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FOR OPEN VARIETIES

GO YAMASHITA

This text is a report of a talk “p-adic étale cohomology and crystalline cohomology for
open varieties” in a symposium at Waseda University (13-15/March/2003).

The aim of the talk was, roughly speaking, “to extend the main theorems of p-adic Hodge
theory for open or non-smooth varieties” by the method of Fontaine-Messing-Kato-Tsuji,
which do not use Faltings’ almost étale theory. (see [FM],[Ka2], and [Tsu1]). Here, the
main theorems of p-adic Hodge theory are: the Hodge-Tate conjecture (CHT for short), the
de Rham conjecture (CdR), the crystalline conjecture (Ccrys), the semi-stabele conjecture
(Cst), and the potentially semi-stable conjecture (Cpst). The theorems CdR, Ccrys, and Cst

are called the “comparison theorems”.
In the section 1, we review the main theorems of the p-adic Hodge theory. In the section

2, we state the main results. In this report, the auther only states the results without the
proof.

The auther thanks to Takeshi Saito, Takeshi Tsuji, Seidai Yasuda for helpful discussions.
Finally, he also thanks to the organizers of the symposium Ki-ichiro Hashimoto and Kei-ichi
Komatsu for giving me an occasion of the talk.

Notations
Let K be a complete discrete valuation field of characteristic 0, k the residue field of K,
perfect, characteristic p > 0, and OK the valuation ring of K. Denote K be the algebraic
closure of K, k the algebraic closure of k, GK the absolute Galois group of K, and Cp

the p-adic completion of K. (Note that it is an abuse of the notation. If [K : Qp] < ∞,
it coincide the usual notations.) Let W be the ring of Witt vectors with coefficient in k,
and K0 the fractional field of W . It is the maximum absolutely unramified (i.e., p is a
uniformizer in K0) subfield of K. The word “log-structure” means Fontaine-Illusie-Kato’s
log-structure (see. [Ka1]). We do not review the notion of log-structure in this report.

1. The main theorems of p-adic Hodge theory

The p-adic Hodge theory compares cohomology theories with additional structures, that
is, Galois actions, Hodge filtrations, Frobenius endmorphisms, Monodoromy operators:

(1) étale cohomology Hm
ét (XK ,Qp) —topological:

Qp-vector space +Galois action
(2) (algebraic) de Rham cohomology Hm

dR(XK/K) —analytic:
K-vector space +Hodge filtration
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(3) (log-)crystalline cohomology K0 ⊗W Hm
crys(Y/W ) —analytic:

K0-vector space +Frobenius endmorphism (+ Monodromy operator).

In the p-adic Hodge theory, we use Fontaine’s p-adic period rings BdR, Bcrys, and Bst.
We do not review the definitions and fundamental properties of these rings. (see. [Fo])

In the proof of the comparison theorems, we use the “syntomic cohomology”. This is
a vector space endowed with the Galois action. However, being different from the étale
cohomology it is an analytic cohomology defined by differential forms. It is the theoritical
heart of the p-adic Hodge theory by the method of Fontaine-Messing-Kato-Tsuji that the
syntomic cohomology is isomorphic to the étale cohomology compatible with Galois action.

In this section, we state the main theorems of p-adic Hodge theory: CHT, CdR, Ccrys, Cst,
and Cpst. Roughly spealing, we can state the main theorems as the following way:

• the Hodge-Tate conjecture (CHT):
There exists a Hodge-Tate decomposition on the p-adic étale cohomology.

• the de Rham conjecture (CdR):
There exists a comparison isomorphism between the p-adic étale cohomology and
the de Rham cohomology.

• the crystalline conjecture (Ccrys):
In the good reduction case, we have stronger result than CdR, that is, there exists
a comparison isomorphism between the p-adic étale cohomology and the crystalline
cohomology.

• the semi-stable conjecture (Cst):
In the semi-stable reduction case, we have stronger result than CdR, that is, there
exists a comparison isomorphism between the p-adic étale cohomology and the log-
crystalline cohomology.

• the potentially semi-stable conjecture (Cpst):
The p-adic étale cohomology has “only a finite monodromy”.

The following theorems were formulated by Tate, Fontaine, Jannsen, proved by Tate,
Faltings, Fontaine-Messing, Kato under various assumptions, and proved by Tsuji under no
assumptions (1999 [Tsu1]). Later, Faltings and Niziol got alternative proofs (see. [Fa],[Ni]).

