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This text is a report of a talk “p-adic étale cohomology and crystalline cohomology for
open varieties” in the symposium “Hodge Theory and Algebraic Geometry” (7-11/Oct/2002
at Hokkaido University). It seemed that more algebraic geometers rather than arithmeti-
cians participated in this symposium. Thus, in that talk, the auther began with an in-
troduction to the p-adic Hodge theory in the view of the theory of p-adic representations.
However, in this report, we do not treat the theory of p-adic representations, and we treat
only a review of the main theorems and the main results.

The aim of the talk was, roughly speaking, “to extend the main theorems of p-adic Hodge
theory for open varieties” by the method of Fontaine-Messing-Kato-Tsuji (see [FM],[Ka2],
and [Tsu1]). Here, the main theorems of p-adic Hodge theory are: the Hodge-Tate con-
jecture (CHT for short), the de Rham conjecture (CdR), the crystalline conjecture (Ccrys),
the semi-stabele conjecture (Cst), and the potentially semi-stable conjecture (Cpst). The
theorems CdR, Ccrys, and Cst are called the “comparison theorems”.

The section 1 is an introduction to the p-adic Hodge theory. In the section 2, we review
the main theorems of the p-adic Hodge theory. In the section 3, we state the main results.
In this report, we only announce the main results.

The auther thanks to Takeshi Saito, Takeshi Tsuji, Seidai Yasuda for helpful discus-
sions. He thanks to Atsushi Shiho, Yukiyoshi Nakkajima for suggesting weight filtrations.
Finally, he also thanks to the organizers of the symposium Sanpei Usui, Daisuke Mat-
sushita, Masanori Asakura for giving me an occasion of the talk.

Notations
Let K be a complete discrete valuation field of characteristic 0, k the residue field of K,
perfect, characteristic p > 0, and OK the valuation ring of K. Denote K be the algebraic
closure of K, k the algebraic closure of k, GK the absolute Galois group of K, and Cp

the p-adic completion of K. (Note that it is an abuse of the notation. If [K : Qp] < ∞,

Date: Dec/2002.
1



2 GO YAMASHITA

it coincide the usual notations.) Let W be the ring of Witt vectors with coefficient in k,
and K0 the fractional field of W . It is the maximum absolutely unramified (i.e., p is a
uniformizer in K0) subfield of K. Let P0 be the fractional field of the ring of Witt vectors
with coefficient of k, and σ the Frobenius endmorphism on W , K0, W (k), and P0, indeced
by the absolute Frobenius on k, and k. The word “log-structure” means Fontaine-Illusie-
Kato’s log-structure (see [Ka1]). We do not review the notion of log-structure in this
report.

1. Introduction

The p-adic Hodge theory is called to be a p-adic analogue of the Hodge theory over
C. This means that for p-adic étale cohomologies of varieties over p-adic field, there exist
similar decompositions, which is called the Hodge-Tate decomopositon to the Hodge de-
compositions for singular cohomologies of varieties over C. However, we can say that the
p-adic Hodge theory is not just a p-adic analogue of the Hodge decomposition.

The p-adic Hodge theory has no logical relations with the Hodge theory over C. One
can learn the p-adic Hodge theory without knowing the Hodge theory over C, however, we
begin with comparing with the Hodge theory over C to see the conceptual relation.

The following theorem is classical.

Theorem 1.1 (Hodge decomposition (Kodaira-Hodge)). For compact Kähler manifold X,
there exists a canonical isomorphism：

C⊗Q Hm
sing(X,Q) ∼= Hm

dR(X/C) ∼= Hm(X,OX)⊕Hm−1(X, Ω1
X/C)⊕ · · · ⊕H0(X, Ωm

X/C)

(Hm
sing means singular cohomology.)

On the other hand, one of the conclusion of p-adic Hodge theory is : There exists
the following decomposition, which is called Hodge-Tate decomposition for a p-adic étale
cohomology of a variety X, which is proper smooth over K. Former, it was called the
Hodge-Tate conjecture, CHT for short.

