary 11.16 (1)), which is used to construct “diagonal objects”
or “horizontally coric objects” (See Corollary 11.16, Corollary 11.17, and Corollary 11.24) or
“mono-analytic cores” (In this sense, label 0 is closely related to the units and additive symme-
try. cf. [IUTchll, Remark 4.7.3)),

On the other hand, we need to separate the label 0 from the other labels in F;-symmetry,
since the simultaneous excutions of the final algorithms on objects in each non-zero labels are
compatible with each other by separating from mono-analytic cores (objects in the label 0), i.e.,
the algorithm is multiradial (See Section 11.1, and Appendix A.4), and we perform Kummer
theory for NF (Corollary 11.23) with F;*-symmetry (since F;-symmetry is of arithmetic nature,
and suited to the situation involved Galois group Gal(K/Fy0q)) in the NF portion of the final
algorithm. Note also that the value group portion of the final algorithm, which involves theta
values arising from non-zero labels, need to be separated from 0-labelled objects (i.e., mono-
analytic cores, or units). In this sense, the non-zero labels are closely related to the value groups
and multiplicative symmetry.

Definition 10.30. (Model D-©*-Bridge, [[UTchl, Example 6.2]) In this definition, we regard
F; as an F;"-group. Let ©, = {D, ,}vev, D; = {Dy, }vev be copies of the tautological D-prime-
strip {D, },ev for each t € F; (Here, v, denotes the pair (¢,v)). For each t € F,, let

+-full poly +-full poly
ot | D "’; D oF | D "‘} D
¢Qt ‘ Uy It Al t ‘ Uy it

be the positive +-full poly-isomorphisms respectively, with respect to the identifications with
the tautological D-prime-strip {D, },ev. Then, we put

ii = {(b?i}telb‘l Dy = {@t}tem ﬂ D,

We call 69 model base-(or D-)©@*-bridge.

We have a natural poly-automorphism —1p, of order 2 on the triple (D4,D,, gbii) as fol-

lows: The poly-automorphism —1p, acts on [F; as multiplication by —1, and induces the
poly +-full poly

poly-morphisms ®; — D, (t € F;) and ®. —» D, determined by the +-full poly-
automorphism whose sign at every v € V is negative, with respect to the identifications with
the tautological D-prime-strip {D,},ecy. This —1p, is compatible with (bi)i in the obvious
sense. Similarly, each o € {#1}¥ determines a natural poly-automorphism a® of order 1 or
2 as follows: The poly-automorphism a®” acts on F, as the identity and the a-signed +-full
poly-automorphism on ©; (¢t € F;) and ©.. This a®” is compatible with gbgi in the obvious
sense.

Definition 10.31. (Model D-©%"-Bridge, [[UTchl, Example 6.3]) In this definition, we regard
F;, as an Fli—torsor. Let ®, = {D,, }vev be a copy of the tautological D-prime-strip {D, },ev for
each t € I}, and put D := {D;}scr, as in Definition 10.30. Let D°* be the model global object
in Definition 10.3. In the following, fix an isomorphism LabCusp™(D®*) =% F; of Fi-torsor (See
Definition 10.29). This identification induces an isomorphism Aut,(D®* /Aut ey, (DF) = F/'=
of groups For v € V"™ (resp. v € V& N V™" resp. v € V¥), let

¢y Dy — D*

.7y



174 GO YAMASHITA

denote the natural morphism correpsonding to X L, X, — X (resp. & — X, = X, resp.

a tautological morphism D, = X — X, ™ X(D°*, 1) (See also Definition 10.11 (1), (2)).
Put -
¢Soe” = AutCllSP(D@i) © Qs’@;“ © AUt+(Dﬂo) : Dﬂo ﬂ D©i7

and
el Qcll poly +
o ={¢y, Jvev : Do — D°*.

Yo

Since ¢§”" is stable under the action of Autes,(D®F), we obtain a poly-morphism

ell . ell ol
9% .= (action of t) 0 ¢§" : D, 225 DO,

by post-composing a lift of t € F; 22 Aut, (D®F)/Autteysy (DOF) (C FF 22 Auty (DOF) /At eusp (DOF))
to Aut, (D°*). Hence, we obtain a poly-morphism

ell ell ol
O = {of" hiew, : Dx 7 D

from a capsule of D-prime-strip to the global object D®* (See Definition 10.11 (3)). This is
called the model base-(or D-)©¢!-bridge.

Note that each v € Ffi gives us a natural poly-automorphism v, of ® as follows: The
automorphism v acts on F; via the usual action of F;'= on F;, and induces the +-full poly-

+-full poly

isomorphism ©, —» D) whose sign at every v € V is equal to the sign of . In this
way, we obtain a natural poly-action of Ffi on ®,. On the other hand, the isomorphism
Auty (D%F) /At eusp (DF) = F'* determines a natural poly-action of F,** on D®*. Note that
(bgcn is equivariant with respect to these natural poly-actions of Ffi on D4 and D°*. Hence,

we obtain a natural poly-action of F;'* on (D, D%, gbic“).

Definition 10.32. (D-©*-Bridge, D-0°-Bridge, D-H-Hodge Theatre, [I[UTchl, Definition
6.4))
(1) A base-(or D-)®*-bridge is a poly-morphism

1
fg" : top 2 o,

where "®. is a D-prime-strip, and D7 is a cupsule of D-prime-strips indexed by an
IFli-group T, such that there exist isomorphisms ©,. — ®., ®, = ", whose in-
duced morphism F; = T on the index sets is an isomorphism of Ff—groups, and
conjugation by which sends qﬁgi — ngﬁii. An isomorphism of D-©=*-bridges

~

(Tgbii D, poly T©>> — (iqﬁgi RN poly i©>> is a pair of a capsule-+-full poly-
capsule-+full poly

isomorphism "®7p — ¥, whose induced morphism 7" = 7" on the index sets is an
+-full poly

isomorphism of ]F’ZJE—glroups7 and a +-full-poly isomorphism ®,. =  #®, which are

compatible with T(bii, t ii. We define compositions of them in an obvious manner.

(2) A base-(or D-)@¢%!!-bridge is a poly-morphism
62" . to poly tpot

where "D®F is a category equivalent to the model global object D®*, and Dy is a cup-
sule of D-prime-strips indexed by an IFli—torsor T, such that there exist isomorphisms
Dot 5 DOt D, 5 15, whose induced morphism F; = T on the index sets is an
isomorphism of Fif-torsors, and conjugation by which sends ¢2” — 169", An iso-

morphism of D-©°"-bridges (quﬁicn g, 2 TD@i> = (¢¢$°“ Lt P iD@i>
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capsule-+-full poly
is a pair of a capsule-+-full poly-isomorphism ®; — #®7 whose induced morphism
T = T’ on the index sets is an isomorphism of IFli—torsors, and an Aute,s, (FDF)-orbit
poly
(or, equivalently, an Auteus,(¥D%%)-orbit) D% 5 D% of isomorphisms, which are
compatible with T(bien, i(bieu. We define compositions of them in an obvious manner.
A base-(or D-)©*°"_Hodge theatre (or a D-B-Hodge theatre) is a collection

I ¢i S
HT =D, Dy — D

where 7" is an Ff—group, Tgbgen is a D-0°bridge, and Tqﬁgi is a D-©*-bridge, such that
there exist isomorphisms D°* 5 ID* ®, 5 19, ©. 5 D, | conjugation by which
sends ¢¢° - ng@CH, gi — Tgbgi. An isomorphism of D-H-Hodge theatres is a
pair of 1somorphlsms of D-0-bridges and D-O©*-bridges such that they induce the same
poly-isomorphism of the respective capsules of D-prime-strips. We define compositions
of them in an obvious manner.

The following proposition is an additive analogue of Proposition 10.33, and follows by the
same manner as Proposition 10.33:

Proposition 10.33. (Transport of j: Label Classes of Cusps via Base-Bridges, [[UTchI, Propo-

sition 6.5]) Let THTP® = (1D, TSDT

(1)

oell
i "D®%) be a D-B-Hodge theatre.

The D-©%-bridge Tqﬁi induces an isomorphism
TCS:H : LabCusp™('D,,) = LabCusp™ ("D¥)
of IFli-torsors of £-label classes of cusps for eachv € V, t € T. Moreover, the composite

,i_gecll — ( C@cH)il o (ngcn) : LabCUSpi(TDyt) S0 LabCuspi(TD%)

s an isomorphism of ]FljE -groups for w € V. By these identifications ng:;t of Iﬁ‘f-gmups
LabCusp™("D,,) when we vary v € V, we can write
LabCusp™("D,)
for them, and we can write the above isomorphism as an isomorphism
" : LabCusp™ ("®,) & LabCusp™ (fD°%)
of Fli—torsors.
The D-O*-bridge Tgbgi induces an isomorphism
TCgi : LabCusp™('D,,) = LabCusp™ ("D, ,)
ofIFjE -groups of £-label classes of cusps for eachv € V, t € T. Moreover, the composites
T§> o = <TC$0 )ofeo? (T(g)i)’1 . LabCusp™ ("D, ) = LabCusp= (D, ,,),

Yo:Wo
+ ~
T£> vt,wt : (TCSt ) £> VW (ng ) : LabCuspi(TDEt) - LabCuSp:tU’Dwt)
(Here 0 denotes the zero element of the IF -group T') are isomorphisms of Fli—groups for
w €V, and we also have Téy@: T§®CH By these identifications Tﬁfz@ of Fli—groups
LabCusp™ ("D, ) when we vary v € y we can write

LabCusp™("D.)
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for them, and the various Tgf)i s, and Tgf)e“ s determine a single (well-defined) isomor-
phism - -
C@ell LabCusp™ (1D,) 5 LabCusp™ ("®,.)
of Fli -groups.
(3) We have a natural isomorphism
f¢y : LabCusp™ ("D°*) 5 T

of F-torsors, by considering the inverse of the map T 3 t v TC?"“(()) € LabCusp™ (fDF),
where O denotes the zero element of the Ff—group LabCuspi(T@t). Moreover, the com-
posite

(19" o (F¢®™) o (F¢P) L o (1¢97) : LabCusp™(tD,) = LabCusp™ ("Dy)
is equal to the action of (F¢O™) 1 ((T¢L)~1(t)).

(4) For a € Auty (1D%F) /Auteys, (1D°F), if we replece 1¢9" by a0 169", then the resulting
“fCt@e“ 7 4s related to the original TCt@e“ by post-composing with the image of o via the
natural bijection

Auty ("D%F) / Attt ey (1D°F) = Auty (LabCusp™ (D)) (= F,'*)
(See also Definition 10.29).

The following is an additive analogue of Proposition 10.20, and it follows from the definitions:

Proposition 10.34. (Properties of D-©*-Brideges, D-O°-Bridges, D-H-Hodge theatres, [[UTchl,
Proposition 6.6])

(1) For D-O*-bridges 169", 1697, the set Isom(1¢9” ,1¢97) is a {£1} x {£1}¥ -torsor,
where the first factor {:I:l} (resp. the second factor {£1}V) corresponds to the poly-
automorphism —1g, (resp. aei) in Definition 10.30.

(2) For D-©°-bridges Tgbgen, igbgen, the set Isom(ToX¥ oNF) is an F,*-torsor, and we have
a natural isomorphism Isom(T¢YF +pNF) = IsomFli_torsors(T T") of F,'=-torsors.

(3) For D-B-Hodge theatres "THTP® FHTPE  the set Isom("HTPE IHTP™) is an {+1}-
torsor, and we have a natural isomorphism Isom("H TP IHTPH) = ISOHlFli—groups(T7 T")
of {£1}-torsors.

(4) For a D-©%-bridge T¢gi and a D-O-bridge Tqbge“, the set

capsule-+-full poly
{capsule——l——full poly-isom. "D = 1D by which Tqﬁii @eu form a D-H-Hodge theatre}

is an B x {+1}Y ~torsor, where the first factor F'= (resp. the subgroup {£1} x {£1}¥)
corresponds to the )= in (2) (resp. to the {£1} x {£1}¥ in (1)). Moreover, the

: +
first factor can be regarded as corresponding to the structure group of the F/

Isomy: T,7).

(5) For a D-©%-bridge Tgbgu, we have a functorial algorithm to construct, up to F,*-
indeterminacy, a D-B-Hodge theatre whose D-©-bridge is ngﬁgcn

Definition 10.35. ([I[UTchI, Corollary 6.10]) Let TH7P™ 1 TP™¥ be D-B-Hodge theatres.
the base-(or D-)©*°!link (or D-HB-link)
D

TP = ty7PhE

-torsor

-torsors (

is the full poly-isomorphism
full poly

~

Dt = ok
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between the mono-analyticisations of the D-prime-strips constructed in Lemma 10.38 in the
next subsection.

Remark 10.35.1. In D-H-link, the D" -prime-strips are shared, but not the arithmetically
holomorphic structures. We can visualise the “shared” and “non-shared” relation as follows:

R e P 7

We call this diagram the étale-picture of D-H-Hodge theatres. Note that we have a
permutation symmetry in the étale-picture.

Definition 10.36. (©+-Bridge, ©°!-Bridge, B-Hodge Theatre, [IUTchI, Deifinition 6.11])
(1) A ®*-bridge is a poly-morphism

+ 1
[N e S A

where g, is an F-prime-strip, and g is a cupsule of F-prime-strips indexed by an

Fi*-group T, which lifts (See Lemma 10.10 (2)) a D-O*-bridge 169% . 1D, poly D, .

An isomorphism of ©%-bridges (ngi L poly, T8>> 5 <11/J:(Ei Az poly i&;)
poly poly

is a pair of poly-isomorphisms '§r — #F and '§. — *F., which lifts a morphism

between the associated D-O*-bridges Tgbgi, igzﬁii. We define compositions of them in

an obvious manner.

(2) A ©°-bridge
T¢@ell : poly TD@i

where TD®F is a category equivalent to the model global object D®* in Definition 10.3,
and TST is a capsule of F-prime-strips indexed by an IFli—torsor T, is a D-O°-bridge

¢ I . : . .
T¢Q bt POX 1Do% | where 197 is the associated capsule of D-prime-strips to {Fr. An
. €. l A e 1
1somorph1sm of ©°-bridges (ng oty 23 TD@i> (i;b@ by, 22X iD@i)
poly poly

is a pair of poly-isomorphisms §r — Fp and "Dt =5 ¥DO* which determines a
morphism between the associated D-O°-bridges ngsge“, iqﬁien. We define compositions
of them in an obvious manner.

(3) A ©*°"_Hodge theatre (or a B-Hodge theatre) is a collection

HT® = (T& TET TDOi)

where ngi is a ©*-bridge, and Twi)en is a ©°l-bridge, such that the associated D-0*-

bridge T(ﬁii and the associated D-©°-bridge Tqﬁen form a D-H-Hodge theatre. An
isomorphism of H-Hodge theatres is a pair of a morphism of ©*-bridge and a mor-
phism of ©°-bridge, which induce the same bijection between the respective capsules
of F-prime-strips. We define compositions of them in an obvious manner.

The following lemma follows from the definitions:

Lemma 10.37. (Properties of ©*-Brideges, ©-Bridges, B-Hodge theatres, [IUTchI, Corol-
lary 6.12])
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(1) For ©%-bridges 19, 209% (resp. ©M-bridges WO, 299" resp. B-Hodge theatres
YHT®, 2HT®) whose associated D-O*-bridges (resp. D-0°"-bridges, resp. D-B-Hodge
theatres) are 1¢$i, 2 gi (resp. 1¢$en, ngien, resp. "HTPE, *HTP®) respectively, the
natural map

1,0+ 2,0t 1,0t 2 0%
Isom("¢% "¢y ) — Isom("¢7 ,"¢T )

(resp. Isom(* 2611,2¢SEH) —>Isom(1¢gen,2 ien),

resp. Tsom(“HTE *HTE) — Isom(*HTPE, 24TPE) )
18 bijective.
(2) For a @i_bridge iwii and a @ell—b’/’idge i’[bgen} the set

capsule-+-full poly N I
capsule-+-full poly-isom. *Fp — *Fp by which 11/)2 ,izbie form a H-Hodge theatre

s an Ffi x {1} -torsor. Moreover, the first factor can be regarded as corresponding
to the structure group of the Ffi—torsor ISOHIFZJE T,7").

10.6. ©*"NF-Hodge Theatres —Arithmetic Upper Half Plane. In this subsection, we
combine the multiplicative portion of Hodge theatre and the additive portion of Hodge theature
to obtain full Hodge theatre.

Lemma 10.38. (From (D-)©*-Bridge To (D-)©-Bridge, [[UTchI, Definition 6.4 (i), Proposi-

tion 6.7, Definition 6.11 (i), Remark 6.12 (i)]) Let 1¢9* : 17 poly D, (resp. 19" : 1Fr poly
. ) be a D-OF-bridge (resp. ©F-bridge). Let

Dz (resp. "y )
denote the I*-capsule (See Section 0.2 for I*) of D-prime-strips (resp. F-prime-strips) obtained
from I-capsule "D (resp. 1) of D-prime-strips (resp. F-prime-strips) by forming the quotient
IT| of the index set T by {1}, and identifying the components of the cupsule "D (resp. Fr)
in the same fibers of T — |T'| via the components of the poly-morphism Tgbii = {T¢t®i her
(resp. Tv,bi)i = {thei}tefp) (Hence, each component of "®yr (resp. 1§r)) is only well-defined
up to a positive automorphism). Let also

"Dps (resp. 1§r= )
denote the I*-capsule determined by the subset T* :=|T|\ {0} of non-zero elements of |T.

We identify 7o (resp. 1Fo) with 1©, (resp. 3. ) via 1¢9° (resp. W), and let 1D

(resp. 1§~ ) denote the resulting D-prime-strip (resp. F-prime-strip) (i.e., >= {0,=}). For
v € V&4 we replace the +-full poly-morphism at v-component of ngﬁi (resp. T@/Jgi) by the
full poly-morphism. For v € VP we replace the +-full poly-morphism at v-component ofwii
(resp. ngi ) by the poly-morphism determined by (group-theoretically reconstructed) evaluation
section as in Definition 10.17 (resp. by the poly-morphism lying over (See Definition 10.23 (1),
(2), and Remark 10.10.1) the poly-morphism determined by (group-theoretically reconstructed)

evaluation section as in Definition 10.17). Then, we algorithmically obtain a D-©-bridge (resp.
a potion of ©-bridge)

ol ol
162 "D s XD, (resp. T T¥rs XIS )
in a functorial manner. See also the following:
TQO: T©>- = TCD>7 T%Oa TS>— = T3:>7

1D, D_, (t#0) = Dy, 5, 1§ (t#0) = TF
"D 7|7 {0y = D, 57|\ (0y = TFr,

-torsors (
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where |t| denotes the image of t € T under the surjection T — |T)|.

Definition 10.39. ([IUTchI, Remark 6.12.2]) Let gz poly % be a ©*-bridge, whose associ-
ated D-©*-bridge is D poly D, . Then, we have a group-theoretically functorial algorithm for
constructing a D-O-bridge D7« poly D from the D-O*-bridge D1 poly D, by Lemma 10.38.
Suppose that this D-O-bridge "D« poly 9. arises as the D-O-bridge associated to a ©-bridge
1% poly 1D, > YHT®, where J = T*:

1
Fr = 13 B T D - THTO

I I

1 1
T:DT M) T©> — T,}DT% w) T©>.

Then, the poly-morphism g, poly 1% lying over "Dy« poly D is completely determined (See
poly

Definition 10.23 (1), (2), and Remark 10.10.1). Hence, we can regard this portion g, —
1%, of the ©-bridge as having been constructed via the functorial algorithm of Lemma 10.38.
Moreover, by Lemma 10.25 (1), the isomorphisms between ©-bridges have a natural bijection

with the the isomorphisms between the “*g; poly 1§ "-portion of ©-bridges.

In this situation, we say that the ©-bridge *F; poly D, -5 "HT® (resp. D-O-bridge
"D 221D ) is glued to the O bridge §r % 1§, (resp. D-O* bridge D7 % 1D, ) via
the functorial algorithm in Lemma 10.38. Note that, by Proposition 10.20 (2) and Lemma 10.25
(1), the gluing isomorphism is unique.

Definition 10.40. (D- X H-Hodge Theatre, KEH-Hodge Theatre, [IUTchI, Definition 6.13])

(1) A base-(or D-)©*°'"NF-Hodge theatre "H7T™ is a tripe of a D-X-Hodge theatre
IR TP¥ aD-B-Hodge theatre THTP®, and the (necessarily unique) gluing isomorphism
between "H TP and FHTPE. We define an isomorphism of D-XKH-Hodge theatres
in an obvious manner.

(2) A ©*°'NF-Hodge theatre "H7™¥ is a tripe of a K-Hodge theatre THT™, a B-Hodge
theatre TH7™, and the (necessarily unique) gluing isomorphism between "H7™ and
"HT®. We define an isomorphism of XH-Hodge theatres in an obvious manner.

11. HODGE-ARAKELOV THEORETIC EVALUATION MAPS.

11.1. Radial Environment. In inter-universal Teichmiiller theory, not only the existence of
functorial group-theoretic algorithms, but also the contents of algorithms are important. In
this subsection, we introduce important notions of coricity, uniradiality, and multiradiality for
the contents of algorithms.

Definition 11.1. (Radial Environment, [[UTchII, Example 1.7, Example 1.9])

(1) A radial environment is a triple (R,C, ®), where R, C are groupoids (i.e., categories
in which all morphisms are isomorphisms) such that all objects are isomorphic, and
® : R — C is an essentially surjective functor (In fact, in our mind, we expect that
R and C are collections of certain “type of mathematical data” (i.e., species), and
® is “algorithmically defined” functor (i.e., mutations). In this survey, we avoid the
rigorous formulation of the language of species and mutations (See [IUTchlV, §3]), and
we just assume that R,C to be as above, and ® to be a functor. See also Remark 3.4.4
(2)). We call C a coric category an object of C a coric data, R a radial category
an object of R a radial data, and ¢ a radial algorithm.
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(2) We call ® multiradial, if @ is full. We call ® uniradial, if ® is not full. We call (R, C, ®)
multiradial environment (resp. uniradial environment), if ® is multiradial (resp.
uniradial).

Note that, if ® is uniradial, then an isomoprhism in C does not come from an isomor-
phism in R, which means that an object of R loses a portion of rigidity by ®, i.e., might
be subject to an additional indeterminacy (From another point of view, the liftability of
isomorphism, 7.e., multiradiality, makes possible doing a kind of parallel transport from
another radial data via the associated coric data. See [[UTchll, Remark 1.7.1]).

(3) Let (R,C,®) be a radial environment. Let "R be another groupoid in which all objects
are isomorphic, '® : "R — C an essentially surjective functor, and ¥z : R — R
a functor. We call Uz multiradially defined) or multiradial (resp. uniradially
defined) or uniradial if ® is multiradial (resp. uniradial) and if the diagram

R&TR

| e

C

is 1-commutative. We call W corically defined (or coric), if Uz has a factorisation
Er o ®, where 2 : C — TR is a functor, and if the above diagram is 1-commutative.

(4) Let (R,C,®) be a radial environment. Let £ be another groupoid in which all objects
are isomorphic, and =Z : R — &£ a functor. Let

Graph(=)
denote the category whose objects are pairs (R,Z(R)) for R € Ob(R), and whose

morphisms are the pairs of morphisms (f : R — R, Z(f) : Z(R) — Z(R’)). We call
Graph(Z) the graph of E. We have a commutative diagram

R = Graph(=)

(b l
(I)Graph(E)

C,
of natural functors, where Uz : R+ (R,Z(R)) and Paraphz) : (R,ZE(R)) — ®(R).

Remark 11.1.1. ([IUTchII, Example 1.7 (iii)]) A crucial fact on the consequence of the mul-
tiradiality is the following: For a radial environment (R,C,®), let R X¢ R denote the cate-
gory whose objects are triple (Rp, Rs,«), where Ry, Ry, € Ob(R), and « is an isomorphism
d(R;) = ®(R,), and whose morphisms are morphisms of triples defined in an obvious manner.
Then, the switching functor

RxeR—RxeR : (R, Ry,a) — (Ry, R0 )

preserves the isomorphism class of objects of R x¢ R, if ® is multiradial, since any object
(Ry, Ry, ) in R x¢R is isomorphic to the object (Ry, Ry,id : ®(R;) = ®(R;)). This means that,
if the radial algorithm is multiradial, then we can switch two radial data up to isomorphism.
Ultimately, in the final multiradial algorithm, we can “switch”, up to isomorphism, the theta
values (more precisely, ©-pilot object, up to mild indeterminacies) “{iqu}lgjgl%” on the right
=v

hand side of (the final update of) ©-link to the theta values (more precisely, ©-pilot object, up
to mild indeterminacies) “{ngQ}lSjSp:e” on the left hand side of (the final update of) ©-link,

which is isomorphic to ig (mare precisely, g-pilot object, up to mild indeterminacies) by using
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the ©-link compatibility of the final multiradial algorithm (Theorem 13.12 (3)):

.2 " .9 ~
{igi }I;Igjgl* o~ {Tgi }Il\lgjgl* = in

=V

Then, we cannot distinguish {iqu}lngl% from q wup to mild indeterminacies (i.e., (Indet
=V =v

1), (Indet —), and (Indet «~)), which gives us a upper bound of height function (See also
Appendix A).

Example 11.2. (1) A classical example is holomorphic structures on R?:

IC

forgot‘|vr

RZ < iC

forget !

where R is the category of 1-dimensional C-vector spaces and isomorphisms of C-vector
spaces, C is the category of 2-dimensional R-vector spaces and isomorphisms of R-vector
spaces, and ¢ sends 1-dimensional C-vector spaces to the underlying R-vector spaces.
Then, the radial environment (R,C,®) is uniradial. Note that the underlying R? is
shared (i.e., coric), and that we cannot see one holomorphic structure C from another
holomorphic structure *C.

Next, we replace R by the category of 1-dimensional C-vector spaces 'C equipped
with the GLa(R)-orbit of an isomorphism 'C = R? (for a fixed R?). Then, the resulting
radial environment (R,C, ®) is tautologically multiradial:

(IC 3 R? ~ GLy(R))

forgetI

R? /(IC 5 R? A GLy(R)).

forget

Note that the underlying R? is shared (i.e., coric), and that we can describe the difference
between one holomorphic structure 'C and another holomorphic structure *C in terms
of the underlying analytic structure R2.

An arithmetic analogue of the above example is as follows: As already explained in
Section 3.5, the absolute Galois group Gy of an MLF £ has an automorphism which
does not come from any automorphism of fields (at least in the case where the residue
characteristic is # 2), and one “dimension” is rigid, and the other “dimension” is not
rigid, hence, we consider GG, as a mono-analytic structure. On the other hand, from
the arithmetic fundamental group Ily of hyperbolic orbicurve X of strictly Belyi type
over k, we can reconstruct the field £ (Theorem 3.17), hence, we consider Ilx as an
arithmetically holomorphic structure, and the quotient (Ilx —)Gy (group-theoretically
reconstructable by Corollary 2.4) as the underlying mono-analytic structure. For a fixed
hyperbolic orbicurve X of strictly Belyi type over an MLF k, let R be the category of
topological groups isomorphic to Ilx and isomorphisms of topological groups, and C
the category of topological groups isomorphic to G} and isomorphisms of topological
groups, and ® be the functor which sends II to the group-theoretically reconstructed
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quotien (II —)G. Then, the radial environment (R,C, ®) is uniradial:

I

!

3 3
"G =2G,=2tG <— 1L

Next, we replace R by the category of topological groups isomorphic to I1x equipped
with the full-poly isomorphism G = Gy, where (II —)G is the group-theoretic recon-
structed quotient. Then, the resulting radial environment (R,C,®) is tautologically
multiradial:

full poly

~

(TH —» TG — Gk)

full poly

full poly full poly Z
= Gy = G <— (iH -G 5 Gk)

See also the following table (cf. [Pano, Fig. 2.2, Fig. 2.3]):

coric underlying analytic str. R?2 G
uniradial holomorphic str. C IT
full poly

multiradial | holomorphic str. described | C = R? ~ GLy(R?) | II/A — G

in terms of underlying coric str.

In the final multiradial algorithm (Theorem 13.12), which admits mild indeterminacies, we
describe the arithmetically holomorphic structure on one side of (the final update of) ©-link
from the one on the other side, in terms of shared mono-analytic structure.

Definition 11.3. ([I[UTchII, Definition 1.1, Proposition 1.5 (i), (ii)]) Let M® = (- -+ < M¢, +
M$,, « ---), be a projective system of mono-theta environments determined by X (v € YPad),

where M§, = (Il , Dye spe ). For each N, by Corollary 7.22 (3) and Lemma 7.12, we can
M

functorially group-theoretically reconstruct, from M$, a commutative diagram

Gy (MR)

TN TT—

Mye? —= TP (M) —— I (M) —— " (MR ) T (M)

e

iy (M) = Apd? — AV™P (M) AF™ (M) —— AF™ (M) — A" (MR)
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of topological groups, which is an isomorph of

Gy

.

temp temp temp temp ¢ temp
I ] 1Ty ITy ITy I

t T e T t
,U/NC Aimp [,UN] Aimpc Aéemp( Agmpc Agmp.

For each N, by Theorem 7.23 (1), we can also functorially group-theoretically reconstruct an
isomorph (IAg)(M%) of the internal cyclotome and the cyclotomic rigidity isomorphism

(12e)(MR) ® (Z/NZ) = pn(MY).
The transition morphisms of the resulting projective system {- - - Htgmp(M%) — Htgmp(M%,) —

.-+ } are all isomorphism. We identify these topological groups via these transition mor-
phisms, and let Htlemp(Mia) denote the resulting topological group. Similarly, we define G,,(M?),

P (WD), TS (M), TSP (M), AL (MO), AL (MO), AL™P(ME), AP (M), (IAo) (M)
from G,(M?), IIF™P (M), Ati’mp(M%), Azmp(M%), (1Ag) (M) respectively. We put iz(M?) :=

@ N HN (M%), then we obtain a cyclotomic rigidity isomorphism
(18)(M?) = 113 (MY).

Proposition 11.4. (Multiradial Mono-Theta Cyclotomic Rigidity, [IUTchII, Corollary 1.10])
Let 11, be the tempered fundamental group of the local model objects X for v € V™ in Defi-

nition 10.2 (1), and (I, —)G, the quotient group-theoretically reconstructed by Lemma 6.2.
(1) Let C" be the category whose objects are

G~ 0@,

where G is a topological group isomorphic to G,, O**(G) is the group-theoretically
reconstructed monoid by Proposition 5.2 (Step 1) and Definition 8.5 (1), and whose
morphisms (G ~ O**(G)) = (G' ~ O**(G")) are pairs of the isomorphism G = G’
of topological groups, and an Isomet(G)-multiple of the functorially group-theoretically
reconstructed isomorphism O**(G) = O**(G") from the isomorphism G = G'.

(2) Let R® be the category whose objects are triples

(T~ i (M) 0 Q/Z . G~ OH(G) , o = (T~ piz(ME(D) ©Q/Z) ™5 (G~ O(G))ln)

where 11 is a topological group isomorphic to 11,, the topological group (Il —)G is the
quotient group-theoretically reconstructed by Lemma 6.2, the notation (—)|n denotes the
restriction via Il — G, the notation iz (M2 (I1)) denotes the external cyclotome (See just
after Theorem 7.23) of the projective system of mono-theta environment MO (I1) group-
theoretically reconstructed from 11 by Corollary 7.22 (2) (Note that such a projective
system is uniquely determined, up to isomorphism, by the discrete rigidity (Theorem 7.23
(2))), and o, x,, is the composite
poly
pz(M2(I1)) ® Q/Z — O*(I1) — O**(I1) = O**(G)

of ind-topological modules equipped with topological group actions, where the first ar-
row is given by the composite of the tautological Kummer map for MO(I1) and the in-
verse of the isomorphism induced by the cyclotomic rigidity isomorphism of mono-theta
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environment (cf. the diagrams in Proposition 11.7 (1), (4)), the second arrow is the

natural surjection and the last arrow is the poly-isomorphism induced by the full poly-
full poly

isomorphism II/A = G (Note that the composite of the above diagram is equal to 0),
and whose morphisms are pairs (fu, fc) of the isomorphism fr : (II ~ pz(M2(I1)) @
Q/z) = (I ~ uz(MO(I1')) ® Q/Z) of ind-topological modules equipped with topo-
logical group actions induced by an isomorphism 11 = II' of topological groups with
an Isomet(G)-multiple of the functorially group-theoretically reconstructed isomorphism
pz(MO(I)) ® Q/Z = puz(ME(I1')) @ Q/Z, and the isomorphism fg : (G ~ O (G)) =
(G" ~ O**(G")) of ind-topological modules equipped with topological group actions in-
duced by an isomorphism G = G’ of topological groups with an Isomet(G)-multiple
of the functorially group-theoretically reconstructed isomorphism O**(G) = O**(G")
(Note that these isomorphisms are automatically compatible o, «,, and o i an ob-

,X
vious sense). r
(3) Let ®° : R® — C" be the essentially surjective functor, which sends (IL ~ puz(ME(I1)) ®
Q/Z,G ~ O™(G), oy, xp) to G~ O**(G), and (fu, fa) to fa.
(4) Let £° be the category whose objects are the cyclotomic rigidity isomorphisms of
mono-theta environments

(186)(IT) = 13 (M2 (IT))

reconstructed group-theoretically by Theorem 7.23 (1), where Il is a topological group iso-
morphic to 11, the cyclomotmes (1Ae)(I1) and uz(MO(I1)) are the internal and external
cyclotomes respectively group-theoretically reconstructed from 11 by Corollary 7.22 (1),
and whose morphisms are pair of isomorphisms (1Ae)(IT) = (1Ae)(I1') and puz(M2(I1)) =
,uz(Mf)(H’)) which are induced functorially group-theoretically reconstructed from an iso-
morphism of topological groups 11 = IT'.

(5) Let Z° : R® — &° be the functor, which sends (Il ~ pus(M2(I) ® Q/Z,G ~
O"M(G), oy %) to the cyclotomic rigidity isomorphisms of mono-theta environments
(1Ae)(II) = uz(ME(IT)) reconstructed group-theoretically by Theorem 7.23 (1), and
(fu, fg) to the isomorphism functorially group-theoretically reconstructed from 11 = TT.

Then, the radial environment (R®,C™, ®®) is multiradial, and V=e is multiradially defined,
where Wzeo the naturally defined functor

\Il':
RO =% Graph(=°)
<I>® l /
CI— (I)Graph(E@)
by the construction of the graph of =°.

Proof. By noting that the composition in the definition of o, ,, is 0, and that we are considering

full poly
the full poly-isomorphism II/A — G, not the tautological single isomorphism II/A = G,
the proposition immediately from the definitions. ([l

Remark 11.4.1. Let see the diagram
LA~ 5 (MO (1) © Q/Z

I

(G~ O(1G)) = (}G ~ O (G)) < T~ pz(MP (M) © Q/Z,
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by dividing into two portions:

I TM
full poly
f/fa = @ 0
< I
G full pol)!i[. OX# 0 i11’67

A = ¢

On the left hand side, by “loosening” (cf. taking GLy(R)-obit in Exapmle 11.2) the natural single
isomorphisms 'TI/TA = G, fII/*A = G by the full poly-isomorphisms (This means that the
rigidification on the underlying mono-analytic structure GG by the arithmetically holomorphic
structure II is resolved), we make the topological group portion of the functor & full (i.e.,
multiradial).

On the right hand side, the fact that the map u — O** is equal to zero makes the ind-
topological module portion of the functor ® full (i.e., multiradial). This means that it makes
possible to “simultaneously perform” the algorithm of the cyclotomic rigidity isomorphism
of mono-theta environment without making harmfull effects on other radial data, since the
algorithm of the cyclotomic rigidity of mono-theta environment uses only p-portion (unlike the
one via LCFT uses the value group portion as well), and the p-portion is separated from the
relation with the coric data, by the fact that tha homomorphism p — O** is zero.

For the cyclotomic rigidity via LCFT, a similarly defined radial environment is uniradial,
since the cyclotomic rigidity via LCFT uses the value group portion as well, and the value
group portion is not separated from the coric data, and makes harmﬁiﬂ effects on other radial
data. Even in this case, we replace O”(—) by O*(—), and we admit Z*-indeterminacy on the
cyclotomic rigidity, then it is tautologically multiradial as seen in the following proposition:

Proposition 11.5. (Multiradial LCFT Cyclotomic Rigidity with Indeterminacies, [[UTchII,
Corollary 1.11]) Let I1, be the tempered fundamental group of the local model objects X, for

v € V" in Definition 10.2 (1), and (I1, —)G,, the quotient group-theoretically reconstructed
by Lemma 6.2.