Theorem 1.1 (the Hodge-Tate conjecture (CHT)). Let XK be a proper smooth variety over
K. Then, there exists the following canonical isomorphism, which is compatible with the
Galois action.

Cp ⊗Qp Hm
ét (XK ,Qp) ∼=

⊕
0≤i≤m

Cp(−i)⊗K Hm−i(XK , Ωi
XK/K).

Here, GK acts by g ⊗ g on LHS, by g ⊗ 1 on RHS.

remark . This is an analogue of the Hodge decomopositon. In this isomorphism, the
following fact is remarkable: In general, it seems very difficult to know the action of Galois
group on the étale cohomology. However, afer tensoring Cp, the Galois action is very easy:

⊕
0≤i≤m

Cp(−i)⊕hi,m−i

(hi,m−i := dimK Hm−i(X, Ωi
X/K).)
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Theorem 1.2 (the de Rham conjecture (CdR)). Let XK be a proper smooth variety over
K. Then, there exists the following canonical isomorphism, which is compatible with the
Galois action and filtrations.

BdR ⊗Qp Hm
ét (XK ,Qp) ∼= BdR ⊗K Hm

dR(XK/K).

Here, GK acts by g ⊗ g on LHS, by g ⊗ 1 on RHS. We endow filtrations by Fili ⊗Hm
ét on

LHS, by Fili = Σi=j+kFilj ⊗ Filk on RHS.

remark . By takin graded quotient, we get CdR⇒CHT.

Theorem 1.3 (the crystalline conjecture (Ccrys)). Let XK be a proper smooth variety over
K, X be a proper smooth model of XK over OK. Y be the special fiber of X.

Then, there exists the following canonical isomorphism, which is compatible with the
Galois action, and Frobenius endmorphism.

Bcrys ⊗Qp Hm
ét (XK ,Qp) ∼= Bcrys ⊗W Hm

crys(Y/W )

Moreover, after tensoring BdR over Bcrys, and using the Berthelo-Ogus isomorphism (see.
[Be]):

K ⊗W Hm
crys(Y/W ) ∼= Hm

dR(XK/K),

we get an isomorphism:

BdR ⊗Qp Hm
ét (XK ,Qp) ∼= BdR ⊗K Hm

dR(XK/K),

which is compatible with filtrations. Here, GK acts by g ⊗ g on LHS, by g ⊗ 1 on RHS,
Frobenius endmorphism acts by ϕ⊗ ϕ on LHS, by ϕ⊗ 1 on RHS. We endow filtrations by
Fili ⊗Hm

ét on LHS, by Fili = Σi=j+kFilj ⊗ Filk on RHS.

remark . By taking the Galois invariant part of the comparison isomorphism:

Bcrys ⊗Qp Hm
ét (XK ,Qp) ∼= Bcrys ⊗W Hm

crys(Y/W ),

we get:

(Bcrys ⊗Qp Hm
ét (XK ,Qp))

GK ∼= K0 ⊗W Hm
crys(Y/W ).

By taking Fil0(BdR ⊗Bcrys •) ∩ (•)ϕ=1 of the comparison isomorphism, we get:

Hm
ét (XK ,Qp) ∼= Fil0(BdR ⊗K Hm

dR(XK/K)) ∩ (Bcrys ⊗W Hm
crys(Y/W ))ϕ=1.

We can, that is, recover the crystalline cohomology & de Rham cohomology from the étale
cohomology and vice versa with all additional strucuture. (Grothendieck’s mysterious
functor.)

Theorem 1.4 (the semi-stable conjecture (Cst)). Let XK be a proper smooth variety over
K, X be a proper semi-stable model of XK over OK. (i.e., X is regular and proper flat
over OK, its general fiber is XK and its special fiber is normal crossing divisor.) Let Y be
the special fiber of X, and MY be a natural log-structure on Y .

Then, there exists the following canonical isomorphism, which is compatible with the
Galois action, and Frobenius endmorphism, monodromy operator.