Cp ⊗Qp Hm
ét (XK ,Qp) ∼=

Cp ⊗K Hm(X,OX)⊕ Cp(−1)⊗K Hm−1(X, Ω1
X/K)⊕ · · · ⊕ Cp(−m)⊗K H0(X, Ωm

X/K).

Moreover, this is compatible with the action of the Galois group GK . Cp(−i) means the
(−i)-th Tate twist of Cp.

In the classical Hodge theory, we relate topological cohomologies, that is, singular coho-
mologies with analytic cohomologies, that is, de Rham cohomologies (it is only the holo-
morphic Poincaré lemma, not “Hodge theory”). The singular cohomology has Q-structure
(or Z-structure), and the de Rham cohomology has Hodge filtration, which comes from
Hodge decomposition (this is the “Hodge theory”).

For example, we can not distinguish elliptic curves by using only singular cohomologies
(they are topologically homeomorphic), and by using only de Rham cohomologies (Fil0 =
whole space, Fil1 = 1-dimensional, Fil2 = 0). However, we can recover an elliptic curve by
using the both cohomologies:

0 → H1(E,Z) → Lie(E) → E(C) → 0,

0 → coLie(E∗) → H1
dR(X/C)∗ → Lie(E) → 0.
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By such a way, we can get deeper information from a comparison isomorphism of two
cohomology theories and additional structures of cohomology theories.

The p-adic Hodge theory treats varieties over p-adic field, and it compares topological
cohomologies, that is, étale cohomologies and analytic cohomologies, that is, de Rham
cohomologies and (log-)crystalline cohomologies. By using p-adic Hodge theory, which
relates étale cohomologies with differential forms, we can formulate a conjecture (Tamagawa
number conjecture of Bloch-Kato), which precisely predicts special values of Hasse-Weil L-
functions of varieties (or, motives). That conjecture is not the theme of this report, thus
we do not further mention that.

The p-adic Hodge theory compares cohomology theories with additional structures, that
is, Galois actions, Hodge filtrations, Frobenius endmorphisms, Monodoromy operators:

(1) the Hodge theory over C
• singular cohomology Hm

sing(X,Q) —topological:
Q-vector space (+Z-structure)

• de Rham cohomology Hm
dR(X/C) —analytic:

C-vector space +Hodge filtration
(2) the p-adic Hodge theory

• étale cohomology Hm
ét (XK ,Qp) —topological:

Qp-vector space +Galois action
• (algebraic) de Rham cohomology Hm

dR(XK/K) —analytic:
K-vector space +Hodge filtration

• (log-)crystalline cohomology K0 ⊗W Hm
crys(Y/W ) —analytic:

K0-vector space +Frobenius endmorphism (+ Monodromy operator).

For arithmetic geometers, the singular cohomology is called the Betti cohomology. In the
proof of the comparison theorems, we use the “syntomic cohomology”. This is a vector
space endowed with the Galois action. However, being different from the étale cohomology
it is an analytic cohomology defined by differential forms. It is the theoritical heart of
the p-adic Hodge theory by the method of Fontaine-Messing-Kato-Tsuji that the syntomic
cohomology is isomorphic to the étale cohomology compatible with Galois action.

2. The main theorems of p-adic Hodge theory

In this section, we state the main theorems of p-adic Hodge theory: CHT, CdR, Ccrys, Cst,
and Cpst. Roughly spealing, we can state the main theorems as the following way:

• the Hodge-Tate conjecture (CHT):
There exists a Hodge-Tate decomposition on the p-adic étale cohomology.

• the de Rham conjecture (CdR):
There exists a comparison isomorphism between the p-adic étale cohomology and
the de Rham cohomology.

• the crystalline conjecture (Ccrys):
In the good reduction case, we have stronger result than CdR, that is, there exists
a comparison isomorphism between the p-adic étale cohomology and the crystalline
cohomology.

• the semi-stable conjecture (Cst):
In the semi-stable reduction case, we have stronger result than CdR, that is, there
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exists a comparison isomorphism between the p-adic étale cohomology and the log-
crystalline cohomology.

• the potentially semi-stable conjecture (Cpst):
The p-adic étale cohomology has “only a finite monodromy”.