(& (& e same ca 6gO’I"y as in roposition o/

1) Let C" be th t n P tion 11.4
e e e ca egoryw 0560]6080//’6 riplLes

2) Let RYCFT pe the cat h bject tripl

(H N OD(H) s G O@(G) ) aD,Xuv) )

where 11 is a topological group isomorphic to 11,, the topological group (Il —)G is the
quotient group-theoretically reconstructed by Lemma 6.2, O%(I1) is the ind-topological
monoid determined by the ind-topological field group-theoretically reconstructed from 11
by Corollary 3.19 and o, x, s the following diagram:

Z* -orbit
poly

~

(Il ~ O (I1)) = (I ~ O(IT)) S (G ~ O (G))| + (G~ OX(G))|u = (G~ O (G))|n

of ind-topological monoids equipped with topological group actions determined by the 7% -
full poly

orbit of the poly-morphism determined by the full poly-morphism II/A — G, where
A= ker(AH — ) and the natural homomorphisms, where O®P(11) := liglJCn:Open(OD(H)gp)J
(resp. O%P(QG) = ligchhopen(OD(G’)gp)J), and whose morphisms are pairs (fu, fa) of
the isomorphism fr : (Il ~ O™ (1)) = (I' ~ O>(I")) of ind-topological monoids
equipped with topological group actions induced by an isomorphism I1 = II' of topological
groups with an Isomet(G)-multiple of the functorially group-theoretically reconstructed
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isomorphism OF (I1) = O (II'), and the isomorphism fg : (G ~ OF(G)) = (G' ~
O@(G’ )) of ind-topological groups equipped with topological group actions induced by an
isomorphism G = G' of topological groups with an Isomet(G)-multiple of the functori-
ally group-theoretically reconstructed isomorphism OB (G) = O®(G') (Note that these
wsomorphisms are automatically compatible oy, and Oé|/>,><u in an obvious sense).

(3) Let ®LCFT . RLC¥T 5 CF be the essentially surjective functor, which sends (II ~
O> (1), G ~ O%(G), ap.xy) to G ~ O**(G), and (fu, fg) to the functorially group-
theoretically reconstructed isomorphism (G ~ O**(G)) = (G' ~ O**(G")).

(4) Let EXFT be the category whose objects are the pairs of the 7.%-orbit (= the full poly-
isomorphism, cf. Remark 3.19.2 in the case of O*)

poly
1z(G) = pz(0(G))
of cyclotomic rigidity isomorphisms via LCFT reconstructed group-theoretically
by Remark 3.19.2 (for M = O*(G)), and the Aut(G)-orbit (which comes from the

full poly

~

full poly-isomorphism II/A — G)
poly
1z(G) = (18e)(1)
of the isomorphism obtained as the composite of the cyclotomic rigidity 1somorphism
via positive rational structure and LCFT uz(G) = ps(I1) group-theoretically recon-
structed by Remark 6.12.2 and the cyclotomic rigidity isomorphism pz(I1) = (I1Ag)(II)
group-theoretically reconstructed by Remark 9.4.1, where 11 is a topological group iso-
morphic to 11,, the topological group (II —)G is the quotient group-theoretically re-
constructed by Lemma 6.2, and (I1Ag)(I1) is the internal cyclotome group-theoretically
reconstructed from 11 by Corollary 7.22 (1), and whose morphisms are triple of iso-
morphisms 115(G) = p5(G), pz(0%(G)) > pz(0(C)) and (180)(IT) =5 (IAe)(IT)
which are induced functorially group-theoretically reconstructed from an isomorphism of
topological groups 11 = 11'.
(5) Let ZFCYT . RECYT _y gLCFT pe the functor, which sends (I ~ O™ (I1), G ~ O (G), s x )
to the pair of group-theoretically reconstructed isomorphisms, and (fi, fa) to the iso-
morphism functorially group-theoretically reconstructed from I1 = II'.

RLCFT’ CF, (I)LCFT)

Then, the radial environment ( 18 multiradial, and VYzrcrr 15 multiradially

defined, where WzLcrr the naturally defined functor

VoLoFT —
RLCFT Graph(:LCFT>

@LCFT l
q)Graph(ELCFT)

C#

by the construction of the graph of ZXCFT.

Definition 11.6. ([IUTchll, Remark 1.4.1 (ii)]) Recall that we have hyperbolic orbicurves
X - X,—»C, forve V" and a rational point

/1’— € Kg(‘[(ﬂ)

(i.e., “—=17 in Gﬁ;g/qi. See Definition 10.17). The unique automorphism tx of X of order

2 lying over tx (See Section 7.3 and Section 7.5) corresponds to the unique Atgnlp-oater auto-
morphism of II'T™ over G, of order 2. Let also 1x denote the latter automorphism by abuse

v
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of notation. We also have tempered coverings Y —» Y —» X Note that we can group-
theoretically reconstruct Htemp Htemp from II X, by Corollary 7. 22 (1) and the description of

Y — Y. Let Htemp(H) HtXemp(H) denote the reconstructed ones from a topological group II

isomorphic to Il S respectlvely Since [, contains fi4;, there exist rational points

(N—)z € gg(Kg)a (H—)é € éE(KQ%
such that (u-)y — (u-)x — p—. Note that tx fixes the Gal(X /X, )-orbit of (u-)x, since

vx fixes pi_, hence tx fixes (pu-)x, since Aut(X ) = p x {1} by Remark 7.12.1 (Here, Lx

corresponds to the second factor of j; x {£1}, since | # 2). Then, it follows that there exists
an automorphism

by
of Y of order 2 lifting ¢x, which is uniquely determined up to IZ-conjugacy and composition with
an element € Gal(Y /Y ) = g, by the condition that it fixes the Gal(gv/gv) -orbit of some
element (“(y—)y” by abuse of nonation) of the GaI(Y J X )(Z L X piz)-orbit of (u ) Let ¢y

also denote the corresponding Atemp—outer automorphism of Htemp by abuse of notation. We

—'L) —'U

call 1y an inversion automorphism as well. Let ¢y-denote the automorphism of Y, induced
by in
Let
t
D, C H-X-emp

denote the decomposition group of (u )Y, which is well-defined up to Atemp—oonjugacy Hence,

—’U

D,,_ is determined by ¢y up to Ag%mp—conjugacy. We call the pairs

(Li € Aut(gg) , (,LL,)i> , or <LY € Aut(H?ﬁmp)/Inn(At;mp) , Du-)

=v =v

a pointed inversion automorphism. Recall that an étale theta function of standard type is
defined by the condition on the restriction to D, is in po; (Definition 7.7 and Definition 7.14).

Proposition 11.7. (Multiradial Constant Multiple Rigidity, [IUTchll, Corollary 1.12]) Let
(R®,C", ®®) be the multiradial environment defined in Proposition 11.4.

(1) There is a functorial group-theoretic algorithm to reconstruct, from a topological group
IT isomorphic to H&emp (v e ybad), the following commutative diagram:

O™ (1) U O*(I) - o f(ID)¢ oo (TP (1), (186 (I1))

= glecl. Rig. Mono-Th. in Prop.11.4

O*(MP(II)) U O*(MP(IT)) - ool

=env

(M2 (IT)) = oo ' (I (M (I1)),, 1(ME2 (1)),

where we put, for a topological group I1 isomorphic to Htemp (resp. for a projective system
M® of mono-theta environments determined by X ) Htemp( ) (resp. Ht;mp(M*@)) to
be the isomorph of H';fmp reconstructed from Hzfmp(ﬂ) by Definition 11.67(7’6819. from
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H;emp(M?) by Definition 11.3 and the descrption ofz - Y), and

o H' (ISP (I), (10 (IT)) := limy HY(ITZ™P(ID) xa J, (1Ae)(IT)),
- JCII:open, of fin. index =
oo HH(ITEP (M), 15, (M) 1= lim HY (I (M) xp1 J, (M),
- JCII:open, of fin. index =
and
(1) (C ooH' (I (ID), (1Ae)(ID)) (resp. o8 (M?) (C ooHl(Htimp(M*@)yuz(M?)) )

denotes the subset of elements for which some positive integer multiple (if we consider
multiplicatively, some positive integer power) is, up to torsion, equal to an element of
the subset

O(I1) (C H'(IL™P(ID), (1Ae)(ID)) (resp. 0 (M) (C H'(ILI™ (M), pz(MY)) )

of the p-orbit of the reciprocal of IZ X ps-orbit ﬁe’@x”? of an l-th root of the étale theta

function of standard type in Section 7.3 (resp. corresponding to the p-orbit of the recip-

rocal of (IZ X ps)-orbit ﬁe’lzx’“ of an l-th root of the étale theta function of standard type

~

in Section 7.3, via the cyclotomic rigidity isomorphism (1Ae)(M®) = pz(M?) group-
theoretically reconstructed by Theorem 7.23 (1), where (1Ae)(M®) denotes the internal
cyclotome of the projective system M® of mono-theta environments group-theoretically
reconstructd by Theorem 7.23 (1)) (Note that these can functorially group-theoretically
reconstructed by the constant multiple rigidity (Proposition 11.7)), and we define

O* (M (1))
to be the submodule such that the left vertical arrow is an isomorphism. We also put

0% f(IT) := O (1) - 0(IT), 0"l (MP(ID)) := O (MP(ID)) - e, (M (IT)).

=env —env

(2) There is a functorial group-theoretic algorithm

= {(, D)D),

which construct, from a topological group 11 isomorphic to Htfnp, a collection of pairs

. temp . yrtemp g temp
(¢, D), where v is a Ai (IT)(:= Hi (IT) N A)-outer automorphism of Hi (I), and
D C Ht-Y?mp(H) is a Agfmp(ﬂ)—conjgacy class of closed subgroups corresponding to the

pointed inversion automorphisms in Definition 11.6. We call each (v, D) a pointed
inversion automorphism as well. For a pointed inversion automorphism (v, D), and
a subset S of an abelian group A, if v acts on Im(S — A/Asors), then we put S* = {s €
S | t(smod Agors) = smod Agops }-

(3) Let (v, D) be a pointed inversion automorphism reconstructed in (1). Then, the restric-
tion to the subgroup D C Ht-Yemp(H) gives us the following commutative diagram:

{0011} O*(I1) (C (1L, (1Ae)(I1)))
\L %lecl. Rig. Mono-Th. in Prop.11.4
{070, (M2(IT))} — O*(M?(II)) (C o HY(IL, i (M2(1D)))
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where we put

SHY(IL (1A6)(ID)) = limy H'(J, (1A6)(IT)),

JCII:open, of fin. index

o H(IL, i3 (MO (ID))) = lm  H'(Jup(MO(ID))).
JCII:open, of fin. index
Note that the inverse image of the torsion elements via the upper (resp. lower) horizontal
arrow in the above commutative diagram is equal to .0(I1)* (Tesp. o0 V(M*@(H))‘). In

=en

particular, we obtain a functorial algorithm of constructing splittings
O*M(I1) x {f(I1) /O*(I)}, O™ (MP(IT)) x {xf,, (M (I1))"/O" (M2 (1))}
of {07 (I} JOM(IT)  (resp. {076, (ME(IT))}/Or(MO(IT)) ).
(4) For an object (II ~ puz(M2(II)) ® Q/Z, G ~ O**(G), . xpu) of the radial category R®,
we assign

e the projective system MO (I1) of mono-theta environments,
o the subsets O*(1I) U O* 0(I1) (C C>OHI(l_Igfmp(H), (1Ag)(11))), and

O*(M2(IT)) U OXoernv(M_f?(H)) (C oo HM (I (MP (1)), p15(ME(I1)))) in (1),

e the splittings O*#(II) x {OOQ(H)L/O“(H)},:and
0" UEID) x (o, (M2 /O OAE) n (3), and
e the diagram

poly

pz(M2 (IT)) ® Q/Z = O" (M (IT)) = O"(IT) < O*(II) — O**(II) = O**(G),

where the first arrow is induced by the tautological Kummer map for MO (II), the
second arrow is induced by the vertical arrow in (1), the third and the fourth arrow
are the natural injection and surjection respectively (Note that the composite is

equal to 0), and the last arrow is the poly-isomorphism induced by the full poly-
full poly

isomorphism II/A = G.
Then, this assignment determines a functor 2 : R® — £ and the natural functor
Weenw 1 RO — Graph(Z®Y) is multiradially defined.

Proof. Proposition immediately follows from the described algorithms. O

Remark 11.7.1. See also the following étale-pictures of étale theta functions:

A [ = = > |G~ O*(G) ~ Tsomet(G) | < — —| 50 (1)

0 (MO(TTD)) | — — > |G ~ O(G) ~ Tsomet(G) | < — —| o8 (MO ()

Zenv Zenv

Note that the object in the center is a mono-analytic object, and the objects in the left and
in the right are holomorphic objects, and that we have a permutation symmetry in the étale-
picture, by the multiradiality of the algorithm in Proposition 11.7 (See also Remark 11.1.1).

Remark 11.7.2. ([IUTchII, Proposition 2.2 (ii)]) The subset
B(I) C B (resp. (1) C 6(1T) )

determines a specific ug(O(II))-orbit (resp. O*(II)-orbit) within the unique (IZ X pg)-orbit
(resp. each (IZ x j)-orbit) in the set O(II) (resp. f(II)).
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11.2. Hodge-Arakelov Theoretic Evaluation and Gaussian Monoids in Bad Places.
In this subsection, we perform the Hodge-Arakelov theoretic evaluation, and construct Gaussian
monoids for v € VP (Note that the case for v € VP24 plays a central role). Recall that
Corollary 7.22 (2) reconstructs a mono-theta environment from a topological group (“II
M”) and Theorem 8.14 reconstructs a mono-theta environment from a tempered Frobenioid
(“F — M"). First, we transport theta classes # and the theta evaluations from a group theoretic
situation to a mono-theta environment theoretic situation via (“II — M”) and the cyclotomic
rigidity for mono-theta environments, then, via (“F +— M”), a Frobenioid theoretic situation
can access to the theta evaluation (See also [IUTchII, Fig. 3.1]):

II M i F

0, eval —— Qe ) evaleny,

F-Theoretic Theta Monoids Hummer_ 1 Theoretic Theta Monoids

\LGalois Evaluation

F-Theoretic Gaussian Monoids <—— M-Theoretic Gaussian Monoids.
(Kummer) ™1, or forget

Note also that, from the view point of the scheme theoretic Hodge-Arakelov theory and
p-adic Hodge theory (See Section A), the evaluation maps correspond, in some sense, to the
comparison map, which sends Galois representations to filtered ¢-modules in the p-adic Hodge
theory.

Definition 11.8. ([IUTchII, Remark 2.1.1, Proposition 2.2, Definition 2.3])

(1) For a hyperbolic orbicurve (—), over K,, let I'_y denote the dual graph of the special
fiber of a stable model. Note that each of maps

Iy —1Ty I'x
F}'}H‘Fy, F&

induces a bijection on vertices, since the covering X , X, is totally ramified at the
cusps. Let

Fz c T X
denote the unique connected subgraph of I'x, which is a tree and is stabilised by ¢x
(See Section 7.3, Section 7.5, and Definition 11.6), and contains all vertices of I'x. Let

Iy ¢ I's
denote the unique connected subgraph of I'x, which is stabilised by ¢x and contains pre-
cisely one vertex and no edges. Hence, if we put labelson I'x by {—0*,...,—1,0,1,...,[*},

where 0 is fixed by ¢x, then I'} is obtained by removing, from I'x, the edge connect-
ing the vertices labelled by +I*, and I'S consists only the vertex labelled by 0. From
I's € T% (C T'x), by taking suitable connected components of inverse images, we obtain
finite connected subgraphs

F‘chicré, Iy cry cly, It crycrly,

which are stabilised by respective inversion automorphisms tx, ¢y, ty (See Section 7.3,
Section 7.5, and Definition 11.6). Note that each I'T_) maps isomorphically to %
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(2) Put

. = HE?““}- C Iy = H‘;imri» c I, (= Hggmp)

for ¥ := {l} in the notation of Corollary 6.9 (i.e., H = I'%), Note that we have
I, C ™ NI, = Htemp. Note also that II,, is well-defined up to II,-conjugacy,
and after ﬁxmg IL,,, the subgroup Il,, C II,, is well-defined up to IL,,-conjugacy.
Moreover, note that we may assume that Il,e, II,, and ¢y have been chosen so that
some representative of ¢y stabilises 1,4 and Il,,. Finally, note also that, from II,, we
can functorially group-theoretically reconstruct the data (e C I C 1I,, LZ) up to
I1,-conjugacy, by Remark 6.12.1. B
(3) We put

L temp + . temp cor ,__ temp + . yrtemp cor .__ yytemp
Ay = AR AT = AR AP = ALY, I = Y T = 0

(Note also that we can group-theoretically reconstruct these groups from II, by Lemma 7.12).

We also use the notation (—) for the profinite completion in this subsection. We also
put
I, = Ny (L) C 105, == N (I,) € I3

Note that we have
I, /Tye =TI /Tl 5 15 /11, 5 AT/A, 5 Gal(X | /X,) = 2/IZ,

and
H;E. N1IL, = I, Hi» N1, = I,

since 11,4 and II,, are normally terminal in II,, by Corollary 6.9 (6).
(4) A £-label class of cusps of II, (resp. of Hi, resp. of 1_[,,, resp. of Hi) is the set

of II,-conjugacy (resp. HjE conjugacy, resp. H -conjugacy, resp. 1_[jE conjugacy) classes

of cuspidal inertia subgroups of II, (resp. of ITIE, resp. of Hg, resp. of Hi) whose

v

resp. in I+ resp. in ﬁ:;) determine a single

v

commensurators in IT} (resp. in ITj,

ITF-conjugacy (resp. IIF-conjugacy, resp. Hi—conjugacy, resp. ﬁi—conjugacy) class of
subgroups in 1_[:2t (resp. in Hi, resp. in ﬁi, resp. in l/_\[:;) (Note that this is group-
theoretic condition. Note also that such a set of II,-conjugacy (resp. H:;—conjugacy,
resp. ﬁg-conjugacy, resp. ﬁi—conjugacy) class is of cardinality 1, since the covering
X — X, is totally ramified at cusps (or the covering X — X 'is trivial).) Let

LabCusp® (II,) (resp. LabCuspi(Hi), resp. LabCuspi(ﬁg), resp. LabCuspi(ﬁ;t) )

2> resp. of ﬁg, resp.
of ﬁ:;) Note that LabCusp®(Il,) can be naturally identified with LabCusp®(1D,)

in Definition 10.27 (2) for 1D, := B*mP(I1,)°, and admits a group-theoretically re-
constructable natural action of F;°, a group-theoretically reconstructable zero element

Tﬂg € LabCusp®(II,) = LabCusp®(D,), and a group-theoretically reconstructable 4-

denote the set of +-label classes of cusps of II, (resp. of IIF

canonical element Tﬂf € LabCusp™(Il,) = LabCusp™("D,) well defined up to multipli-
cation by +1. N
(5) An element ¢t € LabCusp™(II,) determines a unique vertex of I'% (cf. Corollary 6.9 (4)).

Let I' € I'™% denote the connected subgraph with no edges whose unique vertex is the
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vertex determined by ¢. Then, by a functorial group-theoretic algorithm, F‘Xt gives us a
decomposition group a
Hy.t C ]._.[y> C Hg

well-defined up to II,,-conjugacy. We also put
ey := Nppz (Tyer).-

vet
(Note that we have a natural isomorphism I3, /I,e — Gal(ég/ X,) by Corollary 6.9
(6))- R
(6) The images in LabCusp™ (IL¥) (resp. LabCusp™ (1)) of the F,-action, the zero element
Tﬁg, and £-canonical element Tgvi of LabCusp™(II,) in the above (4), via the natural

outer injection IT, < IT (resp. II, — ﬁ:;), determine a natural FiF-torsor structure (See
Definition 10.26 (2)) on LabCusp™ (II¥) (resp. LabCuspi(ﬁ:;)). Moreover, the natural
action of TI /I (resp. ﬁzor / ﬁi) on ITF (resp. ﬁyi) preserves this F;"-torosr structure,
thus, determines a natural outer isomorphism IT15" /II* = F;'* (resp. ﬁzor / ﬁ:; >~ ).

Here, note that, even though II, (resp. IL,) is not normal in II5°" (resp. ﬁz"r), the
cuspidal inertia subgroups of II, (resp. ﬁg) are permuted by the conjugate action of
II5°" (resp. ﬁ;"r), since, for a cuspidal inertia subgroup [ in Hi (resp. ﬁ:;), we have
INT, = I (resp. IN ﬁg = I') (Here, we write multiplicatively in the notation I'), and
ITE (resp. ﬁ;t) is normal in II5™ (resp. ﬁg’r) ([IUTchII, Remark 2.3.1]).

Lemma 11.9. ([TUTchII, Corollary 2.4]) Take t € LabCusp™(Il,). Put
Ay-t = Ay N Hgota Ai = Ai N 1_[i

vetl * vet)

Hyit = Hg't N H;?mp, Ag5t = Ay N HQ;U

Ay» = Aym Hy», A:yt = A:t ﬂ H:l:

v

M = M NI, Ayg = Ay MLz

Note that we have
Myer = Tyse] = [Ty Hyﬁ] = [Ager : Ayst] = [Ap - Ayi] =2,

1L,

vet

M) = [T < I, = [A,

vet *

Ayet] = [Az[> cAp] =1
(1) Let I; C 11, be a cuspidal inertia subgmup which belongs to the +-label class t such that
I C Ayet (resp. Iy C Ay ). Fory € Ai let (=) denote the conjugation y(—)y~! by
~v. Then, for~" € Av, the following are equivalent:
(a) ¥ € A, (resp. 7 € A%
(b) " C Iy, (resp. I CIT,),
)

() I C (TMyay)? (resp. 1" C (I15)7).
(2) In the situation of (1), put 0 := ' € AT, then any inclusion

. 1)
Hvot

Iy —I'” c I}

vet —

5 / 5
(resp. I} = 17 C 11}, =11

o)

as in (1) completely determines the following data:
(a) a decomposition group D} := Nys (1) C II,

vet

(resp. D := Nng(ff) C Hg‘),

(b) a decomposition group D, C 110, , well-defined up to (I, )°-conjugacy (or, equiva-

oL X

lently (A;t,)‘s—conjugacy), corresponding to the torsion point u_ in Definition 11.6.



A PROOF OF ABC CONJECTURE AFTER MOCHIZUKI 193

(resp. D}, CII%, ), well-defined up to (I13,,)°-
(AL )6

(c) a decomposition group Dy, C IIJ,
conjugacy (resp. (I1%)2-conjugacy) (or equivalently, (AL,,)°-conjugacy (resp. (AL )0-
conjugacy)), that is, the image of an evaluation section corresponding to ji_-translate
of the cusp which gives rise to I?.

Moreover, the construction of the above data is compatible with conjugation by arbitrary

o€ ﬁf as well as with tha natural inclusion 11,4 C 1Ly, as we vary the non-resp’d case

and 7"68]) ‘d case.

(3) (F)*-symmetry) The construction of the data (Qa), (2¢) is compatible with conjugation
by arbitrary § € Hcor hence we have a A“"”/AiE 5 T /IIE 5 F;=-symmetry on the
construction.

Proof. We show (1). The implications (a) = (b) = (c¢) are immediately follow from the
definitions. We show the implication (¢) = (a). We may assume vy = 1 without loss of

generality. Then, the condition I} C II;,, C II* (resp. I c I, C II7) implies 7/ € AF
by Theorem 6.11 (“profinite Conjugate Vs tempered conjugate”). By Corollary 6.9 (4), we
obtain v € Av,t (resp. 7 € A . ), where (—) denotes the closure in Ai (which is equal to
the profinite completion, by Coroliary 6.9 (2)). Then, we obtain ' € Af,t NAF = AL, (resp.
v € Ai NAF =A%) by Corollary 6.9 (3).

(2) follows from Theorem 3.7 (elliptic cuspidalisation) and Remark 6.12.1 (together with

Lemma 7.16, Lemma 7.12) (See also Definition 10.17). (3) follows immediately from the de-
scribed algorithms. O

Let
(lAe)(ILyz)
denote the subquotient of II,; determined by the subquotient (IAg)(Il,) of II, (Note that the
inclusion I3 < II, induces an isomorphism (IAg)(ILz) = (IAe)(IL,)). Let
I, » Gy(IL,), Il — Gu(Il)
denote the quotients determined by the natural surjection I, — G, (Note that we can functo-
rially group-theoretically reconstruct these quotients by Lemma 6.2 and Definition 11.8 (2)).
Proposition 11.10. (II-theoretic Theta Evaluation, [IUTchII, Corollary 2.5, Corollary 2.6])
(1) Let If =17 C I1°, C 11}, =I5, be as in Lemma 11.9 (2). Then, the restriction of the
L7 -invariant sets QL(HZ), OOQL(H;) of Remark 11.7.2 to the subgroup 117, C H;?mp(ﬂg)(C

I1,) gives us uy-, p-orbits of elements

0(I;) € ool (L) C ool (I, (18)(IN3)) := lim HY(Ig g, J. (1Ae)(IL};)).
JCIIy : open

The further restriction of the decomposition groups D,‘iuf in Lemma 11.9 (2) gives us
for-, p-orbits of elements

Qt<HZ>) C oogt(Hz,) - ooH1<GQ(HZ;)> (ZA@)(HZ>)) = hﬂ Hl(‘]G? (lA@)(HZ>))7
chGE(H;‘) :open

conj. by vy
for each t € LabCusp™(II]) - LabCusp™(Il,). Since the sets 0'(I';), 0"(17;)
depend only on the label |t| € ||, we write

O'(IT) = 0'(IT)y),  w"(IT) = o (1T ).
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(2) If we start with an arbitrary ﬁi—conjugate HZ‘ of Lz, and we consider the resulting jiy-

, p-orbits Q‘tl(HZ‘), OOQM(HZ‘) arising from an arbitrary ﬁi—conjugate I? of I, contained

conj. by vy
in 1T, as t runs over LabCuspi(H;) 5 LabCusp™(Il,), then we obtain a group-

theoretic algorithm to construct the collections of jia-, p-orbits

{Qﬂ(ﬂz‘)}uew ’ {mglt(nz‘)}ﬂem ’

which is functorial with respect to the isomorphisms of topological groups IL,, and

compatible with the independent conjugacy actions of ﬁj on the sets {I]'}

{I"}, eaz and {I03} cqe = {113} cax

(3) The y-conjugate of the quotient I,z — G,(Il,z) determines subsets
(o H (G (I} ), (1A6)(I1)5 ) D) O*(I))  C ooH (T, (1Ae)(IT);)),

Y1 Eﬁ:;

OXQL(HZ;) = OX(HZ;)2L<HZ;) c OXOOQL(HZS) = OX(HZS)OOQL(HX;) C OOHI(HZ$’(ZA@)<HZ$)>’
which are compatible with O*(—), O*0"(—) in Proposition 11.7, respectively, relative
to the first restriction operation in (1). We put

O*H(IL) = O™ (IL; ) /O*(IL}; ).

(4) In the situation of (1), we take t to be the zero element. Then, the set §'(I1;) (resp.
mgt(ﬂgg)) is equal to py (resp. ). In particular, by taking quotietn by OM(IL),
the restriction to the decomposition group D?,u— (where t is the zero element) gives us
splittings

O™ (I ) X {oo (I ) /O (I ) }
of O* 0" (117, ) /O*(I1),. ), which are compatible with the splittings of Proposition 11.7
(3), relative to the first restriction operation in (1):

label 0
00— OXH(HZ;) - OXooQL(HZ;)/O#(HZ;) - ooQL(HZ;)/O#(HZ;) —0.

Remark 11.10.1. (principle of Galois evaluation) Let us consider some “mysterious evaluation
algorithm” which constructs theta values from an abstract theta function, in general. It is
natural to require that this algorithm is compatible with taking Kummer classes of the “abstract
theta function” and the “theta values”, and that this algorithm extend to coverings on both
input and output data. Then, by the natural requirement of functoriality with respect to the
Galois groups on either side, we can conclude that the “mysterious evaluation algorithm” in fact
arises from a section G — Il (II) of the natural surjection Iy (IT) — G, as in Proposition 11.10.

We call this the principle of Galois evaluation. Moreover, from the point of view of Section
Conjecture, we expect that this sections arise from geometric points (as in Proposition 11.10).

Remark 11.10.2. ([IUTchII, Remark 2.6.1, Remark 2.6.2]) It is important that we perform
the evaluation algorithm in Proposition 11.10 (1) by using single base point, i.e., connected
subgraph I'} C T x, and that the theta values

Q‘tl(ﬂy$7> C H1<G2(Hy$7>> (ZAG)(HQSV))
live in the cohomology of single Galois group G,(Ils7y) with single cyclotome (IAg)(IT)
coefficient for various |t| € |Fy|, since we want to consider the collection of the theta values
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for |t| € ||, not as separated objects, but as “connected single object”, by synchronising
indeterminacies via F fi—symmetry, when we construct Gaussian monoids via Kummer theory
(See Corollary 11.17).

Remark 11.10.3. ([IUTchII, Remark 2.5.2]) Put
H©i = Hl}w A©:t = AKK‘

Recall that, using the global data A®*(= A¥), we put +-labels on local objects in a consistent
manner (Proposition 10.33), where the labels are defined in the form of conjugacy classes of
I;. Note that A®*(= ﬁf) is a kind of “ambient container” of ﬁf—conjugates of both I; and
A,s. On the other hand, when we want to vary v, the topological group II,z is purely local
(u}llike the label ¢, or conjugacy classes of I;), and cannot be globalised, hence, we have the

independence of the A®F (= ﬁyi)—conjugacy indeterminacies which act on the conjugates of I,
and A,z. Moreover, since the natural surjection ﬁ;or —» ﬁg’r/ﬁj = Ffi deos not have a
splitting, the ﬁzor—outer action of ﬁz"r/ﬁi >~ F* in Lemma 11.9 (3) induces independent

AOF ﬁi—conjugacy indeterminacies on the subgroups I; for distinct t.

Remark 11.10.4. ([IUTchII, Remark 2.6.3]) We explain the choice of I'}, C I'y.. Take a finite
subgraph I C I'y.. Then,
(1) For the purpose of getting single base point as explained in Remark 11.10.2, the subgraph
I'" should be connected.
(2) For the purpose of getting the crucial splitting in Proposition 11.10 (4), the subgraph
[" should contain the vertex of label 0.
(3) For the purpose of making the final height inequality sharpest (cf.the calculations in
the proof of Lemma 1.10), we want to maximise the value

1 . 2
4T Z mlﬂgerl, j=j in [F| {i } )

]EFZ

where we identified I'y with Z. Then, we obtain #I" > [*, since the above function is
non-decreasing when #I" grows, and constant for #I” > [*.

(4) For the purpose of globalising the monoids determined by theta values, via global re-
alified Frobenioids (See Section 11.4), such a manner that the product formula should
be satisfied, the set {j € I, j = j in |F;|} should consist of only one element for each

j € F/, because the inaepende_nt conjugacy indeterminacies explained in Remark 11.10.3
are incompatible with the product formula, if the set has more than two elements.

Then, the only subgraph satisfying (1), (2), (3), (4) is I'}.

For a projective system M® = (... < M§, + M$,, + - --) of mono-theta environments such
tem 0\ ~ () )
that Hée P(M?) = 11, where M, = (Ilye , Dye , SM%), put

HMS? = LIH HM%'
M

Note that we have a natural homomorphism IIye — HEHIP(M*@) of topological groups whose

kernel is equal to the external cyclotome uz(M?), and whose image correpsonds to Htxemp. Let
HM?; C Ilye C Ilye
denote the inverse image of II,z C I, C II, = Htgmp(M*@) in ITye respectively, and

pa(M3), (18e) (M), Ths (M), Gu(M)
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denote the subquotients of IIjye determined by the subquotient ,uZ(M*Q) of ITye and the subquo-
tients (IAg)(ITy " (M?)), Iz, and G, (™ (M?)) of IT, = IIY™(M?). Note that we obtain
a cyclotomic rigidity isomorphism of mono-theta environment

(186) (M) = pz (M)

by restricting the cyclotomic rigidity isomorphism of mono-theta environment (IAg)(M®) =
p7(M®) in Proposition 11.4 to ITye (Definition [ITUTchII, Definition 2.7]).
B

Corollary 11.11. (M-theoretic Theta Evaluation, [[UTchII, Corollary 2.8]) Let M® be a pro-
jective system of mono-theta environments with H;mp(M?) =1I,. Let

(MP)
denote the projective system of mono-theta environments obtained via transport of structure
from the isomorphism 11, = I} given by the conjugation by .
(1) Let I? = I C HZ; C Iy = 115, be as in Lemma 11.9 (2). Then, by using the
cyclomotic rigidity isomorphisms of mono-theta environment
(18e)((M3)") = pz((M3)7), (1Ae)(MP)) = uz((M2)7)

(See just before Corollary 11.11), we replace H'(—,(1Ag)(—)) by H*(—, pz(—)) in
Proposition 11.10. Then, the ”-invariant subsets 0'(11)) C 0(117), 0" (I1}) C 8(117)
determines (" -invariant subsets

;. (M2)7) C 0, ((MD)), oob, (M2)7) C ol ((MD)").

=env

The restriction of these subsets to HQ;((M*@‘)“’) gives us figy-, p-orbits of elements

0, ((M3)7) C ool (M3)") C ool (Tys (M5)), 1z((M3))),

where oo H' (M (MS)7), =) o= lim o H' (T (M)7) g, J,=). The further

restriction to the decomposition groups D,‘;Mf in Lemma 11.9 (2) gives us pig-, p-orbits
of elements
0! (M3)7) C ol (M3)) C oo HN(Gu(MF)), z((ME)7)),
where oo H (G, ((MS)7), —) H'(Jg,—), for eacht € LabCusp™(I1})
conj.be ¥
5 LabCusp®(Il,). Since the sets QZHV((M*@;)V), Ooginv((M*@;)V) depend only on the
label |t| € ||, we write

01 (M3)) =6 (M3)), b (M3)) = of (M3F)7).

—env —env —env —env *p

= hﬂ]gCGg((M?‘)“/) :open

(2) If we start with an arbitrary AZ-conjugate IT,5 (M2)7) of Iz (MS;), and we consider

(M$;)7), 500! (M&,)7) arising from an arbitrary ﬁi-

v —env *

the resulting puo-, p-orbits erll

h conj. by vy
conjugate I{ of I, contained in I,z ((MS)7), as t runs over LabCusp™(II})
LabCuspi(Hg), then we obtain a group-theoretic algorithm to construct the collections
of por-, p-orbits

{m} o {dl )
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which is functorial with respect to the projective system M® of mono-theta environments,
and compatible with the independent conjugacy actions of Agi on the sets {[gl}meﬁi =

{I'} car and {ILs (M)}, cnz = {ILs (M53))},,cas

(3) In the situation of (1), we take t to be the zero element. By using the cyclomotic rigidity
isomorphisms in (1) we replace (I1Ae)(—) by pz(—) in Proposition 11.10, then we obtain
splittings

O M((M3)7) x {fl, (M3)7)/O"((M3)")}

=env

of 0%t ((M 2)")/O*((ME,)7), which are compatible with the splittings of Proposi-

tion 11.7 (38) (with respect to any isomorphism M® = MO(IL,)), relative to the first
restriction operation in (1):

label 0

N

0 —= O ((M3)") — OXooQ;nv((Mf’;)V)/O“((M?;)V) — ool ((M5)7)/0*(M;)) — 0.

Remark 11.11.1. (Theta Evaluation via Base-field-theoretic Cyclotomes, [IUTchII, Corollary
2.9, Remark2.9.1]) If we use the cyclotomic rigidity isomorphisms

pz(Gu(ILy)) = (18e)(ILy), pz(Gu(IT;)) = (1Ae)(IT;)

determined by the composites of the cyclotomic rigidity isomorphism via positive ra-
tional structure and LCFT “u5(G) = puz(II)” group-theoretically reconstructed by Re-

mark 6.12.2 and the cyclotomic rigidity isomorphism “uz(IT) = (1Ag)(II)” group-theoretically
reconstructed by Remark 9.4.1 and its restriction to HZ; (like Proposition 11.5, however, we al-

low indeterminacies in Proposition 11.5), instead of using the cyclomotic rigidity isomorphisms
of mono-theta environment (IAg)((MS)7) = 15((MS,)7), (1As)((M2)7) = uz((MP)7), then
we functorially group-theoretically obtain the following similar objects with similar compati-
bility as in Corollary 11.11: (7-invariant subsets

6, (A1) c 8, (1)), «f; (II}) C 0, (I17).
The restriction of these subsets to HZ; gives us fig-, p-orbits of elements
Q;S(H’*y;) - OOQ;( ) - Hl(H >7NZ(GQ<HZS)))>
where o H 1(HZ;7 —) = hgjcﬁﬂzopen H 1(HZ‘ X, J,—). The further restriction to the decom-
position groups Diﬂf in Lemma 11.9 (2) gives us pg-, p-orbits of elements
6, (I0;) © ol () C o H'(Gu(ITg ), p3(GulIT))),

conj. by vy

where o H'(G, (I} ), —) = liglj €I, ) sopen H'(Jg,—), for each t € LabCuspi(H;) —

(Gy
LabCusp™(I1,). Slnce the sets Ot S ): Ocﬁt (II];) depend only on the label [t| € |F;|, we write
[¢] —pt I¢] . t
Qbs(HW ) T gbs(HZ‘)’ Oogbsﬂ_[Z‘) ’ Qbs( g )

Hence, the collections of pg-, p-orbits

{g'kjl(nz )}Itlerl { 6, (is )}|te|m|’

O™ (I3 Jbs X {oolly (I15) /O (T35 Jus}

and splittings
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of 0% ool (IL);)/O*(IL]; s (Here, O (—)ps, O™ (—)bs; O*(—)bs denote the objects correspond-

ing to O**(—), O*(—), O*(—), respectively, via the cyclotomic rigidity isomorphism):

label 0

0 —— OXH(ITy )y —— O* b (TT75)JOM(ITy )y —> oo (175 ) OH(ITy )1 — 0.

Note that we use the value group portion in the construction of the cyclotomic rigidity iso-
morphism via positive rational structure and LCFT (cf.the final remark in Remark 6.12.2).
Therefore, the algorithm in this remark (unlike Corollary 11.11) is only wuniradially defined
(cf. Proposition 11.5 and Remark 11.4.1).