Bst ⊗Qp Hm
ét (XK ,Qp) ∼= Bst ⊗W Hm

log-crys((Y,MY )/(W,O×))
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Moreover, after tensoring BdR over Bst, and using the Hyodo-Kato isomorphism (see.
[HKa]) (it depens on the choice of the uniformizer pi of K):

K ⊗W Hm
log-crys((Y,MY )/(W,O×)) ∼= Hm

dR(XK/K)

we get an isomorphism:

BdR ⊗Qp Hm
ét (XK ,Qp) ∼= BdR ⊗K Hm

dR(XK/K)

which is compatible with filtrations. Here, GK acts by g ⊗ g on LHS, by g ⊗ 1 on RHS,
Frobenius endmorphism acts by ϕ⊗ϕ on LHS, by ϕ⊗1 on RHS, monodromy operator acts
by N ⊗ 1 on LHS, by N ⊗ 1 + 1⊗N on RHS. We endow filtrations by Fili ⊗Hm

ét on LHS,
by Fili = Σi=j+kFilj ⊗ Filk on RHS.

remark . By taking the Galois invariant part of the comparison isomorphism:

Bst ⊗Qp Hm
ét (XK ,Qp) ∼= Bst ⊗W Hm

log-crys((Y, MY )/(W,O×))

we get:

(Bst ⊗Qp Hm
ét (XK ,Qp))

GK ∼= K0 ⊗W Hm
log-crys((Y, MY )/(W,O×))

By taking Fil0(BdR ⊗Bst •) ∩ (•)ϕ=1,N=0 of the comparison isomorphism, we get:

Hm
ét (XK ,Qp) ∼= Fil0(BdR ⊗K Hm

dR(XK/K)) ∩ (Bst ⊗W Hm
log-crys((Y,MY )/(W,O×)))ϕ=1,N=0

We can, that is, recover the log-crystalline cohomology & de Rham cohomology from the
étale cohomology and vice versa with all additional strucuture. (Grothendieck’s mysterious
functor.)

remark . From BN=0
st = Bcrys, we get Cst⇒Ccrys.

remark . By using de Jong’s alteration(see. [dJ]), we get Cst⇒CdR. We need a slight
argument to showing that it is compatible not only with the action of Gal(K/L) for a
suitable finite extention L of K, but also with the aciton of GK . (see. [Tsu4])

In the following theorem, we do not review the definition of the potentially semi-stable
representation.

Theorem 1.5 (the potentially semi-stable conjecture (Cpst)). Let XK be a proper vari-
ety over K. Then, the p-adic étale cohomology Hm

ét (XK ,Qp) is a potentially semi-stable
representation of GK.

remark . By using de Jong’s alteration（see. [dJ]）and truncated simplicial schemes, we
get Cst⇒Cpst. (see. [Tsu3])

The logical dependence is the following:

Cpst ⇐ Cst ⇒ Ccrys, Cst ⇒ CdR ⇒ CHT.

Cst ⇒ Ccrys and CdR ⇒ CHT are trivial. For Cst ⇒ CdR, we use de Jong’s alteration. For
Cst ⇒ Cpst, we use de Jong’s alteration and truncated simplicial scheme. i.e., Cst is the
deepest theorem.
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2. The main results

In this section, we state the main results without proof (see. [Y]). In this report, we do
not mention “weight” filtrations.

We call CHT(resp. CdR, Ccrys, Cst, Cpst) in the previous section proper smooth CHT(resp.
proper smooth CdR, proper Ccrys, proper Cst, proper Cpst). Roughly speaking, we remove
conditions of the main theorems in the following way.

former results

CHT proper smooth separated finite type
CdR proper smooth separated finite type
Ccrys proper good reduction model “open” good reduction model
Cst proper semi-stable reduction model “open” semi-stable reduction model
Cpst proper separated finite type

In the above, the word “open” means “proper minus normal crossing divisor”. In CdR

case, we use Hartshorne’s algebraic de Rham cohomology for open non-smooth varieties. In
CHT case, the Hodge-Tate decomposition of the open non-smooth CHT is a formal decom-
position, and it relates cohomologies of the sheaf of differential forms only in the “open”
smooth case.

We consider cohomologies with proper support Hm
c and cohomologies without proper

support Hm. Moreover, we can consider “partially proper support cohomologies” in “open”
smooth cases: If we decompose the normal crossing divisor D into D = D1∪D2, “partially
proper support cohomologies” are cohomologies with support only on D1, that is,

Hm
ét (XK , D1

K
, D2

K
) := Hm

ét (XK , Rj2∗j1!Qp),

Hm
dR(XK , D1

K , D2
K) := Hm(XK , I(D1)ΩXK/K(logDK)),

Hm
log-crys(Y,C1, C2) := K0 ⊗W Hm

log-crys((Y, MY )/(W,O×), K(C1)O(Y,MY )/(W,O×)),

Here, j1 : (X \ D)K ↪→ (X \ D2)K , j2 : (X \ D2)K ↪→ XK , Y (resp. C, Ci) are the
special fiber of X(resp. D, Di), and I(D1)(resp. K(D1)) are the ideal sheaf of OX(resp.
O(Y,MY )/(W,O×)) defined by D1(resp. C1) (see. [Tsu2]). They are called the “minus log”.
Naturally, we have Hm(X, ∅, D) = Hm(X \D) and Hm(X, D, ∅) = Hm

c (X \D) for étale,
de Rham, and log-crystalline cohomologies.