We will state precisely in the following.
In the p-adic Hodge theory, we use Fontaine’s p-adic period rings: BdR, Bcrys, Bst (see

[Fo]). In the Hodge theory over C, we can compare the singular cohomology and de Rham
cohomology after tensoring C. On the other hand, in the p-adic Hodge theory, we can
compare the étale cohomology and the de Rham cohomoloy after tensoring BdR. We pick
up the fundamental properties of them.

(1) BdR：a complete discrete valuation field over K with residue field Cp. It contains K.
(It does not contain Cp.) The Galois group GK acts on BdR. It has the filtration
by its valuation, and its graded quotient griBdR is Cp(i). And, Qp(1) ⊂ Fil1BdR.

BGK
dR = K.

(2) Bcrys：It is an algebra over K0, and GK-stable subring of BdR. It contains P0.(It
does not contain K.) K ⊗K0 Bcrys → BdR is also injective. For the filtration, which
comes from BdR, we get griBcrys = Cp(i). And, Qp(1) ⊂ Fil1BdR ∩ Bcrys. There
exists a σ-semi-linear injective endomorphism ϕ, which commutes with the action
of GK . (Frobenius endmorphism)

BGK
crys = K0, Fil0BdR ∩Bϕ=1

crys = Qp.

(3) Bst：It is an algebra over K0, and has GK-action. It contains Bcrys. It contains
P0.(It does not contain K.) After fixing an uniformizer π of K, we can regard it as
a subring of BdR. K ⊗K0 Bst → BdR is also injective. The Frobenius endmorphism
on Bcrys is extended to Bst. The ring Bst has a Bcrys-derivation N : Bst → Bst,
which commutes with the GK-action and satisfies Nϕ = pϕN .

BGK
st = K0, BN=0

st = Bcrys, Fil0BdR ∩Bϕ=1,N=0
st = Qp.

The following theorems were formulated by Tate, Fontaine, Jannsen, proved by Tate,
Faltings, Fontaine-Messing, Kato under various assumptions, and proved by Tsuji under no
assumptions (1999 [Tsu1]). Later, Faltings and Niziol got alternative proofs (see [Fa],[Ni]).

Theorem 2.1 (the Hodge-Tate conjecture (CHT)). Let XK be a proper smooth variety over
K. Then, there exists the following canonical isomorphism, which is compatible with the
Galois action.

Cp ⊗Qp Hm
ét (XK ,Qp) ∼=

⊕
0≤i≤m

Cp(−i)⊗K Hm−i(XK , Ωi
XK/K).

Here, GK acts by g ⊗ g on LHS, by g ⊗ 1 on RHS.

remark . This is an analogue of the Hodge decomopositon. In this isomorphism, the
following fact is remarkable: In general, it is very difficult to know the action of Galois
group on the étale cohomology. However, afer tensoring Cp, the Galois action is very easy:

⊕
0≤i≤m

Cp(−i)⊕hi,m−i
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(hi,m−i := dimK Hm−i(X, Ωi
X/K).)

Theorem 2.2 (the de Rham conjecture (CdR)). Let XK be a proper smooth variety over
K. Then, there exists the following canonical isomorphism, which is compatible with the
Galois action and filtrations.

BdR ⊗Qp Hm
ét (XK ,Qp) ∼= BdR ⊗K Hm

dR(XK/K).

Here, GK acts by g ⊗ g on LHS, by g ⊗ 1 on RHS. We endow filtrations by Fili ⊗Hm
ét on

LHS, by Fili = Σi=j+kFilj ⊗ Filk on RHS.

remark . By takin graded quotient, we get CdR⇒CHT.

Theorem 2.3 (the crystalline conjecture (Ccrys)). Let XK be a proper smooth variety over
K, X be a proper smooth model of XK over OK. Y be the special fiber of X.

Then, there exists the following canonical isomorphism, which is compatible with the
Galois action, and Frobenius endmorphism.