On the other hand, the cyclotomic rigidity isomorphism via positive rational structure and
LCFT has an advantage of having the natural surjection

HY(Gy(—), 1(Go(-))) — Z

in (the proof of) Corollary 3.19 (cf. Remark 6.12.2), and we use this surjection to construct
some constant monoids (See Definition 11.12 (2)).

Definition 11.12. (M-theoretic Theta Monoids, [I[UTchII, Proposition 3.1]) Let M be a
projective system of mono-theta environments with IT™"(M®) = II,,.

(1) (Split Theta Monoids) We put
Won (M) = {00, (M) 1= 0% (MP) - 01 (MO) (C o H (I (M), 15 (MD)) |

env =env L

W (M2) 1= { oW, (MO) = O (M) - o8 (M) (C oo (L™ (M2), (M) }

These are functorially group-theoretically reconstructed collections of submonoids of
o H 1(Ht.£mp(M*®), 15(M®)) equipped with natrural conjugation actions of Htéemp(M*@),
together with the splittings up to torsion determined by Corollary 11.11 (3). We call
each of U! (M?), ¥ (M®) a mono-theta-theoretic theta monoid.

env env

(2) (Constant Monoids) By using the cyclotomic rigidity isomorphism via positive ra-

tional structure and LCFT, and taking the inverse image of Z C Z via the surjection
HY(Gy(=), p3(Gu(—))) = Z (See Remark 11.11.1) for G,(M?) := G, (115" (M?)), we
obtain a functorial group-theoretic reconstruction -

Wens(M2) € oo H (I (M), p15(MLY))

of an isomorph of OZ , equipped with a natural conjugate action by H;mp(M?). We

call ¥ ,,i(M?) a mono-theta-theoretic constant monoid.
Definition 11.13. ([IUTchII, Example 3.2])
(1) (Split Theta Monoids) Recall that, for the tempered Frobenioid F (See Exam-
ple 8.8), the choice of a Frobenioid-theoretic theta function © € O;(Oib;rat) (See

Example 8.8) among the iy (O™")-multiples of the AutpE(Yv)—conjugates of O de-

termines a monoid OE?(—) on Dg (See Definition 10.5 (1)) Suppose, for simplicity, the

topological group II, arises from a universal covering pro-object A, of D,. Then, for
A9 = A, X Y € pro-Ob(DY) (See Definition 10.5 (1)), we obtain submonoids

‘I’fg,id = CE—)(A?O) = OCXE(A?O) 'Q§|AO®O C oo‘I’fg,id = Oég(A?o> 'Q§20|AO®O C OX(OZig{ft)-
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For the various conjugates ©% of © for a € Autp,(Y ), we also similarly obtain sub-
monoids
VUro o CVroo C OX(Oiiéjt).
Put
Uro = {Wroa} \ «Uroa={<Vrpa} .
- - a€lly - - a€lly

where we use the same notation «, by abuse of notation, for the image of « via the

surjection II, — Autp,(Y ). Note that we have a natural conjugation action of II,

on the above collections of submonoids. Note also that Q?ZO\ Ae, gives us splittings
up to torsion of the monoids Vyre ,, ¥ re . (cf. spl® in Definition 10.5 (1)), which
are compatible with the Il,-action. Note that, from ]:-"v, we can reconstruct these
collections of submonoids with II,-actions together with the splittings up to torsion
up to an indeterminacy arising from the inner automorphismsof I1, (cf. Section 8.3. See
also the remark given just before Theorem 8.14). We call each of Wre ,, ¥ re , a

Frobenioid-theoretic theta monoid.
(Constant Monoids) Similarly, the pre-Frobenioid structure on C, = (F )Pasefield <

. gives us a monoid Og, (—) on D,. We put
Ue, := Og, (AS),

which is equipped with a natural II,-action. Note that, from £, we can reconstruct

II, ~ We,, up to an indeterminacy arising from the inner automorphisms of II,. We
call ¥¢, a Frobenioid-theoretic constant monoid.

Proposition 11.14. (F-theoretic Theta Monoids, [IUTchII, Proposition 3.3]) Let M€ be a pro-
jective system of mono-theta environments with Htgmp(M?) =~ I1,. Suppose that M® arises from
a tempered Frobenioid 'E in a ©-Hodge theatre fHTE = ({"E, Yuwev: &hoa) by Theorem 8.14
(“F > M"): - -

(1)

mod

M® = MO('E).
(Split Theta Monoids) Note that, for an object S of F  such that pun(S) = Z/INZ,
and (IAe)s ® Z/NZ = Z/NZ as abstract groups, the exterior cyclotome uz(M?(Tév))

corresponds to the cyclotome piz(S) = lm  pn(S5), where py(S) € O*(S) C Autig ()

(cf. [IUTchII, Proposition 1.3 (i)]). Then, by the Kummer maps, we obtain collections
of Kummer isomorphisms

Kum Kum

\IJT]:E)’O‘ B (M?), OO‘IJT}-L’@@ 5 Ut

env env (M?)7
of monoids, which is well-defined up to an inner automorphism and compatible with both

the respective conjugation action of Hzﬁmp(M*@), and the splittings up to torsion on the

monoids, under a suitable bijection of [Z-torsors between “.” in Definition 11.8, and the
images of “a” via the natural surjection 11, — [Z:

“7s  «— “Im(a)’s.
(Constant Monoids) Similary, using the correspondence between the exterior cyclo-
tome MZ(M*@(Tiv)) and the cyclotome 115(S) = m un(S), we obtain Kummer iso-

morphisms
Kum

Tie, — Vs (MO)
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base-field

for constant monoids, where 1C, := <T£v) , which is well-defined up to an inner

automorphism, and compatible with the ;’espectz've conjugation actions of Hzmp(l\\/ﬂf)).

Proof. Proposition follows from the definitions. O

In the following, we often use the abbreviation (o)(—) for a description like both of (=) and
OO<_)-
Proposition 11.15. (II-theoretic Theta Monoids, [[UTchII, Proposition 3.4]) Let M® be a pro-
jective system of mono-theta environments with Htgmp(M*@) =~ 1. Suppose that M® arises from
a tempered Frobenioid 'E in a ©-Hodge theatre fHTE = ({"E, Yuwev: Thoa) by Theorem 8.14
(“F > M"): - B
MO = MO( E ).

We consider the full poly-isomorphism

full poly

~

MJ(IL) = MP(E)

of projective systems of mono-theta environments.

(1) (Multiradiality of Split Theta Monoids) Each isomorphism 3 : MO (IL,) = M*@(Tiv)
of projective system of mono-theta environmens induces compatible collections of iso-

morphisms
B
M, 5 IY"(MO(IL)) = Y™ MO(E)) = TEFPME(IE))
B Kum™!
(00) q]env (M*@(Hy)) :> (00) \Ijenv (M?(Tég)) :> (oo)\DT]-'Sv

which are compatible with the respective splittings up to torsion, and

B

G, = G,MP(IL)) = GMP(E)) = GM2(E))
B Kum™!

Ve (MO(IL))* = Vo (MP(TE ) = U

Moreover, the functorial algorithm
I, = (IT, ™ (00) Veny (M2 (I1,)) with splittings up to torsion),
which is compatible with arbitrary automorphisms of the pair
GE(M*@(T;Q)) ~ (Wipe) ™ i= (Vire)™ /torsions

arisen as Isomet-multiples of automorphisms induced by automorphisms of the pair
GE(M*@(Tiv)) ~  (Vire)*, relative to the above displayed diagrams, is multiradi-
ally defined in the sense of the natural functor “Ugrapnz)” of Proposition 11.7.
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(2) (Uniradiality of Constant Monoids) Each isomorphism (3 : MO (I1,) = M?(Tév) of
projective system of mono-theta environmens induces compatible collections of isomor-

phisms
- g
I, = Hgmp (MO(IL,)) = Hng(M*@ (Zﬁ)) = HZ“"(M? (U:TE))
N e %
B Kum™!
Wens (M*@(HQ)) - Wens (M?(Tév)) - \IJTCEa
and
- g
Gy = GQ(M?(H’U)) - GQ(M*@(Tiv)) - GQ(M*@(Tév))
% ~ ~
B Kum™!
\IJCHS(M*@(HE))X % \Ilcns(MS)(T;v))X :> \II;ZZU’

Moreover, the functorial algorithm
I, — (I, ~ \PCDS(M*@O_IQ)))?

which fails to be compatible (Note that we use the cyltomic rigidity isomorphism via

rational positive structure and LCFT and the surjection H(Gy(—), pz(Go(—))) — 7 to
construct the constant monoid, which use the value group portion as well) with auto-
morphisms of the pair

GE(M*@(T]::U)) ~ (W) = (Wre, ) /torsions

induced by automorphisms of the pair GQ(M*@(Tév)) ~ (Ui, ), relative to the above

displayed diagrams, is uniradially defined.
Proof. Proposition follows from the definitions. O

Corollary 11.16. (M-theoretic Gaussian Monoids, [IUTchII, Corollary 3.5]) Let M® be a pro-
jective system of mono-theta environments with Htéemp(M*@) =1I,. Fort e LabCuspi(Htéemp(M?)),
let (—); denote copies labelled by t of various objects functorially constructed from M (We use
this convention after this corollary as well).

(1) (Conjugate Synchronisation) If we regard the cuspidal inertia subgroups C 1™ (M)

corresponding to t as subgroups of cuspidal inertia subgroups of HtXemp(Mf)), then the
A;mp(M?)—outer action of F'* = AS"P (M) /AY™(M?) on Y™ (M?) induces iso-
morphisms between the pairs

GQ<M?)1§ 7 \IJCHS(M?)t
of a labelled ind-topological monoid equipped with the action of a labelled topologi-

cal group for distinct t € LabCusp® (II'S™(M®)). We call these isomorphisms F)'®-
symmetrising isomorphisms. When we tdentify these objects labelled by t and —t via
a suitable Ffi—symmetm’smg isomorphism, we write (=) for the resulting object labelled
by |t| € |F,|. Let

(=)
denote the object determined by the diagonal embedding in H\tlele (—)j¢ via suitable -
symmetrising isomorphisms (Note that, thanks to the Ffi—symmetrismg 1somorphisms,
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we can construct the diagonal objects). Then, by Corollary 11.11, we obtain a collection
of compatible morphisms

(™M) ) M (M) - Go(MS)(r)

% N
diag
Uens(MO) 5 Weng(M®) s,

which are compatible with Ff‘i-symmetm'smg 1somorphisms and well-defined up to an
mmner automorphism of Htxemp(l\\/ﬂ*@) (i.e., this inner automorphism indeterminacy, which

a priori depends on |t| € ||, is independent of |t| € |IFy]).

(2) (Gaussian Monoids) We call an element of the set

o7, = 11 0, © TI YenM2)y

[t|eF} [t|eF}

a value-profile (Note that this set has of cardinality (21)" ). Then, by using F,"*-
symmetrising isomorphisms and Corollary 11.11, we obtain a functorial algorithm to
construct, from MO, two collections of submonoids

Do (M) = § We(MO) i= U (M) €7 C ] Wern (9 ,

*
ItIEF; ¢ :value profile

o Wgan(MY) = § soWe(M?) 1= Wens (M) e - €30 C I Wens(M2)y :

%
It|€F; £ :value profile

where each 11¢(M?) is equipped with a natural GQ(M?;)<F§:<>-actz'0n. We call each of

Ue(M?), o ¥e(M?) a mono-theta-theoretic Gaussian monoid. The restriction
operations in Corollary 11.11 give us a collection of compatible evaluation isomor-
phisms

tem o o) D?’”* 5 o)
(Hé p(M*) <_°) HyS(M*;) €= {GQ(M*S)lt\hﬂeFl*

m m
eval

(00 Vi (M2) = (00) Pe(MY),

env

which is well-defined up to an inner automorphism of Htgmp(M*@) (Note that up to sin-

gle inner automorphism by Ffi-symmetm'smg isomorphisms), where «-- denotes the
compatibility of the action of GQ(M*@;)M on the factor labelled by |t] of the o We(MP).
Let

eval

~

(oo)\I/env (M*@> — (oo)\llgau (M*@)

denote these collections of compatible evaluation morphisms induced by restriction.

(3) (Constant Monoids and Splittings) The diagonal-in-|F;| submonoid U us(M?) g,

can be seen as a grpah between the constant monoid We,(M®)y labelled by the zero
element 0 € |Fy| and the diagonal-in-F} submonoid \I/CDS(M*@)<F;:<>, hence determines an
1somorphism

diag

~

\I[CHS (M*@)O — \chns (M*@> (IE‘*

l
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of monoids, which is compatible with respective labelled GE(M*@;)—actions. Moreover, the
restriction operations to zero-labelled evaluation points (See Corollary 11.11) give us a
splitting up to torsion

Ue(M?) = U (M?)<1Ff> &N, o We(MY) = W (M?)(Ff) LU0

cns cns

of each of the Gaussian monoids, which is compatible with the splitting up to torsion of
Definition 11.12 (1), with respect to the restriction isomorphisms in the third display of

(2).

Proof. Corollary follows from the definitions. U

Corollary 11.17. (F-theoretic Gaussian Monoids, [[UTchII, Corollary 3.6]) Let M® be a pro-
jective system of mono-theta environments with Htemp(MG) =~ [1,. Suppose that M® arises from
a tempered Frobenioid Tf in a ©-Hodge theatre THT® = ({T]-" Ywev, 188 4) by Theorem 8.1/
(‘F—M”):

M® = MO(E)

(1) (Conjugate Synchronisation) For eacht € LabCuspi(Htgmp(M?)) the Kummer iso-
morphism in Proposition 11.14 (2) determines a collection of compatible morphisms

(g™ (MO) ») Gy(MP), —  G,(MS),

m m
Kum

(qJTCE% :> qjcns(M*@>ta

which are well-defined up to an inner automorphism (which is independent of t €
LabCusp™ (ITIY™ (M®))) of TI¥™(M®), and F,;*-symmetrising isomorphisms between

distinct t € LabCuspi(HtKemp?M?)) induced by the Ax(MP)-outer action of F;'* =
Ac(M?)/Ax(MP) on Tl (MP).
(2) (Gaussian Monoids) For each value-profile €, let

\Ij]:g(Tig) C Ur(EF) C H (Wie, )

|t|eFF*

denote the submonoid determined by the monoids Ve(M?), o We(M?) in Corollary 11.16

Kum

~

(2), respectively, via the Kummer isomorphism (Wic, )y — Wens(M)y in (1). Put

Uz, (E) = {@;E(U:fg)} s VR (E) = {oo\pfg(Tig)}

& :value profile £ :value profile ’

where each H]-‘g(T.F,U) is equipped with a natural G,(M® )<F><> -action. We call each of

Ir (7 fv), ool (1 ]-'U) a Frobenioid-theoretic Gaussian monoid. Then, by compos-

ing the Kummer isomorphism in (1) and Proposition 11.14 (1), (2) with the restriction
isomorphism of Corollary 11.16 (2), we obtain a diagram of compatible evaluation

ismorphisms
e e Dlu s e ~ )
LeM3) = ILeM3) - {GMZ)utyerr —  {Gu(MD)j}tyers
N Y N N
Kum eval Kum~!

~

Vg, = eoVe(M2) = (o) W (M) = ealx(L),

env
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which is well-defined up to an inner automorphism of Hg’mp(M*@) (Note that up to sin-

gle inner automorphism by Ffi—symmetrismg isomorphisms), where «-- is the same
meaning as in Corollary 11.16 (2). Let

Kum eval Kum~—1!

o ¥ire = () Verw(M?) = () VeuM?) = (V7. (1)

denote these collections of compatible evaluation morphisms.
(3) (Constant Monoids and Splittings) By the same manner as in Corollary 11.16 (3),
the diagonal submonoid (qthE)qFlD determines an isomorphism

diag
(Wic,Jo = (Pic,) )

of monoids, which is compatible with respective labelled G,,(M®)-actions. Moreover, the
splittings in Corollary 11.16 (3) give us splittings up to torsion

\Ij}—gcég) = (‘I’TXCE)QF;S Im(OY, U (T]::E) = (‘I’fxcg)@ﬁ - Tm(g)%=0

(Here Im(—) denotes the image of Kum™' o eval o Kum in (2)) of each of the Gaussian
monoids, which is compatible with the splitting up to torsion of Definition 11.12 (1),
with respect to the restriction isomorphisms in the third display of (2).

Proof. Corollary follows from the definitions. O

Remark 11.17.1. ([IUTchIII, Remark 2.3.3 (iv)]) It seems interesting to note that the cyclo-
tomic rigidity of mono-theta environments admits F;’ i-symmetry, contrary to the fact that
the theta functions, or the theta values Qf’s do not admit Ff‘i—symmetry. This is because the

construction of the cyclotomic rigidity of mono-theta environments only uses the commutator
structure [ , | (in other words, “curvature”) of the theta group (i.e., Heisenberg group), not
the theta function itself.

Remark 11.17.2. (II-theoretic Gaussian Monoids, [IUTchII, Corollary 3.7, Remark 3.7.1]) If
we formulate a “Gaussian analogue” of Proposition 11.15, then the resulting algorithm is only
uniradially defined, since we use the cyclotomic rigidity isomorphism via rational positive struc-
ture and LCFT (c¢f. Remark 11.11.1 Proposition 11.15 (2)) to construct constant monoids. In the
theta functions level (i.e., “env”-labelled objects), it admits multiradially defined algorithms,
however, in the theta values level (i.e., “gau”-labelled objects), it only admits uniradially de-
fined algorithms, since we need constant monoids as containers of theta values (Note also that
this container is holomorphic container, since we need the holomorphic structures for the labels
and Ffi—synchronising isomorphisms). Later, by using the theory of log-shells, we will modify
such a “Gaussian analogue” algorithm (See below) of Proposition 11.15 into a multiradially
defined algorithm after admitting mild indeterminacies (i.e., (Indet 1), (Indet —), and (Indet
) (See Theorem 13.12 (1), (2)).

A precise formulation of a “Gaussian analogue” of Proposition 11.15 is as follows: Let M®
be a projective system of mono-theta environments with II'¢™"(M®) = II,. Suppose that M9

arises from a tempered Frobenioid T;ﬂ in a ©-Hodge theatre THT® = ({Téw}QE% 5 1) by
Theorem 8.14 (“F +— M”): - a

MO = MO(E ).
We consider the full poly-isomorphism

full poly

~

M7 (L) = MJ(E)
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of projective systems of mono-theta environments. Let M?‘(Tiv) denote ME; for MY =
M?(Tig). For MY = M2(IL,), we identify ITx(MS;) and G,(MS,) with Iz and G, (L)
respectively, via the tautological isomorphisms ITz (M%) = Iz, G,(MS) = G,(IL).
(1) Each isomorphism 3 : M (II,) = M (T.F ) of projective system of mono-theta environ-
ments induces compatible collections of evaluation isomorphisms

Dfu_’s B
g - (G (Mool epx = {GE(M?;(Téﬂ))\H}“‘GFZ* = {GE(M?(Tég))m}MGF;%
(5% &% N &Y%
eval B Kum ™!
(00) oy ME (T1,)) = () PeM2 () 5 (00) Pe(M? (Tig)) = (00) U Fe (T£E)7
and
diag B
Gllls) S Gy, 5 GUMG(E)e 5 GuMO(E)en
&% m N B N B
eval B Kum™!
U (MP(IL))* = We(MP(IL)* = T (MP(E))* = Ve (TE )%,

where «-- is the same meaning as in Corollary 11.16 (2).
(2) (Uniradiality of Gaussian Monoids) The functorial algorithms

I, = (Gy(Mys) ™ Vo (M2(I1,)) with splittings up to torsion),
I, = (00 Vgan(ME(TL,)) with splittings up to torsion),

which fails to be compatible (Note that we use the cyltomic rigidity isomorphism via

rational positive structure and LCFT and the surjection H'(Gy(—), pz(Go(—))) — Z
to construct the constant monoid, which use the value group portion as well) with
automorphisms of the pair

Gy (M®<Tf DEry ‘IJIE(T]: ) _‘P]-'E(TJT") /torsions

induced by automorphisms of the pair G, (MG(T}" ) ~ Vg, (T]-' )%, relative to the
above displayed diagrams in (1), is uniradially defined.
11.3. Hodge-Arakelov Theoretic Evaluation and Gaussian Monoids in Good Places.

In this subsection, we perform analogues of the Hodge-Arakelov theoretic evaluation, and con-

struction of Gaussian monoids for v € V&°°4,
Let v € V&°°4, For v € V&4 N V™" (resp. v € V¥°), put

I,=1x C I =My, C I =1,

(resp. U, =X C U, =X, C Uy:=C,),
where § X,, and C, are Aut-holomorphic orbispaces (See Section 4) associated to & ; Xy
and C,, respectively. Note that we have I1¢"/II¥ = F* (resp. Gal(UL/USr) = F;'). We also

write

A, C I, — G,(I1,), Aj C Hj —» GQ(Hj), AP C IS — Gy (T15)

(resp. DZ (U,) )

the natural quotients and their kernels (resp. the split monod), which can be group-theoretically
reconstructed by Corollary 2.4 (resp. which can be algorithmically reconstructed by Proposi-
tion 4.5). Note that we have natural isomorphisms G, (II,) = G,(II) = G,(II") = G,.
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Proposition 11.18. (II-theoretic (resp. Aut-hol.-theoretic) Gaussian Monoids at v € V&4 N
V" (resp. at v € V*°), [IUTchII, Proposition 4.1, Proposition 4.3])

(1) (Constant Monoids) By Corollary 3.19 (resp. by definitions), we have a functorial
group-theoretic algorithm to construct, from the topological group G, (resp. from the
split monoid D), the ind-topological submonoid equipped with G,-action (resp. the
topological monoid)

Gy Vens(Gy) C oH' (Goypi3(G)) = lim H'(J, p3(Gy))
JCG, :open
(resp.  Wens(D) := O%(C}) ),
which is an isomorph of (G, ~ O% ), (resp. an isomorph of O% ). Thus, we ob-
tain a functroial group-theoretic algorithm to construct, from the topological group 11,
(resp. from the Aut-holomorphic space U, ), the ind-topological submonoid equipped with
Gy(IL,)-action (resp. the topological monoid)
Go(Th) A Tens(ILy) = Pans(Gu(L)) C o H ' (Gu(IL), 1z(Gu(ILL)))
C o HY(IT), 13(Gu(I))) C ool (TLy, p13(G(IL)))

v

(resp.  Wens(Uy) := \chnS<D£ () )

1 — T 17 _ L ) —
where o H'(G,(IL,),—) = hﬂchz(Hﬁzopen HY(J, =), ooH'(II7, —) = @JCG
H1<H:2t XGE(HE) J’ _)7 and OOHI(H@ _) = hﬂJCGg(HE):Open HI(HQ XGQ(HE) ‘] _)
(2) (Mono-analytic Semi-simplifications) By Definition 10.6, we have the functorial
algorithm to construct, from the topological group G, (resp. from the split monoid DZ),

the topological monoid equipped with the distinguished element

log“*(py) € Roo(Gy) = (RSo)y, (resp. 1og” (py) € Roo(D)) == (RS, )
(See “ogk (py)” in Definition 10.6) and a natural isomorphism
Vs (Go) = (Pens(G) [ Wens(Go) )™ = (RSg)w

:open

(resp. vy (IDF) (\IICHS(IDk)/\IICHS(IDk) ) (Réo) )

cns

of the monoids (See Proposition 5.2 (resp. Proposition 5.4)). Put
Uas(Gy) = Ve (Gy) ™ X (REO)Q (resp. U (DZ) = \PCHS(DD X (R;O)Q ),

cns cns

which we consider as semisimplified version of Vews(Gy) (resp. Wens(Dy)). We also put

Vs () = WG (Gu(Tly)), Wens(Ty)™ = Wens (Gy (1)), Rxo(Ily) := Ro(Gy(Ily))

cns cns

(resp. VL (U,) == Ug (DZ(UQ))7 Uens(Uy) ™ 1= ‘IJCHS(DZ(UQ))X7 R>o(U,) = REO(D'Q_GUQ)) ),

Just as in (1).

(3) (Conjugate Synchronisation) If we regard the cuspidal inertia subgroups C 11, cor-
responding to t as subgroups of cuspidal inertia subgroups of 11X, then the Ai-outer
action of F['* = A /AL on IIE (resp. the action of F;'* = Gal(Ui/Ucor) on the var-
ious Gal(U,/U5)-orbits of cusps of U,) induces zsomorph@sms between the pairs (resp.
between the labelled topological monoids)

Gy(ly): ™~ Wens(ILy);  (resp. Wens(Uy): )
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of the labelled ind-topological monoid equipped with the action of the labelled topologzcal
group for distinct t € LabCusp™(II,) := LabCusp™(B(I1,)°) (resp. t € LabCusp™ ( v))
(See Definition 10.27 (1) (resp. Definition 10.27 (2)) for the definition of LabCusp™(—)).
We call these isomorphisms T, i-symmetrlslng isomorphisms. These symmetrising
1somorphisms determine dmgonal submonoids

\I}cns |]Fl|) C H \Ilcns \t| \I[cns ([E‘*) - H \I]cns \t|

[t]€Fy |t|eFF

which are compatible with the respective labelled G (Il,)-actions

(T@Sp. \chns |Fl| - H \IIcns |t| \chns<Uy)<Fl*> - H \I[cns<Ug)|t| )7

[tl€[F] |t|€FF

and an isomorphism
diag diag
Vens(Mo = Vons(M)ery (765p Wens(U)o > Vs (Un)ery )
of ind-topological monoids, which is compatible with the respective labelled G, (11,)-
actions (resp. of topological monoids).
(4) (Theta and Gaussian Monoids) Put

Wy (L) i= Weps(I,)* x {Rs - log™(p,) - log™(0)}

(resp. Weny (Uy) 1= Wens(U,)* x {Rxg - log™(py) -log™(©)} ),
where log™™(p,) - lognﬂ(g) (resp. log"(p,) - log f(:)) is just a formal symbol, and

\I]gau(Hv) = \chns(H >(IF* {R>O (]2 . lOgHE(py))j}
C H v (1T H Wens (ILy) § X Rxo(ILy);

JEFF JEFF

(resp.  Wgau(Uy) = \IJCHS(UU):Fﬁ X {Rzo (7% 1OgUE(pQ))]}
H ‘Iji;s = H \I;cns(Uy>;< X RZO(UQ>j )

jEFF jeFy

where log™ (p,) (resp. log"(py)) is just a formal symbol, and Rsq-(—) is defined by the
R>-module structures of Rxo(1l,);’s ('resp R>¢(Uy),’s). Note that we need the holo-
morphic structures for the labels and F* *_synchronising isomorphisms. In particular, we
obtain a functorial group-theoretically algom'thm to construct, from the topological group
11, (from the Aut-holomorphic space U, ), the theta monoid Ve, (11,) (resp. Weny(U,) ),
the Gaussian monoid Vg, (IL,) (resp. VYean(Uy)) equipped with natural G, (IL,)-actions
and splittings (resp. equipped with natural splittings), and the formal evaluation
isomorphism

eval

~

Veny(Il,)  — \I]gau(Hy) : IOgHE(py) : IOgHE(Q) = (]2 : IOgHE(py))j

eval

~

(resp. Weny(Uy) = Wgan(Uy) : log™(p,) - log™(Q) = (5% -log™(pw)); ),

which restricts to the identity on the respective copies of Wens(IL,)* (resp. Wens(Uy)™ ),
and is compatible with the respective G,(Il,)-actions and the natural splittings (resp.
compatible with the natural splittings).
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Remark 11.18.1. ([IUTchIl, Remark 4.1.1 (iii)]) Similarly as in Proposition 11.15 and Re-
mark 11.17.2; the construction of the monoids Wens(I1,) (resp. Wens(Uy,)) is uniradial, and the
constructions of the monoids ¥¥ (I1,), Weny (I1,,), and Wy, (11,) (resp. U (U,), Yeny (U,), and

cns cns
eval eval

Uean(Uy)), and the formal evaluation isomorphism Weny(IT,) = Weon(IL,) (resp. Wen (U,) =
Uoau(Uy)) are multiradial. Note that, the latter ones are constructed by using holomorphic
structures, however, these can be described via the underlying mono-analytic structures (See
also the table after Example 11.2).

Proof. Proposition follows from the definitions and described algorithms. O

Proposition 11.19. (F-theoretic Gaussian Monoids at v € V& N V™" (resp. at v € V),
[TUTchII, Proposition 4.2, Proposition 4.4]) For v € V&NV (resp. v € V), let T;ﬂ =1C,
(resp. Tiy = ('C,, "D, = 'U,, 'k,) ) be a p,-adic Frobenioid (resp. a triple) in a ©-Hodge theatre

fHTE = <{T£w}w€M 15" 4). We assume (for simplicity) that the base category of Tév is equal
to B*"P(T11,)%). Let

G,('L) ~ Vig (resp. Uip o= o~(c,) )

denote the ind-topological monoid equipped with G,(11L,)-action (resp. the topological monoid)
determined, up to inner automorphism arising from an element of 111, by T.7:-"1}, and

G, ~ Uipe (resp. Wiz = o~('cy)) )

denote the ind-topological monoid equipped with YG,-action (resp. the topological monoid) de-
termined, up to inner automorphism arising from an element of G, by the v-component T}";

of F-prime-strip {1 Fi }wev determined by the ©-Hodge theatre fHTe.
(1) (Constant Monoids) By Remark 3.19.2 (resp. by the Kummer structure ', ), we

have a unique Kummer isomorphism

Kum Kum

~

Uip 5 Uo(TL) (resp. Wiz 5 Ual('U,) )

=

of ind-topological monoids with G,('IL,)-action (resp. of topological monoids).
(2) (Mono-analytic Semi-simplifications) We have a unique Z*-orbit (resp. a unique

{£1}-orbit)

“Kum” “Kum”
7% —orbit, poly {£1}-orbit, poly
X ~ X ~, =\ x
Ui 5 Wa(1GY) (resp. Wipp 5 Uens("D)) )

of isomorphisms of ind-topological groups with 1G,-action (resp. of topological groups),
and a unique isomorphism

“‘Kum” “‘Kum”

~

Ui = (Ui /U5 )F = U (1Gy) (resp. Wiy o= (Wig /U7 )0 5 WaL('Dy) )

TFE cns cns

of monoids, which sends the distinguished element of \IJ]EH determined by the unique gen-

erator (resp. by p, = e = 2.71828 - -, i.e., the element of the complex Archimedean field

which gives rise to Uiz whose natural logarithm is equal to 1) of Wiz /W, to the dis-

tinguished element of V& _(1G,) (resp. WR (DY) determined by log”*(p,) € Rao(TGy)

cns cns
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(resp. log= (po) € Roo(1DY)). In particular, we have a natural poly-isomorphism

“Kum” “Kum”

poly poly
L X R ~ ss (t Ss L X R ~ ss (tF
=0 X Wiy — U ('G,) (resp. = Ui X Wim — Ues("Dy) )

of ind-topological monoids (resp. topological monoids) which is compatible with the nat-
ural splittings (We can regard these poly-isomorphisms as analogues of Kummer iso-
morphism). We put W = U, (resp. U = W, ), hence we have a tautological

1somorphism

tauto tauto

?Sé = ?}5 (resp. \I/?sé = ?Sf; ).
(Conjugate Synchronisation) The Kummer isomorphism in (1) determines a col-
lection of compatible Kummer isomorphisms

Kum Kum

~

(Ui )e — \DCHS(THy)t (resp. (‘I’Tgv)t = \chnSUUg)t ),

=

which are well-defined up to an inner automorphism of I, (which is independent of

t € LabCusp®('11,)) for t € LabCusp™('Tl,) (resp. t € LabCusp®(1U,)), and F,;*-
symmetrising isomorphisms between distinct t € LabCusp™®(TI1,) (resp. t € LabCusp™(TU,))
induced by the TA*-outer action of F)'* = YA /TA% on TTIE (resp. the action of
F/'* = Gal(tUF/TUS) on the various Gal(*U,/TUF)-orbits of cusps of TU,). These
symmetrising isomorphisms determine an isomorphism

diag
(\I’ng)(Ff) (resp. (\IIT]-'U)O - (‘I’U:TE)@;S )

diag
_>

of ind-topological monoids (resp. topological monoids), which are compatible with the
respective labelled G, (T11,)-actions.
(Theta and Gaussian Monoids) Let

£) )

U

qufS? \ijgau (Té,u) (Tesp qufS? \ijgau (T

denote the monoids with G, ('1L,)-actions and natural splittings, determined by Vo, ('11,),
Voo ('IL,) in Proposition 11.18 (4) respectviely, via the isomorphisms in (1), (2), and

(3). Then, the formal evaluation isomorphism of Proposition 11.18 (4) gives us a col-
lection of evaluation isomorphisms

Kum eval Kum~!

~ ~

\IIT-FE) - \IjenV(THQ) - \Ijgau(THQ) — \I]-Fgau (T‘F )

Kum eval Kum™!

(T@Sp. \IJT]:? :> \IjenV(THE) :> \Ijgau(THE) :> \Ij]:gau (Tév) )7
which restrict to the identity or the isomorphism of (1) or the inverse of the isomorphism

of (1) on the various copies of W}, , Wens('IL,)*, and are compatible with the various

=

natural actions of G,('I1,) and natural splittings.
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11.4. Hodge-Arakelov Theoretic Evaluation and Gaussian Monoids in Global Case.
In this subsection, we globalise the constructions in Section 11.2 (v € V") and in Section 11.3
(v € V&°°9) via global realified Frobenioids (See also Remark 10.9.1). We can globalise the local
F,"*-symmetries to a global F,"*-symmetry, thanks to the global{41}-synchronisation in
Proposition 10.33 (See also Proposition 10.34 (3)). This is a H-portion of constructions in
XH-Hodge theatres. In the final multiradial algorithm, we use this H-portion to construct
©-pilot object (See Proposition 13.7 and Definition 13.9 (1)), which gives us a H-line bundle
(See Definition 9.7) (of negative large degree) through an action on mono-analytic log-shells
(See Corollary 13.13).

Next, we also perform NF-counterpart (cf. Section 9) of Hodge-Arakelov theoretic evaluation.
This is a X-portion of constructions in XH-Hodge theatres. In the final multiradial algorithm,
we use this X-portion to construct actions of copies of “F% ,” on mono-analytic log-shells (See
Proposition 13.11 (2)), through which we convert X-line bundles into H-line bundles (See the
category equivalence (Convert) just after Definition 9.7) and vice versa (See Corollary 13.13).

Corollary 11.20. (II-theoretic Monoids associated to D-H-Hodge Theatres, [IUTchlI, Corol-
lary 4.5]) Let

T(ﬁgi T¢(;):ell
IHTPE = (1D, < T©p = D%
be a D-HB-Hodge theatre, and
D= {ipg}yey

a D-prime-strip. We assume, for simplicity, that D, = B*™P(*I1,)° for v € V. Let *D" =
{*D}oev denote the associated D™ -prime-strip to *®, and ssume that *Dj = B*"?(1G,)" for
v €E ynon'

(1) (Constant Monoids) By Definition 11.12 (2) for v € V** and Proposition 11.18 (1)

for v € V&4 we obtain a functorial algorithm, with respect to the D-prime-strip D,
to construct the assignment

{GE(MS)(J:HE)) N~ Weng (M?(iny>)} v e V™,
VUens("D) : V3 v Uens(1D)y 1= { {Gu(*IL) ~ e (FIL) } v € yeood ymen
\I]cns(ipg) v € yarc)

where W (D), is well-defined only up to a *11,-conjugacy indeterminacy for v € V™.

(2) (Mono-analytic Semi-simplifications) By Proposition 11.18 (2) for v € V&°% and

the same group-theoretic algorithm forv € V™ (Here, we put Wey(I1,) 1= Wens(MO(I1,)) ),

we obtain a functorial algorithm, with respect to the D™ -prime-strip *O", to construct
the assignment

TS (D7) 1 Voum U

cns cns

UG ARG} vev
(D)= -
v s (i'DE) vE yarc’

cns

where U _(*D"), is well-defined only up to a *G,-conjugacy indeterminacy for v € V™.

Each V% _(*D"), is equipped with a splitting
U5 (fD7)y = PE(DN)y x Rxo(*D"),

cns cns v

and each Rso(*D"), is equipped with a distinguished element
log " (p,) € Rso(*D"),.

If we regard *®" as constructed from *®, then we have a functorial algorithm, with
respect to the D-prime-strip *®, to construct isomorphisms

Ves(FD)) 5 T (D)X

v cns
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for each v € V, which are compatible with G,(*I1,) = *G,-actions for v € V*".
By Definition 10.6 (“D-version”), we also obtain a functorial algorithm, with respect
to D" -prime-strip *D", to construct a (pre-)Frobenioid
D”_(i@'_)
isomorphism to the model object C-_, in Definition 10.4, equipped with a bijection
Prime(D" (*2"7)) 5 V,
and localisation isomorphisms

gl. to loc.