For example, the diagonal class [∆] of a open variety belongs to a cohomology with
partially proper support on D × X(⊂ (D × X) ∪ (X × D)), that is, in H2d(X × X, D ×
X, X × D). When we consider algebraic correspondences on open varieties, we need to
consider partially proper support cohomologies. Thus, in a sense, when we consider not
only a comparison between varieties but also a comparison of Hom, we have to consider
partially proper support cohomologies. In this way, it is important to show comparison
isomorphisms for partially proper support cohomologies.

First, we prove a extended version of Hyodo-Kato isomorphism:

Proposition 2.1. Let X be a proper semi-stable model over OK, D be a horizontal normal
crossing divisor of X, which is also normal crossing to the special fiber. We decompose D
into D = D1∪D2. Put Y (resp. C) to be the special fiber of X(resp. D). Fix a uniformizer
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pi of K. Then, we have the following isomorphism:

K ⊗K0 Hm
log-crys(Y, C1, C2) ∼= Hm

dR(XK , D1
K , D2

K).

Thus, the pair

(Hm
log-crys(Y, C1, C2), Hm

dR(XK , D1
K , D2

K))

has a filtered (ϕ, N)-module structure.

The main result is the following:

Theorem 2.2 (“open” Cst). Let X be a proper semi-stable model over OK, D be a hori-
zontal normal crossing divisor of X, which is also normal crossing to the special fiber. We
decompose D into D = D1 ∪ D2. Put Y (resp. C) to be the special fiber of X(resp. D).
Then, we have the following canonical Bst-linear isomorphism:

Bst ⊗Qp Hm
ét (XK , D1

K
, D2

K
) ∼= Bst ⊗K0 Hm

log-crys(Y,C1, C2)

Here, that is compatible the additional structures equipped by the following table:

Bst ⊗QpH
m
ét (XK , D1

K
, D2

K
) ∼= Bst ⊗K0H

m
log-crys(Y, C1, C2)

Gal g ⊗g g ⊗1
Frob ϕ ⊗1 ϕ ⊗ϕ
Monodromy N ⊗1 N ⊗ 1 +1⊗N
Fili after
BdR⊗Bst

} Fili ⊗Hm
ét

∑

i=j+k

Filj ⊗Filk

Moreover, this is compatible with product structures.
In particular, if D1 = φ, then we get

Bst ⊗Qp Hm
ét ((X \D)K ,Qp) ∼= Bst ⊗K0 Hm

log-crys(Y \ C),

Bst ⊗Qp Hm
ét,c((X \D)K ,Qp) ∼= Bst ⊗K0 Hm

log-crys,c(Y \ C).

remark . It seems difficult to show the compatibility of Leray spectral sequences, so it
seems that we cannot reduce to the proper case without the almost étale theory.

remark . A proof for cohomologies with proper support (Hc) in the case of D2 = ∅ and D
is simple normal crossing was given by T. Tsuji in [Tsu8]. That proof asserts there exist a
comparison isomorphism of Hc’s. Taking dual, we get the comparison isomorphism of H’s,
but we can not verify that the isomorphism is the one which has constructed in [Tsu2],
because the proof neglects product structures. Later, he also gave an alternative proof for
cohomologies without support (H) in the case of D2 = ∅ and D is simple normal crossing,
by removing smooth divisors one by one (see. [Tsu5]). That proof asserts there exist a
comparison isomorphism of H’s. Taking dual, we get the comparison isomorphism of Hc’s,
but we can not verify that the isomorphism is the one which has constructed in the above
personal conversations, because the proof neglects product structures. In that method, we
cannot treat normal crossing divisors, and partially proper support cohomologies.