Bcrys ⊗Qp Hm
ét (XK ,Qp) ∼= Bcrys ⊗W Hm

crys(Y/W )

Moreover, after tensoring BdR over Bcrys, and using the Berthelo-Ogus isomorphism (see
[Be]):

K ⊗W Hm
crys(Y/W ) ∼= Hm

dR(XK/K),

we get an isomorphism:

BdR ⊗Qp Hm
ét (XK ,Qp) ∼= BdR ⊗K Hm

dR(XK/K),

which is compatible with filtrations. Here, GK acts by g ⊗ g on LHS, by g ⊗ 1 on RHS,
Frobenius endmorphism acts by ϕ⊗ ϕ on LHS, by ϕ⊗ 1 on RHS. We endow filtrations by
Fili ⊗Hm

ét on LHS, by Fili = Σi=j+kFilj ⊗ Filk on RHS.

remark . By taking the Galois invariant part of the comparison isomorphism:

Bcrys ⊗Qp Hm
ét (XK ,Qp) ∼= Bcrys ⊗W Hm

crys(Y/W ),

we get:
(Bcrys ⊗Qp Hm

ét (XK ,Qp))
GK ∼= K0 ⊗W Hm

crys(Y/W ).

By taking Fil0(BdR ⊗Bcrys •) ∩ (•)ϕ=1 of the comparison isomorphism, we get:

Hm
ét (XK ,Qp) ∼= Fil0(BdR ⊗K Hm

dR(XK/K)) ∩ (Bcrys ⊗W Hm
crys(Y/W ))ϕ=1.

We can, that is, recover the crystalline cohomology & de Rham cohomology from the étale
cohomology and vice versa with all additional strucuture. (Grothendieck’s mysterious
functor.)

Theorem 2.4 (the semi-stable conjecture (Cst)). Let XK be a proper smooth variety over
K, X be a proper semi-stable model of XK over OK. (i.e., X is regular and proper flat
over OK, its general fiber is XK and its special fiber is normal crossing divisor.) Let Y be
the special fiber of X, and MY be a natural log-structure on Y .

Then, there exists the following canonical isomorphism, which is compatible with the
Galois action, and Frobenius endmorphism, monodromy operator.

Bst ⊗Qp Hm
ét (XK ,Qp) ∼= Bst ⊗W Hm

log-crys((Y,MY )/(W,O×))
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Moreover, after tensoring BdR over Bst, and using the Hyodo-Kato isomorphism (see
[H-Ka]) (it depens on the choice of the uniformizer pi of K):

K ⊗W Hm
log-crys((Y,MY )/(W,O×)) ∼= Hm

dR(XK/K)

we get an isomorphism:

BdR ⊗Qp Hm
ét (XK ,Qp) ∼= BdR ⊗K Hm

dR(XK/K)

which is compatible with filtrations. Here, GK acts by g ⊗ g on LHS, by g ⊗ 1 on RHS,
Frobenius endmorphism acts by ϕ⊗ϕ on LHS, by ϕ⊗1 on RHS, monodromy operator acts
by N ⊗ 1 on LHS, by N ⊗ 1 + 1⊗N on RHS. We endow filtrations by Fili ⊗Hm

ét on LHS,
by Fili = Σi=j+kFilj ⊗ Filk on RHS.

remark . By taking the Galois invariant part of the comparison isomorphism:

Bst ⊗Qp Hm
ét (XK ,Qp) ∼= Bst ⊗W Hm

log-crys((Y, MY )/(W,O×))

we get:

(Bst ⊗Qp Hm
ét (XK ,Qp))

GK ∼= K0 ⊗W Hm
log-crys((Y, MY )/(W,O×))

By taking Fil0(BdR ⊗Bst •) ∩ (•)ϕ=1,N=0 of the comparison isomorphism, we get:

Hm
ét (XK ,Qp) ∼= Fil0(BdR ⊗K Hm

dR(XK/K)) ∩ (Bst ⊗W Hm
log-crys((Y,MY )/(W,O×)))ϕ=1,N=0

We can, that is, recover the log-crystalline cohomology & de Rham cohomology from the
étale cohomology and vice versa with all additional strucuture. (Grothendieck’s mysterious
functor.)

remark . From BN=0
st = Bcrys, we get Cst⇒Ccrys.

remark . By using de Jong’s alteration(see [dJ]), we get Cst⇒CdR. We need a slight
argument to showing that it is compatible not only with the action of Gal(K/L) for a
suitable finite extention L of K, but also with the aciton of GK . (see [Tsu4])

In the following theorem, we do not review the definition of the potentially semi-stable
representation.