~

ipr,y : @D\F(igk)ﬂ — Rzo(ig}_)g

of topological monoids.
(3) (Conjugate Synchronisation) We put

fe =T¢o1¢®" o (¢©F)" : LabCusp™(1D.) S T

(See Proposition 10.3’3’). The wvarious local B, *-actions in Corollary 11.16 (1) and
Proposition 11.18 (3) induce isomorphisms between the labelled data

\I]cns(T®>)t

for distinct t € LabCusp™(1D.). We call these isomorphisms Ffi-symmetrising
isomorphisms (Note that the global {%1}-synchronisation established by Proposi-
tion 10.33 is crucial here). These Ffi—symmetrismg 1somorphisms are compatible with

the (doubly transitive) F;'®-action on the index set T of the D-O-bridge Tgbgeu with
respect to ¢, hence, determine diagonal submonoids

\chns( |Fl| C H \chns \t| \chns ]F* - H \chns |t\
ltl€|F] |t|eF
and an isomorphism
diag
\Ilcns(T®>-)O — \Ilcns(T@>-)<IFl*>

consisting of the local isomorphisms in Corollary 11.16 (3) and Proposition 11.18 (3).
(4) (Local Theta and Gaussian Monoids) By Corollary 11.16 (2), (3) and Proposi-

tion 11.18 (4), we obtain a functorial algorithm, with respect to the D-prime-strip "D,

to construct the assignments

(oo)\IjenV(T©>_) Vovum—
{GuMP2 (L))} jerr ™ (o) Yoy MP (L)) v € VAV,

(00) Yerv ("D ) 1=  {Gu(Th)} jerr ™ (o0) Yoy (1TL) v e Ve n e,
(00) Veny (*Uy) v eV,

and

(00) V(D) : Vo v
{GuM2 (1)} jerr ™ (00) Vgau(ME (L)) v € VP nVme,

(00) Pgou (1D ) 1= § {Gu (ML)} jerr ™ (o) Ygan (L) v e VeI Ny,
(00) Vgau(*Uy) v eV,

where we put oo Weny (1I1,) 1= Weny (L) (resp. oo Weny ((Uy) := Weny (1U,)) and oo W gan (111,)
= U (ML) (resp. ooWgan(TUy) i= Wpau(TU,)) for v € VEINV™" (resp. v € V) and
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(00) Perv (1)1 8, (00) Vgan (1D ) 's are equipped with natural splittings, and compatible
evaluation isomorphisms

eval

~

(oo)\IJenv(T@>) — (oo)‘Ijgau(TCD>)
constructed by Corollary 11.16 (2) and Proposition 11.18 (4).
(5) (Global Realified Theta and Gaussian Monoids) We have a functorial algorithm,
with respect to the D" -prime-strip T@i, to construct a (pre-)Frobenioid
L. 090)

env

as a coply of the Frobenioid D" (1D of (2) above, multiplied a formal symbol logm; (@),
equipped with a bijection

Prime(D!,  (1D7)) 5V,

env

and localisation isomorphisms

gl. to loc.
~ F\R
Q/Dl:nv“@;)vy \Denv(T®>)Q

of topological monoids. We have a functorial algorithm, with respect to the D" -prime-
strip 1% to construct a (pre-)Frobenioid
D,('®L) < [ D" (D),
jeF;
whose divisor and rational function monoids are determined by the weighted diagonal

(52 )jeF;:e, equipped with a bijection

Prime(D!, ("DF)) 5 V,

gau
and localisation isomorphisms
gl. to loc.

Opr oty — gan(MDD)y

gau

of topological monoids for each v € V. We also have a functorial algorithm, with respect
to the D" -prime-strip "D to construct a global formal evaluation isomorphism

eval
Do (D7) 5 Dy, (MD0)

of (pre-)Frobenioids, which is compatible with local evaluation isomorphisms of (4), with
respect to the localisation isomorphisms for each v € V and the bijections Prime(—) =

V.

Proof. Corollary follows from the definitions. OJ

Corollary 11.21. (F-theoretic Monoids associated to B-Hodge Theatres, [[UTchII, Corollary
4.6]) Let

ng:t T’l/J(zell N
THTE = [ 15, +— 1§ — TD°

be a H-Hodge theatre, and

13' = {ify}yey
an F-prime-strip. We assume, for simplicity, that the D-B-Hodge theatre associated to THT®
is equal to THTP® in Corollary 11.20, and that the D-prime-strip associated to *F is equal to
Y9 in Corollary 11.20. Let *F™ = {i]:g}yey denote the associated F"-prime-strip to ¥§.
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(Constant Monoids) By Proposition 11.19 (1) for V&°°4, and the same group-theoretic
algorithm for v € VP we have a functorial algorithm, with respect to the F-prime-strip
1%, to construct the assignment

qjcns@&) . Y DU \Ilcns(ifg)v =

{Gy(iny) ~ \IjiJ-‘E} v e Vv,
Vs, veve

where Wens(*F), is well-defined only up to a *IL,-conjugacy indeterminacy for v € V™.
By Proposition 11.14 (2) for v € Y**! (where we take “C,” to be *F,) and Proposi-
tion 11.19 (1) for v € V&°°4, we obtain a collection of Kummer isomorphism

Kum

~

\chns(i%) — ‘Pcns(ig)-
(Mono-analytic Semi-simplifications) By Proposition 11.19 (2) for V&°°¢, and the

same group-theoretic algorithm for v € Y we have a functorial algorithm, with respect
to the F"-prime-strip *F", to construct the assignment
s (igl—) Voo PSS (ig'_)g = \DE?:F

cns cns

where WS _(*F), is well-defined only up to a *G,-conjugacy indeterminacy for v € V.

cns

Each U _(*F"), is equipped with its natural splitting, and for v € V", with a dis-

tinguished element (Note that the distinguished element in V%, for v € V¥ is not

preserved by automorphism of T}"g. See also the first table in Section 4.8 cf. [IUTchII,

Remark 4.6.1]). By Proposition 11.19 (2) for v € V&°°% and the same group-theoretic al-

gorithm for v € V°* we have a functorial algorithm, with respect to F" -prime-strip 1§,

to construct the collection of poly-isomorphisms (analogues of Kummer isomorphism)
“Kum”

poly

PSS (igl—) % PSS (i@)—)

Let
15" = (*c", Prime(*C") 5 V, '3, {*py}uev)

be the F"-prime-strip associated to *F. We also have a functorial algorithm, with respect
to F"-prime-strip *§", to construct an isomorphism

“‘Kum”

fch = priah)
(We can regard this isomorphism as an analogue of Kummer isomorphism), where
D" (*D") is constructed in Corollary 11.20 (2), which is uniquely determined by the
condition that it is compatible with the respective bijections Prime(—) — V and the lo-
calisation isomorphisms of topological monoids for each v € YV, with respect to the above

4Kum77
poly
collection of polg{—isomorphisms U (1F7) S s (4DF) (Note that, if we reconstruct
£ um”
poly “Kum”

both U (}F) = U (D7) and " S DT(DY) in a compatible manner, then

cns cns
the distinguished elements in W, at v € V¥ can be computed from the distinguished

elements at v € V" and the structure (e.g.. using rational function monoids) of the
global realified Frobenioids *C", D" (*D"). cf. [IUTchII, Remark 4.6.1]).
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(3) (Conjugate Synchronisation) For each t € LabCusp™("®.), the collection of iso-
morphisms in (1) determine a collection of compatible Kummer isomorphisms

Kum

~

qjcns(T§>—)t — \Ilcns(T®>—)ta

where W ("D, )¢ is the labelled data constructed in Corollary 11.20 (3), and the '11,-
conjugacy indeterminacy at each v € V is independent of t € LabCusp™ (1D,), and Ffi—
symmerising 1somorphisms induced by the various local Ffi—actions in Corollary 11.17
(1) and Proposition 11.19 (3) between the data labelled by distinct t € LabCusp™® (1D,.).
These F)"*-symmetrising isomorphisms are compatible with the (doubly transitive) F;'*-
action on the index set T of the D-O"-bridge Tqﬁge“ with respect to 1¢ in Corollary 11.20
(3), hence, determine (diagonal submonoids and) an isomorphism
diag
\I}cns(T3>—)O :> \I[cns(Tg>—)<IFl*>
consisting of the local isomorphisms in Corollary 11.17 (3) and Proposition 11.19 (3).
(4) (Local Theta and Gaussian Monoids) Let

Tap©
1§, -5t - IHTO

be a ©-bridge which is glued to the ©*-bridge associate to the B-Hodge theatre THTE
via the algorithm in Lemma 10.38 (Hence, J = T*). By Corollary 11.17 (2), (3) and
Proposition 11.19 (4), we have a functorial algorithm, with respect to the above ©-bridge
with its gluing to the ©F-bridge associated to "HTE, to construct assignments

(OO)\I]]:env (THT®> : y > v —

U - (THTQ) — {GQ(THQ)}]'GIF? m(oo)qu]-‘g v ey
A T e T v e Vv,

and
(oo)\Iffgau(T’HTe) Vours

{GQ(THU)}jeFl* ~ (OO)\IIJ:gau (T]:U) v e yren

o) V7 (HT®), = . —
(o0) fgau( ), {(oo)\lj]:gau (TZ ) vE yarc

—u

(Here the notation (=) ("HT®) is slightly abuse of notation), where we put V. ("THT®),
= U (HTO)us 0oV r ((HT )y i= Wi, (HT )y forv € VEU and (o) V5., ((HT )y s,
(00) ¥ Fran (T’HTQ)E’S are equipped with natural splittings, and compatible evaluation iso-
morphisms

Kum eval Kum™?!

~ ~ ~

(Oo)lj[j}—env (THT@) — (OO) q]env(-l-®>) — (OO) \Ijgau(T©>') - (OO) \:[I.Fgau (T,HTG)

constructed by Corollary 11.17 (2) and Proposition 11.19 (4).
(5) (Global Realified Theta and Gaussian Monoids) By Proposition 11.19 (4) for

“Kum”

~

labelled and non-labelled versions of the isomorphism *C" = D" (DY) of (2) to the
global realified Frobenioids DY, (1OL), DL (1D7) constructed in Corollary 11.20 (5),

env gau
we obtain a functorial algorithm, with respect to the above ©-bridge, to construct (pre-

)Frobenioids
Con ("HT), Coan(HT?)
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(Here the notation (—)(FHT®) is slightly abuse of notation. Note also that the construc-
tion of C'. ("HT®) is similar to the one of Cly.. in Definition 10.5 (4)) with equipped

env

with bijections

Prime(C,

L (HT®) SV, Prime(CL,("HT®) 5V,

localisation isomorphisms

gl. to loc. gl. to loc.

Por (im0~ Vrn(HTO), oy inrery = Ura((HTO),

of topological monoids for each v € V, and evaluation isomrphisms

“Kum” eval “Kum~—1”

(fHT®) S D (o0 5 pf (o) 5 ¢ (HT®)

env gau gau

CIF

env

of (pre-)Frobenioids constructed by Proposition 11.19 (4) and Corollary 11.20 (5), which
are compatible with local evaluation isomorphisms of (4), with respect to the localisation
isomorphisms for each v € V and the bijections Prime(—) = V.

Proof. Corollary follows from the definitions. U
Next, we consider X-portion.

Corollary 11.22. (II-theoretic Monoids associated to D-X-Hodge Theatres, [IUTchlII, Corol-
lary 4.7]) Let
ToNF t¢9Q
fHTPYE = (ID° & 19, 5 1D.)
be a D-K-Hodge theatre, which is glued to the D-B-Hodge theatre THTP™® of Corollary 11.20
via the algorithm in Lemma 10.38 (Hence, J =T%).

(1) (Global Non-realified Structures) By Ezxample 9.5, we have a functorial algorithm,
with respect to the category "D®, to construct the morphism

p® - 1p®,
the monoid/field/pseudo-monoid
1 (1D%) A M®(1D?), m(1D%) A T (1D°), 7(1D%) A ME, (1D°)
with 71, (1D®)- /w8 (1D®)-actions (Here, we use the notation i ("D?), 71 (1D®) and 74 (1D?®),
not TT19, TI1®, (TII%)* in Example 9.5, respectively, for making clear the dependence of
objects), which is well-defined up to m ("D®)- /w2 (TD®)-conjugay indeterminacies, the
submooid/subfield/subset

M, ('D%) € M®('D%), ML,,('D%) € MI° ('D°), M ('D°) € M2, ('D°),

of m (1D®)-/miat (1 D®)-invariant parts, the Frobeniods
Froa('D®) © F2(ID°) > Fo('D°)

(Here, we write F© ,(1D?), FO(1D®) for TF2. , TF® in Ezample 9.5, respectively) with
a natural bijection (by abuse of notation)

Prime(F? ,(1D®)) 5V,

mod

and the natural realification functor

Fgod(TD@) - }—gcﬂfd(TD(@)-
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(2) (Fj-symmetry) By Definition 10.22, for j € LabCusp('D®), we have a functorial
algorithm, with respect to the category "D®, to construct an F-prime-strip

Fo(Do);,
which is only well-defined up to isomorphism, Moreover, the natural poly-action
of Ff on 1D® induces isomorphisms between the labelled data

f@(TD@”% M (TD@>17 Mrnod( DO)

mod

(D) A M (D), Fia(DY), = F (D7),
for distinct j € LabCusp(1D®). We call these isomorphisms F}-symmetrising iso-
morphisms. These F} -symmetrising isomorphisms are compatbile with the (simply
transitive) T} -action on the index set J of the D-NF-bridge T¢F with respect to ¢ :
LabCusp(tD®) = J(= Ff) in Proposition 10.19 (3), and determine diagonal objects

®

® ® Vi 5 Tr® 5
Mr\rjlod(TD ) (FF) - H IMlmod TD )j? MmodUlDO)(Fl’K) - H Mmod(TDO)j'
jEFF jEFF
Let also
FOD) ey ATH(D) A ME, (D) sy, Fioog (D)) = FEE (D) g,

1T

denote a purely formal notational shorthand for the above F]-symmetrising isomor-
phisms for the respective objects (See also Remark 11.22.1 below).

(3) (Localisations and Global Realified Structures) For simplicity, we write 1D; =
{TDQJ, }oev (Tesp. T@; = {TDZj }oev) for the D-(resp. D" -)prime-strip associated to the
F-prime-strip F°("D®)|; (See Definition 10.22 (2)). By Definition 10.22 (2), Defini-
tion 9.6 (2), (3), and Definition 10.23 (3), we have a functorial algorithm, with respect to
the category "D, to construct (1-)compatible collections of “localisation” functors/poly-

morphisms
1. to loc. 1. to loc.
Foa((D); © FODO)y, FroaD); & =" (FO(D))",

{7 (D*) A M2, (D)} 5" M2, (D) € M2, (1Dy) }

veVY

up to isomorphism, together with a natural isomorphism
gl.real’d to gl. non-real d®@R

DH(iD)) = FE(D%),

of global realified Frobenioids (global side), and a natural isomorphism

localised (gl.real’d to gl.non-real d®R)

R0("D})u — U (zo (1pe)),)2.0
of topological monoids for each v € V (local side), which are compatible with the respec-
gl. to loc.
tive bijections Prime(—) — V and the localisation isomorphisms {®pr(i05)0 —
R>o("D5)u}vev constructed by Corollary 11.20 (2) and the above Fny ("D®); gl to joc-

(FO('D®)|;)®. Finally, all of these structures are compatible with the respective F -
symmetrising isomorphisms of (2).

Remark 11.22.1. ([IUTchII, Remark 4.7.2]) Recall that F/*, in the context of F}-symmetry,
is a subquotient of Gal(K/F) (See Definition 10.29), hence we cannot perform the kind of
conjugate synchronisations in Corollary 11.20 (3) for F;-symmetry (for example, it non-trivially

acts on the number field M®(TD©)). Therefore, we have to work with
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(1) F-prime-strips, instead of the corresponding ind-topological monoids with Galois actions
as in Corollary 11.20 (3),

(2) the objects labelled by (—)moa (Note that the natural action of Galois group Gal(K/F')
on them is trival, since they are in the Galois invariant parts), and

(3) the objects labelled by (—)_«,
because we can ignore the conjugacy indeterminacies for them (In the case of (2), there is no
conjugacy indeterminacy). See also Remark 9.6.2 (4) (in the second numeration).

Proof. Corollary follows from the definitions. OJ

Corollary 11.23. (F-theoretic Monoids associated to K-Hodge Theatres, [[UTchII, Corollary
4.8]) Let

tNF )
THT@:<T?® R R L G THT@)

be a X-Hodge theatre, which lifts the D-X-Hodge theatre YHTT™ of Corollary 11.22, and is
glued to the B-Hodge theatre THT™ of Corollary 11.21 via the algorithm in Lemma 10.38
(Hence, J =T%).
(1) (Global Non-realified Structures) By Definition 9.6 (1) (the Kummer isomorphism
by the cyclotomic rigidity isomorphism via Qo N Z* = {1} (Cyc.Rig.NF1)), we have
a functorial algorithm, with respect to the pre-Frobenioid TF®, to construct Kummer
isomorphism

Kum Kum

{m* (D) ~ ML, } — {m(D%) A ML('D) ), ™M — M (D7)

of pseudo-monoids with group actions, which is well-defined up to conjugacy indetermi-
nacies, and by restricting Kummer classes (cf. Definition 9.6 (1)), natural Kummer

isomorphisms
Kum Kum
(RH0D7) M} 5 (¥ 0D%) A M (D7)}, My = Mi(1D°),
Kum Kum
{TP(D%) A T | 5 {74 (D%) A MU (D) |, Mas = Mo (D).
These isomorphisms can be interpreted as a compatible collection of isomorphisms
Kum Kum Kum Kum
TFo = Fo(ID°), TF* = FA('D%), "Frea — Fraea(D°), "Frca — Fraoa((D°)

of (pre-)Frobenioids (cf. Definition 9.6 (1), and Example 9.5).

(2) (F/-symmetry) The collection of isomorphisms of Corollary 11.21 (1) for the cap-
sule '§; of the F-prime-strips and the isomorphism in (1) give us, for each j €
LabCusp("D®)(= J), a collection of Kummer isomorphisms

Kum Kum

13 = 1F0 5 FOD);, {m(D%) ~TME, ), 5 {7 (D) ~ M2 ,.('D%)}

j Y

Kum . Kum

("Moa); = Mioq("D%);, ((Mpoa); = My (D),
Kum Kum

((Fe); = Foa(iD®);, (IFEN); = Fen(iD®);,

and Ff -symmetrising isomorphisms between the data indexed by distinct j € LabCusp("D?),

induced by the natural poly-action of Fff on TF®. These F} -symmetrising isomorphisms
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are compatbile with the (simply transitive) F} -action on the index set J of the D-NF-
bridge ToNY with respect to ¢y : LabCusp("D®) = J(= F}) in Proposition 10.19 (3),
and determine various diagonal objects

—@ —®
(T mod FF) - H TMl?lod J7 Mmod)(Ff} - H(TMmod)j?
jeF; jeFF
and formal notational “diagonal objects” (See Corollary 11.22 (2))
TP sy AT (D®) A TME Y sy (Fod)rys ((Frnoa) -

ast

(3) (Localisations and Global Realified Structures) By Definition 10.22 (2) and

Definition 10.23 (3), we have a functorial algorithm, with respect to the NF-bridge

" , , o
1§, = TF® -~ 1F® to construct mutually (1-)compatible collections of localisation

functors/poly-morphisms,

gl. to loc. gl. to loc.
) iy ng,) (T]:OR) 040 T@JR)

(T‘Fv mod

mod

{{WiatU,D@) ~ TMO@BM}j gl-tl;oc. TMoorwj C TMOQKX'U]'} .
vey

up to isomorphism, which is compatible with the collections of functors/poly-morphisms

of Corollary 11.22 (3), with respect to the various Kummer isomorphisms of (1), (2),

together with a natural isomorphism

gl.real’d to gl. non-real d®@R

TC;}_ ; (T‘/T-mod)
of global realified Frobenioids (global side), which is compatible with respective bijections
Prime(—) =V, and a natural isomorphism

localised (gl.real’d to gl.non-real d®R)

~

\I/TS;,Q } \I’Tff{,y

of topological monoids for each v € V (local side), which are compatible with the respec-
gl. to loc.

tive bijections Prime(—) = V, the localisation isomorphisms {CIDTC\;& - ‘I/]f};,y}gey

) gl. tL;oc.

constructed by Corollary 11.20 (2) and the above (TF%, TSE{, the isomor-
phisms of Corollary 11.22 (3), and various (Kummer) isomorphisms of (1), (2). Finally,

all of these structures are compatible with the respective F} -symmetrising isomorphisms

of (2).

Proof. Corollary follows from the definitions. O

Put the results of this Chapter together, we obtain the following:

Corollary 11.24. (Frobenius-picture of XH-Hodge Theatres, [[UTchlI, Corollary 4.10]) Let
IHTHE YT pe XMB-Hodge theatres with respect to the fized initial ©-data. Let THT P,
IHTPHE denote the assosiated D-X B-Hodge theatres respectively.

(1) (Constant Prime-Strips) Apply the constructions of Corollary 11.21 (1), (3) for

the underlying B-Hodge theatre of THT™®. Then, the collection Vo(TF.), of data
determines an JF-prime-strip for each t € LabCuspi(TQQ. We identify the collections

\I]cns(T‘F>-)07 \I]CIIS<T‘F>-)<]FZ*>
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diag
of data, via the isomorphisms — in Corollary 11.21 (3), and let

'$a = (Ca, Prime("Dy) = V, 1§y, {Taptoey) (i, ‘A={0, (F})}")

denote the resulting F" -prime-strip deter’mmed by the algorithm “§ + F 7. Note that
we have a natural isomorphism TF5 = 1§ of F"-prime-strips, where 1§ . is the
data contained in the ©-Hodge theatre of THT™E.

(Theta and Gaussian Prime-Strips) Apply Corollary 11.21 (4), (5) to the un-
derlying ©-bridge and B-Hodge theatre of THT™. Then the collection U _ (THT®)
of data, the global realified Frobenioid 'Cepy 1= CenV(THTe), localisation isomorphisms

gl. to loc.

Picoww — \I/]:env(THT@) for v €V give rise to an F" -prime-strip

Jr1".‘{‘6'3_nv - (Tc‘el;lv’ Prlme(TD‘e'_nv) - V JrSenw { penv,g}QEY)

(Note that T is the F-prime-strip determined by Wz, (FHT®)). Thus, there is a
natural identification isomorphism "§e., = T§ie, where 10, is associated to data in
FHT® (See Definition 10.5 (4) for Tg" ).

Simalarly, the collection \I/;gau(T’HT ) of data, the global realified Frobenioid 'Cgyy :=
gl. to loc.

~

Coan(1HT®), localisation isomorphisms ®ic,. ., — Yz (HTOR forv e V give
rise to an F"-prime-strip

ngau - (Tcle;V7 Prlme(TDgau) :> y’ Tg'g_am {Tpgau&}EGY)

(Note that ngau is the F-prime-strip determined by \I/;gau(T"HT@)). Finally, the evalu-
ation isomorphisms of Corollary 11.21 (4), (5) determine an evaluation isomorphism

eval

Jr"E{‘eknv L> Jrglg:m
of F'"-prime-strips.
(©*#- and © ) -Links) Let
B (resp. 1FLn resp. TE )

env gau

donote F Xt _prime-strip associated to the F'-prime-strip g% (resp. TF.., resp.
gau) (See Definition 10.12 (3) for F"™™*“-prime-strips). Then the functriality of this
algorithm induces maps
ISOH’l]:w (TS

env?

) o Tsomen s (B0, 507,
ISOIH]:H—( Sgauﬂig ) — ISOm]:H—>><H(T§g;uXP‘ iglkbxﬂ)
Note that the second map is equal to the composition of the first map with the evalua-

and the functorially obtained isomorphism TF!» ¢ !

env

. . . eval
tion isomorphism Jr&’!nv T&‘gau

ng;ux“ from this isomorphism. We call the full poly-isomorphism

full poly full poly
TS:“"XM ™ iS‘HXu (resp. Tszlﬂw ; 13:|£>Xu )

env

the @*#-link (resp. @gau link) from "THT™® to YHT™® (cf Definition 10.8), and we

write 1t as

TR O B (g TR % iy
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and we call this diagram the Frobenius-picture of XH-Hodge theatres (This is an
enhanced version of Definition 10.8). Note that the essential meaning of the above link
18

« 951 ;> QN ” (

-2 ~
resp. “ {gi }Il\lgjgl* — giT ” )

for v e VP4,
(4) (Horizontally Coric F™*k-Prime-Strips) By the definition of the unit portion of
the theta monoids and the Gaussian monoids, we have natural isomorphisms
T SZX“ T Sz'e—nxvu o0 %g;uu7
where TSZXM; [ ngaxu“ are the F*H-prime-strips associated to the F" -prime-strips

env ’

1§, T80, 185, respectively. Then, the composite

env’ gau’

~

poly poly

TSZXM ~ Ts'—xu ~ TSZX# (Tesp. ngxu = TSI—X/L ~ TSZX#)

env gau

full poly

with the poly-zgslolmcirphzsm induced by the full poly-isomorphism TFEr>r —5 15 F*H
ull poly

(resp. TFgm " — L5 >%1) in the definition of ©*F-link (resp. ©XF -link) is equal to

gau
the full poly-isomorphism of F~*H-prime-strips. This means that (_)SZX“ 1S preserved
(or “shared”) under both the ©*-link and Oz} -link (This is an enhanced version of

Remark 10.8.1 (2)). Note that the value group portion is not shared under the ©**-link
and the ©XF -link. Finally, this full poly-isomorphism induces the full poly-isomorphism

gau

full poly

[ )N S iV IN
of the associated D" -prime-strips. We call this the D- K B-link from "HTP®® to
IHTPYE and we write it as
D

tg7DRE D, ig rDRE
This means that (D' is preserved (or “shared”) under both the ©*F-link and O\ -

link (This is an enhanced version of Remark 10.8.1 (1), Definition 10.21 and Deﬁm—
tion 10.85). Note that the holomorphic base “HTE™3” is not shared under the ©**-link
and the ©ZL -link (i.e., ©*F-link and O}, -link share the underlying mono-analytic base
structures, but not the arithmetically holomorphic base structures).

(5) (Horizontally Coric Global Realified Frobenioids) The full poly-isomorphism

full poly
DL = DY in (4) induces an isomorphism
(D (1D}), Prime(D" ("04)) = V, {Tppr phoev) = (D" (*D}). Prime(D" (*D})) = V, {*ppr y}oev)
of triples. This isomorphism is compatible with the Rsg-orbits

“Kum”

poly
('Cx, Prime("CR) BV, {Ipastvev) = (D"(1DL), Prime(D" (19})) =V, {Tppr  }vev)
and
“Kum”
poly

~

(*Cx, Prime('Cy) 5V, {fpasteey) = (D'(*D}), Prime(D" ("D})) = V, {*opru}uev)

of isomorphisms of triples obtained by the functorial algorithm in Corollary 11.21 (2),
with respect to the ©*#-link and the ©gh -link. Here, the R.q-orbits are naturally defined
by the diagonal (with respect to Prime(—)) Rxg-action on the divisor monoids.
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Proof. Corollary follows from the definitions. OJ

Remark 11.24.1. (Etale picture of D- K B-Hodge Theatres, [[UTchII, Corollary 4.11]) We
can visualise the “shared” and “non-shared” relation in Corollary 11.24 as follows:

] - — > [0 = 0% < - [T

We call this diagram the étale-picture of XH-Hodge theatres (This is an enhanced version
of Remark 10.8.1, Remark 10.21.1 and Remark 10.35.1). Note that, there is the notion of the
order in the Frobenius-picture (i.e., '(—) is on the left, and *(—) is on the right), on the other
hand, there is no such an order and it has a permutation symmetry in the étale-picture (See
also the last table in Section 4.3). Note that these constructions are compatible, in an obvious
sense, with Definition 10.21 and Definition 10.35, with respect to the natural identification

~

Ol 5 Dt

12. LOG-LINKS —ARITHMETIC ANALYTIC CONTINUATION.
12.1. Log-Links and Log-Theta Lattice.

Definition 12.1. ([I[UTchIII, Definition 1.1]) Let '§ = {1F, },ev be an F-prime-strip with the
associated F"-prime-strip (resp. F'*F-prime-strip, resp. D-prime-strip) '§"~ = {TF },ev (resp.
g = {TFL:XM}QG% resp. 19 = {TDE}Q€Y>‘ )

(1) Let v € V™", Let

(Trp, D Wiy ) Uy 1= (U5 )

denote the perfection of W (cf. Section 5.1). By the Kummer isomorphism of Re-

gp
T}‘y

isomorph of K, (See Section 5.1 for the notation (—)&). Then, we can define the
R s
tF, tF,

ind-topological groups. Thus, we can transport the ind-topological field structure of
\IJ% into W5 . Hence, we can consider the multiplicative monoid “O”” of non-zero

integers of Wi , and let Wiz, denote it. Note that Vs

mark 3.19.2, we can construct an ind-topological field structure on ¥ which is an

py-adic logarithm on Wi | and this gives us an isomorphism log, : W

y = Wiy, The pair

f fog (T
I, ~ Wyeq(t 7, determines a pre-Frobenioid
log("7,).
The resulting 'TI,-equivariant diagram
(Log-Link v € V) Uip, D WG — U = Voo

is called the tautological log-link associated to T, (This is a review, in our setting,

of constructions of the diagram (Log-Link (non-Arch)) in Section 5.1), and we write it

as
F, % leg(TF,).
(poly)
For any (poly-)isomorphism (resp. the full poly-isomorphism) log(TF,) = ¥F, (resp.
full poly (poly)

log('%,) = *F,) of pre-Frobenioids, we call the composite 'F, Los, log('F,) =
'F, a log-link (resp. the full log-link) from TF, to *F, and we write it as

full log
—

TF, 2% 1F, (tesp. 'F, tF, ).
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Finally, put

L im ((\I/X

T
) e —>‘I’*f£> C Uiz = Ty,
- 3

ITJ:E = log(tFy)’

and we call this the Frobenius-like holomorphic log-shell associated to T, (This
is a review of Definition 5.1 in our setting). By the reconstructible ind-topological
field structure on Wiz = \IJ%I;(T 7,)» We can regard Ziz, as an object associated to the

codomain of any log-link TF, g, iF,.

Let v € V*¢. Recall that T]—"; = (TCE,?DQ, T,) is a triple of a pre-Frobenioid TC,, an Aut-
holomorphic space U, := D,, and a Kummer structure 'x, : ¥z, = O”(1C,) < APy,
which is isomorphic to the model triple (C,, D,, k,) of Definition 10.2 (3). For N > 1,
let UHY C W C UL denote the subgroup of N-th roots of unity, and W5, — WL

for the universal covering of the topological group \Ilfz (Recall that Uiy, \fffi’rﬂ is an

isomorph of “C =% C*”). Then, the composite
Wiy, UL U Ul

is also a universal covering of WP /WYY . We can regard Wi, as constructed from
v v v

WP /IR (See also Remark 10.12.1, Proposition 12.2, (4) in this definition, Proposi-

tion 13.7, and Proposition 13.11). By the Kummer structure 'x,, we can construct a
gp
TFy®

on Wi, and this gives us an isomorphism log, : Wi, = ‘II%)T of topological groups.

topological field structure on ¥ Then, we can define the Archimedean logarithm

Thus, we can transport the topological field structure of \IJ%E into W , and the Kum-

D, ~ . e t
mer structure Wiz < AP into a Kummer structure s} : U3 > = A Py Hence, we
= - v

can consider the multiplicative monoid “O"” of non-zero elements of absolute values

<1of \If?@, and let W, 7,) denote it. Note that \IJ%I;(*@) = \I/?@. The triple of topo-

logical monoid Wt £, y, the Aut-holomorphic space 'U,, and the Kummer structure TI{;
determines a triple

log("F,).
The resulting co-holomorphicisation-compatible-diagram
(Log-Link v € V*) Uip, C UR o U = U,

is called the tautological log-link associated to TF, (This is a review, in our setting,
of constructions of the diagram (Log-Link (Arch)) in Section 5.2), and we write it as

7, 2% log(tF,).

(poly)
For any (poly-)isomorphism (resp. the full poly-isomorphism) log(TF,) = ¥F, (resp.
full poly (poly)
log(TF,) — *F,) of triples, we call the composite 'F, o8, log(F,) = 1F, a
log-link (resp. the full log-link) from T, to *F, and we write it as
full log
—

T}"g N j;]-"Q (resp. T]—“E i}"y ).

Finally, let
I}‘]:E

denote the W )—orbit of the uniquely determined closed line segment of Wi which

og(TFu v
is preserved by multiplication by +1 and whose endpoints differ by a generator of the
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kernel of the natural surjection Wi, — W (i.e., “the line segment [—m,+7]"), or

(when we regard Wi as constructed from \II%EU /YY) equivalently, the \I’[T,g(f A

of the result of multiplication by N of the uniquely determined closed line segment
of Wi which is preserved by multiplication by +1 and whose endpoints differ by a

)—orbit

generator of the kernel of the natural surjection Uiy — WL /UEE (e, “the line

segment N[—Z% +Z] = [~ +n]”), and we call this the Frobenius-like holomorphic
log-shell associated to TF, (This is a review of Definition 5.3 in our setting). By the

reconstructible topological field structure on Wiz = W .

E2 we can regard Z; z as an
log(TFy)? Fu

object associated to the codomain of any log-link TF, Los, VE,.
We put

log('3) = {toa('7) = Wi}
for the collection of ind-topological modules (i.e., we forget the field structure on U7 ),
where the group structure arises from the additive portion of the field structures on
U . For v € V', we regard W7 as equipped with natural G, (TT1,)-action. Put also

log('3) := {[09<T~Fg)}yey
for the F,-prime-strip determined by log(TF,)’s, and let

5 % log(1F)

denote the collection {1F, o8, log(TF,) }uev of diagrams, and we call this the tauto-
logical log-link associated to '§. For any (poly-)isomorphism (resp. the full poly-
(poly) full poly
isomorphism) log(T§) — *§ (resp. log(T§) = *F) of F-prime-strips, we call the
(poly)
composite 'F Los, log('F) — *F a log-link (resp. the full log-link) from '§ to *F
and we write it as

log

f
g 2 ix (resp. [ ull oo

T )
Finally, we put
Tz = {Tix, bvev,

and we call this the Frobenius-like holomorphic log-shell associated to '§. We
also write

Tiz C log('§)
for {Ziz, C log(TF,)}uev. We can regard Tiz as an object associated to the codomain

of any log-link TF Log, 5.

For v € V" (resp. v € V*°), the ind-topological modules with G, (11I)-action (resp. the
topological module and the closed subspace) Ziz, C [o_g(T]-"g) can be constructed only
from the v-component TF*# of the associated F"* -prime-strip, by the xp-Kummer
structure, since these constructions only use the perfection (—)P!f of the units and are
unaffected by taking the quotient by O*(—) (cf. (Step 2) of Proposition 5.2) (resp. only
from the v-component "F of the associated F -prime-strip, by (Step 3) of Proposi-
tion 5.4, hence, only from the v-component TF *# of the associated F™* -prime-strip,
by regarding this functorial algorithm as an algorithm which only makes us of the quo-
tien of this unit portion by py for N > 1 with a universal covering of this quotient).
Let

Ty C log(1 7o)
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denote the resulting ind-topological modules with G, ('IL,)-action (resp. the resulting
topological module and a closed subspace). We call this the Frobenius-like mono-
analytic log-shell associated to T.’FL_ Xt Finally, we put

Tigon = {Tiputoer C log(iF#) = {log('FL )} ey

for the collections constructed from the F"*#-prime-strip '§ ** (not from F). We call
this the Frobenius-like mono-analytic log-shell associated to ' **.

Proposition 12.2. (log-Links Between F-Prime-Strips, [[UTchIII, Proposition 1.2]) Let '§ =
{1 F ey, 1§ = {tF,}uev be F-prime-strips with associated F"*"-prime-strips (resp. D-
prime-strips, resp. D" -prime-strips) 1§ *H = {TF 1} oy, 1§ = {FF 1} ey (resp. 7D =
{1D}bvev, ¥ = {D,}uev, resp. ™" = {ID)}ey, ¥D" = {¥D)},ev), respectively, and

I§ <% 15 a log-link from 1§ to V5. We recall the log-link diagrams

(poly)
([Ognon) \IJT]:E ) ‘P:}‘E - [O_g(T‘FQ> = \D%pg(T}‘E) - \D%I;:Ea
gp (pOle) gp
([ogarc) \IJT]:E C \I]%):E “ [O_g(T‘FE) = \P;g(f]-‘g) \II?FE

forv e V™" and v € V*, respectively.
lo

(1) (Vertically Coric D-Prime-Strips) The log-link '§ —% *§ induces (poly-)isomorphisms

(poly) (poly)

D 5 1, D 5 D"
of D-prime-strips and D" -prime-strips, respectively. In particular, the (poly-)isomorphism
(poly)
D 5 D induces a (poly-)isomorphism

(poly)

Uos(fD) 5 0, (4D).

(2) (Compatibility with Log-Volumes) For v € V™" (resp. v € V*°), the dia-
gram log, ., (resp. the diagram log,,.) is compatible with the natural p,-adic log-volumes

on (\If%pr ) and (\Ij%(f]: ))THz (resp. the natural angular log-volume on V. and the

natural radial log-volume on \I’%Uﬁ)) in the sense of the formula (5.1) of Proposition 5.2
(resp. in the sense of the formula (5.2) of Proposition 5.4). When we regard W as con-

structed from W% [WYY  (See Definition 12.1 (2)), then we equip WL /Wi the metric

obtained by descending the metric of WL, however, we regard the object \II%’TU Wi (or

Uiy /YR ) as being equipped with a “weight N7, that is, the log-volume of \I/TXFU/\PE% is
equal to the log-volume of WP ([TUTchIIL, Remark1.2.1 (i)]) (See also Remark 10.12.1,
Definition 12.1 (2), (4), Proposition 13.7, and Proposition 13.11).