Anyway, we want to construct comparison maps of H and Hc (more generally, for par-
tially proper support cohomologies), which is compatible with product structures, and to
show the comparison maps are isomorphism.
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From this “open”Cst, by the similar argument of

Cpst ⇐ Cst ⇒ Ccrys, Cst ⇒ CdR ⇒ CHT

in the previous section, we can extend CHT, CdR, Ccrys, and Cpst.
The “open”Ccrys is immediately deduced from the “open”Cst.

Theorem 2.3 (“open”Ccrys). Let X be a proper smooth model over OK, D be a horizontal
normal crossing divisor of X, which is also normal crossing to the special fiber. We decom-
pose D into D = D1∪D2. Put Y (resp. C) to be the special fiber of X(resp. D). Then, we
have the following canonical Bst-linear isomorphism, which is compatible with the Galois
actions, the Frobenius endmorphisms, the filtrations after tensoring BdR over Bcrys:

Bst ⊗Qp Hm
ét (XK , D1

K
, D2

K
) ∼= Bst ⊗K0 Hm

log-crys(Y,C1, C2)

By de Jong’s alteration and truncated simplicial scheme argument (see. [Tsu3]), we can
deduce the open non-smooth CdRfrom the “open”Cst. Here, in the case of open non-smooth,
we use the de Rham cohomology of (Deligne-)Hartshorne. (see. [Ha1][Ha2])

Theorem 2.4 (open non-smooth CdR). Let UK be a separated variety of finite type over K.
Then, we have the following canonical isomorphism, which is compatible with the Galois
actions and filtrations:

BdR ⊗Qp Hm
ét (UK ,Qp) ∼= BdR ⊗K Hm

dR(UK/K)

BdR ⊗Qp Hm
ét,c(UK ,Qp) ∼= BdR ⊗K Hm

dR,c(UK/K).

In the case of “open” smooth, we can consider partially proper support cohomologies by
de Jong’s alteration and diagonal class argument (see. [Tsu4]).

Theorem 2.5 (“open” CdR). Let XK be a proper smooth variety over K, and DK be
a normal crossing divisor of XK. We decompose D into DK = D1

K ∪ D2
K. Then, we

have the following canonical isomorphism, which is compatible with the Galois actions and
filtrations:

BdR ⊗Qp Hm
ét (XK , D1

K
, D2

K
) ∼= BdR ⊗K Hm

dR,i(XK , D1
K , D2

K)

By taking graded quotient, we can deduce the open non-smooth CHT from the open
non-smooth CdR. However, the Hodge-Tate decomposition of the open non-smooth CHT is
a formal decomposition, and it relates cohomologies of the sheaf of differential forms only
in the “open” smooth case.

Theorem 2.6 (open non-smooth CHT). Let UK be a separated variety of finite type over K.
Then, we have the following canonical isomorphism, which is compatible with the Galois
actions:

Cp ⊗Qp Hm
ét (UK ,Qp) ∼=

⊕
−∞¿i¿∞

Cp(−i)⊗K griHm
dR(UK/K)

Cp ⊗Qp Hm
ét,c(UK ,Qp) ∼=

⊕
−∞¿i¿∞

Cp(−i)⊗K griHm
dR,c(UK/K).
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Theorem 2.7 (“open” CHT). Let XK be a proper smooth variety over K. and DK be a
normal crossing divisor of XK. We decompose D into DK = D1

K ∪D2
K. Then, we have the

following canonical isomorphism, which is compatible with the Galois actions:

Cp ⊗Qp Hm
ét (XK , D1

K
, D2

K
) ∼=

⊕
0≤j≤m

Cp(−j)⊗K Hm−j(XK , I(D1)Ωj
XK/K(logDK)).

By de Jong’s alteration and truncated simplicial scheme argument (see. [Tsu3]), we can
deduce the open non-smooth Cpst from the “open”Cst:

Theorem 2.8 (open non-smooth Cpst). Let UK be a separated variety of finite type over K.
Then, the p-adic étale cohomologies Hm

ét (UK ,Qp), Hm
ét,c(UK ,Qp) are potentially semi-stable

representations.
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tions arithmetiques, II. Astérisque 279 (2002), 323-370.
[Tsu5] Tsuji, T. On the maximal unramified quotients of p-adic étale cohomology groups and logarithmic

Hodge-Witt sheaves. in preparation.
[Tsu8] Tsuji, T. personal conversations
[Y] Yamashita, G. p-adic étale cohomology and crystalline cohomology for open varieties with semi-

stable reduction. in preparation.
E-mail address: gokun@ms.u-tokyo.ac.jp