Theorem 2.5 (the potentially semi-stable conjecture (Cpst)). Let XK be a proper vari-
ety over K. Then, the p-adic étale cohomology Hm

ét (XK ,Qp) is a potentially semi-stable
representation of GK.

remark . By using de Jong’s alteration（see [dJ]）and truncated simplicial schemes, we
get Cst⇒Cpst. (see [Tsu3])

The logical dependence is the following:

Cpst ⇐ Cst ⇒ Ccrys, Cst ⇒ CdR ⇒ CHT.

Cst ⇒ Ccrys and CdR ⇒ CHT are trivial. For Cst ⇒ CdR, we use de Jong’s alteration. For
Cst ⇒ Cpst, we use de Jong’s alteration and truncated simplicial scheme. i.e., Cst is the
deepest theorem.
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3. The main results

In this section, we state the main results without proof (see [Y]). In this report, we do
not mention weight filtrations and functoriarities.

We call CHT(resp. CdR, Ccrys, Cst, Cpst) in the previous section proper smooth CHT(resp.
proper smooth CdR, proper Ccrys, proper Cst, proper Cpst). Roughly speaking, we remove
conditions of the main theorems in the following way.

(1) proper smooth CHT; open non-smooth CHT

XK is separated of finite type over K.
Or, “open” smooth CHT

XK can be compactified into a proper smooth variety over K, such that its com-
plement is a normal crossing divisor.

(2) proper smooth CdR; open non-smooth CdR

XK is separated of finite type over K.
Or, “open” smooth CdR

XK can be compactified into a proper smooth variety over K, such that its com-
plement is a normal crossing divisor.

(3) proper Ccrys; “open” Ccrys

X can be compactified into a proper smooth variety over OK , such that its comple-
ment is a horizontal normal crossing divisor, which is also normal crossing to the
special fiber.

(4) proper Cst; “open” Cst

X can be compactified into a proper semi-stable family over OK , such that its
complement is a horizontal normal crossing divisor, which is also normal crossing
to the special fiber.

(5) proper Cpst; open non-smooth Cpst

XK is separated of finite type over K.

In the above, the word open means arbitrary open, on the other hand, the word “open”
means “proper minus normal crossing divisor”.

We consider cohomologies with proper support Hm
c and cohomologies without proper

support Hm. Moreover, we can consider “partially proper support cohomologies” in “open”
smooth cases: If we decompose the normal crossing divisor D into D = D1∪D2, “partially
proper support cohomologies” are cohomologies with support only on Di (i = 1, 2). We
denote them Hm

i (i = 1, 2), that is,

Hm
ét,1((X \D)K ,Qp) := Hm

ét (XK , Rj2∗j1!Qp),

Hm
ét,1((X \D)K ,Qp) := Hm

ét (XK , Rk1∗k2!Qp).

(Here, j1 : (X \ D)K ↪→ (X \ D2)K , j2 : (X \ D2)K ↪→ XK , k1 : (X \ D1)K ↪→ XK , and
k2 : (X \D)K ↪→ (X \D1)K .)

Hm
dR,i((X \D)K/K) := Hm(XK , I(Di)ΩXK/K(logD)).

Hm
log-crys,i(Y \ C) := K0 ⊗W Hm

log-crys,i((Y, MY )/(W,O×), K(Ci)O(Y,MY )/(W,O×)).

Here, Y (resp. C, Ci) are the special fiber of X(resp. D, Di), and I(Di)(resp. K(Di)) are
the ideal sheaf of OX(resp. O(Y,MY )/(W,O×)) defined by Di(resp. Ci) (see [Tsu2]). They are
called the “minus log”.
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When we consider algebraic correspondences on open varieties, we need to consider
partially proper support cohomologies. Thus, in a sense, when we consider not only a
comparison between varieties but also a comparison of Hom, we have to consider partially
proper support cohomologies. In this way, it is impotant to show comparison isomorphisms
for partially proper support cohomologies.