(3) ((Frobenius-like) Holomorphic Log-Shells) For v € V" (resp. v € V), we have

11,

+
\Iflag(q@), Im ((\IITX@) Iy _ lo_g(T}—E)) C IT]:E (C [o_g(T]-"Q))

(See the inclusions (Upper Semi-Compat. (non-Arch)) O, log(O;) C Zj in Section 5.1)
(resp.

Wiy C Tz, (C log(1R), W3 € Im (Tip, — W5 )
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(See the inclusions (Upper Semi-Compat. (Arch)) Op. C Iy, O) C exp,(Zy) in Sec-
tion 5.2) ).

(4) ((Frobenius-like and Etale-like) Mono-Analytic Log-Shells) Forv € V™" (resp.
v € V¥) by Proposition 5.2 (resp. Proposition 5.4), we have a functorial algorithm,
with respect to the category DL (= B(1G,)°) (resp. the split monoid TD')), to construct
an ind-topological module equipped with a continuous 'G,-action (resp. a topological
module)

[o_g(TDZ) = {TGE ~ kN(TGQ)} (resp. lo_g(TDg) = k:N(TGQ) )
and a topological submodule (resp. a topological subspace)
ITDE = I(TGE) C /{?N(TGQ)

(which is called the étale-like mono-analytic log-shell associated to D! ) equipped
with a p,-adic log-volume (resp. an angular log-volume and a radial log-volume). More-
over, we have a natural functorial algorithm, with respect to the split-x pu-Kummer
pre-Frobenioid TF " (resp. the triple TF**), to construct an Isomet-orbit (resp.
{£1} x {£1}-orbit arising from the independent {£1}-actions on each of the direct
factors “k~(G) = C~ x C~” in the notation of Proposition 5.4)

“Kum”

poly

log('7,**) = log('D})
of isomorphisms of ind-topological modules (resp. topological modules) (cf.the poly-

‘Kum”
poly
isomorphism WS (") — W (D7) of Corollary 11.21 (2)). We also have a natural

functorial algorithm, with respect to the p,-adic Frobenioid 'F, (resp. the triple TF,), to
construct isomorphisms (resp. poly-isomorphisms of the {£1} X {£1}-orbit arising
from the independent {£1}-actions on each of the direct factors “k~(G) = C~ x C~”
in the notation of Proposition 5.4)

tauto induced by Kum

~ ~

) log("F,) = log("F, ") —  log("D,)

o
—

(poly)

gp
(W7,

I

induced by Kum

(poly) tagto poly, {£1}x{£1}

(resp. (Vi = ) log('F) = log("F,*") — log('D;) )
of isomorphisms of ind-topological modules (resp. topological modules) (cf. the isomor-
phism W e (*D)X = W (¥D7)X of Corollary 11.20 (2) and the Kummer isomorphism

cns v
Kum

Uens(*5) = Vens(*D) of Corollary 11.21), which is compatible with the respective 1G,,
and G,("TL,)-actions, the respective log-shells, and the respective log-volumes on these
log-shells (resp. compatible with the respective log-shells, and the respective angular and
radial log-volumes on these log-shells).

The above (poly-)isomorphisms induce collections of (poly-)isomorphisms

(Kum ”»
poly

~

log("§™") := {log("F, ") }eev = log("D") := {log ("D, ) }uev,

HI(um ”»
poly

.’Z:Tg)—xu = {ITII})—XM}QGY :> IT:D" = {ZTDZ}BGY7
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induced by Kum
1 tauto poly

") 1og(15) = {log('F) ey > log(i3*) = log("DF),

o

(p

1%

(Ten("8) 1= { W75, Yoev

induced by Kum
tauto poly

~

I’rg = {IT]'—E}QEY — I’rg%xu :> ITQF
(Here, we regard each \II%U as equipped with G, (*11,)-action in the definition of Uy (*§)).

(5) ((Etale-like) Holomorphic Vertically Coric Log-Shells) Let *® be a D-prime-
strip with associated D" -prime-strip *O". Let

3("D)
denote the F-prime-strip determined by U.,(*D). Assume that 1§ = iF = F(*D), and
that the given log-link is the full log-link 1§ full foa 1§ = F(*D). We have a functorial
algorithm, with respect to the D-prime-strip *®, to construct a collection of topological
subspaces
I*;D = ITS:
(which is called a collection of vertically coric étale-like holomorphic log-shell
associated to *® ) of the collection W (*D) = Wem (*F),and a collection of isomorphisms

(cf. the isomorphism W (*D) X = US (*D7)X of Corollary 11.20 (2)).

cns

Remark 12.2.1. (Kummer Theory, [[UTchIII, Proposition 1.2 (iv)]) Note that the Kummer

isomorphisms
Kum Kum

~ ~

Uans(1F) D Ves(1D), Vens(F) > Tens(*D)

(poly)

~

of Corollary 11.21 (1) are not compatible with the (poly-)isomorphism ¥ (fD) = W (*D)
of (1), with respect to the diagrams (log,.,) and (log,,.)-

Remark 12.2.2. (Frobenius-picture, [IUTchIII, Proposition 1.2 (x)]) Let {"F}nez be a col-
lection of F-prime-strips indexed by Z with associated collection of D-prime-strips (resp. D"-
prime-strips) {"®},cz (resp. {"®" },cz). Then, the chain of full log-links

full lo _ full lo full o full [lo
_)g (n 1)3 _)g ng _>B (n—i—l)s; _>9

of F-prime-strips (which is called the Frobenius-picture of log-links for F-prime-strips)
induces chains of full poly-isomorphisms

full poly full poly full poly full poly
5 bp 5 onp 5 (in 5L
full poly full poly full poly full poly

:> (n—l)@)— :) n@l— :> (n—i—l)@l— :>
of D-prime-strips and D" -prime-strips respectively. We identify (7)®’s by these full poly-
isomorphisms, then we obtain a diagram

full log full log full log

full [
— ‘IICHS<(n_1)S) - \chns(ng) - \pcns<(n+1)g) *c;g U

Kum Kum
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This diagram expresses the vertical coricity of We,((7)®). Note that Remark 12.2.1 says that
this diagram is not commutative.

Proof. Proposition follows from the definitions. 0J
Definition 12.3. (log-Links Between KH-Hodge Theatres, [IUTchIII, Proposition 1.3 (i)]) Let
TR, g7
be KMA-Hodge theatres with associated D-XMB-Hodge theatres TH TP 1 TPH¥ respectively.

Let 1.3>7 T&>—7 TSJ (Hl TSJ)? Tgt (Hl JrST) (resp' i3{>7 18’}’ 13] (ln i{§J)7 igt (ln igT)) denote F-
prime-strips in the KB-Hodge theatre THT™® (resp. HT™). For an isomorphism

B THTPEE S TP

of D-X H-Hodge theatres, the poly-isomorphisms determined by = between the D-prime-strips

associated to '§s, *§~ (resp. ., *§., resp. '3, 'T;, resp. 'F;, ) uniquely determines
poly poly poly

a poly-isomorphism log(T§s) — ¥ (resp. log(TF.) — IF., resp. log("F;) — '3, resp.
poly log log log

log('%;) = 3,), hence, a log-link 'F> = F. (resp. F. = #F., resp. ng 5 iSj, resp.
log

15 = *F:), by Lemma 10.10 (2). We write
P ®E 8, gy RS

for the collection of data = : TH7TDEE & ty7PRE t5 945z 19tz {13 log 15t
and {Tg; fog 'S her, and we call it a log-link from THTHE to FHT™. When = is replaced by

poly full poly

a poly-isomorphism "HTPXE 5 34 TPH5 (resp. the full poly-isomorphism fH7TPHE 5
IR TPHE)  then we call the resulting collection of log-links constructed from each constituent
isomorphism of the poly-isomorphism (resp. full poly-isomorphism) a log-link (resp. the full
log-link from THT™ to *HT™ and we also write it

HTEE TR (e yTEE ML ipy7es )

Note that we have to carry out the construction of the log-link first for single = for the purpose
of maintaining the compatibility with the crucial global {41}-synchronisation in the -
Hodge theatre ([IUTchIII, Remark 1.3.1]) (cf. Proposition 10.33 and Corollary 11.20 (3)) (For
a given poly-isomorphism of XH-Hodge theatres, if we considered the uniquely determined
poly-isomorphisms on F-prime-strips induced by the poly-isomorphisms on D-prime-strips by
the given poly-isomorphism of XH-Hodge theatres, not the “constituent-isomorphism-wise”
manner, then the crucial global {£1}-synchronisation would collapse (cf. [IUTchl, Remark
6.12.4 (iii)], [[UTchII, Remark 4.5.3 (iii)])).

Remark 12.3.1. (Frobenius-picture and Vertical Coricity of D-XH-Hodge theatres, [[UTchIII,
Proposition 1.3 (i), (iv)]) Let {"HT**},cz be a collection of KHB-Hodge theatres indexed by
7 with associated collection of D- X B-Hodge theatres {"HT ™}, cz. Then, the chain of full
log-links

o LRe (1) gm0 g mm ML (ni1)g e Tll e
of XH-Hodge theatres (which is called the Frobenius-picture of log-links for XH-Hodge
theatres) induces chains of full poly-isomorphisms

full poly full poly full poly full poly

~ ~

~ (n—l)HTD-ﬁEE -~ nHTD-gﬁﬂ A (n—‘—l)HTD-@Eﬂ 5
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of D- X B-Hodge theatres. We identify ()H TP s by these full poly-isomorphisms, then we
obtain a diagram

full o full fo full o full lo
e SN IS Ve W e L R W7 e i W GBI e
Kum K Kum
Kum e Kum
— 'D-XH
()3 TPEE,

where Kum expresses the Kummer isomorphisms in Remark 12.2.1. This diagram expresses
the vertical coricity of ()HTP® ¥ Note that Remark 12.2.1 says that this diagram is not
commutative.

Definition 12.4. ([IUTchIII, Definition 1.4]) Let {""HT™ 1, ,.cz be a collection of XH-Hodge
theatres indexed by pairs of integers. We call either of the diagrams

full log full log

L O nmtlqy B O nyimilq @ 07

full log full log

O nmagy®B O nplmai@® O

X
egaﬁa

full log

full log

X
G)gau

full log

full log

X
Ogau

L nﬂ”-HHT@EE n—i—l,m—i—lf}_[T@Eﬂ

full log full log
Ot m Osdu B Ogdu
L n,mHTﬁ _ s n+1,m7_[7’®
full log full log

the log-theta-lattice. We call the former diagram (resp. the latter diagram) non-Gaussian
(resp. Gaussian).

Remark 12.4.1. For the proof of the main Theorem 0.1, we need only two adjacent columns
in the (final update version of) log-theta lattice. In the analogy with p-adic Teichmiiller theory,
this means that we need only “lifting to modulo p?” (See the last table in Section 3.5).

Theorem 12.5. (Bi-Cores of the Log-Theta-Lattice, [[UTchIII, Theorem 1.5]) Fiz an initial
Th-data

(F/F, XF: l7 QK; Y, Vbad g).

mod’

For any Gaussian log-theta-lattice corresponding to this initial ©-data, we write ™™D, (resp.
mm® ) for the D-prime-strip labelled “~7 (resp. “>”) of the KB-Hodge theatre.
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(1) (Vertical Coricity) The vertical arrows of the Gaussian log-theta-lattice induce the
full poly-isomorphisms between the associated D- X H-Hodge theatres

full poly full poly full poly

~ ~

= n,mHT’D-IZEE = n,m+1H7-’D—IZE8 :> .

where n is fived (See Remark 12.3.1).
(2) (Horizontal Coricity) The horizontal arrows of the Gaussian log-theta-lattice induce
the full poly-isomorphisms between the associated F*H-prime-strips

full poly full poly full poly

~ n,mgzx,u ~ n—&-l,mgzxﬂ ~
where m is fized (See Corollary 11.24 (4)).

(3) (Bi-coric F*#-Prime-Strips) Let "D\ for the D" -prime-strip associated to the F' -
prime-strip "™\ of Corollary 11.24 (1) for the XB-Hodge theatre "™ HT 2. We iden-
fity the collections Ve, ("D )o, \I/cns("’m©>)<Fl>:«> of data via the isomorphism U, ("D, )g
diag
o Wens (""" D) gy constructed in Corollary 11.20 (3), and let

3Z(n’m®>)

denote the resulting F"-prime-strip (Recall that “A = {0, (F})}”) Note also we have
a natural identification isomorphism ("D, ) = F2(PMDs), where F(MMD.) de-
notes the F~-prime-strip determined by Wen(""D~) (Recall that “>= {0, =}". See
Lemma 10.38). Let
B ("Dy), FL(DL)

denote the associated F"* -prime-strip and F*H-prime-strip to §x ("™D,. ), respectively.
By the isomorphism “Uu(1D)X = WS _(*D7) X7 of Corollary 11.20 (2), we have a
functorial algorithm, with respect to the D" -prime-strip "™®'\, to construct an F"*-
prime-strip T ("DL). We also have a functorial algorithm, with respect to the D-
prime-strip "D, , to construct an isomorphism

tauto

~

Fa (D) S FR (DR,
by definitions. Then, the poly-isomorphisms of (1) and (2) induce poly-isomorphisms

poly poly poly
- — SAXM(TL,T)’L©>-> — SAXH(TL,T)’L—F ©>.> — e 9

poly poly poly

S FDR) B FLSCTDR) S
of F*F_prime-strips, respectively. Note that the poly-isomorphisms (as sets of iso-
morphisms) of F*F-prime-strips in the first line is strictly smaller than the poly-

isomorphisms (as sets of isomorphisms) of F*F-prime-strips in the second line in
tauto

general, with respect to the above isomorphism F X (""D.) S FX(DYL), by the
existence of non-scheme theoretic automorphisms of absolute Galois groups of MLF s
(See the inclusion (nonGC for MLF) in Section 3.5), and that the poly-morphisms in
the second line are not full by Remark 8.5.1. In particular, by composing these isomor-
phisms, we obtain poly-isomorphisms

poly

~

FHrmDL) S (D)
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of F*H_prime-strips for anyn',m’ € Z. This means that the F~**-prime-strip SZX“("’WQZ)

15 coric both horizontally and vertically, i.e., it is bi-coric. Finally, the Kummer iso-
Kum

morphism “U.(*F) = Ues(*D)” of Corollary 11.21 (1) determines Kummer iso-

morphism
induced by Kum

g L ey
which is compatible with the poly-isomorphisms of (2), and the X p-Kummer structures
at v € V™" and a similar compatibility for v € V¥ (See Definition10.12 (1)).

(4) (Bi-coric Mono-analytic Log-Shells) The poly-isomorphisms in the bi-coricity in
(3) induce poly-isomorphisms

poly

{Tonoy € gD} 5 {Tuwo, C loa("" L)},

poly

~

= n,m = n',m’
{IEZX”(”WWDZ) C [o_g(_’S'AX#< ) @Z))} — {I%,qu(n/’m/gz) C [O_g(SAX'LL( ’ @Z))}
for any n,m,n’', m, € Z, which are compatible with the natural poly-isomorphisms

“Kum”
poly

{zgzxu(n,mgz) c lo_g(SZX“(”’m@Z))} -, {L,mgz c lo_g(”’mi)Z)}
of Proposition 12.2 (4). On the other hand, by Definition 12.1 (1) for “U (1§ )o” and
“\IfcnS(TS>)<F;:<> 7 in Corollary 11.24 (1) (which construct "™ ), we obtain

Lnmzs C log("™Fa)

(This is a slight abuse of notation, since no F-prime-strip ““"Fa” has been defined).
Then we have natural poly-isomorphisms

induced by Kum
tauto poly

{Tumg, C log("™Fa)} = {In,mgzx“ C Io_g("’mgzx“)} 5 {In,mgz C [o_g(”’mﬁDZ)}
(See Proposition 12.2 (4)), where the last poly-isomorphism is compatible with the poly-
isomorphisms induced by the poly-isomorphisms of (2).
(5) (Bi-coric Mono-analytic Global Realified Frobenioids) The poly-isomorphisms

poly

~

nmt - S ' of DF-prime-strips induced by the full poly-isomorphisms of (1) and
(2) for n,m,n',;m" induce an isomorphism

(D" ("™ (D), Prime(D" (""(D}y)) = V, {""ppr y }uev)

= (D (DY), Prime(D" (" (D)) SV, {7 ppr yheew)
of triples (See Corollary 11.20 (2), and Corollary 11.24 (5)). Moreover, this isomor-

phism of triples is compatible, with respect to the horizontal arrows of the Gaussian
log-theta-lattice, with the R-qg-orbits of the isomorphisms

(""Cx, Prime(""Cx) = V, {"" pay}vev)

“Kum”

~

= (D" (""Dy), Prime(D" (""D})) = Y, {""ppr yhvev)

of triples, obtained by the functorial algorithm in Corollary 11.21 (2) (See also Corol-
lary 11.24 (1), (5)).

Proof. Theorem follows from the definitions. U
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12.2. Kummer Compatible Multiradial Theta Monoids. In this subsection, we globalise
the multiradiality of local theta monoids (Proposition 11.7, and Proposition 11.15) to cover the
theta monoids and the global realified theta monoids in Corollary 11.20 (4), (5) Corollary 11.21
(4), (5), in the setting of log-theta-lattice.

In this subsection, let TH T be a KMB-Hodge theatre with respect to the fixed initial ©-data,
and "™ H T a collection of XH-Hodge theatres arising from a Gaussian log-theta-lattice.

Proposition 12.6. (Vertical Coricity and Kummer Theory of Theta Monoids, [TUTchIII,
Proposition 2.1]) We summarise the theta monoids and their Kummer theory as follows:
(1) (Vertically Coric Theta Monoids) By Corollary 11.20 (4) (resp. Corollary 11.20
(5)), each isomorphism of the full poly-isomorphism induced by a vertical arrow of the
Gaussian log-theta-lattice induces a compatible collection

(oo)\Ijenv<n’m®>)g(m)qjenv(n’m+1©>> (7’65]) D (n,mgl—)_>rDIF (n,m+1©|;) )

of isomorphisms, where the last isomorphism is compatible with the respective bijection
Prime(—) =V, and localisation isomorphisms.

(2) (Kummer Isomorphisms) By Corollary 11.21 (4) (resp. Corollary 11.21 (5)), we
have a functorial algorithm, with respect to the XMB-Hodge theatre THT™®, to construct
the Kummer isomorphism

env

Kum “‘Kum”

(OO) \Ij]:env (THT9> % (OO) \IjenV<T©>> (resp C‘&B'_IIV(THTG) :> DlanV(T@};) )

Here, the resp’d isomorphism is compatible with the respective Prlme(—) =V and
the respective localisation isomorphisms. Note that the collection Wen, (D<) of data
gives us an ]—"F-pmme strip §H,(1D), and an F"-prime-strip i, (D) = (DL, (1DL),
Prime(D.,, ("0Y)) = V, §.,("0-), {ppr_o}vev) and that the non-resp’d (resp. the
resp’d) Kummer isomorphism in the above can be interpreted as an isomorphism

induced by Kum ‘Kum

~

TS'(;HV - 8/'e:nv(]L©>) (T’@Sp. Tglgnv _> S!,_nv( >) )

of F"-prime-strips (resp. F" -prime-strips).
(3) (Compatibility with Constant Monoids) By the definition of the unit portion of
the theta monoids (See Corollary 11.24 (4)), we have natural isomorphisms

B e A (105) = Feme (D),
induced by Kum
which are compatible with the Kummer isomorphisms 1§, = S (M),
induced by Kum
g = VHODR) of (2) and Theorem 12.5 (3).
Proof. Proposition follows from the definitions. 0

Theorem 12.7. (Kummer-Compatible Multiradiality of Theta Monoids, [[UTchIII, Theorem
2.2]) Fiz an initial Th-data

(F/Fv XF7 l7 QKa y Vbad _)

mod>

Let THT™ be o REB-Hodge theatre with respect to the fized initial ©-data.
(1) The natural functors which send an F" -prime-strip to the associated F'™**- and F">H-

prime-strips and composing with the natural isomorphisms of Proposition 12.6 (3) give
us natural homomorphisms

Autze (F5 . (102)) = Autziesu (T2 H(1D2)) = Autzu (FLH(1DR)),

env env

Aut g (TSL;]V) — Aut]_-w»xM(Tg‘F’X“) —» AUt}‘FXu(TSFXu)

env
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(Note that the second homomorphisms in each line are surjective), which are compatible
“Kum” induced by Kum

with the Kummer isomorphisms 15 = F- (19.), I§" = UM (DR)

env env

of Proposition 12.6 (2), and Theorem 12.5 (3)

(2) (Kummer Aspects of Multiradiality at Bad Primes) For v € V" let

oo\Ijé_nv(T®>)y C OO\IIGHV(T©>)Q> OO\I’J_ (THT®>Q - oo\Ilfcnv(T,HT@Mv

env

denote the submonoids corresponding to the respective splittings (i.e., the submonoids
generated by “ooQ;nV(M*@) 7 and the respective torsion subgroups). We have a commuta-
tive diagram

poly

o¥x (HT®)w D Vs, (HTON C «Vr, (HTO)S - oVr, (HTO)L" S wE(§3h)."

e}

(L, )& the submonoid and the subgroup WL, (D)) D coWeny (D)X

cns

poly
Kum |~ Kum | Kum |2 Kum | “Kum” | =
poly

~

Vi (05)e D woPen(D5)8 € wolenv(1D5)8 = woPenr(1D5)0* 5 0E(MDR)0%,

where "®'\ and '\ are as in Theorem 12.5 (3), and Corollary 11.24 (1), respectively,
the most right vertical arrow is the poly-isomorphism of Corollary 11.21 (2), the most
right lower horizontal arrow is the poly-isomorphism obtained by composing the inverse
of the isomorphism F5(1D.) < F(1DL) of Proposition 12.6 (3) and the poly-

env
automorphism of \I/iis(TQZ);“ induced by the full poly-automorphism of the D" -prime-

strip T®', and the most right upper horizontal arrow is the poly-isomorphism defined

such a manner that the diagram is commutative. This commutative diagram is compat-
1ble with the various group actions with respect to the diagram

full poly
Hzmp(M?(TD%g)) - GE(M?(TD%Q) = GQ(M?(TD%Q) = GE(M?(TD>,E)) = GE(M?(TD>7E))'

Finally, each of the various composite oWeny (IO — WS (1F1) 5 is equal to the
zero map, hence the identity automorphism on the following objects is compatible

(with respect to the various natural morphisms) with the collection of automorphisms of
v (TC\’Z);“ induced by any automorphism in Aut}-kxu(TSZXN);

cns

env v

(1z)S  the cyclotome pz(MP(1Ds ) ® Q/Z with respect to the natural isomorphism

Ui(M*@(TD%y)) ®Q/Z = oo\I’BHV(T©>)ﬁ

¢ e projective system N > ) of mono-theta environments
M) th t tem MY ('D- ,) of thet t
(sp)S  the splittings o¥ay (1D5)y = o0 Weny (1D )4 by the restriction to the zero-labelled

env

evaluation points (See Corollary 11.11 (3) and Definition 11.12 (1)).

Proof. Theorem follows from the definitions. O

Corollary 12.8. ([I[UTchIII, Etale Picture of Multiradial Theta Monoids, Corollary 2.3]) Let
{”’m’HT&E}n,mez be a collection of XH-Hodge theatres arising from a Gaussian log-theta-lattice,
with associated D- & B-Hodge theares "™ HT ™. We consider the following radial environ-
ment. We define a radial datum

full poly

~

= (HTPHE, 5L, (105), TR (L), §av(Ds) 5 57 (1D4)

env

to be a quintuple of

(HTP)4
(73

a D-X B-Hodge theatre THTPHE,
the F'-prime-strip F-  (FD<) associated to THTP™E,

env
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(bad)st  the quadruple TR™™ = ((L, )&, (uz)sF, (M)SE, (spl)S) of Theorem 12.7 (2) for v €
Vbad7

(Frm)st " the Frxu_prime-strip 0" (D) associated to PHTPHE, and
full poly
(envA)$  the full poly-isomorphim F4(1Ds) S FoH(MDR).

env

We define a morphism from a radial datum "R to another radial datum *R to be a quintuple

of

(HTP)E an isomorphism THTP™E S A TPRE of D- K B-Hodge theatres,

Morgy

(F") the isomorphism §&,,(19s) = §i,

Morgg ’ env env
phism (HT)fior;
(bad)io., —the isomorphism TR = HRY of quadruples induced by the isomorphism (HTP)E,
and

(F > hory @ isomorphism F " (1D)) = F3 W (1D) of F*-prime-strips

(*D.) of F'-prime-strips induced by the isomor-

(Note that the isomorphisms of (F) = and (FM)SE . are automatically compatible with
(envA)®).
We define a coric datum

fe = (T@F7 SFXH(T@F))

to be a pair of

(D)L a D" -prime-strip 7", and
() the F>t-prime-strip F**(1D") associated to 7D

We define a morphism from a coric datum '€ to another coric datum *€ to be a pair of

(@F)@fgrc an isomorphism 1©° 5 D" of D" -prime-strips, and
(") e an isomorphism FH(1D7) = FH(ID7) of F ¥ -prime-strips which induces the

isomorphism (D" )yiv.. on the associated D" -prime-strips.

We define the radial algorithm to be the assignment

full poly

9= (HTPE, FL(19.), 1, FA(0L), F(Ds) 5§ H(0L))
~Te = (D5, §3(1D3)

and the assignment on morphisms determined by the data (f”“)i}lorm.

(1) (Multiradiality) The functor defined by the above radial algorithm is full and essen-
tially surjective, hence the above radial environment s multiradial.
(2) (Etale Picture) For each D- X B-Hodge theatre " HTP™ with n,m € Z, we can

associate a radial datum ™™R. The poly-isomorphisms induced by the vertical arrows of
poly poly poly

the Gaussian log-theta-lattice induce poly-isomorphisms --- = WMR = wmrly 5 ..

of radial data by Theorem 12.5 (1). Let

00
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denote the radial datum obtained by idenfitying ™™R for m € Z via these poly-isomorphisms,
and

n.og

denote the coric datum obtained by applying the radial algorithm to ™°R. Similarly,

the poly-isomorphisms induced by the horizontal arrows of the Gaussian log-theta-lattice
full poly full poly full poly

~

induce full poly-isomorphisms --- = ™m®L 5 ntlmple S of DM oprime-
strips Theorem 12.5 (2). Let

000
denote the coric datum obtained by idenfitying "°C for n € Z wvia these full poly-

1somorphisms.  We can visualise the “shared” and “non-shared” relation in Corol-
lary 12.8 (2) as follows:

SH— (n,o©>) + n,ombad == szxu(o,o/}DZ) < — SI}— (n/70®>) + n/p%bad 4.

env env

We call this diagram the étale-picture of multiradial theta monoids. Note that it
has a permutation symmetry in the étale-picture (See also the last table in Section 4.3).
Note also that these constructions are compatible, in an obvious sense, with Defini-
tion 11.24.1.
(3) (Kummer Compatibility of ©;k-Link, env — A) The (poly-)isomorphisms of
F¥u-prime-strips of/induced by (envA)gt, (F )iorys and (F7*) o, are compatible
full poly

with the poly-isomorphisms ™F " S LM K of Theorem 12.5 (2) arising from

the horizontal arrows of Gaussian log-theta-lattice, with respect to the Kummer isomor-
induced by Kum induced by Kum

~ ~

phisms g at FUr ), MrE = 35, ("D of Theo-
rem 12.5 (8) and Proposition 12.6 (2). In particular, we have a commutative diagram

E full poly E

n,m X ~ n+1,m X

Sa ———="""3,

induced by Kum & “Arsenv” Nl l"“ induced by Kum & “Arsenv”
full poly

S:Fx,u(n,o@;) ~ gkxy<n+1,o©;).

env env

(4) (Kummer Compatibility of © h-Link, | & IF) The isomorphisms . (""Ds) =
oy (TID ), meRbad S ntlim gybad o f (NG s (Dad)S,, are compatible with the

full poly
poly-isomorphisms "MF N S mHLmE S of Theorem 12.5 (2) arising from the
horizontal arrows of Gaussian log-theta-lattice, with respect to the Kummer isomor-

“Kum” induced by Kum
phisms mgt S0 (mmD.), "’mSZX“ = SZX“(”””@Z); and ("Cy,

“‘Kum”

~

Prime(""Cx) = V, {""paptoev) — (D" (""D}), Prime (D' (*"D})) =V, {""ppr , }oev)
of Proposition 12.6 (2), Theorem 12.5 (3), (5) and their "1™ (=)-labelled versions, and

the full poly-isomorphism of projective system of mono-theta environments “‘M® ("D ,)
full poly

= M?(Tiv)” of Proposition 11.15.

Proof. Corollary follows from the definitions. O
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Remark 12.8.1. ([IUTchIII, Remark 2.3.3]) In this remark, we explain similarities and dif-
ferences between theta evaluations and NF evaluations. Similarities are as follows: For the
theta case, the theta functions are multiradial in two-dimensional geometric containers, where
we use the cyclotomic rigidity of mono-theta environments in the Kummer theory, which uses
only p-portion (unlike the cyclotomic rigidity via LCFT), and the evaluated theta values (in
the evaluation, which depends on a holomorphic structure, the elliptic cuspidalisation is used),
in log-Kummer correspondence later (See Proposition 13.7 (2)), has a crucial non-interference
property by the constant multiple rigidity (See Proposition 13.7 (2)). For the NF case, the
k~-coric functions are multiradial in two-dimensional geometric containers, where we use the
cyclotomic rigidity of via QsgNZ* = {1} in the Kummer theory, which uses only {1}-portion
(unlike the cyclotomic rigidity via LCFT), and the evaluated number fields (in the evaluation,
which depends on a holomorphic structure, the Beyli cuspidalisation is used), in log-Kummer
correspondence later (See Proposition 13.11 (2)), has a crucial non-interference property by
Fr iNTl<o Ov = u(F,q) (See Proposition 13.7 (2)). See also the following table:

mod

mulirad. geom. container | in mono-an. container cycl. rig.

log-Kummer

theta

NF | sok-coric fet. 3 NF F>. 4 (up to {£1})(Belyi cusp’'n)

theta fet. <3 theta values ¢/ (ell. cusp'n)

(depends on labels&hol. str.)

(indep. of labels, dep. on hol. str.)

mono-theta

= {1}

no interf. by

const. mul. rig.

via Qug N Z* = {1} no interf. by

Fnﬁod n vaoo OU

=4

The differences are as follows: The output theta values ng depend on the labels j € F;* (Recall

that the labels depend on a holomorphic structure), and the evaluation is compatible with
the labels, on the other hand, the output number field F , (up to {£1}) does not depend
on the labels j € F/ (Note also that, in the final multiradial algorithm, we also use global
realified monoids, and these are of mono-analytic nature (since units are killed) and do not
depend of holomorphic structure). We continue to explain the differences of the theta case
and the NF case. The theta function is transcendental and of local nature, and the cyclo-
tomic rigidity of mono-theta environments, which is compatible with profinite topology (See
Remark 9.6.2), comes from the fact that the order of zero at each cusp is equal to one (Such
“only one valuation” phenomenon corresponds precisely to the notion of “local”). Note that
such a function only exists as a transcendental function. (Note also that the theta functions
and theta values do not have Ffi—symmetry, however, the cyclotomic rigidity of mono-theta
enrionments have F,'*-symmetry. See Remark 11.17.1). On the other hand, the rational func-
tions used in Belyi cuspidalisation are algebraic and of global nature, and the cyclotomic rigidity
via Q59 N Z* = {1}, which is obtained by sacrificing the compatibility with profinite topology
(See Remark 9.6.2). Algebraic rational function never satisfy the property like “the order of
zero at each cusp is equal to one” (Such “many valuations” phenomenon corresponds precisely
to the notion of “global”). See also the following table (cf. [IUTchIII, Fig. 2.7]):

theta || B (0 is permuted) | transcendental | local | compat. w/prof. top. “one valuation”

NF || X (0 is isolated) algebraic global | incompat. w/prof. top. | “many valuations”




236 GO YAMASHITA

We also explain the “vicious circles” in Kummer theory. In the mono-anabelian reconstruc-
tion algorithm, we use various cyclotomes pf, arising from cuspidal inertia subgroups (See
Theorem 3.17), these are naturally identified by the cyclotomic rigidity isomorphism for in-
ertia subgroups (See Proposition 3.14 and Remark 3.14.1). We write pf, for the cyclotome
resulting from the natural identifications. In the context of log-Kummer correspondence, the
Frobenius-like cyclotomes g, ’s are related to u, via cyclotomic rigidity isomorphisms:

o T:u’Fr

P
log

1 Kum v
® *py — > O [hg

log

If we consider these various Frobenius-like yg’s and the vertically coric étale-like 1%, as distinct
labelled objects, then the diagram does not result in any “vicious circles” or “loops”. On the
other hand, ultimately in Theorem 13.12, we will construct algorithms to describe objects of
one holomorphic structure on one side of ©-link, in terms of another alien arithmetic holomor-
phic structure on another side of ©-link by means of multiradial containers. These multiradial
containers arise from étale-like versions of objects, but are ultimately applied as containers for
Frobenius-like versions of objects. Hence, we need to contend with the consequences of identi-
fying the Frobenius-like pug,’s and the étale-like 1, which gives us possible “vicious circles” or
“loops”. We consider the indeterminacies arising from possible “vicious circles”. The cyclotome
pg, is subject to indeterminacies with respect to multiplication by elements of the submonoid

Hord C Nzl X {:l:l}

generated by the orders of the zeroes of poles of the rational functions appearing the cyclotomic
rigidity isomorphism under consideration (Recall that constructing cyclotomic rigidity isomor-
phisms associated to rational functions via the Kummer-theoretic approach of Definition 9.6
amounts to identifying various p,’s with various sub-cyclotomes of pp’s via morphisms which
differ from the usual natural identification precisely by multiplication by the order € Z at a

Wy ”

cusp “x” of the zeroes/poles of the rational function). In the theta case, we have
Hord — {1}

as a consequence of the fact that the order of the zeros/poles of the theta function at any
cusp is equal to 1. On the other hand, for the NF case, such a phenomenon never happens for
algebraic rational functions, and we have

Im(I°¢ — Ns,) = {1}

by the fact Q5oNZ* = {1}. Note also that the indeterminacy arising from Im(I°"d — {+1}) (C
{£1}) is avoided in Definition 9.6, by the fact that the inverse of a non-constand s-coric rational
function is never k-coric, and that this thechnique is incompatible with the identification of
pre and p, discussed above. Hence, in the final multiradial alogirhtm, a possible Im(I°"¢ —
{£1}) (C {£1})-indeterminacy arises. However, the totality F_: , of the non-zero elements is

invariant under {1}, and this indeterminacy is harmless (Note that, in the theta case, the
theta values ¢/* have no {&1}-invariance).
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13. MAIN MULTIRADIAL ALGORITHM.

In this section, we construct the main multiradial algorithm to describe objects of one holo-
morphic structure on one side of ©-link, in terms of another alien arithmetic holomorphic
structure on another side of ©-link by means of multiradial containers. We briefly explain the
ideas. We want to “see” the alien ring structure on the left hand side of ©-link (more precisely,
O7&p-link) from the right hand side of ©-link:

> (eye)

o —> 0

As explained in Section 4.3, after constructing link (or wall) by using Frobenius-like objects, we
relate Frobenius-like objects to étale-like objects via Kummer theory (Kummer detachment).
Then, étale-like objects can penetrate the wall (étale transport). We also have another step
to go from holomorphic structure to the underlying mono-analytic structure for the purpose of
using the horizontally coric (i.e., shared) objects in the final multiradial alogirhtm. This is a
fundamental strategy:

arith.-holomorphic Frobenius-like obj’s data assoc. to F-prime-strips
4 Kummer theory

arith.-holomorphic étale-like obj’s data assoc. to D-prime-strips
J forget arith.-hol. str.
mono-analytic étale-like obj’s data assoc. to D" -prime-strips.

We look more. The ©-link only concerns the multiplicative structure (X)), hence, it seems
difficult to see the additive structure () on the left hand side, from the right hand side. First,
we try to overcome this difficulty by using a log-link (Note that Ffi—symmetrising isomorphisms
are compatible with log-links, hence, we can pull-back W,,, via log-link to construct Upgp):

> (eye)
0 log(O*#) Jertink
T T T[ag—link
X o °
However, the square
> (eye)
& log(O**) o kg
T T T[ag T[og
X OXH ° -

is non-commutative (cf.log(a™) # (loga)Y), hence we cannot describe the left vertical arrow in
terms of the right vertical arrow. We overcome this difficulty by considering the infinite chain
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of log-links:

Then, the infinite chain of log-links is invariant under the vertical shift, and we can describe
the infinite chain of log-links on the left hand side, in terms of the infinite chain of log-links on
the right hand side. This is a rough explanation of the idea.

13.1. Local and Global Packets. Here, we introduce a notion of processions.

Definition 13.1. ([IUTchI, Definition 4.10]) Let C be a category. A m-procession of C is a
diagram of the form

all capsule-full poly all capsule-full poly all capsule-full poly

where P; is a j-capsule of Ob(C) for 1 < j < n, and each — is the set of all capsule-full
poly-morphisms. A morphism from an n-procession of C to an m-procession of C

all capsule-full poly all capsule-full poly all capsule-full poly all capsule-full poly
| s Ce s Pn — Ql s ce [N m
consists of an order-preserving injection ¢ : {1,...,n} < {1,..., m} together with a capsule-full
. capsule-full poly .
poly-morphism P; — Q. for 1 < j <n.

Ultimately, {*-processions of D"-prime-strips corresponding to the subsets {1} C {1,2} C
-+ C FJ* will be important.

Remark 13.1.1. As already seen, the labels (LabCusp(—)) depend on the arithmetically holo-
morphic structures (See also Section 3.5), i.e., A_)’s or II(_y’s (Recall that II,_) for hyperbolic
curves of strictly Belyi type over an MLF has the information of the field structure of the base
field, and can be considered as arithmetically holomorphic, on the other hand, the Galois group
of the base field (II(_y —»)G(_) has no information of the field structure of the base field, and
can be considered as mono-analytic). In inter-universal Teichmiiller theory, we will reconstruct
an alien ring structure on one side of (the updated version of) ©-link from the other side of
(the updated version of) ©-link (See also the primitive form of ©-link shares the mono-analytic
structure D!, but not the arithmetically holomorphic structures D, *D, (Remark 10.8.1)),
and we cannot send arithmetically holomorphic structures from one side to the other side of
(the updated version of) ©-link. In particular, we cannot send the labels (LabCusp(—)) from
one side to the other side of (the updated version of ) ©-link, i.e., we cannot see the labels on
one side from the other side:

1,2, . 1% s 2,7 .7

*

Then, we have (I*)" -indeterminacies in total. However, we can send processions:
{1} = {1,2} = {1,2,3} > --- > {1,2,.. ., 1"} — {2} =>{7} = - {77 ... 7L

In this case, we can reduce the indeterminacies from (I*) to (I*)!. If we did not use this
reduction of indeterminacies, then the final inequality of height function would be weaker (More
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precisely, it would be ht < (2 + €)(log-diff + log-cond), not ht < (1 + €)(log-diff + log-cond)).
More concretely, in the calculations of Lemma 1.10, if we did not use the processions, then the
calculation & Ducjax(i+1) = EL 41 would be changed into = Dcjar(F+1) =1% +1,
whose coefficient of [ would be twice.

For j =1,...,1* (Recall that I= =[* +1 = ”71 (See Section 0.2)), we put
X . . + . ;
S‘j - {17 DY ’j}j S] o {O’ A ’] - 1}.
Note that we have

Sf ¢Sy c---CcSL=F, SfCSycC--CSi=|Fl
We also consider S} as a subset of S]ﬂl

t¢Q
Definition 13.2. ([IUTchI, Proposition 4.11, Proposition 6.9]) For a D-O-bridge 1D, et D,

toQ*
(resp. D-O*-bridge 1D; — D,), let
Proc('®;) (resp. Proc("®r) )

denote the [*-processin (resp. [F-procession) of D-prime-strips determined by the sub-capsules
of TD; (resp. D7) corresponding to the subsets Sf € S§ C ... C Si =Ff (resp. S§ C S5 C

. C Sfi = |Fy|), with respect to the bijection Ty : J = Ff of Proposition 10.19 (1) (resp. the
leeCtIOIl |T| = |F;| determined by the F;-group structure of 7). For the capsule D", (resp.
fD) of DF-prime-strips associated to "D, (resp. "®7), we similarly define the [*-processin

T b p p y p

(resp. [*-procession)
Proc("®';) (resp. Proc("®}) )

of D" -prime-strips. If the D-O-bridge ¢ (resp. the D-O*-bridge Tgbgi) arises from a capsule

©-bridge (resp. ©*-bridge), we similarly define the [*-processin (resp. [F-procession)
Proc(§;) (resp. Proc('§r) )

of F-prime-strips.

Proposition 13.3. (Local Holomorphic Tensor Packets, [IUTchIII, Proposition 3.1]) Let
{ag}aesji = {{a}—g}yey}agsf

be a j-capsule of F-prime-strips with index set Sj:. For V 3 v( | vg € Vg := V(Q)), we
regard log(*Fy,) as an inductive limit of finite dimensional topological modules over Q,,, by

log(“Fy) = hﬂJcanyopen([O—g(a‘Fﬂ))J' We call the assignment

Vg 2 vg + log(® = & tg(*F)

YBQ"UQ

the 1-tensor packet associated to the .’F—prime-strip 5§, and the assignment

Vg 2 vug = log(® = (X) log(”

aESf
the j-tensor packet associated to the collection {*§} ¢+ of F-prime-strips, where the
J
tensor product is taken as a tensor product of ind-topological modules.
(1) (Ring Structures) The ind-topological field structures on log(*F,) for a € SjAE deter-

mine an ind-topological ring structure on lo_g(Sji Fuy) as an inductive limit of direct sums
of ind-topological fields. Such decompositions are compatible with the natural action of
the topological group “11, on the direct summand with subscript v of the factor labelled

Q.
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(2) (Integral Structures) Fiz o € Sjﬁrl, veV, vy e Vg withv | vg. Put

logB1°F,) = log("F) o X log®F,)p C lognF,).
Begﬁl\{a}

Then, the ind-topological submodule [o_g(Sﬂ'iH’a]:g) forms a direct summand of the ind-

topological ring [o_g(sﬁrl]-"v@). Note that [og(sﬁl’a}'g) is also an inductive limit of direct
sums of ind-topological ﬁelds. Moreover, by forming the tensor product with 1’s in the
factors labelled by (B € S]Jrl \ {a}, we obtain a natural injective homomorphism

log("F,) — log(*r"F,)

of ind-topological rings, which, for suitable (cofinal) choices of objects in the inductive

limit descriptions for the domain and codomain, induces an isomorphism of such an

object in the domain onto each of the direct summand ind-topological fields of the object

i the codomain. In particular, the integral structure

Vinger) = Viogery U{0} C log("Fy)
determines integral structures on each of the direct summand ind-topological fields ap-
+ +

pearing in the inductive limit descriptions of log(*7+v*F,), log(5r+1 F,,).
Note that log(*F,) is an isomorph of log(K, ) = K,, the integral structure Uypger,) 08 an
isomorph of O, and lo_g(SjiH’a]-"g) is an isomorph of @ K, — @@E

Proof. Proposition follows from the definitions. 0J

Remark 13.3.1. ([IUTchIII, Remark 3.1.1 (ii)]) From the point of view of “analytic section”
Viod — V(C V(K)) of Spec K — Spec Fy0q4, we need to consider the log-volumes on the
portion of log(“F,) corresponding to K, relative to the weight

1

[KE : (Fmod)v] ’
where v € V ;.4 denotes the valuation corresponding to v via the bijection V04 — V (See also

Definition 10.4). When we consider Py, as in case of log(*F,,;), we use the normalised

weight
1

[Ky: (Fmod)v] ’ (vaod3w|vQ[< mod) QUQ])

so that the multiplication by p,, affects log-volumes as +log(p.,) (resp. by —log(p,,)) for
vg € Vi° (resp. vg € Vnon) (See also Section 1.2). Similarly, when we consider log-volumes

on the portion of [og( J+1.F o) corresponding to the tensor product of K, with V 3 v, | vg for
0 <1 < j, we have to consuder these log-volumes relative to the weight

1
HOgiS;’[KQi t (Frnod)v;)

where v; € V,0q corresponds to v,. Moreover, when we consider direct sums over all possible
choices for the data {v;},.s+ , we use the normalised weight
i1

1
(Tocici B, + Frnohud ) { Zuntocrcs c@rmanng it (Hocics[(Fnoa s  Qucl) §
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(See also Section 1.2) so that the multiplication by p,, affects log-volumes as +log(p,,) (resp.
by —log(p.,)) for vg € Vi© (resp. vg € V§") (See Section 0.2 for the notation (Vied)uvy)-

Proposition 13.4. (Local Mono-Analytic Tensor Packets, [IUTchIII, Proposition 3.2]) Let
{agk}aesf = {{“Dg}gey}aegji
be a j-capsule of D™ -prime-strips with index set S-i. We call the assignment

Vg3 vg + log(*D,) = €P log(“D})

Vaw|vg

the 1-tensor packet associated to the ’D"-prime-strip %, and the assignment

Voo uvg — [og = ) log("D;,)

+
anSJ

the j-tensor packet associated to the collection {*®"} .+ of D"-prime-strips, where
J

the tensor product is taken as a tensor product of ind-topological modules. For o € Sﬁl, veyv,
vg € Vg with v | vy, put

log (D)) = log(“Dy) @4 Q) leg("Dy) p C log(nD)).

GSj[-H\{O‘}
If {“@F}aesf arises from a j-capsule
{askxu}aes;i = {{Q-F;XM}QGY}QGSjE

of FT*F_prime-strips, then we put

log(“F) = log(* DL, ). log(S FL#) = log(S D), ), log(S+oFL ) = log(S+eD),

and we call the first two of them the 1-tensor packetassociated to the F"™*F-prime-strip
*F™*#, and the j-tensor packet associated to the collection {*F *#} .+ of F"*F-prime-
J

strips, respectively.
(1) (Mono-Analytic/Holomorphic Compatibility) Assume that {C“@F}aesjc arises from
a j-capsule

{ag}aegji = {{afﬂ}yey}aesjt
of F-prime-strips. We write {aSFX“}aeS_i for the j-capsule of F*M-prime-strips as-
J

“Kum”
tauto poly

~

sociated to {*F}oest. Then, the (poly-)isomorphisms log(1F,) — log(TF**) =
lo_g(TDg) of Proposition 12.2 (4) induce natural poly-isomorphisms

“Kum” “Kum”
tagto p(ily N tagto N p(:}y N
log(*Fuy) = log("F0") = log("Dy), log(® Fop) = log(® FLJ%) = log( D)),
‘Kum”
tauto poly

~

log(5+1°F,) S log(SoF ) 5 log(SireDh)

of ind-topological modules.
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(2) (Integral Structures) For V > v | vg € V§" the étale-like mono-analytic log-shells
“Tipr 7 of Proposition 12.2 (4) determine topological submodules
+ + + +
I("D,,) C log("D,,), Z("D,,) C log(> D), Z(+°D,) C log("+°D,),

which can be regarded as integral structures on the Q-spans of these submodules. For
V3w |vg € V§© by regarding the étale-like mono-analytic log-shells “Lip- " of Proposi-

tion 12.2 (4) as the “closed unit ball” of a Hermitian metric on “[og(TDF) ”and putting
the induced direct sum Hermitian metric on lo_g(o‘D,';Q), and the induced tensor pmduct

+
Hermitian metric on lo_g(SJ' D:@), we obtain Hemitian metrics on lo_g(aD:Q), [o_g( i D:@),

and [o_g(SjiH""DZQ), whose associated closed unit balls
+ + + +
I("D,,) C log(*Dy,), I(% Dy,) C log(* D, ), Z(5+°Dj) C log(*+1°Dy),
can be regarded as integral structures on lo_g(“'D:Q), [o_g(sf‘iDZQ), and lo_g(S;il’aD:Q), re-
spectively. For any V 5 v | vg € Vg, we put
amb Y . amF amyF SE- . ST st
T D,,) = Q-span of Z(*D,, ) C log(“D,,), %% D,,) = Q-span of Z(* D, ) C log(* D, ),

7% e *D}) := Q-span of Z(° e *D}) C log(® e “D).

If {*®"} st arises from a j-capsule {*F},cst of F-prime-strips then, the objects
J J

I(“D},), T%D,,), T(% Dy). 85 DL,), Z(++oDh), T:(+°D}) determine

I("Fip)s T F), IV F)s T8O Fy), TOmeF,), IS0 F),
and
TOFS), TOCFR), TEFI, TG F), IO Fe), TG Fe)
“‘Kum”
tauto poly
via the above natural poly-isomorphisms log(“F,,) — [og(o‘]:”“) = lo_g(o‘D:Q),
“‘Kum” “‘Kum”

tauto poly tauto poly

log(" Fop) > log(5 Fir) S log( D), log(oF,) S log(BroF ) S
lo_g(Sﬁl’aDZ) of ind-topological modules.
Proof. Proposition follows from the definitions. 0J
Proposition 13.5. (Global Tensor Packets, [[UTchIII, Proposition 3.3]) Let
t 7
be o XB-Hodge theatre with associated K- and B-Hodge theatres THT®, THTE respectively.
Let {O‘S}aegf be a j-capsule of F-prime-strips. We consider S;‘ as a subset of the index set J

appearing the R-Hodge theatre THT® via the isomorphism Ty : J 5 F} of Proposition 10.19
(1). We assume that for each o € ST, a log-link

°F 5 150
poly
(i.e., a poly-morphism log(°§) = 'Fa of F-prime-strips) is given. Recall that we have a
labelled version (TM:;Od)- of the field TMmod (See Corollary 11.23 (1), (2)). We call
—® —®
(Jr]MImod)Sj6 = ®(TMmod>a

X
aES].
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the global j-tensor packet associated to Sj and the XB-Hodge theatre TH7T%%.
(1) (Ring Structures) The field structures on (TMfiod)a fora € S5 determine a ring struc-

ture on (TMiod)S?, which decomposes uniquely as a direct sum of number fields. More-

over, by composing with the given log-links, the various localisation functors “(F2_ .); —
15;7 of Corollary 11.23 (3) give us a natural injective localisation ring homomorphism

(Mod)ss log(+1 Fyy) = [] loa(®+1 7y

vQ GVQ

gl. to loc.
—

to the product of the local holomorphic tensor packets of Proposition 13.3, where we

consider S; as a subset ofS 1, and the component labelled by 0 in [o_g(SfiH]:UQ) of the
localzsatzon homomorphism is defined to be 1.
(2) (Integral Structures) For a € S§, by taking the tensor product with 1’s in the factors
labelled by B € S} \ {a}, we obtain a natural injective ring homomorphism
—®
(TMmod) — (JrIMImod)Sj6

which induces an isomorphism of the domain onto a subfield of each of the direct sum-
mand number fields of the codomain. For each vg € Vg, this homomorphism is com-
patible, in the obvious sense, with the natural injective homomorphism log(*F,) —
log(SiiH’a}"v) of ind-topological rings of Proposition 13.3 (2), with respect to the local-
isation homomorphisms of (1). Moreover, for each vg € V™ (resp. vg € V), the
composite

® gl. to loc.

(Maod)a = (Mroa)sy log (1 Fyy) = log(“+1 Fyp)
of the above displayed homomorphism with the vg-component of the localisation homo-
morphism of (1) sends the ring of integers (resp. the set of elements of absolute value
<1 for all Archimedean primes) of the number field (TMmod)a into the submodule (resp.
+
the direct product of subsets) constituted by the integral structures on log(®7+1 F,,) (resp.

on various direct summand ind-topological fields oflo_g(Sa'iﬂfv@)) of Proposition 13.3 (2).
Proof. Proposition follows from the definitions. U
13.2. Log-Kummer Correspondences and Main Multiradial Algorithm.

Proposition 13.6. (Local Packet-Theoretic Frobenioids, [IUTchIII, Proposition 3.4])
(1) (Single Packet Monoids) In the situation of Proposition 13.3, for a € SJH, vey,
vg € Vo with v | vg, the image of the monoid Wy« x,), its submonoid \I/[Ug(af of units,

and realification \If][%g(afv), via the natural homomorphism log(“F,) — log( Jiﬂ’o‘]-"g) of
Proposition 13.8 (2), determines monoids

+ x ot
s
\Ij[ug( I+ FE) log( J+1 “Fu)) \Ijlug( % Fy)

which are equipped with G (*11,)-actions when v € V' and for the first monoid, with

a pair of an Aut-holomorphic orbispace and a Kummer structure when v € V*°. We
+

regard these monoids as (possibly realified) subquotients of log(*i+1*F,) which act on

+
appropriate (possibly realified) subquotients of [o_g(SjH’o‘]:Q). (For the purpose of equip-

ping Viger,) etc. with the action on subquotients of lo_g(SJ'iJrl’”‘]-"Q), in the algorithmical

outputs, we define \I/[ (Si+1 ) etc. by using the image of the natural homomorphism
og ("7 v

log(* F,) = log(S+1°F,)).



244

GO YAMASHITA

(2) (Local Logarithmic Gaussian Procession Monoids) Let

Y N Y
be a log-link of XH-Hodge theatres. Consider the F-prime-strip processions Proc(1gr).

Recall that the Frobenius-like Gaussian monoid o)V 7, (FHT®), of Corollary 11.21 (4)
is defined by the submonoids in the product HjelFl*(\IjZ ); (See Corollary 11.17 (2),

Proposition 11.19 (4)). Consider the following diagram:

. .y
l_IJEIE‘l96 [Og(]i*; g) C | |]6H‘7é [Og(S]Jrl]lifg)
Y U
P by (1)

~

- L
i£)i  ljers Yogotry = [hierr Viadit9s,,

I]jeF*(
U
\I]]'—gau (Tév)

where \If;gau(Tév) in the last line denotes, by abuse of notation, \I/]-‘&(T£U> for a value

profie & in the case of v € VP We take the pull-backs of \Il;gau(Tév)im'a the poly-

1somorphism gwen by log-link " HT™E =, g IHTHE and send them to the isomorphism
H]@F* Uigoitr) — 11 eFr Piog® it constructed in (1). By this construction, we

obtain a functorial algorithm, with respect to the log-link YHT=® =5 g IHTHE of RE-
Hodge theatres, to construct collections of monoids

lo lo
Vou o Up g (CIHT),, (Ug, (COMHTEE),,

equipped with splittings up to torsion when v € V™™ (resp. splittings when v € V&°°9),
We call them Frobenius-like local LGP-monoids or Frobenius-like local log-
arithmic Gaussian procession monoids. Note that we are able to perform this
construction, thanks to the compatibility of log-link with the Ffi-symmetrising
isomorphisms.

Note that, for v € V**, we have

(j—labelled component of \II;LGP((iﬂ)THT&E)f“(iH“)) C I@(gﬁm;i}-ﬂ)

(i.e., (K, D) Ox., -ng C Qlog(Og.)”), where (— )Ge(T) denotes the invariant part,

and the above j-labelled component of Galois invariant part acts multiplicatively on
+
ISP E)). For any v € Y, we also have

(j-labelled component of (\IJ;LGP( T7—[7‘@3) )G iHv)) C I@<Sji+17j;¢fg)

(i.e., (K, D) % C Qlog(Ox)” for v € V&) where 1, = {1} for v € V¥,

and the above j-labelled component of Galois invariant part of the unit portion acts
+ -

multiplicatively on TR(S+17HF,).

Proof. Proposition follows from the definitions. OJ

Proposition 13.7. (Kummer Theory and Upper Semi-Compatibility for Vertically Coric Local
LGP-Monoids, [ITUTchIII, Proposition 3.5]) Let {""HT*},.mez be a collection of XEB-Hodge
theatres arising from a Gaussian log-theta-lattice. For each n

iz, let

n,oHTD-ﬁEE
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denote the D- X B-Hodge theatre determined, up to isomorphism, by """ HT™ for m € Z, via
the vertical coricity of Theorem 12.5 (1).

(1) (Vertically Coric Local LGP-Monoids and Associated Kummer Theory) Let
S0 )

denote the F-prime-strip associated to the labelled collection of monoids “U.,s("°D, ),
of Corollary 11.20 (8). Then, by applying the constructions of Proposition 15.6 (2) to
the full log-links associated these (étale-like) F-prime-strips (See Proposition 12.2 (5)),
we obtain a functorial algorithm, with respect to the D- X B-Hodge theatre ™ HTPHS,
to construct collections of monoids

y c v o \IILGP(TL,OHTD—@BH)E OO\DLGP(n,oHTD—&EE)Q

”»

equipped with splittings up to torsion when v € V™™ (resp. splittings when v € V&°°9),
We call them vertically coric étale-like local LGP-monoids or vertically coric
étale-like local logarithmic Gaussian procession monoids. Note again that we
are able to perform this construction, thanks to the compatibility of log-link with
the ]Ffi-symmetrising isomorphisms. For each n,m € Z, this functorial algorithm
is compatible, in the obvious sende, with the functorial alogrithm of Proposition 13.6 (2)
for (=) =™™(=), and *(—) = ™™"Y(=), with respect to the Kummer isomorphism

Kum

\I[cns (n,m’g})t :> \I}cns (n7O©>—)t

of labelled data of Corollary 11.21 (3) and the identification of ™™ §, with the F-prime-
strip associated to Weus(™' Fs ) for m' = m — 1,m. In particular, for each n,m € 7Z,
we obtain Kummer isomorphisms

Kum

log ~ n.o |
o) VA (PTTHT),, S ) Ve (CHT ),

for local LGP-monoids forv e V.
(2) (Upper Semi-Compatibility) The Kummer isomorphisms of the above (1) are upper

semi-compatible with the log-links ™™ "H T 108, gy of XH-Hodge theatres

in the Gaussian log-theta-lattice in the following sense:

(a) (non-Archimedean Primes) For vg € V§*, (and n € Z) by Proposition 13.6 (2),
we obtain a vertically coric topological module

+
ZEHTF(D )ug)-

*

Then, for any j =0,...,0*, m € Z, v | vg, and m' > 0, we have

nmy,

® Kum o log™ <<\Ifms("’m3>)§|> > C I(Sy'i+1f(”’°@>)1,@),

|tleST 4
where Kum denotes the Kummer isomorphism of (1), and logm/ denotes the m/'-
th iteration of py-adic logarithm part of the log-link (Here we consider the m/'-th
iteration only for the elements whose (m' — 1)-iteration lies in the unit group). See
also the inclusion (Upper Semi-Compat. (non-Arch)) in Section 5.1.

(b) (Archimedean Primes) For vg € V§°, (and n € Z) by Proposition 13.6 (2), we
obtain a vertically coric closed unit ball

+
TEMF(D, )
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Then, for any j =0,...,1*, m € Z, v | vg, we have
® Kum( ons nm%})‘ﬂ) CI( J+1]Z’(no© ) )

® Kum <closed ball of radius 7 inside W,q(™ m3>)|t|> C Z( J+1}“(" Dy )ug),
\t|eSJ+1
and, for m’ > 1,

/
m

lo ’
) S (a subset) —» oo (" FL )

[t]?

(closed ball of radius 7 inside Wq(™ m$>)

It

where Kum denotes the Kummer isomorphism of (1), and log™ denotes the m’-th
iteration of the Archimedean exponential part of the log-link (Here we consider the
m’-th iteration only for the elements whose (m'—1)-iteration lies in the unit group).
See also the inclusion (Upper Semi-Compat. (Arch)) in Section 5.2.

(c) (Bad Primes) Letv € V™, and j # 0. Recall that the monoids ooy ¥V 7 p (¢ B’)T?'-[TEEE)E,

and (o) Wrap (™ ©OHTP- ®EH)2 are equipped with natural splitting up to torsion in the
case of U(—), and up to 2l-torsion in the case of V(—). Let

log log,
(00) \IJ}LGP ((n,m—l—))n,mHT@Eﬁ)y C (00) \I[]:LGP ((n,m—l%)n,mHT@Eﬂ)Q’

o) Vigp("HTP ™), C (o) Urap("HT ™),
denote the submonoids defined by these splittings. Then, the actions of the monoids

((n,mflﬂ)n,mHT&E)E (m c Z)
on the ind-topological modules
T F(D,),) C log( I F(MD,)) (=1, 1),

via the Kummer isomorphisms of (1) is mutually compatible, with respect to
the log-links of the n-th column of the Gaussian log-theta-lattice, in the following
sense: The only portions of these actions which are possibly related to each other
via these log-links are the indeterminacies with respect to multiplication by roots
of unity in the domains of the log-links (since W (—) N U*(=) = py). Then,
the py-adic logarithm portion of the log-link sends the indeterminacies at m (i.e.,
multiplication by ps ) to addition by zero, i.e., no indeterminacy! at m + 1 (See
also Remark 10.12.1, Definition 12.1 (2), (4), and Proposition 12.2 (2) for the
discussion on quotients by \IJ’T‘}VU forv e V¥).

\PJ_

FLGP

Now, we consider the groups

((\IJCHS (n,m$>)‘t| ); )Gﬁ(n’mnﬂ) , \I]]'—LGP ((n ,m— 1—> n mHTIXEE])EG n m—lnﬂ)
of units for v € V, and the splitting monoids

\PL ((n,m—lﬂ)n,mHT@Eﬂ)Q

FLGP

for v e VP us acting on the modules
IO F ("D, )u,)

not via a single Kummer isomorphism of (1), which fails to be compatible with the log-links,
but rather via the totality of the pre-composites of Kummer isomorphisms with iterates of the
pyu-adic logarithmic part/Archimedean exponential part of log-links as in the above (2). In this
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way, we obtain a local log-Kummer correspondence between the totality of the various
groups of units and splitting monoids for m € Z, and their actions on the “I%(—)” labelled by
“/rl, o 2

{ Kum o log™ (groups of units, splitting monoids at (n,m)) ~ Z™(=)) }mez.m>0,

which is invariant with respect to the translation symmetries m — m+ 1 of the n-th column of
the Gaussian log-theta-latice.

Proof. Proposition follows from the definitions. U

Proposition 13.8. (Global Packet-Theoretic Frobenioids, [[UTchIII, Proposition 3.7])

(1) (Single Packet Global non-Realified Frobenioid, X-Line Bundle Version) In
the situation of Proposition 13.5, for each o € ST, by the construction of Definition 9.7
(1), we have a functorial algorithm, from the image

—® —® —® +
(TMMOD)Q = Im ((TMmod)a - (JrIMImod)S;:6 — [O_g<SJ+1fV@)>

of the number field, via the homomorphisms of Proposition 13.5 (1), (2) to construct a
(pre-)Frobenioid

(Tfl\@[OD)a

with a natural tsomorphism
("Frod)a = ("Fiton)a

of (pre-)Frobenioids (See Corollary 11.23 (2) for (1F2

mod

)a), which induces the tautolog-

tcal 1somorphism (TMiod)a = (TM®MOD)a on the associated rational function monoids.
We ofthen identify (TFE 4)a with (\Fyop)a, via the above isomorphism. We write
((Fien)a for the realification of (T Fyiop)a-

(2) (Single Packet Global non-Realified Frobenioid, H-Line Bundle Version) For
each o € Sf, by the construction of Definition 9.7 (2), we have a functorial algorithm,

r®

from the number field ("M, ,,)a = (TMI%[OD)Q and the Galois invariant local monoids

(qjlog(S;t-Fl’a}_E))Gﬂ(aHE)

of Proposition 13.6 (1) for v € V, to construct a (pre-)Frobenioid
(Tfn@?oa)a

(Note that, for v € V™" (resp. v € V)  the corresponding local fractional ideal J, of
Definition 9.7 (2) is a submodule (resp. subset) of IQ(S;ALH’O‘]:Q) whose Q-span is equal
to IQ(SJ'iH’a]-"Q) ) with natural isomorphisms

(Tfn?ob%! :> (Tfr/\ﬁod)m (Tfn?oa)a :> (T‘Fl\(?IOD)a
of (pre-)Frobenioids, which induces the tautological isomorphisms (TMr@iw)a = (TMiod)a,

(TM?IUD)Q = (TM@)MOD)Q on the associated rational function monoids, respectively. We

write ({Fex), for the realification of (1 F2,)a-

(3) (Global Realified Logarithmic Gaussian Procession Frobenioids, X-Line Bun-
dle Version) Let *HT™* L8, b THE log-link. In this case, in the construction of the
above (1), (2), the target [o_g(sﬂ'iﬂ}—v@) of the injection is I-labbeled object [o_g(siiﬂ’j;ifv@),

: —® —® 2 —®
thus, we write (% Myop)a, (7 Mug)as (T Fop)as (1 Fra)a for ((Myop)as
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(TMmoa) ((Fop)as (Fey)a,s respectively, in order to specify the dependence. Consider
the dzagmm

gl.real’d to gl. non-real’ d®R
Hjeﬁ?f TC}F — Hjel@*( Fond)i H eIE‘*( T Fidn)is
U
C\F

gau

where the isomorphisms in the upper line are Corollary 11.23 (3) and the realification
of the isomorphism in (1). Then, by sending the global realified portion TC' . of the

gau
Fr-prime-strip TF¢  of Corolllary 11.24 (2) via the isomorphisms of the upper line,

gau

we obtain a functorial algorithm, with respect to the log-link YHT™® =% SN T of
Proposition 13.6 (2), to construct a (pre-)Frobenioid

Chp (O 4T 5,

We call 4)1Clap = Clap(CTH "HT™®) 4 Frobenius-like global realified LGP-
monoid or Frobenlus—llke global realified X-logarithmic Gaussian procession

lo
monoids. The combination of it with the collection \IJ;LGP(G_Q’)THT@E) of data con-
structed by Proposition 13.6 (2) gives rise to an F" -prime-strip

(H)TS{GP = (H TCLGP Prime((H)TC'{Gp) -V, (H)Tgicpa {(H)TPLGP,Q}QG@

with a natural isomorphism

N

(=) JfSLGP

JfSgau

of F"-prime-strips.
(Global Realified Logarithmic Gaussian Procession Frobenioids, H-Line Bun-
dle Version) Put

log t
\I]]:[gp( HT‘XEE) \IJ-FLGP( =) HT‘XIEE)? (i—>)T$|[—gp = (i%)TSEGP

In the construction of (3), by replacing (7 .FmOd) (Tfﬁ%D)j by (1 .7-"mod) (T‘Fﬁ%)j,

we obtain a functorial algorithm, with respect to the log-link YHT™E =% 09, tHTEE
Proposition 13.6 (2), to construct a (pre-)Frobenioid

=ik = gl (G ).

lgp -

and an F"-prime-strip

(ié)Tg‘[Zp — (i—> TC[W7 Prime((i_’)TC‘[;p) 3V, i—>)T%~gp’ {(i%)Tp[gp,g}QGY)
with tautological 1somorphisms
Tglg:m A (;H)TS‘EGP o G) Tg[gp
lo
of F'-prime-strips. We call (H)TC‘IZP = C‘[;p((i_g’)T’l-[T@E) a Frobenius-like global

realified [gp-monoid or Frobenius-like global realified H-logarithmic Gaussian
procession monoids.
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(5) (Global Realified to Global non-Realified®R) By the constructions of global real-
ified Frobenioids C‘LFGP((iﬂ)THT&E) and C. ((iﬂ)THT&E) of (3), (4), we have a com-

lgp
mutative diagram

tlogyy @
C‘I':GP(( =) HT&EE)(—> HjeFf(TfﬁﬂéD)j

Cl[gp((i—g))THT&E)(—> Hje]Fl* (T"T_-n%%)j‘

In particular, by the definition of (TFey); in terms of local fractional ideals, and the
product of the realification functors HjeFf(Tfn%)ob)j e HjeFf(Tfn(?g%)jf we obtain an al-
gorithm, which is compatible, in the obvious sense, with the localisation isomorphisms
{Tpigpw foev and {pLap v boev, to construct objects of the (global) categories C{;p((ig)THT&E),
lo
C'{GP(@_%THT@EE), from the local fractional ideals generated by elements of the monoid
lo
Wf[gp((iﬁ)THTMEE)E for v e VP,
Proof. Proposition follows from the definitions. U
Definition 13.9. ([IUTchIII, Definition 3.8])
lo lo
(1) Put \Ifj%lgp((i_g”T’;’{T@EE)2 = \IJJTIW((i—%”’HTma)g for v € V"™ When we regard the

object of

H (T}— rf?ob)j

jeF;
and its realification determined by any collection, indexed by v € VP of generators up
to g of the monoids \I/#[gp ((iﬂ)THT&Eﬁ)Q, as an object of the global realified Frobenioid

=)l p = C‘LFGP(GB’)*HT&E) or U=icl ) = C‘[;p((iﬂ’)T’HTgEE), then we call it a ©-
pilot object.

We call the object of the global realified Frobenioid TC% of Corollary 11.24 (1) de-
termined by any collection, indexed by v € VP of generators up to torsion of the
splitting monoid associated to the split Frobenioid T}"&U in the v-component of the

F'-prime-strip T§' of Corollary 11.24 (1), a g-pilot object.
(2) Let PHT™= L8 41T be a log-link of XH-Hodge theatres, and
*HT&E
a XH-Hodge theatre. Let

I I I
“FH (vesp. (iH)TSngﬂ’ resp. (iﬁ)T&g;X# )

be the F"™* _prime-strip associated to the F'-prime strip *§'y of Corollary 11.24 (1)
(resp. (iﬁ)TS‘EGP, resp. (i%”glpr). We call the full poly-isomorphism
full poly full poly

I ~ sl I ~ Lkl
(H)TSLE;# — "FA" (vesp. (H)T&g;w — )

the ©;&p-link (resp. O -link) from FHT™ to *HT™, relative to the log-link
YN THTHE and we write it as

T

ork

Chis
L UTHE (resp. THTHE B ryTHE ).
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(3) Let {"™HT™ 1, ..z be a collection of MA-Hodge theatres indexed by pairs of integers.
We call the diagram

full log full log
@X” ork
LGP nm—H/HT@EE LGP n+1 m+1H7-|g53 LGP
full log full log
Orép Orép Orép
e T S e lmg B B
full log full log
(resp.
full log full log
o e ek
lgp n m—HHTIXEE Ot n+1 m+17_[7‘®53 b
full log full log
e o Shis
lgp nm,}_[,]—@aa lgp TH_LmHTgEE lgp
full log full log

) the LGP-Gaussian log-theta-lattice (resp. Igp-Gaussian log-theta-lattice),
where the O[p-link (resp. ©p-link) from "™ HT™ to "M H T is taken relative to

the full log-link ™7~ 1375 "5 e nmH TS, Note that both of O} fp-link and ©,%-link
send ©-pilot objects to ¢-pilot objects.

Proposition 13.10. (Log-Volume for Packets and Processions, [IUTchIII, Proposition 3.9])
(1) (Local Holomorphic Packets) In the situation of Proposition 13.4 (1), (2), for V >
v|vg € VE" (resp. Y 3 v |vg € VE°), a € S;EH, the pyy-adic log-volume (resp.
the radial log-volume) on each of the direct summand p,,-adic fields (resp. complex
Archimedean fields) of T®(*F,,), I@(Sﬂiﬂ.ﬂ@), and I@(Sﬁl’j]-]@) with the normalised
weights of Remark 13.3.1 determines log-volumes

o, MIOCF)) = R, plf | MEIF)) > R

% £
a,vQ s R

weE L MIAERR) S R,

J+1’O‘ v
where M(—) denotes the set of compact open subsets of (—) (resp. the set of compact
closures of open subsets of (—) ), such that the log-volume of each of the local holomorphic
integral structures

a st st ,Q
O”fv@ C I@( f“@)’ OS§E+1]_.UQ C IQ( J+1'FUQ)’ OSJ‘{LP‘*]:E - IQ( It Fy)?
given by the integral structures of Proposition 13.3 (2) on each of the direct summand,
15 equal to zero. Here, we assume that these log-volumes are normalised in such a
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manner that multiplication by p, corresponds to —log(p,) (resp. +log(p,)) on the log-
volume (cf. Remark 13.3.1) (See Section 0.2 for p, with Archimedean v). We call this

normalisation the packet-normalisation. Note that “/LlSof 7 is invaariant by per-

j+1°YQ
mutations of S;Erl. When we are working with collections of capsules in a procession,

we normalise log-volumes on the products of ‘M(—)" associated to the various cap-
sules by taking the average over the various capsules. We call this normalisation the
procession-normalisation.

(Mono-Analytic Compatibility) In the situation of Proposition 13.4 (1), (2), for
Vouw|vg e Vg™ (resp. Vo ul|wvg € Vy©) ac SJH, by applying the py,-adic log-
volume (resp. the radial log-volume) on the mono-analytic log-shells “Lip-" of Proposi-
tion 12.2 (4), and adjusting appropriately the discrepancy between the local holomorphic
integral structures of Proposition 13.3 (2) and the mono-analytic integral structures of
Proposition 13.4 (2), we obtain log-volumes

s - M(Z9(°D),)) - R, M};f . M(T9(5n D, ) — R,

Hasg

1 st .«
'LLSOJE-FLOQQ : M(IQ< a DZ)) - R’

where M(—) denotes the set of compact open subsets of (—) (resp. the set of compact
closures of open subsets of (—)), which are compatible with the log-volumes of (1), with
respect to the natural poly-isomorphisms of Proposition 13.4 (1). In particular, these
log-volumes can be constructed via a functorial alogrithm from the D" -prime-strips. If
we consider the mono-analyticisation of an F-prime-strip procession as in Proposi-
tion 13.6 (2), then taking the average of the packet-normalised log-volumes gives rise to
procession-normalised log-volumes, which are compatible with the procession-normalised
log-volumes of (1), with respect to the natural poly-isomorphisms of Proposition 13.4 (1).
By replacing “D™” by FT**, we obtain a similar theory of log-volumes for the various
objects associated to the mono-analytic log-shells “L; prxu”

s L M(TOCFM) SR, plF s MIOEMFE) SR,

M
a,vQ 100

lo st o
HEE ., MIZOCTeF) S R,

which is compatible with the “D" "-version, with respect to the natural poly-isomorphisms
of Proposition 13.4 (1).
(Global Compatibility) In the situation of Proposition 13.8 (1), (2), put

I Fyy) = [] T8 F,) € lognFy) = [ a7,
vg€Vg vg€Vg
and let
MIZ(Fy)) C [ MECmFy)
ve€Vg

denote the subset of elements whose components have zero log-volume for all but finitely
many vy € Vo. Then, by adding the log-volumes of (1) for vg € Vg, we obtain a global
log-volume

pE o M(IO(SMFy,)) — R

+
SirVe

which is invariant by multiplication by elements of

+
(TM%D) = (TMIC?/[OD)a - IQ(SjJrl‘FV@)
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(product formula), and permutations of ST, The global log-volume ulsifﬂw@({Jy}yey)

of an object {J, }vev of ((Fva)a (See Definition 9.7 (2)) is equal to the degree of the
arithmetic line bundle determined by {J,}vev (cf. the natural isomorphism (\Fe)a —
(TF2 e of Proposition 13.8 (2)), with respect to a suitable normalisation.
(4) (log-Link Compatibility) Let {""HT**}, ,.cz be a collection of XB-Hodge theatres
arising from an LGP-Gaussian log-theta-lattice.
(a) Forn,m € Z, the log-volumes of the above (1), (2), (3) determine log-volumes on
the various “IY(—=)” appearing in the construction of the local/global LGP-/Igp-

monoids/Frobenioids in the F" -prime-strips ""F|ap, ”’mS‘[;p of Proposition 13.8

(3), (4), relative to the log-link "™ " HT™ L8 im0

(b) At the level of the Q-spans of log-shells “I%(—)” arising from the various F-prime-
strips involved, the log-volumes of (a) indexed by (n,m) are compatible, in the sense
of Proposition 12.2 (2) (i.e., in the sense of the formula (5.1) of Proposition 5.2 and
the formula (5.2) of Proposition 5.4), with the log-volumes indexed by (n,m — 1)

with respect to the log-link ™" HT™E ML 109 1 m g8 (This means that we do
not need to be worried about how many times log-links are applied in the
log-Kummer correspondence, when we take values of the log-volumes).