We state the main result.
First, we prove a extended version of Hyodo-Kato isomorphism:

Proposition 3.1. Let X be a proper semi-stable model over OK, D be a horizontal normal
crossing divisor of X, which is also normal crossing to the special fiber. We decompose D
into D = D1∪D2. Put Y (resp. C) to be the special fiber of X(resp. D). Fix a uniformizer
pi of K. Then, we have the following isomorphism:

K ⊗K0 Hm
log-crys,i(Y \ C) ∼= Hm

dR,i((X \D)K/K).

Thus, the pair
(Hm

log-crys,i(Y \ C), Hm
dR,i((X \D)K/K))

has a filtered (ϕ, N)-module structure.

The main result is the following:

Theorem 3.2 (“open” Cst). Let X be a proper semi-stable model over OK, D be a hori-
zontal normal crossing divisor of X, which is also normal crossing to the special fiber. We
decompose D into D = D1 ∪ D2. Put Y (resp. C) to be the special fiber of X(resp. D).
Then, for i = 1, 2, we have the following canonical Bst-linear isomorphism:

Bst ⊗Qp Hm
ét,i((X \D)K ,Qp) ∼= Bst ⊗K0 Hm

log-crys,i(Y \ C)

Here, that is compatible the additional structures equipped by the following table:

Bst ⊗QpH
m
ét,i((X \D)K ,Qp) ∼= Bst ⊗K0H

m
log-crys,i(Y \ C)

Gal g ⊗g g ⊗1
Frob ϕ ⊗1 ϕ ⊗ϕ
Monodromy N ⊗1 N ⊗ 1 +1⊗N
Fili after
BdR⊗Bst

} Fili ⊗Hm
ét

∑

i=j+k

Filj ⊗Filk

Moreover, this is compatible with product structures.
In particular, if D1 = φ, then we get

Bst ⊗Qp Hm
ét ((X \D)K ,Qp) ∼= Bst ⊗K0 Hm

log-crys(Y \ C),

Bst ⊗Qp Hm
ét,c((X \D)K ,Qp) ∼= Bst ⊗K0 Hm

log-crys,c(Y \ C).

remark . A proof for cohomologies with proper support (Hc) in the case of D2 = ∅
and D is simple normal crossing was given by T. Tsuji in personal conversations. That
proof asserts there exist a comparison isomorphism of Hc’s. Taking dual, we get the
comparison isomorphism of H’s, but we can not verify that the isomorphism is the one
which has constructed in [Tsu2], because the proof neglects product structures. Later, he
also gave an alternative proof for cohomologies without support (H) in the case of D2 = ∅
and D is simple normal crossing, by removing smooth divisors one by one (see [Tsu5]).
That proof asserts there exist a comparison isomorphism of H’s. Taking dual, we get
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the comparison isomorphism of Hc’s, but we can not verify that the isomorphism is the
one which has constructed in the above personal conversations, because the proof neglects
product structures.

Anyway, we want to construct comparison maps of H and Hc (more generally, H1 and
H2), which is compatible with product structures, and to show the comparison maps are
isomorphism.

From this “open”Cst, by the similar argument of

Cpst ⇐ Cst ⇒ Ccrys, Cst ⇒ CdR ⇒ CHT

in the previous section, we can extend CHT, CdR, Ccrys, and Cpst.
The “open”Ccrysis immediately deduced from the “open”Cst.

Theorem 3.3 (“open”Ccrys). Let X be a proper smooth model over OK, D be a horizontal
normal crossing divisor of X, which is also normal crossing to the special fiber. We decom-
pose D into D = D1∪D2. Put Y (resp. C) to be the special fiber of X(resp. D). Then, for
i = 1, 2, we have the following canonical Bst-linear isomorphism, which is compatible with
the Galois actions, the Frobenius endmorphisms, the filtrations after tensoring BdR over
Bcrys:

Bst ⊗Qp Hm
ét,i((X \D)K ,Qp) ∼= Bst ⊗K0 Hm

log-crys,i(Y \ C)