Proof. Proposition follows from the definitions. OJ

Proposition 13.11. (Global Kummer Theory and Non-Interference with Local Integers, [ITUTchIII,
Proposition 3.10]) Let {"™"HT*},.mez be a collection of RXB-Hodge theatres arising from an
LGP-Gaussian log-theta-lattice. For each n
sz, let

n,09 T D-RE

denote the D- R B-Hodge theatre determined, up to isomorphism, by ""HT™® for m € Z, via
the vertical coricity of Theorem 12.5 (1).

(1) (Vertically Coric Global LGP- [gp-Frobenioids and Assosiated Kummer The-
ory) By applying the construcions of Proposition 13.8 to the (étale-like) F-prime-strips
‘F(°D. ), and to the full log-links associated to these (étale-like) F-prime-strips (See
Proposition 12.2 (5)), we obtain functorial algorithms, with respect to the D-KH-Hodge
theatre "°HT P to construct vertically coric étale-like number fields, monoids,
and (pre-)Frobenioids equipped with natural isomorphisms

®

WMo ("“HTP2), = Miyop ("“HTP92), > M (" HTP ), = My ("HTP55),,

MiOd(moHTD-IXEE)a > M® (n,oHTD-IEEE)O“

mod

JT_'® (mofHTD—&Bﬂ)a :> fngi)oa(n,oHTD-IEEE)a ;fl\@?[OD(”LO,HTD_&BH)OL

mod

. via Ty
for a € S} C J, and vertically coric étale-like F'-prime-strips equipped
with natural isomorphisms

3|F(n,O%TD—X|EE)gau :> SlF(n,OHTD—XlEE)LGP :> F”_(anTD_&EE)[gp-

Note again that we are able to perform this construction, thanks to the compatibility
of log-link with the Ff‘i-symmetrising isomorphisms. For each n,m € 7Z, these
functorial algorithms are compatible, in the obvious sense, with the (non-vertically coric
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Frobenius-like) functorial algorithms of Proposition 13.8 for T(—=) = "™(=), and () =
nm=b( ) with respect to the Kummer isomorphisms

Kum

~

\I]Cns(n7m/3’>)t — \Pcns(n’ml©>)tu

Kum Kum
n,m’ ~ n,m’ n,m' {p® ~ n,m’
(7 Mgod)j — I\’/Hgod(7 D©)j7 (7 Mmod)j Mmod(7 D©)j
of labelled data (See Corollary 11.21 (3), and Corollary 11.23 (2)), and the evident
identification of ™™ §,; with the F-primes-strip associated to Uens("™ . )¢ for m/ =

m — 1,m. In particular, for each n,m € Z, we obtain Kummer isomorphisms

Kum Kum
MRE ~ wr® , D-XMH ;m—1—=)nmyr® ~ wr® , ‘D-XH
(anmod>Oé - I\’/Hmod(n “HT )OH ((nm )anMOD/moD)a - MMOD/maD<n HT )OH
Kum Kum
nMmN® ™~ ® n,0 'D-XH (nym—1=)n,mp® ~, ® n,o D-XEH
(""Mioa)a = Mipoa("HT e, ( Miiop/meo)a = Myiop mea("“HT " )as
Kum Kum
) ® ~ ® ) D-XH ;m—1—)n, ® ~ ® , D-KH
(n m]:mod)a - ]:mod(n “HT )OH ((nm " m]:MOD/moa)Ot - ‘FMOD/moD(n “HT )av
Kum Kum
I+ ~ I+ 'D-XH -1 I+ ~ I+ 'D-XH
n’mggau — 5 ("HT )gaua ((n’m %)angLGP/[gp) — & ("HT )LGP/‘QP’

(Here (—)mop/mev @5 the shorthand for “(—)mop (resp. (—)meo)”, and (=)rap/igp s the
shorthand for “(—)Lap (resp. (—)ig)”) of fields, monoids, Frobenioids, and F"-prime-
strips, which are compatible with the above various equalities, natural inclusions, and
natural isomorphisms.

(2) (Non-Interference with Local Integers) In the notation of Proposition 13.4 (2),
Proposition 13.6 (1), Proposition 13.8 (1), (2), and Proposition 13.10 (3), we have

& L + +
((Mgiop)aN] [ Wuserory = m(((Mgiop)a) | € [T 20 0F) = ] T8CF) = T Fy)

veV veV vo€Vo

(i.e., “Froq N [ Lhen O(DFmod)v = u(Fy.4)") (Here, we identify HYayva I@(Sﬁpa}"ﬁ) with
+
IQ(SJ‘HE,@)). Now, we consider the multiplicative groups

((n,m—l%)n,mMi@/{OD )j

of non-zero elements of number fields as acting on the modules
IQ(Sﬁ_lf(n,o©>_)VQ>

not via a single Kummer isomorphism of (1), which fails to be compatible with the log-
links, but rather via the totality of the pre-composites of Kummer isomorphisms with
iterates of the p,-adic logarithmic part/Archimedean exponential part of log-links, where
we observe that these actions are mutually compatible, with respect to the log-links of
the n-th column of the LGP-Gaussian log-theta-lattice, in the following sense: The only
portions of these actions which are possibly related to each other via these log-links are
the indeterminacies with respect to multiplication by roots of unity in the domains of the
log-links (by the above displayed equality). Then, the p,-adic logarithm portion of the
log-link sends the indeterminacies at m (i.e., multiplication by p((mm=1=)mmME 0);)
to addition by zero, i.e., no indeterminacy! at m+1 (See also Remark 10.12.1, Defini-
tion 12.1 (2), (4), and Proposition 12.2 (2) for the discussion on quotients by \I!f}\’v for

v € V). In this way, we obtain a global log-Kummer correspondence between
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the totality of the various multiplicative groups of non-zero elements of number fields
for m € Z, and their actions on the “I%(—)” labelled by “n,o”

{ Kum o log™ (""" Myjop);) ~ Z((=)) }mez,mr=o,

which is invariant with respect to the translation symmetries m — m + 1 of the n-th
column of the LGP-Gaussian log-theta-latice.

(3) (Frobenioid-theoretic l[og-Kummer Correspondences) The Kummer isomorphisms
of (1) induce, via the log-Kummer correspondence of (2), isomorphisms of (pre-)Frobenioids

Kum Kum
(mmfl%)n’m IaOD)Oé = fﬁOD(n’OHTDME)m (mmfl%)n’m ﬁﬂéD)a = fﬁ%D(n’O%TD_@E>a

which are mutually compatible with the log-links of the LGP-Gaussian log-theta-lattice,
as m rus over the elements of Z.. These compatible isomorphisms of (pre-)Frobenioids
with the Kummer isomorphisms of (1) induce, via the global log-Kummer correspondence
of (2) and the splitting monoid portion of the the local log-Kummer correspondence of
Proposition 13.7 (2), a Kummer isomorphism

Kum
(n,m—l%)n,mg\l}:ép :> SH-J_(n,oHT'D—&EE)LGP
of associated F"+-prime-strips, which are mutually compatible with the log-links of
the LGP-Gaussian log-theta-lattice, as m rus over the elements of Z.

Note that we use only MOD-/LGP-labelled objects in (2) and (3), since these are defined only
in terms of multiplicative operations (X), and that the compatibility of Kummer isomorphisms
with log-links does not hold for mod-/Igp-labelled objects, since these are defined in terms of
both multiplicative and additive operaions (X and B), where we only expect only a upper semi-
compatibility (cf. Definition 9.7, and Proposition 15.7 (2)).

Proof. Proposition follows from the definitions. OJ
The following the Main Theorem of inter-universal Teichmiiller theory:

Theorem 13.12. (Multiradial Algorithms via LGP-Monoids/Frobenioids, [[UTchIII, Theorem
3.11]) Fiz an initial ©-data

FFaXFal7Q7Y7Vbad €).
(F/ K

mod>
Let
{n7mHT®EE }n,mEZ

be a collection of XH-Hodge theatres, with respect to the fixed initial ©-date, arising from an
LGP-Gaussian log-theta-lattice. For each n € Z, let

n,oHTD—ﬁEE
denote the D- X B-Hodge theatre determined, up to isomorphism, by ""HT™® for m € Z, via
the vertical coricity of Theorem 12.5 (1).
(1) (Multiradial Representation) Consider the procession of D" -prime-strips Proc(™° D)
{n,ogg} SN {n,ogg7 n,ogg} oy s {n,ogg’ n,ogq’ o ’n,ogl:é}.
Consider also the following data:
(Shells) (Unit portion — Mono-Anaytic Containers) ForV 3 v | vg, j € |F|, the topolog-
ical modules and mono-analytic integral structures
(D) C T4HnmeDy,), I(5dneDy) ¢ THGnIneD)),

which we regard as equipped with the procession-normalised mono-analytic log-
volumes of Proposition 13.10 (2),
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(ThVals) (Value Group Portion — Theta Values) For v € V"™, the splitting monoid
Uiep("HTPHE),
of Proposition 15.7 (2¢), which we regard as a subset of

Ii[ jf@(gf+pjﬂholjg)j

JEFS

. . L. . . Q st Jim,0q - .
equipped with a multiplicative action on [ JeF* ZR(%i+ D), via the natural poly-
1somorphisms

“Kum”™ 1
poly tauto !

TORineph) 5 TO@EudneFu(p,),) 5 19 FaineF(ol),)

of Proposition 13.4 (2), and
(NFs) (Global Portion — Number Fields) For j € F}, the number field

Myiop("HTPTE); = M, ("“HTPE), c I9(Ennepy, ) .= [ 18E+m°D})

’UQEVQ
with natural isomorphisms
® n,0 D-XH ~ ® (n,0 'D-XHB ®R  (n,0 'D-XHB ~ ®R (n,0 'D-XHB
MOD( HT )j - ‘Fmob( HT )j? FMOD( HT )j — 'Fmoa( HT )j

(See Proposition 13.11 (1)) between the associated global non-realified/realified Frobe-
nioids, whose associated global degrees can be computed by means of the log-volumes
of (a).
Let
n,o%LGP

denote the collection of data (a), (b), (c) regarded up to indeterminacies of the following
two types:

(Indet ) the indeterminacies induced by the automorphisms of the procession of D" -prime-
strip Proc(™* DY), and

(Indet —) for each vg € Vg™ (resp. vg € Vg©), the indeterminacies induced by the action
of independent copies of Isomet (resp. copies of {£1} x {£1}-orbit arising from
the independent {+1}-actions on each of the direct factors “k~(G) = C~ x C~” of
Proposition 12.2 (4)) on each of the direct summands of the j+1 factors appearing

in the tensor product used to define IQ(S;'&H;"’OD:Q)
Then, we have a functorial algorithm, with respect to Proc(™°®%.), to construct "°RLCGF
(from the given initial ©-data). For n,n’ € Z, the permutation symmetries of the étale
picture of Corollary 12.8 (2) induce compatible poly-isomorphisms

poly poly

Proc(™*®%) = Proc("°®f), ™CRLEP 5 nleRLGP
poly
which are, moreover, compatible with the poly-isomorphisms ™°Df = "/’OZ‘DB induced by
the bi-coricity of the poly-isomorphisms of Theorem 12.5 (3). We call the switching poly-
poly

isomorphism "°RVEP 5 meRjLGP gy étale-transport poly-isomorphism (See also

Remark 11.1.1), and we also call (Indet «~) the étale-transport indeterminacies.
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(2) (log-Kummer Correspondence) For n,m € Z, the Kummer isomorphisms

Kum Kum
~ ~ —®

\IICHS(n7m{§>)t - \IICHS(n’O©>)t= (n mMmod) - Mmod<n oD@)
Kum
(D) A PMEY, S (R (D7) A M (D)),

(where t € LabCusp™(™°®,.)) of labelled data of Corollary 11.21 (3), Corollary 11.23
(1), (2) (cf. Proposition 13.7 (1), Proposition 13.11 (1)) induce isomorphisms between
the wvertically coric étale-like data (Shells), (ThVals), and (NFs) of (1), and the corre-
sponding Frobenius-like data arising from each XB-Hodge theatre ™™ HT
(a) for Vo v | vy, j € |F, isomorphisms

IKum!’
" tauto " poly 4
I(Q) (Sj+1§nvaUQ) — I(Q) (SjJrl?nvaL_QX.u) — I(Q) (Sj+1;n,ODUQ)7
“Kum”
tauto poly

~

I(Q)( J+17] s, mf ) — I(@) (S;Erlv.j;n’mf’l';xu) _> I(Q)( ]+1’] U OD )

of local mono-analytic tensor packets and their Q-spans (See Proposition 13.4 (2)),
all of which are compatible with the respective log-volumes by Proposi-
tion 13.10 (2) (Here, 9 (=) is a shorthand for “L(—) (resp. Z%(—))"),

(b) for VP 5 v, isomorphisms

Kum

\I/L ((n,m—1—>)'rz,rnu;'_[«]—'iZBﬂ)2 :> \IJfGP(n,oHTD-gEH)U

FLap
of splitting monoids (See Proposition 13.7 (1)),
(c) for j € Ff, isomorphisms

Kum

(nym—1—=)n,myr® ) ~ j® n,0 D-XH\
( MMOD/moD)J - MMOD/moD( HT )]7
Kum
(n,m—1—=)n,m T® ~ ® n,o D-XH\ |
( F MOD/moa) - F MOD/mua( HT);,
Kum

(em=t=) nm]:MOD/moa) = fMOD/maa(n’OHTD_xE)j’
of number fields and global non-realified/realified Frobenioids (See Proposition 13.11
(1)), which are compatible with the respective natural isomorphisms between “(—)mop ”

and (—)moo " (Here, (—)MoD/mov 15 @ shorthand for “(—)mvop (resp. (—)meo)”), here,
the last isomorphisms induce isomorphisms

Kum
nm—1—=)n,m ~ I+ n,0 'D-XH
( ) CLGP e — CLap g ("MHT )

(Here, (—)rap/igp @5 a shorthand for “(—)uap (resp. (=)igp)”) of the global realified
Frobenioid portions of the F'-prime-strips (»m=1=nmah - sl (nog T PRE) (o)
(nm=1=nmgl . and F(HT ™) g, (See Proposition 13.11 (1)).

Kum

((n,mflﬁ)n,mHT&Eﬁ)v ~ LGP(n OHTD &Bﬂ)v ’ s,

Moreover, the various isomorphisms U= Frap v .

Kum
and ("IN o )i = Migop e ("HT )5 in (b), (¢) are mutually
compatible with each other, as m runs over Z, with respect to the log-links of the n-th
column of the LGP-Gaussian log-theta-lattice, in the sense that the only portions of the
domains of these isomorphisms which are possibly related to each other via the log-links
consist of p in the domains of the log-links at (n,m), and these indeterminacies at
(n,m) (i.e., multiplication by 1) are sent to addition by zero, i.e., no indeterminacy!
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at (n,m+ 1) (See Proposition 13.7 (2¢c), Proposition 13.11 (2)). This mutual compati-

Kum
bility of ((mm=1=mmME Jmo0)i Myop Jmo("CHT P ), 7s implies mutual compati-
Kum Kum

~

bilities Of ((n,m—l—))n,mfl\@/)IOD>j = F@ (n OHTD &EE) 78 and (nm—l%)n,m?ﬁOD)j 3
Fiop(HTP®E), % (Note that the mutual compatibility does not hold for (—)meo-
labelled objects, since these are defined in terms of both multiplicative and additive op-
eraions (K and B), where we only expect only a upper semi-compatibility (cf. Definition 9.7,
Proposition 13.7 (2), and Proposition 13.11 (8)). On the other hand, the isomorphisms
of (a) are subject to the following indeterminacy:

(Indet 1) the isomorphisms of (a) are upper semi-compatible, with respect to the log-links

of the n-th column of the LGP-Gaussian log-theta-lattice, as m runs over Z, in a
sense of Proposition 13.7 (2a), (2b).

(We call (Indet —) and (Indet 1) the Kummer detachment indeterminacies.)
Finally, the isomorphisms of (a) are compatible with the respective log-volumes,
with respect to the log-links of the n-th column of the LGP-Gaussian log-theta-lattice,
as m runs over Z (This means that we do not need to be worried about how many
times log-links are applied in the log-Kummer correspondence, when we take values
of the log-volumes).

(07 &p-Link Compatibility) The various Kummer isomorphisms of (2) are compatible
with the O Lp-links in the following sense:

(a) (Kummer on A) By applying the F;'=-symmetry of the XB-Hodge theatre "™ H T,

Kum

the Kummer isomorphism We,s(""Fw )i — WYens("°Dy); induces a Kummer iso-
induced by Kum

morphism »"F " o FH (DY) (See Theorem 12.5 (3)). Then, we
have a commutative diagram

FX/J, fullr\?oly 1 FX/J,
n,mgA n ,mgA

induced by Kum %\L i% induced by Kum

full poly

B (MeDR) T B (D),

where the upper horizontal arrow is induced (See Theorem 12.5 (2)) by the O1p-
link between (n,m) and (n+ 1,m) by Theorem 12.5 (3).
(b) (A — env) The F‘k—prime—strips mmEt e (D) appearing implicitly in the

env’

construction of the F" -prime-strips (vm—1=mmal i (nog TPHEY (p, (mmoi=)nm e
(v oHTPEE) . admit natural isomorphisms ™mF N S mmgh e SFX“("’O@Z) =

env

Foo (DY) of associated F*F-prime-strips (See Proposition 12.6 (3)). Then, we

env
have a commutative diagram

full poly
~

n,mgzxu n+1,m32><u

induced by Kum & “Arrenv” El i% induced by Kum & “Arrenv”

full poly

Fen ' (M°D5) ——= B ("D,

where the upper horizontal arrow is induced (See Theorem 12.5 (2)) by the O1&p-
link between (n,m) and (n+ 1,m) by Corollary 12.8 (3).
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(¢) (env — gau) Recall that the (vertically coric étale-like) data “°R” i.e.,
(HTPHE, B ("D5), oo Ve ("D5)0 D oo Wenn ("D )y, 113 (M ("D5)) ® Q/Z, M ("Ds.),

full poly

o Wy ("*D>) = oo W ("D )5 ] s s S (D), e (D) Z”@ﬁsz{)

of Corollary 12.8 (2) implicitly appears in the construction of the F" -prime-strips

(n,m—l%)n,mg{GP’ SIF(n,OHTD—IXlEH)LGP, (n,m—1—>)n,m3:|[;p’ S\F(n,oHTD—IEEE)[gp. This (’UGT"

tically coric étale-like) data arising from o TPEE s related to corresponding
(Frobenius-like) data arising from the projective system of the mono-theta environ-
ments associated to the tempered Frobenioids of the REB-Hodge theatre """ HT™® at
v € VP via the Kummer isomorphisms and poly-isomorphisms of projective sys-
tems of mono-theta environments of Proposition 12.6 (2), (3) and Theorem 12.5
(8). With respect to these Kummer isomorphisms and poly-isomorphisms of pro-
jective systems of mono-theta environments, the poly-isomorphism

poly
n,o% :> n+1’09{

full poly

~

induced by the permutation symmetry of the étale picture > HTPXE 5 ntlog PR
is compatible with the full poly-isomorphism

full poly

n,msgzxu :> n+1,m8rz><u

of F™*t-prime-strips induced by O &p-link between (n,m) and (n + 1,m) and so
on. Finally, the above two displayed poly-isomorphisms and the various related
Kummer isomorphisms are compatible with the various evaluation map implicit
in the portion of the log-Kummer correspondence of (2b), up to indeterminacies
(Indet »), (Indet —), (Indet 1) of (1), (2).

(d) (k-coric — NF) With respect to the Kummer isomorphisms of (2) and the gluing
of Corollary 11.21, the poly-isomorphism

rat (m,0 Y& n,0Y@ 1. to loc. n,o n,0
{7 ("*D®) A ML (D)}, & S M (D) € Mo("Dy)]

poly
~ |:{ﬂ_11"at(n+1,op®> ~ Miﬁ(nH,OD@)}j gl to, loc. Moo/iv(nJrl’ODyj) c Mmﬂxv(n+1’ngj)i|

veVv

(See Corollary 11.22 (8)) induced by the permutation symmetry of the étale picture
full poly

~

no TPHEE I ntlog TPEE s compatible with the full poly-isomorphism

full poly

n,mgzxu :> n—i—l,mSZXu
of F*t-prime-strips induced by O &p-link between (n,m) and (n + 1,m). Fi-
nally, the above two displayed poly-isomorphisms and the various related Kummer
1somorphisms are compatible with the various evaluation map implicit in the por-
tion of the log-Kummer correspondence of (2b), up to indeterminacies (Indet v,

(Indet —), (Indet 1) of (1), (2).

Proof. Theorem follows from the definitions. O
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A rough picture of the final multiradial representation is as follows:

(Fnoa)1

where the multiplicative group (

{75} c {17,

77}

8%

1
\DLGP>

FX

mod

( Sod)l*

7}

); of non-zero elements of a j-labelled number field acts on

I;-Q, and Ui.p acts on I;@ in the (j 4+ 1)-capsule by multiplication by ng. Note that Uip does

not act on other components Ié?, e ,I;Qfl of the (j + 1)-capsule. Note also that the 0-labelled
objects (together with the diagonal labelled objects) are used to form horizontally coric objects
(Recall that “A = {0, (Ff)}”), and (FX.4);’s or Yigp do not act on O-labelled (Q-span of)

log-shell Z,2.
The following table is a summary of Theorem 13.12 and related topics:

(temp. conj. vs. prof. conj. — F,"*-conj. synchro.— diag.—hor. core— ©;4p-link|)

(1) (Objects)

(2) (log-Kummer)

(3) (Comat’ty with O] &p-link)

F,'*-sym. Z (e~ units) inv. after admitting inv. after admitting
H (Indet 1) (indet —) (~ Z*-indet.)
F,"*-sym. Uiqp val. gp. no interf. by const. mult. rig. | protected from Z*-indet.
H («—compat. of log-link (ell. cusp’n«pro-p anab. by mono-theta cycl. rig.
w/ B *-sym.) +hidden. endom.) (¢<—quad. str. of Heis. gp.)
F/-sym. M,,0qa NF no interf. protected from Z*-indet.
X Belyi cusp’n(«—pro-p anab. by Fod N Ty<oe Ov = 11 by Q<o N 7x = {1}

+hidden endom.)

others: (compat. of log.-vol. w/ log-links), (Arch. theory:Aut-hol. space (ell. cusp’n is used))

(disc. rig. of mono-theta), (étale pic.: permutable after admitting (indet «) (autom. of proc. incl.))

Corollary 13.13. (Log-Volume Estimates for ©-Pilot Objects, [[UTchIII, Corollary 3.12]) Let

—[log(©)] € RU{+o0}
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denote the procession-normalised mono-analytic log-volume (where the average is taken over
j € F}) of the holomorphic hull (See the definiton after Lemma 1.6) of the union of the
possible image of a ©-pilog object, with respect to the relevant Kummer isomorphisms in
the multiradial representation of Theorem 13.13 (1), which we regard as subject to the indeter-
minacies (Indet 1), (Indet — ), and (Indet ) of Theorem 13.13 (1), (2). Let

—|log(g)| € R

denote the procession-normalised mono-analytic log-volume of the image of a q-pilot object,
with respect to the relevant Kummer isomorphisms in the multiradial representation of Theo-
rem 13.13 (1), which we do not regard as subject to the indeterminacies (Indet 1), (Indet — ),
and (Indet ) of Theorem 15.13 (1), (2) (Note that we have |log(q)| > 0). Then, we obtain

—[log(g)| < —|log(9)]

(i.e., 0 S —(large number) + (mild indeterminacies)”. See also Appendiz A.4). Note also
that the explicit computations of the indeterminacies in Proposition 1.12, in fact, shows that
—[log(9)] < oo.

full poly

~

Proof. The ©;¢p-link %0 7> OLdp 1 OH T induces the full poly-isomorphism *OF; b
L 03£>><u of F"™*#_prime-strips, which sends ©-pilot objects to a g-pilot objects. By the Kum-
mer isomorphisms, the ®°-labelled Frobenius-like objects corresponding to the objects in the
multiradial representaion of Theorem 13.12 (1) are isomorphically related to the ®°-labelled
vertically coric étale-like objects (i.e., mono-analytic containers with actions by theta values,
and nubmer fields) in the multiradial representaion of Theorem 13.12 (1). After admitting the
indeterminacies (indet v), (indet —), and (indet 1), these (0, o)-labelled vertically coric étale-
like objects are isomorphic (See Remark 11.1.1) to the (1, o)-labelled vertically coric étale-like
objects. Then, Corollary follows by comparing the log-volumes (Note that log-volumes are
invariant under (Indet v»), (Indet —), and also compatible with log-Kummer correspondence
of Theorem 13.12 (2)) of (1,0)-labelled g-pilot objects (by the compatibility with ©]&p-link of
Theorem 13.12 (3)) and (1, o)-labelled ©-pilot objects, since, in the mono-analytic containers
(i.e., Q-spans of log-shells), the holomorphic hull of the union of possible images of ©-pilot
objects subject to indeterminacies (Indet v»), (Indet —), (Indet 1) contains a region which is
isomorphic (not equal) to the region determined by the g-pilot objects (This means that “very
small region with indeterminacies” contains “almost unit region”). 0

Then, Theorem 0.1 (hence, Corollary 0.2 as well) is proved, by combining Proposition 1.2,
Proposition 1.15, and Corollary 13.13.

Remark 13.13.1. By admitting (Indet »»), (Indet —), and (Indet 1), we obtain objects
which are ivariant under the ©;4p-link. On the other hand, the O;4p-link can be considered
s “absolute Frobenius” over Z, since it relates (non-ring theoretically) ¢ to {gj2}1§j§p:e.

Therefore, we can consider
(Indet v~) the permutative indeterminay in the étale transport:

N

o—>o<—e “IG,~2*G,” (and autom’s of processions)

(Indet —) the horizontal indeterminacy in the Kummer detachment:

o %o fO*rm =101 with integral structures,

and



A PROOF OF ABC CONJECTURE AFTER MOCHIZUKI 261

(Indet 1) the vertical indeterminacy in the Kummer detachment:

3 log(O*)—— 2ip log(O*)
[og] logT /
. Ok

as “descent data from 7Z to [F;”.

Remark 13.13.2. The following diagram (cf. [IUTchIII, Fig. 3.8]) expresses the tautological
two ways of computations of log-volumes of g-pilot objects in the proof of Corol-
lary 13.13:

étale transport
H-line bdls.1<j<l>;< assoc. to = H-line bdls.1<j<l>;< assoc. to
2 - -2 -
{O’OEJE }vev up to Indet.’s suited t0 Finoo {Logi }vev up to Indet.’s

Kummer detach.
via log-Kummer corr.

compare log-vol.’s
compatibility with ©74 5

@Egp—link
=

X-line bdl. assoc. to X-line bdl. assoc. to ~ ([ H-line bdl. assoc. to
( {O’OEZQ}EEY )suited to ]:M()D( {1’°gv}yey ) - ( {1’Ogv}gey ) :
These tautological two ways of computations of log-volumes of g-pilot objects can be considered
as computations of self-intersection numbers “A.A” of the diagonal “A C Z ®p, Z” from
point view of Remark 13.13.1. This observation is compatible with the analogy with p-adic
Teichmuller theory (See last table in Section 3.5), where the computation of the global degree
of line bundles arising from the derivative of the canonical Frobenius lifting (+» ©-link) gives us
an inequality (1 —p)(2g —2) < 0 (Recall that self-intersection numbers give us Euler numbers).
This inequality (1 — p)(2g — 2) < 0 essentially means the hyperbolicity of hyperbolic curves.
Analogously, the inequality

[log(©)] < [log(g)| =0

means the hyperbolicity of number fields.
See also the following table (cf. [IUTchIII, Fig. 3.2]):

X-line bundles, MOD /LGP-labelled objects B-line bundles, mod/[gp-labelled objects
defined only in terms of X defined in terms of both X and H
value group/non-coric portion unit group/coric portion
“(=)™7 of O bp-link “=)xwr of @Eép/@éfj—link
precise log-Kummer corr. only upper semi-compatible log-Kummer corr.
ill-suited to log-vol. computation suited to log-vol. computation
subject to mild indeterminacies
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Remark 13.13.3. In this remark, we consider the following natural questions: How about the
following variants of ©-links?

(1)

(2)

(3)

{g‘f}lgg‘gl* = (A E Ry,

{(QjQ)N}lgjgl% — g (N >1), and

v =v

q g;\ (A € Ryp).

=v

From conclusions, (1) works, and either of (2) or (3) does not work.

(1) ([IUTchIII, Remark 3.12.1 (ii)]) We explain the variant (1). Recall that we have | ~
ht >> |deg(q )| = 0. Then, the resulting inequalty from “the generalised Oy ¢p-link” is

A-0 < —(ht) + (indet.)

for A << [, which gives us the almost same inequality of Corollary 13.13, and weaker
inequality for A > [ than the inequality of Corollary 13.13 (since deg(q ) < 0).

(2) ([EtTh, Introduction, Remark 2.19.2, Remark 5.12.5], [[UTchII, Remark 1.12.4, Remark
3.6.4], [IUTchIII, Remark 2.1.1]) We explain the variant (2). There are several reasons
that the variant (2) does not work (See also the principle of Galois evaluation of
Remark 11.10.1):

(a)

If we replace © by O (N > 1), then the crucial cyclotomic rigidity of mono-theta
environments (Theorem 7.23 (1)) does not hold, since the construction of the cyclo-
tomic rigidity of mono-theta environments uses the quadraticity of the commutator
[, | structure of the theta group (i.e., Heisenberg group) (See also Remark 7.23.2).
If we do not have the cyclotomic rigidity of mono-theta environments, then we have
no Kummer compatibility of theta monoids (c¢f. Theorem 12.7).

If we replace © by ©F (N > 1), then the crucial constant multiple rigidity of mono-
theta environments (Theorem 7.23 (3)) does not hold either, since, if we consider
N-th power version of mono-theta environments by relating the 1-st power ver-
sion of mono-theta environments (for the purpose of maintaining the cyclotomic
rigidity of mono-theta environments) via N-th power map, then such N-th power
map gives rise to mutually non-isomorphic line bundles, hence, a constant multiple
indeterminacy under inner automorphisms arising from automorphisms of corre-
sponding tempered Frobenioid (cf. [[TUTchIII, Remark 2.1.1 (ii)], [EtTh, Corollary
5.12 (iii)]).

If we replace © by ©F (N > 1), then, the order of zero of OV at cusps is equal
to N > 1, hence, in the [og-Kummer correspondence, one loop among the various
Kummer isomorphisms between Frobenius-like cyclotomes in a column of log-theta-
lattice and the vertically coric étale-like cyclotome gives us the N-power map before
the loop, therefore, the log-Kummer correspondence totally collapes. See also Re-
mark 12.8.1 (“vicious circles”).

If it worked, then we would have

0 < —N(ht) + (indet.),

~Y

which gives us an inequality

1
ht < N(l + €)(log-diff 4 log-cond)

for N > 1. This contradicts Masser’s lower bound in analytic number theory ([Mass2]).
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(3) ([IUTchIII, Remark 2.2.2]) We explain the variant (3). In the theta function case,
we have Kummer compatible splittings arisen from zero-labelled evaluation points (See
Theorem 12.7):

E—
id ~ (OX ool NI (labellgd,ev- v H/A) . Aut(G), Isomet ~ (G ~ O*H)
= —
. > 1€ Oxm

Here, the crucial Kummer compatibility comes from the fact that the evaluation map
relates the Kummer theory of O*-portion of O* - .0 on the left to the coric O** on
the right, via the evaluation . — 1 € O**. On the other hand, in the case of the

variants (3) under consideration, the corresponding arrow maps g)‘ — 1 € O** hence,
this is incompatible with passage to Kummer classes, since the Kummer class of c_])‘ in a

suitable cohomology group of II/A is never sent to the trivial element of the relavant
full poly

~

cohomology group of G, via the full poly-isomorphism II/A  — G.

APPENDIX A. MOTIVATION OF O-LINK (EXPLANATORY).

In this section, we explain a motivation of ©-link from a historical point of view, i.e., in the
order of classical de Rham’s comparison theorem, p-adic Hodge comparison theorem, Hodge-
Arakelov comparison theorem, and a motivation of ©-link. This section is an explanatory
section, and we do not give proofs, or sometimes rigorous statements. See also [Pano, §1].

A.1. Classical de Rham’s Comparison Theorem. The classical de Rham’s comparison
theorem in the special case for G,,(C) = C* says that the pairing

Hy(G(C), Z) @z Hip(Gm(C)/C) — C,

which sends [7] ® [w] to f w, induces a comparison isomorphism Hl;(G,,(C)/C) = C ®y
(H1(G,,(C),Z))* (Here, (-)* denotes the Z-dual). Note that Hy(G,,(C),Z) = Z [yo), Hiz(Gn(C)/C) =
C [%T], and f% % = 2mi, where vy denotes a counterclockwise loop around the origin, and T’
denotes a standard coordinate of G,,.

A.2. p-adic Hodge Comparison Theorem. A p-adic analogue of the above comparison
paring (in the special case for G,, over Q,) in the p-adic Hodge theory is the pairing

TPGm ®Zp H3R<Gm/(@p) — Bcrys;

which sends e® [4-] to (“ [ 4 =7)log [¢] = t(= t.), where T}, denotes the p-adic Tate module,
€ = (€)n is a system of p-power roots of unity (i.e., e =1, & # 1, and €, | = €,), Bays is
Fontaine’s p-adic period ring (See also [Fo3]), and ¢ = log [¢] is an element in B, defined by €
(See also [Fo3]). The above pairing induces a comparison isomorphism Bcrys®(@p H&R(G,/Q,) =
Berys ®z, (1,Gr)* (Here, (-)* denotes the Z,-dual). Note that € = (e,), is consdered as a kind
of analytic path around the origin.

We consider the pairing in the special case for an elliptic curve E over Z,. We have the

universal extension 0 — (LieEy )" — E&p — Eg, — 0 (See [Mess| for the universal extension)
of By, = E®z,Q, (Here, (-)* denotes the Q,-dual, and Ey (= Ep,) is the dual abelian variety
of Eg,). By taking the tangent space at the origin, we obtain an extension 0 — (LieEg )" —
LieE&p — LieEg, — 0 whose @Q,-dual is canonically identified with the Hodge filtration of
the de Rham cohomology 0 — (LieEq,)* — Hjg(Eq,/Q,) — LieEy — 0 under a canonical
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isomorphism Hjp(Eg,/Q,) = (LieE(T@p)* (See also [MM] for the relation between the universal
extension and the first crystalline cohomology; [BO1] and [BO2] for the isomorphism between
the crystalline cohomology and the de Rham cohomology). For an element wgi of (LieE(T@p)*,

we have a natural homomorphism logwET : E(T@p — Gq /0, such that the pull-back (logwm )*dT is

equal to wgt, where E(T@p is the formal completion of E(T@p at the origin, and @a /0, is the formal
additive group over Q,.
Now, the pairing in the p-adic Hodge theory is
TpE ® (LleE&p)* — BCI‘yS7

which sends P ® wgt to (¢ [pwpt = ")log, . [P), where P = (P,), satisfies that P, €
E(@), Py, = 0, and pP,,; = P,. The above pairing induces a comparison isomorphism
Berys @q, Hig(Gn/Qy) = Berys @z, (T,Gy)* (Here, (-)* denotes the Z,-dual). Note again that
P = (P,), is consdered as a kind of analytic path in E. See also [BO1] and [BO2| for the
isomorphism between the de Rham cohomology and the crystalline cohomology; [MM] for the
relation between the first crystalline cohomology and the universal extension; [Mess| for the
relation between the universal extension and the Dieudonné module; [Fo2, Proposition 6.4] and

[Fol, Chapitre V, Proposition 1.5] for the relation between the Dieudonné module and the Tate
module (the above isomorphism is a combination of these relations).