By de Jong’s alteration and truncated simplicial scheme argument (see [Tsu3]), we can
deduce the open non-smooth CdRfrom the “open”Cst. Here, in the case of open non-smooth,
we use the de Rham cohomology of (Deligne-)Hartshorne. (see [Ha1][Ha2])

Theorem 3.4 (open non-smooth CdR). Let XK be a separated variety of finite type over
K. Then, we have the following canonical isomorphism, which is compatible with the Galois
actions and filtrations:

BdR ⊗Qp Hm
ét (XK ,Qp) ∼= BdR ⊗K Hm

dR(XK/K)

BdR ⊗Qp Hm
ét,c(XK ,Qp) ∼= BdR ⊗K Hm

dR,c(XK/K).

In the case of “open” smooth, we can consider partially proper support cohomologies by
de Jong’s alteration and diagonal class argument (see [Tsu4]).

Theorem 3.5 (“open” CdR). Let XK be a proper smooth variety over K, and DK be a
normal crossing divisor of XK. We decompose D into DK = D1

K ∪D2
K. Then, for i = 1, 2,

we have the following canonical isomorphism, which is compatible with the Galois actions
and filtrations:

BdR ⊗Qp Hm
ét,i((X \D)K ,Qp) ∼= BdR ⊗K Hm

dR,i((X \D)K/K)

By taking graded quotient, we can deduce the open non-smooth CHT from the open
non-smooth CdR. However, the Hodge-Tate decomposition of the open non-smooth CHT is
a formal decomposition, and it relates cohomologies of the sheaf of differential forms only
in the “open” smooth case.
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Theorem 3.6 (open non-smooth CHT). Let XK be a separated variety of finite type over
K. Then, we have the following canonical isomorphism, which is compatible with the Galois
actions:

Cp ⊗Qp Hm
ét (XK ,Qp) ∼=

⊕
−∞¿i¿∞

Cp(−i)⊗K griHm
dR(XK/K)

Cp ⊗Qp Hm
ét,c(XK ,Qp) ∼=

⊕
−∞¿i¿∞

Cp(−i)⊗K griHm
dR,c(XK/K).

Theorem 3.7 (“open” CHT). Let XK be a proper smooth variety over K. and DK be a
normal crossing divisor of XK. We decompose D into DK = D1

K ∪D2
K. Then, for i = 1, 2,

we have the following canonical isomorphism, which is compatible with the Galois actions:

Cp ⊗Qp Hm
ét,i(XK ,Qp) ∼=

⊕
0≤j≤m

Cp(−j)⊗K Hm−j(XK , I(Di)Ωj
XK/K(logD)).

By de Jong’s alteration and truncated simplicial scheme argument (see [Tsu3]), we can
deduce the open non-smooth Cpst from the “open”Cst:

Theorem 3.8 (open non-smooth Cpst). Let XK be a separated variety of finite type over K.
Then, the p-adic étale cohomologies Hm

ét (XK ,Qp), Hm
ét,c(XK ,Qp) are potentially semi-stable

representations.

Finally, we mention with a few words about the proof of the main result (“open” Cst).
In the method of Fontaine-Messing-Kato-Tsuji, we use the intermediate cohomology “syn-
tomic cohomology” (see [FM][Ka2][Tsu1]). In the open case, we find difficulties in mak-
ing product structures. To make product structures, we consider “bettari-log” schemes.
(By the Japanese word “bettari”, we image that the log-structure is spread on the whole
scheme.) However, log-crystalline cohomologies for these “bettari-log” schemes are in gen-
eral infinite dimensional. Thus, we overcome difficulties by finding a modified crystalline
sheaf, whose log-crystalline cohomology is finite dimensional. We construct a spectral
sequence relating (étale, log-crystalline, and syntomic) cohomologies of the open vari-
ety with (étale, log-crystalline, and syntomic) cohomologies of the “bettari-log” schemes,
and a spectral sequence relating (étale, log-crystalline, and syntomic) cohomologies of
the “bettari-log” schemes with (étale, log-crystalline, and syntomic) cohomologies of log-
smooth schemes. By using these ingredients, we finish the proof.
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