A.3. Hodge-Arakelov Comparison Theorem. Mochizuki studied a global and “discre-
tised” analogue of the above p-adic Hodge comparison map (See [HASurl|, [HASurll]). Let
E be an elliptic curve over a number field F', [ > 2 a prime number. Assume that we have
a non-trivial 2-torsion point P € FE(F)[2] (we can treat the case where P € E(F') is order
d > 0 and d is prime to [, however, we treat the case where d = 2 for the simplicity). Put
L = O(l[P]). Then, roughly speaking, the main theorem of Hodge-Arakelov theory says that
the evaluation map on E'[l](= EJ[l])

D(EY, L|g) <" = Llpiy(= Lley = @enF)

is an isomorphism of F-vector spaces, and preserves specified integral structures (we omit the
details) at non-Archimedean and Archimedean places. Here, I'(ET, £|z1)%¢<! denotes the part
of I'(ET, L] 1) whose relative degree is less than [ (Note that Zariski locally ET is isomorphic
to E x A = Spec Og[T]). Note that dimp ['(ET, £|gi)de<! = [2] since dimp ['(E, L) = [, and
that dimp L]y = (2, since #E[l] = (%. The left hand side is the de Rham side, and the right
hand side is the étale side. The discretasation means that we consider [-torsion points E[l], not
the Tate module, and in philosophy, we consider E[l] as a kind of approzimation of “underling
analytic manifold” of E (like ¢ = (€,), and P = (P,), were considered as a kind of analytic
paths in G,, and E respectively). We also note that in the étale side we consider the space of
functions on E[l], not E[l] itself, which is a common method of quantisations (like considering
universal enveloping algebra of Lie algebra, not Lie algebra itself, or like considering group
algebra, not group itself).

(For the purpose of the reader’s easy getting the feeling of the above map, we also note that
the G,,-case (i.e., degenerated case) of the above map is the evaluation map

F[T]deg<l — @CEMF

sending f(7") to (f(C))ceu, which is an isomorphism since the Vandermonde determinant is
non-vanishing.)

For j > 0, the graded quotient Fil™//Fil™*! (in which the derivations of theta function live)
with respect to the Hodge filtration given by the relative degree on the de Rham side (=theta
&(=4)
E

function side) is isomorphic to w , where wg is the pull-back of the cotangent bundle of
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E to the origin of E. On the other hand, in the étale side (=theta value side), we have a
Gaussian pole qj2/ 8.0 in the specified integral structure near the infinity (i.e., ¢ = 0) of M.
This Gaussian pole comes from the values of theta functions at torsion points. We consider the
degrees of the corresponding vector bundles on the moduli of elliptic curves to the both sides
of the Hodge-Arakelov comparison map. The left hand side is

_Z][wE] ~ —%[WE] = _%[IOgQL

since [w3’] = [Qum,,] = ¢llog g], where Qpq,, is the cotangent bundle of My and 6 is the degree
of the A-line over the j-line. The right hand side is

1 -1 l2
—— 21 ~——|l .
2l jEOJ [log q] 24[0gq]

Note that these can be considered as a discrete analogue of the calculation of Gaussian integral

/ e dy = VT

-1 ~2[

from the point of view that —% Zj:()] log q] is a Gaussian distribution (i.e., j ~ j?) in the

2 . . . .
—%[wE] is a calculation in the polar coordinate and
[wg] is an analogue of /7, since we have wH” = )y

infinity (i.e., ¢ = 0) is 2mi. See also Remark 1.15.1

) . -1 .
cartesian coordinate, and — 3. jlwr]| ~

and the integration of €2, = around the

ell ell

A.4. Motivation of ©-Link. In the situation as in the Hodge-Arakelov setting, we assume
that E has everywhere stable reduction. In general, E[l] does not have a global multiplicative
subspace, i.e., a submodule M C E[l] of rank 1 such that it coincides with the multiplicative
subspace p; for each non-Archimedean bad places. However, let us assume such a global
multiplicative subspace M C EJl] exists in sufficiently general E in the moduli of elliptic
curves. Take an isomorphism M x N = E[l] as finite flat group schemes over F' (not as Galois
modules). Then, by applying the Hodge-Arakelov comparison theorem to E' := E/N over
K := F(FE]l]), we obtain an isomorphism

L((E), L] pyr) et = b (47 Ox) @0y K,

(-Fro)-r<i<ix (=5

where ¢ = (Gy)vbaa 18 the g-parameters of the non-Archimedean bad places. Then, by the
incompatibility of the Hodge filtration on the left hand side with the direct sum decomposition
in the right hand side, the projection to the j-th factor is non-trivial for most j:

Fil’ = Ok — ¢/ Ok,

where we put ¢ := qi. This morphism of arithmetic line bundles is considered as an arithmetic

analogue of Kodaira-Spencer morphism. In the context of (Diophantine applications of) inter-
universal Teichmiiller theory, we take [ to be a prime number in the order of the height of the
elliptic curve, thus, [ is very large (See Section ). Hence, the degree of the right hand side in the
above inclusion of the arithmetic line bundles is negative number of a very large absolute value,
and the degree of the left hand side is almost zero comparatively to the order of [. Therefore,
the above inclusion implies

0 < —(large number) (= —ht),

which gives us a upper bound of the height ht < 0 in sufficiently general E in the moduli of
elliptic curves.
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However, there never exists such a global multiplicative in sufficiently general F in the
moduli of elliptic curves (If it existed, then the above argument showed that the height is
bounded from the above, which implies the number of isomorphism class of E is finite (See
also Proposition C.1)). If we respect the scheme theory, then we cannot obtain the inclusion
QOK — gj2OK. Mochizuki’s ingenious idea is: Instead, we respect the inclusion QOK — ngOK,
and we say a good-bye to the scheme theory. The ©-link in inter-universal Teichmiiller theory
is a kind of identification

(O-link) : {gﬂ }1§j§l*(=%) = il

in the outside of the scheme theory (In inter-universal Teichmiiller theory, we also construct a
kind of “global multiplicative subspace” in the outside of the scheme theory). So, it identifies
an arithmetic line bundle of negative degree of a very large absolute value with an arithmetic
line bundle of almost degree zero (in the outside of the scheme theory). This does not mean a
contradiction, because both sides of the arithmetic line bundles belong to the different scheme
theories, and we cannot compare their degrees. The main theorem of the multiradial algorithm
in inter-universal Teichmiiller theory implies that we can compare their degrees after admitting
mild indeterminacies by using absolute mono-anabelian reconstructions (and other techniques).
We can calculate that the indeterminacies are (roughly) log-diff + log-cond by concrete calcu-
lations. Hence, we obtain

0 < —ht + log-diff 4 log-cond,

i.e., ht < log-diff +log-cond. We have the following remark: We need not only to reconstruct (up
to some indeterminacies) mathematical objects in the scheme theory of one side of a ©-link from
the ones in the scheme theory of the other side, but also to reduce the indeterminacies to mild
ones. In order to do so, we need to control them, to reduce them by some rigidities, to kill them
by some operations like taking p-adic logarithms for the roots of unity (See Proposition 13.7
(2¢), Proposition 13.11 (2)), to estimate them by considering that some images are contained
in some containers even though they are not precisely determinable (See Proposition 13.7 (2),
Corollary 13.13), and to synchronise some indeterminacies to others (See Lemma 11.9, and
Corollary 11.16 (1)) and so on. This is a new kind of geometry — a geometry of controlling
indeterminacies which arise from changing scheme theories i.e., changing unverses. This is
Mochizuki’s inter-universal geometry.

Finally, we give some explanations on “multiradial algorithm” a little bit. In the classical
terminology, we can consider different holomorphic structures on R?, i.e., C = R? = C, where
one C is an analytic (not holomorphic) dilation of another C, and the underlying analytic struc-
ture R? is shared. We can calculate the amount of the non-holomorphic dilation C = R? = C
based on the shared underlying analytic structure R? (If we consider only holomorphic struc-
tres and we do not consider the underlying analytic structure R?, then we cannot compare
the holomorphic structures nor calculate the non-holomorphic dilation). This is a prototype
of the multiradial algorithm. In philosophy, scheme theories are “arithmetically holomorphic
structures” of a number field, and by going out the scheme theory, we can consider “under-
lying analytic structure” of the number field. The O-link is a kind of Teichmiiller dilation of
“arithmetically holomorphic structures” of the number field sharing the “underlying analytic
structure”. The shared “underlying analytic structure” is called core, and each “arithmetically
holomorphic structure” is called radial data. The multiradial algorithm means that we can
compare “arithmetically holomorphic structures” (of the both sides of ©-link) based on the
shared “underlying analytic structure” of the number field after admitting mild indetermina-
cies (In some sense, this is a partial (meaningful) realisation of the philosophy of “the field
of one element” Fy). Mochizuki’s ideas of “underlying analytic structure” and the multiradial
algorithm are really amazing discoveries.
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APPENDIX B. ANABELIAN GEOMETRY.

For a (pro-)veriety X over a field K, let Iy (resp. Ax) be the arithmetic fundamental
group of X (resp. the geometric fundamental group of X) for some basepoint. Let Ag?) be
the maximal pro-p quotient of Ay, and put ngg) = I x/ker(Ax — Ag’g)). For (pro-)varieties
X, Y over a field K, let Hom$™(X,Y) (resp. Isomg(X,Y)) denote the set of dominant K-
morphisms (resp. K-isomorphisms) from X to Y. For an algebraic closure K over K, put
Gk = Gal(K/K). Let Homg ™" (Ilx, ITy) (resp. Hom‘g);n(ﬂg?),ﬂgf)), resp. Isom@""(Ax, Ay),
resp. Isomg‘;(t(Ag?), Agf’))) denote the set of open continuous G g-equivariant homomorphisms
from IIx to IIy (resp. from H()’()) to Hgf), resp. from Ax to Ay up to composition with an
inner automorphism arising from Ay, resp. from Ag?) to Agf) ) up to composition with an inner

automorphism arising from Agf )).

Theorem B.1. (relative Grothendieck Conjecture over sub-p-adic field [pGC, Theorem Al)
Let K be a sub-p-adic field (Definition 3.1 (1)). Let X be a smooth pro-variety over K. Let'Y
be a hyperbolic pro-curve over K. Then, the natural maps

Hom$™ (X,Y) — Hom@® (ILy, Ily) /Inn(Ay) — Hom@ (I, 1)) /Inn(A)
are bijective. In particular, the natural maps
Isomg (X,Y) — Isomgf(Ax, Ay) — Isomgl;(Ag?), A(YP))
are also bijective.

Remark B.1.1. The Isom-part of Theorem B.1 holds for a larger class of field which is called
generalised sub-p-adic field ([TopAnb, Theorem 4.12]). Here, a field K is called generalised

sub-p-adic if there is a finitely generated extension L of the fractional field of W(F,) such
that we have an injective homomorphism K < L of fields. ([TopAnb, Definition 4.11]), where

W(F,) denotes the ring of Witt vectors with coefficients in F,.

APPENDIX C. MISCELLANY.
C.1. On the Height Function.

Proposition C.1. ([GenEll, Proposition 1.4 (iv)]) Let £ = (L, || - ||z) be an arithmetic line
bundle such that Lq is ample. Then, we have #{r € X(Q)=? | htz(r) < C} < oo for any
dEZZl andC’ER.

Proof. By using [,8” for n >> 0, we have an embedding Xq — Pg for some N. By taking a
suitable blowing-up f : X — X, this @Vmbedding extends to g : X < P% over SpecZ, where X
is normal, Z—Propir, ZAlat, and fg : Xg — Xg. Then the proposition for (X, £) is reduced to
the one for (X, f*£). Asis shown in Section 1.1, the bounded discrepancy class of ht ;. depends
only on (f*L)g. Thus, the proposition for (X, f*£) is equivalent to the one for (X, g*OPg(l)),
where Opy (1) is the line bundle Opy (1) equipped with the standard Fubini-Study metric [[- |[ps.
Then, it suffices to show the proposition for (]P’ZZV,OPQ(I)). For 1 < e < d, we put Q :=
(PY Xspecz - - - (e-times) - - - Xgpecz PY)/(e-th symmetric group), which is normal Z-proper, Z-
flat. The arithmetic line bundle ®1§i§eprf0pg(1) on PV Xgpeez - - - (e-times) - - Xgpecz PV
descends to Lo = (L, || - ||,) on @ with (Lg)q ample, where pr; is the i-th projection. For
any z € PY(F) where [F : Q] = e, the conjugates of z over Q determine a point zg € Q(Q),

and, in turn, a point y € Q(Q) determines a point z € PN(F) up to a finite number of
possibilities. Hence, it suffices to show that #{y € Q(Q) | htz (y) < C} < oo for any C' € R.
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We embed Q — P}’ for some M by (Lqy)g™ for m >> 0. Then, by the same argument
as above, it suffices to show that #{z € PM(Q) | htm(x) < C} < oo for any C' € R.

For x € PM(Z)(= PM(Q)), we have htm( r) = deggyr® Opur (1) by definition. We have

degg : APic(SpecZ) = R since any projective Z-module is free (Q has class number 1), where an
arithmetic line bundle £z ¢ on SpecZ in the isomorphism class corresponding to C' € R via this
isomorphism is (Ogpecz, €| ]) (Here |-| is the usual absolute value). The set of global sections
[(Lzc) is {a € Z | |a] < e} which is a finite set (see Section 1.1 for the definition of T'(£)).
We also have Lz, ¢, — Lz,¢, for C7 < Cy. Take the standard generating sections zg, ...,z €
T'(Py', Opar (1)) (“the coordinate (zo : ... : ay) € P3") with [Jzi]lrs < 1for 0 <i < M e,
g, -, xn € D(Op (1)). Then, for z € PY(Z)(= PY(Q)) with htg (%) < C, we have a map
2" Opn (1) <= Lz,c, which sends zo, ..., zy € I'(Opu (1)) to 2% (z0), ..., 2" (zm) € I'(Lz,c). This
map {z € PM(Z) | htg—r o o) = Ch— [(L7,0)®M+Y | which sends x to (2*(x0), ..., z*(7)),

is injective since o, ..., xy € [(PY, O]P)%l(l)) are generating sections. In short, we have {x €
P (Q )|htOM (@ )SC}C{(:ﬂO:...:a:M)EIP’M(Q)|1’,~€Z, lz;| < e (0<i< M)}. Now,
the proposition follows from the finiteness of I'(Lz, o)®M+1, O

C.2. Non-Critical Belyi Map. The following theorem, which is a refinement of a classical
theorem of Belyi, is used in Proposition 1.2.

Theorem C.2. ([Belyi, Theorem 2.5], non-critical Belyi map) Let X be a proper smooth con-
nected curve over Q, and S,T C X(Q) finite sets such that SNT = (). Then there exists a
morphism ¢ : X — IP’l— such that (a) ¢ is unramified over Pé@ \{0,1,00}, (b) ¢(S) C {0, 1,00},

and (c) (T) C PY(Q )\{071700}

Proof. (Step 1): By adjoining points of X (Q) to T, we may assume that #7 > 2gx + 1, where
gx is the genus of X. We consider T" as a reduced effective divisor on X by abuse of notation.
Take so € I'(X, Ox(T)) such that (s¢)o = T, where (sg)o denotes the zero divisor of so. We
have HY(X, Ox(T —z)) = H*(X,wx(x — T))* = 0 for any x € X(Q), since deg(wx(r —T)) <
2g9x —2—(2gx +1)+1 = —2. Thus, the homomorphism I'(X, Ox (T)) — Ox(T)®k(z) induced
by the short exact sequnce 0 — Ox(T'—z) — Ox(T) — Ox(T)®k(z) — 0 is surjective. Hence,
there exists an s; € ['(X, Ox(T)) such that s;(t) # 0 for all t € T since Q is infinite. Then,
(so : s1) has no basepoints, and gives us a finite morphism ¢ : X — IP’}@ such that ¥*Op:i(1) =
Ox(T), and ¥(t) = 0 for all t € T since (sg)o = T. Here, 1 is unramified over 0 € ]P’}@, since
*Op1(1) = Ox(T) and T is reduced. We also have 0 ¢ (.S) since (sg)g =T and SNT = 0.
Then, by replacing X, T, and S by PL, 0, and ¢(S)N{z € IP’}@ | v ramifies over z} respectively,
the theorem is reduced to the case where X = IP%, T = {t} for some t € P1(Q) \ {o0}

(Step 2): Next, we reduce the theorem to the case where X = P, S C PY(Q), T = {t} for

some t € P(Q) \ {oo} as follows: We will construct a non-zero rational function f(z) € Q(z)
which defines a morphism ¢ : P}@ — IP’}@ such that ¢(S) C PY(Q), ¢(t) ¢ ¢(S), and ¢ is

unramified over ¢(t). By replacing S by the union of all Gal(Q/Q)-conjugates of S, we may
assume that S is Gal(Q/Q)-stable (Note that t ¢ (new S) since t € P(Q) and ¢ ¢ (old S)).
Put m(S) := maxp([F : Q] — 1), where F' runs through the fields of definition of the points in
S, and d(S) := > p([F : Q] — 1), where F' runs thrhough the fields of definition of the points
in S with [F: Q] —1 = m(S). Thus, S C P}(Q) is equivalent to d(S) = 0, which holds if
and only if m(S) = 0. We use an induction on m(S), and for each fixed m(S), we use an
induction on d(S). If m(S),d(S) # 0, take o € S\ P}(Q) such that d := [Q(«) : Q] is equal to
m(S)+1. We choose a; € Q such that 0 < [t —a;| < (minges\ (o0} [s —a1])/d(1+d.d!). Then, by
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applying an automorphism fi(x) := (minseg\ (oo} |$ — a1])/(z — a1) of P, (and replacing ¢ and
S by fi(t) and fi(S) respectively), we may assume that |s| < 1 for all s € S(= S\ {cc}) and
t| > d(1+d.d!) (Note that the property (new t) € P*(Q)\ {oo} still holds since |(old ¢)—a;| > 0
and fi(z) € Q(x)). Let g(z) = 2+ 12! + - - + ¢4 € Q[z] be the monic minimal polynomial
of a over Q. Then |¢;| < d! for 1 < i < d, since ¢; is a summation of (f)(g d!) products of i
conjugates of a. Thus, |g(s)| < 14 |c1|+---+|ca| < 1+d.dl and |¢'(s)| < d+d|ci|+- - -+d|cq| <
d(1+d.d!) for all s € S(= S5\ {oo}) since |s| <1 (Here ¢'(x) is the derivative of g(x)). Hence,
t ¢ g(S)Ug(S,) =5, where S, := {8 € Q| ¢'(8) =0}. We also have [Q(c/) : Q] < d for any
o € g(S,) since g(z), ¢'(x) € Q[z] and deg(¢'(x)) < d. Therefore, S is Gal(Q/Q)-stable and
we have m(S’) < m(S) or (m(S") = m(S) and d(S") < d(S)). This completes the induction,
and we get a desired morphism ¢ by composing the constructed maps as above.

(Step 3): Now, we reduced the theorem to the case where X = ]P’}@, S CcPY(Q), and T = {t}

for some t € P}(Q) \ {oo} with SNT = (. We choose a; € Q such that 0 < |t — a| <
(minges\ (oo} |$ — a2|)/4. Then, by applying an automorphism fy(x) := 1/(x — as) of Py (and
replacing ¢ and S by fo(t) and fo(S) respectively), we may assume that [t| > 4]s| for all s €
S(= S\{oc}). (Note that the property (new t) € P(Q)\ {oo} still holds since |(old t) —as| > 0
and fo(z) € Q(x)). New ¢ is not equal to 0 since old ¢ is not equal to co. By applying the
automorphism z +— —z of Py, we may assume that ¢t > 0 (still ¢ € P*(Q) \ {0,00}). By
applying an automorphism f3(x) := = + a3 of IP’(b, where az := maxg\(sc}ss'<0 |8’ (a3 = 0
when {s" € S\ {o0} | & < 0} =) and replacing ¢ and S by f3(¢) and f3(S) respectively, we
may assume that s > 0 for all s € S(= 5\ {oco}) and t > 2s for all s € S(= S\ {o0}), since
(t+a3)/(s+a3) >t/(s+az) > t/2a3 > 2 where t, s are old ones (still (new t) € P1(Q)\ {0, 00}).
By adjoing {0, 00} (if necessary for 0), we may assume that S O {0, 00} since t ¢ {0, 00}.
(Step 4): Thus, now we reduced the theorem to the case where X = IE%, {0,00} € S C PHQ),

T = {t} for some t € P}(Q) \ {oo} with SNT =0, and s > 1, ¢ > 2s for every s € S\ {0, 00}
We show the theorem in this case (hence the theorem in the general case) by the induction
on #S5. If #5 < 3 then we are done. We assume that #S > 3. Let ay, € Q be the second
smallest s € S\ {0,00}. By applying an automorphism fy(z) := x/as of P (and replacing ¢
and S by f4(t) and f4(5) respectively), we may assume moreover that 0 < r < 1 for some r € S
and s > 1 for every s € S\ {0,7,1,00} Put r = m/(m + n) where m,n € Z-o. We consider
the function h(z) := 2™(x — 1)" and the morphisms v¥,¢’ : P, — Pg defined by h(z) and
h(zx) + a5 respectively, where a5 := —minseg (o0} h(s). We have h({0,1,7,00}) C {0, h(r), co}.
Thus #¢(S) < #S and hence #¢/(S) < #S. Any root of the derivative h'(z) = 2™ 1(z —
)" Y ((m+n)xr—m)=0isin {0,7,1,00} C S. Thus ¢ is unramified outside ¥(S), and hence
¢’ is unramified outside ¢’(S). Now h(x) is monotone increasing for > 1 since h'(z) > 0 for
x> 1. Thuswehaveh()> h(s) for s € S\ {oo} with s > 1 since t > 2s > 5. We also have
h(t) > h(2) > 1 since t > 2 (which comes from t > 2s for s = 1 € S). Thus, ¥(t) ¢ ¥(S)
since |h(z)] < 1 for 0 < 2 < 1. Hence we also have ¢/(t) ¢ ¢'(S). Now we claim that
(h(t) +as)/(h(s) +as) > 2 for all s € S\ {oo} such that h(s)+ as # 0. If this claim is proved,
then by replacing S, t by ¢/(5), ¢/ (t) respectively, we are in the situation with smaller #S where
we can use the induction hypothesis, and we are done. We show the claim. First we observe that
we have h(t)/h(s) = (t/s)™((t—=1)/(s—=1))" > (t/s)™™ > (t/s)? (*) for s € S\{oc}, since t > s
implies (¢t —1)/(s — 1) > t/s. In the case where n is even, we have a5 = 0 since h(s) > 0 for all
s € S\{oo} and h(0) = 0. Thus, we have (h(t)+as)/(h(s)+as) = h(t)/h(s) > (t/s)* > t/s > 2
for 1 < s € S\ {oco} by (*). On the other hand, h(s) + a5 = h(s) = 0 for s = 0,1 and
(h(t)+as)/(h(r)+as) = h(t)/h(r) > h(t) =t™(t—1)" >t >2by 0 < h(r) < 1and t > 2. Hence
the claim holds for even n. In the case where n is odd, we have a5 = |h(r)| = (=)™ (=)

m-+n m4n/
since h(z) <0 for 0 <z <land,z=r < h(zr)=0for 0 <z < 1. We also have 0 < a5 =
(o ym(iyn < me e S e = 1. Then, for 1 < s € S\{oo} with h(s) > as,
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we have (h(t) + as)/(h(s) + as) > h(t)/2h(s) > (t/s)?/2 > 2 by (*). For 1 < s € S\ {oc}
with h(s) < as, we have (h(t) + as)/(h(s) + a5) > h(t)/2a5 > 2h(t) = 2t™(t — 1)* >t > 2 by
0<as <1/4andt > 2. For s=r €S, we have h(r) + a5 = —as + a5 =0. For s =0,1 € S,
we have (h(t) + as)/(h(s) + as) = (h(t) + as)/as > h(t) =t™(t—-1)">t>2by 0 <as < 1/4
and t > 2. Thus, we show the claim, and hence, the theorem. O

C.3. k-Core.

Lemma C.3. ([CanlLift, Proposition 2.7]) Let k be an algebraically closed field of characteristic
0.

(1) If a semi-elliptic (cf. Section 3.1) orbicurve X has a non-trivial automorphism, then it
does not admit k-core.

(2) There exist precisely 4 isomorphism classes of semi-elliptic orbicurves over k which do
not admit k-core.

Proof. (Sketch) For algebraically closed fields k& C &/, the natural functor from the category
Et(X) of finite étale coverings over X to the category Et(X x, k') of finite étale coverings over
X % k' is an equivalence of categories, and the natural map Isomy(Y7,Y2) — Isomg (Y] xg
K'Yy x, k') is a bijection for Y7,Ys € Ob(Et(X)) by the standard arguments of algebraic
geometry, i.e., For some k-variety V' such that the function field £(V') of V' is a sub-field of ¥/,
the diagrams of finite log-étale morphisms over (X x; k', D x k') (Here, X is a compactification
and D is the complement) under consideration is the base-change of the diagrams of finite étale
morphisms over V' with respect to Speck’ — Speck(V) — V', we specialise them to a closed

~

point v of V', we deform them to a formal completion V, at v, and we algebrise them (See also
[CanLift, Proposition 2.3, [SGA1, Exposé X, Corollaire 1.8]), and the above bijection is also

shown in a similar way by noting H°(Y, w§/k(—D)|7) = 0 for any finite morphism ¥ — X in

the argments of deforming the diagrams under consideration to ‘A/U Thus, the natural functor
Loci(X) — Locw (X xj k') is an equivalence categories. Hence, the lemma is reduced to the
case where k = C.

We assume that £ = C. Note also that the following four statements are equivalent:

(i) X does not admit k-core,

(ii) 1 (X) is of inifinite index in the commensurator Cpgr,, gy (m1 (X)) in PSLy(R)°(= Aut(H))
(Here, PSLy(R)? denotes the connected component of the identity of PSLy(R), and H
denotes the upper half plane),

(iii) X is Margulis-arithmetic (See [Corr, Definition 2.2]), and

(iv) X is Shimura-arithmetic (See [Corr, Definition 2.3]).

The equivalence of (i) and (ii) comes from that if X admits k-core, then the morphism to k-
core X — Xore is isomorphic to H/mi(X) = H/Cpsr,mye (m1(X)), and that if m; (X) is of finite
index in Cpgp,myo(m1(X)), then H/m(X) = H/Cpsr,m)e (11(X)) is k-core (See also [CanLift,
Remark 2.1.2, Remark 2.5.1]). The equivalence of (ii) and (iii) is due to Margulis ([Marg,
Theorem 27 in p.337, Lemma 3.1.1 (v) in p.60], [Corr, Theorem 2.5]). The equivalence of (iii)
and (iv) is [Corr, Proposition 2.4].

(1): We assume that X admits a k-core Xoe. Let Y — X be the unique double covering such
that Y is a once-punctured elliptic curve. Let Y, Xco denote the smooth compactifications
of Y, Xcore Tespectively. Here, we have Y \ Y = {y}, and a point of Y is equal to y if and
only if its image is in Xeore \ Xeore. Thus, we have Xeore \ Xeore = {#}. The coarsification (or
“coarse moduli space”) of X . is the projective line P} over k. By taking the coarification
of a unique morphism Y —» X ., we obtain a finite ramified covering Y —» P}. Since this
finite ramified covering Y —» ]P’,i, comes from a finite étale covering Y — X e, the ramification
index of Y — P} is the same as all points of Y lying over a given point of Pi. Thus, by the
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Riemann-Hurwitz formula, we obtain —2d+3", £(e; — 1), where ¢;’s are the ramification indices

over the ramification points of P}, and d is the degree of the morphism Y —» Pi. Hence, by
> e%_(ei — 1) = 2, the possibility of e;’s are (2,2,2,2), (2,3,6), (2,4,4), and (3, 3,3). Since y is
the unique point over x, the largest e; is equal to d. In the case of (2,2,2,2), we have X = X e,
and X has no non-trivial automorphism. In other three cases, Y is a finte étale covering of the
orbicurve determind by a triangle group (See [Takel]) of type (2,3, ), (2,4, c0), and (3, 3, 00).
By [Takel, Theorem 3 (ii)], this implies that Y is Shimura-arithmetic, hence X is Shimura-
arithmetic as well. This is a contradiction (See also [CanLift, Remark 2.1.2, Remark 2.5.1]) by
the above equivalence of (i) and (iv).

(2): If X does not admit k-core, then X is Shimura-arithmetic by the above equivalence of
(i) and (iv). Then, by [Take2, Theorem 4.1 (i)], this implies that, in the notation of [Take2],
the arithmetic Fuchsian group m(X) has signature (1;00) such that (tr(«),tr(8),tr(af)) is
equal to (v/5,2v/5,5), (v6,2v3,3v2), (2v/2,2v/2,4), and (3,3,3). This gives us precisely 4

isomorphism classes. ([l

C.4. On the Prime Number Theorem. For z > 0, put 7(z) := #{p | p : prime < z} and
V() := D rime: p<z 108 P (Chebychev’s J-function). The prime number theorem says that

m(x) ~

where, ~ means that the ratio of the both side goes to 1. In this subsection, we show the
following proposition, which is used in Proposition 1.15.

gz (x — 00),

Proposition C.4. 7(z) ~ 2 (v — o0) if and only if ¥(z) ~ x (z — o0).

This is well-known for analytic number theorists. However, we include a proof here for the
convenience for arithmetic geometers.

Proof. We show the “only if” part: Note that J(z) = [, logt-d(n(t)) = n(z)logz—m(1)log1—

N 7rTt)dt = 7r( )log:z: -5 t)dt (since 7(t) = 0 for t < 2). Then, it sufﬁces to show that

limg o0 = [ dt = (0. By assumption % 0, <10gt>, we have + f <% N k%).
By fx kflgtt = 2f lodgtt + f\f Togi = l(;gf2 + 10g1§v we obtain lim,_,., < dt = 0 We show the
“if” part: Note that m f3/2 log ¢ d(9(t)) = 10(;3): logs?{?Q) + fs/z ¢ f:)(gtt)gdt logm L+ Jy t(logt zdt
(since 9(t) = 0 for t < 2). Then, it suffices to show that lim, logm f2 t(li(thPdt = 0. By
assumption ¥(t) = O(t), we have 10595 Iy t(li(gtz)zdt = <1°gm f2 logt ) By [, mdt =
f;ﬁ (lofgl—tt)Q + f\% (lofgltt)Q < (10\5)2 + (1ig_\/5)27 we obtain lim,_, loggcx ) tlogti dt = 0. O

C.5. On Residual Finiteness of Free Groups.

Proposition C.5. (Residual Finiteness of Free Groups) Let F' be a free group. Then, the
natural homomorphism F — F to its profinite completion F s imjective.

Proof. Take an element 1 # a € F. It suffices to show that there exists a normal subgroup
H C F of finite index, such that we have a ¢ H. Take a set Gen of free generators of F.
We write a = ayan_1---a;, where a; € Gen or a[l € Gen, and there is no cancellation in
the expression a = ayay_1---a;. Let Gen — Gy be a map, which sends z € Gen to any
permutation o with o(i) = i + 1 for a; = =, and o(j + 1) = j for aj_l = z (This is well-
defined, since the expression a = ayay_j - --a; has no cancellation). This map Gen — Sy
extends to a homomorphism F' — Gy, 1. Put H to be the kernel of this homomorphism. Then,
H is a normal subgroup of finite index in F, since F//H C Syy1. The image of a by this
homomorphism sends 1 to N + 1, in particular, it is non-trivial. Hence we have a € H. U
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C.6. Some Lists on Inter-Universal Teichmiiller Theory.
Model Objects

Local:
VP4 (Example 8.8) yeeod 0y e (Example 8.7) V*¢ (Example 8.11)
D, Bew(x ) (1) B(X)" (L) X,
D, BK,)® () BIK.® (G (0% (Ct).spL)
Cy (;ﬂ)b%e‘ﬁeld (I, ~ (Ol%)pf) I, ~ (O™ Arch. Fr'd C, («ang. region)
£, | temp. Frd F («O-fct.) equal to C, (Cy, Dy, ko)
Cy Gy O;U 4, Gy~ Of- N equal to C,
Fi (C,sply) (C,sply) (€}, DL, spl)

We use C, (not ]=:U) with v € V™" and Fwith v € V¢ for F-prime-strips (See Defini-
tion 10.9 (3)), and Zv’s with v € V for ©-Hodge theatres.

Global :
D°:=B(Ck)®, D*:=B(Xg)",

gl. to loc.

mod : (Clmod7 Prlme<cl;0d) :> y’ {‘F”L'):}EGY7 {pg : (I)Cl;od,v L> CI)HC% }QEY )
(Po :10810a(P0) = ey 1080 (Pu) )-

Some Model Bridges, and Bridges
e (model D-NF-bridge, Def. 10.16) ¢)'" := Aut (D) o ¢]} o Aut(D,) : D, POl po,

A = {) Foev 1 Dy Pl pe. ¢;" = (action of j) o 91" : D; PN pe.

ol
O = {8 Y pr D= {D)} s > D
e (model D-O-bridge, Def. 10.17)

Btemp(HE)O ;V:iﬁzor{ Btemp (HE)O (Q c ybad)
ij = Aut(D> ) o - o Aut(DQj)

full poly

~

Btemp (Hv)o 3 Btemp(Hv)O (Q c ygood)

ol ol ol
: 'Dy, u) D> vy ¢® —- {¢6 }veV : j P y @>, ¢® = {¢e}gelﬁ‘l* : @x H) ©>.
o (model ©-bridge, Def. 10.31) 65 := Auteusy (D) 069, 0 Aut, (Dy,) : Dy 2% DO*,
O = {09 Juey : Do P8 DO, 90" = (action of £) 0 ¢§" : D, 2 DO*,

ell ell poly ®
@ = {¢® }tE]Fl : i):l: — D%,
+-full poly +-full poly
+ ~ + ~
. (model ©*bridge, Def. 10.30) ¢g~ : Dy, — Dsy, ¢ Dy, —> Dy,

= {7 }te]Fl D, = {9, }te]Fl Py D,

©
o (NF-,O-bridge, Def. 1024) (13, 5 1F° - 1Fo) (13, Sz s 1979)
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o (01 ©% bridge, Def. 10.36) Ty : 15, P2 tpox  fy0* iz, PN iz

Theatres

e (©-Hodge theatre, Def. 10.7) THT® = ({T]: boew, 1S o4)-

e (D-X-Hodge theatre, Def. 10.18 (3)) "HTP® = (I1D® & T@ g ioﬂz) S).
o (X-Hodge theatre, Def. 10.24 (3)) ¥HT™ = (*F® «-- 1.7:© i&] i$> —— IHTO).

(3) T = (19, L 19, L ipes)

e (B-Hodge theatre, Def. 10.24 (3)) "HT™ = (1. <wi Sy — e, Do),

o (D- X E-Hodge theatre, Def. 10.40 (1)) THTPFE = (1708 L205F tqy 7).

o (KB-Hodge theatre, Def. 10.40 (2)) THTXE = (17 205 19472,
Properties(Proposition 10.20, Lemma 10.25, Proposition 10.34, Lemma 10.37)

o Isom(TS", oY) : an F-torsor.
o #Isom(ToF o) = 1.
o #lsom(FHTPH FHTPH) =1

T pNF 140 -
(T@J, T@J’) ¢y ' ¢y form a D-X-Hodge theatre

(
(
e (D-EB-Hodge theatre, Def. 10.32
(
(

o Isomcapsule-full poly . an F-torsor.

o TN s I TPH up to Fi-indeterminacy.

PNF 2 NF) = Tsom('gNF, 2NF).

o Isom(1yQ, 2y9) = Isom( ?2, 2 CT))

o Isom("HT ?HT®) 5 Isom(1D-, 2D-).

o Isom(*HTE2HTH) 5 Isom("HTPH 2HTPH).

] ISOchapsule-fuu poly ("8 I%J/)W*IIEFM’g form a B Hodge theatre . 5y ¥ _torsor.
o Tsom(T¢9" 1¢9%): a {£1} x {£1}¥-torsor.

e Isom(TpYF #48F): an F,*-torsor. we have a natural isomorphism
o Isom("HTPHE FHTPH) . an {41}-torsor.

o ISOMcapsule-+full poly (D7, TC‘D:F')T@i’w’gen form a D-BHodge theatre , ) % x {41}¥ _torsor.
° Tqﬁe“ ~ PHTPH up to F)'*-indeterminacy.

o Tsom('y9", 2)9") 5 Tsom(*69", 269" ).

o Isom(1w$e1172 gell) ~ Isom<1¢gen’2 gen)'

o Isom(*HTE 2HT®) 5 Isom("HTPH 2HTPH).

10% 10 form a B-Hodge theatre X+ \Y
o I[SOMcapsulettull poly (87, F§) V5 V=2 & : an F;"* x {£1}+-torsor.

e Isom(!

Links

full poly
o (D-R-link, Def. 10.21) THTP® 2 7P (it = iDh),
full poly

(

o (D-F-link, Def. 10.35) fHTP® 2, #y7PE® (i97 =5 i9h).

o (D- X B-link, Cor. 11.24 (4)) THTP™® 2y iﬂfcpﬁm (fol fungly D).
( poly
(
(

~

o (O-link, Def. 10.8) 1HT® - 7O (1L, = iF- ).

X u fullg})oly

o (©%k-link, Cor. 11.24 (3)) THT™® 25 #y7™B  (ighexu =y aghexuy
X full poly

o (O20-link, Cor. 11.24 (3)) THT™® 258 478 (tgiesu =, ighewn
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X full poly
ok ~
o (O74p-link, Def. 13.9 (2)) THT™E 2L gy (Gotghexe Ty wgiexm),
X full poly

O ~
Opp-link, Def. 13.9 (2)) THT™® 5 =qT™F  (G=ig w2y gl o)

(
(

o (log-link, Def. 12.3) THT™® 2% 7%=
(IHTPEE 5 iy 7P 4y, Big 15 iz (15 2% s {180 22 8 her).
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